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Abstract

A nucleosome is the resultant structure formed when 1.6 left-handed turns of DNA (~146 bp)
are wound around a basic complex of histone proteins (the histone octamer). Nucleosomes
occur naturally and ubiquitously in all eukaryotic genomes; the histone proteins themselves
are highly conserved in eukaryotes. Experimental evidence suggests that specific DNA
sequences may exhibit high or low nucleosome-forming tendencies compared to random
DNA. This could mean that nucleosomes, whose positions are influenced by the underlying
DNA sequence, can in turn govern the accessibility of regulatory DNA sequences such as
transcription initiation and replication origin sites. This forms the need to search for evidence
of nucleosome positioning and consequently build models to predict and investigate such
locations.

One theory suggests that DNA sequences, which are intrinsically “curved”, can
position nucleosomes. In a previous study, using “cyclical” hidden-markov models, it had
been suggested that a 10 periodic occurrence of the [VWG] motif could have such an effect
and could help nucleosomes to be positioned in human exons. This work was extended in
this thesis. 60% of human genomic sequences were seen to be covered in apparently weak 9-
10 bp periodic patches of [CWG]. [CWG]-dense regions were seen to alternate with regions
which were rich in [W] motifs in human. However, the pattern was not the same in mouse.

Another theory suggests that highly flexible or highly rigid DNA sequences may
favour or disfavour nucleosome formation respectively. The locations of such patterns were
investigated in human sequences using the wavelet technique. This approach identified
confined periodic patterns (in the range of 80-200 bp) of rigidity in human genomic
sequences; the patterns themselves were, however, mainly consequences of alu repeat-
clustering. However, the same analysis in the mouse genome indicated that such a
mechanism for positioning nucleosomes was not conserved and therefore unlikely.

A different approach to model nucleosomes was to train weighted DNA matrices
from experimentally-mapped nucleosome datasets. This technique gave some encouraging
results (one model showing 100% accuracy at 40% coverage), but was restricted by the
limited size of the datasets.

Overall the conclusion is that there is some evidence for sequence specific
nucleosome positioning, but that more experimental data is needed to build and evaluate

practical and predictive computational models.
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1

A General Introduction to Nucleosomes and

Nucleosome Positioning
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1.1 Nucleosomes: the Building Blocks of Chromatin

Chromatin is the complex of DNA and cellular proteins which form eukaryotic
chromosomes. It is composed of an elementary repeating unit called the nucleosome,

which is the major factor of DNA packaging in eukaryotic genomes (Figure 1.1).

Figure 1.1: A hierarchical view of chromatin structure. Reproduced figure (Hartl &
Jones, 1998).
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Nucleosomes are DNA-protein complexes, which are comprised of a core
particle of 1.6 left-handed turns of DNA (roughly 146 bp) wound around a protein
complex called the histone octamer (Figure 1.1(B)). The histone octamer is a set of 8
basic proteins, which are among the most well conserved proteins known in

eukaryotes. It is comprised of a central tetramer, (H3/H4),, flanked by two H2A/H2B
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dimers (Figure 1.2). The structure of a single histone molecule includes three major o

helices with positively-charged loops protruding at the N-terminals.

Figure 1.2: Top-level view of a nucleosome. Cylinders indicate alpha-helices; white
hooks represent arginine/lysine tails. Reproduced figure (Rhodes, 1997)).

The DNA wrapped around the histone octamer is called the core DNA and the
DNA joining adjacent nucleosomes is called /inker DNA. Unlike core DNA, linker
DNA exhibits great variability in length: anywhere between 8 to 200 bp. This
variation in the length of linker DNA may be important for the diversity of gene
regulation; however, chromatin structure formation is independent of the length of
linker DNA (Kornberg & Lorch, 1999).

The constraint of the nucleosome on the DNA path forms the first level of
higher-order packing, compacting DNA by a factor of ~6 (Lewin, 2000). An extra
histone H1 (also called the linker histone) may also be present, clamping the DNA at
the position at which it enters and leaves the histone core (Karrer & VanNuland,
1999; Satchwell & Travers, 1989; Widlund ez al., 2000).

The series of nucleosomes along a DNA sequence then coil into a helical array
forming a fibre of ~30 nm (Figure 1.1(C)); this results in further compaction by a

factor of ~40. In the recent crystal structure of the nucleosome (Luger et al., 1997),
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it had been reported that the basic tail of H4 protrudes extensively and makes contacts
with acidic patches of H2A and H2B on neighbouring octamers; this implies a role for
H4 in stabilizing higher level structures. Histone H1 is thought to appear mainly
towards the middle of the 30 nm fibre where it may play a role in stabilizing
chromatin interactions (Staynov, 2000). Specialised nucleosomes are also known, for
example the centromere-specific nucleosomes, which contain a variant of histone H3
called CENP-A; these occur in a range of organisms from yeast to human (Smith,
2002). Many non-histone chromatin proteins also interact with histones to enable
formation of higher-order structures. The fibre itself undergoes further levels of
packaging resulting in compaction by a factor of ~1000 in interphase euchromatin and
~10,000 in heterochromatin (Figure 1.1(D-F)).

The structure of chromatin is dynamic. It exists in a number of distinct
functional states which can often be characterised by the level of transcriptional
activity. The dynamic transitions between these states occur through a range of post-
translational modifications of the histone tails which includes acetylation and
phosphorylation (Jenuwein & Allis, 2001). This forms the basis of the “histone code
hypothesis” which states that the combinatorial nature of these modifications results
in the generation of altered chromatin structures that mediate specific biological

responses (Turner, 2000).



1.2 DNA-Protein Interactions in the Nucleosome Core

Particle

The earliest concepts for the association of DNA and histones in the core particle
came from image reconstruction analysis using electron micrographs (Klug et al.,
1980). At 20 A resolution, a left handed helical ramp was apparent on the octamer
surface and proposals were made for how the DNA-protein interactions might occur.
Since then, X-ray crystallography has helped to advance understanding of the DNA-
protein interactions involved in the nucleosome core particle. Milestones included the
solving of the nucleosome structure at 7 A resolution (Uberbacher & Bunick, 1985),
which reconfirmed the initially inferred arrangement of histones and DNA. This led
to the highest resolution structures of the nucleosome core particle to date at 2.8 A
(Luger et al., 1997) and 1.9 A (Davey et al., 2002).

The high-resolution structure of the core-particle firstly revealed that the core
particle had a pseudo-dyad' axis of symmetry: 1 bp sat on the dyad axis of the
octamer. It further revealed in fine detail that the histone-DNA interactions were
confined towards the phosphodiester backbone of the DNA strand (Luger et al.,
1997). Arginine/lysine-rich tails, protruding from the core histones, made “hook-like”
contacts every 10 bp where the minor groove of the double-helix faced inwards. The
histone-DNA contacts were non-base-specific and included predominantly salt-
bridges and H-bonds as well as non-polar contacts with DNA sugars.

The 10 periodic contact feature of the DNA backbone was suggested much
earlier. It was suggested, for example, when 10 bp-phased digestion patterns were

observed upon using the enzyme DNase I* to cut nucleosome-bound DNA (Wang,

! The central axis of the histone octamer is herein referred to as the dyad axis.
* DNase I is an endonuclease, which breaks phosphodiester bonds within DNA.
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1982). The observed cutting periodicity of 10 bp, which is “in phase” with the helical
periodicity of DNA, forms the basis of many computational approaches aimed at
finding nucleosome rotational positioning signals (Section 1.9).

The helical periodicity of DNA is not constant as it traverses around the
histone octamer. For example, experiments using hydroxyl-radical cleavage of
nucleosome-bound DNA showed that the helical periodicity was 10.0 bp/turn in the
vicinity of the dyad axis and 10.7 bp/turn towards the ends of the nucleosome (Puhl &
Behe, 1993). Most experimental evidence for B-DNA in solution suggests that it has
a helical periodicity of 10.5-10.6 bp in solution (Wolffe, 1998). This variation in
DNA periodicity along the core particle is thought to be a consequence of local

histone-DNA interactions.
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1.3 The Concept of Nucleosome Positioning

Nucleosome positioning has been proposed to be a potential mechanism for regulating
gene expression, providing the view that nucleosomes could play important roles in
addition to organizing higher order chromatin structures in eukaryotic cells. The term
‘positioning’ refers to a pre-determined organization of nucleosomes on a DNA
sequence. In contrast, in a random arrangement of nucleosomes, all DNA sequences
will have an equal probability of binding histones (Sinden, 1994). This gives rise to
the idea that the local DNA structure, which is affected by the underlying DNA
sequence, may play a role in positioning nucleosomes.

Two kinds of DNA structural patterns may thus be envisioned to direct
nucleosome positioning: those that strongly favour nucleosome formation and those
that strongly obstruct it. Nucleosome positioning can help to either selectively expose
functionally important DNA sequences by constraining their locations to the linker
region or impede accessibility to functionally important sequences by constraining
their location to within the core particle. This can impose another level of regulation
in gene expression, for instance, by controlling the accessibility of binding sites
available to RNA polymerases or specific transcription factors. Two kinds of DNA
structure-based nucleosome positioning have been described previously and these will

be discussed next (Sections 1.4, 1.5).
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1.4 An Introduction to Nucleosome Rotational Positioning

Rotational positioning determines which side of a DNA double helix surface will face
and contact the histone octamer; this kind of positioning has been attributed to
intrinsically curved DNA. The theory that a nucleosome will fit an intrinsically
curved DNA is that the DNA is already in a preferred physical conformation to allow
it to easily wrap around the octamer surface.

This section will firstly introduce the physical basis of DNA which results in
intrinsic curvature and then describe how this relates to rotational positioning

preferences for nucleosomes.

1.4.1 Intrinsic DNA curvature: Bending based on 10-phased [A]

tracts

Intrinsically curved DNA is thought to be a consequence of permanent bends in a
DNA sequence. This was first proposed when it was noticed that a 414 bp piece of
kinetoplast DNA from Crithidia fasciculata displayed limited or retarded migration
compared to other sequence fragments of equal length in acrylamide gel but migrated
normally in agarose gel (Marini et al, 1983). This anomalous migration was
attributed to the size of the pores in the respective gels: in acrylamide gels, pore sizes
vary between 1-8 nm whereas pore sizes in agarose gels vary between 40-400 nm. It
was proposed that a permanent bend or curvature in the kinetoplast sequence was
probably what caused the fragment to get stuck in the smaller size pores of the
acrylamide gels.

The sequence motif that caused the permanent bends was mapped using the
circular permutation assay (Wu & Crothers, 1984). In this procedure, various 241 bp-

long restriction fragments, of the 414 bp-long kinetoplast DNA, were prepared and
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cloned as dimers. The length of 241 bp was chosen as this is greater than the
persistence length of DNA®. The dimerized fragments were then run on an
acrylamide gel and scanned for the fragment causing the shortest end-to-end
migration distance (this region contained the permanent bend). This experiment
concluded the retarded migration property to be an effect of 10 bp-phased runs of
CA4sT in the kinetoplast DNA. This work led Wu et al to propose the junction model
for DNA bending; this predicts that the poly(dA)-poly(dT) tracts, within the 10 bp-
phased CA4.sT motifs, adopt a non-B-DNA helix called heteronomous DNA (Arnott
et al., 1983). It proposes that permanent bends are located at the junction between
this kind of DNA and regular B-DNA.

An alternative model to explain how phased-A tracts caused permanent
bending was proposed later called the wedge model (Ulanovsky et al., 1986). In this
assessment, “bend angles” were calculated by measuring the efficiency of ligation of
small DNA fragments into closed circles. This model predicts that the bends are not
located at the junction between 2 kinds of DNA structure but within the [AA]
dinucleotides themselves.

Parameters estimated from X-ray analysis of DNA structure have also been
used to explain how phased-A tracts could cause intrinsic DNA curvature. From X-
ray crystal structures, 2 variables are considered important for the relative motion of
DNA base pairs: roll and slide (Calladine & Drew, 1992). Roll describes the opening
of base pairs towards the major or minor groove of the double helix. A positive roll
value indicates a tendency to open up towards the minor groove whereas a negative
roll value indicates a tendency to open up towards the major groove in the opposite

direction; typical values for DNA bases range between +20° to -10°. Slide refers to

3 The persistence length of DNA is 150 bp, the minimum length at which random DNA is essentially
linear: it cannot circularize.
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the translation along the axis of the base pairs. Slide values, which are restricted by
the sugar-phosphate chain, range from +2 A to -1 A. Estimates of roll angle from X-
ray structure analysis predict [AA/TT], [AT] and [GA/TC] dinucleotides to be stable
at low roll (0°) and low slide (0 A) (El Hassan MA & Calladine, 1997) making their
overall conformation very restricted. On the other hand, dinucleotides such as
[GC/GC], [CG/CG] and [GG] dinucleotides are predicted to exhibit a wide range of
roll angles (-10° to 20°) making their conformation “bistable” or “context-dependent”.
For the phased A-tract bending, this suggests that the [AA] dinucleotides prefer to
align their side of the minor groove towards the centre of curvature because of their
restricted low roll configuration and the [GC] dinucleotides prefer to align the major
groove away from the centre of curvature because of their bistable configuration
(more on this below; Section 1.4.2).

The latest evidence that tries to explain how phased-A tracts result in bending
comes from NMR studies (MacDonald et al., 2001). This estimates a total of 19°
bending in phased A-tracts. Of this, 4° occurs at the 5’end of the A-tract, 5° occurs

within the A-tract itself and 10° occurs at the 3’ end of the A-tract.

1.4.2 Intrinsic DNA curvature and the initial assessment of

nucleosome rotational positioning

A rotational preference for a circular piece of DNA sequence has been described as a
bias towards aligning a specific face of the DNA surface towards the direction of
curvature and aligning a specific face away from the direction of the curvature (Drew
& Travers, 1985). To study the rotational preferences of 10 bp-phased [A] tract

sequences, a 169 bp sequence, containing phased [A]-tracts, was circularly ligated and



digested with DNase I* (Drew & Travers, 1985). The [GC]-tracts were seen to be
easily digested by DNase I and therefore more likely to face away from the circle. On
the other hand, the phased [A]-tracts were more likely to be oriented towards the
circle and thus protected from DNase I digestion. This observation was consistent
with the X-ray crystal structure explanation of [A]-tract DNA bending discussed in
the previous section (Section 1.4.1). As part of the same experiment, the same
sequence was reconstituted onto a histone octamer in vitro. Digesting this
reconstituted nucleosome with DNase I showed the same rotational preferences as for
the circularized DNA: the phased [A]-tracts of the sequence were seen to face in
towards the histone octamer. A later study addressed the optimal number of [A]
nucleotides required for [A]-tract bending (Koo et al., 1986). The approach used gel
anomaly analysis of several lengths of [A] nucleotides in 10 bp-phased [A]-tract
sequences. This study showed that 3—5 [A] nucleotides, phased at 10 bp, resulted in
optimal curvature.

Further analysis of rotational positioning of DNA sequences on histone
octamers was carried out by cloning a library of 177 nucleosome core particle
sequences from chicken genomic DNA and subsequently analysing its dinucleotide
periodicity (this dataset is discussed again subsequently in Section 1.8.1) (Satchwell et
al., 1986). The sequence lengths in the final dataset, however, were not constant,
most probably due to biases in micrococcal nuclease (MNase®) cutting specificity
(Section 1.8.1). The lengths ranged from 142 to 149 bp with an average length of 145
(£1.5) bp. To deal with this uncertainty, the analysis was carried out using 3 bp-

averaged representations of the data. Also, the authors had to shift all sequences,

* DNase [ interacts with the surface of the minor groove and bends the DNA molecule away from the
enzyme.

5 Micrococcal nuclease is both an endonuclease and an exonuclease, which can break the
phosphodiester bonds in linker DNA and remove nucleotides from the ends of the DNA molecule
respectively.



which were not of length 145 bp, a few base pairs until a central reference point of
73.25 was obtained. Fourier analysis of the dinucleotides in the dataset showed 10
periodic patterns of [AA/TT] and [GC]. These 2 motifs were furthermore seen to
occur phased at 5 bp from each other, reminiscent of the A-tract bent sequences
discussed in the previous section.

In the same study (Satchwell et al., 1986), the 3 bp-averaged positions of
dinucleotide motifs were compared with the co-ordinates of the DNA sequence which
faced the octamer in the nucleosome X-ray crystal structure available at that time
(Richmond et al., 1984). This showed a pattern for phased A-tracts to face the
octamer a few turns symmetrically away from the dyad axis of the nucleosome core
particle but not at the dyad itself. In the X-ray crystal structure of the nucleosome, the
minor groove also faced away from the dyad axis (Section 1.2). This result also
agrees with the previous discussion that there are 2 kinds of DNA helical periodicities

at the dyad and end positions respectively (Section 1.2).

1.4.3  Further evidence to support nucleosome rotational
positioning

Since the initial assessment of nucleosome rotational positioning, a big trend was to
chemically synthesise DNA sequences with optimised rotational preferences for
forming reconstituted nucleosomes in vitro. For example, sequences having repeats
of the motif [TATAAACGCC] were shown to ligate more efficiently into a circle
compared to random DNA (Widlund et al., 1999). This sequence was shown to bind
nucleosome core particles in vitro ~350 fold higher than random DNA. A few
naturally phased A-tract sequences are also known to favour nucleosome
reconstitution in vitro, for example the 5S RNA gene of Xenopus laevis

(Tomaszewski & Jerzmanowski, 1997).



Analysis of whole genomic sequences has also shown that they may contain
enriched phased A-tract bending motifs for positioning nucleosomes. For example,
Fourier analysis of Caenorhabditis elegans and Saccharomyces cerevisiae showed
enrichment of [AA] motifs at 10.2 bp (Widom, 1996); the same pattern was not seen
in a prokaryotic genome. A different approach to analyzing whole genomic
sequences is the SELEX protocol (Widlund et al., 1997). This procedure works by
starting off with a random pool of genomic sequences and performing a number of
rounds of PCR, each time amplifying sequences based on their affinity to bind
histones. This approach found [A]-tract bending sequences in Methanothermus
fervidus, which belongs to a branch of the archaeal kingdom that contains histone like
proteins (Euryarchaeota) (Bailey et al., 2000). The same patterns were not found in
Crenarchaeota, a branch of the archaeal kingdom which does not contain histones.
This led to the suggestion that the evolution of eukaryotic genome sequences most

likely originated in the archaea, before the split of the eukaryotic lineage.

1.4.4 Nucleosome rotational positioning and DNA regulatory
regions

Generally, chromatin structure provides a repressive environment for transcription.
The evidence for this comes from observations of increased transcription levels of
prokaryotic RNA polymerases in histone-depleted eukaryotic cells compared to their
levels in normal eukaryotic cells (Gonzalez & Palacian, 1989). Prokaryotic RNA
polymerases have traditionally been used in such analyses since they do not require
specific transcription factors as do eukaryotic RNA polymerases (Wolffe, 1998). One
of the ways eukaryotic cells are understood to overcome nucleosome barriers to

permit transcription is through the activity of ATPase-based remodelling complexes

(Wolffe & Guschin, 2000). An example is the SWI/SNF complex, which is thought
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to disrupt the rotational positioning of nucleosomes as suggested from the loss of 10
bp-phased DNase I cleavage patterns (Lorch et al., 1998).

The indication for nucleosome rotational positioning provided an incentive to
map naturally bent DNA near important genomic sequences and assess whether these
bends could position nucleosomes (Bash et al., 2001; Nair, 1998; Pruss et al., 1994;
Wada-Kiyama & Kiyama, 1996; Wada-Kiyama et al., 1999).

For example, the circular permutation assay (Section 1.4.1) was used to map
bend sites in the 3,000 bp promoter region of the human oestrogen receptor gene
(Wada-Kiyama et al., 1999). A total of 5 bend sites were found using the circular
permutation assay; [A]-tract bending was observed for 3 of these sites. Nucleosome
positioning at one of these bend sites was then analysed in detail. These were mapped
by firstly digesting the clone with MNase to isolate core particles followed by
digestion with 2 different restriction enzymes, whose restriction sites were known on
the clone. This showed that the position of the bend appeared 10-30 bp away from
the experimentally-predicted location of the nucleosome dyad axis. Therefore, it
seemed likely that the specific bent site could help to direct nucleosome positioning.
Nucleosome mapping to an intrinsically bent site was shown previously as well in the
human 3 globin locus (Wada-Kiyama & Kiyama, 1996).

A few specific cases are known where positioned nucleosomes are important
for protein signal recognition. An example of this is the hormone responsive element
(HRE) of the mouse mammary tumour virus (MMTYV) promoter (Pina et al., 1990).
Footprinting® analysis showed that the sequence of HRE was able to precisely
position nucleosomes both in vivo and in reconstituted chromatin. It was then shown

that nuclear factor 1 (NVFI), one of the transcription factors for this promoter, was not

% This technique identifies the site of protein-binding on DNA by determining which phosphodiester
bonds are protected from cleavage by DNase |



able to bind to the promoter when it was wrapped in a nucleosome. Hormone
receptor binding to the MMTYV nucleosome was seen to shift the rotational position of
the nucleosome rather than causing it to dissociate completely; this was detected as
greater accessibility of the promoter-proximal end to exonuclease III digestion. Thus,
hormone receptor binding could act as a primary switch by shifting the rotational
setting of the nucleosome to permit NF'/ binding. Another example is the binding site
of the human immunodeficiency virus (HIV)-encoded integrase enzyme: DNA
distortion studies have shown that this enzyme recognises specific bends within a

nucleosome core particle (Pruss et al., 1994).



1.5 An Introduction to Nucleosome Translational
Positioning

Translational positioning determines where a histone octamer will be positioned along
a long stretch of DNA; “long”, in this case, refers to a length longer than the core
particle length (~146 bp). The theory behind this kind of positioning is that certain
regions of a long DNA sequence may be much worse or much better than random
DNA in their ability to wrap a histone octamer. Two kinds of DNA structural features
may be important in determining the translational position of a nucleosome:

e Highly rigid DNA — DNA, whose structural conformation is very restricted,
compared to random DNA, will be more difficult to bend around a histone
octamer. Therefore, such kind of DNA can be expected to repel nucleosome
formation.

e Highly flexible DNA - The conformation of highly flexible DNA is such that
it offers least resistance to being bent and wrapped around a histone octamer.
Thus, DNA, which is significantly more flexible than random DNA sequences,
may position nucleosomes more readily. Flexible DNA is different to bent
DNA previously described (Section 1.4.1) in that it offers low resistance to
being wrapped around a histone octamer whereas bent DNA is a permanent

feature of the DNA molecule.

1.5.1 DNA sequences that repel nucleosome formation

Sequences that resist nucleosome formation may do so because they tend to form
some other kind of DNA secondary structure unfavourable for wrapping around a
nucleosome. They might also contain signals to bind a different cellular protein,

which would compete with the histone octamer for the same position. Initial
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nucleosome reconstitution experiments, using salt dialysis, had reported a lack of
success in reconstituting nucleosomes using poly(dA)-poly(dT) / poly(dG).poly(dC)
sequences (Rhodes, 1979; Simpson & Shindo, 1979). Although it was not clear why
such sequences would disfavour nucleosome formation, Rhodes e al suggested that
the high salt conditions used in the reconstitution procedure could have caused the
poly(dA)-poly(dT) sequences to form heteronomous DNA, a triple-strand DNA
structure (Arnott et al., 1983). Poly(dG).poly(dC) sequences were also known to
easily adopt A-DNA conformation (Arnott & Selsing, 1974) so this could have been a
possibility for their inability to reconstitute into nucleosomes using the high-salt
experimental conditions.

In another nucleosome reconstitution experiment, it was also observed that
tracts of poly(dA)-poly(dT) and poly(dG).poly(dC) were not present towards the dyad
axis (Drew & Travers, 1985). However, poly(dA)-poly(dT) tracts appeared towards
the ends of the core DNA sequences suggesting that they may have an influence on
the translational setting of the histone octamer (Satchwell et al., 1986). The basis for
translational positioning was not clear at this point; a recent study, however, examined
the translational and rotational positioning properties of a simple 20 bp-repeating
sequence (Negri et al., 2001). The approach was to study the effects of subtle
changes to the original sequence by mapping the changes to rotational and
translational positions using hydroxyl-radical and exonuclease mapping respectively.
The main conclusion was that the sequence distortions which affected the rotational
preferences of the core particle were not the same ones which affected the
translational position. The exact features which resulted in translational positioning,
however, were not confirmed but it was suggested that the exact sequence contexts of

[GA] and [CT] dinucleotides could be important.



Why long runs of poly(dA)-poly(dT) might repel nucleosome formation is still
unclear. However, one explanation, using X-ray crystal analysis, predicts A-T base
pairs to have high propeller twist’ (Nelson ef al., 1987). This would result in maximal
base-stacking (the interaction of adjacent base pairs) in poly(dA)-poly(dT) sequences
resulting in an overall rigid stretch of DNA. [AA/TT] dinucleotides were also
discussed earlier to show restricted conformation in X-ray crystallography studies
(Section 1.4.1). This may make it difficult to bend poly(dA)+poly(dT) sequences to
easily fit around a histone octamer.

Expansion of [CCG] repeats, which are known to cause fragile X syndrome,
have also been studied in relation to nucleosome positioning (Wang et al., 1996).
Using competitive nucleosome reconstitution and electron microscopy, it was shown
that >50 repeats of [CCG] blocks tended to exclude nucleosome formation. Such
sites, visible in patients suffering from fragile X syndrome, were referred to as
“fragile” loci as they stained poorly and were hotspots for DNA strand breakage. It
was possible that [CCG] repeats formed some other kind of secondary structure: the
lack of nucleosomes could account for the high frequency of DNA strand breaks. The
exact mechanism for extensive CCG repeats in excluding nucleosome formation is
still unclear.

Cao et al had performed a negative-SELEX experiment on mouse genomic
DNA to yield an enriched quantity of sequences that repel nucleosome formation
(Cao et al., 1998). 35% of the sequences finally isolated had long repeats of [TGGA]

and the affinity of these were half that of background DNA.

7 Propeller twist is a property of a single base pair which describes the angle between the plane of the
paired bases.



1.5.2 DNA sequences that favour nucleosome formation

Expanded blocks of [CTG] have been shown to be strong positioning signals for
binding nucleosomes (Wang & Griffith, 1995). This motif had been previously
shown to form expanded blocks downstream of the myotonic dystrophy gene in
affected patients (Mahadevan et al., 1992). Such regions were seen to bind a large
number of nucleosomes using electron microscopy. An in vitro nucleosome
reconstitution experiment showed that 2 DNA sequences, having 75 and 130 [CTG]
repeats respectively, formed nucleosomes 6 and 9 times more strongly compared to
the 5S RNA gene (a naturally occurring nucleosome-positioning sequence containing
10 bp-phased [A]-tracts) (Wang & Griffith, 1995). A study involving DNase I
digestion of trinucleotides has also shown [CTG] trinucleotides to have one of the
highest cutting rates and therefore to be amongst the most flexible trinucleotides
(Brukner et al., 1995). So according to the DNase I digestion results, the high
flexibility of [CTG]-expanded regions may lead to a relatively “easy” fit for binding
nucleosomes. However, according to the analysis of the chicken nucleosome data,
[CTG] motifs did not show any kind of rotational positioning preferences, i.e. to face
inwards or outwards in the structure of the core particle (Satchwell et al., 1986). This
suggests that [CTG] may show preferential nucleosome binding only when it is
present in dense clumps: its overall density along a DNA sequence and not its
rotational preference may influence its strong nucleosome-binding feature.

SELEX enrichment of core DNA in the mouse genome found some other
possible nucleosome-positioning motifs, all of which could not be explained by
phased [A]-tract motifs (Widlund et al., 1997). This study found some cases of
phased runs of 3-4 adenines ([A]-tract bending), multiple [CA] repeats, phased

[TATA] tetranucleotides and one sequence having [CAG] repeats. However,



fluorescence in situ hybridization showed these sequences to strongly localise to
centromeric DNA; some of the sequence motifs were also known centromeric satellite
repeats. Such repeats may not represent the majority of nucleosome-binding
sequences in the genome as centromeric nucleosomes contain specialised
nucleosomes that have variant histones (Smith, 2002). Furthermore, a recent study
showed that the exact histone variant in addition to the DNA sequence may be a factor

in positioning nucleosomes (Bailey et al., 2002).

1.5.3 Nucleosome translational positioning and DNA regulatory
regions

As mentioned earlier, nucleosomes are considered a repressive environment for
transcription (Section 1.4.4). To overcome this, eukaryotic cells also contain ATPase-
based remodelling complexes which are understood to shift the translational
positioning of nucleosomes, for example NURF complexes in Drosophila (Hamiche et
al., 1999; Kang et al., 2002). These are thought to induce sliding of nucleosomes as
they do not disrupt the 10 bp-phased DNase I digestion patterns.

Understanding of the role of translational nucleosome positioning in
repressing transcription has come from the use of in vitro transcription systems
(Wolfte, 1998). Such studies ask if transcription can still occur in vitro following
nucleosome reconstitution. The general outcome is that if histone assembly takes
place first, transcription activity is inhibited. Of course, this system is unlikely to
represent what happens in eukaryotic cells in vivo as it is difficult to mimic the
multitude of transcription factors, which are actively involved in the process. An
experiment, using an in vitro transcription system, showed that Alu repeats positioned

histones over and next to promoter elements, which are critical for its transcription
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activity (Englander et al., 1993). The poly [A] linker region of Alu sequences was

proposed to exclude translational positioning by a histone octamer.
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1.6 Regions of Phased Nucleosomes

One of the consequences of nucleosome positioning may be genomic segments having
‘phased nucleosomes’: in this case, a constant length of linker DNA is maintained
throughout a specific segment of genomic sequence. Possible models for demarcating
such segments have been proposed (Kiyama & Trifonov, 2002):

e A perfect positioning model — The positions for all nucleosomes are defined in
a genomic segment.

e A partial positioning model — Certain positions in a genomic segment are
designated for nucleosome formation. The alignment of other nucleosomes is
influenced by the initial allocation of these key positions.

A crude method of detecting nucleosome phasing in a genomic clone is by
digesting it with micrococcal nuclease and observing the digested products using gel
electrophoresis. If the bands produced by electrophoresis produce a unique band, it
suggests that the linker lengths are roughly equal and that a specific phase is
maintained. Conversely, “out of phase” nucleosomes yield a number of bands of
varying lengths. Nucleosome-phasing was observed in a few randomly selected
chicken genomic DNA clones using this method (Liu & Stein, 1997). This study
concluded that phased regions (<2k bp) alternated with randomly-positioned regions
in the sampled clones; the phased regions were reported to show 210 bp-phased
nucleosomes. Possible underlying sequence factors were proposed in one of the
phased regions, which contained a gene. These included a run of 10 [A] residues in
the linker DNA between 2 specific nucleosomes (possible translational positioning
motif) and apparently 10 bp-phased [VWG] motifs (Section 1.9.3; a motif that could

affect rotational positioning).
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1.7 Strength of Nucleosome Positioning Sequences In
Vivo

Two very important problems have been looked at previously concerning the strength
of nucleosome positioning sequences in vivo. The first was to estimate what
proportion of genome sequences might be constrained for packaging nucleosomes.
The second problem was to answer how efficient these sequences were at binding
octamers compared to artificial sequences.

The first question was answered using competitive nucleosome reconstitution
in which a library of random natural genomic mouse DNA sequences and a library of
chemically synthetic DNA (Lowary & Widom, 1997) were made to compete for
binding limiting amounts of histone octamer. The conclusion was that only 5% of the
total genomic library was enriched to bind histones with a free energy of
reconstitution higher than the synthetic library.

To address the second problem about the strength of naturally occurring
motifs, a set of the strongest possible motifs in the whole mouse genome was enriched
and analysed using SELEX enrichment (Widlund et al., 1997). The free energies of
these sequences were compared with artificial sequences, which were similarly
enriched for nucleosome-binding using SELEX enrichment (Thastrom et al., 1999).
The first and second strongest sequences in the entire mouse genome were seen to
have 6 fold and 34 fold lower affinities respectively for binding octamers than the
random pool of synthetic DNA. It was concluded that even the strongest binding

natural sequences were not evolved to be the most energetically favourable possible.
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1.8 Experimentally Mapped Nucleosome Datasets

Two databases of experimentally-mapped nucleosome sequences were available
during the course of work described in this thesis. Sequences in both databases,
however, suffer from experimental limitations which hinder the precise mapping of

the dyad axis.

1.8.1 Database of chicken core DNA sequences

The database of chicken core DNA, which was introduced earlier (Section 1.4.2)
(Satchwell et al., 1986) (177 sequences), was kindly made available by Andrew
Travers. To isolate core DNA, MNase digestion was performed on DNA extracted
from chicken red blood cells. This was followed by a further deproteination step to
remove H5 (the chicken equivalent of the linker histone HI in human). This resulted
in 239 sequences, which were cloned using an M13 vector, and sequenced. However,
many of the cloned sequences were finally discarded: these included those that were
less than 142 bp and those that contained a double-length insert of roughly 290 bp.
The sequence lengths in the final database ranged from 142 to 149 bp with an average
length of 145 (£1.5) bp.

The length differences could be partly attributed to the cutting specificities of
MNase. It prefers cutting pA and pT faster than pC or pG (Bellard et al., 1989)
resulting in an accuracy of £3 bp in determining the translational positioning of the
core particle (Hager & Fragoso, 1999). However, the authors reported that the A+T
content in the core particles were the same as those in bulk chicken DNA (Satchwell
et al., 1986). Only a drop of 13% in TpA between core particle DNA and bulk

chicken DNA was noticed that could be biased by MNase cutting specificity.
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The authors also mention that this dataset did not necessarily represent the
bulk of nucleosome positioning in vivo as one step of the isolation protocol, which
involved removal of H1, “allowed the exchange of histone octamers between DNA
molecules” (Satchwell et al., 1986).

10 bp-phased [AA/TT] periodicity, along with 5 bp phase-shifted [GC], had
been reported for this dataset (Section 1.4.2). Simple counting of [AA/TT]
dinucleotide spacing (Figure 1.5, page 1-31) and multiple alignments of these
sequences (Appendix A) were not sufficient to reproduce this result. The multiple
sequence alignment in Appendix A, which is also sorted by pair wise identity, showed
that the sequences were not highly similar to each other. A separate BLAST analysis
(Altschul et al., 1990)was also performed where each of the core DNA sequences was
used to search for homologous members in the dataset (an “all against all” test; data
not shown). This showed that these sequences were not highly similar to each other.
This suggested that the reported periodicity was probably quite weak.

For some of the experiments performed in this thesis (Chapter 3 and Chapter
5), additional chicken genomic sequences were required which could be used as a
background test set to these chicken core DNA sequences. Two chicken genomic
clones were available for this purpose: AC092403 (144,369 bp) and AC120196

(202,027 bp).

1.8.2 Nucleosome database from mapping studies on various
species

A second database of nucleosome sequences, which was publicly available (Levitsky

et al., 1999), essentially represented the same sequences from an earlier collection

(Ioshikhes & Trifonov, 1993) and a more recent database of mouse nucleosomal

sequences obtained using SELEX enrichment (Widlund et al., 1997). A total of 193
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sequences was present with the majority of sequences representing mouse and yeast

data (Figure 1.3).

Figure 1.3: Organism sources of Levitsky et al’s nucleosome sequence dataset
(Levitsky et al., 1999).
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However, the length distribution of sequences was much more varied in this
dataset compared to the mapped chicken sequences (Figure 1.4). The observed length
variation necessarily resulted from the uncertainty of the technique used for
nucleosome mapping. There were six main methods used, whose mapping accuracies
are shown in Table 1.1 (Ioshikhes & Trifonov, 1993). The only technique unlisted in
Table 1.1 is the SELEX protocol used to isolate many of the mouse nucleosome
sequences: the lengths of these sequences ranged from 109 to 151 bp (average: 129

bp, standard deviation: 9 bp).
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Figure 1.4: Length distribution of sequences in Levitsky et al's nucleosome database.
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Table 1.1: Accuracy of different nucleosome mapping methods (loshikhes & Trifonov,
1993).

METHOD MAPPING ACCURACY
(bp)

MNase digestion of chromatin >19

DNase | digestion of chromatin or reconstituted nucleosomes 10

Hydroxyl radical mapping 5

MNase digestion in combination with the cloning and

sequencing of nucleosomal DNA sequences 5

DNase | digestion in combination with the highest possible 4

accuracy

Exonuclease Il with nuclease S1 digestion 1

The pair wise multiple sequence alignment of these sequences (Appendix A)
showed that many of the mouse sequences were highly similar to each other
(sequences 1-36 in the alignment). An “all against all” BLAST analysis also showed
that these mouse sequences were highly similar to each other. However, they were
more similar to the other sequences within the dataset compared to the chicken core
DNA dataset (data not shown). The largely redundant mouse sequences were
removed for any further analysis performed in this thesis. Unlike the chicken core
DNA sequences, the sequence alignment of this dataset showed what appeared to
represent phased [A]-tract motifs; these were in the first half of these sequences

(Appendix A). [A]-tract bending was, therefore, more indicative in this dataset than
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in the chicken nucleosome dataset (this is discussed again subsequently; Section

1.9.2).
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1.9 Computational Approaches to Understanding
Nucleosome Positioning in Other Laboratories

This section will briefly introduce some of the computational approaches that have

been developed till now to predict nucleosome formation.

1.9.1 Using DNA structural parameters to predict nucleosome
positioning

The program BEND has often been used to predict DNA curvature and flexibility as a
supplement to wet-lab mapping of positioned nucleosomes (Bash et al., 2001;
Blomquist et al., 1999; Fiorini et al., 2001; Wada-Kiyama ef al., 1999). The program
accepts any DNA structural parameter set which can explain DNA bending along a
DNA sequence, for example di-/tri- nucleotide parameter sets of twist, roll, tilt based
on gel anomaly studies (Bolshoy ef al., 1991), cyclization kinetics (Ulanovsky et al.,
1986), X-ray crystallography (Calladine ef al., 1988) etc.. This software was useful
to show that the binding of transcription factor NF-/ depended on the position of
curved DNA, which in turn affected nucleosome rotational positioning around the
NF-1 binding site (Blomquist et al., 1999). The analysis was performed by
introducing various sequence changes around the binding site and analyzing the
potential effects of curvature. The software also helped to confirm bend sites, which
were predicted using the circular permutation assay, in the promoter region of the
GAL1-10 gene in yeast (Bash et al., 2001).

The wavelet tool (used in this thesis; Section 2.4.1, Chapter 4) is an example
of a different approach which can use DNA structural parameters. It can be used to
assess the occurrence and distribution of structural patterns that could affect

nucleosome positioning (Arneodo et al., 1995; Arneodo et al., 1998; Audit et al.,
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2001; Audit et al., 2002). So far, it has been used to show that non-coding eukaryotic
genomic DNA contain periodic flexibility patterns (>100 bp periodic) which do not
appear in coding DNA or in prokaryotic DNA sequences. The size of such repeat
periods, which reflects the size of a nucleosome, has been suggested to be potential

nucleosome-positioning elements.

1.9.2 [AA/TT] rotational positioning pattern obtained using

multiple sequence alignment

lIoshikhes et al. used five kinds of multiple alignment algorithms to create profiles of
the nucleosomal database described earlier (Section 1.8.2) (loshikhes et al., 1996;
Ioshikhes & Trifonov, 1993). The algorithms considered only the positions of
[AA/TT] dinucleotides because of their importance in rotational positioning described
earlier (Section 1.4.1). These algorithms modelled an [AA/TT] dinucleotide
positional frequency with a periodicity of 10.3(+0.2) bases towards the ends of a 146
bp sequence. [TT] dinucleotides also appeared to be distributed symmetrically relative
to [AA] dinucleotides on the same DNA strand (phase difference: 6 bp). This result
was reminiscent of the Fourier analysis results of the chicken core DNA dataset
(Section 1.4.2) (Satchwell et al., 1986) except the latter found [GC], rather than [TT],
to be in phase with [AA]. A similarity, however, was that the periodic feature was
seen to appear symmetrically away from the central 15 bp indicating that the DNA in
the location of the dyad axis was not bent.

According to the multiple sequence alignment of these sequences using the
software Clustal W (Appendix A), phased A-tracts were evident towards the first half
of the sequences. However, the algorithms used to align the sequences by loshikhes
et al were more strategic in that they did not model any ‘deletes’ and were specifically

handling [AA/TT]-periodicity (Clustal W uses the 4-letter DNA alphabet and will
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align any given sequences). Therefore, the alignment results from using Clustal W
cannot be expected to give exactly the same results. Simple counting of [AA]-spacing
showed a smeared peak between 5-11 bp for this dataset (Figure 1.5) indicating that

phased-A tracts were featured in this dataset.

Figure 1.5: Simple counting of [AA]-spacing in the 2 experimentally-mapped
nucleosome datasets (Section 1.8).
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Denisov et al. used this model to predict nucleosome-centering around splice
sites in 2000 exon-intron boundary sequences (400 bp fragments) obtained from a
variety of eukaryotic species (Denisov et al, 1997). The sequences appeared to
position the midpoint of the nucleosome towards the introns. However, the data
presented in the analysis were averaged values and it is not clear what proportion of

the sequences showed this trend.

1.9.3 10-periodic [VWG] pattern obtained using hidden markov
models

A 10-periodic [VWG] motif was found serendipitously using hidden markov models
(HMMs) (Baldi ef al., 1996). Initially, conventional left-right hidden markov models,

which were being trained to recognize splice-site junctions, learnt this signal. A
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different kind of HMM architecture, the cyclical HMM was constructed which
detected this motif with an apparent 10 bp periodicity in coding sequence. Many of
the sequence members of the motif [VWG] were seen to be highly flexible in a DNase
I — based flexibility table (Brukner et al., 1995). This kind of proposed bending was
different to the A-tract bending described earlier (Section 1.4.1); this suggests that 10-
phased “flexible” motifs ([VWG]), rather than 10-phased “rigid” motifs ([AA]), could
help to achieve nucleosome rotational positioning. The result was described as a
flexible motif which appeared every 10 bp and which was superimposed over coding
DNA®. This study suggested that exons could possess a nucleosome-binding signal
superimposed over protein-coding signal.

Stein ef al. used this observation as a model to predict nucleosome-positioning
on the SV40 minichromosome simply by counting occurrences of 10-periodic [VWG]
motifs (Stein & Bina, 1999). The results showed a weak correlation (correlation co-
efficient: 0.52 with a P value <0.001) with experimentally-mapped nucleosomes in a
3,300 bp region (out of 5,200 bp) in the late SV40 region. It was described that in
regions in the SV40 early region, where [VWG] could not be used to predict strong
nucleosome positions, the 10-periodic [AA/TT] signal (Section 1.9.2) could. 5,000 bp
is perhaps too short a sequence length for analysing nucleosome-positioning though:
the maximum number of nucleosomes that could possibly fit on the whole SV40
minichromosome would be <30. Also, the reported correlation was observed in a

specific part of the sequence rather than throughout the entire sequence.

¥ Coding DNA has harmonics of 3 bp.
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1.9.4 RECON: A nucleosome prediction model based on

dinucleotide relative abundance distance

A function to find ‘nucleosome formation potential” was described recently (Levitsky
et al., 2001a). The prediction software, called RECON, was based on a function
which calculated the optimal distance in dinucleotide space between mouse genome
sequences that position nucleosomes (positive set) (Widlund et al., 1997) and mouse
genome sequences that repel nucleosomes (negative set) (Cao et al., 1998). 86
sequences were available in the positive set and 40 sequences in the negative set.
Using a jack-knifing procedure for model-testing, a model was trained which showed
80% accuracy at 94% coverage. Prediction analysis using this algorithm showed that
introns and Alu repeats had a higher nucleosome formation potential than exons
(Levitsky et al., 2001Db).

However, using fluorescence in situ hybridization, the positive set used in this
study were found to belong to the mouse centromeric class of repeats (Widlund et al.,
1997). Centromeric nucleosomes are known to bind octamers, which have a variant
of histone H3 in a large number of eukaryotes; this includes mouse (Smith, 2002).
Therefore, it is unlikely that this positive set represents the majority of sequences that
would bind nucleosomes in ‘non-centromeric’ genomic DNA.

The mouse positive sequences, used in RECON, were part of Levitsky et al’s
nucleosome dataset introduced earlier (Section 1.8.2). However, the pair wise
multiple sequence alignment of these sequences showed that a large number of the
mouse sequences were highly similar to each other (Appendix A). These close
variants were not reported to be discarded in the RECON software training. These

could bias the results learnt in the RECON model.
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110  Summary of Aims

The idea of nucleosome positioning, particularly its potential role in transcription
regulation in eukaryotic cells, was an interesting prospect to research. With the large
amount of eukaryotic genomic sequences now available from recent sequencing
projects, particularly human and mouse data, an appealing option was to scan for
evidence of nucleosome positioning, build models to predict nucleosome positioning

and compare the predictions with known annotated features on these sequences.

1.10.1 The scope for studying nucleosome positioning

However, the scope for building good quality nucleosome models was limited. The
restrictions arose partly from the limited experimentally-mapped data that supported
nucleosome positioning. The 2 experimentally mapped nucleosome datasets (Section
1.8) each contained less than 200 sequences and also the initial sequence alignments
of the 2 datasets did not show any obvious similarity between the 2 (Appendix A).
About 36 sequences in the Levitsky dataset were also redundant.

Also, with regard to their role in events such as transcription regulation, the
general view is that nucleosomes repress such activities (Section 1.4.4, 1.5.3); this
could probably be a consequence of nucleosomes lying in the path of regulatory
proteins such as RNA polymerase and transcription factors. This does not require
nucleosomes to be positioned and it is not yet clear to what proportion positioned
nucleosomes could repress transcription in vivo. Specific examples are available, for
example NF[-binding to the MMTV promoter (Pina et al., 1990) (Section 1.4.4). In
this case, the position of a nucleosome is thought to be regulated by binding of a
regulatory receptor protein, which in turn affects the accessibility of a transcription

factor to its target site. From this, it could firstly be expected that it would not be
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energetically favourable to have a large density of specifically positioned
nucleosomes throughout the genome. Secondly, the few nucleosome positioning
signals that are available could be expected to appear near gene regulatory regions
where they could carry out important functional roles. Overall, this does make it
difficult to detect nucleosome positioning sequences with high sensitivity especially
from using whole genome analysis techniques.

The role of chromatin remodelling complexes (Section 1.4.4, 1.5.3) in
directing nucleosome positions near promoter regions provides additional speculation
that many nucleosomes could be positioned. In other words, it could be hypothesized
that the remodelling complexes target positioned nucleosomes in vivo. At the
moment, this remains speculation as the roles of chromatin remodelling complexes
have not yet been assessed in vivo (Tsukiyama, 2002).

It is also important to note that the current experimental procedures used to
reconstitute and map nucleosomes may not represent positioned nucleosomes in vivo.
Chromatin extracts often contain much higher levels of the HMG (high mobility
group) of chromatin proteins than the cellular background (Wolffe, 1998). These
proteins are known to interact with nucleosomes. In vivo, chromatin structure is
dynamic and using reconstitution procedures it is difficult to mimic the activity of
important factors such as chromatin assembly factors, post-translational modification
of histones and the nucleosome assembly process itself (which occurs in stages).
Also, in the reconstitution procedure, it is quite difficult to assess the non-specific

association of DNA with histones.

1.10.2 Aims and benefits of predicting nucleosome positioning

Given the limitations above, predicting nucleosome positioning was always going to

be a challenging task. Most of the evidence for nucleosome positioning itself was
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based on the results of in vitro experiments including the hypothesis of intrinsically
curved DNA (Sections 1.4.1, 1.4.2). Possibly the major indication that nucleosomes
could be positioned in vivo came from Lowary et al’s work, using competitive
reconstitution (Section 1.7) (Lowary & Widom, 1997). From the results, it was
estimated that only 5% of the mouse genome was probably enriched for binding
nucleosomes

The aim in this thesis was to build computational models to predict
nucleosome positioning. The first objective was to scan for evidence which could
suggest that nucleosome positioning signals exist in the first place in eukaryotic
genomic sequences. A second goal was to scan for evidence that suggests that
nucleosome positioning could be involved in gene regulation. This would be carried
out using 3 major modelling approaches (Section 1.11). If the positioning predictions,
using any of the modelling techniques, indicated the following properties, it could
suggest importance of nucleosome positioning in gene regulation in vivo:

¢ A high density of predictions in the vicinity of annotated genes
e Conservation of the prediction patterns in different eukaryotic species
If, however, the predictions were made randomly throughout the genome, it
would suggest more that nucleosome positioning, if it does occur, is important only
for maintaining and stabilizing higher order chromatin structures.

Being able to predict nucleosome positioning would definitely be beneficial in
certain areas of genomic research. It may, for instance, aid in gene prediction if it can
be shown that certain genes or regulatory DNA sequences have positioned
nucleosomes over them or in their vicinity. This may, in turn, lead to clues about their

expression patterns. Another area where it may be helpful is in the diagnostics of
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chromatin diseases, many of which are postulated to be due to aberrant nucleosome

positioning (Hendrich & Bickmore, 2001).
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1.11 Approaches proposed for modelling nucleosome
positioning

The methods outlined below have been employed in this thesis to approach the
problem of predicting nucleosome positioning. Chapter 2 will give a brief summary

of the theories of these methods.

1.11.1 Potential for studying 10 bp-phased motifs

Chapter 3 of this thesis deals with the use of cyclical HMMs. The aim of this
approach was to scan for 10 bp-phasing motifs in genomic sequences, which could
potentially influence nucleosome rotational positioning. This modelling approach
extended the cyclical HMM work of Baldi and Brunak (Baldi ef al., 1996), which was
introduced earlier (Section 1.9.3). The results obtained by Baldi and Brunak
suggested that 10-phased [VWG] could be a nucleosome positioning signal. Many of
the sequence members of this motif were highly flexible according to a DNase I-
based flexibility table (Brukner et al., 1995). Baldi and Brunak’s overall technique,
however, involved only learning the motif from various kinds of human genomic
sequences including exons, introns and intergenic sequences: the models were not
used to perform any predictions. The architecture of their cyclical HMMs was
extended in this thesis to additionally model the background distribution of learnt 10-
cyclical motifs. This would allow a HMM to be trained which could be used as a
prediction tool. The two experimentally-mapped nucleosome datasets were also used

as training sets for this purpose.
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1.11.2 Potential for studying nucleosome translational
positioning
In Chapter 4, the wavelet transform tool (Section 2.4.1) was used to probe the
locations of periodic flexibility patterns in genomic sequences. The aim for the
investigation was to establish whether any evidence existed suggesting that
translational nucleosome positioning was an important mechanism for positioning
nucleosomes in eukaryotic species. This would be achieved by modelling DNA
sequences as flexibility sequences (Section 2.3.1). Recent work had already reported
that eukaryotic DNA exhibit significant flexibility patterns which correspond to the
repeat length of the nucleosome and which do not appear in prokaryotic genomes
(Audit et al., 2001; Audit et al., 2002). It has also been reported that such patterns
appeared only in non-coding DNA (Arneodo et al., 1995; Buldyrev et al., 1998;
Havlin et al., 1999; Pattini L, 2001). However, the genomic contexts of such patterns
had not been clarified yet.

In Chapter 4, the wavelet transform tool was used to establish both the
distribution of strong periodic flexibility patterns in representative genomes as well as
determine if such patterns appeared near gene dense regions in DNA sequences. In
addition to establishing the locations of these periodic features, it could also be
determined if previously known DNA sequence features were the major players in

determining potential nucleosome translational positioning.

1.11.3 Using DNA weight matrices to model the existing

nucleosome datasets

The two available nucleosome datasets (Section 1.8) have both been analysed for

rotational positioning and have been described to contain such positioning signals a
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few turns away from and symmetrically about the nucleosome dyad axis (Ioshikhes ef
al., 1996; Satchwell et al., 1986) (Sections 1.4.2, 1.9.2). The methods applied
themselves, however, were specifically aimed to find rotational positioning signals,
namely patterns which recur at 10 bp periodicity in these datasets. For the chicken
dataset, this was obtained using 3 bp window-averaged counts of dinucleotides along
their position in the sequences (Satchwell et al., 1986); this found the motif [AA/TT]
to be enriched at 10 bp periodicity along with a relative 5 bp phase-shifted [GC/GC]
motif. For Levitsky et al’s data, it was assumed that [AA/TT] was the major
rotational positioning motif and the periodicity of this motif was analysed using
several multiple sequence alignment algorithms (loshikhes ef al., 1996). This yielded
a similar result to the chicken data except that [TT], and not [GC/GC], was reported to
be phased at 5 bp to [AA] on the same strand.

However, to be a significant pattern, the suggested rotational positioning
motifs should be present in the majority of these sequences; this has not yet been
clarified for either dataset. Thus a motivation was formed to apply a rigorous
classification system to each of the nucleosome datasets. This was the focus for the

work in Chapter 5.
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2

General Introduction to Computational Methods

Used in this Thesis
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2.1 The Application of Bayesian Methods in Sequence
Analysis

Bayesian analysis (Grate et al., 1996), a general class of stochastic modelling
techniques based on Bayes’ theorem of conditional probability (Equation 2.1),
represent an important approach for studying biological sequences. The idea is to
construct a model that describes a set of sequences. The model can then be used to
find a set of related sequences or examined further to determine properties of the
sequences. A model in this case can be described as a “black box” which does not
necessarily represent a “real world” mechanism. The model’s value depends solely
on the accuracy of its predictions and not by the mechanism used to make those

predictions.

Equation 2.1: Bayes’ theorem of conditional probability. In the context of biological
sequence analysis, M represents a Bayesian model and s a DNA or protein sequence.

P(s | M)P(M)
P(s)

P(M |s)=

Bayes’ theorem (Equation 2.1) is based on the idea that in many situations, an
analysis can be commenced with an estimated prior probability for an event of
interest. This probability can come, for example, from historical data or previous
experience. The idea is to receive additional information such that the prior
probabilities in Equation 2.1 can be updated. The updated probabilities are referred to
as the posterior probabilities.

In Equation 2.1, above, one of two conditional probabilities to update is
P(M|s). This probability value answers the question “Given the sequence s, what is
the probability that it came from the distribution described by M?”. The other
conditional probability to update is P(s|M), which is the probability of the sequence s

given M. Two prior probabilities are required to estimate these values: P(M), the
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probability that s is drawn from model M and P(s), the probability of the sequence s.
It is not possible to know the real probabilities of P(M) and P(s) but a different
approach can be used to overcome this. The approach is to calculate the odds that the
sequence s came from model M rather than a null model N (Equation 2.2). As can be
seen from Equation 2.2, P(s) is no longer required. The model probabilities P(M) and
P(N) can be estimated using iterative training methods (the procedure for hidden

markov models is described in Section 2.2.3).

Equation 2.2: Relative probability of model M and the null model N.
PM|s) _PGs|M)PM) — P(s) _P(s|M) P(M)
P(N |s) P(s) P(s|N)P(N) P(s|N) P(N)

The null model defines what the null hypothesis is. Choosing a good null
model is a tricky problem and depends on the problem at hand. A sequence s can then
be said to fit model M if P(M|s) > P(N|s). Usually, this result is scored in log values
and the value log Pu(s) - log Px(s) is referred to as the log-likelihood of the sequence.
In practice, a threshold score is chosen: the higher the log likelihood score is than the
threshold, the greater the confidence in the result. Bayesian methods have been used

in this thesis in Chapters 3 and 5.
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2.2 Hidden Markov Model Theory

221 A general introduction to hidden markov models

Hidden Markov Model (HMM) analysis has widespread applications in
Bioinformatics particularly in DNA and protein sequence analysis. These include
creating multiple alignments of sequences to model protein families (Bateman et al.,
2002) and gene prediction (Meyer & Durbin, 2002). HMMs have also found
importance as a pattern discovery tool; an example was seen recently where it was
used to learn local composition patterns from chromosome 2 in the malarial genome
P. falciparum and use that information to predict corresponding features in
chromosome 3 (Pocock MR et al., 2000). It has also been used as a discovery tool to
find patterns that could be involved in nucleosome rotational positioning (Baldi et al.,
1996). This approach used a special kind of HMM referred to as the cyclical HMM.
In this thesis, this approach has been extended to try to gain further insights into the
patterns which were originally reported using cyclical HMMs: this is the focus of
Chapter 3. This section will briefly introduce some basic HMM terminology and then
introduce two algorithms which were used in this thesis for HMM prediction and
training respectively (Sections 2.2.2, 2.2.3).
e HMM terminology

A hidden markov model (HMM) is in essence a vector of “states” connected
with “transition paths”; each state contains 2 kinds of probability distributions
associated with it: an emission spectrum and a transition spectrum respectively.
Figure 2.1 shows a HMM which has an architecture of 2 states connected by a number

of transitions.
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Figure 2.1: A 2-state hidden markov model which emits symbols from the DNA
alphabet. Boxes represent states and arrows represent transitions. The emission and
transition distributions for State A are shown in red; State B’s corresponding
distributions are shown in blue.
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To model a specific kind of sequence with a HMM, it is first necessary to
define the alphabet from which that sequence is composed; this alphabet is called the
“emission alphabet”. To model DNA sequences with a HMM, for example, it needs
to be defined that DNA is composed of an emission alphabet of 4 symbols, “a,c,g,t”.

The HMM shown in Figure 2.1 is a 2-state HMM, based on the DNA alphabet.
State A has a strong probability of emitting “a” (0.45) or “t” (0.45) and a much weaker
probability of emitting “g” (0.08) or “c” (0.02). State A has 2 transition paths out of
it: one path to State B and one path back to itself. These paths form the transition
spectrum of State A. In this case, it has a weak transition probability of going back to
itself (0.01) and a strong transition probability of going to State B (0.99). State B has
a random emission distribution (each symbol emitted at equal probability) and a set of
2 transitions (0.70 probability of going back to itself and 0.30 probability of going to
State A). The entire set of emission and transition probabilities in the HMM define
the HMM’s parameters. This model can be used to score a sequence; this score is
usually the product of all the emission and transition probabilities in the “path” of the

model in that sequence (described below).
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Figure 2.2: 2 DNA sequences which are likely to receive a high score and a weak score
respectively with the model of Figure 2.1. The locations of [W] regions are underlined.

(a) Possible High Scoring Sequence:
GAGCCGGCCGGGGGCCLCGGEGECCCGEEECTCGGGGACCCGCCCCCTCGCCCCAACCGLGG
(b) Possible Low Scoring Sequence:

AAAACCCTTAAAAATTTCGGGCCCTTTTTCCCTGTTTAAACGGTCCCTATTTACCCGG

To introduce HMM paths and HMM-based scoring, the 2 sequences in Figure
2.2 are considered. The first assumption is that the sequences in Figure 2.2 have been
generated by the states of the HMM of Figure 2.1. But it is not known which part of
the sequence was emitted by State A or State B; this is a “hidden” path from which the
“hidden” term of HMMs is derived. However, it can be guessed that the sequence of
Figure 2.2(a) was more likely to have been produced by a path through the HMM than
the second sequence (Figure 2.2(b)). This is firstly because State A, whose emission
spectrum represents [W]° motifs, has only a weak transition probability of going back
to itself but a strong transition probability of going to State B (whose emission
spectrum is random). Secondly, State B has a stronger probability of going back to
itself compared to going back to 4. This means that the HMM is more likely to spend
more of its “energy” in State B than in State A. It effectively makes this HMM a
model or predictor for sequences which display “short spurts” of [W] (State A)
compared to a random background (State B). A path through the HMM which could

have produced the sequence in Figure 2.2(a) could be as shown in Figure 2.3.

? Please refer to the ambiguity symbols for DNA at the beginning of the thesis
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Figure 2.3: (a) A possible path through the HMM which could have emitted (b) the
corresponding DNA sequence.

(a) Possible path through the HMM:
BABBBBRRRBBBBBBRRRBBBBBBRRRBRBBABBBRRBABBBBBRRBRBBABBBRBRBRBBBB
(b) DNA sequence:

GAGCCGGCCGGGGGCCCGEGGCCCEGEGCTCGGGGACCCGCCCCCTCGCCCCAACCCCCA

An algorithm for predicting the hidden path of states is described next.

2.2.2 Predicting the most likely path of a HMM through a

sequence using the Viterbi algorithm

The Viterbi algorithm can be used to predict the most probable path, /7, through a
HMM’s states that could have emitted a given sequence. It uses a “dynamic
programming” matrix where the columns are indexed by the states of the HMM, S,
and the rows are indexed by the position x; of the sequence X. The algorithm is
outlined below using the following notations (Karchin, 1999; Shamir, 2001):
A general hidden markov model (HMM) is defined as M=(4,S,Y) where:
e A4 = finite set of symbols (also called the emission alphabet).
e S=finite set of emission states.
e Y= finite set of probabilities comprised of:
o State transition probabilities, denoted by #; for each £,/ € S.
o Emission transition probabilities, denoted by ex(b) for each k € S and b
€ A.
A sequence X, of length L, is defined whose positions are indexed as (x,, ...,x;).
vi(i) 1s denoted as the probability of the most probable path for the sequence that ends

with state k (k € Sand ! <i <L). [l is found using the following steps:
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e Initialization:
Vbegin(0) = 1
For all izbegin, vi(0) =0
e Recursion:
Foreachi =0, ... ,L-1 and for each / € S the following is calculated recursively:

max
v(i+1)= el(xi+1)'k E S{vk(i)'tkl}

During each recursive step, a backpointer is assigned from / back to the £.

e Termination:
max
P(X | H(a)) = ke S{Vk(L)'tk,end}

e Path Reconstruction:

11, is found by re-tracing the backpointers.

2.2.3 Training a HMM using the Baum Welch algorithm

The HMM, shown in Figure 2.1, can be used to score any DNA sequence, for
example by obtaining the Viterbi score, P(X|/1,), as explained above. But the
parameters of the HMM itself, ¥, may not be realisticc To obtain realistic
probabilities, it is necessary firstly to obtain a set of related sequences which contain a
known motif or a set of known motifs. These sequences form the training set,
Xy, ... X, from which Y must be “learnt” or “trained”. Training is an iterative
process which keeps refining the parameters of the HMM to obtain an optimal score
for Xy, ...,X) denoted as Score(X),...,Xw|Y). The Baum Welch algorithm is one
such training algorithm, which was used in this thesis.

Before the Baum Welch algorithm can be introduced, it is important to point

out that the individual statepaths of the HMM, 71,  11,), which produced X/;),..., X
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are unknown. The Baum Welch procedure has a step to overcome this. The step
involves computing the probability of every statepath /7; j = (75 ),...7145) for every
Xy mn Xy, ..., Xm. These probabilities, P(7.,; = k|X;;), can be calculated using the
forward and backward algorithms which are outlined first:
Forward algorithm (outlined for a single sequence X):
The parameter f,(i) denotes the probability of emitting X using the statepath 7; = £.

e Initialization:
foegin(0) = 1
For all 1begin, f(0) =0

e Recursion:

Sii+1) = el(xm)'ka(i)'tkl

keS
e Termination:

P(X) = ka(L)'tk,end

keS

Backward algorithm:
The Backward algorithm works in exactly the same way as the forward algorithm
except it is computed backwards from the end of X. The parameter bi(i) denotes the

backward probability of emitting X using the statepath 7z; = .

Finally, it can be shown that P(X, m; = k) = fi(i) - bi(i) (Shamir, 2001).

Baum Welch algorithm:
o Initialization
Y is initialized with reasonably-guessed parameters. For work done in this thesis, all

er(b) were initialized randomly and a reasonable guess was made for #;.
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e Expectation
The probabilities P(X;j) for every statepath /1; j for all X;),..., X, is calculated as
above.
The following 2 parameters can now be estimated:
o Ty — the number of transitions from state & to state /.
o Ex(b) — the number of times that an emission of the symbol b occurred
in state k.

These are estimated as follows:

L(J)

ka( N Ly e (X)) by P+ 1)

P(X(/))

E, (b) = ZP(XU)) {Ika(j)(l) bk(,)(l)

x;(j)=b}
e Maximization
The new values of Y are estimated from 7j; and Ex(b). These are estimated using
maximum likelihood estimators for the transition and emission probabilities
respectively. The maximum likelihood estimators are:

T, kl
a
kl A A

qeS
e, (b) =
aeA

E (b)
e Terminaton

E, (a)

Steps 2 and 3 are repeated until the improvement in Score(X(y), ...,X)|Y) 1s less than a

given parameter &
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2.3 The Use of Flexibility Sequences

2.3.1  AnIntroduction to flexibility sequences

One of the fundamental concepts of nucleosome positioning is that it is an effect of
the physical properties of the underlying DNA sequence. This made it necessary to
model DNA sequences as sequences of physical DNA parameters. This section will
introduce these kinds of sequences, herein referred to as “flexibility sequences”. The
flexibility sequences described in this section was used for wavelet analysis
(discussed in Section 2.4.1). Section 2.3.2 will introduce a simpler kind of flexibility
sequence for using as emission symbols for HMMs.

For the work carried out in this thesis, a table which provides flexibility values
for all 256 possible tetranucleotide steps (4* combinations) (Packer et al., 2000b) was
used to translate a given DNA sequence into its corresponding flexibility sequence.
According to these studies, certain dinucleotide steps, represented within the larger
tetranucleotide steps, were ‘sequence-independent’. Their conformation appears to be
constant regardless of neighbouring sequences; an example of this is [AA/TT] whose
physical basis was discussed earlier (Section 1.4.1). At the other extreme, sequences
such as [CA/TG] are ‘sequence-dependent’ as their conformation is strongly
influenced by the immediate DNA sequence context. This is why a tetranucleotide-
based flexibility table was used rather than a lower di- or tri- nucleotide based
flexibility table since it would be able to model the contexts of the sequence-
dependent dinucleotides slightly better.

The parameters in this table were estimated using force field measurements,
which are mathematical formulas for expressing energy as a function of physical

conformation (Sprous, 1996). Such functions are usually sums of terms which
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correspond to bond angle, torsion, Van der Waals forces and electrostatic interaction
energies. These parameters correlated reasonably well with the limited
tetranucleotide parameters available from X-ray crystallography (Hunter & Lu, 1997;
Packer et al., 2000b). The values in the flexibility table range from 1.9 (most flexible)
to 27.2 (most rigid) and there are a total of 102 unique flexibility values. As can be
seen from Figure 2.4, the distribution of the flexibility values is negatively skewed in
both the flexibility table and in background human genomic DNA. Those
tetranucleotide sequences which exhibit the highest rigidity generally contain

[AA/TT] dinucleotides.

Figure 2.4: Histogram of DNA flexibility values (Packer et al., 2000b)
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A DNA sequence was converted to this kind of flexibility sequence using the
following steps:
e A 4 bp window was taken at position 1 of the DNA sequence.
e Its corresponding flexibility value was looked up and stored as the first symbol

of the flexibility sequence.
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e The window was shifted by 1 bp and the next value looked up; this was stored
as the second symbol of the flexibility sequence.
e Steps 2-3 were repeated until reaching 3 bp from the end of the DNA

sequence.

2.3.2 Flexibility emission alphabet for using with HMMs

A simple flexibility emission alphabet was derived from the tetranucleotide-
based flexibility table described above for using with HMMs. In the original form of
this table, 102 unique symbols would have been an exhaustive emission alphabet for
HMM training (compare with 4 symbols for the DNA alphabet for example).
Therefore, the number of symbols had to be sized down to form a reasonable emission
alphabet. This was done by firstly splitting the 256 unique tetranucleotide sequences
into 6 equally binned categories ranked by ascending values of flexibility. Each of the
6 bin categories represented a symbol of the new compressed alphabet: these new
symbol values were assigned from 1 for most flexible to 6 for most rigid. So for
example, the ‘most flexible’ category would contain the 42 (256/6) most flexible
tetranucleotide sequences of the original table. In this way, a compressed 6-symbol
flexibility lookup table for tetranucleotide DNA sequences was derived. This table
was used to convert a DNA sequence into its corresponding 6-symbol flexibility

sequence using the same steps outlined in Section 2.3.1.
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2.4 A Basic Introduction to Wavelets

2.4.1 An introduction to wavelets

Wavelets are a family of mathematical transformations which reveal information
about the strength and localisation of periodic patterns in a signal; this information is
not apparent in the raw format of the signal. A DNA sequence can be considered as a
specific kind of signal. The flexibility sequence is another representation of the same
signal but from which it is easier to derive information about the sequence of
structural features in the DNA sequence. There are 2 parameters which define a
wavelet (Figure 2.5):
e Translation (t) which defines a specific position along a signal and

e Scale (s) which defines a specific frequency.
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Figure 2.5: The concept of translation and scale in wavelet terminology. This figure is
a slightly modified version of a figure from Robi Polikar’s ‘Introduction to Wavelets’
online tutorial (Polikar, 2000).
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In Figure 2.5a(0), the wavelet function is seen as a red sine curve; it is located
at its initial position 2 (the value of 1) along the DNA sequence and with a scale
parameter of 1 (the value of s). This is the wavelet function at its original position
and is called the mother wavelet. The following shifts in size and location are then

applied to the mother wavelet:
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e Firstly, the function is moved or ‘translated’ along a sequence to scan for any
localised frequencies which correspond to the present value of s = 1 (Figure
2.5a(1)). In Figure 2.5a(1), the function has been shifted to a T value of 40. =
= 80 will receive a high score at this present s value as it is very similar in size
and shape to the current value of s. In this way, a score is obtained for each
point along the DNA sequence which represents how strongly correlated the
part of the sequence is to the present shape and size of the wavelet function.

e The scale parameter, ‘s’, is now ‘dilated’ to 5 (Figure 2.5b(0)) increasing the
width of the function. It is also translated across the sequence to obtain a score
for each point along the DNA sequence. One important feature is that since
the scale has increased, the resolution along the ‘x’ axis has also diminished.
This is a property of multiresolution which is explained in the next section.
Note that the initial t value is now at 20 which is due to the increase in width
of the wavelet function.

e In Figure 2.5¢(0), ‘s’ is further dilated to 20. In this way, a number of co-
efficient scores are obtained for different values of ‘s’ and t. The results can
be plotted as a 2D contour map as in Figure 4.2 (page 4-122), where the
intensity of the colours represent the strength of different frequencies in
different regions of the DNA sequence (dark blue is strongest).

Equation 2.3 is the formula for the continuous wavelet transform. For
different values of tand s, the wavelet function is obtained as the product of the
original sequence, x(t), and the wavelet function. This product is referred to as the
convolution of the signal and the wavelet function; it is analogous to a correlation co-

efficient between the wavelet function and a specific region of the signal. The
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convolved product is further multiplied by a normalisation factor 1/\s|, which ensures

that the energy of the co-efficients is distributed evenly along different scales.

Equation 2.3: Continuous wavelet transform

CWT¥(r,5) = $¥(r,s) = ﬁfﬂ?(ﬂ@p* (

24.2 The multiresolution property of wavelets

The output from a wavelet transform provides a 2 dimensional representation
where the strengths of different frequencies against a DNA sequence can be viewed.
However, an important feature with this kind of transformation is the multiresolution
property. This states that high frequency components are resolved well in time and
low frequency components are resolved well in frequency. As can be seen in Figure
2.6, as the frequencies get higher, the width of the boxes get narrower; thus this value
can be resolved well along the DNA sequence. The reverse is true for low
frequencies which will be resolved poorly along the DNA sequence but better along

the frequency axis; this is seen as the wide box at the bottom of the frequency axis.

Figure 2.6: The multiresolution property of wavelets. The x and y axes represent
increasing values along the DNA sequence co-ordinates and frequency values
respectively.
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3

Cyclical Hidden Markov Model Analysis to find
Signals Involved in Nucleosome Rotational

Positioning
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3.1 Introduction

The hypothesis for intrinsic DNA curvature is based on 10 periodic DNA motifs,
which are thought to influence nucleosome rotational positioning (Sections 1.4.1,
1.4.2, 1.9.3). From the analysis of the chicken nucleosome dataset (Section 1.8.1),
this was described as 10 bp-phased [AA] dinucleotides, which showed a 5 bp-phase
shift from [GC] dinucleotides. For the Levitsky nucleosome dataset (Section 1.8.2),
this was described as 10 bp-phased [AA] dinucleotides, which were similarly 5 bp-
phase-shifted from [TT] dinucleotides. Both these proposed signals imply a 10 bp-
phased “rigid” motif which could influence rotational positioning. Baldi and Brunak
used a different kind of approach to find rotational positioning signals, using cyclical
HMMs (Sections 1.9.3, 1.11.1). From their results, they described 10 bp-phased
[VWG] motifs as a potential rotational positioning signal. The structural basis of this
claim was different to the phased “rigid” motif described from analysis of the 2
nucleosome datasets. This suggests that 10 bp-phased ‘flexible’ motifs could
influence rotational positioning. This led to the motivation to extend cyclical HMM
analysis (Baldi et al., 1996) to learn and predict 10 bp-phased motifs, which could
potentially influence nucleosome rotational positioning.

Baldi and Brunak’s cyclical HMM architecture is shown in Figure 3.1; this
model is herein referred to as the B&B model. The original architecture had a series
of states looped together to form a “wheel”; each state in the wheel had 3 main
transitions: next, skip and loop (explained in more detail in the Methods section,
3.2.1). The [VWG] motif (States 8, 9, and 10 in Figure 3.1), was learnt strongly in
exons and learnt weakly in introns and intergenic regions (Baldi et al., 1996). This
was an interesting finding as it suggested that exons may possess intrinsic curvature

and hence be able to direct the rotational positioning of nucleosomes.

3-59



Figure 3.1: The original 10-state cyclical hidden markov model (HMM) trained from
exon sequences (Baldi et al., 1996). The motif [VWG] was observed in states 8, 9 and
10.

One of the first objectives of the current research was to extend the
architecture of the original B&B model to model both the “wheel series of states” and
an additional background state called the Nul/l state. The aim of this was to learn the
background distribution to any “cyclical” patterns learnt in the “wheel” part of the
HMM architecture. The Null state was also necessary for training HMMSs, which
could be used as a nucleosome prediction tool. The Biojava programming package
(Down & Pocock, 1999), which was largely being developed in-house, was used to
develop the software to carry out this analysis.

One major issue that needed to be dealt with was to establish if the original
signal was a consequence of codon bias (aka coding bias)'’. This was an important
distinction to make as the described 10 bp-phased [VWG] motif in the B&B model
was learnt from exon training sequences. The motif itself was also a 3 state one,

which could have been due to recoding of coding bias.

' The sequence of nucleotides, coded in triplets (codons) along the mRNA, which determines the
genetic code. This determines the sequence of amino acids in protein synthesis. Different organisms
use different frequencies of codons in their genetic code leading to codon bias.
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To model the physical aspect of rotational positioning more directly, a
flexibility-emission alphabet was also developed to model DNA sequences as

flexibility sequences (Section 2.3.2, page 2-53).
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3.2 Methods

The main techniques used in this chapter involved HMM training and prediction.
HMMs are introduced more generally in the introduction chapter of this thesis
(Sections 2.2.1-2.2.3). This section will outline the construction, training and
prediction procedure for a general architecture of HMMs, the cyclical HMM
architecture. The software packages described were written using the Biojava HMM

toolkit, which was developed by Matthew Pocock (Pocock MR et al., 2000).
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3.21 Construction of different kinds of wheel architecture

Figure 3.2: Different cyclical HMM architectures: (a) F1, (b) F2 and (c) F3.
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The cyclical HMM architecture that was used for analysis in this chapter eventually
resulted from a series of design refinements (Figure 3.2(a)-(c)). In Figure 3.2(a)-(c),
boxes represent states in the HMM and arrows represent transition paths connecting
these states. The boxes labelled Main are emission states which are looped together to
form the wheel part of the architecture. In each of Figure 3.2(a)-(c), 10-state wheels
are shown. The symbols which are emitted are from the DNA alphabet of 4 symbols:
“a,c,g,t”. All the Main states have at least 4 transition paths:

e ‘next’ for going to the next state,

e ‘loop’ for going back to itself,

e ‘skip’ for skipping past the next state in the wheel and

e ‘end’ for ending from the model

The only state which is not shown in Figure 3.2(a)-(c) is the Start state, which

has transitions to all the emission states.

The architectures shown in Figure 3.2(a)-(c) can be described as follows:
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(a) F1 cyclical HMM architecture

The initial model architecture that was developed, F1, had the greatest degree
of freedom of all the architectures. All the Main states had a transition path to the

Null state. The Null state also had transition paths back to each of the Main states.

(b) F2 cyclical HMM architecture

The F2 architecture can be considered ‘moderately free’ compared to the

numerous additional paths of the F1 type architecture.

(c) F3 cyclical HMM architecture
The F3 type architecture looks exactly like F2. The only difference is that all

the transition parameters were kept constant or ‘untrainable’; transition and emission

parameters are discussed subsequently in Section 3.2.3.

3.2.2 Parameter setups in preparation for cyclical HMM training

Once a cyclical HMM architecture was established, the next step was to train it from a
sequence dataset. Two important parameters which had to be setup before starting the
model training step were:
e Number of states in the wheel
The number of emission states which formed the wheel part of the architecture
was kept as a variable. Most of the experiments involved training and analyzing 9
and 10 state wheel models; however, other models with wheel sizes ranging between
6-12 states were also trained (examples in Appendix B).
e Pseudocounts
Data-overfitting can occur when a specific symbol of an emission alphabet is
under-represented in the training set; for example observing 0 counts for the symbol

a” in a particular emission state. The probability of observing a weak emission

probability for “a” still needs to be modelled for the HMM to be a general one. A
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solution for this was to add a certain number of ‘fake’ counts or pseudocounts to all
counts of emission symbols observed. Most of the training sequences used (Section
3.2.5) were quite long (>500 bp); despite this, a low pseudocount number of 5 was

used to prevent overfitting.

3.2.3 Model training

The model training procedure can be outlined in three steps:
1. Model initialization

At the first step of training, the models had to be initialized with fake numbers
of counts. The emission probabilities were always initialized randomly. However,
for the transition probabilities, initialization required adding counts in such a way that
a continuous loop around the wheel would be preferred to using any of the skip or
loop transition paths within the wheel. Table 3.1 summarizes the transition
probability distributions used to initialize F1 models. A high next transition
probability of 0.96 would ensure continuous use of the next transitions within the
wheel compared to the relatively smaller 0.01 probabilities for using any of the other
available transitions. For the Null state, the loop transition parameter back to itself
was initialized to the same value as the next transition parameters within the wheel
(0.96). For the Null state, a high loop probability coupled with a small probability to
the wheel states (0.03) was expected to effectively model the background to any
‘cyclical’ emission distributions learnt in the wheel. The transition parameters for
starting or ending from all emission state in the model were initialized with equal

values.
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Table 3.1: Transition parameters used to initialize F1 models

SOURCE STATE TRANSITION TYPE INITIAL PARAMETER

wheel state Next 0.96
wheel state Skip 0.01
wheel state Loop 0.01
wheel state null state 0.01
null state Loop 0.96
null state wheel state 0.03
all emission states End 0.01
start all emission states 1/[no. of emission states]

For F2 and F3 models, the initialization parameters were roughly the same as
for F1 in Table 3.1. The major difference was that only one of the wheel states had a
transition path to the Null state. This transition parameter was initialized to 0.02; all
the next transition parameters within the wheel were set to a constant value of 0.96.
For F3 models, all the transition parameters were kept constant or ‘untrainable’
between different training runs; only the emission probabilities could be trained.
2. Model training
All models were trained using the Baum-Welch training method (Section
2.2.3).
3. Training termination
All the models were trained until the log score difference between training
runs had converged to 0.1. However, if the scores had not converged within 250
cycles, the training was forfeited and a fresh training run initiated. 1 in 20 training

runs were forfeited due to this.

3.2.4 Construction of emission alphabets other than DNA

Alternative emission alphabets to the 4-symbol DNA alphabet were also used with the
mentioned cyclical HMM architectures. Firstly, a flexibility alphabet was used

(Section 2.3.2).
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A dinucleotide DNA alphabet (16 symbols) was also used. The results of
model training could then be compared with published DNA flexibility values based
on dinucleotide parameters (Bolshoy et al., 1991; Calladine & Drew, 1986; Packer et
al., 2000a; Satchwell et al., 1986). To gain the dinucleotide view of a DNA sequence,
‘overlapping windowed’ views onto the original DNA sequence were taken. Each
window was shifted by 1 bp relative to the position of the previous window. So, for
example, for the DNA sequence “aagctg”, the values of “aa, ag, gc, ct, tg” were
ordered to form the dinucleotide sequence.

The results of model training could be visualized as in Figure 3.6(a) (page 3-

79).

3.2.5 Datasets of training sequences

The sequences selected for model training included the 2 known mapped nucleosome
datasets (Section 1.8), 1 archaeal sequence dataset (EMBL accession ID: NC 003106)
and various sequences obtained from human chromosome 20 (data extracted from the
Ensembl core database (Clamp et al., 2003; Hubbard ef al., 2002)). These are
summarised in Table 3.2. Only experimentally-confirmed human exon sequences

were used for training.
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Table 3.2: Various training sequences and their respective sizes. For human exon,
intron and intergenic sequences, random samples of size range 500 — 5000 bp were
taken.

Sequence type Dataset size

Levitsky nucleosome dataset (Levitsky et al., 1999) 193 x ~146 bp = 28,178 bp

Chicken nucleosome dataset (Satchwell et al., 1986) 177 x ~146 bp = 25,842 bp

Archaeal genome Sulfolobus tokodaii masked for coding 360,141 bp

sequences (EMBL accession ID: NC _003106)

alu repeat sequences 500,000 bp
(average Alu length = 300 bp)

Experimentally-confirmed exons 568,098 bp

Intergenic sequences 1,164,369 bp

Intergenic sequences masked for all kinds of repeats 602,712 bp

(including SINEs, LINEs, DNA transposons)

Randomly sample intron sequences 629,770 bp

Intron sequences masked for all kinds of repeats (including 687,945 bp

SINEs, LINEs, DNA transposons)

3.2.6 Viterbi labelling analysis

The most likely path a cyclical HMM takes through a sequence was predicted using
the Viterbi algorithm (Section 2.2.2). A typical output from this algorithm is shown in
Figure 3.3. The primary target sequences which were analysed included two contigs
from human chromosome 22 (13MB and 2.5MB respectively) and a contig from
mouse chromosome 19 (Data extracted from Ensembl core database, (Clamp et al.,

2003; Hubbard et al., 2002)).

Figure 3.3: An example of ‘Viterbi-labelling’ a DNA sequence (top row) with a 10-state
cyclical HMM. In the example Viterbi path (second row), the regions labelled
‘0123456789’ demarcate corresponding locations in the DNA sequence where the
wheel of the cyclical HMM has been used. ‘n’ is assigned to regions where the ‘Null’
state has been used.

ggcagtcttcacagtgatggtagctttctggagacagcctccaatttgctgcagtacctg

nnnnnnnnnn0123456789nnnnnnnnnnnnnnnnnnnnnnnnnnnnn0123456789n

3.2.7 Analysis of a model’s “wheel”-labelling pattern

Once the Viterbi path of a model on a test sequence was obtained, the frequencies of
the model’s wheel to (1) skip states (2) make a full turn, and (3) loop on its own states
were calculated. These values were used as indicators to assess if the wheel was

trying to match a higher or lower size wheel in the test sequence. For the example
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Viterbi path of a 10 state cyclical HMM (Figure 3.3), the frequencies of the labelling

patterns in Table 3.3 could indicate this.

Table 3.3: Viterbi-labelling patterns, of a 10 state cyclical HMM, which were used to
assess the wheel’s labelling tendency. The characters, in the second column,
represent the following states: “State 0”, “State W” (any wheel state) and “State 9”.

Wheel’s labelling tendency Viterbi labelling

pattern
Skip to fit a lower wheel size 0 W) 9
Fit its own wheel size 0 W) 9

Loop to fit a higher wheel size 0 Wesy 9

3.2.8 Labelling analysis of chicken nucleosome sequences and

chicken genomic sequences

A jack-knife experiment was performed on the chicken nucleosome dataset. 10
sequences were kept as test sequences and the rest used for training. The aim was to
examine what proportion of the test sequences were labelled with wheel states. Using
this approach, the test sequences were clustered according to their labelling pattern.
Fragments of the 2 available chicken genomic clones (Section 1.8.1) were also
labelled to examine if the labelling patterns were different to the ones for the jack-

knifed nucleosome test sequences.

3.2.9 Estimation of frequently “wheel-state”-labelled features

To estimate whether any known genomic features were enriched in ‘wheel-state’
labelled regions, the frequency of concurrently observing a wheel-labelled region and
a known genomic feature type was calculated (the observed frequency). This was
calculated as the total length spanned concurrently in a chromosome by both the
wheel-labelling and the genome feature divided by the total length of the

chromosome. The ratio between this frequency and the expected frequency of the
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genomic feature and the wheel labelling'' was calculated and ranked as in Table 3.5
(page 3-93). For the exon category, both predicted and experimentally confirmed

exons were used.

3.2.10 \Visualisation of predictions against genomic annotations

The Distributed Annotation System (DAS) (Dowell et al., 2001) was used to visualize
predictions and compare their locations with respect to annotated genomic features.
This protocol allowed predictions to be uploaded to an Ensembl annotation server
(Clamp et al., 2003; Hubbard et al., 2002) using a specific das file format. The main
genomic annotations were stored in a reference server. An example of this kind of

visual representation is seen in Figure 3.9, page 3-86.

" The product of the wheel-labelling frequency and the frequency of the genomic feature in the
chromosome
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3.3 Results and Discussion

3.31 Model-training experiences using different kinds of

cyclical HMM architectures

A number of different cyclical HMM architectures were developed and tested to learn
potential rotational positioning signals. The ultimate architecture that was selected for
analysis had a much more constrained transition-path component compared to the
initial design. Figure 3.4(a) — (c) shows the evolution of the final architecture

designated the F3 type; these examples use the DNA emission alphabet.

Figure 3.4: Models learnt using different architectures of 10-state cyclical HMMs. Each
column in the figure represents a state in the HMM. States within the wheel are
indexed from 0 to the number of the last state in the wheel. “n” represents the Null
state. The two rows represent the probability distributions of the emission and
transition spectra respectively. The height of the respective characters represent their
information content in the distribution. Shown are (a) F1 model learnt from exon
sequences, (b) F2 model learnt from intron sequences and (c) F3 model learnt from
repeat-masked intron sequences.
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The first kind of architecture that was developed was the “very free” F1 type.
A 10-state model, which was trained from coding sequence, using this architecture, is
shown in Figure 3.4(a). The motif, described by Baldi and Brunak as [VWG], was
observed in this model. However, as can be seen in the example model, the motif was
seen a number of times in the wheel. In Figure 3.4(a), it appears twice: firstly at
States 1,2,3 and then at States 4,5,6 in the wheel. Between different training runs, this
motif would appear more than once within the wheel but the spacing between the
motifs did not remain constant. This result was most probably a consequence of the
inherent freedom of the architecture: there were so many transitions possible to the
Null state from the wheel component that the HMM did not necessarily have to use all

the ‘next’ transitions in the wheel states to fit a 10-periodic wheel. This extreme
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freedom is exemplified in the transition distributions in Figure 3.4(a), where the
information content of the ‘next’ transitions was clearly not dominant over the other
available transitions. Also, the transition probability to the Null state appeared higher
for certain states compared to others (for example, States 1,2,4,5 in Figure 3.4(a)).
The inevitable downside with this approach was that a periodic signal corresponding
to the wheel size of 10 states could not be modelled. Therefore, when the Viterbi
algorithm was used to align or label a sequence with models of the F1 architecture,
the state-labelling also appeared random: the labelling was not ‘wheel-like’ and
appeared to move in and out of the wheel to the Null state very often. This general
outcome led to the development of the next type of architecture, the F2 type.

The F2 model architecture can be described as “moderately free” (Figure
3.4(b)). The example model in Figure 3.4(b) firstly shows one important property
about the [VWG] motif: this pattern could be learnt from non-coding sequence as
well as from coding sequence. This example model was trained from raw intron
sequences and the motif was seen in two positions: firstly, States 1,2,3 and secondly
States 7,8,9 (Figure 3.4(b)). However, even after limiting the total number of
transitions to the Null state from just one wheel state, the use of the transitions was
still irregular as can be seen from the information content of the ‘next’ probabilities:
‘State 0 to State 1’ was almost half of that of ‘State I to State 2°. This meant that this
architecture had still not been useful at modelling a period corresponding to the size
of the wheel. Although labelling sequences with this model showed more ‘wheel-
like’ behaviour compared to the F1 models, the skip and loop transitions were being
used almost at the same proportions as a full turn around the wheel (Figure 3.7(b)).
This observation led to a final alteration in the model architecture leading to the F3

architecture.
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The F3 type architecture was consequently the tightest architecture design.
This time, the transitions were made ‘untrainable’: these parameters remained fixed
throughout training. This was expected to force the HMM to model full turns around
the wheel and at the same time, learn its respective background. An example is
shown in Figure 3.4(c) where the model was trained from repeat-masked intron
sequences. The [VWG] motif was learnt and appeared to occur every 10 bp. The full
range of trained F3 models is catalogued in Appendix B. The 10-state F3 models
which showed this were trained from exon, intron, intergenic, masked intron, masked
intergenic and the chicken nucleosome sequences (Appendix B). This gave an
impression that the motif was a 10-periodic one but upon Viterbi-labelling, it was
observed that the HMM would now only model full-turns around the wheel (Table
3.4). The tightening of the transition parameters may have backfired. However,
analysis using this architecture continued and further analysis was performed using

wheel sizes ranging between 6 and 12 states (Appendix B).
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Table 3.4: Analysis of skipping and looping behaviour of various F3 models (Models
shown in Appendix B).

(%))
_|
;gﬁ'g&NEG % SKIP | NEXT | LOOP | MOTIF
intronMaskedO 0 2276 |0
intronMasked?2 0 2283 | 0
interMaskedO 6 0 2491 |0
intronMasked1 0 2381 | 0
interMasked1 0 2457 | 0
interMasked?2 0 2602 | 0
interMasked1 0 2728 | 0
intronMasked2 0 2199 |0
interMasked?2 7 0 2796 | 0
interMasked0 0 2458 | 0
intronMasked1 0 2224 | 0
intronMaskedO 0 2277 | 0
interMasked0 0 2816 |0
interMasked?2 0 2392 | 0
intronMasked2 | 8 | 0 2582 | 0
interMasked1 0 2788 | 0
intronMasked1 0 2575 |0
interMasked0 0 2588 | 0
interMasked1 0 2547 | 0
interMasked?2 9 0 2587 | 0
intronMaskedO 0 2450 | 0
intronMasked1 0 2244 | 0O
intronMasked2 0 2462 | 0
interMasked0 0 2668 |1
interMasked?2 0 2644 | 0
intronMasked0 | 10 | 0 2512 | 1
intronMasked1 2 2649 | 16
intronMasked2 1 2476 | 0O
interMaskedO 3 2881 | 61 [CWG]"™
interMasked1 0 2574 | 0
interMasked?2 11 0 2575 | 0
intronMaskedQ 4 2707 | 44 [CWG]
intronMasked1 4 2723 | 42 [CWG]
intronMasked?2 0 2360 |1 W]
interMasked1 3 2874 | 31 [CWG]
interMasked?2 12 3 2874 | 31 [CWG]
intronMaskedO 3 2666 | 29 [CWG]
intronMasked1 7 2687 | 30 [CWG]

To compare the training results from the experiments in this chapter with the

B&B model, the emission parameters of the published model were crudely

2 Why the apparent motif is indicated as [CWG] and not [VWG] in this table is noted later (Section
3.3.4, The [VWG] motifin retrospect and the distinction of two apparent motifs learnt in F3 human
models)
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reproduced to represent a corresponding F3 model (Figure 3.5). The original
transition parameters were not available hence only the emission parameters could be
roughly reproduced from Figure 3.1. However, a slightly strong skip transition
parameter was noticed from State I to State 3 in Figure 3.1. A fallback of not having
the original transition parameters was that this slightly stronger skip transition was not
modelled. This could bias the reproduced B&B model to behave more like a 10-
wheel model rather than modelling a weak tendency to fit a 9 wheel as the original
B&B model suggests. Another alarming observation about the B&B emission
parameters was made at this point: it was noticed that the motif had appeared twice in
the B&B wheel: States 1,2,3 and 7,8,9 in Figure 3.5 and States 2,3,4 and 8,9,10 in
Figure 3.1. This raised doubts about the periodicity of the [VWG] motif and

prompted further investigations (Sections 3.3.3,3.3.4 and 3.3.7).

Figure 3.5: An F3 model, whose emission parameters have been crudely reproduced
from the B&B model. The transition parameters were all fixed to the same value since
the original parameters were not available.
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3.3.2 Experiences of using non-DNA emission alphabets with

cyclical HMMs

Two emission alphabets were developed in addition to the DNA alphabet for using
with cyclical HMMs. The first one, which was a dinucleotide alphabet, did not yield
greater information than what was already obtained using the DNA alphabet (Figure
3.6(a)). Figure 3.6(a), which shows a F2 model learnt from intron sequences, learnt
the [VWG] motif in States 3,4,5. But this motif was seen for all 4 rows of conditional
emission distributions (conditioned on observing any of the 4 symbols of cytosine,
thymine, adenine or guanine in the previous state). If the observed motif was
conditioned on only one of the symbols, the result would have been interesting and
using the 2" order alphabet would have been potentially useful. The results,
however, modelled the same motifs obtained using the DNA alphabet. Therefore,

modelling attempts using this emission alphabet were eventually discarded.
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Figure 3.6: 10 state cyclical HMMs learnt using alphabets other than 1% order DNA: (a)
F2 dinucleotide alphabet model learnt from intron sequences. Here, the emission
spectrum is represented as the probability of observing a letter in position j given the
position of a primary letter in j-7 (the row header represents the primary letter). (b) F3
flexibility alphabet model learnt from exon sequences.
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The other alphabet, based on flexibility, did not yield any consistent motifs
between different training runs. Figure 3.6(b) is an example of an F2 model trained
from coding sequences. In this case, a motif of 2 strong ‘6’ symbols (representing
conformational rigidity) was observed at wheel states 2 and 3. Most other learnt
models either did not have high information contents in the emission spectra or would

learn motifs which were invariably different between runs on the same training data.
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This lack of consistent results using the flexibility emission alphabet suggested two
things:
e The flexibility conversion resulted in sequences which probably did not have
any periodic patterns corresponding to the wheel sizes and
e The flexibility values of the sequence members of the [VWG] motif were not
significantly different from the flexibility values of the background in the
training data.

This result indicated that the structural basis for the [VWG] motif to effect
nucleosome rotational positioning was perhaps not as convincing as was suggested
earlier (Baldi et al., 1996). However, the [VWG] motif itself was quite intriguing as it
was being learnt both in coding and non-coding DNA sequences: the next step was to

investigate if this motif was merely a consequence of coding bias or not.

3.3.3 Aninitial test to investigate if the B&B model had learnt

codon bias

The fact that the [VWG] motif could be learnt in coding sequence, which itself is a
relatively strong signal in genomic sequences, prompted an analysis of its periodicity.
The first approach taken was to understand if the cyclical HMMs were trying to fita 9
period rather than a 10 period. Since 9 is a modulo repeat of 3, a result of this period
would suggest an effect of coding bias. To determine this, the wheel lengths of
sequences labelled with a crudely-reproduced B&B model (Figure 3.5) and a 10-state
F2 model trained from intron sequences (Figure 3.4(b)) were compared (Figure 3.7).
An F2 model was chosen for this comparison rather than an F3 model because the
frequencies of F3 models to skip and loop were marginal compared to making a full
turn around the wheel (Table 3.4). In other words, an F3 model was too constrained

for this comparison.
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An important point about the original B&B model, which was mentioned
earlier (Section 3.3.3), was that it appeared to have one skip transition, within the
wheel, which was stronger than the other skip transitions in the wheel. This was not
modelled in the F3-reproduced model as the original transition parameters were not
available. This could mean that the reproduced B&B model was likely to fit a 10 state
wheel more preferentially than the original B&B model. For the approximated B&B
model, the wheel distance frequencies showed that the model mostly tended to make a
full turn around its wheel; however, the frequency of skipping to a 9 wheel was
greater than the frequency of looping to fit an 11-state wheel (Figure 3.7(a)). This
observation was the same for both labelled coding sequences as well as for introns
and intergenic sequences. This indicated that the model could have learnt coding
signal. The fact that this skipping tendency was observed in introns and intergenic
regions could perhaps be explained by the presence of un-annotated pseudogenes.
Pseudogenes are short fragments of functionless coding DNA, which appear

ubiquitously in genomic DNA.
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Figure 3.7: Frequency of distances between a state, within a wheel, back to itself in the
state paths of two 10-state cyclical HMMs. The models used were (a) a crudely-
reproduced B&B model illustrated in Figure 3.5 and (b) an F2 model illustrated in
Figure 3.4(b)
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The wheel-labelled regions of the chosen F2 model gave a slightly different
impression to the labelling of the reproduced B&B model (Figure 3.7(b)). The
frequency of skipping to a 9-state wheel was the same as observing a full turn around
the wheel. Once again, this behaviour was the same for coding and for non-coding

DNA. The frequency of looping was once again less than the frequency of skipping.
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However, compared to the B&B model, the frequency of looping was relatively closer
to the frequency of making a full turn around the wheel (Figure 3.7(a)).

Fitting a 9-state wheel was, therefore, common for both the models but the nd
F2 model had a tendency to fit higher wheel sizes as well. Based on this evidence, it
could be suggested that the observation was related to coding bias. This matter was

subsequently re-investigated using more direct approaches (Section 3.3.7).

3.3.4 The [VWG] motif in retrospect and the distinction of two

apparent motifs learnt in F3 human models

The cataloguing of F3 models, trained from human sequences", showed that most
learnt either of 2 apparent motifs in the wheel: [CWG] or [W] (Figure 3.8 and
Appendix B). The same training was done from mouse data, for example using
repeat-masked (Smit & Green, 1997) mouse intergenic sequences (data not shown).
It was observed that the models learnt the same 2 motifs that were being learnt from
the human data.

With the exception of the Alu-trained models, all other models trained from
human sequences learnt either of these 2 motifs within their wheel states. However,
the motifs themselves were learnt for the whole wheel-size range tried, 6 — 12 states,
suggesting that [CWG] and [W] occurred periodically over this entire range. An
interesting property of both motifs was that they both represented the forward strand
motif and its reverse complement; for example, the reverse complement of [CAG] is
[CTG] and that of [A] is [T]. Viterbi-labelling a sequence and its reverse-
complemented sequence with the same model, furthermore, showed that the models

were aligning the same parts of the sequences (data not shown).

" The different types of human training data, that were used, were listed earlier in Table 3.2
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Figure 3.8: 2 apparent motifs observed in F3 models: (a) [CWG] motif observed in
States 234 and (b) [W] motif observed in State 3. The 2 examples shown are 11 state
cyclical models; however, the same motifs were also observed in cyclical models of
wheel size range 6 — 12 states (Appendix B).
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In retrospect, however, the first motif [CWG] appeared to represent the
previously observed [VWG] motif (Baldi ef al., 1996). As seen in Figure 3.8(a) and
in Appendix B, [C] always appeared to have the highest information content in the
first position of this motif. This motif, is therefore, referred to as [CWG] from this
point onwards. The other motif, which was being learnt, was a single strong [W] state

within the wheel (Figure 3.8(b)). Although this appeared to represent a single [W]

3-84



state, this one-state motif was actually very often bounded by a very weak [C] and a
very weak [G] in the bounding states (for example, model interMask(O c10 in
Appendix B). Therefore, many of these motifs were the [CWG] motifs with a much
weaker [C] and [G] in the first and last positions respectively. However, the labelling
properties of the 2 apparent motif-models showed that the 2 models did not behave
the same way as initial impressions suggested (discussed below).

Labelling a human chromosome 22 contig with models trained from repeat-
masked non-coding human sequences, showed that 2 kinds of models with
complementary labelling patterns had been learnt (Figure 3.9). Figure 3.9(a)-(c)
shows that there were 2 opposing labelling patterns. Of the 5 models trained from
human, 3 models (interM2 _c6, intronM1 cl0, interM1 c12) labelled regions which
included coding sequences (Figure 3.9(a), (b)) and SINE repeats (Figure 3.9(c)). The
pattern did not appear to exclusively label coding sequences (Figure 3.9(a), (b)) but
did appear to do so for the SINE repeats (Figure 3.9(c)). 2 of the other models shown
(intronM2cl1, intronM0 _c9) appeared to label opposing regions labelled by the other

3 human-trained models.
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Figure 3.9: Examples of Viterbi labelling a 13MB contig of human chromosome 22
using various F3 models.
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e Labelling properties of models depended on motif learnt in the wheel

The labelling of a human chromosome 22 contig with a 12-wheel state
[CWG]-learnt model was compared with other [CWG]-learnt models of different
wheel sizes (Figure 3.10). It was observed that they were mostly aligning the same
parts of the test sequence. The frequency of labelling parts of the test sequence with
models of different wheel sizes, but which learnt [CWG], appeared to be 1.6x greater
than expected. On the other hand, comparing the alignments of models, which learnt
the [W] motif, with the alignment of the same [CWG] model showed that they were
aligning different parts of the test sequence (aligning the same parts 0.2x less
frequently than expected). The partitioned style of labelling, therefore, depended on
the motif learnt in the model and not the number of states in the wheel. A separate
analysis was done to see if models, which learnt the same motif but were of different
wheel sizes, were compensating to align the motif they had learnt in the same
positions in the labelled sequence (results not shown). This showed that there was no
such compensation. Furthermore, the skipping and labelling frequencies of the F3
models were themselves very low compared to the frequency of making a full turn

around the wheel (Table 3.4, page 3-76).
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Figure 3.10: Comparison of model to model labelling. An F3 model, which had learnt a
[CWG] motif (Model ID interMask1_c12 in Appendix B), was used to label a 2.5MB
sequence of human chromosome 22. The labelling of this was compared to the
labelling of other models, of different wheel sizes, whose apparent motifs were either
[CWG] or [W] respectively.
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e Percentage of test sequences labelled by [CWG] or [W]-learnt models
On average, in human, 60% of the test chromosome 22 contig was labelled as
wheel states by [CWG] models and 52% by [W] models (Figure 3.11); therefore,
there was likely to be some overlap (~8%) between the 2 mostly opposing labelling

patterns.

Figure 3.11: Boxplots showing percentage of genome sequence labelled as wheel
states by models which learnt apparent [CWG] or [W] motifs respectively.
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However, for comparison, a mouse contig of equal length was also aligned.

In this case, the average density of wheel-state labelling by [CWG] and [W]-learnt
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models were 33% (standard deviation: 0.22) and 81% respectively (standard
deviation: 0.05) (data shown independently in Table 3.5, page 3-93). Thus, the
wheel-state labelling density was significantly different for the same models in mouse
and in human. A reason for this could have been the background trinucleotide density
in human and mouse (Figure 3.12). Figure 3.12(a) indicates that [CWG] and [WWW]
are the most frequent trinucleotides in human (motifs boxed in red). In the mouse
background trinucleotide distribution, [WWW] followed by [AGA] and [TCT] are the
most frequent trinucleotides (Figure 3.12(b)). Thus, the 81% wheel-state labelling by
[W]-learnt models could be biased by the high content of [WWW] in the mouse
genomic background. Although the labelling could have been biased by the high
density of [WWW] motifs in mouse, the two motifs [CWG] and [W] were
consistently learnt from repeat-masked mouse genomic DNA (data not shown).
Therefore, although the labelling could possibly have been biased by the genomic
trinucleotide background, the training did not appear to depend on the most frequent

trinucleotides in the genomic background of the training data.
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Figure 3.12: The 23 most frequent trinucleotides in the background distributions of (a)

human and (b) mouse.
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e C(lasses of features grouped by the wheel-state labelling of the 2 motif-

models

The locations of known genomic features in the test sequences were compared
to the locations of wheel state modelling by the different models. This was done for
both human and mouse (Table 3.5); this showed 2 exclusive classes of features
corresponding to the exclusive style of labelling.

In both the human and mouse test sequences, [CWG]-learnt models frequently
“wheel-labelled” Alu sequences (B1 in mouse), exons, and the upstream regions of

genes. [W]-learnt models frequently labelled repeats of the Charlie, L1 and MER
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types. This partitioning of features indicated an important feature about the learnt
motifs: they had not learnt a signal related to coding DNA.

The features frequently labelled by [CWG]-wheel states included exons,
which are protein-coding DNA and Alu sequences, which are derived from 7SL-RNA
and which do not code for proteins (HGSC, 2001). The features frequently labelled
by [W]-wheel states included transposase gene-coding repeats (The DNA-transposon
derived Charlie and MER class of repeats) and endonuclease gene-coding repeats (L1
LINE repeats). Therefore, all the coding-sequences had not been grouped into the
same class by the wheel-state labelling of either of the 2 motif-models.

The grouping of exons and Alu repeats (and B1 repeats) into the same class
was intriguing as similar properties between the 2 features had not been reported
previously. However, the similarity could be due to the presence of highly diverged
SINE repeats, which have become too weak for current repeat-detection programs (for
example RepeatMasker) to detect (Smit & Green, 1997; Smit, 1999). Representative
sequence members of the 2 classes were compared to see if any general differences
could be noted which could account for the observations (Figure 3.13). The
consensus observation from Figure 3.13 was that the Alu sequence was not as
poly(dA)epoly(dT) rich as the Charlie sequence. A strongly-periodic [CWG] motif
was not visually apparent in the Alu sequence though. On the other hand, the Charlie
sequence showed clumps of poly(dA)spoly(dT) which could be expected from the
cyclicity of the model. The periodicity of the 2 motifs is discussed subsequently

(Section 3.3.7).
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Table 3.5: Reproducibility of Viterbi labelling using different F3 models and estimation of features enriched in predictions. The results in the table
are sorted by the apparent motif learnt in the model (the motifs were visually approximated). Motifs which looked partly like either [CWG] or [W]
are referred to as ‘intermediate’. Key for motif column:

I intermediate
- unknown
HUMAN MOUSE
%cycle - Features labelled by model and the ratio of %cycle- Features labelled by model and the ratio of their
TRAIN SOURCE MOTIF | STATES labelled their observed to expected frequencies labelled observed to expected frequencies

chicken0 [CWG] 9 0.73 0.77 | Charlie(1.21)

AluS(1.68) AluY(1.67) Alu(1.60) exons(3.03) B1(2.83) up2k(1.58) introns(1.58)
exon0 [CWG] 9 0.42 | Exons(1.55) up2K(1.51) Down2K(1.23) 0.09 | down2K(1.44)

AluS(1.62) AluY(1.61) Alu(1.57)

Exons(1.46) up2K(1.46) Down2K(1.22) B1(2.77) exons(2.50) down2K(1.47) up2k(1.45)
exon0 [CWG] 10 0.44 | AluJ(1.20) 0.11 | introns(1.44)

AluS(1.64) AluY(1.60) Alu(1.58)

Exons(1.46) up2K(1.45) AluJ(1.22) B1(2.81) exons(2.53) up2k(1.48) introns(1.47)
exon1 [CWG] 10 0.44 | Down2K(1.22) 0.11 | down2K(1.47)

AluY(1.66) AluS(1.66) Alu(1.59) exons(2.99) B1(2.82) introns(1.58) up2k(1.53)
exon2 [CWG] 9 0.42 | Exons(1.56) up2K(1.50) Down2K(1.23) 0.09 | down2K(1.45)
exon2 [CWG] 10 0.72 | Charlie(1.37) MER(1.23) 0.93

AluS(1.35) Alu(1.34) Exons(1.26)
inter0 [CWG] 9 0.63 | AluY(1.26) up2K(1.25) 0.36 | B1(1.93) exons(1.69) introns(1.28) down2K(1.20)

AluS(1.36) Alu(1.35) AluY(1.28)
inter2 [CWG] 9 0.64 | Exons(1.26) up2K(1.25) 0.36 | B1(1.94) exons(1.71) introns(1.29) down2K(1.20)

AluS(1.53) Alu(1.51) AluY(1.47) B1(2.42) exons(2.00) introns(1.35) up2k(1.33)
interMasked0 [CWG] 8 0.54 | Exons(1.36) up2K(1.36) AluJ(1.27) 0.20 | down2K(1.33)

AluS(1.44) Alu(1.43) AluY(1.42) B1(2.35) exons(2.09) introns(1.37) up2k(1.35)
interMasked0 [CWG] 11 0.52 | Exons(1.37) up2K(1.36) AluJ(1.21) 0.20 | down2K(1.31)

AluS(1.53) Alu(1.50) AluY(1.44) B1(2.38) exons(2.16) introns(1.38) up2k(1.37)
intertMasked1 [CWG] 7 0.53 | up2K(1.38) Exons(1.34) AluJ(1.25) 0.18 | down2K(1.32)
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AluS(1.52) Alu(1.50) AluY(1.47)

B1(2.43) exons(2.04) introns(1.36) up2k(1.32)

interMasked1 [CWG] 0.54 | up2K(1.35) Exons(1.34) AluJ(1.27) 0.20 | down2K(1.31)
interMasked1 [CWG] 0.61 | Charlie(1.59) MER(1.38) L1(1.24) 0.89
AluS(1.50) Alu(1.48) AluY(1.46) B1(2.37) exons(1.99) introns(1.33) up2k(1.29)
intertMasked1 [CWG] 12 0.54 | Exons(1.35) up2K(1.34) AluJ(1.24) 0.22 | down2K(1.27)
AluS(1.55) Alu(1.52) AluY(1.50) B1(2.40) exons(2.11) introns(1.35) up2k(1.33)
interMasked2 [CWG] 6 0.54 | Exons(1.37) up2K(1.35) AluJ(1.23) 0.20 | down2K(1.30)
AluS(1.51) Alu(1.49) AluY(1.41) B1(2.33) exons(2.17) introns(1.37) up2k(1.35)
interMasked2 [CWG] 7 0.52 | up2K(1.38) Exons(1.35) AluJ(1.25) 0.19 | down2K(1.32)
AluS(1.50) Alu(1.48) AluY(1.45) B1(2.37) exons(1.99) introns(1.33) up2k(1.29)
interMasked2 [CWG] 12 0.54 | Exons(1.36) up2K(1.34) AluJ(1.24) 0.22 | down2K(1.27)
AluS(1.36) Exons(1.35) Alu(1.34)
intron1 [CWG] 9 0.63 | AluY(1.27) up2K(1.26) 0.35 | B1(1.99) exons(1.72) introns(1.29) down2K(1.20)
AluS(1.34) Alu(1.32) up2K(1.28)
intronMasked0 [CWG] 11 0.62 | AluY(1.27) Exons(1.27) 0.35 | B1(1.92) exons(1.71) introns(1.31) down2K(1.20)
AluS(1.36) Alu(1.35) AluY(1.28)
intronMaskedO [CWG] 12 0.64 | up2K(1.26) Exons(1.24) 0.36 | B1(1.97) exons(1.64) introns(1.27)
AluS(1.40) Alu(1.39) AluY(1.32)
intronMasked1 [CWG] 6 0.63 | up2K(1.27) Exons(1.26) 0.33 | B1(2.02) exons(1.69) introns(1.28) down2K(1.20)
AluS(1.37) Alu(1.36) AluY(1.28)
intronMasked1 [CWG] 8 0.63 | up2K(1.26) Exons(1.25) 0.35 | B1(1.99) exons(1.70) introns(1.27) down2K(1.20)
AluS(1.37) Alu(1.37) AluY(1.32)
intronMasked1 [CWG] 10 0.63 | up2K(1.27) Exons(1.27) 0.35 | B1(1.99) exons(1.67) introns(1.27) down2K(1.20)
AluS(1.34) Alu(1.33) Exons(1.28) B1(1.93) exons(1.71) introns(1.31) up2k(1.20)
intronMasked1 [CWG] 11 0.62 | AluY(1.27) up2K(1.27) 0.35 | down2K(1.20)
AluS(1.36) Alu(1.35) AluY(1.29)
intronMasked1 [CWG] 12 0.63 | Exons(1.27) up2K(1.26) 0.36 | B1(1.94) exons(1.65) introns(1.27)
AluS(1.38) Alu(1.37) AluY(1.29)
intronMasked?2 [CWG] 8 0.63 | up2K(1.26) Exons(1.24) 0.35 | B1(1.99) exons(1.68) introns(1.28) down2K(1.21)
chicken2 [W] 10 0.87 0.80
inter0 [W] 10 0.51 | Charlie(1.85) MER(1.50) L1(1.46) 0.82 | Charlie(1.25)
interMaskedO [W] 6 0.59 | Charlie(1.64) MER(1.41) L1(1.28) 0.89
interMasked0 W] 7 0.59 | Charlie(1.66) MER(1.38) L1(1.27) 0.88
interMasked1 [W] 6 0.59 | Charlie(1.65) MER(1.40) L1(1.28) 0.89
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interMasked2 [W] 8 0.61 | Charlie(1.59) MER(1.39) L1(1.24) 0.89
intron0 [W] 10 0.65 | Charlie(1.52) MER(1.23) 0.84
intron1 [W] 10 0.66 | Charlie(1.50) MER(1.20) 0.84
intron2 [W] 9 0.68 | Charlie(1.47) 0.84
intron2 [W] 10 0.66 | Charlie(1.46) MER(1.20) 0.85 | Charlie(1.20)
intronMaskedO [W] 6 0.46 | Charlie(2.03) L1(1.57) MER(1.48) 0.78 | Charlie(1.29)
intronMasked0 [W] 7 0.46 | Charlie(2.01) L1(1.59) MER(1.51) 0.76 | Charlie(1.33)
intronMasked0 [W] 9 0.47 | Charlie(2.00) L1(1.57) MER(1.55) 0.77 | Charlie(1.30)
intronMasked1 [W] 7 0.46 | Charlie(2.05) L1(1.59) MER(1.52) 0.77 | Charlie(1.33)
intronMasked1 [W] 9 0.48 | Charlie(1.95) L1(1.54) MER(1.51) 0.79 | Charlie(1.28)
intronMasked2 [W] 6 0.46 | Charlie(2.02) L1(1.58) MER(1.51) 0.78 | Charlie(1.28)
intronMasked2 [W] 7 0.46 | Charlie(2.02) L1(1.59) MER(1.52) 0.77 | Charlie(1.33)
intronMasked?2 [W] 9 0.47 | Charlie(2.03) L1(1.58) MER(1.55) 0.77 | Charlie(1.30)
intronMasked?2 [W] 11 0.47 | Charlie(1.96) MER(1.56) L1(1.56) 0.77 | Charlie(1.31)
levitsky0 [W] 9 0.39 | Charlie(2.23) L1(1.79) MER(1.55) 0.68 | Charlie(1.44)
chicken0 I 10 0.86 0.80
chicken1 I 9 0.76 0.77 | Charlie(1.21)
chicken1 I 10 0.68 | Charlie(1.28) 0.76 | Charlie(1.22)
chicken2 I 9 0.85 0.78
interMasked0 | 9 0.61 | Charlie(1.59) MER(1.38) L1(1.24) 0.89
interMasked0 I 10 0.6 | Charlie(1.61) MER(1.40) L1(1.25) 0.89
interMasked1 I 11 0.6 | Charlie(1.64) MER(1.37) L1(1.26) 0.88
interMasked2 I 9 0.61 | Charlie(1.58) MER(1.38) L1(1.24) 0.89
interMasked2 I 10 0.6 | Charlie(1.61) MER(1.40) L1(1.25) 0.89
interMasked2 | 11 0.6 | Charlie(1.59) MER(1.37) L1(1.25) 0.88
intronMasked0 I 10 0.47 | Charlie(1.94) L1(1.56) MER(1.49) 0.79 | Charlie(1.29)
intronMasked2 I 10 0.48 | Charlie(1.92) L1(1.56) MER(1.50) 0.79 | Charlie(1.28)
Alu0 - 9 0.93 0.89
Alu0 - 10 0.93 0.89
Alu1 - 9 0.94 0.90
Alu1 - 10 0.94 0.89
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Figure 3.13: Fasta sequences of an Alu sequence (frequently labelled by cyclical
[CWG] models) and a Charlie sequence (frequently labelled by cyclical [W] models).
Sequences obtained from RepBase (Smit & Green, 1997)

>aluY#SINE/alu
RGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGT
CAGGAGATCGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAATACAAAAAATTAGCC
GGGCGTGGTGGCGGGCGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCG
GGAGGCGGAGCTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCC
GTCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

>Charlielb#DNA/MERL type
CAGCGGTTCTCAAAGTGTGGTCCGNGGACCCCTGGGGGTCCCCGAGACCCTTTCAGGGGGTCCGCGAGG
TCAAAACTATTTTCATAATAATACTAAGACGTTATTTGCCTTTTTCACTCTCATTCTCTCACGAGTGTA
CAGTGGAGTTTTCCAGAGGCTACATGACGTGTGATGTCGCAACAGATTGAATGCAGAAGCAGATATGAG
AATCCAGCTGTCTTCTATTAAGCCAGACATTAAAGAGATTTGCAAAAATGTAAAACAATGCCACTCTTC
TCACTAAATTTTTTTGTTTTGGAAAATATAGTTATTTTTCATAAAAATATGTTATTTATGTTAACATGT
AATGGGTTATTATTATTTTTAAATGAATTAATAAATATTTTAAAAATTTCTCAGTTTTAATTTCTAATA
CGGTAAATATCGATAGATATAACCCACATAAACAAAAGCTCTTTGGGGTCCTCAATAATTTTTAAGAGT

GTAAAGGGGTCCTGAGACCAAAAAGTTTGAGAACCGCTG

e Lengths of wheel-labelled regions

The lengths labelled by the 2 kinds of motif-learnt models were also compared
in the range of 20-600 bp (Figure 3.14). This range was selected to scan for peaks
which could resemble the length of a nucleosome (~146 bp). [CWG] model-labelling
showed 2 distinct peaks in human: one was around 140-160 bp and another was
around 300 bp (Figure 3.14(a)). In mouse, peaks were observed around 100 and 200
bp (Figure 3.14(b)) for [CWG]-wheel state labelled lengths. These peaks resembled
“nucleosome-size” lengths. However, further analysis of the peaks showed that they

were 3 times more frequently associated with Alu repeats than expected in human
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(balloon text in Figure 3.14(a)). Similar results were observed for B1 repeats in the
mouse peaks (Figure 3.14(b)).

Alu sequences are typically around 300 bp long; therefore, the two peaks most
probably resembled half and full Alu lengths in human. This could be expected as
Alu sequences have a polyA linker, of varying lengths, around position 150 bp in their
sequence (Figure 3.13). From the opposing-style labelling observed, it could be
expected that this polyA linker would not be labelled by the wheel part of the [CWG]
models but by the wheel part of [W] models. This could account for the 2 observed
peaks corresponding to full and half-Alu lengths. B1 repeats are half the size of Alu
repeats; this could be why their [CWG]-wheel state labelling lengths appeared to be
around 100 / 200 bp (Figure 3.14(b)).

[W] wheel-labelled lengths did not show any peaks within this range in human
(Figure 3.14(c)). In mouse, however, peaks around 146 and 220 were apparent
(Figure 3.14(d)); these peaks were not frequently associated with any repeats or
known genomic features. However, the lack of similar peaks in human indicated that

it was not a conserved feature.
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Figure 3.14: Histogram of lengths of cycle-labelled regions using F3 models. (a), (b)
show data for human and mouse genomic sequences respectively; these were labelled
with a [CWG]-learnt model (Model ID: intronM1_c10 (Appendix B)). (c), (d) show data
for human and mouse genomic sequences respectively, which were labelled with a
[W]-learnt model (Model ID: intronM2_c11 (Appendix B)). The balloons show features
which were frequently associated with the corresponding peaks (the values shown are
the ratio of the observed to expected frequencies).
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3.3.5 F3 model training results from Archaea and the 2

nucleosome datasets

The non-human training data included archaeal sequences, a set of chicken
nucleosome sequences and Levitsky et al’s compilation of mapped nucleosome
sequences from various organisms; a few of these models appeared to have similar
properties to those learnt from the human training sets. Only 9 and 10 state F3 models

were trained for these.

3-99




e Models trained from Archaea

9-state and 10-state models, trained from archaea, mainly learnt its
background sequence composition which was poly-[W] rich (models shown in
Appendix B). Archaea was an interesting organism to scan for nucleosome rotational
positioning as SELEX-enrichment experiments had previously shown that DNA
sequences, which bound histones in Archaea, were 10-periodic in [AA] motifs (Bailey
et al., 2000). This pattern was seen for the majority of the wheel states. This result
probably arose from using a random DNA background model instead of the
background archaeal sequence for all the emission states. However, models, which
were trained using a background model of the Archaeal genome, showed similar
results to using a random DNA background (results not shown). Therefore, enriched
periodicities of ~9 or 10 bp could not be learnt for this organism using cyclical HMM-
training. Aligning a human genomic sequence with these archaeal models wheel-
labelled the sequence at roughly 50%; only Charlie repeats were labelled at a rate
greater than expected (Table 3.5). The abundance of poly(dA)-poly(dT) regions in the
example Charlie sequence (Figure 3.13) could account for this high rate of labelling
using such a poly[ W]-learnt model.

e Models trained from the chicken nucleosome dataset

For 9-10 state cyclical HMMs trained from the chicken nucleosome dataset,
the [W] and [CWG] motifs were often seen; however, they were associated with a few
other weak and inconsistent motifs (Appendix B). A difference between the models
learnt in chicken and those learnt in human was that the chicken models learnt a
strong [A] or strong [T] motif in the Null state whereas the Null state emission
distributions in human-trained models were relatively flatter. The labelling properties

of the chicken models were consequently different to sequences trained from human
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(Table 3.5). Genomic sequences were usually labelled >76% with chicken models
whereas this value was between 46-64% for human models. Therefore, although the
wheel parts of the chicken models appeared similar to human, the Null state was
different. The models were, therefore, not equivalent to those trained from human.
The chicken models labelled human genomic sequences randomly with respect to
known repeat types and coding regions (Table 3.5).
e Models trained from the Levitsky dataset

Models trained from Levitsky et al’s compiled nucleosome dataset learnt
predominantly poly[W] motifs (Appendix B). Similar to the [W]-motif-learnt models
trained from human data, many of the Levitsky models learnt [W] motifs in the wheel
states and labelled the same genomic regions (Table 3.5). However, the [W] motif
appeared in a number of wheel states rather than in a single wheel state as in human
models. Similar to the human [W] models, levitskyO c9, levitsky2 c9, levitskyO cl0
and levitskyl cl10 labelled MER and L1 repeats at a rate greater than random (Table
3.5, Figure 3.9); but wheel-state labelling was roughly 33% for these compared to
44% for the human [W] models. 2 models, levitskyl c¢9 and levitsky? c10 labelled
complementary regions to the aforementioned models (wheel state labelling roughly
74%) (Table 3.5). Furthermore, they were enriched for the same features as the
human [CWG] models (exons and Alu repeats). However, the Levitsky models did
not learn a [CWG] motif in their wheel. The complementary labelling was more
likely due to these last 2 models learning a [W] motif in their Null states. Therefore,
although the labelling results suggested two complementary models like the human-
trained models, the Levitsky models did not learn a counterpart [CWG] motif in their
wheel components. The complementary behaviour was more likely due to modelling

poly[W] motifs in the wheel as opposed to modelling [W] motifs in the null state.
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3.3.6 Labelling analysis of chicken nucleosome sequences and

chicken genomic sequences

Labelling chicken nucleosome and genomic test sequences using chicken
nucleosome-trained models highlighted some differences in the 2 types of test
sequences. The models that were used to perform the alignments had all learnt
[CWG] within the wheel component of the model.

e Alignment of chicken nucleosome sequences

Firstly, the labelling of 10 chicken nucleosome test sequences, using a jack-
knifing approach, showed that most times, only 1 or 2 sequences were aligned
completely with wheel states (Figure 3.15(A)). The fact that only 1 or 2 sequences
showed near 100% wheel-state labelling suggested that full turns of 10-phased
[CWG] motifs around the complete core particle sequence was an unlikely
requirement. Most of the other sequences showed mainly scattered labelling patterns
but showed a slight bias to label the right ends of the sequences. Why there appeared
to be this bias to label the ends of the sequences was not clear. Labelling of the
genomic sequences did not show this kind of a bias though (Figure 3.15(B)).

The results of aligning the nucleosome sequences indicated no evidence of
rotational positioning (10 bp-phasing) of the [CWG] motif. This was also the
conclusion of the published analysis of the chicken nucleosome dataset (Satchwell et
al., 1986). Also, there did not appear to be any preference for the wheel states to align
symmetrically about the centre of the sequences; this is understood about the [AA/TT]
rotational positioning motif. However, the [CWG] motif was learnt from this same
dataset so it could have some influence on nucleosome positioning; this data is too

limited to suggest a possible mechanism though.

3-102



Figure 3.15: Viterbi alignments of chicken sequences, with 10-state F3 models which were trained from the chicken nucleosome datasets. (A)
Alignments of 6 sets of jack-knifed test sequences (10 sequences per set). The ends of the sequences were padded in grey to represent the
results in 150 bp windows. (B) Alignment of randomly-selected 146 bp chicken genomic fragments with a model trained from the chicken

nucleosome dataset.
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e Alignment of chicken genomic sequences

Aligning chicken genomic sequences with chicken nucleosome-trained models
showed that ~60% of the sequences were labelled with almost 100% wheel-state
labelling (Figure 3.15(B)). Only ~5% of sequences were not labelled at all with
wheel states. Originally, it was expected that aligning the nucleosome test sequences
would have shown 100%-wheel labelling if the [CWG] motif was involved in
rotational positioning in the dataset. Instead observing it in the genomic sequences
suggested that some aspect of [CWG] density and not necessarily any kind of
preferential rotational positioning might have consequences for nucleosome
positioning. This led to the analysis of [CWG] density (Section 3.3.8) and further
analysis of the background trinucleotide distribution in different genomes and the 2

nucleosome datasets (Section 5.3.3).

3.3.7 Analysis of periodicity of the two opposing motifs

The 2 motifs, [CWG] and [W], were learnt using model architectures of a range of
wheel sizes (612 states). Therefore, it was possible that the motifs themselves may
occur quite regularly, with their periodicity corresponding to these different wheel
sizes. However, to be an important motif for the rotational positioning of
nucleosomes, it needed to be more strongly periodic at 10 bp compared to the other
repeat periods. This made it interesting to investigate the periodicity of these motifs.
e Model skipping and looping behaviour

Firstly, there were no skips or loops observed for models in the wheel size
range of 610 states (Table 3.4, page 3-76). However, for 11 and 12 state wheel
models, which had learnt the [CWG] motif, a low frequency for looping was
observed. This suggested that the models were probably trying to fit a higher-order

wheel size to the wheel size-range examined. Analysis of an F2 model and an F3-
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reproduced B&B model, however, suggested that 10 state wheel models had a slight
tendency to skip to fit a 9 wheel (Section 3.3.3).
e Forward scores of models of different wheel sizes

The periodicity was investigated secondly by labelling both repeat-masked
intergenic and coding DNA sequences with models of different wheel sizes and
comparing their forward scores (Figure 3.16). For models, which learnt the [CWG]
motif, the 9 and 10-state wheel models labelled intergenic sequences with a slightly
better average forward score than the other wheel sizes (Figure 3.16(a)). In coding
sequence, however, these same peaks were not seen (Figure 3.16(b)). There did
appear to be a peak for the 6 state-models though, which suggests that the observation
may be influenced by coding bias.

Models, which learnt the [W] motif, however, did not have any models of a
specific wheel size which appeared to score better than the others (Figure 3.16(c)). So
the [CWG] motif may have an enrichment at 9 and 10 bp in intergenic DNA but the
[W] motif appeared random over the range of 612 bp; this suggested that the wheel

states of the [W] models could be labelling mainly long runs of [W].
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Figure 3.16: Boxplots of forward scores of test sequences labelled with F3 models of
different wheel sizes.

(a) Masked intergenic DNA labelled with [CWG]-learnt models,
(b) coding DNA labelled with [CWG]-learnt models and

(c) masked intergenic DNA labelled with [W]-learnt models
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(c)
e Motif-spacing frequency

The final investigation of motif periodicity was to just calculate the
frequencies of their repeat periods in different sequence types (Figure 3.17). For the
[CWG] motif, the Alu sequences showed quite distinct periods at 8, 9, 12, 15 and 18
bp (Figure 3.17(a)). However, these peaks for Alu repeats seemed to weakly correlate
with the same peaks in exons (correlation co-efficient: 0.62). The peaks in exons
were, however, 3 modulo repeats which suggested effect of coding bias. This could
explain why the [CWG]-motif models seemed to consistently wheel-label both Alu
repeats and exons despite the fact that Alus do not code for proteins (Table 3.5). The
peaks for mouse B1 repeats and mouse exons also appeared to visually correlate with
each other but the correlation co-efficient was much weaker (0.46).

The repeat frequencies of [WWW]'* motifs, on the other hand, did not show

any peaks which could suggest coding bias (Figure 3.17(b)).

' The periodicity of [WWW] motifs was calculated, rather than [W], because just counting [W]-
occurrences would not have been informative.
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Figure 3.17: Analysis of motif periodicity using a simple counting procedure: (a)
[CWG] motif and (b) [WWW] motif
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The overall impression was that the [CWG] motif did appear to be influenced
by coding bias as a 3-modulo repeat of the pattern was observed. It was seen to be
enriched at certain periodicities (8, 9, 12, 15 and 18 bp in human; 6, 9, 12, 16, 18 bp

in mouse) and this appeared to be common for both exons and SINE repeats.
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3.3.8 Labelling density of [CWG]-learnt models

The fact that different wheel-size F3 models, which learnt the same motif, all
frequently “wheel”-aligned the same parts of the test sequences (Section 3.3.4)
suggested that they were labelling regions having high density of the [CWG] motif.
The model wheels did not skip or loop that frequently to fit other wheel sizes either
(Table 3.4). To verify this, the density of a [CWG]-learnt model’s wheel state
labelling and windowed [CWG] density was compared (Figure 3.18). This showed
that the two were correlated (correlation co-efficient: 0.98). Only these 2 variables, in
Figure 3.18, appeared to be correlated. Alu and exon densities" did not correlate with
these densities (Figure 3.18). In Figure 3.18(a), [CWG] density was seen to vary
between 10 and 18%. Similar frequencies were obtained for [CWG] density in the
chicken nucleosome dataset (data not shown). However, only the weak 9,10 bp-
periodicity of the [CWG] motif, discussed earlier (Section 3.3.7), could suggest that
the motif could be involved in rotational positioning. Models, trained and tested from

the chicken nucleosome dataset, however, did not support this (Section 3.3.6).

!5 Genomic features earlier shown to be wheel-state labelled with [CWG]-learnt models (Table 3.5)
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Figure 3.18: (a) Plot of a [CWG] motif-learnt F3 model’s labelling density vs. density of
the [CWG] motif itself (window size: 100 Kbp). These are shown alongside exon and
Alu densities in a 5MB contig of human chromosome 22. (b) Correlation co-efficients
of these densities.

9 + 20
80 T 18
70 T16
o [e]
x
g 6 ‘ A
: Nive™
[ T+12 g |—m—alu
g 50 1 10‘;9 —e—F3 model
240 © | —+—CWG motif
< +8 £ |—m—exon
230 =
c +6 B
8 :
20 + ) 14 O
N 2
0 A Ve 0

1.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06
Sequence (bp)

(a)
alu F3 model CWG motif exon
F3 model 0.20 1.00 0.98 0.53
CWG motif 0.17 0.98 1.00 0.57

(b)

e Windowed analysis of [CWG] motif density
As discussed above, the [CWG]-learnt F3 models were also labelling [CWG] dense
regions. Multiple expansion repeats of [CTG]'® had been seen to position
nucleosomes experimentally (Section 1.5.2) although its exact mechanism in this was
still unclear. Therefore, a scan was done to examine which parts of human genomic
sequences frequently contained dense “blocks” of [CWG] (Figure 3.19). The highest
densities that were found were around 35% within windows of 200 bp'’
(corresponding to 23 repeats of [CWG]). These dense windows appeared often,

occurring once every 240 kbp in human genomic sequences and once every 300 kbp

1% A sequence member of the [CWG] motif
17 A window size of 200 bp was chosen since it was close to ~146 bp, the nucleosome core particle size
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in mouse sequence (data not presented). The features which were most frequently
represented in these [CWG]-dense regions though included exons in both mouse and
human (Table 3.6). This could perhaps explain Baldi and Brunak’s observation of
[VWG] motifs most often in coding sequence (Section 1.9.3) and the frequent

labelling of exons shown earlier (Table 3.5).

Table 3.6: Features observed to frequently have high densities of [CWG] repeats. A
window size of 200 bp and cutoff threshold of 35% [CWG] density was used.

Genomic Sequence Frequency ratio (Observed:Expected)
Human Exons(1.37)
Mouse Exons(2.50), Introns(1.31)

Figure 3.19: Density plots of [CWG] repeats in a human genomic sequence shown at
different resolutions. ‘w’ is the window parameter and ‘d’ the threshold density of
[CWG] within the window. The top density plot is a ‘moving average’ representation.
The red and black boxes below represent non-overlapping 200 bp windows having
>0.33 and >0.29 [CWG] densities respectively.
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34 Conclusion

Some interesting properties of the [CWG] motif have been observed. The motif
represents some of the most frequent trinucleotides in the background trinucleotide
density of human but not in mouse. However, the motif could also be learnt from
mouse training sequences.

The evidence for this motif for effecting nucleosome rotational positioning
remains unclear. Cyclical HMM results, trained using a flexibility emission alphabet,
could not learn any motifs which were spaced around 9 or 10 bp (Section 3.3.2). This
could mean that the background flexibility is in general not significantly different to
the flexibility of [CWG], the motif which is learnt most often using models of the
DNA alphabet. Also, the labelling of [CWG]-learnt models on chicken nucleosome
sequences did not suggest any rotational preferences for this motif. A weak 9, 10 bp-
periodicity of [CWG] was however seen in repeat-masked intergenic sequences
(Section 3.3.7), which could indicate the presence of weak rotational positioning
motifs.

High [CWG] density could be a factor in positioning nucleosomes though;
multiple expansion repeats of [CTG] was seen to exhibit a high nucleosome density in
previous research (Section 1.5.2). High windowed densities of this motif were seen in
exons, which potentially suggests that exons could be preferentially wrapped in
nucleosomes.

A simplistic suggestion could have been that [CWG]-dense regions, with a
weak 9/10 bp periodicity, represented a greater density of nucleosomes (not
necessarily positioned) whereas [W] dense regions did not. However, the comparison
of the labelling properties were not the same (60% and 30% [CWG]-wheel state

labelling in human and mouse respectively).
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4 Periodic Flexibility Patterns in DNA: a Scan for
Signals Involved in Nucleosome Translational

Positioning
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4.1 Introduction

Some recent computational approaches have indicated periodic occurrences of
flexibility patterns in the range of 100-200 bp in eukaryotes but not in prokaryotes
(Section 1.11.2). This suggests that these flexibility patterns could be involved in
positioning nucleosomes, owing to their size which is of the size order of a
nucleosome core particle (146 bp). This made it interesting to examine where such
flexibility patterns are located with respect to gene features in eukaryotic genomes.
The availability of mouse genomic sequences, particularly syntenic regions shared
with human, was a benefit to this investigation as it could also be investigated whether
such potential translational positioning signals were a general mechanism conserved
in evolution. The approach taken was to use the wavelet tool (Section 2.4.1) to

analyse the occurrences and distribution of flexibility patterns in genomic sequences.
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4.2 Methods

421 Construction of flexibility sequences

Flexibility sequences (Section 2.3.1) were used to represent DNA as sequences of

conformational flexibility values.

4.2.2 Wavelet transform of whole chromosomal flexibility

sequences

Wavelet transforms were performed on whole chromosomal flexibility sequences
using the software Autosignal (Clecom, 1999). The Morlet family of wavelets was
used. This wavelet family is considered ‘crude’ in the respect that once transformed,
the original data cannot be reliably reconstructed. However, signal reconstruction was
not required in this analysis. =~ The Morlet was an appropriate family to use for
transforming flexibility sequences as it is suited for decomposing continuous data
series such as flexibility sequences. The particular implementation of the Morlet
family that was used was also a fast one, which calculates the Fourier transform of
both the Morlet waveform and the raw signal (flexibility sequences) to achieve fast
convolution.
The main datasets that were transformed and analysed were'®:

e Mycobacterium tuberculosis (Genbank ID: AE000516),

e Saccharomyces cerevisiae (Genbank ID: NC 001147),

e Human chromosome 20,

e Human chromosome 22,

e Mouse chromosome 19,

'8 Human and mouse data were extracted from the Ensembl database (Clamp e al., 2003; Hubbard et
al.,2002)
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e A 30MB syntenic region between human chromosome 20 (29.4MB to
62.9MB) and mouse chromosome 2 (172.1MB to 202.3MB).

e BRCA2 syntenic region between human and mouse (a 1.2 MB sequence
alignment)

The period range which was analysed was 50-1000 bp; this range was selected
such that periodic patterns of the length order of the nucleosome core particle (~146
bp) could be detected. Due to memory limitations as well as the software design
constraints, the maximum sequence length that could be transformed at a time was
132,000 bp. Therefore, to handle chromosome-size data which covered several MB, a
windowing scheme was used. Apart from the maximum data size, another limitation
was the occurrence of edge effects associated with this wavelet family. These would
result in a large amount of false classification towards the window edges. Therefore,
an overlapping windowing scheme was adopted to minimize these effects (Figure
4.1). The start of each window was offset by a small amount (20,000 bp) relative to
the size of the full analysis window (132,000 bp). So, for instance in Figure 4.1,
strong patterns between co-ordinates 40,000 bp and 132,000 bp would only be

considered if they appeared in all 3 analysis windows A, B and C.

Figure 4.1: Overlapping windowing scheme for removing edge effects in ‘wavelet
transform’ analysis windows.
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4.2.3 Thresholding by wavelet co-efficient strengths

The wavelet co-efficients, which represent the strength of a specific period along a
flexibility sequence, are complex numbers. For purposes of visualisation and
thresholding, these values were converted to decibels (dB) in Autosignal. This is
measured as:
10.0 x logo(r*+i%)

where 7 and i are the real and imaginary components of the wavelet co-efficients
respectively. The strongest co-efficients, thus obtained in chromosomal flexibility
sequences, were around 30.0 dB and the weakest were around -248.0 dB (0.0 dB is
considered to be the lower limit for comparing 2 signals). 2D contour maps of the
strengths of different wavelet co-efficients were plotted as in Figure 4.2 (page 4-122).
For visualising the locations of strong patterns on sequences longer than the size of
the wavelet analysis window, only regions stronger than 28.0 dB were plotted (for

example, Figure 4.3, page 4-124).

4.2.4 Probability distribution of periodic flexibility patterns

The probability of observing a flexibility pattern, corresponding to a specific repeat
period in the genome, was calculated as the total length occupied in a chromosome by
such patterns divided by the total length of the chromosome. This was done
separately for both introns and intergenic regions (for example, Figure 4.4, page 4-

126).
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4.2.5 Estimation of genomic features frequently associated with

periodic flexibility patterns

The ratio of observed to expected frequencies was used to indicate which genomic
features were frequently associated with flexibility patterns. The same procedure was

used earlier (Section 3.2.9).

4.2.6 Alignment of flexibility sequences

Sequences were aligned by their flexibility values in regions where strong wavelet co-
efficient strengths (>28 dB) were obtained. A flexibility-sequence dataset was
constructed by trimming 300 bp fragments around such regions. Following this, one
sequence from this dataset was chosen randomly as a reference sequence. All other
sequences were rotated until the offset of these sequences, having the strongest
correlation co-efficient with the reference sequence, was found. The strongest offset

flexibility sequences were then clustered and plotted as in Figure 4.6, page 4-129.
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4.3 Results and Discussion

4.3.1 Differences in wavelet spectra between eukaryotic and

prokaryotic flexibility sequences

The lack of nucleosome formation in prokaryotic genomes and their ubiquitous
distribution in eukaryotic ones provides a reasonable basis for comparing their
flexibility landscapes. To investigate this, 100 kbp-long flexibility sequences from
human, Saccharomyces cerevisiae, and Mycobacterium tuberculosis were randomly
selected and broken down using wavelet transformation (Figure 4.2). It was observed
that in human, there was a dense distribution of periodic flexibility patterns, which
was periodic between 50-1000 bp (Figure 4.2(a)). However, such patterns were not
seen in Saccharomyces cerevisiae (Figure 4.2(b)) or in Mycobacterium tuberculosis
(Figure 4.2(c)). Whereas the wavelet co-efficients in the human flexibility sequences
were as high as 32 dB, the highest observed in M. tuberculosis or Saccharomyces
cerevisiae was 24 dB. In the latter 2 genomes, there was still some weak periodicity,
which was distributed sparsely. This distribution was not as dense as the stronger
patterns seen in human. Upon completely randomizing the DNA sequence of the
human clone and performing the wavelet transform on the corresponding flexibility
sequence, the strong peaks were diminished yielding co-efficients which were now as
high as 22 dB (data not shown). The lack of periodic flexibility patterns in
Saccharomyces cerevisiae suggested that if such patterns did influence nucleosome

positioning, then they would probably do so only in higher eukaryotic species.
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Figure 4.2: Continuous wavelet transform spectra compared between eukaryotic DNA
flexibility sequences and a sample prokaryotic DNA flexibility sequence. The figures
were obtained by performing the wavelet transform on randomly chosen 100,000 bp
segments of the following sequences: (a) a clone from human chromosome 22
(Ensembl ID: AC004019.20.1.260409), (b) Saccharomyces cerevisiae chromosome XV
(Genbank ID: NC_001147) and (c) the Mycobacterium tuberculosis genome (Genbank
ID: AE000516). The units on the z-axis were measured in decibels (dB); the colour
gradients shown are based on a contour map of 48 colours ascending from red to blue.
Red represents 0 or <0 dB intensity and dark blue represents the strongest observed
intensities around 31 dB.
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Such an examination of the flexibility landscapes of eukaryotic and
prokaryotic DNA had been done before (Audit er al., 2001; Audit et al., 2002)
utilising a different flexibility model (Goodsell & Dickerson, 1994). Using the
wavelet technique to estimate a parameter called the Hurst exponent, Audit et a/
estimated that the occurrence of long range correlations of the order 10 — 200 bp was
strong in several eukaryotic genomes including Saccharomyces cerevisiae,
Caenorhabditis elegans and human as well as in some of the viral genomes which
infect them. The results obtained for Saccharomyces cerevisiae above, however,
contradict this observation. They had also noted the lack of strongly periodic features

in this range in bacterial genomes such as Aquifex aeolicus and Bacillus subtilis.
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4.3.2 Whole chromosomal flexibility landscape in higher

eukaryotic chromosomes

Figure 4.3: Continuous wavelet transforms of 3 large eukaryotic DNA contigs. These
2D plots were obtained by thresholding the wavelet co-efficients at 28 dB and plotting
only those regions which were above this threshold. These results were obtained from
transforming (a) 63 MB of human chromosome 20, (b) the q arm of chromosome 22 (32
MB) and (c) a 30 MB syntenic region between human chromosome 20 (sequence co-
ordinates 29.4 MB to 62.9 MB) and mouse chromosome 2 (sequence co-ordinates 172.1
MB to 202.3 MB).
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Figure 4.3(a),(b) shows the flexibility wavelet spectrum in relation to gene
density in 2 human chromosomes. Distinct clumps of periodic flexibility patterns, in
the range of 80—120 bp, were observed. In addition to these, there was a slightly less
dense distribution of patterns observed in the range of 120-200 bp. The locations of
these two “periodic classes” appeared to roughly coincide. Periodic patterns, above

the 200 bp scale, occurred relatively sparsely.
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The dense clumps of 80-120 bp patterns also appeared to roughly coincide
with gene density (Figure 4.3(a),(b)). This closeness was apparent along the
following co-ordinates:

¢ Human chromosome 20 (Figure 4.3(a)): 1-7 MB; 30-38 MB; 40-50 MB

e Human chromosome 22 (Figure 4.3(b)): 17-20 MB; 25-30 MB; 35-40 MB

Figure 4.4: Probability distribution of observing periodic flexibility patterns in the range
50-1000 bp in 3 different eukaryotic chromosomes. The results were obtained from (a)
human chromosome 20, (b) human chromosome 22 and (c) mouse chromosome 19.
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To gain further insight into the distribution of these flexibility patterns, the
probabilities of observing each of the sampled periods were compared for the 2
human chromosomes (Figure 4.4(a),(b)). In both graphs, there were 3 distinct peaks

visible, which corresponded to the 3 aforementioned “classes” of periodic patterns.

4.3.3 Genomic features frequently associated with strongly
periodic flexibility patterns

The occurrence of strongly periodic flexibility regions could have simply been the

result of recoding previously known eukaryotic DNA sequence elements. Especially

given the fact that the periodic features aligned closely with gene-dense regions, this

observation required a closer inspection.
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Figure 4.5: Features frequently associated with periodic flexibility patterns in (a)
human chromosome 20, (b) human chromosome 22, and (c) mouse chromosome 19.
Values greater than 1.0 indicate that a feature was more frequently associated with
flexibility patterns than expected. The reverse is true for values less than 1.0.
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Figure 4.5(a,b) show features, which were frequently associated with the
flexibility patterns of the 80—120 bp class in human. Clearly only the Alu repeat
category was enriched: this repeat category was 4 times more frequently associated
with these periodic flexibility patterns than expected. Aligning these sequences based
on their flexibility (Figure 4.6) showed the linear arrangement of the periodic
flexibility patterns that were detected. However, RepeatMasker analysis (Smit &
Green, 1997) showed that the sequences themselves were mostly Alu repeats. So the
observed patterns were in fact recoded Alu repeats (discussed in the next section;
Section 4.3.4). Other notable observations from this analysis were that exons were
not associated with these flexibility regions. This observation was consistent with
other work, which suggests that long range correlations in eukaryotic DNA sequences
exist only in non-coding DNA and not in coding sequences (Arneodo et al., 1995;

Arneodo et al., 1998; Buldyrev et al., 1998; Havlin et al., 1999; Pattini L, 2001).

Figure 4.6: Flexibility alignment of 300 bp sequences of A) regions exhibiting 100-200
bp periodicity in flexibility (wavelet co-efficients >28 dB) and B) randomly selected
human DNA sequences. Red and green colours represent strong rigidity and strong
flexibility respectively. RepeatMasker analysis showed that the sequences in A) were
mostly Alu repeats.
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4.3.4 Why Alu repeats were frequently associated with periodic

flexibility patterns

The results, discussed above (Section 4.3.3), showed that the flexibility patterns that
were observed contained a large proportion of Alu repeats. The structure of Alu
repeats themselves (Batzer et al., 1996), as well as their recently outlined insertion
patterns (HGSC, 2001), could explain why they had been detected using the wavelet
transform.
e Alu structure

Firstly, Alu repeats are dimers of two roughly 100 bp-long 7SL-RNA derived
fragments (Batzer et al., 1996); however, the left and right monomers do not share
any sequence similarity. Alu sequences also contain a poly [A] linker region
separating the 2 RNA fragments and a poly [A] tail at the 3* end. The tetranucleotide
parameter set that was used for converting DNA sequences into flexibility (Section
2.3.1) and indeed most of the other DNA flexibility parameter sets (Bolshoy et al.,
1991; Brukner et al., 1995; Goodsell & Dickerson, 1994; Olson et al., 1998; Packer et
al., 2000a; Packer et al., 2000b) all model poly [A] motifs as being rigid in
conformation (Section 1.4.1). Therefore, in the flexibility sequences, which were
supplied as input to the wavelet algorithm, the 100 bp—spaced poly [A] motifs were
becoming recoded as 100 bp-spaced rigid motifs. However, the wavelet transform
only yields strong co-efficients when there are locally periodic patterns. A more
detailed view of such locally periodic regions (>28dB co-efficient strength) showed
that Alu repeats, which were in a very close arrangement, accounted for the regions of
high flexibility (Figure 4.7). This would explain the periodic patterns that were
observed. The fact that Alu repeats could represent the major class of poly [A]

sequences in human was indicated in much earlier work (Lustig & Petes, 1984).
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Figure 4.7: Zoomed view of periodic flexibility patterns (80—-120 bp) having wavelet co-
efficient strengths >28 dB. 3 different resolutions are shown; in each case, the locally
detected periodic flexibility is shown as a red bar. Positive and negative strand Alu
repeats are shown as blue bars.
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e Alu retention biases

Alu repeats have been reported to be preferentially retained in GC rich regions

(HGSC, 2001). Although it is thought that Alu insertion is more or less random, it

appears that they tend to remain fixed in GC rich regions (Smit, 1999). It had also

been reported that most of the preferred GC rich regions were mostly occupied by the

older'”” AluS. Younger Alu repeats were reported to be found in similar proportions in

AT rich regions as GC rich regions possibly due to saturation of the GC sites by the

older Alus (HGSC, 2001). Since genes also display a bias towards GC rich regions in

the genome, it was apparent why the locations of strong periodic flexibility patterns

and gene dense regions appeared correlated (Section 4.3.3). These results could also

19 AluY are estimated to be 20 million years old; the middle aged Alus (aluS) 35 million years old; the
oldest Alus (aluJ) 50 million years old (Batzer & Deininger, 2002)
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explain Arneodo’s observation that long range correlations in human DNA were
related to GC content (Arneodo et al., 1998).
o Percentages of repeat families picked up by the wavelet transform

To estimate whether the patterns picked up by the wavelet transformation were
representative of the whole population of Alu sequences, the percentages of different
repeat families associated with periodic flexibility were compared (Table 4.1(a)). As
seen in Table 4.1(a), only 2.06 - 2.67% of any of the Alu age categories were detected
as strongly periodic flexibility patterns. However, roughly 82.07% of the regions
classified as highly periodic were associated with Alu sequences of all ages.
Therefore, although the wavelet transform itself was strongly biased towards picking
up Alu sequences, the total Alu population which they had picked up represented only
a small fraction of the total Alu population (presumably only the ones whose positions
were very close to each other). L1 repeats were also represented as highly periodic
flexibility regions (25% in Table 4.1(a)); this could once again be due to the wavelet
transform picking up clustered Alu repeats, which are thought to rely on the

endonuclease activity of L1 repeats for their own replication.
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Table 4.1: Percentages of repeat families which were associated with strongly periodic
flexibility regions (wavelet co-efficients >28 dB) in descending order. These are
compared to the proportion of total observed periodic flexibility (second column). The
second columns do not sum to 100% as the proportion is measured across the
distribution of a range of periodic patterns (for instance, the same region may be
strong for both 80 bp periodic as well as 200 bp periodic patterns).

(a) Human chromosome 20

proportion
of total

% periodic

repeat flexibility
aluY 2.67 18.35
aluJ 2.17 31.01
alu 2.16 82.07
aluS 2.06 62.66
LTR 1.36 3.59
MIR 1.99 5.49
L1 1.13 25.95
MST 1.02 1.05
7SL RNA 1.02 0.42
MER 0.85 9.49
MLT 0.51 3.59

(b) Mouse chromosome 19
proportion
of total
% periodic
repeat | flexibility
Simple sequence

repeats 1.98 63.01
MER 1.40 1.83
RMER 1.38 2.74
B-type 1.38 44.00
PB1 1.21 9.36
Lx 0.92 10.50
L1 0.89 11.87
ID-based 0.81 5.94

4.3.5 Conservation of periodic flexibility patterns in eukaryotic
genomes

An important feature of a nucleosome positioning pattern may be that it is highly or at

least moderately conserved between 2 species. To investigate this, a similar

investigation, using wavelet transformation of flexibility sequences, was performed on

mouse genomic contigs as was done for the human contig data. The data for the
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mouse genome was available only during the latter stages of this analysis; the data
was, therefore, in its infancy and not as refined as the analysed human contigs. The
only high quality alignment between human and mouse available at the time was the
BRCAZ2 syntenic region (a 1.2 MB sequence alignment). Similar flexibility patterns
were not observed between human and mouse in the BRCA2 syntenic region though
(data not shown).

Figure 4.3(c) (page 4-124) shows the results of applying the wavelet transform
on flexibility sequences in a syntenic region in human and mouse. The densities of
periodic patterns that were observed in mouse were much lower compared to those in
human. The locations of such patterns also did not show any kind of similarity with
any corresponding locations in human. Furthermore, the probabilities of observing
the different periodic patterns were not similar to what was seen in human (Figure
4.4(c), page 4-126). The peak periodicities in human could be grouped into 3 distinct
classes but in mouse, there was only a single broad peak with a maximum of around
600 bp. These results indicated that the periodic flexibility patterns, which were seen
in human (and which largely resulted from the clustering of Alu repeats), were not

conserved in mouse.

Figure 4.8: Correlation of B repeat density and gene density in a region of mouse
chromosome 2.
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Genomic features, frequently associated with these periodic flexibility
patterns, were found to be mainly simple repeats and B1 repeats in mouse (Figure
4.5(c); Table 4.1(b)). Whereas in mouse, simple repeats accounted for roughly 63%
of the total periodic patterns represented (Table 4.1(b)), in human, simple repeats
were only marginally picked up by the wavelet transform: these peaked at 50 bp
periodicity and there were 2 such regions near the telomeric regions of both human
chromosome 20 and 22 (data not shown). BI repeats are the lineage specific SINE
family in mouse, which are monomers of roughly 100 bp and similar in sequence to
the left monomer of Alu repeats (Quentin, 1994). They also show a bias towards
being retained in GC rich regions (alongside gene dense regions) (Figure 4.8), a
pattern which was pointed out in the recent analysis of the mouse genome (IMGSC,
2002). Therefore, B1 repeats, although they show the same biased retention patterns
as their human counterpart, do not represent the same contribution of periodic rigidity
in mouse. This result is expected from the inherent structure of B1 repeats, which are
monomers and do not share the poly [A] linker and poly [A] tail motifs of their human
counterparts. Similar to the lack of periodic flexibility observed in human exons,

mouse exons also lacked periodic flexibility behaviour (Figure 4.5(c), page 4-128).

4.3.6 Re-examination of the hypothesis of hucleosome

translational positioning with respect to Alu repeats

The current research has raised a fundamental question: “Is it likely that Alu
sequences direct the translational positioning of nucleosomes?”.  Although a
conclusive answer cannot be provided owing to the limits of the methodology
outlined in this chapter, the evidence obtained using independent methods which link
Alu repeats with nucleosome positioning can be considered. Secondly, there is also

significant evidence in the literature that suggests that Alu sequences have acquired
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important functional roles in the human genome. Although these functional roles may
not be directly related to nucleosome positioning themselves, the critical nature of the
functions themselves may influence opinion on whether Alu sequences have
developed a close enough symbiotic relationship in the host genome that could
include effects such as nucleosome positioning.

e Other evidence linking Alu sequences and nucleosome positioning

The only recent computational work, which had connected Alu repeats and
nucleosome positioning, was using the measurement of dinucleotide relative
abundance distance discussed earlier (Section 1.9.4). This concluded that Alu repeats
had the highest nucleosome formation potential but the nucleosome model used was
itself questionable.

Fox et al (Fox, 1992) reported that large-scale isolation of genomic poly [A]
clones (containing a large amount of Alu sequences) and reconstitution onto
nucleosome core particles did not show significant aversion to nucleosome binding
compared to random DNA fragments. This result was contradicted later by Englander
(Englander et al., 1993), who showed that Alu sequences showed rotational and
translational nucleosome positioning capacity using an in vitro nucleosome
reconstitution experiment. They showed that transcription in the in vitro DNA
construct was blocked by nucleosomes; these nucleosomes were thought to be
translationally positioned over the Alu elements. DNase I digestion indicated that the
poly [A] linker region and poly [A] tails of the Alu sequences were probably directing
this positioning. Englander et al later estimated that the left monomer of Alu repeats
probably also had rotational positioning capacity (using DNase I digestion and

software analysis) (Englander & Howard, 1995).

4-136



Englander ef al’s results, particularly in (Englander & Howard, 1995), have
interesting implications for the observations made in this chapter. Firstly, they
estimated a rotational component in only the left monomer of the Alu sequences; this
sequence is a homolog of B1 repeats in mouse (Quentin, 1994). This could suggest
that clustering of Alu repeats and B1 repeats in GC rich regions ensures a significant
quantity of rotational positioning signals in the upstream regions of genes in human
and mouse respectively. This feature would not have been picked up in the current
wavelet approach since the software they had used, for measuring curvature, was
based on scanning for curved DNA; the wavelet tool used here was used to detect
periodic flexibility of the scale order of 50-1000 bp. However, according to the
signal which was picked up by the wavelet transform, namely the poly [A] motifs of
the Alu repeats, it was highly unlikely that translational positioning was a conserved
mechanism between human and mouse. The conclusion from linking the wavelet
results from to Englander et al’s work is, therefore, an interesting one: rotational
nucleosome positioning could be conserved between mouse and human but
translational positioning is unlikely.

e Alu repeats have taken on important functional roles in the cell

One theory suggests that “Alu elements integrate randomly but those that are
actively transcribed (and are therefore more likely to reside in G+C rich regions of the
genome) are more likely to become fixed in the population “ (Smit, 1999). This
suggests that Alu repeats may play some functional roles due to their retention near
gene dense regions (G+C regions). And indeed a number of recent experiments have
shown that Alu sequences have adopted roles in important cellular functions.

Firstly, 1/3™ of CpG islands have been estimated to be contained within Alu

repeats (Rubin et al., 1994; Schmid, 1991). This could suggest that Alu repeats have
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an effect on the expression pattern of downstream genes due to mutations that alter
the CpG methylation patterns. Alus are also known to directly insert into coding
sequences and 0.1% of all genetic disorders are known to be caused by such
unfavourable insertions (Deininger & Batzer, 1999).

In many organisms, SINE expression levels also increase under conditions of
stress (Chu et al., 1998; Li et al., 1999; Liu et al., 1995). Under such conditions,
SINE RNA transcript has been reported to bind a specific protein inhibitor, and
thereby block its activity. Therefore, under conditions of stress, Alu repeats may be
specifically induced to upregulate the expression of many genes. This increase in Alu
expression has also been linked with a rise in DNase I hypersensitivity in chromatin
indicating possible Alu-mediated reshuffling of chromatin arrangement (Kim et al.,
2001).

Some recent work has provided the first indications of common functional
roles between Alu and Bl repeats in human and mouse respectively (Zhou et al.,
2000; Zhou et al., 2002). Zhou et al showed that the strongly evolutionarily
conserved Pax6 transcription factor, which is critical in the development of the eye,
pancreas and central nervous system, exhibits more than 1 kind of preferred binding
site in both human and mouse. However, the transcription factor binding sites
included several Alu repeats in human and B1 repeats in mouse. An interesting twist
was that the binding sites in the 2 lineage-specific SINE families did not share any
sequence similarity! This suggests that the evolution of PAX6 function may have

been aided or merely influenced by simultaneous SINE evolution.
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4.4 Conclusion

The wavelet transformation of flexibility sequences showed that the clustering of Alu
repeats resulted in locally periodic rigidity patterns. On account of such clustering,
two classes of periodicity could be seen: 80-120 bp and 120-200 bp respectively.
These were observed near gene dense regions, which was expected from the biased
retention property of Alu repeats in GC rich regions. Similar flexibility patterns were
not seen in analysis of mouse contigs. SINE repeats may have simultaneously
evolved to serve some common functions in their respective host genomes. But
according to the results presented in this chapter, it is unlikely that nucleosome

translational positioning is one such conserved function.
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5 Modelling DNA Sequence Motifs from Known

Nucleosome Datasets
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5.1 Introduction

Rotational positioning signals have been described for both of the nucleosome
datasets available so far but it has not yet been clarified what proportion of the
sequences in either dataset exhibit this property (Section 1.11.3). This formed the
need to analyse these sequence datasets using a classification-based approach. The
approach would be to partition the dataset into 2 parts: a training set and a test set.
The aim would be to learn models from the training set and analyse them on the test
set to understand if the models truly represented the respective nucleosome datasets.
A powerful classification software for numerical datasets, Eponine (Down &
Hubbard, 2002), was available to carry out this procedure.

A similarly motivated approach was described earlier where a dinucleotide-
based system was used to classify mouse nucleosome sequences from mouse non-
nucleosome sequences (Section 1.9.4). However, as mentioned earlier, the positive
dataset, used in that study, contained mainly centromeric repeats and were, therefore,
unlikely to represent the vast majority of nucleosome-forming DNA in genomic
sequences (centromeric nucleosomes exhibit specialised structures in eukaryotes

(Smith, 2002)).

5.1.1 The Eponine Tool

Eponine was developed by Thomas Down and its initial and major application has
been in modelling transcription start sites (Down & Hubbard, 2002); this yielded a
model with an estimated prediction specificity of >70%. The software uses a
Bayesian machine learning method to learn complex models comprised of one or
more DNA weight matrices. DNA weight matrices are “weighted” short, un-gapped

sequence motifs, which contain a series of column distributions over the DNA
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alphabet. An Eponine model is a linear combination of the weights of these matrices.
These weights have to be trained iteratively to optimise their values.

Eponine uses an implementation of the relevance vector machine (RVM)
technique for training the weight parameters. It takes as argument (a) a positive
dataset containing the feature of interest and (b) a negative dataset which lacks the
feature of interest. The RVM algorithm works by initializing a model with a set of
suggested weight matrices and iteratively selecting only those subsets which are most
“relevant” in classifying the positive training dataset from the negative training
dataset.

Eponine has the option of learning 2 kinds of models: “anchored” or
“unanchored”. In an anchored model, each DNA weight matrix is further
compounded with a probability distribution over distance; this distribution describes
the distance relative to a reference or “anchor point” in the model (for example,
Figure 5.3). Conversely, “unanchored” models do not have distance constraints.

This software tool was an appealing option to learn models representing
important sequence motifs in the 2 available nucleosome datasets (Section 1.8).
Particularly, anchored models, with their anchor points set to the approximate mid-
points of the sequences, could be useful to learn rotational positioning motifs, which
are expected to be symmetrical about the midpoints of the sequences (Section 1.9.2).

However, it could also be expected that weight matrices, additional to the
previously described rotational positioning motifs, could be learnt. For example,
multiple expansions of the [CTG] motif was shown to bind nucleosomes 9 times more
strongly than an intrinsically curved DNA (Wang & Griffith, 1995); this same motif
did not show preferential rotational positioning in the analysis of the chicken

sequences (Satchwell er al., 1986). Therefore, it was not essential for the learnt

5-142



weight matrices to represent the rotational positioning motif which has been described
before; the important thing was that the learnt weight matrices should represent
properties of the dataset which could help to classify its sequence members from other
DNA sequences. Also, it was reported recently that the signals which affected
translational positioning were not the same as the signals which affected rotational
positioning in an artificial DNA sequence (Negri et al., 2001). Therefore, there was
potential for learning both rotational and translational positioning motifs using

Eponine.
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5.2 Methods

5.2.1 Selection of positive and negative datasets

Positive datasets were quite easily defined for the nucleosome classification problem.
These were of course the chicken nucleosome dataset and Levitsky et al’s nucleosome
dataset (Section 1.8).

In Levitsky et al’s data, however, 16 of the mouse sequences differed from
each other by only a few bases; these close variants were removed (Section 1.8.2).
Furthermore, sequences less than 144 bp in length in this dataset were not considered;
this was because a model roughly the size of core DNA was desired. This resulted in
a final dataset size of 160 sequences.

Finding an appropriate negative training set was a much more difficult
problem. This was because an appropriate collection of nucleosome-repelling
sequences was not available. Therefore, initial studies were performed using
randomized versions of the 2 datasets as negative data.

However, for the positive chicken nucleosome data, a better negative set was
to use background chicken genomic DNA. Two chicken genomic clones were
available for this purpose (Section 1.8.1). Genomic sequences for the negative
datasets were obtained by randomly selecting 146 bp length fragments from these 2
clones. An assurance of randomly selecting genomic fragments as negative data was
that rotational positioning signals were unlikely to be present symmetrically about the
centre of the sequences as they have been described previously for the positive

nucleosome data (Section 1.4.2).
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Table 5.1: Summary of classification categories used.

POSITIVE DATA NEGATIVE DATA

177 sequences of Levitsky et al’s data Levitsky et al's data randomized

177 chicken nucleosome sequences Chicken nucleosome sequences randomized
177 chicken nucleosome sequences Chicken background genomic sequences

Therefore, 3 kinds of classification categories were finally used (Table 5.1).
Both kinds of training, anchored and unanchored, were performed on each of these
classification categories. For anchored training, the models were anchored at
sequence co-ordinate 73, which was close to the midpoint of most sequences.
Sequences, which were much longer than 146 bp (Section 1.8.2), had ambiguous
midpoints and were treated differently (discussed subsequently; Section 5.2.3).

Roughly 20-25 training attempts were made on each classification category to
assess whether consistent models could be learnt. Each training run involved
randomly partitioning 25 sequences from both the positive and negative datasets to
form respective “jack-knifed” test sets. 15,000 cycles of training were performed per
training run. Models were dumped every 500 cycles and their predictive power

assessed on the test sets (discussed below).

5.2.2 Estimation of a model’s predictive power

The accuracy and coverage of the dumped models were calculated to assess how well
they could correctly classify the positive test samples from the negative test samples.
Accuracy was calculated as the total number of correct predictions over the total
number of predictions made. Coverage was calculated as the total number of correct
predictions over the total number of true data samples (25 such samples in this case).
The output was analysed using ROC (receiver operating characteristic) curves, for
example in Figure 5.1; the points on the ROC curve were obtained using different

scoring thresholds in Eponine. Only models that scored with >80% accuracy and
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>50% coverage in the test set were considered useful representatives of a nucleosome

dataset and were analysed further.

5.2.3 A modified approach to find rotational positioning motifs

In the initial training attempts using anchored training, an anchor point approximating
the midpoints of the sequences was used. This anchor point, 73, was reasonable for
the chicken data as the sequence lengths did not vary that greatly: 142 to 149 bp with
an average length of 145 (£1.5) bp. However, many of the sequences in Levitsky et
al’s dataset were around 200 bp and had ambiguous midpoints. Therefore, to enhance
the chances of learning rotational positioning signals, which are thought to occur
symmetrically about the mid-point of core DNA (Section 1.4.2), the following
modified training approach was also tried: After each round of training, each of the
training sequences was shifted a few times within a range of a few bps. This led to a
set of ‘offset’ sequences for each training sequence. For each round of training, each
of the offset versions of a training sequence was scored with Eponine and the highest
scoring offset sequence stored for the next round of training. Offset values of 6-20 bp

were tried.

5.2.4 Model prediction using Eponine

Models, which were trained from chicken nucleosome sequences, were used to predict
nucleosome sites in a 92,863 bp chicken locus (Genbank accession ID: AL023516).
The Eponine scoring threshold, which yielded the best accuracy and best coverage (a
point approximating to the middle of the ROC curve) for a respective model, was
used. The scoring threshold, which gave the least number of false predictions was
also used. For a cross-species comparison, the BLASTN alignment tool (Altschul et

al., 1990) was used to find the homolog of this locus in the mouse genome.
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Predictions were made on this homologous segment separately and compared to the

predictions in the chicken locus.

5.2.5 Principal components analysis of trinucleotide

background distributions

The background trinucleotide distributions of different eukaryotic genomes and the 2
mapped nucleosome datasets were also investigated. The aim was to see if either of
the nucleosome background distributions could be classed along with the background
distributions of other eukaryotic genomes. To investigate this, principal components
analysis was performed on the relative frequencies of the 64 trinucleotides in the
different genomic samples. As a negative control, the positions of the background
distributions of E. coli and a human codon table were also plotted along the principal

component axes.
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5.3 Results and Discussion

5.3.1 Unanchored training results

Out of 25 unachored training attempts on each of the 3 classification categories (Table
5.1), only 2 models with accuracy and coverage greater than the desired thresholds
(80% and 50% respectively) were learnt. Both of these models were learnt from
different training runs on Levitsky et al’s data (Table 5.2). As seen in Figure 5.1, the
midpoint of the ROC curve for both models was at 85% and 60% respectively using

the jack-knife test.

Table 5.2: Unanchored models learnt using Levitsky et al's nucleosome dataset as a
positive set and a randomized version of the same dataset as a negative set. Both
models, (a) and (b) were obtained from independent runs. Negative motifs have been
shaded grey and CpG motifs, which are rare in eukaryotic genomes, have been
highlighted in yellow.

MOTIFS Weight

ttatagt gaacaat | tacgcgg -5.70
ttacccgtg | tacgeg -4.64
tttacgatcg | agtgtgtct | ctgacta | -2.92
aggatcc | tgctcge -0.48
ctcaa atcaa 1.80
ctggaaac | tggaa gtgatt 2.66
atgcagc | gcatcat | aaggtc 5.00

(a) Model levitskyRand_a

MOTIFS | WEIGHT

ctagg agagtc -7.83
ttatgcg ccgtgg | ggtagggt -5.49
atgtaagg | aacga acagt -4.93
acggg acggg -1.32
acaaag | agcaaag 2.33
ttcctaaatt | gcatct 3.06
ttgaggag | gttggg 3.76

(b) Model levitskyRand_b
It was not apparent why good predictive models could not be learnt using the

unanchored approach on the chicken data. Only 2 out of 25 runs learnt models with
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good predictive power from the Levitsky data. However, the 2 models did not show

any obvious similarity in the weight matrices they had learnt (Table 5.2).

Figure 5.1: ROC curves of unanchored models learnt from Levitsky et al's data (Table
5.2). The test set contains 25 sequences from the original dataset (positive set) and 25
sequences obtained from randomizing the original dataset (negative set).
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However, it was observed that the models had learnt multiple CpG motifs in
the negatively-weighted matrices; these are highlighted yellow in Table 5.2. An
important fact known about long runs of CpG motifs is that they occur very rarely in
eukaryotic genomes (Cooper & Gerber-Huber, 1985; Sved & Bird, 1990). Therefore,
the fact that randomized sequences were being used as negative training data
explained why CpG appeared as negative weight matrices in the learnt models. The
predictive power of the models was biased by the negatively-weighted CpG-
containing matrices since CpG appears rarely in the positive nucleosome test set but
has a random probability of occurrence in the negative test set. The conclusion from
these results was, therefore, that using randomized sequences as negative data either
for testing or training was unsuitable. It would only learn motifs which represented
the background sequence composition of the positive dataset rather than any
significant weight-matrices. The problem was that a more appropriate negative

dataset for the Levitsky data was not available. This ruled out analysis of the
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Levitsky nucleosome dataset any further. For the chicken nucleosome data, using a

negative dataset of background chicken genomic sequences was more suitable.

5.3.2 Anchored training results using randomized chicken

nucleosome sequences as negative data

Although the use of randomized sequences was considered inappropriate, they had
already been used as negative data for anchored training from the chicken nucleosome
dataset. This yielded some interesting observations about the background distribution
of the chicken nucleosome sequences, which could be linked to the cyclical HMM

results (Chapter 3).

Figure 5.2: ROC curves of anchored models learnt from the chicken nucleosome
dataset (Figure 5.3(h),(j)): (a) tested against a jack-knifed negative set of randomized
chicken nucleosome DNA and (b) tested against a negative set of background chicken
genomic DNA.

100 -

90

80 q

70 q

60

a0 q

= chickRand_a14500
+ chickRand_h2500

Accuracy (%’

40

30 4

20 4

0 o 20 30 40 50 60 70O 80 80 100
Coverage (%)

(a)

5-150



100

a0 4

80 4

704

60 4

- chickRand_a14500
+ chickRand_h2500

50 4

Accuracy (%)

40 1

304

20 4

10

0

1] 10 20 30 40 50 60 TO 80 90 100
Coverage (%)

(b)

The results of this were 10 models having good predictive power in the jack-
knife test (Figure 5.2(a)). The midpoints of the ROC curves were around 88%
accuracy and 88% coverage respectively. However, the models were not accurate in
correctly classifying the chicken nucleosome DNA from background chicken genomic
DNA (Figure 5.2(b)); in this test, the accuracy of these models were <80%, which
was less than the threshold being used for selecting good predictive models.

Most of the models learnt positively-weighted [CTG] motifs (Figure 5.3), the
pattern which had been seen most often using the cyclical HMM learning in human
genomic sequences; this outcome is discussed in the next section, 5.3.3. The models
were also enriched in negatively-weighted CpG motifs which, as mentioned in the
previous section, are a consequence of using randomized sequences as negative data
(Figure 5.3). 8 of these models were dumped from different cycles of 1 training
attempt (Figure 5.3(a)-(h)) whereas 2 were from cycles of another training attempt
(Figure 5.3(1)-(j)). A total of 25 training attempts were made. The positively-

weighted motifs learnt in the 2 successful training attempts did not appear similar.
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Figure 5.3:

Anchored models learnt using the chicken nucleosome dataset as a
positive set and a randomized version of the same dataset as a negative set. Models
(a)-(h) were learnt in different cycles from training run a and models (i)-(j) were learnt in
different cycles from training run b. The inverted blue triangle represents the “anchor

point”.
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5.3.3 Could the background trinucleotide distribution in

different genomes affect nucleosome positioning?

The motif [CTG], which is also a member of the ambiguity set [CWG], was
learnt using Eponine training from the chicken data and was also learnt using cyclical
HMM training from human sequence data (Chapter 3). In addition, the labelling of
the [CWG]-learnt HMM models was seen to be related to the background density of
[CWG] in human (Sections 3.3.4, 3.3.8). Therefore, it was interesting to assess
whether the background trinucleotide distributions were similar amongst different

eukaryotic organisms and the nucleosome datasets (Figure 5.4).

Figure 5.4: Principal components analysis of the background trinucleotide
distributions of different genomes and the 2 nucleosome datasets.
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The higher eukaryotes, human, mouse, and chicken were seen to have similar
background trinucleotide distributions (Figure 5.4, Figure 5.5(a)); the correlation co-

efficient between the human and mouse distributions was 0.82. A similar distribution
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was apparent in the chicken nucleosome dataset. As seen in Figure 5.5(a), the most
frequent trinucleotides in human were [AAA/TTT] followed by [CWG] (note it was
earlier observed that in mouse, [AAA/TTT] was most frequent but not [CWG];
Section 3.3.4). The human and mouse background distributions do not differ
significantly about their means as a two-sample t-test at the significance level of 0.05
showed that the means were equal.

The location of a human codon bias table was also plotted on the principal
components scale (Figure 5.4); this showed that the plotted trinucleotide background
distributions did not represent a contribution of codon bias. In the same table, the co-
efficients against the E. coli data shows that none of the eukaryotic backgrounds were

similar to the prokaryotic negative control.
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Figure 5.5: Background trinucleotide composition in descending order in (a) the
human genome and (b) the Levitsky nucleosome data.
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The background trinucleotide distribution for the Levitsky data was quite far
from the distribution of the higher organisms along the principal components axes
(Figure 5.4, Figure 5.5(b)); the correlation co-efficient between the human and
Levitsky distributions was 0.02. The means of the distributions did not differ between
the human and Levitsky data as a 2-sample t-test at the significance level of 0.05

showed the means to be the same. On the principal components axes, this distribution
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was much closer to the lower eukaryotes, archaea and yeast, and contained a high
proportion of [TTT] and [ACG] (Figure 5.5(b)). The similarity to archaea and yeast
could be expected as both these organisms were represented in the Levitsky data
(Section 1.8.2).

Taken together, the 2 kinds of background distributions (Figure 5.5) suggest
that if the background trinucleotide distribution is important for nucleosome
positioning, then the pattern is maintained differently between higher eukaryotic
organisms and lower eukaryotic organisms. For certain higher organisms, both
[AAA/TTT] and [CWG] may play a role in nucleosome positioning (the relevance of
either motif in nucleosome positioning was discussed previously in Sections 1.4, 1.5.1
and 1.5.2). On the other hand, in lower organisms such as yeast and archaea, only
[AAA/TTT] may be important for nucleosome positioning as has been suggested from
previous studies of their genomic sequences (Bailey ef al., 2000; Widom, 1996). The
background trinucleotide distributions may also account for the differences in
rotational positioning analysis of the 2 nucleosome datasets. Specifically, in the
chicken data, [GC/GC] was seen to occur in anti-phase with [AA/TT] whereas [TT]

was seen to occur in anti-phase with [AA] in the Levitsky data (Section 1.9.2).

5.3.4 Anchored training results using background chicken

genomic DNA as negative data

Using background chicken genomic sequences as negative data was perhaps the best
available option of finding motifs that separated the chicken nucleosome sequences
from their genomic background. Unfortunately, the alternate training method,
designed to find symmetric rotational-positioning weight matrices about the sequence

midpoints (Section 5.2.3), did not yield good predictive models using the jack-knife
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test (data not shown). The rotational positioning motifs previously described were

perhaps too weak to be picked up by Eponine.

Figure 5.6: (a) An anchored model learnt using the chicken nucleosome dataset as a
positive set and background chicken genomic DNA as a negative set. (b) ROC curve of
the same model using a jack-knife test. ROC curves are shown for this test set as well
as the reverse-complements of the same test set.
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Only one model with good predictive power was learnt from 25 training
attempts using the regular training method (Figure 5.6(a)). The midpoint of this
model’s ROC curve was around 85% accuracy and 75% coverage; also around 40%

coverage, there were no false predictions (“Forward strand test set” in Figure 5.6(b)).
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A separate test was performed to see if this model could classify positive sequences
from the Levitsky data from negative chicken genomic sequences: it failed to do so
(data not shown). As from the observations of the trinucleotide backgrounds, it was
again clear that the chicken nucleosome dataset and the Levitsky data were quite
different.

One notable observation about the model was that it had learnt a poly [A]
weight matrix +58 bp from the anchor point. This poly [A] tail could be the same
signal which was mentioned before in the initial assessment of the chicken
nucleosome sequences (Drew & Travers, 1985; Satchwell ef al., 1986); it had been
suggested that poly [A] tails were present towards the ends of the sequences and could
possibly help to direct nucleosome translational positioning. The test sequences were
later examined by eye to assess if they had poly [A] tails at their right ends, which
could have biased the ROC analysis. Such a bias was not observed in the test
sequences.

Another analysis was performed to see if such a poly [A] motif appeared
symmetrically towards both ends of the sequences. This procedure involved reverse-
complementing the test set and testing it (Figure 5.6(b)). The results showed that at
20% coverage, there were no false positives. This was a much lower accuracy than
the forward strand test set (40%) suggesting that poly [A] tails did not occur
symmetrically in these nucleosome sequences. This observation was interesting as it
suggested that there might be some bias to having poly [A] tails at one end rather than
at both.

However, the positions of each of the weight matrices were themselves not
placed symmetrically or repetitively about the anchor point. Therefore, rotational

positioning motifs were not featured in this model. The other positive weight
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matrices in the model, with the exclusion of one [CAG] motif (-15 bp from the anchor
point), were not consistent with any other kinds of motifs that have been reported
previously to be involved in nucleosome positioning. This approach was therefore
made difficult, mainly due to the limited number of sequences available. However, it
did show that a good model could be learnt.
e Prediction analysis

Although the weight matrices in this model did not represent a rotational
positioning motif, it did have good predictive power in the jack-knife test against a
reasonable negative test set. Therefore, it was used to make some comparative
predictions on a 192 kbp-long chicken genomic locus and its homologous region in
mouse (Figure 5.7;Figure 5.8). The BLASTN search found a 5,000 bp alignment in
mouse chromosome 17 (Figure 5.7); however, upon examining the annotations, it was
apparent that the aligning pairs were all coding DNA. The evolutionary distance
between mouse and chicken, estimated to be 200 Myr*’, was probably too great for
any potential regulatory regions to be found using BLASTN. This was unfortunate as
potential regulatory regions could not be assessed. The predictions, within the coding

DNA, did not appear to be conserved (Figure 5.8).

2 Compare with 80 Myr between mouse and human (Burt ef al., 1999)
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Figure 5.7: Locations of high-scoring BLAST segment pairs between the GGB locus in
chicken and in mouse.
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5.4 Conclusion

Overall, the approach from using Eponine to analyse the nucleosome datasets was met
with the difficulty of finding an appropriate negative dataset. Also, only a minority of
the total training attempts produced models that had good predictive power. This
could be due to the small number of sequences in either dataset. Definitely, a much
larger set of nucleosome-binding and nucleosome-repelling sequences respectively is
required for a machine-learning tool like Eponine to identify important nucleosome
positioning motifs. But it did show that predictive models could be learnt; the best
trained model showed 100% accuracy at 40% coverage.

In this study, using Eponine led to the further analysis of the background
trinucleotide compositions in different genomes. This in turn provided some useful
insights into the way higher and lower eukaryotes differ in their trinucleotide
compositions. The results showed that the most frequent trinucleotides in human and
in lower eukaryotes, [CWG, AAA/TTT] and [TTT] respectively, had been previously

implicated in nucleosome positioning.
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6

Summary
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6.1 A difficult area to research

The work, carried out in this thesis, highlighted one important truth: nucleosome
prediction is not easy to study either computationally or using experimental means
(Section 1.10.1). Experimental protocols are difficult as indicated from the small
sizes of the nucleosome datasets. The differences noted between the 2 mapped
nucleosome datasets indicate that the genomic background sequences of the source
organisms are important. At the current level of understanding, the differences in the
2 datasets could be described largely as biases of the background sequence
distributions of the represented species. This could mean that higher and lower
eukaryotes differ in the way they position nucleosomes.

Despite the lack of a full understanding of how nucleosome positioning
occurs, the mechanism itself is plausible. Proteins are known to recognise and bind to
specific structural motifs in DNA. For example, binding of TATA boxes by TBP
proteins is well studied and thought to involve recognition of specific kinks within
this motif (Kim et al., 1993). The difference with nucleosomes is that they are
ubiquitously distributed in eukaryotic genomes so it is difficult to judge how many
positions in genomic sequences could represent nucleosome positioning signals.
Lowary et al estimated this value to be 5% of genomic sequences in mouse (Section
1.7). However, as was evident from the comparison of [CWG]-learnt model labelling
between mouse and human (Section 3.3.4), the density of this model’s labelling
differed significantly between mouse and human. This highlights the importance of
nucleosome positioning prediction in relation to the species being investigated. It
mostly appears that the results from one species cannot be extrapolated readily to

another species, even between human and mouse, which share large amounts of

syntenic regions (IMGSC, 2002).
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6.1.1  The sensitivity of different methods used to detect

nucleosome positioning

The nature of what is understood about nucleosome positioning in vivo (Sections
1.10.1, 1.5.3, 1.10.1) has some important consequences for the ability to
computationally map such positions with high accuracy. This is especially true for
methods which approach the problem using whole genome analysis (Section 1.4.3,
Chapter 3).

As an example from this thesis, the cyclical HMM analysis was able to learn a
pattern [CWG], which appeared to have a weak 9, 10 bp — periodicity associated with
it. The pattern could be learnt from various fragments of genomic sequences both
coding and non-coding. To learn this pattern required a large number of genomic
training sequences (Section 3.2.5). However, as discussed earlier, the number of
precisely positioned nucleosomes should be expected to be quite few (Section 1.10.1)
mainly as it would be energetically unfavourable to have an overall large density of
positioned nucleosomes. Therefore, combining this view with the results of Chapter 3
suggests that the results may not reflect ‘positioned nucleosomes’ per se. At the same
time, this does not refute the property that [CWG] could have enriched periodicities at
9,10 bp. The overall impression is that the weakly periodic [CWG] may have some
effect on nucleosome positioning but it is unlikely that it will result in specifically-
positioned nucleosomes, which could be involved in targeted regulation. To
overcome such limitations will once again require compilation and analysis of much

larger datasets of mapped nucleosome sequences.
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6.1.2 Properties of the [CWG] motif

The [CWG] motif is interesting partly as multiple expansions of it have been
described to position nucleosomes (Section 1.5.2). Although the [CWG]-model
labelling properties were different in human and mouse®', the most dense occurrences
of the motif were often seen to be in coding DNA in both human and mouse (Section
3.3.8). This suggested that some aspect of [CWG] could be conserved. Another
interesting feature of the motif is that it is trinucleotide-based. Given 10 emission
states within the wheel models, there was potential for di-, quad-, penta- nucleotide
motifs to be learnt. This suggests that [CWG] could have some importance in
chromatin structure in higher eukaryotes such as human and mouse — it is a prospect
which should be assessed further.

The opposing [W] model labelling to the labelling of [CWG] models (Chapter
3) was also interesting. Firstly, it could be guessed by intuition that the [W] motif
models would label areas of the genome, which were also labelled by [CWG] ([W]
appears in both motifs). This did not explain the opposing style of wheel-state
labelling that was observed. Both motifs have also been suggested previously to have
an influence on nucleosome positioning: [CWG] and long runs of [W] having
positive and negative influences respectively (Sections 1.4, 1.5.1, 1.5.2). The
analysis, using cyclical model labelling, however, indicated that the proportions of
either motif were different in human and mouse. This contended the plausibility for

[CWG] vs. [W] density to act as a universal positioning property in higher eukaryotes.

6.1.3 Possible influence of repeats in nucleosome positioning

Much of the results, in this thesis, suggest that repeats may have an influence on

nucleosome positioning. The wavelet results showed that Alu repeats accounted for

2! However, it was seen that the same motif could be learnt from training sequences from either species.
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previously reported periodic flexibility in human (Chapter 4). Also, both Chapters 3
and 5 indicate that the background distribution of specific trinucleotides, especially
densities of [CWG] and [AAA/TTT], may have some effect on nucleosome
positioning as these motifs have previously been implicated in nucleosome
positioning (Sections 1.4, 1.5.1, 1.5.2). The background trinucleotide distribution is
in turn affected by the distribution of ancient repeats in the specific genome.
However, as discussed earlier, it is difficult to detect highly diverged repeats or
fragments of repeats, which have become dispersed in genomes (Smit, 1999). This
makes it difficult to appreciate what contribution ancient repeats may have in

affecting nucleosome positioning.

6.1.4 Concluding remarks

Although the lack of data made it difficult to build and validate strong predictive
models, the observations taken together suggest that there is evidence of weak
nucleosome positioning signals. A model was learnt from the chicken nucleosome
dataset which showed 100% accuracy at 40% coverage (Section 5.3.4). It also
appeared that the [CWG] models tended to fit a 9 as well as a 10-wheel model in

intergenic sequences (Section 3.3.7).
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8 Appendix

A. Multiple Sequence Alignments of Experimentally-

Mapped Nucleosome Datasets

The sequence datasets were aligned using Clustal W (Aiyar, 2000; Higgins et al.,
1996; Thompson et al., 1994) and coloured using the MView multiple sequence
alignment viewer application (Brown ef al., 1998). The results are also sorted by pair

wise sequence identity.
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CC148_147_TRIMMED/1-183 ———————-—— TGAGTATTCTCARARATGTGATATT-ACTCTTACTTTTCATGGGTAGTTCAT TAGAGAATAT, GACTAC. CCATAT. --GATATGCAATGTTAAGTACATGCAACTGCAGCTGT --ATAAA-TGACAGACATTCAATTTTAAACA———————mm—mm——mmmmmmmm e
CC194_145/1-183 oo TTCTTGCAGACCTGTCTGAGTGATTTAC CCAT TCCTAATTAAT, TG. GGTTAGACACAGCTTAATAC, TGCGCTAGAAC —-TGAAGAATGTCTGAAAAT-TGCTGGGTACTTTAAAGGA ————————————————————
CCl161_145/1-183  cemmmmmmoo GGCCATATGTATAACTGTACCCTGATCTTT-AATGGCTTCTCCCCTTTTGACTGCTGARATTATATGCATTCAAACGTGTATTGARATGACATACCTGTGGTCAGCTCCAGAGTTTTCTTCTCTTTGAGTAGTG, o

CCO01_142/1-183 oo AGTTTCTGTCCATTCTT---TTTCATAAAAACATCAAAGAGTTTCATCTATTGGCAGCTTTGGTACCCCGTAGCCTTAGACT-GCTTTCATGT TGATCCAAGGAAGGTTCACAACCAGTTTTCTCTAGTCGGTGGCCCATGAGACA-———————————=—
CC236_144/1-183 oo CTGTGAAACTTGCAATGCTTGCTCTGCAGAGACCACTGACTCTAACTTCTAACTTCTGTARAAT -—-AGAT-GCTATAAAAATGT TTTAGTCTT--TGGCTTT TAGAAGGTCACTATTAAGT TTAGAAAACACAGAGGAAAAATCTTAGA-—————————————
CcCc188_143/1-183 - TTTTCAGTGATGTGTTTGCATATATTGTGTT-CC. TACAATTTCAA-—-ATGAAGATTTAAAGTTGTCTGCCTTTTTAGATGGAATAGGATTGGAAGAGACCTTC-~AAAGATCGTTCGGTCCARCTGCCTGAGCCCTCCAGGGT Gmmmm—————— == === === —
CcC199_145/1-183 oo ACCA-GATTTCTGCTCTATAGGGCAGCTGGAAGTGAATTTCATTATC-TTGAGTCACAAT-TAGAAAAATGTTTGATCTCTTTACTTGT--ATAATCTTATGTGTGGCTGAGC G, --TGC G. GGTAGTGG GAT——————————m—mmmm—m—m—m———
CC128_146/1-183 —--oooooooooo TCACTGATATTAAATTTGCTGACATCACTCTTCAACAAGCA--GATAGGGATTACATGGAGCCCAGGGAGAA-AAATGCAGACTGTCATTCTGTAGCCTCCGTGGCTTG. CTTGTCAT. TTATG TGAT———— e
CC120_147_TRIMMED/1-183 CCAGTTGATAGAGAAAGAAGTTCTICT. ~ ATACAGCACTCACAGGCATAGATGTATTTTTGGATACTCTGAGTACCTCTTTTGGTCTCTGTGTTCATCAGGCAGACCCAGTGTGGTGTCTCATTCTGCCTGGARACCCTG-———————————————
cc8l_145/1-183 oo AGGTATTCTGGAAATTATATCTCT-CCTGATAATCTA-ATGCTTCATATATGTTTTAAGTG. TACTGCTTATTCCTAT. CGATTTACAGTGTCAGAGGTGT--—--TGGCAATACC--ATACC-TTACAGTGTCTCCATCAGGAAACTGG-—————————————————
CC119_146/1-183 ~TGCTTCTC-CCGCTGTCCCCTTTCCTTCTGTCTGTTTTAACAGTGACCTTGCCA-~~CCACCAGAGTC-AAGCCACCACCACTCTCAAGCCTAATTTAATACTAT TAAGGAAGAGTCAGCT TTTTCCTTATGCTGGAAGTATGCARTAACA -~ =~ == ==========-=

€C145_147_TRIMMED/1-183 -
€C65_144/1-183 -

GATTTGGAATCAAATAATCC--CAATTTCTGTGTCATTTGTGTTGTGATAAA-TGAAGCAGTTTTACACTAAGTGATTTGATGCTTCT-GAAGTTGCATTGCATTTGTTGGGTTTCTGTTTTGGGGTGGGTGATCTGGGGATGTTTTGGT
~CTGTGAA-TAGCAAGAGATTTTTACT-

~TACATTTTCGTCTTTTAATTTCACTCCTGGCTGTTGCATCTCAGTCTACC---ATGGCTCATATCT-GCCTTAACAACATCTTTATTCTTCCAGTTGAATATACCATACCTTTTAAGTATTGT -

ccz2 071 43/1-183 TGTAGATTAGCCTTAATTTTTGGCCTAGCTTGATTAACCTATTTTAAAAGCCTCCTTCTGTATGTTTTCTTGCAGCATATGTAAGAAAAAARATATAAAGCA-AGTATTTAAGCTACAGTGATGAGAARACTCAGCTGGTTAACA:
CC184_143/1-183 —oomoommoooooooo TTCGTGTTGTAGGGGTGACAAAGTCACCAGAGATTTGCATGTGATCTA-ACACATCCTCCTA-—————! CTCCATCCATAAGCTGTGAATGTAAAATCACTCTT-TCCAGGAATCTATTCATAAAT. TAGAGTGCAAGTTCA=-==============—
CCl14_144/1-183 TGCAACAC GCAAT. GCAAGACTGAC. GAACGTC, CAACAAGG CAGAGC GC. C. GACACG. TACAAGAGTCCAGCACATGAACTCAAGACAGCATGATC-GC. GCC, CACAGGA=—————————————m———————
CC202_146/1-183 oo TGCTGTAATCCCAACTATTCAAGCAAAT TGCAGAAGCATCTTCTTAA---ACATTGCATGT TGGGGCAGAGG-GGAATATTCGCAATGCCTATGACAGAGCTCAGCCTTGGCTGAAGCCATCGCAGACTGCCCAATGCAGACAGGAGTAG-————————————————————
CcC187_146/1-183 oo TGTCTTTTATCTCTGATTAAATGATAACGGTAAGTCTGATTGAGTTCTGTTTGGTTGA-~TTCTACTGTTGTGCTTCACTGCCTTATAGGCAGAT-GA-ATCAAGT TGGATGTTCTTGATAGGCTTAACTG—~~TGAARACCTGATCAATGT T————————————————————
CC217_145/1-183 oo TTATGATAGAGATAACAGGATGTATCCATTTGCGATAGCGCAGGAT--TAGGCATTATGATCCAGGAAGTTTGGTTCAGTTCTTGCCAT. GCC. T, GATG. TATAACCTATACACCAAAC--AGCCTCATTCATCAAA-——————————————————
CC130_142/1-183 TACT CAACC-ACCGCTGTGAAGCTTCATTGCAGACAG--TAAGAATGAGAGAATTCTGCCAACTCACTTATTTCAAGGTTTTCCAATCTTAACAG-—---CCTATTACAATGAT TAATGTGAGCA--AACACGTTTTAGCA-——————————=——=——=——
CC08_145/1-183 TTTTTTTTTTTTTTTTTCCTGGGATAGAGGCTGTCA-GTCT TATATACAGCT ——-TGGGAAACAATGAAGAATGT T TCTAGCAGATTATGTATTACAGAAGGCAGT TGAGGT TCCTAC-ACAGGCTCTCATCC———-AATTCTGTAT T TTAGCA-——————————————
cc4 271 45/1-183 —mmmmmmm— TGCTTCTGTCCTTATAACACATTCAGGAATGCAGCCTTCATGTTCAAAGGACAGCCAARACTGTTTGCTTGGTCAATACACTTGTTAATAGTTTGGTAAACAGTACAAGAACACGTGGATTATTGCAGTTTGAAAGTGTTTTGAAG

CC22_145/1-183 oo AGAAAAAGGGAGTCTATGTCCTCT--AGAAGAAGGGACAGGCTACTT! TCACAAGGAAGTTGCTAAGGTATGCAGGGAGGAAGT TAGGAAGTCAAAAGTCCAACTTGAATCAGATTGGCCATAGCAGTARAAGAGAATAAG-~—=—=======----==-=-—
CC149_142/1-183  —ooooooooooooooooo AGGGACAGGCATCCTGCCACTGGTGAG----GCCACCAAGAA--TGTGTGTCTGTGTAGCTTCCCAGCTACCATCAAGGGAAGATGCTGCACCATCACAGTATTCCTGAAAGAATGCTGAAAATGCTCATGAAAATGATGTAGT TGAG--~——————————=——~—
CC224_144/1-183  —oooooooooooooooooo CTCTGGAGAAGAGCTAATGGAGAGCAGCCCTGTGGAGGGGGACTTGGAGT TTCATGTCAATGAAGAGCTTGAATGAGCCATAAGTGCCTTCATGCAGCCCCGATGGACGCATGAAACCTTGGCTCCATCARAAAAGAGTTGGCT ——————————————————
CC15_147_TRIMMED/1-183 —————————————————— GCTGCATTTCCTCACACACCTATATACATCTGTGACTGTGTGCAT--GTGTGTACTCATATAGAGCTTATCAGGGAGCTCTGCATTTTTATT -~ - TATGTTGAGCAAGACTCTCAGACAGTCCTTACACATC-CAGACCTACTGTTTGTAAG-————————————
CcCl12_145/1-183 ——--m-o CAATGCACATGTGTGTTACTGCCCTGGTAACCTG-TTGAGCCGCTACCGGTGTGARTGCTCAGAGCTGTTGAAGAGTCAC-TGTTTTGCTCTAATA-AGCTGCGATC-~TTTAGGAGCATCCTGCATTGTGATATTGCACGTTAATAGCA= == === == === === === === ——
CC30_144/1-183 TCCAAARAGGCATTTCCTCTCTATCTG--TAAACT-CTGGAATGTTAATGCATTTCTTGAGACTCTCTCATGCAACACCTGACTAAG, TCCAT. ~GGGGAACACTCAAGATATGCAGARACAATT, CCCCAAACA--—--=-—=
CC167_147_TRIMMED/1-183 ———————————oommooo TATGAAGATTAATAAATAGGTGCAGTTGGCTGCCTCTAACAAGTTGCTCTTTAT-~—-TTGCTTCCAAGCTGCAGGCTGAGTAAAT TCAGGATCTGAGC-TCCTCCATCTCCATGACAATGCAG--TGATGTGCAGACACGATGCTAAATGAA-————————————
CC39_148_TRIMMED/1-183 ——————— GCTTTACTGGGGCTTTTCATTGCTTATTTGGTTAGCCCTGAATCTATAATATGTTCAATCTTATGCCTTAGGGCTTCTGCTA-~~GTCACCTGCAGGGGACAAG—~AGTAATTT-TCTTTC~~ACTGCTTGATGAT TTATTTGAGCAGCCAAGG-——————————=——=————————
CC75_145/1-183 oo CTACAAACTTATGTTGGCTGTCTGGAGAAACATGGCCAGTGGTTATTTCACCCCTTGCA--~CCATGCCATG--~AATGACAGAGGTAGCACAGATGCATATAAGTCAGTGCTC TGGGCACAGCAATTCTCCARAGAGAAGAR—————————————————m————
CC108_147_TRIMMED/1-183 ———-——--——-——————————— TTCTTGCTTCCTGATCCACTACCAT-~---ACACTAGGGCAAACA-AGGTAGAGATATCCCTCCTCATTCCCCTGTGCARACCAGTTCTCTCTTCAACCAGCATTTAGC-CAGAAAGCACTGCAAT CTCACAAGTGTGTAATGAACAGG-——————
CC136_145/1-183 -AATGAAAAGCTATGAAAGA-GTACACAGGCAATCCTTACTCGCTTATCTGATTATGTAACTCTGAA--CGCAAGCAAATACT TGTAC-TGTGAAAGCGGG-AGCAGCTGCCTTCCAGAGCTGCAAG- ~~AACTGT TTACACCTATTAGTGTGA-— -~

CC153_146/1-183 -
CC96_145/1-183 -

ATCCCCCTTGTGCTGCAGTTCGGTTGTGGAGGCCATTAAACCATGTCTCTG--TGGTCCAAACAAGA--CCTCAG-GCCTGCAACTGTACA-AACATTTCTAGCTCAGCATTTGCTGCTGTTCTCATTAGTGTAAGAACACATAAGAAAACA—
TCTGCTATATGC-TGCCCAGAAGAAATGCCTGTTTGGGTGACAGATTTTGTGCTAGTTACAGACACAAAAA-CCTGACTGAGCTCCTACAGAAAAGACTCTTGCCAGTTCTGGCTTTGATTTGAGCTCTTGAGGAACTGGAAAAGCA-

CC231_146/1-183 TCCAGATTTATGCTGTGCAGCACTTGGGAATAATTCATGGCAACCCTTCC---TC. GCAACT-CAACCTACAACCCCACCTTTGCATTTCCTGCTGCTACTTTCACGCCCAACCATTTTA--TTCCATCAT--GACCTGAGCATTARAGA-
CC215_144/1-183 oo TGGTGGAAGGCTGAGTTCGGCTTTTGTGTAGGCTGAAARAGACTCGGAGTGGGACTGTGCTTGGCTTTCATCTTTAGTAAATATAAATCACCA-GCAGTGCTTTGGCTGAAATGTAGGGGTGGTGGCTTCTGAGGTGTAAGAGG- -~~~ -~ ——==—======
cc31_144/1-183 oo AGTTTTGTTACAGTTTTAACATATTAAGTTGGGGT---TGTCCCAACT-————————~ TTCTGTTGCATAGGAGAGAGCTCTCTTGCCAAGGAGAGCTTGTAACCTAATCTGAAATTGGATGTGAGCTAGGCTGAT GGGAGTGAGGA-
CCl62_143/1-183 oo CTGCAGTCTATGCAAATATCCTTTTGTTCAAGAATGG-~-TAGACCACTAGGATGTTCTGTTACTTCTGGAAACAGTAGCA-GCATCTGGGGAC, GATTATTACAGGGAA-TTA-ATTGTCC. TGCATTTGTTGAA-——————————————————
CC212_145/1-183 oo TGCTTTGAGCACACAATAGAGGATCATGTTGAGTTCCTCATCAACCAATGCTCCAAGTCCGCCTCCATAGGGTTCTCCTTCAGCCA--TTCTCCTTCAGCTGAACTGGAAGTGTTARACATAGTGCCATTCAGAGTCTCTGAAAGCT-~-~~===========
CC155_144/1-183 TTTCTAAACCATATAACTTATAGACCCTTGGAARATCTGTGATTGCAACATCATTCAGGTTTGGATTTGCTGTAGTAAGTGGTTACCTGAGTTGCCACTGGACCACAGGGTCAGTTTTGAAAGTCAAGGATCTCACTAACTTACG-—~---=----~
CC34_144/1-183 oo TCCTTTAGTTGAAGCCTAATGCAAGCAGTTAR-~~GGTGGATCTCAGATTTTGTGT ~~TATTAGGATTARATTATTCCTGGTTTTCACCATGT~TA-GTGTTGTTCCTTTTCTGTGGTGGTTTGCACTG-~~TGAAAGTCTGAGRAGTAGTGCA-~~~ === ~~~==~~~——
CC100_142/1-183 oo TTTTGTTGGCATTCTGACTGTCTGTTTTGCCTTTCCACAAGCAATAATGGGCTGGTTCTARAGC -~~~ AGATTTTGCTT---GAACACACAGGATTTCAAA--TGARATTT-TACTGCAGACTGAATAAGGAGGAATAATGGCAGGTAAACA-~=-==================
CC192_146/1-183 GGGTTGCGCTGT---ACCTCCTTGGAATGCCGTACCCTCCCCCGAAGCCTGCTTATCAGCCCTGCAGGAGATGTTACCACATTC-CTCCAAGGACCTTCCCCCCCCCTCCCCGACTGACTTCAGTGAAGGATATAAGCCTT

CC177_145/1-183 oo TTGTCAACTCCACTGTCAGCAGGTTTCTATTTGCAACTGGGTTTTGTTGTTGTTGTTGTTTGTTTGTTTGAAGTC-~CTAACTTGGCAGAGGTCACTTTCATCCATTTCTCTCCTG-~~~~ CCTTGAAAATT-GAATTTTGCAAGCTCAGCAG-——=—=—=—=—=—=——————————
CC190_147_ TRIMMED/1-183 —————————— GTTCTAATTCAATTGATGGACT-TCTTGTATTCAGTGAGCTTTGAATGAGATGAAAGAAAGGC--—-ATTGTAGTGCTA---TAACCATCGTGGTGCCAGG--TTAAATCTCTAGCTCACACCACAGAATCAATATGAACAGCATGTTGTCATTGG-———————————=————
CC238_145/1-183 TGGTTGTTTTCCCACAATCTTCTTTATCCTGCTGTTTAARATTAT--T, CATGCA-. GACAGAACATACTTTTGCCT--TGAGGCTTGCATCTCTATCAGTTAATCTAATTTTTCATTTGCATTC-ATCATAGATGTAACAACTACAG-----~
CC80_145/1-183 TACTCCTTTTTTCACTGG-CAGAAGTTCTTGGA--GGTTACAGACTTCCCCATCTGCC---TAATACACATTCCCCCTTGTATGTGACCTATTAGGCCGTGCAGGAGCCTGCCCACCACAGGTGAAGCAGGG TCCA--AGCTCAGTCCT--------—
CC147_146/1-183 oo CCCATTCCCGGGGATGCGATGTGGCAACAGTAACTGCTGCCTTCCTCCTTCCCTCCAACCCCAATGC -~~~ CACACCTTTACACCATTAACACAACAC-CACAGAGGACTGC CAAATT. GAGT. GAACC. CAAAAA--—————--=
CC205_145/1-183 oo CTGTTGCCAGTATCAACATACTGCCT-TTTATGTARAAGAGA--~TGATAGATTCTATTGTGCATCTGCATGGGTGTAGGTGTCCAACATGTGTGTGCAATATGACAGCCAGARAGCACTCTATGCATAT. TGTTTAAAGA-
CC63_145/1-183 oo ACCATCTAGTACACTGTCTTARATCTA--CTGCCA-TTTAGGTAATTATCA---AGGGCAACG-TAAGAGATGTATATGATGTACTCTGCATATTTAAAGCAAGGCTAGGTTCTTGCTGTATTGTCTTAACTCTTAAATTCCTTACTTTCCT-===============
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cc78_145/1-183
cc23_144/1-183
€C179_143/1-183
cC82_145/1-183
€C70_144/1-183
€C05_146/1-183
€C206_144/1-183
cC98_143/1-183
€C116_146/1-183
€C55_145/1-183
€C94_146/1-183
€C196_145/1-183
€C211_143/1-183
€C25_143/1-183
€C12_145/1-183
€C20_146/1-183
CC46_146/1-183
€C127_144/1-183
€C06_145/1-183
€C223_146/1-183
€C59_146/1-183
€C219_148_TRIMMED/1-183
€C235_147_TRIMMED/1-183
€C122_148_TRIMMED/1-183
€C229_146/1-183
€c89_143/1-183
€C191_144/1-183
€C54_147_TRIMMED/1-183
€C180_147_TRIMMED/1-183
€C109_149_ TRIMMED/1-183
€C228_145/1-183
€C71_145/1-183
€C74_145/1-183
CC61_144/1-183
€C237_145/1-183
€C221_145/1-183
€Co91_144/1-183
€C104_146/1-183
€C115_145/1-183
€C204_144/1-183
€C169_146/1-183
CC43_146/1-183
€C67_145/1-183
€C111_142/1-183
€C193_148_TRIMMED/1-183
€C105_146/1-183
CC117_145/1-183
€C175_145/1-183
€C157_142/1-183
€C210_146/1-183
CC160_148_TRIMMED/1-183
€C37_144/1-183
€C57_143/1-183
€C38_147_TRIMMED/1-183
cc214_142/1-183
CC44_144/1-183
€C10_146/1-183
cC28_145/1-183
CC146_144/1-183
CC49_147_TRIMMED/1-183

—~TGCCTTGTCAGC-TCAACAGACAGGCA-TTGGGATGGGAAAGAACTTGGATGAGGCTAAAAGGGGGAGTTCTCATCACCAGTGTTTGTGATGAGGGAACAGGAAGTGCTTCACTGATGTCTTTTATTGGATGCCACAATATTTTCCG
TGCTTCTTTCTATCTTTTTTCCTGGTCAGTTACCCTGGAGGCCCCAATGCTCCCGCAGGGATGGGCATCCCGCCGCACACCAGGCCACCAGCCGATTTCACC--CAGCCAGCAGCTGCTGCTGCCGCCGCTGCAGTTGCAGCTGCA:
7777777 CAAGCTTCTCATTAAATTACATGATTTAAAGGGAATGTAACTGG-CTAACATTTAATAATAAGACGTCCCTTTTTTTCTGGGTCTTTGTATGCCTTTATTAC-CTACT TAAGGT T~ TAATAT TGARACC-~TTGCAATAATTTTTG:
AGCT. GGG C----AACCTATCAGGCTGTTTAATGGACCCATGGAGATCTTGAAAA---CTGCATGCATTTTGGGCCACCGTATAAGAAGGAAGATATAGCAGAATTGGGATAAAAA-GCTGAAAACTGGA-——————

TCTTGGGC. GGAGCCTACTCAGTCTGCTTCTTCCACAGGTCACCTACTGCCTGTCTGCTGGACATGGGGAAGCTCAGAAATGATCCATAATGTTTGTATGAGCTTCATTTTGTGTGCCCTACATTTTGTCTGCA-————————————=——————————
CCAAACCATGTATAAACGTTGCCAAACTGCACTACTCTAGGAATCGCAGTGTTAGCAACATC--TTCTTAGGACAGCACTTGACTTCATGAGCATTAAGTCTTCGCTGTTATAAGCCTTCATCCTCCAAAACTTAAGCATACAACA-——————————
CTTTCTACGACAGCAGCAGCACCATCAGGTAAACAAAACAGGTTTCTAATGTTATGGAATGACAGTATTTAAAATTTATTTATTTATTTATTTAT -~ TTATTTATTTAATACAATCAATGTCATTAGGACA-~GGGARAAAAAAACA,

GGGCACGAG CTTGGCAGAGCAGCAAGCAGAGTAGGCAAGTGTTGAGGTT - ~--—-=—==-=--=--=-—
CTGTTTTTTTTTTTTTCCAGAGCTCTGCTAATTTACATTTTCCCTCCAAGAGCCATCTTGCAGGATAGAA----GTTGTGCGGT-GTTTCTTGCCTTGTTTCTGAG--GCTTGTGGTGACTGT---GGTATTTGTCCTGATAAAA-GATCTGCT--———————=———=—————
TGTGAGATGTGAATCTTTATGTCTTCTTCATAG-GTTTTTCTATATCAGT—--—-CAGAGTATCTTCAGTGTG--—--GCTGTTCCCTTA---AGTTGTAT. TACTTATATCTATG. TGCCCATAGGGAATCAAGAAAAAAAATAAATATTCTC—————————————————mmm o ———

GATGCT---TATGAAAGTG-ACAGCATGCTATCATTAAAGCATATAA-ATTATGTTAGTTCTAGARATGCT-===============

———————————————— CGGGCATGGCCTTGCTCAGC: - GCCTG GGGGATAGAGAAGGGCAGGCAGTAGGTGTGAAGCTGCGAGCAGAGTAGAGAGC.

----------- TTCCTCCAACTTTAAGAACCAGCTTTAAAG--GTTTTTCCAAAGGCTTGTCTA--CATAATCT. T. T. ——AAGTC.

CCTGCAAAG

CATCACCAGGAC-TGCAGGT-GACCCCACAGCCCTGCATGGGATGCTCAAAGAGTTTGGTTTCCC.
CGGCTGTTTTC

———————————————— CCGGAGAATTCCAACAGCTCCCACCTGGGTTCAGAGC.
ffffffffffffff CTCTGACCACCTCTCCTATAAGG GG-------CTGACAG

TGGGATCGGGGTTCTGGCCTCAC,

TG-GGCCTTGAATAGCTTGCAAACAAGAAAGCTCTGATGAGACCTCACTGTGGCCTTCTGGTACTTGAAGGGAGCATAT. C.

- ~GCTGACGGTGTTGCTCAGCCATTGGGCTGGTGTGTGAGCTGGAAGGGAGAAGGCCTGC---AGCTGTGCCTGGGTAAGCCAC-AGCCGTAGGTTTGTCAAACACGTGAGTCGTACCAGTGCAT-CCCTTGCAGCTGCA-GC-~ G
GTGGGATTTGCTGGGAACTCCTAGTTCCTTTTTATAGGGCCGCTATTCCTGGGGGATTTCTGTGAGGGGATTTCTGACCTTT-—--GCACAAGAAGCCATCAGGTCGCGGAGCGG--CACAGAAA--TTGAACAGARAAGCTTAAGTGACTTGG——

GAGG

GCGAGGCTCCAGCAG-AAGC-AGACGAGCCCCAGACTCCAT-GTTACT.
TTCCTTGT. GAACCTTGT

TCCTTCTCCTCCCTGCACAA----GACATGGAAGCTGTATGGGGCAGCCAC--TG,
,,,,,,,,,,,,,,,,,,, TGCATTGATGGACT-CCAAAGCCCCATTGAACTCCTTATTCTCAA--GAGGCTTGGTGGAGGA-----AGGTGTACCGCCT,

TGAGGG.

CAGCTGTCCTGCTC CTGATGGTCACTGTTTCCAACACACACTTCCCAGAAG-ATGACTAAGCTTTAACAARATTGTGCT
TTCTCTATTCTTCCTGATCGTGTGATCTGATGAACCCAGCACCCTCTTTGTTCTCTTGC--TGGGACCCTTCCTTACTGAAGGCTTT--TTCTTCT-GC-GTTGCATT-TATTTTTGGAGCATAGTTATT----TCTTTTAGCTGAGGATAATTGCT
CAGTGGTCCTGGC-CGTAGAGCAACCATGGAGCAACCTAGCTC-AGGAACTTCTTCTGTTTCAARAGAC--ACAGCCTTCT-GGGGCTAGCCTTG--GCCCACACTGGGTCATCTCACATGCCTCTGAGGTGGCACGAGCCAAGGGACAGTGG—
TCTCTTCTGTTGCCACCAG-CGAAAATAACTGGC--AGTTTCAGGCCTCGTGCTTTG— —~TGATA-ACCTACAATATTGTTGGCAA--TATTCCTCATGGTGGTAGTGGGTGCACCGAGGGAGGAAATAGCAAATGAATCAGCACGGGCAT
—CCTTCTCCCCAGAGCTCCTCTCCAGCAGGTCATGCCCCAGCCTGTACTGATACTTGTGGTTGTTCCTTCCCATGTGCAAGACTCCACGTTTGCTTTTGTTARACCT---CACCTGGTTT
fffffffffffffffff TAGCTGTCACCCAGCCCTAGCAGGGAGGTGTC--------CAGCCCAGGACTAGC. CATTCAGCAGAAGTTGGAAGTA---TGAGA---TTTGGAGCTTCAG-CATCTTTTGATTCGAGGAGGAAAGAACAG-CTTACATGTGTCAGGT---~
~---CGTCGACGTGCAACTTAGCTGATGTAACTTATGGGAGGAGTAGG-~CTCCTARATGAGCTGCTCCTGTGTGCTCTGAAGATGGTTCATTTGAACCATTTTTACCTACTCTAAGGTGTT-~TGGTCAGCCARGTGCTGTCTGACTGAAG:
ACTCCAACAGCTTCACAGTAACAATTCTAATGAAAAAGC---TTCTTCAGAACATATTCAGTAAATGACAGACTGAGAATGGCT--TGGCTATGCAACCACTCAC-GAAGGCCAGGAACACTCACTGCAAAAATTTCCAGCAAGCTCTTTG---—-—
——————————————— CTTTCAGGCCACATGGCCCC. CACCC--CTAACCCTTCCCCAG-ACAGCCCTTCATCCATGCTTTTATCTCACCG---TAGCGCTTATTAAGGAAACAGGCTGTGAAARATGTGTTTCC.

GGAGGTGTGTGGCTC C. G

TTGCTGCCCAGCTCTCCA---GTCTGTCCAGG

GGCAGAG

CACCAGATATTGCA--AGGCAGCTATGC.

TGGTCACTTGCAGCCAACTCCTTTTCGTACCCACCTACAACTCTTACACCAG-TCCTATCTTATCCAGTTCAACAAGAACACTTC--CCATTTGGTGTGGTGTGGAGGTACTGTAGCATACGTAGAAAAAACCTCACGCTCACCT - ———-~
—————————— TCCAACACCCTCTGAACAAGCAGGATGGCATGCTGTGAACAGACCTGTTTAT TAAGCACAAA--GGAGT TTCCAGGATTTGCTCTCAGACAGGTCAGGAGGT TTCCTCCAGAAGAGCCAGAAACATGCTGT TCTGGTGAGACTGTGC
——————————————— TGCCTTTAGCAGTCTCCTTCCAGCCTGCAGCCCTGCAGTGGGG-CACGGTG-GGCTCGG-~GGCTGCAGACCCACAGGCAGGCACTCCCTAGTCTGCCAAATAATAGCCTGG-—~AAG,

CGAGTGGGACGAGTGGAGG,

—————————————— CGATGCGCTCCATGAACGGCTCGCGGAGGAACAGCGGCTCCTCGT--TGGTCTCCAGCTCTTCGGCCTCCTCCAACCTCAGCCACCTGGAGGAGGACACCTGGATCCTCTGGGGCCGCATCGTC
TGTTTGACAAGCCTGAGCTGGCTC---CCAGATGTTTAAATTGTCCTCAGCCTGTG-ATAATTTATTTATCTGTTTATGTG-TGTTACCAGAAAAAGTATCTCTCAGACTCTTGACTCATTTGCAGGGGAATCC. CAGTAGC.
7777777777777777777 TGTAAAATAATCTG-GTGGTATGC---——TGTGATGGAAAACCAG--—-ATGAAAGAAGATGGCT----—~CACGTTCATTTAGGGGGGGATGGACT TACAGAAAC--TGGACTTGGGGGGCATGTATGATGGTTTTTTGATAGGCACCGAGTGCTGAAGGT————
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CC126_146/1-183

TTTTCCCACTAAATCAAAGTGACA-TTCCCCTAAGGATGA:

AATTATACAACCTA-

AATTACTTGAATCATGATGGCTCCTAGTTTCACCACTGCTTGC-CAAATTTTGTACAAATGCAGTCATTTAA

176 CC158_144/1-183 —TGCCCAGTTGGTCTCTAAAAACCGTGGGTACGTAG-GCA---GGCAGCTTCTCTACCC- TCAGCTTTGCGCCTGGCACTCCCCAARACCTGCCAAGCTCCGC-~
177 CC60_145/1-183 —-TCCCCACCCCACGATGCTAGCCCC-CCATGTGCAGGCAGTGCCATGCGGTGTGGGCATTATTCCTGCCGACACCACA-——=—=——==-=—~| CTCTCCAACTGAGAGAACTGGAGAACCCATCCCTACTGACCCATCCCGTGCAAAGCGCGGCCCCATCA
consensus/100% et e et et et e ee e e et
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LEVITSKY NUCLEOSOME DATASET
Identities computed with respect to: (1) NM0014/1-331
Colored by: consensus/65.0% and property
10 1 . . . . H B
1 NM0014/1-331 TGAAGGACCTGGAA-TATGGCGA--GAGAACTGAAAATCACCGAAAATG-~AGA-AATACACACTTTAGGACG-————
2 NM0006/1-331 AGGGACATGGAA-TATGGAGA--GAAAACTGARAATCACGGARAATG-~AAA-AATACACACT TTAGGACG-—~~~
3 NM0004/1-331 TGAAGGACCTGGAA-TATGGCGACGG CTGAABRATCACGG TG--AGA-AATACACACTTTACGACG----~-
4 NM0034/1-331 TAGGACCTGGAG-TATGGCGA--GAARACTGAARATCACAG! TG--AGA-AATACACACTTTAGGATG-—~~~
5 NM0016/1-331 SAGGACCTGGAA-TATGGTGA--GAAGACTGAAAATCACGGAAAATG-~AGA-AATACACACTTTTGGACG-————
6 NM0033/1-331 AGAGGACCTGGAA-TATGGCGA--GARAACTGARAATCACGGARAATG-~AGA-AATACACACTTTAGGACA: -
7 NM0010/1-331 TGACCTGGAA-TATGGCGA--GAAACCTGAARATCACGC. TG--AGA-AATACACACTTTAGGACA-----
8 NM0019/1-331 GGACCTGGAA-CATGGCGA--GAAAACTGAAGATCACGGAAAATG--AGA-AATACACACTTTAGGGCG--—=~'

10
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

NM0038/1-331
NM0054/1-331
NM0009/1-331
NM0042/1-331
NM0049/1-331
NM0041/1-331
NM0022/1-331
NM0015/1-331
NM0017/1-331
NM0013/1-331
NM0039/1-331
NM0070/1-331
NM0046/1-331
NM0012/1-331
NM0053/1-331
NM0069/1-331
NM0037/1-331
NM0011/1-331
NM0031/1-331
NM0024/1-331
NM0002/1-331
NM0005/1-331
NM0048/1-331
NM0021/1-331
NM0072/1-331
NM0050/1-331
NM0086/1-331
NM0023/1-331
NM0003/1-331
NM0080/1-331
NM0047/1-331
NM0043/1-331
NM0008/1-331
NM0020/1-331
NM0079/1-331
NM0078/1-331
NM0030/1-331

AGGACCTGGAA-TATGGCGA--GARAACTGAAAATCACGGARAATG-~AGA-AACACGCGCTTAAGGACA-~—~~

ACCTGGAA-AATGGCGA--GAAAACTGAAAATCACGGAAAATG--TGA-AATACACACTTTAGGACA---—-
CGGAA-TATGGCGA--GAAAACTGAAAATCACGTAAAATG--AGA-AATACACACTTTAGGACG---——

AGGACCTGGAA-TATGACGA--GAAAACTGAAAATCACGGAARATG--AGA-GATACACACTTTAGGACG--—--

AGGACCTGGAA-CATGGTGA--GARAACTGAAAATCACAGAAAATG- ~AGA-AATAGACACTTTAGGACG-————

ATGCACACTGTAGGACCTGGAA-TATGGCGA--GAAAACTGAAAATTAAGGAAAATG--AGA-AATATACACTTTAGGACG-—-—-"

GAA-TATGGCGA--G CAG. TCACGGG. TG--AGA-AATACACACTTTAGGACG---——

A-TGTGGCGA--GAAAAGTGAAAATCACGGAAAATG--AGA-AATAAACACTTTAGGAAG-—~~~'

AGA--GAAAACCGAAAATCACGGAAAATG--AGA-AATACGCACTTTAGGACG-—~—~'

TAGGACGTGGAA-TATGGCAA--GAAAACTGAAAATCATGGAAAATG--AGA-AACATCCACTTGATGACT

ATGGCGA--GAAAACTGAAAATCACGG.

CTTCCTCAGCCTTTCTTAAGGA

2

TATCCACTGTAGG?
TGAAATATAGCG---AGGAAAACTGAAAAAGGTGGAATATTTAGAAATGTCCACTGTAGG

TGAAATATGGCG---AGGAARACTG GATGGARAATTTAG.

TGAAATATGGCG---AGGAAAACTGATARAGGTGGAATAT TTAGAAACGTCCACTGT - -~
TGAAATATGGCG---AGGAAAACTG GGTGGAAAATTCAGARATGTCCACTGTAGG
TG. TATGGCG---AGGAAAACTG. GGTGGAAAATTTAG. TGTCCACTGTAGG?

TGAAATATGGCG---AGGAAAACTGAAAAAGGTGGAAAATTGAGAAATG-CCACTGTAGG

TGAAATATGGTG---AGG TTG, GGTGGAATATTAAGAAATGTCCACTGTAGE.
TGAAATATGACG---AGG CTG. GGTGGAGAATTTAGAAATGTCCACTGTAGE.
TGAAATATGGCG---AGAARAACTG, GGTGGAATATATAGAAATGTCCACTGTA-—

TGAAATATGGCG---AGGAAAATTGAAAAAGTTGGATAATTTAGAAATGTCCACTGTAGG

TGAGATATCGCG---AGG CCTG GGTGGAAARATTTAG TG-TCACAGTAGG
TG TATGGCG---AAG CTG GGTCGGAAAATTTAGAAATGTCCACCGTAGA!
TGAAATATGACG---AGGAARACAG GTTGGARAATTTAGAAATGTCTAACGTAGG

TG TATAGCG---AGGGGAACTG GGTGGAAARATTTAG TGTCCGCTGTAGG
TGAAATATGGCG---AGG CTG GGATGGAARATTTAGAAATGTCCACTGTAGG)
TGAAATATGGCG---AGGAARACTG GGTGGAAAATTTAGGGATGTCCACTGTAGG
TGAAAAATGACG----AAATCACTAAAAAACGTGAAAAAT-GAGAAATGCACACTGAAGG

GGACGTGGAA-TACGGCAA--GAARAACTGAAAATCATGGAAAATG--AGA-AACATCCACTTGACGAC!

TAGGACGTGGAA-TATGGCAA--GAAAACTGAAAATCATGGAAAATG--ATA-AGCATCCACTTGACGACT---——

ATGGCGA--GAAAACTGCAAATCACGGAGAATG--AGA-AATACACACTTTAGGACG-----

TAGGACGTGGAA-TATGGCAA--GAAATCTGAARATCATGGAAAATG-~AGA-AGCATCCACTTGATGACT ~~~~~!

AGGACGTGGGAGTATGGCAA--GARAACTGAAAGTCATGGARAGTG-~AGA-AACATCCACTTGATGACT -~~~

ATGGCGA--GAAAACTGAAGTTCACGGAAAATGG-AGA-AATACACACTTTAGGATGCAG--

A--GAACACTGAAAATCACGG. TG--AGA-AATACACACTTTAGGACG----—

TGACGACTTGAAA-AATGACGA--GATCACTAAAAAATGTGAAAAATG--AGA-AATGCACACTGAAGGAGC -~~~

AGAACGTGGAA-TAAGGCAA--GGAAACGGAAAATCATGGAAAATG-~AGG-AACATCCAATTGACGACT -~~~

AGGACGTGAAA--TTGGCGA--GGAAACTGGAAAG-GTGGAATATTT-AGA-GATGTGCACTGTAGGACG
A--GAAAACTGAAAATCACGG. TACACACTTTAGGACG----—

TT--AGA-

AAAACTGAAAATCACGGAAAATG--AGG-AATACACACTTTAGGACG-----

AGGACGTGCAA-TAAGGCAA--GARAACTGAAAATCATGGAAAATG-~AGA-AACATCCACTTGACGACT -~~~

AGGACGTGCAA-TAAGGCAA--GAAAACTGAAAATCATGGAAAATG--AGA-AACATCCACTTGACGACT-----
ATGGCAA--GAAAACTGAAAATCATGGAAAATG--AGA-AACATCCACTCGACGACT-----

CGTGARAAATGAGAAATGCACACTGAAGGACCTGAAA-TATGGCGA--GAAAACTGAAAATCACGGARAATG-~AGA-AATACACACT TTAGGACG-—~~~

ATGGCTA--GAAAACTGAAAATCATGGAAAAAG-~AGA-AACATCCACTTGACGACT -~~~

TGGAAAATTAGAAACATCCACTTGATGACTTGAAT-AATGACGA--AATCACTAAAAAACGTGAAAGATG--AGA-AATGCACACTGAAGGACC-—-——

ATTTGTAGAACAGTGTATATCAATGAGTTACAATGAAAAAACATGGAGAATGATAAA--TACCACACTGTAGAACATA---

TGTAGGACAGTGTATATCAACGAGT TACAATGAGAAA-CATGGAAAATGATAAA-~AACCACACTGTAGAACAGA-—~

ATTTGTAGAACAGTGTATATCAATGAGCTACAATGAAAAT-CATGGAAAATGATAAA-~AACCACACTGTAGAACATA-~~

AACAGGATTTGTAGAACAGTGTATATCAATGAGTTACAATGAGAAA-CGTGGAAAATGATAGA--AACCACACTGTAGAACATA- -~

TTACACAGG. CAGCTCGGGATCCGCCCGGGCTAGAGCGG-————— CGCCACCGCGTGGAGCTCCAGCTT-TTGTTCCCTTTAGTGAGGGTTAA'

AGACAAAATATGCACGATGTCACATGCAGGACCGCCGATTGTATTGATACCATTACGTTATGCGTGGACGTCGGCTGT

--A

CAAACGACCAATACG

CGTTATCTTAAG--ACTTATCGAGTCATTC-~--GCTGGTTA-AACTATCACATGCA-ACC-~~AA’

A

TG--AAA-AATACACACTTCAGGACG----— TG. TATGGCG---AGG CTG GGTGGAAARATTTAG TGTCCACTGTAGG
—--TGAAAAATGACG----AAATCACT. CGTG T-GAGAGATACACACTGAAGG
AGAACTGAARATCACCGAAAATG--AGA-AATACACGCTTTAGGACG-———~' TGAAATATGGCG---AGGAARACTG G-TGGARAATTTAGAAATGTCCACTGTAGG!

TGAAAAATGACG----AAATCACTAAAAAACGTGAAAAAT-GAGAAATGCACACTGGAGG

TGAAGTATGGCG---AGG CTG GGTGGAAARATTTAG TGTCCGCTGTAGG
TGAAAA-TGACG----AAATCACTAAAAAACGTGAAAAAT -GAGAAATGCACACCGTAGA!
TGAAARATGACG---~-AAATCACTGAAAGACGTGAAAAAT -GAGA-ATGCACACTGTAGG)

TGAAATATTGAGCGAAGGAAAACTGAAAAAGGTGGAAAATTTAGAAATGTCCACTGTAGG

TG TATGGCG---AGG CT. GGTGGAAARATTTAG TGTCCACTGTAGG
TGGAATATGGTG----GGAARAACTGGAARATTACGGAAAAT -GAGAAATACACACT T TAGG!
GGAAARATGACG----AAATCACTAAARAACGTGAAAAAT-GAGAAATGGACACTGAAGG)
TGGAATATGGCA- AGAAAGTGAAAAGCATGGAAAAT-GAGAAACATCCACTTGACG.
TG TATGGCG---AGG TGG GGTGGAAAATTTAGCAGTGTCCACTGTAGG
TG TATGGCG---AGG. CTGAG GTGGG TTTAG TGTCCACTGTAGG!
TGAAARATGACA----AAATCACTAAAATACGTGAAAAAT-GAGAAATGCACCCTGAAGG)

TGAAAAATGACA----AAATCACTAAAATACGTGAAAAAT-GAGAGATGCACCCTGAAGG
TGAAAGATGACG----AAATCACTAGAAAACGTGAAAAAT-GAGAAATGCTCACTGAAGG

TG TATGGCG---AGG. CTGAC. GGCGG:
TGAAARATGTCG---~-AAATCACTAAARAACGTGAAAAAT -GAGAAATGCACACTGAGGG)
TGGAATATGGCG----AGAAAACTGAAAATCACGGA-———————————————————————-
TTAG----ATGAGT--GAGTTACGCTG CACATACGTTGG CCGGCATTG---—-
TTAG----ATGAGT--GAGTTACACTGAGAAACACATTCGTTGGAAACGGC-—-————-~-
TTAG----ATGAGT--GAGTTACACTGAAAAACACATCCGTTGGAAACCGGCAT -~~~
TTAT CTGAGT--GAGTTACACAGAAAAACACATTCGTTGGAAACGGG—

TTGCGCGCT-TGCGTAATCATGGTCATAGCTGTTTCCTATGTGAAATTGTTATCCGC———-
GTCCTAAGCGCACCCCG--ACCGAGTTCTGT-GTACGAAAC--CTACCAGCTCCTTCGACC
TGTTTTGTTGGCGTGGTCTCAATGCCCTCTCAACCAATATAATGGGCTCCGACCCACTGT.
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NM0084/1-331
NM0051/1-331
NM0087/1-331
NM0028/1-331
NM0083/1-331
NM0085/1-331
NM0064/1-331
NM0027/1-331
NM0056/1-331
NM0067/1-331
NM0026/1-331
NM0073/1-331
NM0061/1-331
NM0040/1-331
NM0029/1-331
NM0032/1-331
NM0071/1-331
NM0058/1-331
NM0035/1-331
NM0074/1-331
NM0065/1-331
NM0075/1-331
NM0066/1-331
NM0059/1-331
NsS0002/1-331
NM0060/1-331
NM0068/1-331
NM0063/1-331
NM0036/1-331
NM0044/1-331
NM0018/1-331
NM0062/1-331
NM0045/1-331
NM0082/1-331
NM0077/1-331
NR0013/1-331
NM0081/1-331
NP0017/1-331
NG0041/1-331
NP0020/1-331
NR0023/1-331
NG0018/1-331
NP0010/1-331
NP0005/1-331
NR0009/1-331
NR0004/1-331
NR0018/1-331
NR0021/1-331
NP0024/1-331
NM0025/1-331
NG0039/1-331
NP0009/1-331
NM0076/1-331
NR0005/1-331
NP0001/1-331
NM0001/1-331
NP0021/1-331
NR0003/1-331
NG0042/1-331
NR0002/1-331

TCGCACACCCGACATAGGGCATCGTAACGCCTGTAATAGCTGACACCCG--CTA-CGTA-CGCTATTCGCGC AGGCCTACGCCTTTGCTTGTC

~CGCTGCCCTGATTACCACTGCTCCCACGCCTCTCGGT

GACGACTACAGCCGCTATTCAGGTTACACCCAAACCCGAGTCATTCGTGCCTGCTACCAGCTC-CATTGC-TACACGCGGCTAA- -~~~ CCCCTGATGACGGAGT--ATTTGCTGCGCAGCTCCCAT-TGCCCCACC

TTCTGACCTCAGAACTCAGGAGG--TGGATCAGAGCCCCAGACTGCTAGACACATGCCCTG GAGG. GCTTGCCTGCAG-AGAGTGCTCTGACCA-—————~ CTGGAACTCAGGAAAGAGC-—-TAGT-——————————=—-

TTGGTCAC-TGTGTTAAGTAGGGTGTGGTGGCATTCACCTGTAGTCCTAACATTCGTGAGGTAGAGGTAGGAGGGTC-~-AGAAATTCAAAGTTATCTTCAGCTGCTCTATAGTTCAAGGCCGGGG(

AAGAGCACCTAACTACACT---AAAGCCGGACCGTTGGCGCTCACCCTGTGGTG--ATCAATCTCCCACCACGCTTTCCACCTGACAGCG---CAGAGTATCCCAGTCAATATAGTTCCGCATCAAGACAG, CGTCAATGACCC-----

CAGCAGCAGCAACAGTAGTAGAAGCAGCAGCACTAACGACAGC-ACAGCAGTAGCAGTAATAGAAGC-AGCAGCAGCAGCAGTAGCAGTAGCAGCAGCAGCAGCAGCAATTTCAACAAC-AGCAGCAGCAGCT--———————=———==—-

CTCAAAGAACAAAGATCCTGCTAACCACGG-CATTAGGGAACGG-GCGGTACCGATGCCGTTCTGGT--CGACAGCGCATAGCCC-CGGTCCAACTCCGTGCGGCCTAGAACGTTACGTACCCTAGATGC-AGCGGAACTCTTGCGTGTCG—————-

TACACACACTAACACACACACATGCACACATACACACAGACACATGCACATATACACACACATACACACGCATACACACACATACACACACATATACACACACATGCA-CACTTACACACACATGCACACACAC

TTCCTCATGCATGAGCTTGCATGAGCTTGCATATGCTCACATACCACACATGTGAGTCTACACACAATG-AGC-————-. CACACACACACACACATCACTAACCGTCTCGGTCTGGCCATCATAGTCTGG - —— -~ - === == ————m ===

AC-TGTGACAACAATGTGGAACATTGTGACATCACAGTGGCGAACAGCGACAAAACAGTAAAGGAGTCTGACAGCACAGTGGAAARACAGTGACAGAACTGTG-GAGCACTGTGATTGCACCATGGAGCA-TGTTACACCAC

TACACACACACCACATCATGCATACACACACATCAATGCA-ATGCATACACACATACATACACATACTAACACATACACTCACACACACGCAGAAAT---TATGCATGCATCATCGACATTGGCACGCA:

AC-TGTGACAACAATGTGGAACATTGTGACATCACAGTGGCGAACAGTGACGGAACAGTAAAGGAGTCTGACAGTACAGTGGAAAACAGTGACGGAACTGTG-GAGCACTGTGATTACACCATGGGACA-TGTTGCACCAC

TGTGAACAACCAATCAACGGTGGCAGTGCAGCATGG----TCTA-TCAGGTTGTA-CAGGCCAGAGCGAGACTAAAAT--CAATTCC-----~. ACACAAACCCTCTTACCAA----CGTTAGGACCATGATCT--CTCG(

AACGCTCACCTGGTCCGGACCCTCG--ACGCCTCTATCCACTTCCACCTAGCCAA-TGGA-CGCTCGACGAGCTTACAGCTCCGCGCGCACTCCTAATCTGTAACCTTARACT —————~ GCGCATTGGCCCCGATTCCA!

CCTAAGCTGTCAGGAGCTTCTGATACCACCGGCCTTAGTGCCAGCTGTGCCAT-CGC--CGGTGCTTC--GACGCTGCTTGTCCGCGGCATAACTTACTATCATG--CAGCACACCGTTAATCGCTTTCCTTTTGCT

CCTAAGCTGTCAGGAGCTTCTGATACCACCGGCCTTAGTGCCAGCTGTGCCAT-CGC--CGGTGCTTC--GACGCTGCTTGTCCGCGGCATAACTTACTATCATG-~CAGCACACCGTTAATCGCTTTCCTTTTGCT

AC-TGTGACAACAAAGTGGAACATTGTGACATCACAGTGGCGAATAGCGAC, CAGTAACGGAGTCTGACAGCACGGTGG CAGTGACAGAACTGTG-GAGCACCGTGGTTGCACCATGGAGCA-TGTTACGCCAC

AC-TGTGACAACAATGTGGAACATTGTGACATCACAGTGGCGAACAGTGACAAAGCAGCAAAGGAGTCTGACAGCACAGTGGAAAACAGTGACAGCAGACTGTGAGCACAGTGATTGCACCATGGAGCA-TACTACACCAC

GCAC-TGTGACAACACAGTGGAGCAGCTTAACACCACAGTGTAGCACTATGACATCAGAGT TGAGCACTGTGTCACCACTCAGAGAAC-TATGACACTACAGTA-GAGCACTGTAACATCACAGTCGAGCACTGTAACACCACATATGCGCAT —~——=—==—========—-

AA-TGTGACATCACA-TGTAGCATGGTGAAATCCCAGTGGAATACTGTGACACCACATTGGAGCACAGTGACGCCACAGTGGAGCA-TGTGGCACCACAGTG-GAGCACTGTGAAACCACAGTGGAGCACTGGG

AA-TGTGACATTACA-TGTAGCATGGTGAAATCCCAGTGGAATACTGTGACACCACATTGGAGCACAATGACACCACTGTGGAGCA-TGTGACACCACAGTG-GAGCACTGTGARACCTCAGTGGAGCACTGGT

CAGATAGCATTCCGGCTC-CCTAACGACTGTGACGCTGGTCTGTGCAGCAACG—-

CCAATGACTTCACACCAATTGCTT-TCCTGCTCTACCCA-GATGTACAGATGTG-GTCTTC GTAACCTTGTTCGTGCGCAATACTGCCCG:

CAGTGCTCACAT-ACAGCGCACACATACAGTGCTCCATATA-GTGCACACATACA-GTGCACACATACG-GTGCTCACGTACA-GTGCTCACATACAG-TGTACACATACAGTACACACATACAC-TGCACA

AGCACCTGTGACACCACAAGGGGGCCTTGTGACTGCAC. CTGTGTCACAACAGTGGAATGCTGTGACAGTACAGTGGAGCAGTGTGACAAAACAGTG-GAGTACTGTGACACAATAGTAGGGCAATATGAC

CTGAAAATCACGG TG--AGA-AATACACACTTTAGGACG----— TG TATGGCG---. CTG GGTGGAAARATTTAG TGTCCACTGTAGG

TGCGCAGACGCACACACATGAGCATGCGCAGACGCACATACATGAGCGTACGCAGACGCACACACATGAGCATGCGCGCGCG--—-———-. CACACACACACACACACACACACACG--AGTGGCAAGGCGGGGG:

TGCGCAGACGCACACACATGAGCATGCGCAGGCGCACATACATGAGCATACGCAGACGCACACACATGAGCATGCGCGCGCACACACACACACACACACACACACACACACACACACG--AGTGGCAAGGCGGGG:

ATGCGCTGACGCACACACATGAGCACGCGCAGACGCACATACATGAGCGTACGCAGACACACACACATGAGCATGCGCGCGCG-———~~~~——~, ACA-ACACACACGCTCACACACACG--AGTGGCAAGGCGGGG

TCTATAAGCGTCTATAAGCGTCTATG--AAC-GTCTAT. C-GTCTAT. CGCCTAT. CGCCTAT. CGCCTATACAAGCCTA----T. CGCCTATACACGTCTATG-CACGACTATACACGTCT
GTCTATAAGCGTCTATAAACGTCTATA--AAC-GTTTAT. C-GTCTAT. CGCCTAT. CACCTAT. CGCCTATACAAGCCTA----TAAACGCCTATACACGTCTATA-CACGCCTATACGCGTCT

GGTCTCTAAGCGTCTAAAAACGCCTATA--AAC-GTTTAT. C-GTCTAT. CGCCTACAAACGCCTAT. CGCCTATACAAGCCTA----TAAACGCCTGTACACGTCTACA-CACGTCTATACACGTCT!

AGAGTAACATAGGCACAGGTGTGGAGAGTAACACAGGCACAGGT--GTGG-AGAGT ----ACACACAGGCACAGGCGTGGA-GAGTACACACAGGCACAGG-TGTGGAGAGCACAC-ACAGGCACAGGTGT!

TCTATAAGCGTCTATAAACGTCTATA--AAC-GTCTATAAGC-GTCTAT. CGCCTATAAGCGCCTAT. CGCCTATACGAGCCTA--~--T. CGCCTATACACGGCTATA-CACGTCTATACAC

AGAGTAACACAGGCACAGGTGTGGAGAGTAACACAGGCACAGGT--GTGGGAGAGTG---ACACACAGGCACAGGTGAGGA-GAGTACACACAGGCACAGG-TGTGGAGAGCACAC-ACAGGTGCGGAGAG:!

GGCTGTAGAATCTGATGGAGGTGTAGGATGGATGGACAGTATGACAAAAG————— GG--TACTAGCCTGGGACAGCAGGATTGGTG-GAAAGGTTACAGGC-AGGCCCAGCAGGCTCGGACGCTGTATAGAG

GAATCCCAACAATTACATCAAAA---TCCACATTCTCTTCAAAATCAATTGTCCTGTACTTCCTTGTTC-ATGTGTGTTCAAAAACGTTATATTTATAGGA-TAATTATACTCTATTTCTCAACAAGTAATTGGTTGTTTGGCCGAGCGGTCTAAGGCGCCTGATTCAAGAAATATCTTGACCGC

TAGACCAGGTGAGCAGGAGGCGGACAGCAGGG AG--TCTGGAGGGCAGG. GAGCTCTGAGGAG----—— CCATAGCGGGTAAAGCTG---———---——. AGGATGGGTTT--AAGC---. GCCAGA--CCAAGGAC. TGTGCACACTGC--——-

TTCTAGAATCAAACGTACCACAAACAGATTCAGGAATACTCGGAATTCAGTATAAACTAAAGCAACTTTTTAAAATTAG-TAGGGAGAACCAGGTGTGGTGGTACACACCTTTAATTCCAGCACATGGGAGGCAGGGGCAGGCAGATCTTTGTGAGT TCAAGGGCAGCCTGGTCTACATGGCAAGTTCCAGGCTAGC

TCTTACTACAATTTTTTTGTCTAAAGAGTAATACTAGAGATARACAT. TGTAGAGGTCGAGTTTAGATGCAAGT TCAAGGAGCGA-AAGGTGG--ATG-GGTAGGTTATATAGGGATATAGCACAGAGATATA-~TAGCARAAGAGATACT TTTGAGCAATGTTTGTGGA.

ATCTGAAAGTTTCCCCATGTCCAACAAGACTAGAACAAACAAGTCCTGCGTAGTCGCCTGTCGGTTTCTGGGTGTGGTGGTATAGCCCTGTAATCCCAGCATTTGGGAAGCTGAGGTGGGAGGATC--~GGGAGTTCAAGGTCAGCTTGGGCTACTTAGAAAGACCTTGTCTCAA.

TCTTTCTTAGAAAACGTTGTTAGAGACGCTGTCACTTACACTGAACACGCTAGAAGAAAAACCGTCACTGCTATGGA-CGTTGTCTACGCCCTC-AAGAGACAAGGCAGAACTCTCTATGGTTTCGGTGGTTGAAC. TATTTATCTT. TT. GT. GCTGCATG(

GTTCCAGCTGACACCGAA-ATGGAAGAGGTAGATTAGGTAGAACATCATGGCCTTGAATAGGTTATAAACAAAACATAATATAACGTATAGGTA--TT-CGAAT----GAATAAATAAGTATGTAAATAGGGCATCTGCATGGAAATA-ACTGGGTARAACATTACAATGTATTTTT T TAGAL

TGGTCCCTGTTTTCGAAGAGATCGCACATGCCARATTATCARATTGGTCACCTTACTTGGCAAGGCATATACCCA-TTTGGGATAAGGGTAA-ACATCTTTGAATTGTCGARATGAAACGTATATAAGCGCTGATGT TTTGCTAAGTCGAGGTTAGTATGGCTTCAT-CTCTCATG

TATTACCTTCTGCTCTCTCTGATTTGGAAAAAGCTGAAAAAAAAGGTTTAAACCAGTTCCCTGAAATTATTCCCCTACTTGACTAATAAGTATATA-AAGACGGTAGGTATTGATTGTAATTCTGTAAATCTATTTCTTAAACTTCTTAAATTCTACTTTTATAG

TTAGTCTTTTTT"

TATTAACTACCCATTTGGATTTAATATCCGATCCAAGACTCTATACCTGATGGTTGGAAGTTCTAAAACAATTTATTTTGTTGGGG-AAGACAAAGAGTCGAATAAAACGCTAAT-TAATTTTATTGTACATCTTGGCTTCAGTGCCATTATT--AATTTTCAAGCTTTAAAGTTTTAGTTCAAGTCTGGAATCGTAGC.

TTATACATTTAAATGCTAG TTTA--AGT. CATTTAT. T. GT. TAGTTTTAGGAATATGAGTAAATAGTTTTTTTTAT-GTAAAAAACATT-TTATCA--ATTTCATTTATTCATTTTAGT TAAATTTTTCATTCACAAAAAACTTTTTTTTGGTAAAATAAAGACTTTATAAAG:
CTTTARAGCAGCATTCAGARATAATTTTCGATCGTT. TACAG-ATACTTTCTTAAATAACATAATATTAATATAATARATAATATT-TTCTTA--AATTATTAATGTGTTTGCTTGTTATTAATGTGTTTTCATGCATATTTTAAAATAAT TTGTTCTGAAATCAATCGA
AGAGTCCCTTGCCCCGCACGACACTTTCACTGCTTT. GGATGTTCGCAC. GAAC. T. TAT-ATATTTTTGTATTAACCTCTTCTTTAATTTAATAAATGTTGAG-CTGACA--ATTAAAATAAGATTATTTTTATTCCTTCTCTGGCAGAATTAGTATTTTTACATATGAT-TTACCGTTTATATGTA!
AAGTGTTCACTGGGGAACTGCACAATATGACTGCTTTTAACCGTAGTGATTTCAAATATTGAGCCATGCTGTTGCAGTCTTAAAAACTGGAGACCTAAGGGCAGCTTTCTTCTAGTCACCCAATCCAGCACTTTTTT. TCAGTAAAACTCTTCGACCACCAAGGA,
GTGTGTGTGA-GTGTTTATGAGTATGTGTACACATG-TTCGTATAC-ATGTGTGT-ATACAAGCAT-GTA--TGCAT-ATGTGCGCG-TGTATGCGTGT-TCATGAGTATGTGT-GTACATGTTCGTATACA-TGCGTGTATGCAT-GCATGC
TTTTGAAAAGCAAGCAT GATCTAAACAT. TCTGT. TAACAAGATGTARAGATAATGCTAAATCATTTGGC-~TTTTTGATTGATTGTACA-GGAAAATATACATCGCAGGGGGTTGACTTTTACCATTTCACCGCAA-~~TGGAATCARACTTGTTGAAGAGAATGTTCACAG—-
ACAAAGAAATATATATTAAATTAGCACG----TTTTCGCATAGA----ACGCAACTGCACAATGCC, GGTAAAAGTGATT. GAGTTAATTGAATAGGCAATCTCTAAACGAATCGATACAACCTTGGCACTCACACGTGGGACT-AGCACAGACTAAATTTATGATTCTGGTCCCTGTTTTCGAA

TAGCTTGTGTCACCTGGCATG-GCATGTGTCACTTGGGCATAGCATGTGTCACCTGGGCATAGCA--TGTGTCACCTGGGCATAGCACGTAT-C-ATCTGGGCATAGCTTGTGT-CACCTGGGCATAGCACGTGTCATCTG-GC.

TTTTAAATCCT. T. TAATTCATATATAAGAGCGCATTTAGAAGTAT. TTTTGCTGTCGGCCATACTAAGGTGAAAA-CACCGGATCCCATTCGAACTCCGAAGT-TAAGCGCCTTAAGGCTGGGTTAGT-ACTAAGG-TGGGGGACCGCTTGGGAAGTCCCAGTGTCGACAGCCTTTTTATTTTTTTT

AATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGT TTAATAATCATATTACATGGCATTACCACCAT-ATACATATCCATATAC-ATATCCATATCTAA-TCTTACTTATATGTTGTGGARATGTAAAGAGCCCCATTATCTTAGCCTARAAAAACCTTCTCTTTGGAACTTTCAGTA-ATACC

AAGACCGAGTTACTAAACAGGACTATTACTGCCACGCCAATT--GTAGCGCGCAGCACGTCTCTGCTCACCACTATCCTCTTGTTGACGCTATTGCT-ACTATCGCATCCCGCTTAGCTATACCTACTGA-TGCTCAATTACCCGCC

TCTTTGTATGATAATGTCCATACAATATATTAATATTG CAGTCATGCCATAGAACAA-TTTTGTTCAGTAAATG-TACATCACATAAGTAACTT-CAAATTTTAGAAGGGATAATTTTAAAGTCAGGCAGGCAGCATT. GAAGAATGAGG TCAATTTAAAATTCTTTTTTAAAC

TTACATATTTTAGCTATTTGACTACTTTAATGCTAGTAAATTAARATGAATTTAATTCATTTTCACTTTAAAACACTTATTTTAAT-A-ARA-TATATG-ATTTTA--AAATGATAAAATATTTTTTAAGAGGTAAATTTAAGARATTAGTTAAATTTTAAAGAAAAAGCATCTAAAAATGGA!
TTTTCGAGTTAGCGTGTTTGAATACTGCAAGATACA-AGATARATAGAGTAGT TGAAACTA-GATATCAATTGCACACAAGATCGGCGCTAAGC-ATGCCACAAT-TTGGTATATTATGT~AAAAC-~~ACCACCTAAGGTGCTTGTTCGTCAGTTTGTGGARAGGTTTGAAAG-ACCTTCAGGTGAGARAATAGCATTATGTG

AGATAAGAATTAGATGTTTATATTCTGCTAATTTCACTGGTGAAAATGTAGCAAATAGAAATTATTTTAATCTAATAA-ACTAGCAAATAGTATTTAAAAC-A-AAAATATTTG-TTTTTT--ATGTTGTAAAATGTTTTAAATTAGAT., TTTAC. TTTAC. TTTTCAAGC. TAGGTTCT. TG
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NP0014/1-331
NM0052/1-331
NRO010/1-331
NR0001/1-331
NG0031/1-331
NP0004/1-331
NP0006/1-331
NP0018/1-331
NR0015/1-331
NM0057/1-331
NG0010/1-331
NG0015/1-331
NG0011/1-331
NP0003/1-331
NR0022/1-331
NG0001/1-331
NG0030/1-331
NG0016/1-331
NS0011/1-331
NR0O011/1-331
NM0055/1-331
NR0014/1-331
NG0036/1-331
NS0001/1-331
NR0016/1-331
NS0007/1-331
NP0007/1-331
NR0012/1-331
NG0013/1-331
NP0002/1-331
NG0037/1-331
NP0025/1-331
NM0007/1-331
NG0017/1-331
NG0035/1-331
NP0016/1-331
NG0021/1-331
NS0010/1-331
NG0007/1-331
NG0012/1-331
NR0008/1-331
NS0013/1-331
NR0006/1-331
Ns0012/1-331
NG0025/1-331
NP0012/1-331
NG0033/1-331
NG0003/1-331
NR0019/1-331
NR0024/1-331
NS0008/1-331
NG0005/1-331
NG0020/1-331
NG0027/1-331
NG0028/1-331
Ns0014/1-331
NG0009/1-331
NP0015/1-331
NP0008/1-331
NS0003/1-331

GCGGCGATTTTTTAAAATGTATGCATGTAAATAAAACCTGTGCTGGTTAGGCATCATCATTTTTGGTCTCATCGTTCTATGAT. TATA-AATA-

T. TATGTACACGAGTACATAGCATTTAGTTTTCATAGCTAAGCAAGTCTAATTTTAATGAATCTAGCCARATTT.

TGTGTGCACGTGCGCGTGTGCATGTG-TGTGTGCGT-GTGCGTGT-GTGTGTGCAT-ATG-~TGTGT-GTGCGTGTG-TGTGCGCGCGT-GTGTGTGTGTGTGT-GTGTGTGTGTGTGTGTGTTGAGACAAGGTCT

TTGATAAGAACTTCAATCTTTGACTAGCTAG--~CTTAGTCATTTTTGAGATTTAATTAAT-~ATTTTATGTTTATTCATATATARAACTATTCA-~~ARATATTATAGA-ATTTAA-~ACATTTTAACATCTTAATCATTCATAAATAACTAARAATCAAAGTATTACATCAATARATAACTTTTACTCAATG'

GCCGGGCTTGTTTTCCTGCCTGGGGG GACCC--TGGCAT TGGGCCC-CCCCCAGAAGGCAGCAC. GTCAGCCTTGTGCTCGCCTACGGCCATACCACCCTGAAAGTG--CCCGATATCGTCTGATCTCGGAAGCCAAGCAGGGTCGGGCCTGGTTAGTACTTGGATGGGAGACT

GGCCCCAGCGAGGAAGAAATGATTATGCAACAGATGATGATCAAGCTCAGCATGGGCATCAGTGGACAGTGCTTCAAGGAGTGTGTGACTAG- ~CTTCAGCTCTGGCCAGATGGTTCCCCAAGAGGCAACTTGCAT TCAGTCATGCGCCAAGCGCCAACAGTCTGCATTCATGGCCATGAAT

AGTTCATAGGTCCATTCTCTTAGCGCAACTACAGAG--AACAGGGCACAAACAGGCAARAAAACGGGCACAACCTCAATGGAGTGATGCAACCTGCCTGG-AGTAAATGATGACACAAGGCAATT-GACCCACGCATGTATCTATCTCATTTTCTTACACCTTCTATTACCTTCTGCTCTCTCTC

TTTGTTTGACAARRATGTTGCCTAAGGGCTC-TATAGTAAACCATTTGGAAGAAAGATTTGACGACTTTTTTTTTTTGGATTTCGATCCTATAAT-CCTTCC-~TCCTGARAAGAAACATATAAATAGATATGTATTATTCTTCAARACATTCTCTTGTTCTTGTGCTTTTTTTTTACC

CTAGCCAGGGCAGCATAGTGAAGCT--CTGCTTAC. GC. C. CCGGG. CCTTCAGTTTTTGAATAAGACACATATGTGAGTTCCTAAGATGCA-TGAA-CGCCACAGAGAC---CACTCAAGAGAGCACCAAGGCTCCTACGCAAAGGCAAGT-TAGCTCCAGAGCCCTAGGAGAGCT

TTTTCTTACCTTTTACATTTCAGCAATATATATATATATTTCAAGGATATACCATTCTAATGTCTGCCCCTAAGAAGATCGTCGTTTTGCCAGGTGACCACGTTGGTC G. TC-ACAGCCGAAGCCATTAAGGTTCTTAAAGCTATTTCTGATGTTCGTTCCAATGTCAAGTTCGATTTCGAARATCATTTAATTGG-

TGTGTATGTGGTGTGTATGTGTGTGTATGTG-GTGTG-TGTGTGTAT-GTGTATGT-GTGTGTGCGT-GAA--TGTGT-GTGTGTGTA-TGTA-GTGTGT-GTGTGTGTATGTG--GTGTGTGTGTGTATGTGGTGTGTGTGTGTG:

TATCACATAATGAATTATACATTATATAAAGTAATGTGATTTCTTCGAAGAAT -—ATACT. TGAGCAGGCAAGATAAACGAAGGCAA--~AGATGACAGAGCAGAAAGCCCTAGT-ARAGC-~GTATTACAAATGARACCAAGATTCAGATTGCGATCTCTTTARAGGGTGGTCCCCTAGCGATAGAGCACTCGATCTTC
AACGGGAAAAAGTTAGTTGTGGTGATAGGTGGCAAGTGGTATTCCGTAAGAACAACAAGAAAAGCATTTCATATTATGGCTGAACTGAGCGAACAAGTGCAAAATTT-AAGCATCAACGACA-ACAACGAGAATGGTTATGTTCCTCCTCACTTAAGAGG. CCAAGAAGTGCCAG TAACATGAGC.

CCCTAGCGATAGAGCACTCGATCTTCCCAG GAGGCAGAAGCA-GTAGCAGAACAGG-CCACACAATCGCAAGTGATTA-ACGTCCACACAGGTATAGGGTTTCTGGACCATATGATACATGCTCTGGCCAAGCATTCCGGCTGGTCGCTAATCGTTGAGTGCATTGG!
TATATAAATGCAAAAACTGCATAACCACTTTAACTAATACTTTCAACATTTTCGGTTTGTATTACTTCTTATTCAAATGTAAT. ~GTATCAAC-. TTGTTAATATACCT-----— CTATACTTTAACGTCAAGG-AGAAAAAACTATAATGACTAAATCTCATTCAGAAGAA(

77777777777777777777 AAAAATTTATAAATAATTTT. CAATAAATAG CAAATAAGATTAT, CTTAC. TGGCCGGTGGTARAGGTGGTARAGGTATGGGTAAAGTCGGAGCCARGAGACACTCCAGA--AAGTCTAACAAGGCTTCCA--~TTGAAGGTATTACT-~AAGC-~CCGCTATCAGAAGATTAGCTAGAAGAGGTGGTGTTAA -

ATATCTTCCCATTTTTGGGTGGTGCCGGACCATACTACTCTTTCCCT--GGCGACTATGGTATTTCTCGTGATTTGCCTGAAGGTTGTGAAATGAAGCAAC-TGCAAATGGTTGGTAGACATGGTGAAAGATACCCTACTGTCAGTCTGGCTAAGACTATCAAGAGTACATGGTAT--AAGTTGA

TGAGC. C. CAAGCGCAGCGAACAAGCT. CAATCTGCAAT. GTGCAAGT-TAAAGTGAATCAATTAAAAGTAACC---AACAACCAAGTAATTAAAC-T. CTGCAACTACTGAAATCAACCAAGAAGTCATTATTGAAG--ACAAGAAGAGAACTCTGA--ATACTTTCAACAAGTC(
GG CCAAGAAGTGCCAG. TAACATGAGCAACTACAATAACAACAACGGCGGCTACAACGGTGGCCGTGGCGGTGGCAGCTTCTTTAGC-AACAACCGTCGTGGTGGTTACGGCAACGGTGGTTTCTTCGGTGGAAACAAC-GGTGGCAGCAGATCTAACGGCCGTTCTGE!
AACTGCTTCCTCTGTATAAATCAARAGCAAAATGTAAATAGCGTTGACAAGTGATTACAGAAGT TAGGTGAGGTTAATTACCAATTTTTTT-TTTTAA-~AATTGGTGARATAAGATTACGT TTARAGGAGCAT TAACAGGTTTACTCATAACAATCATTTTCAAATTTCCCTAT(
TACGCTTAGATTTTAACTTTATCCC-ACTTTAATTTCAA-GCGT. TAA---AAATCCCACAC TTAAGTGGAAATTGATGCAAAAATTTCACTA-AAATTT--AATTCAATAAATATGTAAAAATGGTTGATCTCTATAATTTATGAGATTTGCATTATTTAAGGCTTATAAGAAATT

TGCGTGTGGTGCGGATGTGTGCATGTGTGTGTGTGGTACAGGTGT-GAGTATGT-GTGTGTACAC-GCA--TGTGT-TTGTGTGTGGTGCAGATATGT-GCATGTGTGTGTGTGGTACAGGTGTGTGAGTA-TGTGTGTGT

AAAAAGGAAAGGTGAGAGGCCG-GAACCGGCTTTTCATATAGAATAGAGAA-GCGTTCATGACTAAATGCTTGCATCACAATA-CTTGAAGTT-GACAATATTATTTA-AGGACCTATTGTTTTTTCCAATA-GGTGGTTAGCAATCGTCTTACTTTCTAACTTTTCT-TACCTTTT

TTCCGATGCTGACTTGCTGGGTATTATATGTGTGCCCAATAGAAAGAGAACAATTGACCCGGTTATTGCAAGGAARATTTCAAGTCTTGTARAAGCATATAA-ARATAGT TCAGGCA-CTCCGARATACTTGGTTGGCGTG-TTTCGTAATCAACCTAAGGAGGATGTTTTGGCTCTGGTCAATGA'

GAAGCCCATAGAGGGCTATGGTGAACAACG. TATC-TTCCGTTCAAAACTGGAAAGAAGCTTTCTGAGAAACTGCTCTGTGTTCTGTTAATTCATCTC-A---CAGAGTTACATCTT-—-—~ TACCTTCAAGAAGCCTTTCGCTAAGGCTGTTCTTGTGGAATTGGCAAAGTTATATTTGGA

TCAAGTTCGATTTCGAAAATCATTTAATTGGTGGTGCTGCTATCGATGCTACAGGTGTCCCACTTCCAGATGAGGCGCTGGAAGCCTCCAAGAAGGTTGATGCCGTTTTGT-TAGGTGCTGTGGGTGGTCCTARAATGGGGTACCGGTAGTGTTAGACC-TGAACAAGGTTTACT. TCCGT. GAACTTCA:

GGCTTCTCATGGTGGCTCTGAGAAGCCAGGGAA---ACTGGAGGTGGGAGGGGCCTC-TCGGGACTCCACTGGGCTTGGTGCA-TTGGAAGAGGGCCTCATCTCCAG--TTGAGGCAGGAACCGCAGG-GTACCTCT--GATTTCAGACTCCGATCGCAGGGTCCCTGCAGACTGGGGACAGG--AGAGTCAGGC-CTCGTCT

AGCTTTCCTTTTCCTTTTGGCTGGTTTTGCA-GCCAARATATCTGCATCAATGACAAACGARACTAGCGATAGACC-~~TTTGGTCCAC-~~TTC-ACACCCAACAAGGGCTGGA-TGAATGACCCAAATGGGTTGTGGTACGATGAAAAAGATGCCARATGGCATCTGTACTTTCAAT,

TAAGAAATTTTAAATTTAACGCGGAAG---CTTCATTTTTAGATAAAATTTATTAATC-ATCATTAATTTCTTGAAAAACATTTTATTTATTGATCTTTTATAAC-AAAAAA--CCCTTCTAAAAGTTTATTTTTGAATGAAAAACTTATAAA-AATTTATGAAAACTACAAA-AAATAAAATTTTTAA

CAGAGCGGTGGTAGATCTTTCGAACAGGCCGTACGCAGTTGTCGAACTTGGTTTGCARAAGGGAGAAAGTAGGAGATCTCTCTTGCGAG--AT-GATCCCGCATTTTCTTGARAAGCTTTGCAGAGGCTAGCAGAATTACCCTCCACGTTGATTGTCTGCGAGGCAAGAATGATCATCACCGTAGT(

TACTAGCTTTTATGGTTATGAAGAGG TTGGCAGTAACCTGGCCCCAC. CCTTCAAATGAACGAATCAAATTAACAACCAT-AGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATC-TATTAACAGA'

CCT TGTTTTGGCTCTGGTCAATGATTACGGCATTGATATCGTCCAACTGCATGGAG--ATGAGTCGTGGCAAGAATACCAAGAGTTCCTCGGTTTGCCAGTTAT TAARAGACTCG-TATTTCCARAAGACTGCAACATACTACTCAGTGCAGCTTCA-~~CAGAAACCTCATTCGTTTATTCCCT?

TCTGCGCACGGGCTTTTTCTGAGAGA---CCCATGTTTCCTTTTTACTTTTATAAACAGT--TTACATGCT--ATGTTTCTAGAAGGAGGGGAARACCTA----A-TCCCCCTAATCCAATGGCGGGGAGGAARATAGGGTGG--GGTGGGGTGGGGTGGGGTGGGGGGA--GGGAAATATCTCG-CTACT
TATCGTGTCCGGTG-CTGGCTCTCAACGCGTGGCAGTAAGCTCGCCGTTAGTC-ACTCTATCTGCATTTTTC-TGTATAACGGTTCACGTTTATC---CCTGCATCA-CGCATTCTT-~-—-——~ TAGCTCGTACCGGCCTCGCT---TGCATTCTACTCCC

TTGACTAAGTTATTATATGAAACTGCTTTGTTGACTTCCGGCTTCAGTTTGGACGAACCAACTTCCTTTGCATCAAGAATTAACAGATTGATCTCTTTGGGTTTGA-ACA-TTGATGAGGATGAAGAAACAGAG-ACTGCTCCAGAAGCATCCACCGCAGCTCCGGTTGAAGAGGTTCCAGCT--GACACCGAA,

CATTGGTGACTATTGAGCACGTGAGTATACGTGATTAAGCACACAAAGGCAGCTTGGAGTATGTCTGTTATTAATTTCACAGGTAGTTCTGGTCCATTGGTGAAAGTTTGCGGCTTGCAGAGCACAGAGGCCGCAGAATGTGCTCTAGATTCCGATGCTGACTTGCTGGGTATTATATGTGTGCCCAAT.,

AGTTATCATGACCTCTTAGTTGGCTATGGTCTATGGGTAAT--TATTA-ACCATTATTTAATTC. G TA-TATAATATTAAGCATT-AGTTTA--AAATAA-AATGT-TATATTATTTGATAAAGTGACCAAGGGTATATGTTTTGTTGTTTAATTTTGATTTTTTT-—~"

GTGAGGTGACCATCGAGCAGACTGGCGAGCCGGC. GAAGTCCGCCGAGGAGCC. GAC. —~ACCGCCAGTCAGTAG TAAGTTGAGATTATACTAAAACCG-ATAAA-ATGCTAGT--GAACTCCTATGTTTAGATATTCCAAARACCTAT---CAAATTTAAGTTCTTGTTAAATTAACAAGTTA,

TATCTTTTGTCCAATATGAAGAAGGTCAACATGAGGATGG--GAATGATAATT-GATAG-CATATAATATTATTCTTTTGTCAATACTAGTGTTTAGGATATT-TCTACT--AATACCTAATACCTCAATGGTCCAATACTAAATAAGGTACTATTCATTGTATTGATTGATTCTGCATTTATCT--"

AGTTTGTCAAGGAGAACCCATATTTCACAAACAGAATGT-CTGTCAACAACCAACCATTCAAGTCTGAGAACGACCTAAGTTACTA-TARAGTGTACGGCCTA-CTGGATCAAAACATCTTGGAATTGTACTTCAACGATGGAGATGTGGTTTCTACAAA-~~~TACCTACTTCATGACCACCGGTA,

TTGAGTGCATTGGTGACTTACACATAGACGACCATCACACCACTGAAGACTGCGGGATTGCTCTCGGT--CAAGCTTTTAAAGAGGCCCTACTGGCG-CGTGGAGTAAAAAG-GTTTGGATCAGGATTTG-CGCCTTTGGATGA-GGCACTTTCCAGAGCGGTGGTAGATCTTTCGAACAG(

TTTTTGTTTCGTCGTGCTTGGCATAATGGAAAATC----ATCCTTCTTTGTGATAAAATAGAAAACAAAATGGCTAGTACAATCTTGAGACACCCGA-TGCTGGGTT-TTGGGTACAAA--G-ACTGCCAATACGTCCATCCCCTA-TCGAATTACCAA--ATATTGTTTTCTAATTTGGGTATTAAGTTCC

TATATTATTATTCAATAGAAGTAATAAAGAAAAAGTTGGTAAAGCAACTTAACAGT. GGTAATGATTG G---TTTTTGAACATCT--------. AAGCTATATGTTGATGGGTTTACAATTTTACCATTAGTACTCATGCCTAGTACTTTTCTGTTCGTCCTTAATGTCCGCGAT.

TGAGAACTAAACACTTGAAT--TCAGATATAAGTATTATAATTCAGGAATCTGAGATTTACGGAATTATAAATCCAGATGGAC-TAGAGCATGCCCAA-GCGTAAGTAAACGGTTTTTCARAGACTGGAGA-~~GATGTTTTGGGTGAGT TCGATTTTAGGTGTTGAGTATATARAG-AGTG

TTTAGAGCAAGCGCCTTTGTGAGCCCTCCCGGTTACGACGCCTTGGCAATGTAGCAGATAACTCTGCACTTCTAGAATCATTCCACTACGACATTTGGCTCATCACC-AGCT-CGCGAG TGT--~ TAAGCCAACAACCAAGAATGCGTAACATT. GAATACAGTTGCTTTCATTTCGGCGTGA'

AAGGATTTATTAAATTAATATGAGTATTCTAGTCTTTAGCTCATTAC. TACAATGCAAT. TTAGGAACAATTAAGTAGG-----—— GGAATGATGATGGA-TGATGTTGGATGATGATGGCTCCTTTACTTGTCCTTGCCGTTGGGTG--CTCCGTTCTCCTTGCCCTTCACCTCGCTTTCATT

TGCAGTTGTCAGTTGCAGTTCAGCAGACGGGCTAACGAGTACTTGCATCTCTTCAAATTTACTTAATTGATC---AAGT---AAGTAGCAAAAG---GGCACCCAATTAAAGGARATTCTTGT TTAATTGAATTTATTAT -~GCAAGTGCGGAAATAAAATGACAGTATTAATTAGTA.

AGAGCAACGATTCACTTTTATTATAACAAAG--ATTARAAACATACTCTTTTCTTA-A-ATACTCCAGCTAGTCACACCATTTACTTCATATCAGCCCTT-TCTTCA-~GTGCATTTTATTTT-~TTCTATGAAATCTTGTTTACTCTTCTTCATACARAATATTTTATCTCACTTTTAATGCT

CTCCATGGTGGTTGATTACAACAACACGAGTGGGTTTTTCAATGATACTATTGATCCAAGACAAAGATGCGTTGCGATTTGGAC-TTATA-ACACTCCTGA-AAGTGAAGAGCAATACATTAGC-~TATTCTCTTGATGGTGGTTACACTTTTACTGAATACCAAAAGAACCCTGTTTTAGCTGC(

TCTATGTAGTC. TAA-ATAAATC T. T. G ~CAATTTTTGTATTA---TCCTTTATTATGTAATATATATTACA-TTCCGC--AACAAAATTAGCCAATTTCCGTGCTGAATTTTACATAGGTTTTATTTTTTACAGACGT-TTGAAGGGACAGTGTC.

TCT TATGCTTTTTTC-TATCGAGTGTTA--GTGTAGCAATTTTCTAAAGTGCATTGAGAGATTGAGCAGAAATGTTTAGAACTTATTCACAT-CAAATT--AACTTAAGAAAAATAATAACTTACTTAATCAATTCACAATTAGCCATTATGAATAACTARA--CT. CAT. C

CCGCTTGCCTCTCGAGATGTCCCCGGGGAGAGAGGCCGC-TTGTCGAGCTGTATTTGGAA---CCTGGGGTTTTTTCCGAACGATGCACGGAAAAACTGCCCCTTCGTGTTG--ACTTCATTCACAGGCTGGAGTTCGGAGA--GG---TGTCCGGGCATC-—-GGGTTCTTATCAAGAGGGGACCGG--GAAATCGGGGTCCTACGG?

TGCCAACGAAGGTTTCTTAGGCTACCAATACGAATGTCCAGGTTTGATTGAAGTCCCAACTGAGCAAGATCCTTCC---AAATCTTATTGGGTCATGTTTATTTCTATC-AACCCAGGTGCACCTGCTGGCGGTTCCTTCAACCAATATTTTGTT-~-GGATCCTTCAATGGTACTCATTTTGAAGCGTTTGAC

TGGACGAGAGCGTGGTCCTGGTGGAGGC. TCGGAGCAGC. - CGAACAAGGTGGCTATAGTTCCAGG--CACTT-CCTCGGCCGATACGTTCTGCC-GGATGGATACGAGG-CGGACAAGGTGTCCTCGTCGCTGAGCGACGA-CGGCGTTCTGACCATCAGTGTGCCCAATCCTCCAGG(

ACAAAGTGGCGCATGATGTGACCATGGTCGTCCTGGCGTTCCTCATGCTTGCCCTCG-ACCAAGATGGAGTCGTCCACCACCTTCACGT-TGAGCTCACTGGGCTTG-AACTGGGCGACGTCCATGCACACCTGGAATCCATCCTTGCCCACATGGGCGGTTGCCGGCCAGTGAATGTCGTTGCGGTTGGCT

AATGTCGTTGCGGTTGGCCATCTCGCGCCGCARAGCCAAAACCTGGCCGGCGGGCGACGATGGGCATATCGGCGATGCGCAAGGGCATCCGTTGATGGA-ACGGCGCTG-CTGAGTGCCAAGGG-GCAGCACGTAGCGGGAATGCGGA-TGCAATCCCAGTCCAAGCTCGTAGATGGGGCTGCGGGGCTCCTG!

TTAGAGCAATCATTGAAAGTACTAGATACATTTTAGCCAGAGAGGACTCGT-TGACGTAGAATTAAAATTC----AAATGAA-TTTCCGCCCCATTCAT-ATACCCCAAATAACAAACATATTAAAACTTCATAATTATTCAAAATGTGGAGTAGTAATAGAAGAGCAGTACCT-TCAAAATT(

TTCATTCAACGTTTCCCATTGTTTTTTTCTACTATTGCTTTGCTGTGGGAAAAACTTATCGAAAGATGACGACTTTTTCTTA-ATTCTCGTTTTAAGAGCTTGGTGAGCGCT-AGG--AGTCACTGCCAGGTATCGTTTGAACACGGCATTAGTCAGGGAAGT---CATAACACAGTCCTTTCCCGCAATTTTCTT

GTTGAGATTAACGCCTATGACCAGGGCAACCGCACCACGCCGTCCTACGTGGCTTTCACAGACTCGGAACGCCTCAATGGTGAACCGGCCAAGAACCAGGTGGCCATGAACCCCAGAAACACAGTGTTTGACGCCAAGCGACTCATCGGCCGAAAATACGACGAT-CCCAAAATCGCAGA

AAACTTTATGATTTCAARAGAATAACCTCCARACCATTGAAAATGTATTTTTATTTT -~~~ TATTTT--CTCCCGACCCCAGTTACCTGGAATTTGTTCTT-TATGTA-~CTTTATATAAGTATAATTCTCTTAAAAATTTTTACTACTTTGCAATAGACATCATTTTTTCACGTAATARACCCA

ATTACATGCGAATCCTATTGGGAACCTACTGAATTCACCATGATACTTAGATTCCGTTCCTCAAA-ATGTTGCTCCATATTG-AAAAG-CAAACTCATA-CAAGCATGTCCCAT-TGGGAAC--TCACTGAATTCGCCTAGAAATTTTGATTCCATTCG-TGAAAATTTTTCTATATC-CCGA.
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166 NS0005/1-331
167 NS0004/1-331
168 NG0004/1-331
169 NR0007/1-331
170 NG0002/1-331
171 NG0032/1-331
172 NR0020/1-331
173 NS0009/1-331
174 NG0014/1-331
175 NS0006/1-331
176 NG0040/1-331
177 NG0029/1-331
178 NP0023/1-331
179 NG0022/1-331
180 NG0006/1-331
181 NP0019/1-331
182 NG0008/1-331
183 NP0013/1-331
184 NP0011/1-331
185 NP0022/1-331
186 NP0026/1-331
187 NG0034/1-331
188 NG0038/1-331
189 NR0017/1-331
190 NG0019/1-331
191 NG0024/1-331
192 NG0026/1-331
193 NG0023/1-331
consensus/100%
consensus/90%
consensus/80%

consensus/70%

AAGAACGTCCGCTCTG-CTCTCGAATCGCGACGGGTATC-TCTTGGAGCTCACTGGGTGGACTCA-AGGGAGTCAAGCCTCCTGAGGCG--TTTGGAGAGAGGTCGCGAGATTGGTCTC--TAGGCCACGCAGGAGACGAAGGCCCTCATCTCTCGATGACGGGG!

GAATCTCGGGGTTGTTCT(
TGGCCCAGGCAAGTCCAATCTTCCATTCGAGTTGCGAAGGAAAGC-TGGGGATTGCTCTCGAGTGACTGCA-GGGCCAATAGACCTCATCTAGGC--TTGTGTCCAGAAGCCAGTG-TTCCTCTC--CAGGGGCGACAGGGATCTCGGGGTTGCATTCCAGACGCACCCGG--GGAGACAGGCATTCATCT(
AAAGAACCCTGTTTTAGCTGCCAACTCCACTCAATTCAGAGATCCARAGG-TGTTCTGGTATGAACCTTCTCARAAATGGA-TTATGACGGCTGCCAA-AT-CACAAGACTACARA-~~ATTGARATTTACTCCTCTGATGACTTGAAGTCCTGGARGCTAGAATCTGCATTTGCCARCGAAL
CGAACTCCGAAGTTAAGCGGTTTAAGGCCTGTTAAGTACTGA--GGTGGGGGACCACTCGGGAACTTCAGGTGCTGATAGCTTTTTGCTCCTGAA-GCTATCTTT-TTGCACTCTTTCTT-TTTATCTATCCACCCTTCAGTAC-TTCTCACACTATCCAGGTTGGCGAGTTTTTGTTTCGTCGTGCTT(

TGAAAAAGATGCCAARATGGCATCTGTACTTTCAATACAACCCAAATGACACCGTATGGGGTACGCCATTGTTTTGGGGCCATGCTACTTCCGATG-ATTT-GACTAATTGGGA-~-AGATCAACCCATTGCTATCGCTCCCAAGCGTAACGATTC----AGGTGCTTTCTCTGGCTCCA'
GGCCAAGCAAGGAGCTGGCATGTTCTGAGCAACTTCTTCAAGTCCTCCTTCTCATCACTGAGCGAGTAAGGAT TTTAAGTGT TGTTAAGT TGACT TTGCAGCACTCTTG-ATAAATGTACTTGACGGAATCACTCTCT TAAGAAGATATAAAACT T~ ~~~~ TGAACTAGAGCATCAGTGTAACTAA-ATGTTA,
CTCTTCAATAATAACACATTCTTCAGTTA-ACACATGGAAAARATATARRATAGCTA-GTTTTATTTTATTA-~~TTTTCTGTTATTTTATARAATATTGCC-GTCATC-~AATGTAATTTCATTAATTTCAAACTGTCTTACACAGAATTCAGATTTTTTTTTTAGATGTTTAAGGTTCAGAGTC(

7777777777777777777777 GAGGCCACGTCTGGA-ATGTCTTCGTG-AGACCGGCCTC-ATCCTGAGGTGCGACCGGAARGGATCGGGAACCCCTTCCAGACARAGCA-GGGGAGTCGACCCTCCTGTCCAG--ATCAGGAGGGGAGARAGGGCTCAGAGGA--GGGGGTGCCGGARAACCTCAGTGTTCCTCTCGAG-GGAGACCGG--GATTTCGGGGAACTTTGT(

TGCGTTCAAGGCTCTTGCGGTTGCCATAAGAGAAGCCACCTCGCCCAATGGTACCAACGATGTTCCCTCCACC, GGTGTTCTTATGTAGTGACACCGATTATTT-AAAGCTGCAGCATACGATATATATACATGTGTATATATGTATACCTATGAATGTCAGTAAGTATGTATACGAACAGTATGATA!
TGTGCGGTTT--CTCACGAGGTACGACGGCGAGG-TCAGTGAGCCTCTCGTGGGGCGCCA-GGGAAGTCGGGTCTCCATGCGAG--TGGCGAGGGGGAGCGCGTCATTGCTCCC--GAGCCATGGTAGGGGAATGTGGCC-TCGAGACGTGTTGAAGAAG--GTCTCTCGAGGTCTTTCT(
ATGTGGATTGCGCATACT-TTGTGAACAGARAGTGATAGCGTTGATGATT-~~CTTCATTGGTCAGA-ARATTATGAACGGTTT-CTT-~~CTATTTTGTC-TCTATATACTACGTATAGGARA-~TGTTTACATTTTCGTATTGTTTTCGATTCACTCTA-TGAATAGTTCTTACTACAATTTT
TACGTAATTTTAAATTAAAAACACTAACAATCATCTGCATGCAATTGTCTGTATTAATCTAATAAATAAATAGCTTTTTTAAGTTAGTATGTARATACAT-TTTGAAGAATATCTTGTCAAAGT--TCCATAGGCCTTTCTGGCGG--ACAACATCCG-~-CTAACA--AACCCTTCGATTATCT(
TCAGACCCTGAGGCGCCGGCCATGGCCCCACTGAGACACAGGAAGGGCCGCGCCAGAGCACTGAAGACGCTTGGGGAAGGGAACCCACCTG CAGTGTAG. GCAAAC(
TCGATGGTGCCCTTCTATGAGCCCTACTACTGCCAGCGCCAGA-GGAATCCCTACTTGGCCCTGGTT---GG-~ACCGATGGAGCAGCAGCTGCGCCAGCT-GGAGAAACAGGTGG-GCGCCTCGTCGGGATCGTCGG-GAGCCGTGT-CGARAATCGGAA-AGGATGGCTTCCAGGTCTGCATG!
ACTCGACTGGTACCCTAGAGTTTGAGTTGGTTTACGCTGTTAACACCACACARACCATATCCAAATCCGTCTTTGCCGACTT-ATCACTTT-~GGTTCA-AGGGTTTAGAAGATCCTGAAGA-ATATTTGAGAATGGGTTTTGAAGTCAGTGCTTC-~~~TTCCTTCTTTTTGGACCGTGGTA
ACCAAGCTGAGAGTCAGCTTGTGTGCCCAGGAGGGAGGCGTTGGGTCA- -~~~ GAGCCTCTGGAGGACCCCTGAAGTCTCTTCTCAGTGTTCTCTATCACAGGGAGAGCTGTCAGCCCCTGGAATGTGGTTCT-~ATGTCTAGAAAACTATC--CCATAAATAACAGGAAGCCCAAGGTTTACCA,

GGACCCAGCCCCTGGTGGCTGCGGCTGCATCCCAGG-TGGGCCCCCTCCCCGAGGCTCTTCARGGCTCARAGAGAAGC

CTACTTCATGACCACCGGTAACGCTCTAGGATCTGTGAACATGACCACTGGTGTCGATA-ATTTGTTCTACATTGACA---AGTTC-CAAGTAAGGGAAG-T~. TAGAGGTTAT. CTTATTGTCTTTTTTATTTTTTT---—~ CAAAAGCCATTCTAAAG-GGCTTTAGCAACGAGTG

CGCACTAGCTCTGCTTTTGCGCGTACGACAACAACTACATTTAAAATTTCTCGA-AACTCATGGCAT TTATTGGGARAGGT TAGTTA-~~GTTTTATT-TTT TG~~~ TTTTTAGAGCAGCATTCAATTTAGACTTTTATAAAAGAAATTTCTAATT-TGATCCCTCGTTTATCAAACGAT?
ATTTGTTTCTCAGTGCACTTTCTGGTGTTCCATTTTCTATT-GGGCTCTTTACCCCGCATTTGTTTGCAGATCACTTGCTTGCGCATTTTTA-~TTGC-ATT-TTACATATTACACATTATTTGAACGCCGCTGCTGCTGCATCCGTCG-~ACGTCGACTGCACTCGCCCCCACGA-GAGAACAGT]
TAACCGATGGGAACACGTCTCCACCAAGACAGCGCTCAGGACTGGTTCTCCTCGTGGCTCCCAATTCAGTCCAGGAGAAGCAGAGATTTTGTCCCCATGGTGGGTCATCTGAAGAAGGCACCCCTGGTCAGGG-CAGGCTTCTCAGACC-~—————— CTGAGGCGCCGGCCATGGC---CCCACTGAGACACAGGA,

GGATCACCGGCTTTTGGCTGCTCTCACC. TCAGCTGCAAGAAGATTAGAGCTC. GAATTACA-G GAGAGCC--—————~ TTTTTCTTTTCTTCCTTGTGGG-GTTCCTTTCATTT-CGTGCTCTCCTTTCTCTGCCAGCCAGTCCGTCCGTCCTTGCG--TCCACTGCACCTGCACA!

TACCTGGGCGGGACGCGCCAGGCCGACTCCCGGCGAGAGGATGGGGCCAGACT TGCGGTCTGCGCTGGCAGG-AAGGGTGGGCCCGACTGGATTCCCCTTTTCTGCTGCGCGGGAGGCCCAGT TGCTG-ATTTCTGCCCGGATTCTGCTGCCCGGTGAG---GTCTTTGC-~~CCTGCGGCGCCCTCGCCT
CAGCTTCACAGAARACCTCATTCGTTTATTCCCTTGTT-~TGATTCAGAAGCAGGTGGGACAGGTGAACTTTTGGA-~~TTGGAACTCGATTTCTGAC-~TGGGT-TGGAAGGCAAGAGAGCCCCGARA-~GCTTACATTTTATGT TAGCTGGTGGACTGACGCCAGARAATGTTGGTGATGCGCTTAG!
TTTACTAAAAATCCGTAAAGAACTTCAATTGT-ACGCCAACT--TAAG----—. ACCATGTAACTTTGCATC-CGACTCTCTTTTAGAC-TTAT--CT-CCAATCAAGCCACAATTTGCTAAAGGTACTGACTTCGTTGTTGTCAGAGAATTAGTGGGAGGTATTTACTTTG-GTAAGAGAA.

GCAGCAGGAGGCC—

CGCCCGTTTGGAGTGTGGCGCTACCGAGGAACTGGCAGCATATTGCCCGCTGGCAGGAGCAGGAGTTGGCTCCGCCGGCCACCGTCAACAAGGATGGCTACAAACTCACCCTGGA--~-CGTCAAGGACTACAGCGAGCTGAAGGT ---CAAGGTGCTGGACGAGAGCGTGGTCCTGGTGGAGGC. TCGG
ATCCAGCAGGTGGGACCCGCCCATCTCAATGTGAA--GGAGAATCCCAAGGAGGCGGTGGAGCAGGACAATGGCAACGATAAGTAGAGGACTCGTTCCGGGAGATGCCCTGCATTATTTAACCA!
CTTTCATTTGCCTTAACGT-TGAGGTGAGCGGGTCCCACTTGCTGAATTTGAATGATGCGCTCC-TTGGACTTG---TCCTCGACGGCCTGCGGCT-TGGGAATACTGACGGTG-AGC--~ACGCCATCCGACGACAGCTGCGAGACCACTTGCTCCGCCTTG-TAGCCATCGG————— GAACCTTGTAGCGGCGCAC.
TGAGGCTGATAAGGTGGCCTCCACCTTGTCCTCCGATGGTGTCCTGACCATCAAGGTGCCCAAGCCACCGGCAATCGAGGATAAGGGCAACGAGCGCATCGTTCAGATCCAGCAGGTGGGACCCGCCCATCTCAATGTGAA--GGAGAATCCCAAGGAGGCGGTGGAGCAGGACAATGGCAACGATAAGTAGAGGACTCGTT

F T R I T T T

MvView 1.47.3, Copyright © Nigel P. Brown, 1997-2002.



.1 331

A-CGTG

A-C

A-CG:

A-CGT

A-CGT

A-CGTGG:

A-CGTGGA:

A-CGT

2-GTGG:

A-CGTGG

A-CGT

A-CGTGG:

A-CGTGG

ACCTGA:

A-CGTGGAATATGGC

ples

A-CGTGGT

ACCT

A-CGTGGAATATGGC
2CTGG:

ACATGG.

A-CGAGGAATAT

A-CGTGGAATATGGC

ACGTG:

ACCTGG:

ATT

A-GGTGGAATATGGC.

ATCGTGGAATATAGCAGGC
ACCTGGAATATGGCGAG:

ACCTGGAATATGGCGA!

ACCTG-AATAT

ACCTGGAATATGGCGAG:

3CGATGT

[CCACCGCTTTCGCC



2GACACTGTCCC

2CTCCGC

ZATCTCCCCCCAACCCC

PATCACCCGCCCTCT

[CCGCACAGCTCAC

[CCGCACAGCTCAC

A-CGTGGAATATGGCAAGAAAACTGAAAATCATGGAAAATGAGAAACATCCACTTGACGACTTG TGACG.

TCACT.

CGTG

TGAG

AGTTAACTGTGGGAATACT

ZAGG:

AGCGGTATTCGCAATATTTTAGTAGCTCGTT.

AAGAAGT TGGTGGTGGT

ZTTACTCAAAGGTAATAGTGT.

STTTTCGCTATTCCGACGCGTCTAGT

\GAATAAGAACAACAACARATAGAGC.

[TAGTTTTAAAACACCAAGAACTT

AC

ATAACTTAAAGAAAAAG

[TTCCTCGCCACATATGCATTACCGTCT.

2CGTTT

GGATGGAGGTT. GAC

-—-—GCGCATACGCTACAATGACCCG:
SAGATCGCACATGCCA;

STCAAGT

5CTTAACTGC--TCATTGCT.

SACTTACTTACTG-GATTTTT

CAAAAATGAAGTATTTCCTTTTT

CTGCT

AGAAAATA:




CAAGTTTTACCATGACATGATC

[CARAGARATTATTGGGG

2GCCT

CGATATCCAAGGTCAACTCC

SATTTGGAAAAAGCTG:

ATATATCTTACTTTTTTTTTTCTC
[GCTCATGGGACAGGGC

>CC.

AACTACAATAA:
CGACTTACACATAGACGACCATCACACCAC

STGATTGTACCTGAGTTCAATTCTAGCGC

3CAATTACACTCG---TCAATTC

STTACCGAGGAAGAACTC.

[GGTAGATGGATCGATGGCAAAC.

5CATGTTTAGAGCAAGCGCCTTTGTGAG:

[TAAATTTAACGCGGAAGCTT

ACATTTCAGCAATATATATATATATTTC

[TACGGCATTGATATC

AGTCCATAGAGGGCTATGGTGAAAA:
ATTGTAC

[GGGTTGAG

ACAACCCAAATGACACCGTATGGGGTACG:

[TAAAATAATTTTGATAAGA:

3AGAGTGCGTTCAAGGCT

CATA-TAAATGCAAAAACTGCATAACCACTTT

[GTTTGATTCAG

[TTTTAATCCGGACAAGCTCATTTGCGT

ATGGAAGAGG

\GARAGAGA;
[TTCTGCAACAGCTATG-AGCATTGTGCAAACATATT
ATTTTAAAAC

[TCTCTTGAACCGTAAATATC

ACGCTCTAG---GATCTGTGA.

3CCGTACGCAGTTGTCGAACTTGGT

SAATCTCGCCAATATTT.

[TAGAGCAATCATTGAAAGTACTAGAT.

3CCTTACTATAATTATCGCTATCGGC

[GGT-ACGGCACCCA:

[--GCCTTAACGTTGAGGTGAGC

AATATTTTGTAAAATCATATATAATCAAATT

[AAGTTT---GCATTTCTCTTTAATCT

CAACTCCACTCAATTCAGA:
AATTGTCC-CGTACGACCTCTTCAATAATAACACAT

SCTAATTTATTACTTATACAT.

AATGTGG;

AATCAATCTAGA!

2GTGCAGGAGACACTC.

SATCTCGCGCC

3AGTTCATCC

SATTTCTTCAGTTTCCCACCCGGGA:

[TTCTATTACT

3GACATGAAGCACTGGCCTT

CAATCGTAATGTAGTTGCCTTAC

ACAGTCCACTTATTACTACTGCGGCC

A-10



2GAGCGGCGGCCCCAGTGTGC

ZGAGTGGAAGCAAAGAAC

3GTTTCTTAGGCTACCAATACGAAT

3GCATAATGGAAAATC

[GGTGGTTGATTACAACAACACGAGT

ATTTGCACCGCTT

2CTTGCCC-CGCACGACACTTTC,

TGAAGAT

2GGGTTGAGGCAGGAAACCCTGGGTTCCCT
[TTGTCTAAAGAGTAATACTAGAGATA.

ZTAAC--ATAATTAACTTAAGCAGCC

ZAGGTCAGGCCC

SATGTGTCGCACTTCAAGCCCAGCG

ACTCTAAGGTCAAGTTTGTCAAGGAG

ATCTCTGCTGTACAGGATGTTCTA:

ACGAAT--GTAAAACTTTATGATTTC

ACAAAGCTATATTCATAATTTTTTCTCT

ATTTAAGGAGCTGCGAAGGTCC

AGGGCCGCGCCAGAGC

ZAGGTCA-

CCCCGACCCGCACTGTTCT.

CAGGGCAAAGTCCCAGCC

ATTARATGGCGTTATTGGTGT

AGGAAGACGATGGTGATGGTGTCGCTTGGGAT

[TATCAAAGTCATACATCTGTTTTATAAGCTGTAGTTATCC.

GGACACTTCACTCATACAC,

AAAGTGGCGCATGATGT
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B. Cyclical Hidden Markov models trained from various

types of sequences

The models illustrated in this appendix follow a 3-field naming scheme:
[training source][unique training ID] c[no. of wheels in model architecture]
For the unique training ID field, digits represent a specific training run from the

respective training source.

8-177



interMask1_c6 (W)

=

—

interMaskZ_c6 (CWG)

intronMask0_cé6 (W)

intronMask1_c6 (CWG)

ntronMaskz_c6 (W)
6 state wheel models
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] [
interMask1_c7 {CWG)

5

interMask2_c7 {CWG)

intronMask0_c7 (W)

o

intronMaski_c7 (W)

7 state wheel models

intronMaskZ_c7 (W)
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interMask0_c8 (CWG)

interMask1_c8 (CWG)

interMask2_c8 {W)

intronMask2_c& (CWG)

8 state wheel models

intronMaski_c8 (CWG)
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4 5

alul_c9

archaeal_c9

9 state wheel models

archaea2_c9



7 n 2 4 5 6
exon2_c9 [CWG) inter0_c9 (CWG)
9 state wheel models




4 5

inter1_c9

3 ] 5 8

interMask1_c9 (CWG)

interMask2_c9 {-)

9 state wheel models

intron0_c9
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F]

] 5 [

intronMask1_c9 (W)

L] 1 2 3 4 5 B 7 B n

intronMask2_c9 (W)
9 state wheel models

levitsky0_c9 (W)
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3

[] 1 [] n

levitsky1_c9

9 state wheel models

levitsky2_c9
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alud_c10

4

archaeal_c10 archaea2_c10
10 state wheel models



chicken2_c10 (W)

4

0 1 2 3 4 s [] 7 [] 3

exoni_c10 (CWG)

exon2_c10 (CWG)

10 state wheel models



4

z 5 ]
inter0_c10 (W) interMask0_c10 (W)

4 5 []

intron1_c10 {W) intron2_c10 {W)
10 state wheel models
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levitsky1_c10 levitsky2_c10
10 state wheel models

B-12



5

interMask2_c11 (-}

intronMask1_c11{CWG)

intronMaskZ_c11 (W)
11 state wheel models
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interMask2_c12 (CWG)

intronMask0_c12 [CWG)

12 state wheel models





