
Since∫ ∞

t0=0

e−t0(1+i(µ+ρ))(1− e−t0ρ)e−t(1+µ+ρ)dt0 =
ρe−t(1+µ+ρ)

(1 + i(µ + ρ))(1 + ρ + i(µ + ρ))
,

we can let

Ki =
ρ

(1 + i(µ + ρ))(1 + ρ + i(µ + ρ))

and conclude that

Bi(L) = Bi+1(L + 1)

for all i > 1, whereas

B1(L) =
L−1∑
i=1

KiBi(L− 1).

7 Empirical validation using genome sequence

data

To measure the accuracy of our predicted pL(IBS) values, we found the lengths

of all maximal ROHs in the eleven human genome sequences referenced in Ta-

ble 13. The bases were re-called in a consistent fashion with the intent to

make the quality good enough for population genetic analysis; out of a total

of 33,686,389,482 base pairs, 9,743,948,741 (28.9%) were marked unreliable due

to unreliable read mapping, proximity to indels, or other other attributes that

made them suspect (see Base Calling Methods appendix), and we deleted these

bases before proceeding. Our call sets for all sequences are available for down-

load at ftp://ftp.sanger.ac.uk/pub/rd/humanSequences.

In addition to counting the number NROH(L) of ROHs in each genome that

are between (L−1000) and L bases long (for L divisibly by 1000), we counted the

number NROH(L)0.10 of L-base regions that appear homozygous when we detect

a tenth of all hets. Specifically, we generated thinned ROHs whose endpoints

are the mutations with positions congruent to zero mod ten relative to the 5’

end of the chromosome, referring to these endpoints as observed hets as opposed
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Figure 12: The two solid plots record the exact probability of IBD given IBS

(assuming the SMC), the black plot with IBS required at every base in the

alignment, and the grey plot where markers allow for only 10% of mutations to

be detected. The empty triangles and empty circles record how that probability

changes when we disregard linkage between non-IBD markers. The two curves

almost never agree when complete sequences are used, in concordance with the

fact that earlier methods do not claim to be accurate for such dense marker

data.
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Sequence Names Origins

COLO-829-BL Northern/Western European Ancestry [5]

NA12878, NA12891, NA12892 Northern/Western European Ancestry [1]

NA18507 Yoruba, Nigeria [7]

NA18506, NA18508, NA19239, NA19240 Yoruba, Nigeria (unpublished)

SJK Korean [4]

YH Chinese [60]

Figure 13: The eleven genomes used in our analysis

to hidden hets. We predict that

NROH(L)
NROH(L)0.10

=
10pLmax(IBS)
pLmax(IBS)0.10

, (23)

adding the factor of 10 to account for the fact that there are ten times as many

true ROHs as thinned ROHs (most of the excess ones being short).

Even though we take care to use genome data with a very low error rate,

false positive hets (on the order of 1 per 105 bases) will present a significant

problem for our analysis. We will be estimating the abundance of ROHs up to

107 bases long, and there is an overwhelming chance that their homozygosity

will be broken up by false positives.

To correct for the breakup of ROHs by false positives, we estimate the false

positive frequency f and multiply the measured value of NROH(L)/NROH(L)0.10

by (1− f/10)L/(1− f)L, reasoning that (1− f)L is the probability that an L-

base ROHs will be broken up by a false positive het. We choose f = 1.5 ×

10−5 because NROH(L)/NROH(L)0.10 tends toward (1−f)L/(1−f/10)L in each

genome as L gets large, while the ratio of thinned to true ROHs should tend

toward 1.

The eleven plots of NROH(L)/NROH(L)0.10 versus L cluster clearly by eth-

nicity (see Figures 14, 15, 16), and we account for the differences by finding

effective population size histories that fit 10pLmax(IBS)/pLmax(IBS)0.10 well in

the data from each ethnic group. We also experiment with varying the muta-

tion rate µ, motivated by the fact that the 1000 Genomes consortium recently
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Figure 14: A. Regions of homozygosity in African genome data Here, we

separately plot NROH(L)/NROH(L)0.10 for each of five African genomes, then

average this function across the genomes and correct it for 1.5 × 10−5 false

positives per base. In blue is the theory plot 10pLmax(IBS)
pLmax(IBS)0.10

for a population of

constant effective size N = 14, 000 and a mutation rate of m = 1.6 × 10−8 per

base per generation (one of many histories that minimize the sum of square

distances from the data points to the predicted curve).

estimated µ to be 1× 10−8 per base per generation [1] rather than 2.5× 10−8.

The measured NROH(L)/NROH(L)0.10 ratios behave noisily for L > 100, 000,

likely because there are few such ROHs in the genome and each one is more likely

than a short ROH to include recombination hotspots or other sites where the

theory in this paper breaks down. Therefore, we define the best fit population

history to be the one that minimizes the sum of squares distance from the pre-

dicted NROH(L)/NROH(L)0.10 values to the measured NROH(L)/NROH(L)0.10

values, the sum taken over L ranging from 10,000 to 100,000.

Let Tµ,H(L) denote the theory plot of 10pLmax(IBS)/pLmax(IBS)0.10 that is

obtained a function of the mutation rate µ and the piecewise-constant popula-

47



Figure 15: B. Regions of homozygosity in European genome data In

green is the following single-bottleneck history, with mutation rate m = 2.5 ×

10−8: N = 11, 900, time ranging from 0 to 1240 generations ago (g.a.); N =

4, 530, 1, 240 − 1, 770 g.a.; N = 15, 000 ≥ 1, 770 g.a. The African constant

population size theory is included in black, for reference.

48



Figure 16: C. Regions of homozygosity in Asian genome data The single-

bottleneck history shown in red, again assuming m = 2.5×10−8, is the following:

N = 8, 670, 0− 1, 380 g.a.; N = 1790, 1, 380− 1, 530 g.a.; N = 15, 000 ≥ 1, 530

g.a.. African and European theory plots are included for reference.
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tion history H. Likewise, let DG(L) denote the set of data points {NROH(103 ·

i)/NROH(103·i)0.10}10
3

i=1 that is obtained by counting all of the ROHs and thinned

ROHs in some set of genomes G and correcting for 1.5×10−5 false positive hets

per base. We measure the goodness of fit between the parameters (µ,H) and

the data set G by calculating the sum of squares fit

SS(µ, H,G, L) =
900∑
i=1

(
Tµ,H(103 · (10 + i))−DG(103 · (10 + i))

)2
.

It remains to define a threshold for SS(µ, H,G, L) below which (µ, H) is deemed

a good fit for G. Since Tµ,H(L) is not a straight line, we cannot perform a

goodness-of-fit linear regression. We find it logical, instead, to define a threshold

that depends on the noisiness of the curve DG(L), letting

N(G, L) =
(L−1)/1000∑

i=1

(
DG(103 · (10 + i + 1))−DG(103 · (10 + i))

)2

denote the sum of squared distances between adjacent points of DG(L). If

Tµ,H(L) = 1
2 (DG(L)−DG(L + 1)), making Tµ,H(L) a smoothed version of the

data set DG(L), then

SS(µ, H,G, L) =
1
4
N(G, L),

In each data plot DG(L), the left portion of the graph is much less noisy than

the right portion and therefore provides more information about the mutation

rate and population history. In the European genomes, for example, there is so

little noise in the data set D(G)|L<34000 that

1
4
N(GEuropean, 34000) < 0.0094,

while
1
4
N(GEuropean, 90000) > 0.26.

For each of the genome groups GAfrican, GEuropean, and GAsian, we define Lshort

to be the largest L satisfying 1
4N(G, L − 1) < 0.01 and define Llong to be the

longest L ≥ 1000 satisfying 1
4N(G, L − 1) < 0.5 (specific values of Lshort and

Llong are recorded in Table 17). We then say that (µ,H) is a good fit for G if

SS(µ,H,G,Lshort) < 0.01
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Ethnicity Lshort Llong

African 53000 90000

European 35000 89000

Asian 21000 60000

Figure 17: Thresholds for low noise (N(G, Lshort−1) < 0.01) and medium noise

(N(G, Llong−1) < 0.2) in the DG(L) ROH data sets. Our Asian data set, which

contains half as many genomes as the others, appears commensurately noisier.

and

SS(µ,H,G,Llong) < 0.5.

We searched for good parameter fits using a Monte Carlo Markov chain

approach, beginning with a search of constant population size histories. As

expected, the Africans are the only group for which we find good constant

population size histories. Such histories fall within a narrow parameter space,

namely 13, 000 ≤ N ≤ 15, 000 and 1.55× 10−8 < m < 1.7× 10−8.

When we allow for a single population expansion or contraction, we find

a large variety of histories that fit the African data well, though we still find

no fits for the European or Asian data. These good African histories are all

expansions when m = 2.5×10−8, all contractions when m = 1×10−8, and close

to constant for m = 1.75 × 10−8, with a population size change in either the

very recent past or the very distant past (see Figures 18, 19, and 20).

To find good theory fits for the European and Asian data, it was necessary

to invoke a population bottleneck. To speed up our MCMC search, we fixed the

mutation rate m = 2.5 × 10−8 and the ancestral population size N3 = 15, 000.

This left two variable time parameters and two variable size parameters, enough

to generate many optimal histories to fit both sets of non-African data (see

Figures 21 and 22). In both sets of good histories, recent good-fit bottlenecks are

shallower than ancient good-fit bottlenecks. The modern effective population

size is lower, on average, in the Asian histories. This fits with the fact that the
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Figure 18: Some population histories satisfying our good fit criterion for African

genome data assuming m = 2.5× 10−8 mutations per base per generation
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Figure 19: More good fit YRI histories; mutation rate m = 1.75×10−8 per base

per generation
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Figure 20: More good fit YRI histories, mutation rate m = 1.0× 10−8 per base

per generation
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Figure 21: A population bottleneck is required to fit the CEU ROH data–either

a shallow, recent bottleneck or a deeper, more ancient bottleneck.

Asian HapMap allele frequency spectrum shows more evidence of genetic drift

than the European HapMap allele frequency spectrum [30].

It remains an open problem to mathematically describe the set of histories

that fit the distribution of ROHs in each ethnic group. However, in showing that

such histories exist, we achieve our aim of predicting the length distribution of

ROHs in real genome data and validating the theory that we use to compute

IBD probabilities.

8 Discussion

In this paper, we attempt to very precisely model patterns of linkage disequi-

librium in genetic data, capturing its decay over long regions of the genome

instead of assuming that certain blocks or pairs of loci assort independently.

Rather than adding a new LD model to the myriad that exist already, we work
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