
Figure 8: This plot compares our diploid results to the values that we obtained

from MS simulations, which assume the full non-Markovian coalescent with re-

combination. Given a 105-base diploid sequence that is IBS ≥ 1 with a refernce,

it is 90.1% likely to contain a haplotype that is IBD with the reference. This

probability increases to 98.5% for an alignment 106 bases long. When we ob-

serve only 10% of all hets, the corresponding probabilities are 29.4% (L = 105)

and 89.1% (L = 106).

the effect of thinned marker data, observing only 10% of all hets, but we still

get within 1% of the true value for L ≥ 500, 000 (see Figure 8).

5 Using identity by state to phase and impute

haplotypes

There are a number of questions in applied genetics research that require accu-

rate identification of tracts of IBD. The oldest of these questions center around
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pedigree analysis, but we argue that our results are most applicable to the prob-

lem of phasing and imputation in unrelated individuals. Imputation accuracy

is tied to the probability of diploid IBS as follows: if we have a thinned IBS

alignment between a stretch of unphased genotypes and a haploid reference se-

quence and we compute that this alignment has a probability PL(IBD|IBS)0.10

of containing an pair of haplotypes that are IBD and IBS, then with probability

PL(IBD|IBS)0.10, the unphased genome contains a perfect copy of the reference

haplotype.

We can see in Figure 8 that the probability PL(IBD|IBS)0.10 converges slowly

to 1 as L gets very large. It reaches the value PL(IBD|IBS)0.10 = 0.9 when

L ≈ 107, and unfortunately it is rare to find such long IBS alignments between

DNA from unrelated individuals. In shorter IBS alignments, however, we can

be more certain of IBD near the alignment center than at its edges–even if the

unphased genome is unlikely to contain a perfect copy of the entire reference

haplotype, it is likely to contain a perfect copy of a subsequence of that haplo-

type. Given an (L+2x)-base thinned IBS aligment between a haploid reference

and a diploid test sequence, we can compute the probability I(L, x)0.10 that the

middle L bases of the reference will be IBD with of the test haplotypes. If we

are trying to impute a genotyped individual using a reference haplotype panel,

then I(L, x)0.10 can help us figure out how much sequence we can copy while

keeping the expected number of errors per kilobase of imputed sequence below

a specified threshold.

Before computing I(L, x)0.10, we will address its relationship to the accu-

racy of the current state-of-the-art in imputation. While I(L, x)0.10 predicts

the accuracy of imputing the exact sequence of a genotyped individual, it is less

common than to impute from full sequence data than from the densely geno-

typed panel of HapMap references. To accurately copy the states of HapMap

SNPs from a reference haplotype to a test individual, it is perhaps overly con-

servative to ask for a high probability that the test individual contain a perfect

copy of the reference; the program IMPUTE v2, for example, is consistently

accurate at imputing sites with minor allele frequency ≥ 10%, but its accuracy
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at imputing rarer variants falls off at a rate that depends on the genotype chip

and HapMap references being used [23, 39]. However, the authors of IMPUTE

predict, in a review on imputation methods, that the 1000 Genomes Project

will replace HapMap as the imputation reference of choice, and that one of the

challenges associated with the switchover will be the fact that the 1000 Genomes

references will contain more variants with frequencies in the 1%-5% range [39].

Using the 1000 Genomes data for imputation will confer both added power and

added error, compared to using HapMap, and a way to estimate the extent of

that added error would be to predict accuracy in terms of IBD, as we do here.

5.1 The probability of IBD in the central subset of an IBS

alignment

In the last section, we derived an integration operator D0.10 for which

PL(IBS|t)0.10 = D0.10(PL−1(IBS|t)0.10) = DL−1
0.10 (P1(IBS|t)0.10) , (17)

making it possible to compute p(IBD|IBS)0.10 for unphased diploid alignments.

It follows from the definition of D0.10 that

I(L, x)0.10 =
1

PL+2x(IBS)0.10

∫ ∞

t=0

Dx
0.10(e

−tL(2µ+2ρ) · Px(IBS|t)0.10)dt, (18)

where e−tL(2µ+2ρ) = pL(IBS&IBD|t)/e−t is the probability that a base pair

coalescing at time t is at the center of an L-base stretch that is IBS and IBD.

Put another way, it is the Lth power of an operator for extending the test

alignment by one IBD base, while D0.10 is an operator for extending the test

alignment by one thinned IBS base.

Figure 9 plots I(L, x)0.10 for x = 104, 5×104, and 105, showing that removing

the terminal 105 bases from each end of a thinned IBS alignment produces

substantial gains in the likelihood of IBD.

Since I(L, x)0.10 is the expected accuracy of imputing L bases from an (L +

2x)-base alignment, it is possible to conduct imputation such that the L-base

sequence calls should be e.g. 95% accurate. We need only find x for which
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I(L, x)0.10 > 0.95 and not impute from any shorter IBS alignments. When such

thresholds are set, however, a question of coverage arises: given n references, a

large number of test sequences, and a minimum required accuracy p < 1, into

how many sequences can we expect to impute a given L bases from the reference

panel? As usual, the question is whether a test haplotype coalesces very early

with one of the references, making it necessary to consider (n+2)-leaf coalescent

trees.

The first coalescence between a test haplotype and a reference will be one of

the n + 1 coalescences that make up the nodes of an (n + 2)-leaf tree; we must

find formulas for when these events occur and also the likelihood that the kth

of n + 1 coalescences will be the particular event we are interested in.

It is proved in [18] that the following is a formula for the probability that n

samples have exactly k ancestors at t/(2N) generations before the present:

hn,k(t) =
n∑

i=k

e−(i
2)t (2i− 1)(−1)i−k(k + i− 2)!n!/(n− i)!

k!(i− k)!(n + i− 1)!/(n− 1)!

=
n∑

i=k

e−(i
2)t (2i− 1)(−1)i−k(k + i− 2)!n!(n− 1)!

k!(i− k)!(n + i− 1)!(n− i)!

Letting P (Tk < t) be the probability that the kth of n coalescences happens

before time t, it is easy to see that

hn,k(t) = P (Tn−k−1 < t)(1− P (Tn−k − 1)),

and it is also true that

lim
n,k→∞

P (Tn−k = t) =
hn,k(t)dt∫∞

t=0
hn,k(t)dt

.

It is easy to see, combinatorially, that if the two test haplotypes haven’t

coalesced with each other yet, the coalescence from k + 1 to k sequences will

involve an ancestor of a test haplotype with probability

2k(
k+1
2

) =
4

k + 1
.
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If the test haplotypes have coalesced with each other, the probability will instead

be 2/(k +1); however, this is the fringe skew topology case. If we want the (n+

1− k)th coalescence to involve an ancestor of a test haplotype with probability

p, it must be true that(
1− 4

n + 2

)
· · ·

(
1− 4

k + 1

)
< 1− p,

meaning that
k(k − 1)

(n + 2)(n + 1)
< 1− p

and

k ≈ n
√

1− p.

Therefore, the probability that the (n − k)th of n coalescences (with the first

being closest to the present) is the earliest one to involve a test haplotype is

1− k2/n2 − (1− (k + 1)2/n2) =
2k + 1

n2
; (19)

if Pn(t)dt is the probability that t is the smallest time at which a test hap-

lotype coalesces with a reference, then

Pn(t) =
n+1∑
k=1

2k + 1
n2

P (Tk = t). (20)

When n is large, it will be helpful to avoid summing over all possible values of

k. Instead, we select a series of k values that correspond to fixed percentiles;

i.e., k for which it is 90% likely that a reference coalesces with a test haplotype

at or before the (n− k)th coalescence. We sum over k values corresponding to

the 10th, 20th,..., 90th percentiles (indexed by m in the following sum), along

with the 95th, 99th, and 99.9th percentiles:

Pn(t) < 0.1
9∑

m=1

P (Tn−nb
√

1−0.1mc = t) + 0.05P (Tn−nb
√

0.05c = t)

+0.04P (Tn−nb
√

0.04c = t) + 0.009P (Tn−nb
√

0.009c = t) := Qn(t).

The function Qn(t) has the property that∫ ∞

t=0

Qn(t)dt = 1; (21)
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it is approximately the distribution of coalescence times at the left endpoint of

the longest thinned IBS alignment between a test haplotype and reference, not

stipulating that the alignment be at least L bases long. In contrast, DL−1
0.10 (Qn(t)e−0.10µt)dt

is the probability that this endpoint will coalesce at time t and that, in addition,

thinned IBS extends for at least L bases. We will take

Qn(L) =
∫ ∞

t=0

DL−1
0.10 (Qn(t)e−0.10µt)dt (22)

as our approximation for the probability that a test haplotype will be part of a

thinned IBS alignment of length L with one of the references.

Figure 10 plots the probability that, given a panel of n references and a 1

kilobase region of a test sequence to be imputed, the region will be at the center

of a (2x+1000)-base thinned IBS alignment between the test sequence and one

of the references. Figure 11 plots the accuracy distribution of the imputation

calls made in this way. The function I(1000, x)0,10 gives the accuracy of a call

made from a (2x+1000)-base IBS alignment, while the probability of observing

a (2x + 1000)-base IBS alignment from which to impute is Qn(2x + 1000).

Since a constant effective population size of 10,000 is being assumed, the

appearance of perfect power for a 1000-haplotype panel is overly optimistic. In

outbred populations, exponential growth is likely to have broken up very long

haplotypes, as reported by Hayes, et al [17]. Taken as a set of upper bounds,

however, these plots show that a HapMap of 120 sequences gives far from perfect

haplotype coverage, even in a moderately isolated population.

6 The effect of underestimating the linkage be-

tween markers when computing IBS probabil-

ities

Although the aim of inferring IBD is to be confident of IBS at a dense set of

markers, previous methods for inferring IBD tend to lose accuracy if the input

set of markers is too dense, a fact that limits their precision. The problem with
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