
of IBD sharing.

2 Computing the probability of identity by state

Since

p(IBD|IBS) =
p(IBD&IBS)

p(IBS)
, (2)

where p(IBD&IBS) is easy to compute (see equation (2.1)), the crux of our

approach will be calculating p(IBS) given sequence length and the history of the

effective population size. In section 2.1, we treat the case of constant effective

population size, while section 2.3 describes how to condition on any locally

constant population size history.

2.1 Constant effective population size

Let L be the length of an alignment between two haplotypes sampled at random

from a diploid population of effective size N . Assume that the DNA undergoes m

mutations per base per generation and r recombinations per base per generation,

letting µ = 4Nm and ρ = 4Nr. We will hereafter measure time in units of 2N

generations.

The alignment will coalesce at time t, both IBD and IBS, if and only if the

following events coincide:

1. The leftmost locus coalesces at time t without mutating (probability e−t(1+µ)dt)

2. No other base in either sequence undergoes a mutation or a recombination

between time zero and time t (probability e−t(L−1)(µ+ρ))

From this observation, it follows that

p(IBD&IBS) =
∫ ∞

t=0

e−t(L−1)(µ+ρ) · e−t(1+µ)dt =
1

1 + Lµ + (L− 1)ρ
. (3)

In an analogous way, we will derive the probability pL(IBS|t)dt that the

alignment coalesces IBS with its rightmost base coalescing at time t. We proceed
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by induction on the length variable L, claiming that

pL(IBS|t)dt = pL−1(IBS|t)dt · e−t(µ+ρ)

+
∫ t

t0=0

∫ t0

tr=0

pL−1(IBS|t0)e−µt−ρtr · ρe−(t−tr)dtdtrdt0

+
∫ ∞

t0=t

∫ t

tr=0

pL−1(IBS|t0)e−µt−ρtr · ρe−(t−tr)dtdtrdt0.

The dummy variable t0 is the coalescence time of the base next to the rightmost

one. The first term is the probability that no recombination occurs between the

rightmost base of the alignment and the base next to it, while the second term

(the first integral) is the probability that a recombination occured at some time

tr, and that t is greater than t0. The third term accounts for the remaining

possibilities, integrating over times t0 that are greater than t.

It will be convenient to write

pL(IBS|t) =
L∑

i=1

Ai(L)e−t(1+iµ+(i−1)ρ)dt (4)

and solve for the coefficients A1(L), · · · , AL(L), which will not depend on t.

Since

p1(IBS|t) = e−t(1+µ)dt

and

e−t0(1+iµ+(i−1)ρ) · e−t(µ+ρ) +∫ t

t0=0

∫ t0

tr=0

e−t0(1+iµ+(i−1)ρ)e−µt−ρtr · ρe−(t−tr)dtrdt0 +∫ ∞

t0=t

∫ t

tr=0

e−t0(1+iµ+(i−1)ρ)e−µt−ρtr · ρe−(t−tr)dtrdt0

=
ρ

i(µ + ρ)(1 + iµ + (i− 1)ρ)
e−t(µ+1) +(

1− ρ

i(µ + ρ)(1 + iµ + (i− 1)ρ)

)
e−t(1+(i+1)µ+iρ)),

we can let

Ci =
ρ

i(µ + ρ)(1 + iµ + (i− 1)ρ))
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and conclude that

A1(L) =
L−1∑
i=1

CiAi(L− 1), (5)

while

Ai(L) = (1− Ci−1)Ai−1(L− 1) (6)

for i > 1.

Integrating equation (4) with respect to time, we find that

pL(IBS) =
L∑

i=1

Ai(L)
1 + iµ + (i− 1)ρ

. (7)

Although it is time-intensive to compute A1(L), . . . , AL(L) for L � 104, the

run time can be decreased by picking an appropriate constant c and substituting

(cµ, cρ, L/c) for (µ, ρ, L). This approximation reduces the run time c2-fold, and

Figure 2 records its modest effect on the computation accuracy.

The reader may prefer to think about pL(IBS) using matrix algebra rather

than recursion, seeing that

pL(IBS) =
(

1
1+µ

1
1+2µ+ρ · · · 1

1+Lµ+(L−1)ρ

)


C1 C2 · · · CL−1 CL

1− C1 0 · · · 0 0

0 1− C2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1− CL−1 0



L 
1

0
...

0

 .

It is important to note that we have been talking about ROHs that are at

least L bases long; when we compare our results to real genome data in Section

7, we will need to know the frequency of ROHs that are exactly L bases long.

The following is the probability pLmax(IBS) of observing an L-base IBS stretch

ending with a het:

pLmax(IBS) =
L∑

i=1

Ai(L)
∫ ∞

t=0

e−t(1+iµ+(i−1)ρ))(1− e−(µ+ρ)t)dt

=
L∑

i=1

Ai(L)(µ + ρ)
(1 + iµ + (i− 1)ρ)(1 + (i + 1)µ + iρ)

.
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Figure 2: The parameter change (µ, ρ, L) → (cµ, cρ, L/c) has its greatest effect

when L is small. For L = 1000, the true value of p(IBD|IBS) is 0.8459; the

calculated value increases to 0.8516 when we let c = 10, and increases to 0.9136

when we let c = 100. For L = 50000, the difference between the c = 10 value

and the c = 100 value is only 0.0131, and taking c = 100 makes it practical to

compute pL(IBS) for L in the megabase range.
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2.2 Non-uniform mutation and recombination

We have been assuming that µ and ρ are constant throughout the alignment

to simplify the formulas as much as possible. However, it is easy to calculate

p(IBD—IBS) exactly even when each locus i, 1 ≤ i ≤ n, has a distinct muta-

tion rate µi and recombination rate ρi. If we let ~µ and ~ρ denote the vectors

(µ1, . . . , µn) and (ρ1, . . . , ρn), it is easy to check (by generalizing the integrals

in section 2.1) that

pL(IBS|~µ, ~ρ) =
L∑

i=1

Ai(L, ~µ, ~ρ)
((µ1 + ρ1) + · · ·+ (µi + ρi))(1 + (µ1 + ρ1) + · · ·+ (µi−1 + ρi−1) + µi)

,

where

Ai(L, ~µ, ~ρ) = (1− Ci−1(~µ, ~ρ))Ai−1(L− 1, ~µ, ~ρ)

and

A1(L, ~µ, ~ρ) =
L−1∑
i=1

Ci(~µ, ~ρ)Ai(L− 1, ~µ, ~ρ)

for

Ci(~µ, ~ρ) =
ρi

((µ1 + ρ1) + · · ·+ (µi + ρi))(1 + (µ1 + ρ1) + · · ·+ (µi−1 + ρi−1) + µi)
.

2.3 Correcting for changes in effective population size

Because most human populations have undergone growth and/or bottlenecking,

we describe how to correct our model for historical changes in effective popula-

tion size. We work through the example of a simple bottleneck, but the same

method can accommodate any locally constant function N(t).

We model a bottleneck following the convention in the coalescent theory

reference [18], using a piecewise-constant time transform t → τ(t). We suppose

that the population began at size aN before the bottleneck, dipped to size fN

during the time interval [tB2, tB1], and has existed stably at size N from time

tB2 to the present. The values tB1, tB2, and tB3 are measured in generations

before the present, but we must map them to times τ(t) measured in units of

2N generations before the present:
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τ(t) =


(t− tB1)/(2Na) + (tB1 − tB2)/(2Nf) + tB2/(2N) if t > tB1

(t− tB2)/(2Nf) + tB2/(2N) if tB1 < t < tB2

t/(2N) if t < tB2

In addition to scaling t, we must scale µ and ρ, since each contains a factor

of N .

When we make these modifications, equation (3) becomes

pL(IBD) =
∫ τ(tB2)

τ=0

e−τ ·(1+L(µ+ρ))dτ +
∫ τ(tB1)

τ=τ(tB2)

e−τ ·(1+Lf(µ+ρ))dτ +
∫ ∞

τ=τ(tB1)

e−τ ·(1+La(µ+ρ))dτ

=
1− e−τ(tB2)(1+L(µ+ρ))

1 + L(µ + ρ)
+

e−τ(tB2)(1+Lf(µ+ρ)) − e−τ(tB1)(1+Lf(µ+ρ))

1 + Lf(µ + ρ)

+
e−τ(tB1)(1+La(µ+ρ))

1 + La(µ + ρ)
.

In the same way, we can correct A1(L), . . . , AL(L) for the bottleneck by replac-

ing

Ci =
ρ

i(µ + ρ)(1 + i(µ + ρ))

with

Ci =
ρ

i(µ + ρ)

(
1− e−τ(tB2)(1+i(µ+ρ))

1 + i(µ + ρ)

+
e−τ(tB2)(1+if(µ+ρ)) − e−τ(tB1)(1+if(µ+ρ))

1 + if(µ + ρ)
+

e−τ(tB1)(1+ia(µ+ρ))

1 + ia(µ + ρ)

)
.

In terms of these corrected Ai(L), we deduce that

pL(IBS) =
L∑

i=1

Ai(L)
(

1− e−τ(tB2)(1+i(µ+ρ))

1 + i(µ + ρ)

+
e−τ(tB2)(1+if(µ+ρ)) − e−τ(tB1)(1+if(µ+ρ))

1 + if(µ + ρ)
+

e−τ(tB1)(1+ia(µ+ρ))

1 + ia(µ + ρ)

)
.

3 The age distribution of maximal IBD segments

Our calculations, along with those in earlier papers, make it clear that IBD

segment length is inversely related to age. In [17], Hayes, et al. go as far
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