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Figure 3: This plot shows the length spread of IBD segments that coalesce 0.2N

generations ago. Comparing this to Figure 4, we see that it will be difficult to

tell these segments apart from segments that coalesced 0.3N generations ago.

time are related so inexactly. We will see in Section 7, that precisely calculated

IBS probabilities make it possible to use the distribution of shorter ROHs to

estimate the effective population size at earlier points in history.

4 The probability of IBD given diploid IBS with

uncertain haplotype phasing

In [31], Kong, et al. find IBS haplotypes by looking for diploid sequences L1, L2

with the property that IBS(L1, L2) ≥ 1 at every base in the sequence, i.e. that

the alignment contains no locus for which L1 and L2 are homozygous for different

alleles. However this condition does not guarantee that a haplotype of L1 is
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Figure 4: The length spread of IBD segments that coalesce 0.3N generations

ago is different from the spread of segments that coalesce 0.2N generations ago

(Figure 3), but overlaps enough that it would take a bit of work to learn about

population history from a sum of density plots like these.
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Figure 5: IBS between phased haplotypes vs. IBS≥1 Here, the two

chromosomes of a diploid individual are aligned to a reference haplotype. The

diploid DNA is drawn in bold where it matches the reference haplotype IBS.

Both the top and the bottom alignment have the property IBS≥ 1, where at

least one of the diploid sequences matches the reference at every base. However,

only the diploid individual in the top alignment shares a haplotype IBS with

the reference over the entire region.

IBS with a haplotype of L2 as illustrated in Figure 5. The following question

is motivated by this phasing issue, as well as the problem of reference panel

imputation: Given an unphased diploid sequence d of length L aligned with a

reference haplotype r, what is the probability that IBS(r, d) ≥ 1 everywhere? A

simpler problem is to find the probability that r and d are both IBD and IBS,

IBS taken for the rest of this section to mean IBS(r, d) ≥ 1, and again, both

quantities are needed to find p(IBD|IBS)=p(IBD&IBS)/p(IBS).

In this section, it will be convenient to let µ = 2Nm and ρ = 2Nr (which

differs by a factor of two from in previous sections).
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Figure 6: Natural and skew tree topologies. Boldface branches are drawn where

mutations cannot occur without rendering the alignment non-IBS.

When describing the history of more than two sequences, it becomes neces-

sary to discuss tree topology as well as coalescence time. In the case of com-

paring a haploid reference to the two chromosomes of a diploid sequence, we

distinguish between natural and skew topologies: if L is sufficiently long and

r is IBD with one of the haplotypes d1, d2, then it is unlikely, though not im-

possible, for the tree to have topology (r(d1d2)). We will refer to this as the

skew topology, and to the other possible topologies as natural topologies (see

Figure 6). Whatever the topology, we will let t1 be the coalescence time of the

root of the tree, and t2 be the internal coalescence time. We refer to a particular

skew tree as S(t1, t2), and to both of the analogous natural trees as N(t1, t2).

In order for the alignment to contain a pair of IBD haplotypes, there must

be one coalescence time t that stays constant over the whole sequence. However,

the coalescent history is free to vary from locus to locus over any trees of the

form N(t1, t), N(t, t2), and S(t, t2). We will call transitions between such trees

allowed recombinations.

In addition to these allowed recombinations, there is a set of allowed muta-

tions that are compatible with the sequence containing a pair of IBS haplotypes.

In the natural topology, mutations are allowed everywhere on the tree but on
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the branch joining r to its most recent common ancestor with one of d1 and d2,

while in the skew topology, they are allowed only on the two branches joining

d1 and d2 to their most recent common ancestor. Because t1 � t2 in general,

long IBS alignments should statistically be dominated by the natural topology.

Given any coalescent tree on three leaves, the probability of t2 being greater

than t is e−3t. Using this fact, we compute the probability pN (IBD) that the

alignment will coalesce IBD entirely in the natural topology:

PN (IBD& IBS) =
∫ ∞

t2=0

∫ ∞

t1=t2

2
3
· e−t2(µ+3ρ)L · e−(t1−t2)dt1 · 3e−3t2dt2(10)

=
2

3 + L(µ + 3ρ)
. (11)

Here, 3e−3t2dt2 is the probability that the later coalescence will happen at

exactly time t2, while 2/3 is the probability that it will be natural rather than

skew. Given this event, e−(t1−t2)dt1 is the probability that the other coalescence

happens exactly t1 − t2 time units earlier. e−3Lρt2 is the probability that there

will be no recombinations anywhere between t2 and the present, at any locus

on the alignment, and e−Lµt2 is the probability that there will be no mutations

on the thick branch joining s to the internal tree branch in Figure 6.

Similarly, we compute the probability pS(IBD& IBS) that the sequence co-

alesces IBD with the leftmost site in the skew topology:

PS(IBD& IBS) =
∫ ∞

t2=0

∫ ∞

t1=t2

e−t2(2−L(ρ+µ))−t1(1+2L(ρ+µ))dt1dt2 (12)

=
1

(1 + 2L(ρ + µ))(3 + L(ρ + µ))
(13)

In this last calculation, we neglect the fact that allowed recombinations can

change the per-base mutation rate, decreasing the probability of no mutations

from e−t1µ to as low as e−2t1µ. However, these variations will affect PS(t1, t2)

by at most a factor of 4. They do not change the fact that

lim
L→∞

PS(IBD&IBS)
PN (IBD&IBS)

= 0.

As in Section 2, we calculate PL(IBS) by induction, integrating PL−1(IBS, t0)dt0

over a set of transition probabilities to find PL(IBS, t). We found the sequen-

tially Markovian coalescent too complex to make this tractable, and it was
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necessary to make some simplifications, creating what we will call the forgetful

SMC.

It is easiest to understand the difference between our forgetful SMC and

the original SMC by analogy to the difference between the SMC and the full

coalescent with recombination. As a point of reference, we reiterate that the

SMC is a hidden Markov model where the hidden states are genealogies and

the output of each genealogy is a locus in a sequence alignment [43]. The

distribution of marginal genealogies at each site is the same as it would be under

the full coalescent with recombination, but the transition probabilities between

genealogies at neighboring sites are what differ between the two models. The

genealogy distribution at base L, under the SMC, is completely determined by

the distribution of genealogies at base L − 1, while under the full coalescent

it also depends on the distribution of genealogies at all previous bases in the

sequence.

The distribution we wish to compute is not a full sampling distribution of

sequence alignments, but simply the percentage of these alignments that are

IBS≥ 1. For our purposes, there are output two output states of the SMC

is binary: each locus is IBS or non-IBS. The output distribution of a skew-

topology genealogy depends only on the recent coalescence time, t2, not on the

older coalescence time t1; t2 affects the transition probabilities, but not the

marginal outputs of the Markov chain. Motivated by this fact, we modify the

SMC so that t2 is forgotten after each transition event and the resampled before

the next one. The precise construction is given in the following paragraph and

illustrated in Figure 7 as an HMM flow diagram.

Instead of keeping track of a three-leaf coalescent tree at each site, we will

only keep track of the time t at which the reference r coalesces with one of the

haplotypes d1, d2. This is t2 in the natural topology and t1 in the skew topology.

When we calculate the transition probability from t0 to t, we will assume that

the t0 tree is in the natural topology and pick t1 from its expected distribution,

conditional on t. After a recombination, however, we allow the new tree to coa-

lesce in either the natural or the skew topology. The small number of skew trees
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that are produced will be regarded as natural at the next recombination event.

Our simulations suggest that this gives more accurate results than outlawing

skew coalescences entirely, while keeping the computational complexity under

control. The results agree closely with a P (IBD|IBS) curve that we constructed

using MS simulations, conditioning on the full coalescent [25].

The following recursion summarizes the transition probabilities of the for-

getful SMC. An explanation of each term will follow:

PL(IBS, t)dt = pL−1(IBS, t)dt · e−t(µ+2ρ)

+
∫ t

t0=0

∫ t0

tr=0

pL−1(IBS, t0) · e−µt

(
2ρe−2ρtr · 2

3
· 3e−3(t−tr)dt

+2ρe−2ρtr

∫ t

t2=tr

1
3
· 3e−3(t2−tr) · e−(t−t2)dtdt2

)
dtrdt0

+
∫ ∞

t0=t

∫ t

tr=0

pL−1(IBS, t0) · e−µt

(
2
3
· 3ρe−3ρtr · 1

2
· 2e−2(t−tr)+

+
1
3
· 3ρe−3ρtr · 2e−2(t−tr)dt

)
dtrdt0

= pL−1(IBS, t)dt · e−t(µ+2ρ)

+
∫ t

t0=0

∫ t0

tr=0

pL−1(IBS, t0)
(
3ρe−t(3+µ)+tr(3−2ρ)

+ ρe−t(1+µ)+tr(1−2ρ)
)

dtrdt0dt

+
∫ ∞

t0=t

∫ t

tr=0

pL−1(IBS, t0) · 4ρe−t(2+µ)+tr(3−2ρ)dtrdt0dt.

Since we are assuming that the initial (L−1) bases of IBS end with a natural

topology tree, we can let d1 denote the haplotype that coalesces with r before

the other haplotype does. The first integrand is the probability that an (L−1)-

base alignment coalescences IBS, its rightmost site coalescing at time t0 < t,

along with one of the following events:

1. One of r and d1 recombines at time tr (probability 2ρe−2ρtrdtr). The first

coalescence among r, d1, d2 occurs in the natural topology (probability 2
3 )

at time t (probability 3e−3(t−tr)dt).

2. One of r and d1 recombines at time tr (probability 2ρe−2ρtrdtr). The first
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Figure 7: Hidden Markov model flow diagrams of the SMC and our forgetful

approximation of the SMC. The position of the reference sequence is labeled to

mark each genealogy as natural or skew. Each output extends the alignment by

a triplet of bases (including one labeled reference base) that is either IBS ≥ 1

or not.
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coalescence among r, d1, d2 occurs in the skew topology (probability 1
3 ) at

a time t2 < t (probability 3e−3(t2−tr)dt2). The common ancestor of d1

and d2 coalesces with r at time t (probability e−(t−t2)dt).

The second integrand is similarly defined, with t0 > t and two possible coalescent

scenarios. It is not possible for recombination to turn a natural-topology tree

indexed by time t0 into a skew-topology tree indexed by a time t < t0.

1. The first recombination among r, d1, d2 occurs at time tr (probability

3ρe−3ρtrdtr. It happens to d1 or d2 (probability 2
3 ), and this sequence

coalesces with r at time t (probability e−2(t−tr)dt). (It is certain that the

second coalescence happens less recently than time t).

2. The first recombination among r, d1, d2 occurs at time tr (probability

3ρe−3ρtrdtr. It happens to r (probability 1
3 ). Sequence r coalesces with

d1 or d2 at time t (probability 2e−2(t−tr)dt).

As an aside, we will discuss the central difference between our model and the

Sequentially Markovian Coalescent [43], the model that enabled our computa-

tion of two-haplotype IBS probabilities in Section 2. The SMC has the property

that the history at position x depends only on the history at position x−1, but

the history of three or more sequences is a hefty variable consisting of a topology

and two interrelated coalescence times, and the SMC is not Markovian in either

of those times on its own.

To illustrate, suppose that the alignment contains the topology sequence

((r, d1), d2), ((r, d2), d1), ((r, d1), d2). If (r, d2) restricted to the middle section

coalesces more recently than (r, d1) in either outside section, then it is possible

that r is IBD with d2 throughout the composite alignment, a possiblity that

our model does not capture. However, since t1 � t2 in general, it is unlikely

for (r, d2) to stay IBD over an interval where (r, d1) are not IBD. Disallowing

this fringe possibility makes our process Markovian in a single time variable,

one that is much simpler to integrate over than a three-parameter history.
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There exists a series of number pairs {(B,CB)} for which

PL(IBS, t) =
∑
B

CB(L)e−tB ; (14)

performing the necessary integrals, we find that

PL+1(IBS, t) =
∑
B

CB(L)
(

e−t(B+µ+2ρ) +
3ρ

B(B − 3 + 2ρ)

(
e−t(3+µ) − e−t(B+µ+2ρ)

)
+

ρ

B(B − 1 + 2ρ)

(
e−t(1+µ) − e−t(B+µ+2ρ)

)
+

3ρ

B(3− 2ρ)

(
e−t(B+3+µ) − e−t(B+µ+2ρ)

)
+

ρ

B(1− 2ρ)

(
e−t(B+1+µ) − e−t(B+µ+2ρ)

)
+

4ρ

B(2− 3ρ)

(
e−t(B+µ+3ρ) − e−t(B+2+µ)

))
.

We can compute PL(IBS, t) much more quickly, losing very little accuracy, by

truncating the formula to

PL+1(IBS, t) =
∑
B

CB(L)
(

e−t(B+µ+2ρ) +
3ρ

B(B − 3 + 2ρ)

(
e−t(3+µ) − e−t(B+µ+2ρ)

)
+

ρ

B(B − 1 + 2ρ)

(
e−t(1+µ) − e−t(B+µ+2ρ)

))
.

In this way, we write

PL(IBS, t) =
L−1∑
i=0

Ci(L)e−t(1+µ+i(µ+2ρ)) + Di(L)e−t(3+µ+i(µ+2ρ)), (15)
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the coefficients satisfying the recursions

Ci+1(L + 1) =
(

1− 3ρ

(1 + µ + i(2ρ + µ))(µ− 2 + 2ρ + i(2ρ + µ))

− ρ

(1 + µ + i(2ρ + µ))(µ + 2ρ + i(2ρ + µ))

)
Ci(L)

Di+1(L + 1) =
(

1− 3ρ

(3 + µ + i(2ρ + µ))(µ + 2ρ + i(2ρ + µ))

− ρ

(3 + µ + i(2ρ + µ))(2 + µ + 2ρ + i(2ρ + µ))

)
Di(L)

C0(L + 1) =
L−1∑
i=0

3ρ

(1 + µ + i(2ρ + µ))(µ− 2 + 2ρ + i(2ρ + µ))
Ci(L)

+
L−1∑
i=0

3ρ

(3 + µ + i(2ρ + µ))(µ + 2ρ + i(2ρ + µ))
Di(L)

D0(L + 1) =
L−1∑
i=0

ρ

(1 + µ + i(2ρ + µ))(µ + 2ρ + i(2ρ + µ))
Ci(L)

+
L−1∑
i=0

ρ

(3 + µ + i(2ρ + µ))(2 + µ + 2ρ + i(2ρ + µ))
Di(L)

with base case

P1(IBS, t) = 2e−t(3+µ) +
∫ t

t2=0

e−3t2 · e−(t−t2) · e−tµdt2

=
1
2
e−t(1+µ) +

3
2
e−t(3+µ).

For future reference, we will summarize this set of recursions in an operator D

defined such that

DL−1 (P1(IBS|t)) = D(PL−1(IBS|t)) = PL(IBS|t). (16)

As mentioned before, we performed MS coalescent simulations to check the

results of the diploid computations [25], finding empirical probabilities of IBD

and IBS based on 106 trial histories. Our formula underestimates PL(IBD|IBS)

for short sequences, predicting that P10000(IBD|IBS) = 0.676 while the simu-

lations say it should be 0.745. However, the discrepancy narrows quickly as L

increases, with P50000(IBD|IBS) = 0.838 and simulations showing it to be 0.848.

Our underestimation of PL(IBD|IBS) disappears less quickly when we simulate

33



Figure 8: This plot compares our diploid results to the values that we obtained

from MS simulations, which assume the full non-Markovian coalescent with re-

combination. Given a 105-base diploid sequence that is IBS ≥ 1 with a refernce,

it is 90.1% likely to contain a haplotype that is IBD with the reference. This

probability increases to 98.5% for an alignment 106 bases long. When we ob-

serve only 10% of all hets, the corresponding probabilities are 29.4% (L = 105)

and 89.1% (L = 106).

the effect of thinned marker data, observing only 10% of all hets, but we still

get within 1% of the true value for L ≥ 500, 000 (see Figure 8).

5 Using identity by state to phase and impute

haplotypes

There are a number of questions in applied genetics research that require accu-

rate identification of tracts of IBD. The oldest of these questions center around
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