
1 Introduction

Every child is born with a few de novo mutations, DNA sites where they differ

from their parents and from most other humans. Most of the variants created

this way die out within a few generations, but a minority of them spread to

hundreds or thousands of the child’s descendants and contribute to widespread

human genetic variation [1, 27]. By mathematically modeling the emergence and

spread of new alleles, population geneticists can make inferences about ancient

periods of growth, decline, interbreeding, and the emergence of modern ethnic

groups, as well as discover links between genetic and phenotypic variation.

Given DNA from one individual, it is much cheaper to genotype a few thou-

sand genetic loci than to ascertain the entire genome sequence, so companies like

Illumina and Affymetrix manufacture single nucleotide polymorphism (SNP)

chips that can selectively ascertain the states of between 10,000 and 1,000,000

of the most variable sites in humans. By focusing on fewer genetic sites, one can

afford to genotype those sites in more individuals, and this approach has been

used since the invention of pedigree analysis to find many sites in the genome

that correlate with disease risk or recent positive selection [36]. A problem with

SNP chips, however, is that they omit sites where variant alleles arose too re-

cently to spread to a significant fraction of the human population. Although

none of the three billion sites that are omitted from a SNP chip is especially

variable on its own, together they harbor a vast amount of additional genetic

information [1, 26]. This hard-to-detect variation is a clear candidate harbor

for “missing heritability” in disease genetics, where known genetic risk factors

usually fail to account for the full heritability of complex diseases [29, 51].

One way to detect more low-frequency variants will be to gather more geno-

type and sequence data, working to make this process cheaper through im-

provements in biotechnology. Another approach, however, is to extract more

information from available data sets by modeling a process known as linkage

disequilibrium (LD). Even when site X does not appear on a chip being used to

to gather data, it can still be possible to infer that two sequences match at site
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X by looking for matching at sites close to X. DNA is passed from parents to

children in continuous blocks between recombination sites; when two sequences

share a rare allele, it is likely that the allele was inherited from a recent com-

mon ancestor along with a block of surrounding DNA containing some sites that

appear on the SNP chip [10, 31].

Linkage disequilibrium affects the distribution of heterozygous sites (hets) in

every diploid genome, even in outbred populations. If every site in the genome

had an independent probability m of being a het, then the probability of an L-

base region being devoid of hets, or identical by state (IBS) would be (1−m)L ≈

e−L. The frequency of L-base regions of homozygosity (ROHs) is not observed

to decline exponentially with L, however [41, 55], and the excess of long ROHs

can be accounted for by modeling LD. If, for example, an individual’s parents

are ninth-degree cousins, there is only a one-in-220 chance that both alleles at

a given site in the child’s DNA were inherited from the parents’ most recent

common ancestor, but given that both alleles were both inherited from that

ancestor, the child is likely to be homozygous over 10 megabases of surrounding

DNA [31]. Ten generations is not enough time for meiosis to break the DNA

into smaller heritable pieces, and in general, the length of a homozygous stretch

is inversely proportional to the age of the ancestor that the matching haplotypes

derive from.

The key to understanding how hets are placed is understanding how coa-

lescence time, or time to common ancestry, varies from site to site across the

genome. We define ancestral recombination sites (ARs) to be loci where two

neighboring allele pairs coalesce at different times, and say that an alignment

is identical by descent (IBD) if it has no interior ARs (See Figure 1 for an

illustration of IBD vs. IBS).

A consequence of coalescent theory is that hets are placed randomly within

an IBD region, with their density proportional to the region’s coalescence time

t (t = 0 being the present and larger t’s being more ancient). As we move from

left to right across a region of IBD, each base has a constant probability of being

a het and a constant probability of being an AR and ending the IBD stretch.
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In human DNA, the het probability µt is about 2.5 times the AR probability

ρt, such that each IBD region contains about 2.5 total hets. The length of the

region will vary inversely with t, however, making the local density of hets very

small when t is very small.

Commercial chips with at most 1,000,000 SNP sites can detect at most 10%

of the hets in a diploid sequence. This suggests that, on average, an IBD

region will contain 0.25 hets that are detectible with a 1,000,000 chip and that

e−0.25 > 0.77 of all maximal IBD regions will appear IBS based on genotype

data. In contrast, only e−2.5 ≈ 0.082 of maximal IBD regions will appear IBS

based on sequence data.

Although definitions of IBD differ widely in the literature, IBD between

two sequences is usually taken to imply IBS at the level of genotype data, and

we do not intend to create confusion by defining IBD such that it does not

imply IBS. Rather, we note that sequence-level IBS will only be true of about

0.082/0.77 ≈ 0.11 of the regions that are inferred to be IBD by a program

like BEAGLE, which used IBS at the genotype level to find segments of shared

ancestry. In contrast, 77% of the 1 MB regions that we call IBD should also be

identified as IBD by BEAGLE [10]. When looking for IBD in sequence data,

it seems useful to drop the assumption that IBD implies IBS, just as it was

necessary to change the definition of IBD when moving from pedigree analysis

to the study of unrelated individuals.

The terms IBD and IBS were in fact both coined in the context of pedigree

analysis, where a family with a history of a disease phenotype is scrutinized

for genetic variants that might contribute to the appearance of that phenotype.

Related individuals are genotyped at a sparse set of markers, and those markers

are used, together with the family relationship pedigree, to find haplotypes

that were often transmitted from diseased ancestors to diseased offspring [34,

37]. IBD sharing makes it likely that two individuals match at a long stretch

of unobserved DNA, and inferring this matching is essential given that the

variants causing the disease will almost certainly not be among the few directly

genotyped marker sites.

9



Figure 1: This picture illustrates the difference between IBS and IBD. IBS

depends only on the observable differences between two sequences, while IBD

depends on their hidden history: how long ago each site coalesces. Two se-

quences are IBD if each base coalesces at the same time, and IBS if each base

matches by state (there are no internal hets). Long regions of IBS usually over-

lap with long regions of IBD, but as shown here, the regions rarely coincide

exactly.
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More data is available in a genome-wide association study (GWAS), where

thousands of cases and controls are typed at hundreds of thousands of markers.

However, it is impossible to know the family relationships among so many study

individuals, making direct IBD inference more difficult than in a linkage study,

and it is still likely that the causal variants will not be directly genotyped.

Rather than working to infer the genealogies of unobserved stretches of DNA,

GWASs regard typed markers as one-to-one proxies for untyped markers, work-

ing to construct genotype sets for which each unobserved allele is usually coin-

herited with an observed allele. If the presence of allele A at observed locus x

means that there is a 90% chance of observing allele B at locus y, then even if

B is causal and A is not, it may be possible to observe a correlation between

the presence of A and the disease. A strong pairwise association between A

and B translates to a high correlation coefficient r2(A,B), which is calculated

from the allele frequencies fA(x) and fB(y) along with the haplotype frequency

fA(x)B(y):

r2(A,B) =
(fA(x)B(y) − fA(x)fB(y))2

fA(x)(1− fA(x))fB(y)(1− fB(y))
(1)

A standard measure of a genetic tag set’s efficacy is the percentage of untyped

variable sites that are within r2 ≥ 0.8 of a typed SNP (see e.g. [6]).

By the definition given above, r2(A,B) is a statement about how often A and

B occur together in extant individuals, not a statement about how much history

the alleles have in common. McVean showed that r2(A(x), B(y)) is related to

the covariance between the coalescence times at sites x and y [42]; IBD histories

are more probable when r2 is close to 1, but knowing r2(A,B) is not sufficient to

know the likelihood of IBD in the stretch between x and y. Similarly, Hayes, et

al. showed that the mean r2 for markers L bases apart is close to the frequency

of L-base IBD stretches in the genome, but that their measure of IBD sharing

has a lower variance than r2 does, capturing strictly more information about

the hidden history of the sequences [17].

Some have claimed that pairwise r2 values behave badly when input into

multivariate GWAS analyses, and that measures of IBD probability behave
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much better. Terwilliger and Hiekkalinna argue that it is dangerous to assume

that the correlation between a tag and a variant will be statistically independent

of the correlation between the variant and the phenotype, and that this is a fatal

flaw in the paradigm of using tag SNPs as one-to-one proxies for unobserved

SNPs. In contrast, they argue that IBD sharing should be independent of

whether any loci involved are functional [56], and that linkage studies may be

inherently more powerful than GWAS as a result. Whether or not they are

correct, the best of both worlds solution may be to conduct GWAS as much like

linkage studies as possible, finding ways to look for IBD sharing, rather than

simple IBS association, in genetic data sets that have no accompanying pedigree

data.

Imputation can be viewed as a step toward making GWAS more like linkage

studies, inferring IBD with the help of population genetics rather than pedigrees

[38]. To avoid assuming that the effects of untyped variants will automatically

show up by proxy association, these variants are imputed into test sequences and

screened for association directly. Imputation is performed where IBD sharing

is suspected between a sample and a reference haplotype, taking advantage of

the good evidence for IBD that is provided by long IBS marker strings. We are

able to compute precisely how long these marker strings must be for p(IBD|IBS)

to be sufficiently close to 1, analytically predicting when imputation should be

reliable.

Detecting IBD is especially important when causal variants are very rare

or have very modest phenotypic effects. Several variants that affect the same

condition may be clustered around an important protein or promoter, in which

case it may be possible to pool their signals, i.e. regard the whole region as single

locus where haplotypes are the alleles. The number of individuals with causal

variants in the region should exceed the number with variants at any particular

locus, and the pooled signal of these variants may just reach the threshold of

detectability [9, 51, 53]. However, this approach depends on the ability to tell

haplotypes apart based on marker IBS, and we will show that inferring a 1000-

base haplotype with 99% accuracy requires imputing from nearly a megabase
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of standard IBS marker data.

The probability p(IBD|IBS) depends on population history in a complex

way; although long IBD tracts are most common in DNA from inbred groups,

inbreeding actually increases the probability that a long IBS tract is not IBD

[37, 52, 55]. False discoveries abound in linkage studies that do not adequately

account for hidden founder relatedness, particularly with regard to long genetic

loops that are seldom recorded in pedigrees [34, 37, 52]; however, the dependence

of IBS sharing on population history can be useful as well as confounding,

since the length distribution of shared IBS contains more information about

population substructure than simpler measures like the coefficient of relatedness.

Jakkula, et al., for example, found that the Finnish sub-populations have similar

inbreeding coefficient distributions but differ significantly in their patterns of

homozygosity and IBS sharing [28]. Similarly, Kong, et al. found long IBS

sharing to be common in Iceland, though the average inbreeding coefficient

(2.5 × 10−4) was not especially high. In a collection of 35,528 Icelanders who

were genotyped for a particular 10 Mb region, all but 1,995 shared that region

IBS with another genotyped individual who was not closely related to them,

enough to allow for long-range phasing within the population at large [31].

There exist several algorithms for estimating p(IBD|IBS), some condition-

ing on haplotype frequencies and some only on inheritance models. The data-

dependent algorithms have the advantange of specificity, but they consistently

underestimate p(IBD|IBS) because of the way they incorporate their test hap-

lotype into their prior [9, 33, 46]. They can confirm that a medically interesting

region is likely to be IBD, but are less useful for using IBD to study population

history. p(IBD|IBS) has not been computed exactly with respect to the neutral

coalescent, and we believe we are the first to compute it with respect to the

sequentially Markovian coalescent [43].

Previous methods for estimating p(IBD|IBS) that do not condition on allele

frequencies have begun to deduce the impact of history on genome-wide pat-

terns of IBD [11, 17, 54, 55, 57]. However, most of them make assumptions that

break down at certain segment lengths and marker densities, which prevents
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them from making use of all available marker information. The PLINK hidden

Markov model, for example, will only calculate p(IBD|IBS) between markers

that are in linkage equilibrium with each other [33, 51]; their precision is lim-

ited by the sparseness of unlinked marker sets. A related assumption, which

is implicitly made in all of the literature we found, is that the lengths of ad-

jacent IBD segments are independently distributed [9, 17, 46, 51, 55], and we

will show in Section 6 how this breaks down for large, dense data sets. Our

method, in contrast, captures the dependence between the lengths of neigh-

boring IBD segments, and can assume arbitrarily dense marker data without

losing any accuracy. Given inputs of population size history, mutation rate,

and recombination rate, we predict an ROH distribution that can be verified in

genome data. After adjusting for the presence of sequencing errors, we are able

to accurately predict the distribution of ROHs found in eleven complete human

genome sequences.

Given that sequencing is much more costly than genotyping, we also adjust

our method to predict IBS given a thinned-down set of markers. Our theory

correctly predicts the distribution of segments that appear homozygous based on

incomplete knowledge of the hets in the genome data, quantifying the correlation

between IBS at the genotype level and IBS at the level of the complete sequence.

We also extend our theory to the case of unphased diploid sequences, devi-

ating from the SMC slightly but checking the results against a full coalescent

simulation. When phasing ambiguities are accounted for in this way, p(IBD|IBS)

can be used to estimate the accuracy of an attempt at imputation and/or hap-

lotype resolution. We conclude that both efforts become much more accurate

if the ends of an IBS alignment are not considered likely to be IBD; when IBS

is measured in a way that detects a het every 10,000 bases, it seems prudent to

discard 105 bases from each end of an alignment, after which the probability of

IBD is as great as if the full sequences were known. Finally, we estimate the

accuracy spread of the imputation calls made from a panel of n reference hap-

lotypes, showing that a thousand references should be sufficient in a population

where recent exponential growth has not broken up moderately long stretches
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of IBD sharing.

2 Computing the probability of identity by state

Since

p(IBD|IBS) =
p(IBD&IBS)

p(IBS)
, (2)

where p(IBD&IBS) is easy to compute (see equation (2.1)), the crux of our

approach will be calculating p(IBS) given sequence length and the history of the

effective population size. In section 2.1, we treat the case of constant effective

population size, while section 2.3 describes how to condition on any locally

constant population size history.

2.1 Constant effective population size

Let L be the length of an alignment between two haplotypes sampled at random

from a diploid population of effective size N . Assume that the DNA undergoes m

mutations per base per generation and r recombinations per base per generation,

letting µ = 4Nm and ρ = 4Nr. We will hereafter measure time in units of 2N

generations.

The alignment will coalesce at time t, both IBD and IBS, if and only if the

following events coincide:

1. The leftmost locus coalesces at time t without mutating (probability e−t(1+µ)dt)

2. No other base in either sequence undergoes a mutation or a recombination

between time zero and time t (probability e−t(L−1)(µ+ρ))

From this observation, it follows that

p(IBD&IBS) =
∫ ∞

t=0

e−t(L−1)(µ+ρ) · e−t(1+µ)dt =
1

1 + Lµ + (L− 1)ρ
. (3)

In an analogous way, we will derive the probability pL(IBS|t)dt that the

alignment coalesces IBS with its rightmost base coalescing at time t. We proceed
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