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Abstract

When two DNA sequences look identical by state (IBS) along a string

of genotyped markers, the DNA between the markers is often identical by

descent (IBD), meaning inherited from a recent common ancestor with-

out recombination. This fact makes it possible to scan the whole genome

for functional variants without typing every base directly, making use

of information about unobserved bases that is provided by the states of

observed bases. We attempt to quantify that information here, using coa-

lescent theory to predict how strongly various degrees of IBS imply IBD,

taking into account the density of genotyped markers and past effective

population size.

In addition to calculating the probability of IBD between IBS haploid

sequences, we consider the problem of matching an unphased diploid se-

quence to a reference haplotype panel. The results have bearing on the

practices of haplotype phasing and genotype imputation, both of which

become more reliable when the ends of an IBS alignment are not assumed

to be IBD. To compute p(IBD|IBS) when phasing ambiguity is an issue,

it was necessary to develop a new approximation to the neutral coalescent

with recombination: a further simplification of the sequentially Markovian

coalescent [43].

Computing p(IBD|IBS) by our method is closely related to predicting

the length distribution of homozygous stretches in the genome. After

accounting for sequencing errors, we predict this distribution correctly, as

judged by data from eleven complete human genomes. We also predict the

length distribution of segments that appear homozygous based on thinned

marker data, noting that the probability of sequence IBS given “thinned

IBS” is a natural measure of imputation accuracy.

The probability of IBS given thinned IBS varies with sequence length

in a way that is very ethnically distinctive, as judged by data from five

Africans, four Europeans, and two Asians. We are able to account for

these differences in terms of past changes in effective population size:

an out-of Africa bottleneck followed by a shallower, more recent Asian

bottleneck. We predict that IBS implies IBD most strongly in historically

4



outbred populations, and that extra care should be taken when inferring

IBD in bottlenecked populations.

Returning to the problem of imputation, we estimate the accuracy

spread of the imputation calls that can be made from a panel of n refer-

ence haplotypes. For an idealized population of effective size N = 10, 000,

we find that the 120-reference HapMap should omit a significant amount

of genetic variation; that given a 1-kilobase stretch of a genotyped individ-

ual’s DNA, a 120-reference panel gives us only a 70% chance of imputing

the sequence of that stretch with 99% accuracy. However, we find that

a 1000-haplotype panel should enable near-perfect imputation in a popu-

lation that has been isolated from recent exponential population growth,

and such perfect imputation would allow for precise genetic mapping in

groups much larger than extended families.
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1 Introduction

Every child is born with a few de novo mutations, DNA sites where they differ

from their parents and from most other humans. Most of the variants created

this way die out within a few generations, but a minority of them spread to

hundreds or thousands of the child’s descendants and contribute to widespread

human genetic variation [1, 27]. By mathematically modeling the emergence and

spread of new alleles, population geneticists can make inferences about ancient

periods of growth, decline, interbreeding, and the emergence of modern ethnic

groups, as well as discover links between genetic and phenotypic variation.

Given DNA from one individual, it is much cheaper to genotype a few thou-

sand genetic loci than to ascertain the entire genome sequence, so companies like

Illumina and Affymetrix manufacture single nucleotide polymorphism (SNP)

chips that can selectively ascertain the states of between 10,000 and 1,000,000

of the most variable sites in humans. By focusing on fewer genetic sites, one can

afford to genotype those sites in more individuals, and this approach has been

used since the invention of pedigree analysis to find many sites in the genome

that correlate with disease risk or recent positive selection [36]. A problem with

SNP chips, however, is that they omit sites where variant alleles arose too re-

cently to spread to a significant fraction of the human population. Although

none of the three billion sites that are omitted from a SNP chip is especially

variable on its own, together they harbor a vast amount of additional genetic

information [1, 26]. This hard-to-detect variation is a clear candidate harbor

for “missing heritability” in disease genetics, where known genetic risk factors

usually fail to account for the full heritability of complex diseases [29, 51].

One way to detect more low-frequency variants will be to gather more geno-

type and sequence data, working to make this process cheaper through im-

provements in biotechnology. Another approach, however, is to extract more

information from available data sets by modeling a process known as linkage

disequilibrium (LD). Even when site X does not appear on a chip being used to

to gather data, it can still be possible to infer that two sequences match at site

7



X by looking for matching at sites close to X. DNA is passed from parents to

children in continuous blocks between recombination sites; when two sequences

share a rare allele, it is likely that the allele was inherited from a recent com-

mon ancestor along with a block of surrounding DNA containing some sites that

appear on the SNP chip [10, 31].

Linkage disequilibrium affects the distribution of heterozygous sites (hets) in

every diploid genome, even in outbred populations. If every site in the genome

had an independent probability m of being a het, then the probability of an L-

base region being devoid of hets, or identical by state (IBS) would be (1−m)L ≈

e−L. The frequency of L-base regions of homozygosity (ROHs) is not observed

to decline exponentially with L, however [41, 55], and the excess of long ROHs

can be accounted for by modeling LD. If, for example, an individual’s parents

are ninth-degree cousins, there is only a one-in-220 chance that both alleles at

a given site in the child’s DNA were inherited from the parents’ most recent

common ancestor, but given that both alleles were both inherited from that

ancestor, the child is likely to be homozygous over 10 megabases of surrounding

DNA [31]. Ten generations is not enough time for meiosis to break the DNA

into smaller heritable pieces, and in general, the length of a homozygous stretch

is inversely proportional to the age of the ancestor that the matching haplotypes

derive from.

The key to understanding how hets are placed is understanding how coa-

lescence time, or time to common ancestry, varies from site to site across the

genome. We define ancestral recombination sites (ARs) to be loci where two

neighboring allele pairs coalesce at different times, and say that an alignment

is identical by descent (IBD) if it has no interior ARs (See Figure 1 for an

illustration of IBD vs. IBS).

A consequence of coalescent theory is that hets are placed randomly within

an IBD region, with their density proportional to the region’s coalescence time

t (t = 0 being the present and larger t’s being more ancient). As we move from

left to right across a region of IBD, each base has a constant probability of being

a het and a constant probability of being an AR and ending the IBD stretch.
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In human DNA, the het probability µt is about 2.5 times the AR probability

ρt, such that each IBD region contains about 2.5 total hets. The length of the

region will vary inversely with t, however, making the local density of hets very

small when t is very small.

Commercial chips with at most 1,000,000 SNP sites can detect at most 10%

of the hets in a diploid sequence. This suggests that, on average, an IBD

region will contain 0.25 hets that are detectible with a 1,000,000 chip and that

e−0.25 > 0.77 of all maximal IBD regions will appear IBS based on genotype

data. In contrast, only e−2.5 ≈ 0.082 of maximal IBD regions will appear IBS

based on sequence data.

Although definitions of IBD differ widely in the literature, IBD between

two sequences is usually taken to imply IBS at the level of genotype data, and

we do not intend to create confusion by defining IBD such that it does not

imply IBS. Rather, we note that sequence-level IBS will only be true of about

0.082/0.77 ≈ 0.11 of the regions that are inferred to be IBD by a program

like BEAGLE, which used IBS at the genotype level to find segments of shared

ancestry. In contrast, 77% of the 1 MB regions that we call IBD should also be

identified as IBD by BEAGLE [10]. When looking for IBD in sequence data,

it seems useful to drop the assumption that IBD implies IBS, just as it was

necessary to change the definition of IBD when moving from pedigree analysis

to the study of unrelated individuals.

The terms IBD and IBS were in fact both coined in the context of pedigree

analysis, where a family with a history of a disease phenotype is scrutinized

for genetic variants that might contribute to the appearance of that phenotype.

Related individuals are genotyped at a sparse set of markers, and those markers

are used, together with the family relationship pedigree, to find haplotypes

that were often transmitted from diseased ancestors to diseased offspring [34,

37]. IBD sharing makes it likely that two individuals match at a long stretch

of unobserved DNA, and inferring this matching is essential given that the

variants causing the disease will almost certainly not be among the few directly

genotyped marker sites.
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Figure 1: This picture illustrates the difference between IBS and IBD. IBS

depends only on the observable differences between two sequences, while IBD

depends on their hidden history: how long ago each site coalesces. Two se-

quences are IBD if each base coalesces at the same time, and IBS if each base

matches by state (there are no internal hets). Long regions of IBS usually over-

lap with long regions of IBD, but as shown here, the regions rarely coincide

exactly.
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More data is available in a genome-wide association study (GWAS), where

thousands of cases and controls are typed at hundreds of thousands of markers.

However, it is impossible to know the family relationships among so many study

individuals, making direct IBD inference more difficult than in a linkage study,

and it is still likely that the causal variants will not be directly genotyped.

Rather than working to infer the genealogies of unobserved stretches of DNA,

GWASs regard typed markers as one-to-one proxies for untyped markers, work-

ing to construct genotype sets for which each unobserved allele is usually coin-

herited with an observed allele. If the presence of allele A at observed locus x

means that there is a 90% chance of observing allele B at locus y, then even if

B is causal and A is not, it may be possible to observe a correlation between

the presence of A and the disease. A strong pairwise association between A

and B translates to a high correlation coefficient r2(A,B), which is calculated

from the allele frequencies fA(x) and fB(y) along with the haplotype frequency

fA(x)B(y):

r2(A,B) =
(fA(x)B(y) − fA(x)fB(y))2

fA(x)(1− fA(x))fB(y)(1− fB(y))
(1)

A standard measure of a genetic tag set’s efficacy is the percentage of untyped

variable sites that are within r2 ≥ 0.8 of a typed SNP (see e.g. [6]).

By the definition given above, r2(A,B) is a statement about how often A and

B occur together in extant individuals, not a statement about how much history

the alleles have in common. McVean showed that r2(A(x), B(y)) is related to

the covariance between the coalescence times at sites x and y [42]; IBD histories

are more probable when r2 is close to 1, but knowing r2(A,B) is not sufficient to

know the likelihood of IBD in the stretch between x and y. Similarly, Hayes, et

al. showed that the mean r2 for markers L bases apart is close to the frequency

of L-base IBD stretches in the genome, but that their measure of IBD sharing

has a lower variance than r2 does, capturing strictly more information about

the hidden history of the sequences [17].

Some have claimed that pairwise r2 values behave badly when input into

multivariate GWAS analyses, and that measures of IBD probability behave
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much better. Terwilliger and Hiekkalinna argue that it is dangerous to assume

that the correlation between a tag and a variant will be statistically independent

of the correlation between the variant and the phenotype, and that this is a fatal

flaw in the paradigm of using tag SNPs as one-to-one proxies for unobserved

SNPs. In contrast, they argue that IBD sharing should be independent of

whether any loci involved are functional [56], and that linkage studies may be

inherently more powerful than GWAS as a result. Whether or not they are

correct, the best of both worlds solution may be to conduct GWAS as much like

linkage studies as possible, finding ways to look for IBD sharing, rather than

simple IBS association, in genetic data sets that have no accompanying pedigree

data.

Imputation can be viewed as a step toward making GWAS more like linkage

studies, inferring IBD with the help of population genetics rather than pedigrees

[38]. To avoid assuming that the effects of untyped variants will automatically

show up by proxy association, these variants are imputed into test sequences and

screened for association directly. Imputation is performed where IBD sharing

is suspected between a sample and a reference haplotype, taking advantage of

the good evidence for IBD that is provided by long IBS marker strings. We are

able to compute precisely how long these marker strings must be for p(IBD|IBS)

to be sufficiently close to 1, analytically predicting when imputation should be

reliable.

Detecting IBD is especially important when causal variants are very rare

or have very modest phenotypic effects. Several variants that affect the same

condition may be clustered around an important protein or promoter, in which

case it may be possible to pool their signals, i.e. regard the whole region as single

locus where haplotypes are the alleles. The number of individuals with causal

variants in the region should exceed the number with variants at any particular

locus, and the pooled signal of these variants may just reach the threshold of

detectability [9, 51, 53]. However, this approach depends on the ability to tell

haplotypes apart based on marker IBS, and we will show that inferring a 1000-

base haplotype with 99% accuracy requires imputing from nearly a megabase
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of standard IBS marker data.

The probability p(IBD|IBS) depends on population history in a complex

way; although long IBD tracts are most common in DNA from inbred groups,

inbreeding actually increases the probability that a long IBS tract is not IBD

[37, 52, 55]. False discoveries abound in linkage studies that do not adequately

account for hidden founder relatedness, particularly with regard to long genetic

loops that are seldom recorded in pedigrees [34, 37, 52]; however, the dependence

of IBS sharing on population history can be useful as well as confounding,

since the length distribution of shared IBS contains more information about

population substructure than simpler measures like the coefficient of relatedness.

Jakkula, et al., for example, found that the Finnish sub-populations have similar

inbreeding coefficient distributions but differ significantly in their patterns of

homozygosity and IBS sharing [28]. Similarly, Kong, et al. found long IBS

sharing to be common in Iceland, though the average inbreeding coefficient

(2.5 × 10−4) was not especially high. In a collection of 35,528 Icelanders who

were genotyped for a particular 10 Mb region, all but 1,995 shared that region

IBS with another genotyped individual who was not closely related to them,

enough to allow for long-range phasing within the population at large [31].

There exist several algorithms for estimating p(IBD|IBS), some condition-

ing on haplotype frequencies and some only on inheritance models. The data-

dependent algorithms have the advantange of specificity, but they consistently

underestimate p(IBD|IBS) because of the way they incorporate their test hap-

lotype into their prior [9, 33, 46]. They can confirm that a medically interesting

region is likely to be IBD, but are less useful for using IBD to study population

history. p(IBD|IBS) has not been computed exactly with respect to the neutral

coalescent, and we believe we are the first to compute it with respect to the

sequentially Markovian coalescent [43].

Previous methods for estimating p(IBD|IBS) that do not condition on allele

frequencies have begun to deduce the impact of history on genome-wide pat-

terns of IBD [11, 17, 54, 55, 57]. However, most of them make assumptions that

break down at certain segment lengths and marker densities, which prevents
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them from making use of all available marker information. The PLINK hidden

Markov model, for example, will only calculate p(IBD|IBS) between markers

that are in linkage equilibrium with each other [33, 51]; their precision is lim-

ited by the sparseness of unlinked marker sets. A related assumption, which

is implicitly made in all of the literature we found, is that the lengths of ad-

jacent IBD segments are independently distributed [9, 17, 46, 51, 55], and we

will show in Section 6 how this breaks down for large, dense data sets. Our

method, in contrast, captures the dependence between the lengths of neigh-

boring IBD segments, and can assume arbitrarily dense marker data without

losing any accuracy. Given inputs of population size history, mutation rate,

and recombination rate, we predict an ROH distribution that can be verified in

genome data. After adjusting for the presence of sequencing errors, we are able

to accurately predict the distribution of ROHs found in eleven complete human

genome sequences.

Given that sequencing is much more costly than genotyping, we also adjust

our method to predict IBS given a thinned-down set of markers. Our theory

correctly predicts the distribution of segments that appear homozygous based on

incomplete knowledge of the hets in the genome data, quantifying the correlation

between IBS at the genotype level and IBS at the level of the complete sequence.

We also extend our theory to the case of unphased diploid sequences, devi-

ating from the SMC slightly but checking the results against a full coalescent

simulation. When phasing ambiguities are accounted for in this way, p(IBD|IBS)

can be used to estimate the accuracy of an attempt at imputation and/or hap-

lotype resolution. We conclude that both efforts become much more accurate

if the ends of an IBS alignment are not considered likely to be IBD; when IBS

is measured in a way that detects a het every 10,000 bases, it seems prudent to

discard 105 bases from each end of an alignment, after which the probability of

IBD is as great as if the full sequences were known. Finally, we estimate the

accuracy spread of the imputation calls made from a panel of n reference hap-

lotypes, showing that a thousand references should be sufficient in a population

where recent exponential growth has not broken up moderately long stretches

14



of IBD sharing.

2 Computing the probability of identity by state

Since

p(IBD|IBS) =
p(IBD&IBS)

p(IBS)
, (2)

where p(IBD&IBS) is easy to compute (see equation (2.1)), the crux of our

approach will be calculating p(IBS) given sequence length and the history of the

effective population size. In section 2.1, we treat the case of constant effective

population size, while section 2.3 describes how to condition on any locally

constant population size history.

2.1 Constant effective population size

Let L be the length of an alignment between two haplotypes sampled at random

from a diploid population of effective size N . Assume that the DNA undergoes m

mutations per base per generation and r recombinations per base per generation,

letting µ = 4Nm and ρ = 4Nr. We will hereafter measure time in units of 2N

generations.

The alignment will coalesce at time t, both IBD and IBS, if and only if the

following events coincide:

1. The leftmost locus coalesces at time t without mutating (probability e−t(1+µ)dt)

2. No other base in either sequence undergoes a mutation or a recombination

between time zero and time t (probability e−t(L−1)(µ+ρ))

From this observation, it follows that

p(IBD&IBS) =
∫ ∞

t=0

e−t(L−1)(µ+ρ) · e−t(1+µ)dt =
1

1 + Lµ + (L− 1)ρ
. (3)

In an analogous way, we will derive the probability pL(IBS|t)dt that the

alignment coalesces IBS with its rightmost base coalescing at time t. We proceed
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by induction on the length variable L, claiming that

pL(IBS|t)dt = pL−1(IBS|t)dt · e−t(µ+ρ)

+
∫ t

t0=0

∫ t0

tr=0

pL−1(IBS|t0)e−µt−ρtr · ρe−(t−tr)dtdtrdt0

+
∫ ∞

t0=t

∫ t

tr=0

pL−1(IBS|t0)e−µt−ρtr · ρe−(t−tr)dtdtrdt0.

The dummy variable t0 is the coalescence time of the base next to the rightmost

one. The first term is the probability that no recombination occurs between the

rightmost base of the alignment and the base next to it, while the second term

(the first integral) is the probability that a recombination occured at some time

tr, and that t is greater than t0. The third term accounts for the remaining

possibilities, integrating over times t0 that are greater than t.

It will be convenient to write

pL(IBS|t) =
L∑

i=1

Ai(L)e−t(1+iµ+(i−1)ρ)dt (4)

and solve for the coefficients A1(L), · · · , AL(L), which will not depend on t.

Since

p1(IBS|t) = e−t(1+µ)dt

and

e−t0(1+iµ+(i−1)ρ) · e−t(µ+ρ) +∫ t

t0=0

∫ t0

tr=0

e−t0(1+iµ+(i−1)ρ)e−µt−ρtr · ρe−(t−tr)dtrdt0 +∫ ∞

t0=t

∫ t

tr=0

e−t0(1+iµ+(i−1)ρ)e−µt−ρtr · ρe−(t−tr)dtrdt0

=
ρ

i(µ + ρ)(1 + iµ + (i− 1)ρ)
e−t(µ+1) +(

1− ρ

i(µ + ρ)(1 + iµ + (i− 1)ρ)

)
e−t(1+(i+1)µ+iρ)),

we can let

Ci =
ρ

i(µ + ρ)(1 + iµ + (i− 1)ρ))
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and conclude that

A1(L) =
L−1∑
i=1

CiAi(L− 1), (5)

while

Ai(L) = (1− Ci−1)Ai−1(L− 1) (6)

for i > 1.

Integrating equation (4) with respect to time, we find that

pL(IBS) =
L∑

i=1

Ai(L)
1 + iµ + (i− 1)ρ

. (7)

Although it is time-intensive to compute A1(L), . . . , AL(L) for L � 104, the

run time can be decreased by picking an appropriate constant c and substituting

(cµ, cρ, L/c) for (µ, ρ, L). This approximation reduces the run time c2-fold, and

Figure 2 records its modest effect on the computation accuracy.

The reader may prefer to think about pL(IBS) using matrix algebra rather

than recursion, seeing that

pL(IBS) =
(

1
1+µ

1
1+2µ+ρ · · · 1

1+Lµ+(L−1)ρ

)


C1 C2 · · · CL−1 CL

1− C1 0 · · · 0 0

0 1− C2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1− CL−1 0



L 
1

0
...

0

 .

It is important to note that we have been talking about ROHs that are at

least L bases long; when we compare our results to real genome data in Section

7, we will need to know the frequency of ROHs that are exactly L bases long.

The following is the probability pLmax(IBS) of observing an L-base IBS stretch

ending with a het:

pLmax(IBS) =
L∑

i=1

Ai(L)
∫ ∞

t=0

e−t(1+iµ+(i−1)ρ))(1− e−(µ+ρ)t)dt

=
L∑

i=1

Ai(L)(µ + ρ)
(1 + iµ + (i− 1)ρ)(1 + (i + 1)µ + iρ)

.
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Figure 2: The parameter change (µ, ρ, L) → (cµ, cρ, L/c) has its greatest effect

when L is small. For L = 1000, the true value of p(IBD|IBS) is 0.8459; the

calculated value increases to 0.8516 when we let c = 10, and increases to 0.9136

when we let c = 100. For L = 50000, the difference between the c = 10 value

and the c = 100 value is only 0.0131, and taking c = 100 makes it practical to

compute pL(IBS) for L in the megabase range.
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2.2 Non-uniform mutation and recombination

We have been assuming that µ and ρ are constant throughout the alignment

to simplify the formulas as much as possible. However, it is easy to calculate

p(IBD—IBS) exactly even when each locus i, 1 ≤ i ≤ n, has a distinct muta-

tion rate µi and recombination rate ρi. If we let ~µ and ~ρ denote the vectors

(µ1, . . . , µn) and (ρ1, . . . , ρn), it is easy to check (by generalizing the integrals

in section 2.1) that

pL(IBS|~µ, ~ρ) =
L∑

i=1

Ai(L, ~µ, ~ρ)
((µ1 + ρ1) + · · ·+ (µi + ρi))(1 + (µ1 + ρ1) + · · ·+ (µi−1 + ρi−1) + µi)

,

where

Ai(L, ~µ, ~ρ) = (1− Ci−1(~µ, ~ρ))Ai−1(L− 1, ~µ, ~ρ)

and

A1(L, ~µ, ~ρ) =
L−1∑
i=1

Ci(~µ, ~ρ)Ai(L− 1, ~µ, ~ρ)

for

Ci(~µ, ~ρ) =
ρi

((µ1 + ρ1) + · · ·+ (µi + ρi))(1 + (µ1 + ρ1) + · · ·+ (µi−1 + ρi−1) + µi)
.

2.3 Correcting for changes in effective population size

Because most human populations have undergone growth and/or bottlenecking,

we describe how to correct our model for historical changes in effective popula-

tion size. We work through the example of a simple bottleneck, but the same

method can accommodate any locally constant function N(t).

We model a bottleneck following the convention in the coalescent theory

reference [18], using a piecewise-constant time transform t → τ(t). We suppose

that the population began at size aN before the bottleneck, dipped to size fN

during the time interval [tB2, tB1], and has existed stably at size N from time

tB2 to the present. The values tB1, tB2, and tB3 are measured in generations

before the present, but we must map them to times τ(t) measured in units of

2N generations before the present:
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τ(t) =


(t− tB1)/(2Na) + (tB1 − tB2)/(2Nf) + tB2/(2N) if t > tB1

(t− tB2)/(2Nf) + tB2/(2N) if tB1 < t < tB2

t/(2N) if t < tB2

In addition to scaling t, we must scale µ and ρ, since each contains a factor

of N .

When we make these modifications, equation (3) becomes

pL(IBD) =
∫ τ(tB2)

τ=0

e−τ ·(1+L(µ+ρ))dτ +
∫ τ(tB1)

τ=τ(tB2)

e−τ ·(1+Lf(µ+ρ))dτ +
∫ ∞

τ=τ(tB1)

e−τ ·(1+La(µ+ρ))dτ

=
1− e−τ(tB2)(1+L(µ+ρ))

1 + L(µ + ρ)
+

e−τ(tB2)(1+Lf(µ+ρ)) − e−τ(tB1)(1+Lf(µ+ρ))

1 + Lf(µ + ρ)

+
e−τ(tB1)(1+La(µ+ρ))

1 + La(µ + ρ)
.

In the same way, we can correct A1(L), . . . , AL(L) for the bottleneck by replac-

ing

Ci =
ρ

i(µ + ρ)(1 + i(µ + ρ))

with

Ci =
ρ

i(µ + ρ)

(
1− e−τ(tB2)(1+i(µ+ρ))

1 + i(µ + ρ)

+
e−τ(tB2)(1+if(µ+ρ)) − e−τ(tB1)(1+if(µ+ρ))

1 + if(µ + ρ)
+

e−τ(tB1)(1+ia(µ+ρ))

1 + ia(µ + ρ)

)
.

In terms of these corrected Ai(L), we deduce that

pL(IBS) =
L∑

i=1

Ai(L)
(

1− e−τ(tB2)(1+i(µ+ρ))

1 + i(µ + ρ)

+
e−τ(tB2)(1+if(µ+ρ)) − e−τ(tB1)(1+if(µ+ρ))

1 + if(µ + ρ)
+

e−τ(tB1)(1+ia(µ+ρ))

1 + ia(µ + ρ)

)
.

3 The age distribution of maximal IBD segments

Our calculations, along with those in earlier papers, make it clear that IBD

segment length is inversely related to age. In [17], Hayes, et al. go as far
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as to draw a one-to-one correspondence between the abundance of maximal c-

centimorgan IBD segments and the effective size of the population 1/(1 + 4c)

generations ago. However, we show here that the mean coalescence time of an

L-base IBD tract (O(1/L)) is much less than its standard deviation (O(1/
√

L)),

implying that the segments coalescing at time t have a significant length spread,

particularly when t is very ancient. This complicates the effect of population

size changes on the distribution of ROH length, particularly for shorter ROHs.

While Hayes, et al. studied the distribution of ROHs that were 106 to 107

base pairs long and found their assumption useful at that length scale, we find

that the relationship between effective population size and ROH length is more

complicated for shorter ROHs, as we will see corroborated by data in Section 7

(Figures 14, 15, and 16).

As we saw in Section 2, the probability of an L-base ROH being IBD is∫ ∞

t=0

e−t(1+Lρ)dt,

while the proability that it will be maximally IBD (i.e. not contained in a larger

IBD segment) is ∫ ∞

t=0

e−t(1+Lρ)(1− e−tρ)2dt.

We can use this to calculate a joint distribution between IBD segment length

and coalescence time:

pL(t|IBD) =
e−t(1+Lρ)(1− e−tρ)2∫∞

t=0
e−t(1+Lρ)(1− e−tρ)2dt

. (8)

We compute that∫ ∞

t=0

e−t(1+Lρ)(1− e−tρ)2dt =
1

1 + Lρ
− 2

1 + (L + 1)ρ
+

1
1 + (L + 2)ρ

=
2ρ2

(1 + Lρ)(1 + (L + 1)ρ)(1 + (L + 2)ρ)
,

such that

pL(t|IBD) =
(1 + Lρ)(1 + (L + 1)ρ)(1 + (L + 2)ρ)

2ρ2
e−t(1+Lρ)(1− e−tρ)2. (9)
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Similarly, we can compute the expected t value Et(L), measured, as always,

in units of 2N generations:

Et(L) =
∫ ∞

t=0

tpL(t|IBD)dt

=
(1 + Lρ)(1 + (L + 1)ρ)(1 + (L + 2)ρ)

ρ2

·
(

1
(1 + Lρ)2

− 2
1 + (L + 1)ρ)2

+
1

(1 + (L + 2)ρ)2

)
=

3L2ρ2 + 6Lρ2 + 6Lρ + 2ρ2 + 6ρ + 3
(1 + Lρ)(1 + (L + 1)ρ)(1 + (L + 2)ρ)

.

This differs from 1/(1+Lρ), the value given by Hayes, et al., because they don’t

distinguish between maximal and non-maximal IBD.

We go on to compute the variance

Et2(L)− Et(L)2 =
∫ ∞

t=0

t2pL(t|IBD)dt−
(∫ ∞

t=0

tpL(t|IBD)dt

)2

=
12(L3 + ρ2L2 + 2ρL + ρ2 + ρ + 1)(3ρ2L2 + 6ρ2L + 10ρ2 + 6ρ + 3)

(1 + ρL)2(1 + ρ(L + 1))2(1 + (L + 2))2

− 12(ρL + 1)(ρL + ρ + 1)
(1 + ρ(L + 1))2(1 + ρ(L + 2))2

− (3L2ρ2 + 6Lρ2 + 6Lρ + 2ρ2 + 6ρ + 3)2

(1 + Lρ)2(1 + (L + 1)ρ)2(1 + (L + 2)ρ)2
.

Looking at the leading terms, we note that

Et(L) ≈ 3
ρL

�
√

Et2(L)− Et(L)2 ≈ 6
ρ2
√

L
,

meaning that the standard deviation of Et(L) is much greater than its mean.

Figure 3 shows the length distribution of IBS segments that coalesce 0.2N

generations ago, while Figure 4 plots the length distribution of segments that

coalesce 0.3N generations ago. Even if IBD were the same as IBS and segments

coalesced at only these two times, it would not be straightforward to look at a

sum of plots like this and quantify an excess of one type of segment. Hayes, et

al. track recent population growth by assuming that a dearth of L-base IBD

segments means a larger population at time 1/(1 + Lρ), but it would seem that

this approach must be modified for shorter L where the length and coalescence
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Figure 3: This plot shows the length spread of IBD segments that coalesce 0.2N

generations ago. Comparing this to Figure 4, we see that it will be difficult to

tell these segments apart from segments that coalesced 0.3N generations ago.

time are related so inexactly. We will see in Section 7, that precisely calculated

IBS probabilities make it possible to use the distribution of shorter ROHs to

estimate the effective population size at earlier points in history.

4 The probability of IBD given diploid IBS with

uncertain haplotype phasing

In [31], Kong, et al. find IBS haplotypes by looking for diploid sequences L1, L2

with the property that IBS(L1, L2) ≥ 1 at every base in the sequence, i.e. that

the alignment contains no locus for which L1 and L2 are homozygous for different

alleles. However this condition does not guarantee that a haplotype of L1 is
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Figure 4: The length spread of IBD segments that coalesce 0.3N generations

ago is different from the spread of segments that coalesce 0.2N generations ago

(Figure 3), but overlaps enough that it would take a bit of work to learn about

population history from a sum of density plots like these.
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Figure 5: IBS between phased haplotypes vs. IBS≥1 Here, the two

chromosomes of a diploid individual are aligned to a reference haplotype. The

diploid DNA is drawn in bold where it matches the reference haplotype IBS.

Both the top and the bottom alignment have the property IBS≥ 1, where at

least one of the diploid sequences matches the reference at every base. However,

only the diploid individual in the top alignment shares a haplotype IBS with

the reference over the entire region.

IBS with a haplotype of L2 as illustrated in Figure 5. The following question

is motivated by this phasing issue, as well as the problem of reference panel

imputation: Given an unphased diploid sequence d of length L aligned with a

reference haplotype r, what is the probability that IBS(r, d) ≥ 1 everywhere? A

simpler problem is to find the probability that r and d are both IBD and IBS,

IBS taken for the rest of this section to mean IBS(r, d) ≥ 1, and again, both

quantities are needed to find p(IBD|IBS)=p(IBD&IBS)/p(IBS).

In this section, it will be convenient to let µ = 2Nm and ρ = 2Nr (which

differs by a factor of two from in previous sections).
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Figure 6: Natural and skew tree topologies. Boldface branches are drawn where

mutations cannot occur without rendering the alignment non-IBS.

When describing the history of more than two sequences, it becomes neces-

sary to discuss tree topology as well as coalescence time. In the case of com-

paring a haploid reference to the two chromosomes of a diploid sequence, we

distinguish between natural and skew topologies: if L is sufficiently long and

r is IBD with one of the haplotypes d1, d2, then it is unlikely, though not im-

possible, for the tree to have topology (r(d1d2)). We will refer to this as the

skew topology, and to the other possible topologies as natural topologies (see

Figure 6). Whatever the topology, we will let t1 be the coalescence time of the

root of the tree, and t2 be the internal coalescence time. We refer to a particular

skew tree as S(t1, t2), and to both of the analogous natural trees as N(t1, t2).

In order for the alignment to contain a pair of IBD haplotypes, there must

be one coalescence time t that stays constant over the whole sequence. However,

the coalescent history is free to vary from locus to locus over any trees of the

form N(t1, t), N(t, t2), and S(t, t2). We will call transitions between such trees

allowed recombinations.

In addition to these allowed recombinations, there is a set of allowed muta-

tions that are compatible with the sequence containing a pair of IBS haplotypes.

In the natural topology, mutations are allowed everywhere on the tree but on
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the branch joining r to its most recent common ancestor with one of d1 and d2,

while in the skew topology, they are allowed only on the two branches joining

d1 and d2 to their most recent common ancestor. Because t1 � t2 in general,

long IBS alignments should statistically be dominated by the natural topology.

Given any coalescent tree on three leaves, the probability of t2 being greater

than t is e−3t. Using this fact, we compute the probability pN (IBD) that the

alignment will coalesce IBD entirely in the natural topology:

PN (IBD& IBS) =
∫ ∞

t2=0

∫ ∞

t1=t2

2
3
· e−t2(µ+3ρ)L · e−(t1−t2)dt1 · 3e−3t2dt2(10)

=
2

3 + L(µ + 3ρ)
. (11)

Here, 3e−3t2dt2 is the probability that the later coalescence will happen at

exactly time t2, while 2/3 is the probability that it will be natural rather than

skew. Given this event, e−(t1−t2)dt1 is the probability that the other coalescence

happens exactly t1 − t2 time units earlier. e−3Lρt2 is the probability that there

will be no recombinations anywhere between t2 and the present, at any locus

on the alignment, and e−Lµt2 is the probability that there will be no mutations

on the thick branch joining s to the internal tree branch in Figure 6.

Similarly, we compute the probability pS(IBD& IBS) that the sequence co-

alesces IBD with the leftmost site in the skew topology:

PS(IBD& IBS) =
∫ ∞

t2=0

∫ ∞

t1=t2

e−t2(2−L(ρ+µ))−t1(1+2L(ρ+µ))dt1dt2 (12)

=
1

(1 + 2L(ρ + µ))(3 + L(ρ + µ))
(13)

In this last calculation, we neglect the fact that allowed recombinations can

change the per-base mutation rate, decreasing the probability of no mutations

from e−t1µ to as low as e−2t1µ. However, these variations will affect PS(t1, t2)

by at most a factor of 4. They do not change the fact that

lim
L→∞

PS(IBD&IBS)
PN (IBD&IBS)

= 0.

As in Section 2, we calculate PL(IBS) by induction, integrating PL−1(IBS, t0)dt0

over a set of transition probabilities to find PL(IBS, t). We found the sequen-

tially Markovian coalescent too complex to make this tractable, and it was
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necessary to make some simplifications, creating what we will call the forgetful

SMC.

It is easiest to understand the difference between our forgetful SMC and

the original SMC by analogy to the difference between the SMC and the full

coalescent with recombination. As a point of reference, we reiterate that the

SMC is a hidden Markov model where the hidden states are genealogies and

the output of each genealogy is a locus in a sequence alignment [43]. The

distribution of marginal genealogies at each site is the same as it would be under

the full coalescent with recombination, but the transition probabilities between

genealogies at neighboring sites are what differ between the two models. The

genealogy distribution at base L, under the SMC, is completely determined by

the distribution of genealogies at base L − 1, while under the full coalescent

it also depends on the distribution of genealogies at all previous bases in the

sequence.

The distribution we wish to compute is not a full sampling distribution of

sequence alignments, but simply the percentage of these alignments that are

IBS≥ 1. For our purposes, there are output two output states of the SMC

is binary: each locus is IBS or non-IBS. The output distribution of a skew-

topology genealogy depends only on the recent coalescence time, t2, not on the

older coalescence time t1; t2 affects the transition probabilities, but not the

marginal outputs of the Markov chain. Motivated by this fact, we modify the

SMC so that t2 is forgotten after each transition event and the resampled before

the next one. The precise construction is given in the following paragraph and

illustrated in Figure 7 as an HMM flow diagram.

Instead of keeping track of a three-leaf coalescent tree at each site, we will

only keep track of the time t at which the reference r coalesces with one of the

haplotypes d1, d2. This is t2 in the natural topology and t1 in the skew topology.

When we calculate the transition probability from t0 to t, we will assume that

the t0 tree is in the natural topology and pick t1 from its expected distribution,

conditional on t. After a recombination, however, we allow the new tree to coa-

lesce in either the natural or the skew topology. The small number of skew trees
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that are produced will be regarded as natural at the next recombination event.

Our simulations suggest that this gives more accurate results than outlawing

skew coalescences entirely, while keeping the computational complexity under

control. The results agree closely with a P (IBD|IBS) curve that we constructed

using MS simulations, conditioning on the full coalescent [25].

The following recursion summarizes the transition probabilities of the for-

getful SMC. An explanation of each term will follow:

PL(IBS, t)dt = pL−1(IBS, t)dt · e−t(µ+2ρ)

+
∫ t

t0=0

∫ t0

tr=0

pL−1(IBS, t0) · e−µt

(
2ρe−2ρtr · 2

3
· 3e−3(t−tr)dt

+2ρe−2ρtr

∫ t

t2=tr

1
3
· 3e−3(t2−tr) · e−(t−t2)dtdt2

)
dtrdt0

+
∫ ∞

t0=t

∫ t

tr=0

pL−1(IBS, t0) · e−µt

(
2
3
· 3ρe−3ρtr · 1

2
· 2e−2(t−tr)+

+
1
3
· 3ρe−3ρtr · 2e−2(t−tr)dt

)
dtrdt0

= pL−1(IBS, t)dt · e−t(µ+2ρ)

+
∫ t

t0=0

∫ t0

tr=0

pL−1(IBS, t0)
(
3ρe−t(3+µ)+tr(3−2ρ)

+ ρe−t(1+µ)+tr(1−2ρ)
)

dtrdt0dt

+
∫ ∞

t0=t

∫ t

tr=0

pL−1(IBS, t0) · 4ρe−t(2+µ)+tr(3−2ρ)dtrdt0dt.

Since we are assuming that the initial (L−1) bases of IBS end with a natural

topology tree, we can let d1 denote the haplotype that coalesces with r before

the other haplotype does. The first integrand is the probability that an (L−1)-

base alignment coalescences IBS, its rightmost site coalescing at time t0 < t,

along with one of the following events:

1. One of r and d1 recombines at time tr (probability 2ρe−2ρtrdtr). The first

coalescence among r, d1, d2 occurs in the natural topology (probability 2
3 )

at time t (probability 3e−3(t−tr)dt).

2. One of r and d1 recombines at time tr (probability 2ρe−2ρtrdtr). The first
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Figure 7: Hidden Markov model flow diagrams of the SMC and our forgetful

approximation of the SMC. The position of the reference sequence is labeled to

mark each genealogy as natural or skew. Each output extends the alignment by

a triplet of bases (including one labeled reference base) that is either IBS ≥ 1

or not.
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coalescence among r, d1, d2 occurs in the skew topology (probability 1
3 ) at

a time t2 < t (probability 3e−3(t2−tr)dt2). The common ancestor of d1

and d2 coalesces with r at time t (probability e−(t−t2)dt).

The second integrand is similarly defined, with t0 > t and two possible coalescent

scenarios. It is not possible for recombination to turn a natural-topology tree

indexed by time t0 into a skew-topology tree indexed by a time t < t0.

1. The first recombination among r, d1, d2 occurs at time tr (probability

3ρe−3ρtrdtr. It happens to d1 or d2 (probability 2
3 ), and this sequence

coalesces with r at time t (probability e−2(t−tr)dt). (It is certain that the

second coalescence happens less recently than time t).

2. The first recombination among r, d1, d2 occurs at time tr (probability

3ρe−3ρtrdtr. It happens to r (probability 1
3 ). Sequence r coalesces with

d1 or d2 at time t (probability 2e−2(t−tr)dt).

As an aside, we will discuss the central difference between our model and the

Sequentially Markovian Coalescent [43], the model that enabled our computa-

tion of two-haplotype IBS probabilities in Section 2. The SMC has the property

that the history at position x depends only on the history at position x−1, but

the history of three or more sequences is a hefty variable consisting of a topology

and two interrelated coalescence times, and the SMC is not Markovian in either

of those times on its own.

To illustrate, suppose that the alignment contains the topology sequence

((r, d1), d2), ((r, d2), d1), ((r, d1), d2). If (r, d2) restricted to the middle section

coalesces more recently than (r, d1) in either outside section, then it is possible

that r is IBD with d2 throughout the composite alignment, a possiblity that

our model does not capture. However, since t1 � t2 in general, it is unlikely

for (r, d2) to stay IBD over an interval where (r, d1) are not IBD. Disallowing

this fringe possibility makes our process Markovian in a single time variable,

one that is much simpler to integrate over than a three-parameter history.
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There exists a series of number pairs {(B,CB)} for which

PL(IBS, t) =
∑
B

CB(L)e−tB ; (14)

performing the necessary integrals, we find that

PL+1(IBS, t) =
∑
B

CB(L)
(

e−t(B+µ+2ρ) +
3ρ

B(B − 3 + 2ρ)

(
e−t(3+µ) − e−t(B+µ+2ρ)

)
+

ρ

B(B − 1 + 2ρ)

(
e−t(1+µ) − e−t(B+µ+2ρ)

)
+

3ρ

B(3− 2ρ)

(
e−t(B+3+µ) − e−t(B+µ+2ρ)

)
+

ρ

B(1− 2ρ)

(
e−t(B+1+µ) − e−t(B+µ+2ρ)

)
+

4ρ

B(2− 3ρ)

(
e−t(B+µ+3ρ) − e−t(B+2+µ)

))
.

We can compute PL(IBS, t) much more quickly, losing very little accuracy, by

truncating the formula to

PL+1(IBS, t) =
∑
B

CB(L)
(

e−t(B+µ+2ρ) +
3ρ

B(B − 3 + 2ρ)

(
e−t(3+µ) − e−t(B+µ+2ρ)

)
+

ρ

B(B − 1 + 2ρ)

(
e−t(1+µ) − e−t(B+µ+2ρ)

))
.

In this way, we write

PL(IBS, t) =
L−1∑
i=0

Ci(L)e−t(1+µ+i(µ+2ρ)) + Di(L)e−t(3+µ+i(µ+2ρ)), (15)
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the coefficients satisfying the recursions

Ci+1(L + 1) =
(

1− 3ρ

(1 + µ + i(2ρ + µ))(µ− 2 + 2ρ + i(2ρ + µ))

− ρ

(1 + µ + i(2ρ + µ))(µ + 2ρ + i(2ρ + µ))

)
Ci(L)

Di+1(L + 1) =
(

1− 3ρ

(3 + µ + i(2ρ + µ))(µ + 2ρ + i(2ρ + µ))

− ρ

(3 + µ + i(2ρ + µ))(2 + µ + 2ρ + i(2ρ + µ))

)
Di(L)

C0(L + 1) =
L−1∑
i=0

3ρ

(1 + µ + i(2ρ + µ))(µ− 2 + 2ρ + i(2ρ + µ))
Ci(L)

+
L−1∑
i=0

3ρ

(3 + µ + i(2ρ + µ))(µ + 2ρ + i(2ρ + µ))
Di(L)

D0(L + 1) =
L−1∑
i=0

ρ

(1 + µ + i(2ρ + µ))(µ + 2ρ + i(2ρ + µ))
Ci(L)

+
L−1∑
i=0

ρ

(3 + µ + i(2ρ + µ))(2 + µ + 2ρ + i(2ρ + µ))
Di(L)

with base case

P1(IBS, t) = 2e−t(3+µ) +
∫ t

t2=0

e−3t2 · e−(t−t2) · e−tµdt2

=
1
2
e−t(1+µ) +

3
2
e−t(3+µ).

For future reference, we will summarize this set of recursions in an operator D

defined such that

DL−1 (P1(IBS|t)) = D(PL−1(IBS|t)) = PL(IBS|t). (16)

As mentioned before, we performed MS coalescent simulations to check the

results of the diploid computations [25], finding empirical probabilities of IBD

and IBS based on 106 trial histories. Our formula underestimates PL(IBD|IBS)

for short sequences, predicting that P10000(IBD|IBS) = 0.676 while the simu-

lations say it should be 0.745. However, the discrepancy narrows quickly as L

increases, with P50000(IBD|IBS) = 0.838 and simulations showing it to be 0.848.

Our underestimation of PL(IBD|IBS) disappears less quickly when we simulate
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Figure 8: This plot compares our diploid results to the values that we obtained

from MS simulations, which assume the full non-Markovian coalescent with re-

combination. Given a 105-base diploid sequence that is IBS ≥ 1 with a refernce,

it is 90.1% likely to contain a haplotype that is IBD with the reference. This

probability increases to 98.5% for an alignment 106 bases long. When we ob-

serve only 10% of all hets, the corresponding probabilities are 29.4% (L = 105)

and 89.1% (L = 106).

the effect of thinned marker data, observing only 10% of all hets, but we still

get within 1% of the true value for L ≥ 500, 000 (see Figure 8).

5 Using identity by state to phase and impute

haplotypes

There are a number of questions in applied genetics research that require accu-

rate identification of tracts of IBD. The oldest of these questions center around
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pedigree analysis, but we argue that our results are most applicable to the prob-

lem of phasing and imputation in unrelated individuals. Imputation accuracy

is tied to the probability of diploid IBS as follows: if we have a thinned IBS

alignment between a stretch of unphased genotypes and a haploid reference se-

quence and we compute that this alignment has a probability PL(IBD|IBS)0.10

of containing an pair of haplotypes that are IBD and IBS, then with probability

PL(IBD|IBS)0.10, the unphased genome contains a perfect copy of the reference

haplotype.

We can see in Figure 8 that the probability PL(IBD|IBS)0.10 converges slowly

to 1 as L gets very large. It reaches the value PL(IBD|IBS)0.10 = 0.9 when

L ≈ 107, and unfortunately it is rare to find such long IBS alignments between

DNA from unrelated individuals. In shorter IBS alignments, however, we can

be more certain of IBD near the alignment center than at its edges–even if the

unphased genome is unlikely to contain a perfect copy of the entire reference

haplotype, it is likely to contain a perfect copy of a subsequence of that haplo-

type. Given an (L+2x)-base thinned IBS aligment between a haploid reference

and a diploid test sequence, we can compute the probability I(L, x)0.10 that the

middle L bases of the reference will be IBD with of the test haplotypes. If we

are trying to impute a genotyped individual using a reference haplotype panel,

then I(L, x)0.10 can help us figure out how much sequence we can copy while

keeping the expected number of errors per kilobase of imputed sequence below

a specified threshold.

Before computing I(L, x)0.10, we will address its relationship to the accu-

racy of the current state-of-the-art in imputation. While I(L, x)0.10 predicts

the accuracy of imputing the exact sequence of a genotyped individual, it is less

common than to impute from full sequence data than from the densely geno-

typed panel of HapMap references. To accurately copy the states of HapMap

SNPs from a reference haplotype to a test individual, it is perhaps overly con-

servative to ask for a high probability that the test individual contain a perfect

copy of the reference; the program IMPUTE v2, for example, is consistently

accurate at imputing sites with minor allele frequency ≥ 10%, but its accuracy
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at imputing rarer variants falls off at a rate that depends on the genotype chip

and HapMap references being used [23, 39]. However, the authors of IMPUTE

predict, in a review on imputation methods, that the 1000 Genomes Project

will replace HapMap as the imputation reference of choice, and that one of the

challenges associated with the switchover will be the fact that the 1000 Genomes

references will contain more variants with frequencies in the 1%-5% range [39].

Using the 1000 Genomes data for imputation will confer both added power and

added error, compared to using HapMap, and a way to estimate the extent of

that added error would be to predict accuracy in terms of IBD, as we do here.

5.1 The probability of IBD in the central subset of an IBS

alignment

In the last section, we derived an integration operator D0.10 for which

PL(IBS|t)0.10 = D0.10(PL−1(IBS|t)0.10) = DL−1
0.10 (P1(IBS|t)0.10) , (17)

making it possible to compute p(IBD|IBS)0.10 for unphased diploid alignments.

It follows from the definition of D0.10 that

I(L, x)0.10 =
1

PL+2x(IBS)0.10

∫ ∞

t=0

Dx
0.10(e

−tL(2µ+2ρ) · Px(IBS|t)0.10)dt, (18)

where e−tL(2µ+2ρ) = pL(IBS&IBD|t)/e−t is the probability that a base pair

coalescing at time t is at the center of an L-base stretch that is IBS and IBD.

Put another way, it is the Lth power of an operator for extending the test

alignment by one IBD base, while D0.10 is an operator for extending the test

alignment by one thinned IBS base.

Figure 9 plots I(L, x)0.10 for x = 104, 5×104, and 105, showing that removing

the terminal 105 bases from each end of a thinned IBS alignment produces

substantial gains in the likelihood of IBD.

Since I(L, x)0.10 is the expected accuracy of imputing L bases from an (L +

2x)-base alignment, it is possible to conduct imputation such that the L-base

sequence calls should be e.g. 95% accurate. We need only find x for which
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I(L, x)0.10 > 0.95 and not impute from any shorter IBS alignments. When such

thresholds are set, however, a question of coverage arises: given n references, a

large number of test sequences, and a minimum required accuracy p < 1, into

how many sequences can we expect to impute a given L bases from the reference

panel? As usual, the question is whether a test haplotype coalesces very early

with one of the references, making it necessary to consider (n+2)-leaf coalescent

trees.

The first coalescence between a test haplotype and a reference will be one of

the n + 1 coalescences that make up the nodes of an (n + 2)-leaf tree; we must

find formulas for when these events occur and also the likelihood that the kth

of n + 1 coalescences will be the particular event we are interested in.

It is proved in [18] that the following is a formula for the probability that n

samples have exactly k ancestors at t/(2N) generations before the present:

hn,k(t) =
n∑

i=k

e−(i
2)t (2i− 1)(−1)i−k(k + i− 2)!n!/(n− i)!

k!(i− k)!(n + i− 1)!/(n− 1)!

=
n∑

i=k

e−(i
2)t (2i− 1)(−1)i−k(k + i− 2)!n!(n− 1)!

k!(i− k)!(n + i− 1)!(n− i)!

Letting P (Tk < t) be the probability that the kth of n coalescences happens

before time t, it is easy to see that

hn,k(t) = P (Tn−k−1 < t)(1− P (Tn−k − 1)),

and it is also true that

lim
n,k→∞

P (Tn−k = t) =
hn,k(t)dt∫∞

t=0
hn,k(t)dt

.

It is easy to see, combinatorially, that if the two test haplotypes haven’t

coalesced with each other yet, the coalescence from k + 1 to k sequences will

involve an ancestor of a test haplotype with probability

2k(
k+1
2

) =
4

k + 1
.
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If the test haplotypes have coalesced with each other, the probability will instead

be 2/(k +1); however, this is the fringe skew topology case. If we want the (n+

1− k)th coalescence to involve an ancestor of a test haplotype with probability

p, it must be true that(
1− 4

n + 2

)
· · ·

(
1− 4

k + 1

)
< 1− p,

meaning that
k(k − 1)

(n + 2)(n + 1)
< 1− p

and

k ≈ n
√

1− p.

Therefore, the probability that the (n − k)th of n coalescences (with the first

being closest to the present) is the earliest one to involve a test haplotype is

1− k2/n2 − (1− (k + 1)2/n2) =
2k + 1

n2
; (19)

if Pn(t)dt is the probability that t is the smallest time at which a test hap-

lotype coalesces with a reference, then

Pn(t) =
n+1∑
k=1

2k + 1
n2

P (Tk = t). (20)

When n is large, it will be helpful to avoid summing over all possible values of

k. Instead, we select a series of k values that correspond to fixed percentiles;

i.e., k for which it is 90% likely that a reference coalesces with a test haplotype

at or before the (n− k)th coalescence. We sum over k values corresponding to

the 10th, 20th,..., 90th percentiles (indexed by m in the following sum), along

with the 95th, 99th, and 99.9th percentiles:

Pn(t) < 0.1
9∑

m=1

P (Tn−nb
√

1−0.1mc = t) + 0.05P (Tn−nb
√

0.05c = t)

+0.04P (Tn−nb
√

0.04c = t) + 0.009P (Tn−nb
√

0.009c = t) := Qn(t).

The function Qn(t) has the property that∫ ∞

t=0

Qn(t)dt = 1; (21)
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it is approximately the distribution of coalescence times at the left endpoint of

the longest thinned IBS alignment between a test haplotype and reference, not

stipulating that the alignment be at least L bases long. In contrast, DL−1
0.10 (Qn(t)e−0.10µt)dt

is the probability that this endpoint will coalesce at time t and that, in addition,

thinned IBS extends for at least L bases. We will take

Qn(L) =
∫ ∞

t=0

DL−1
0.10 (Qn(t)e−0.10µt)dt (22)

as our approximation for the probability that a test haplotype will be part of a

thinned IBS alignment of length L with one of the references.

Figure 10 plots the probability that, given a panel of n references and a 1

kilobase region of a test sequence to be imputed, the region will be at the center

of a (2x+1000)-base thinned IBS alignment between the test sequence and one

of the references. Figure 11 plots the accuracy distribution of the imputation

calls made in this way. The function I(1000, x)0,10 gives the accuracy of a call

made from a (2x+1000)-base IBS alignment, while the probability of observing

a (2x + 1000)-base IBS alignment from which to impute is Qn(2x + 1000).

Since a constant effective population size of 10,000 is being assumed, the

appearance of perfect power for a 1000-haplotype panel is overly optimistic. In

outbred populations, exponential growth is likely to have broken up very long

haplotypes, as reported by Hayes, et al [17]. Taken as a set of upper bounds,

however, these plots show that a HapMap of 120 sequences gives far from perfect

haplotype coverage, even in a moderately isolated population.

6 The effect of underestimating the linkage be-

tween markers when computing IBS probabil-

ities

Although the aim of inferring IBD is to be confident of IBS at a dense set of

markers, previous methods for inferring IBD tend to lose accuracy if the input

set of markers is too dense, a fact that limits their precision. The problem with
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Figure 9: Not much imputation accuracy is gained by chopping 104 bases off

each end of thinned IBS diploid alignment. However, a substantial amount of

accuracy is gained by chopping off 105 bases; the resulting confidence of IBD is

nearly as great as the confidence given complete sequence data.
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Figure 10: Here, we plot the expected size of the longest IBS alignment between

a test sequence and a panel of N reference haplotypes that is centered at a small

region to be imputed.
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Figure 11: Using the function I(L, x)0.10, we transform Figure 10 into a distri-

bution of expected imputation accuracies. We plot the probability of being able

to impute either one of the test haplotypes.
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methods published prior to 2008 is that they assume the input markers are in

linkage equilibrium with each other; Browning’s method is the first to account

for linkage disequilibrium by conditioning on the frequencies of the input haplo-

types [9]. Although the assumption of linkage equilibrium is certainly a problem

for dense marker data, we find another assumption in all previously published

methods that could pose additional problems: they assume that linkage is an ei-

ther/or phenomenon; that if two sites are not IBD, then their coalescence times

are independently distributed [9, 17, 46, 51, 55].

Our method makes it straightforward to pinpoint where that assumption

breaks down; to this end, we calculate pL(IBS) given the assumption that

neighboring IBD segments have uncorrelated coalescence times, calling this

modified probability function qL(IBS). We will see that qL(IBS) agrees with

pL(IBS) for short alignments, but not for L values that are long enough that

pL+1(IBS) > pL(IBS). Rather than depending on mutation rate or marker

density, the threshold L value turns out to be a function of the number of

markers between the ends of the alignment. For the standard parameters

N = 10000, µ = 1.0 × 10−3, and ρ = 4.0 × 10−4, the independent coalescence

time assumption breaks down for L � 1000. The assumption stays valid for

longer when only a tenth of the hets are observed, but still breaks down for

L � 10, 000 (see Figure 12).

As before, we can find coefficients B1(L), . . . , BL(L) for which

qL(IBS|t) =
L∑

i=1

Bi(L)e−t(1+i(µ+ρ))dt

using inductive integration, defining qL(IBS|t) such that

qL(IBS|t) = qL−1(IBS|t) · e−tρ +
∫ ∞

t0=0

qL−1(IBS|t0)(1− e−t0ρ)e−t(1+µ)dt0.

We depart from the computation in Section 2 by eliminating the parameter tr,

the time at which the recombination occurs, which is the parameter that intro-

duces dependence between the coalescence times of neighboring IBD segments.
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Since∫ ∞

t0=0

e−t0(1+i(µ+ρ))(1− e−t0ρ)e−t(1+µ+ρ)dt0 =
ρe−t(1+µ+ρ)

(1 + i(µ + ρ))(1 + ρ + i(µ + ρ))
,

we can let

Ki =
ρ

(1 + i(µ + ρ))(1 + ρ + i(µ + ρ))

and conclude that

Bi(L) = Bi+1(L + 1)

for all i > 1, whereas

B1(L) =
L−1∑
i=1

KiBi(L− 1).

7 Empirical validation using genome sequence

data

To measure the accuracy of our predicted pL(IBS) values, we found the lengths

of all maximal ROHs in the eleven human genome sequences referenced in Ta-

ble 13. The bases were re-called in a consistent fashion with the intent to

make the quality good enough for population genetic analysis; out of a total

of 33,686,389,482 base pairs, 9,743,948,741 (28.9%) were marked unreliable due

to unreliable read mapping, proximity to indels, or other other attributes that

made them suspect (see Base Calling Methods appendix), and we deleted these

bases before proceeding. Our call sets for all sequences are available for down-

load at ftp://ftp.sanger.ac.uk/pub/rd/humanSequences.

In addition to counting the number NROH(L) of ROHs in each genome that

are between (L−1000) and L bases long (for L divisibly by 1000), we counted the

number NROH(L)0.10 of L-base regions that appear homozygous when we detect

a tenth of all hets. Specifically, we generated thinned ROHs whose endpoints

are the mutations with positions congruent to zero mod ten relative to the 5’

end of the chromosome, referring to these endpoints as observed hets as opposed
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Figure 12: The two solid plots record the exact probability of IBD given IBS

(assuming the SMC), the black plot with IBS required at every base in the

alignment, and the grey plot where markers allow for only 10% of mutations to

be detected. The empty triangles and empty circles record how that probability

changes when we disregard linkage between non-IBD markers. The two curves

almost never agree when complete sequences are used, in concordance with the

fact that earlier methods do not claim to be accurate for such dense marker

data.
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Sequence Names Origins

COLO-829-BL Northern/Western European Ancestry [5]

NA12878, NA12891, NA12892 Northern/Western European Ancestry [1]

NA18507 Yoruba, Nigeria [7]

NA18506, NA18508, NA19239, NA19240 Yoruba, Nigeria (unpublished)

SJK Korean [4]

YH Chinese [60]

Figure 13: The eleven genomes used in our analysis

to hidden hets. We predict that

NROH(L)
NROH(L)0.10

=
10pLmax(IBS)
pLmax(IBS)0.10

, (23)

adding the factor of 10 to account for the fact that there are ten times as many

true ROHs as thinned ROHs (most of the excess ones being short).

Even though we take care to use genome data with a very low error rate,

false positive hets (on the order of 1 per 105 bases) will present a significant

problem for our analysis. We will be estimating the abundance of ROHs up to

107 bases long, and there is an overwhelming chance that their homozygosity

will be broken up by false positives.

To correct for the breakup of ROHs by false positives, we estimate the false

positive frequency f and multiply the measured value of NROH(L)/NROH(L)0.10

by (1− f/10)L/(1− f)L, reasoning that (1− f)L is the probability that an L-

base ROHs will be broken up by a false positive het. We choose f = 1.5 ×

10−5 because NROH(L)/NROH(L)0.10 tends toward (1−f)L/(1−f/10)L in each

genome as L gets large, while the ratio of thinned to true ROHs should tend

toward 1.

The eleven plots of NROH(L)/NROH(L)0.10 versus L cluster clearly by eth-

nicity (see Figures 14, 15, 16), and we account for the differences by finding

effective population size histories that fit 10pLmax(IBS)/pLmax(IBS)0.10 well in

the data from each ethnic group. We also experiment with varying the muta-

tion rate µ, motivated by the fact that the 1000 Genomes consortium recently
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Figure 14: A. Regions of homozygosity in African genome data Here, we

separately plot NROH(L)/NROH(L)0.10 for each of five African genomes, then

average this function across the genomes and correct it for 1.5 × 10−5 false

positives per base. In blue is the theory plot 10pLmax(IBS)
pLmax(IBS)0.10

for a population of

constant effective size N = 14, 000 and a mutation rate of m = 1.6 × 10−8 per

base per generation (one of many histories that minimize the sum of square

distances from the data points to the predicted curve).

estimated µ to be 1× 10−8 per base per generation [1] rather than 2.5× 10−8.

The measured NROH(L)/NROH(L)0.10 ratios behave noisily for L > 100, 000,

likely because there are few such ROHs in the genome and each one is more likely

than a short ROH to include recombination hotspots or other sites where the

theory in this paper breaks down. Therefore, we define the best fit population

history to be the one that minimizes the sum of squares distance from the pre-

dicted NROH(L)/NROH(L)0.10 values to the measured NROH(L)/NROH(L)0.10

values, the sum taken over L ranging from 10,000 to 100,000.

Let Tµ,H(L) denote the theory plot of 10pLmax(IBS)/pLmax(IBS)0.10 that is

obtained a function of the mutation rate µ and the piecewise-constant popula-
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Figure 15: B. Regions of homozygosity in European genome data In

green is the following single-bottleneck history, with mutation rate m = 2.5 ×

10−8: N = 11, 900, time ranging from 0 to 1240 generations ago (g.a.); N =

4, 530, 1, 240 − 1, 770 g.a.; N = 15, 000 ≥ 1, 770 g.a. The African constant

population size theory is included in black, for reference.
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Figure 16: C. Regions of homozygosity in Asian genome data The single-

bottleneck history shown in red, again assuming m = 2.5×10−8, is the following:

N = 8, 670, 0− 1, 380 g.a.; N = 1790, 1, 380− 1, 530 g.a.; N = 15, 000 ≥ 1, 530

g.a.. African and European theory plots are included for reference.
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tion history H. Likewise, let DG(L) denote the set of data points {NROH(103 ·

i)/NROH(103·i)0.10}10
3

i=1 that is obtained by counting all of the ROHs and thinned

ROHs in some set of genomes G and correcting for 1.5×10−5 false positive hets

per base. We measure the goodness of fit between the parameters (µ,H) and

the data set G by calculating the sum of squares fit

SS(µ, H,G, L) =
900∑
i=1

(
Tµ,H(103 · (10 + i))−DG(103 · (10 + i))

)2
.

It remains to define a threshold for SS(µ, H,G, L) below which (µ, H) is deemed

a good fit for G. Since Tµ,H(L) is not a straight line, we cannot perform a

goodness-of-fit linear regression. We find it logical, instead, to define a threshold

that depends on the noisiness of the curve DG(L), letting

N(G, L) =
(L−1)/1000∑

i=1

(
DG(103 · (10 + i + 1))−DG(103 · (10 + i))

)2

denote the sum of squared distances between adjacent points of DG(L). If

Tµ,H(L) = 1
2 (DG(L)−DG(L + 1)), making Tµ,H(L) a smoothed version of the

data set DG(L), then

SS(µ, H,G, L) =
1
4
N(G, L),

In each data plot DG(L), the left portion of the graph is much less noisy than

the right portion and therefore provides more information about the mutation

rate and population history. In the European genomes, for example, there is so

little noise in the data set D(G)|L<34000 that

1
4
N(GEuropean, 34000) < 0.0094,

while
1
4
N(GEuropean, 90000) > 0.26.

For each of the genome groups GAfrican, GEuropean, and GAsian, we define Lshort

to be the largest L satisfying 1
4N(G, L − 1) < 0.01 and define Llong to be the

longest L ≥ 1000 satisfying 1
4N(G, L − 1) < 0.5 (specific values of Lshort and

Llong are recorded in Table 17). We then say that (µ,H) is a good fit for G if

SS(µ,H,G,Lshort) < 0.01
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Ethnicity Lshort Llong

African 53000 90000

European 35000 89000

Asian 21000 60000

Figure 17: Thresholds for low noise (N(G, Lshort−1) < 0.01) and medium noise

(N(G, Llong−1) < 0.2) in the DG(L) ROH data sets. Our Asian data set, which

contains half as many genomes as the others, appears commensurately noisier.

and

SS(µ,H,G,Llong) < 0.5.

We searched for good parameter fits using a Monte Carlo Markov chain

approach, beginning with a search of constant population size histories. As

expected, the Africans are the only group for which we find good constant

population size histories. Such histories fall within a narrow parameter space,

namely 13, 000 ≤ N ≤ 15, 000 and 1.55× 10−8 < m < 1.7× 10−8.

When we allow for a single population expansion or contraction, we find

a large variety of histories that fit the African data well, though we still find

no fits for the European or Asian data. These good African histories are all

expansions when m = 2.5×10−8, all contractions when m = 1×10−8, and close

to constant for m = 1.75 × 10−8, with a population size change in either the

very recent past or the very distant past (see Figures 18, 19, and 20).

To find good theory fits for the European and Asian data, it was necessary

to invoke a population bottleneck. To speed up our MCMC search, we fixed the

mutation rate m = 2.5 × 10−8 and the ancestral population size N3 = 15, 000.

This left two variable time parameters and two variable size parameters, enough

to generate many optimal histories to fit both sets of non-African data (see

Figures 21 and 22). In both sets of good histories, recent good-fit bottlenecks are

shallower than ancient good-fit bottlenecks. The modern effective population

size is lower, on average, in the Asian histories. This fits with the fact that the
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Figure 18: Some population histories satisfying our good fit criterion for African

genome data assuming m = 2.5× 10−8 mutations per base per generation

52



Figure 19: More good fit YRI histories; mutation rate m = 1.75×10−8 per base

per generation
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Figure 20: More good fit YRI histories, mutation rate m = 1.0× 10−8 per base

per generation
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Figure 21: A population bottleneck is required to fit the CEU ROH data–either

a shallow, recent bottleneck or a deeper, more ancient bottleneck.

Asian HapMap allele frequency spectrum shows more evidence of genetic drift

than the European HapMap allele frequency spectrum [30].

It remains an open problem to mathematically describe the set of histories

that fit the distribution of ROHs in each ethnic group. However, in showing that

such histories exist, we achieve our aim of predicting the length distribution of

ROHs in real genome data and validating the theory that we use to compute

IBD probabilities.

8 Discussion

In this paper, we attempt to very precisely model patterns of linkage disequi-

librium in genetic data, capturing its decay over long regions of the genome

instead of assuming that certain blocks or pairs of loci assort independently.

Rather than adding a new LD model to the myriad that exist already, we work
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Figure 22: A bottleneck is required to fit Asian ROH data. These good fit

histories have smaller recent effective population sizes than the histories that fit

the CEU data (see Figure 21).
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as closely as possible to the neutral coalescent with recombination, deriving

results within a theoretical framework whose advantages and limits are well un-

derstood already. Our claims about patterns of homozygosity in the genome

make no assumptions that weren’t published as part of the sequentially Marko-

vian coalescent (SMC) model [43]; while we do not account for recombination

hotspots or other point irregularities, the results should be quite accurate across

the genome as a whole, as seen empirically in Section 7.

While it was necessary to relax the SMC somewhat to model LD in diploid

alignments with uncertain phasing, our model approaches the coalescent in the

limit of high LD where phasing and imputation attain high accuracy. While it is

possible to check our computations with a coalescent simulator such as MS, our

method makes it much quicker to compute a length spread of IBS probabilities;

without it, each data point on each of our plots would have to be obtained

from a separate coalescent simulation with memory and storage requirements

that get quite large for long IBS alignments. Efficiency was key when we had to

compare many population histories to find a matches for the African, European,

and Asian homozygosity data, and also when we considered the best alignment

between a test sequence and some member of a reference panel.

The accuracy values that we compute for various imputation panels as-

sume an idealized population of effective size 10,000, closer to the truth for

Africans than for non-Africans. However, it is possible to condition instead on

any piecewise-constant population size history, as is briefly explored in the last

section of the paper, if e.g. the goal is to impute only Europeans. We concen-

trate less on evaluating the capabilities of an existing panel than on building a

framework for making informed decisions about the design of future panels.

Our results do posit lower bounds on the amount of variation that should

not be imputable using HapMap, as we estimate that a 120-reference panel has

only a 70% chance of imputing a one kilobase mini-haplotype with 99% accuracy

and an 80% chance of imputing it with 90% accuracy. Accuracy is likely higher

when the aim is to impute only common SNPs, but it can only be higher insofar

as those common SNPs fail to tag the rarer SNPs around them. Our rough
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estimate of HapMap variation coverage is close to that obtained by Bhangale,

et al., who resequenced 1.6 megabases in each of the HapMap individuals and

reported that only 60-80% of the SNPs they found were within r2 > 0.8 of a

tag SNP [8].

Besides showing that it is feasible to study imputation with coalescent the-

ory, we hope that the tricks and shortcuts we’ve developed might help make

coalescent theory more applicable to other hard problems. Important as impu-

tation is, it is not the only setting where understanding IBS could be useful. As

seen in Section 7, real hets are distributed differently from false positive hets,

such that hets scattered in regions of high homozygosity are very likely to be

false positives. It is easy to compute the false positive probability of a het that

is L bases away from the nearest het, and it might be useful to incorporate this

result into base calling software. A long stretch of near-homozygosity provides

a lot of evidence that the region is IBD (see Figure 8 for a plot of p(IBS) versus

length), and there is less than a 1.5% chance that an IBD region will contain

seven or more mismatches (the number of mismatches being Poisson-distributed

with a mean of µ/ρ = 2.5). When the sequencing error rate is 10−5 and a 107-

base region contains about 100 scattered hets, the likely truth is that the region

is IBD and most of those hets are errors.

A challenge for the future will be to address the effect of recent exponential

population growth. Only the frequency of the longest IBS regions should be

affected, but this will be enough to make a 1000-haplotype reference panel less

perfect than it appears in figures 10 and 11; Ionita-Laza, et al. predict that

more than 3,000 individuals will be needed to find all variants with frequency

0.1% based on allele frequency data from the outbred CEU and YRI sequence

data [26]. One way around this issue would be to conduct GWASs in moderately

isolated populations where exponential growth has been very recent and 1000

references do constitute a perfect imputation panel. Family-based linkage stud-

ies have been successful for some time at discovering functional variants that

affect few people but shed valuable light on disease mechanisms, and our results

suggest that IBD mapping need not be limited to groups as small as families. A
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project the size of 1000 Genomes [1] should make it possible to essentially know

the sequence of every individual in a small population like Iceland, which would,

in principle, make it possible to test for functionality all across the genome, in-

cluding at a large pool of rare and untaggable SNPs that are invisible even in

GWASs conducted with the help of imputation from HapMap.

A Base-calling methods

The sequences used to validate our method were re-called with the hope of

reducing the frequency of errors. The call sets are available for download at

ftp://ftp.sanger.ac.uk/pub/rd/humanSequences.

Raw Illumina read data were obtained from NCBI’s sequence read archive

(see Table 13) and EMBL’s European read archive. They were aligned by BWA

(0.5.5), using human reference genome build 36, which masks pseudoautoso-

mal regions on Y by including unassembled contigs and the Epstein-Barr virus

genome (AC:NC 007605). Low quality bases were trimmed from the 3’-ends

of Illumina short reads by applying BWA option ‘-q 15.’ Because SJK base

qualities were overestimated, they were recalibrated using the Genome Analy-

sis Toolkit after discarding SNPs known from dbSNP-129. Default BWA-SW

algorithms were used for capillary reads.

The ‘pileup’ command of the samtools software package was used to cre-

ate each autosome’s diploid consensus. The consensus was then filtered, the

following kinds of bases being marked low-confidence calls:

1. Read depth is more than twice or less than half of the depth estimated at

loci genotyped in HapMap3

2. Reads covering the locus have root mean square mapping quality below

25

3. There is a predicted short indel less than 10 base pairs away

4. Inferred consensus quality is below 20 (Illumina data) or 10 (capillary
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data)

5. Out of the 35 reference sequence 35-mers that overlap with the site, fewer

than 18 can be mapped elsewhere with at most one mismatch
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