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Summary:

Many computational techniques exist for the prediction of genes from

genome sequence, and for their functional characterisation. Less well

understood, however, are the sequences that cause processing and regulation

of these genes. One such sequence is the polyadenylation signal, which is

required for the expression of most eukaryotic genes. The ability to detect

polyadenylation signals accurately means that genomes can be annotated to a

greater extent. Although this can be carried out in the laboratory, a

computational method is much faster and cheaper, especially considering the

acceleration in the sequencing of whole genomes.

A particular gain is that a polyadenylation signal prediction also provides

a predicted end to the untranslated region (UTR) lying downstream (3’) of a

gene’s stop codon. This region can contain regulatory motifs, which can

dictate properties such as when, where, and how a gene is expressed.

Knowledge of gene regulation is as important as gene function if we are to try

and gain a full understanding of systems biology from genome sequencing.

In this thesis, I present the development of a piece of software for

detecting sequence signals in genome sequence.

I then develop a model for the polyadenylation signal in the nematode

worm Caenorhabditis elegans and show that the predictions are accurate,

leading to the publication of good quality 3’ UTR data sets.

Models are then built for three other species, and a comparison made

with existing methods.

A comparison between polyadenylation signals of C. elegans and the

closely related C. briggsae follows, which leads onto the discovery of a

putative regulatory motif, conserved between the ribosomal protein 3’ UTR

sequences of both species.
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