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Summary:

Many computational techniques exist for the prediction of genes from

genome sequence, and for their functional characterisation. Less well

understood, however, are the sequences that cause processing and regulation

of these genes. One such sequence is the polyadenylation signal, which is

required for the expression of most eukaryotic genes. The ability to detect

polyadenylation signals accurately means that genomes can be annotated to a

greater extent. Although this can be carried out in the laboratory, a

computational method is much faster and cheaper, especially considering the

acceleration in the sequencing of whole genomes.

A particular gain is that a polyadenylation signal prediction also provides

a predicted end to the untranslated region (UTR) lying downstream (3’) of a

gene’s stop codon. This region can contain regulatory motifs, which can

dictate properties such as when, where, and how a gene is expressed.

Knowledge of gene regulation is as important as gene function if we are to try

and gain a full understanding of systems biology from genome sequencing.

In this thesis, I present the development of a piece of software for

detecting sequence signals in genome sequence.

I then develop a model for the polyadenylation signal in the nematode

worm Caenorhabditis elegans and show that the predictions are accurate,

leading to the publication of good quality 3’ UTR data sets.

Models are then built for three other species, and a comparison made

with existing methods.

A comparison between polyadenylation signals of C. elegans and the

closely related C. briggsae follows, which leads onto the discovery of a

putative regulatory motif, conserved between the ribosomal protein 3’ UTR

sequences of both species.
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1. An Introduction to 3’ Ends and Polyadenylation
Signals
1.1. Preamble

The high-throughput sequencing of major eukaryotic genomes has led to a

sudden abundance of sequence information. This wealth of data represents an

extremely useful resource for the scientific community. A genome contains the

inherited information required to determine the physiology of an organism. If we can

access and interpret the genome, then we can have a much better understanding of the

biological processes defining that organism. In its raw, un-interpreted form, a genome

sequence does not prove to be a particularly intelligible resource. However, once the

genome sequence is subject to interpretation by biological or computational methods,

it quickly becomes a collection of many sources of information that can further our

knowledge of molecular biology. For instance, an organism’s full set of protein

coding genes can be found by the use of computer programmes in conjunction with

transcript-mapping techniques. For maximum accuracy these methods require

supervision by an expert human annotator, who can best integrate computational and

biological evidence for accurate delineation of genome sequence. Once the protein

repertoire is known, we have a better idea as to the physiological constituents and

processes that are possible. The availability of annotated genomes of multiple species

allows us to reconcile empirical differences, such as between mice and humans, and

interactions, such as those between malaria and mosquitoes, at the level of molecular

biology.

A genome contains far more information than that coding for proteins. Some

types of sequence, whilst not specifically coding for a protein, are no less important.

The reason for this is that the information for when and where proteins are expressed
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must somehow be coded in the DNA. Although our current understanding of the

phenomenon of protein coding is reasonable, finding protein coding genes only

informs us as to what physical processes might be possible at some point in the life

cycle. For a full understanding of the molecular biology of a system, it is necessary to

know not only what components are involved, but also the circumstances under which

each is required, the location, and the amount. This regulatory information is encoded

in the DNA sequence of the genome, but interpreting it is not as straightforward as the

in-silico translation of a coding sequence into a protein sequence.

The expression of a eukaryotic gene is an extremely complex process, starting

with chromatin remodelling, transcription, mRNA processing, mRNA transport,

translation, and post-translational modification (Alberts et al. 2002). Each of these

processes can be regulated separately, thus there are very many factors that have an

effect on gene expression. An example is the initiation of transcription (Gill 2001), in

which the coordinated and sequential binding of proteins to the promoter region,

assembles the transcriptional machinery on the DNA lying upstream of the coding

region. These proteins are able to bind the promoter on account of having affinity to

particular sequence motifs, which are called binding sites. One particular example of

DNA encoding a regulatory signal is in the case of heat shock promoters (Morimoto

1993). Genes preventing cellular damage during heat shock have an increased

transcriptional activation during such stress on account of a protein heat shock factor

binding to nGAAn inverted repeats, which increases transcriptional initiation activity.

Thus the DNA sequence in this region not only codes for a protein with some stress-

related function, it also contains signals that specifically indicate this function to the

cell. Thus, if a protein of unknown function is shown to have such a regulatory
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element, this provides some evidence that can be used to aid functional annotation,

add confidence to an existing annotation, or improve an existing gene prediction.

Many other such signals, some very specific and some much more ubiquitous,

are also encoded in the DNA. Although our knowledge of proteins, the sequences that

encode them, and the tools available for their analysis is commendable, a full

understanding of biology relies on our understanding of regulatory sequences and the

different mechanisms of regulation. Protein sequences are encoded by a well-

understood trinucleotide codon signal, reviewed in (Nirenberg 2004). Sequence

characteristics are also responsible for specifying splice sites, restriction sites,

(Alberts et al. 2002), DNA bending propensity (Brukner et al. 1995), nucleosome

position (Thastrom et al. 2004), and much more.

Building a high-confidence protein repertoire for an organism requires good

gene predictions, which can only perform as well as our knowledge of the underlying

biology allows (Makarov 2002; Mathe et al. 2002). It has been shown that refining

parts of gene prediction models to closer resemble the observed biology results in

better gene prediction (Stanke et al. 2003). Hence studying the biological signals that

cooperate to specify a gene aids our ability to predict genes and thus further increases

our knowledge about an organism’s physiology.

It has been suggested that the increase in complexity between organisms such

as C. elegans and H. sapiens cannot be explained by the increase in size of their

respective proteomes (Mattick 2001). Furthermore, this paper argues that the

difference between the proteomes of individuals cannot account for phenotypic

differences, and that it is the regulation of gene expression, particularly that mediated

at the RNA level, that adds this layer of complexity. This RNA regulation may exist

as non-coding RNA genes (Eddy 2001), or regulatory elements encoded within
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transcribed sequence (Griffiths-Jones et al. 2005). Incorporating such information

further complicates the already incompletely understood concept of gene regulatory

networks, which at the moment tends to focus on transcription factor binding

networks (Pritsker et al. 2004) and protein-protein interactions (Walhout et al. 2001).

In this chapter, I aim to set the scene for the research that will follow. I will

introduce the biology that is to be studied and extended. I discuss eukaryotic gene

structure, in particular the importance of the 3’ untranslated region (3’ UTR). The

polyadenylation signal is found within this region, and I go on to discuss what it is

for, and why we might want to be able to detect it.

Unless otherwise stated, notably in chapter 5, the work in this thesis has been

carried out on C. elegans (The C. elegans Sequencing Consortium ) on account of its

relatively well annotated genome, and the availability of well-designed tools for

accessing genomic information (Stein et al. 2003; Chen et al. 2005). Although there

are other model organisms, accurate gene predictions, coupled with good coverage of

transcript information, make this an ideal organism for the analyses in subsequent

chapters.

1.2. Overview of untranslated region molecular biology

As the name suggests, untranslated regions are not translated into protein.

They are, however, transcribed and to understand them better, we must first gain an

insight into transcription.

1.2.1. Transcription and eukaryotic gene structure
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1.2.1.1. Transcript termination

Figure 1 shows the processes involved as a primary protein coding gene

transcript matures into a processed mRNA ready for translation. Following the gene’s

transcription, introns are spliced out, leaving the region spanning the start of

transcription to the translational start site, the coding sequence itself, and a

downstream region. Of this whole sequence, only the coding sequence gets translated,

and thus the upstream and downstream sequences are known as 5’ and 3’ untranslated

regions, respectively.

Figure 1. Main steps in the expression of a typical eukaryotic protein coding
gene, showing transcription, splicing, and processing.
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The termination of RNA polymerase II transcription is a complex process, of which

our understanding is still incomplete (Proudfoot et al. 2002). Both computational and

experimental transcription stop site annotation have proven to be difficult. Part of this

complexity arises from signals which are upstream of the eventual transcriptional

termination point. The 3’ end of a mature mRNA is not the end of transcription. The

RNA polymerase II continues past the known 3’ end (Ford et al. 1978). A crucial part

of the process of mRNA maturation is the separation of the nascent mRNA from the

transcriptional apparatus. This occurs by the cleavage (Colgan et al. 1997) and

polyadenylation (reviewed in (Scorilas 2002) of the mRNA. The cleavage separates

the transcript from RNA polymerase II, so it can be exported out of the nucleus and

translated. The addition of a long polyadenylate tail - of up to 250 nucleotides in

mammals (Wahle et al. 1993) - is thought to stabilise the transcript, as it is known that

one of the first processes in degradation of such mRNAs is the de-adenylation of the

tail (Ford et al. 1997). The RNA lying to the 3’ of the cleavage site is eventually

degraded and the RNA polymerase II complex is recycled. The primary signal for the

recruitment of the cleavage and polyadenylation complex is called the

polyadenylation signal; in this thesis we will call this the AATAAA or AAUAAA

motif (see chapter 3). A description of this signal and an overview of cleavage are

given below, but to appreciate the importance of the polyadenylation signal, it is

necessary to understand the sequence context within which it appears.

1.2.1.2. The 3’ untranslated region
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The 3’ untranslated region (3’ UTR) is defined as the sequence extending from

a protein coding gene’s stop codon (UAG, UAA, UGA) up to the point at its 3’ end

where the transcript is cleaved (Figure 1). As the coding sequence is constrained to

code for protein, any regulatory sequence elements required at the post-transcriptional

level are much more likely to be encoded in the untranslated regions, which are under

much less selective pressure. It is well established that repressor proteins can bind to

the 5’ UTRs to mediate translational control (Gray 1998; Wilkie et al. 2003), but other

factors involved in control of translation of mRNA stability bind to the 3’ UTR, as we

shall discuss later. C. elegans 5’ UTRs tend to be short (~75% under 50 nt) on

account of the phenomenon of trans-splicing (Blumenthal 1995), so we concentrate

instead on the 3’ UTR.

Regulation by sequence elements in the 3’ UTR can have many types of

function. These include regulating stability (Xu et al. 1997) of powerful signalling

agents in the immune system, and  inhibiting translation (Olsen et al. 1999) of

developmental genes in appropriate stages of development. A characterised 3’ UTR

motif allows mRNA localization (Gavis et al. 1996) to specify the Drosophila

posterior pole. Additionally, in the case of selenoproteins (Hubert et al. 1996), a 3’

UTR stem-loop allows the alternative interpretation of a UGA stop codon into an

insertion site for Sec-tRNASec. Mutations in the 3’ UTR are known to cause human

diseases, notably in the cases of myotonic dystrophy (Timchenko 1999), and alpha-

thalassaemia (Higgs et al. 1983).

All of these forms of post-transcriptional regulation are essential for

understanding the biology of eukaryotes. No amount of protein sequence analysis can

possibly elucidate the control mechanisms involved, and for this reason, sequencing
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and functional characterisation of 3’ UTRs is as important as that of coding

sequences.

A number of regulatory elements identified by a variety of biochemical

analyses and computational verification have been collected into a database (Mignone

et al. 2005). However, the size and specificity of these motifs makes it impossible to

search for most of them accurately at the genome level. There are too many false

positive matches to the consensus pattern. To restrict the search space, it is necessary

to search just within 3’ UTR sequences. Similarly, if we are to try and discover novel

regulatory motifs by computational methods, then it is again necessary to discard the

non-3’ UTR genome from any such analysis. It is therefore important to identify the

end point of the 3’ UTR, the cleavage and polyadenylation site.

1.2.2. Reliable 3’ UTR sets

The standard method to identify 3’ UTR sequences is to align cDNAs such as

expressed sequence tags (ESTs) back to genome sequence. We also need gene

annotations showing the coding regions. cDNAs are typically made from mRNAs by

using an oligo dT primer to bind to the polyA tail of the mRNA, which then forms a

substrate for reverse transcription into DNA. Theoretically, the full length mRNA is

thus copied into DNA, which can be amplified and sequenced. Thus, a high

throughput EST project provides evidence for what parts of the genome are

transcribed. As mentioned earlier, the whole 3’ UTR is transcribed, and thus aligning

ESTs to the genome can give us the end point of the 3’ UTR. To obtain the start of the

UTR, we need to identify the stop codon from the genes’ annotation.
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Theoretically, a genome sequence, coupled with gene annotations and ESTs,

should be enough to build a set of 3’ UTRs for all genes. However, there are four

further points preventing the establishment of a perfect set. Firstly, the organism in

question needs a high throughput EST project. C. elegans has one (Kohara,

unpublished), but the related nematode C. briggsae, for example, does not. Secondly,

the project needs to cover a large proportion of the genes in the whole genome. By its

nature, the manufacture of cDNAs is difficult for genes expressed in very small

amounts or in highly specialised conditions. Hence, there is only EST coverage for

approximately half the C. elegans gene set. Thirdly, a small but significant problem is

that of internal priming; if a gene contains an internal poly-A tract, perhaps because of

a poly-lysine tract in the protein, then the oligo-dT primer may map to this tract,

instead of the polyadenylate tail at the end of the transcript. The final and most

significant problem with ESTs from C. elegans (and other organisms) is that a large

number of them have been clipped at the 3’ end for reasons of sequencing accuracy.

As we shall see in chapter 3, some UTRs have been clipped up to 80 nt short of the

real cleavage and polyadenylation site. All of these factors serve to reduce the size

and accuracy of the search space within which known and novel 3’ UTR regulatory

elements occur.

A solution to the species, coverage, and end-clipping problems is to predict the

site at which cleavage and polyadenylation occurs. This method requires only a good

gene coding sequence annotation, and can generate full-length 3’ UTR sequences. In

the case of end-clipping, the prediction can be used in conjunction with partial EST

coverage to identify cleavage sites with higher confidence.
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1.2.3. Polyadenylation signals and cleavage sites

The 3' ends of most eukaryotic protein-coding transcripts terminate with a

poly-A tail (Darnell et al. 1971; Edmonds et al. 1971; Lee et al. 1971) that is

important for nuclear export, stability, and efficient translation (Bousquet-Antonelli et

al. 2000; Proudfoot 2001). The tail is added via a multi-protein complex that

recognizes sequence elements in the 3' UTR, cleaves the nascent transcript, and adds

adenylate residues in a template-independent reaction. The biochemical details of the

process have been studied most intensively in mammals and yeast (Guo et al. 1996;

Colgan et al. 1997; Zhao et al. 1999).

The local sequence features thought to recruit the polyadenylation and

cleavage apparatus show some conservation across phyla. In mammals, the two

sequence features that are most important are a highly conserved AAUAAA motif

located 10-30 nucleotides upstream of the cleavage site and a GU-rich element

located 20-40 nucleotides downstream of the cleavage site. Together, these two

elements specify the location of the cleavage site. The Cleavage and Polyadenylation

Specificity Factor (CPSF) has been shown to bind to the AAUAAA motif and

Cleavage Stimulation Factor (CstF) to the GU-rich element. There is evidence in C.

elegans that the binding of CstF to the element is not necessary for at least some

genes, (Huang et al. 2001), though RNAi analysis has shown that knockout of CstF

itself is lethal (Simmer et al. 2003).

In Saccharomyces cerevisiae, the 3' UTR features are slightly different. The

AAUAAA motif is not as highly conserved and there is no downstream GU-rich

element. Instead, there is a UA-rich sequence upstream of the AAUAAA motif. The

protein that binds the AAUAAA motif is Rna15, which is orthologous to CPSF; the
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UA-rich sequence is bound by Hrp1 (Kessler et al. 1997; Chen et al. 1998; Gross et al.

2001). The cleavage site is 10-30 nucleotides downstream of the AAUAAA motif and

has the sequence Y(A)n. In addition to these features, U-rich sequences immediately

flanking the cleavage site also appear to be important (Dichtl et al. 2001).

The formation of the 3’ end processing complex is linked to transcription by

RNA polymerase II; it has been shown that the RNA polII C-terminal Domain (CTD)

is essential in mRNA polyadenylation (Hirose et al. 1998). Additionally, it is thought

to bind to CstF at transcription initiation. As CPSF is known to interact strongly with

transcription factor TFIID (Dantonel et al. 1997), it appears that both these essential

3’ end complex proteins are involved in mRNA processing right from the initiation of

transcription.

Other proteins involved include two cleavage factors, a poly-A polymerase,

and a polyA-binding protein which stabilises the polyadenylated mRNA (Zhao et al.

1999). Figure 2 shows an overview of the 3’ end processing complex.
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Figure 2. An overview of some of the proteins involved in mammalian 3' end
processing. We can see the four subunits of the Cleavage and Polyadenylation
Specificity Factor (CPSF), Poly-A Polymerase (PAP), Cleavage Factors I and II
(CFI, II), Cleavage Stimulation Factor (CstF), RNA Polymerase II (RNAPol II)
with its C-Terminal Domain (CTD). Image taken from (Zhao, Hyman, et al 1999)
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1.2.4. Polyadenylation and splicing

According to the currently understood model of exon definition (Berget 1995),

each exon is defined by the upstream acceptor (3’) splice site and the donor (5’) splice

site at its end. Initial and terminal exons are missing functional initial acceptor and

final donor splice sites respectively, and it is thought that the function of these splice

sites is accounted for by the 5’ methyl-guanine cap (Ohno et al. 1987) and some

component of the polyadenylation complex (Niwa et al. 1991) respectively.

It has now been established that polyadenylation is closely linked to the

splicing of the final intron (Cooke et al. 1996). The U1 spliceosomal ribonuclear

protein (RNP), which is involved in early recognition of donor splice sites, has been

shown to interact with Cleavage Factor I (Awasthi et al. 2003). Additionally, another

part of the U1 complex, U1A protein, is known to bind to CPSF and stabilises its

binding to polyadenylation signals (Lutz et al. 1996). Another factor involved is the

U2AF protein, which binds to poly-A polymerase (Vagner et al. 2000). This protein

helps specify acceptor splice sites, and may suggest that more components of the

spliceosome are recruited to the cleavage and polyadenylation apparatus. An

interesting connection between splicing and polyadenylation pathways is the

involvement of Poly-pyrimidine Tract Binding protein (PTB). This has a known

function in competing with U2AF for the poly-pyrimidine tract found at the 3’ end of

introns, and is thus thought to be one of the factors responsible for alternative splicing

(Lin et al. 1995). It appears that PTB also competes with the CstF binding site, which

can be GU- or pyrimidine-rich (Castelo-Branco et al. 2004). Although this

competition causes repression of polyadenylation when PTB is overexpressed,

depletion of PTB by RNAi abrogates 3’end processing at certain types of
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polyadenylation signal, such as that of the human Complement C2 gene, as does

mutation of the PTB binding site (Moreira et al. 1998).

1.2.5. Alternative polyadenylation

Some genes contain multiple polyadenylation signals (Edwalds-Gilbert et al.

1997). This can lead to formation of multiple transcripts, some having extra 3’ UTR

sequence, such as described by (Qu et al. 2002). This difference is enough to increase

translational efficiency of one variant. Alternatively, polyadenylation signals can

appear in introns, meaning that different transcripts contain different coding exons in

a manner similar to alternative splicing (Alt et al. 1980). An example of the latter

includes the mouse immunoglobulin M heavy chain gene, where the switching of

polyadenylation signals from one in the ‘terminal’ 3’ UTR to one in an intron causes

the deletion of a C-terminal hydrophobic region responsible for membrane anchoring.

This changes the protein product from being a membrane-bound protein to a secreted

one. More cases are reviewed in (Edwalds-Gilbert et al. 1997).

1.2.6. Polyadenylation signal detection

1.2.6.1. The need for signal prediction

One reason for computational prediction of 3’ UTR sequence was given

earlier; to restrict searches for mRNA regulatory motifs. However this information is

also useful for integrating into other sequence analyses. Knowledge of the extent of

the 3’ UTR can aid in gene prediction and genome annotation. As the majority of

protein coding genes have a polyadenylation signal, each good prediction represents a
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piece of high confidence evidence for a gene. The existence or lack of a predicted

signal could be the difference that convinces an annotator as to the veracity or

otherwise of a gene prediction. Although it is outside the scope of this thesis to write a

full gene-finding program, the results of predictions could be integrated into a

genefinder that uses many sources of evidence e.g., (Howe et al. 2002), which could

use the extra information to improve gene prediction relative to a program that does

not model 3’ UTRs.

In C. elegans, polyadenylation signal prediction will make up for the ~50%

coverage missed by EST projects. Now there are genome projects without deep EST

projects, such as 5 new nematodes and 10 new flies during 2005. Assuming that the

characteristics of polyadenylation signals are conserved between closely related

species, we can improve gene prediction in newly sequenced genomes by extending

terminal exon predictions to include 3’ UTRs. This computational method means that

3’ UTR sets can be made without the need for EST projects. The coordinated analysis

of the 3’ UTRs of orthologous genes, in particular the statistical reinforcement

provided by having multiple functional alignments will hopefully improve detection

of diffuse conserved regulatory sequences in 3’ UTRs.

Computational polyadenylation signal prediction has been carried out to some

success in S. cerevisiae, H. sapiens, and M. musculus (see below). No such work,

beyond the suggestion of a naïve model, has been carried out previously in C. elegans.

In addition to providing improved datasets to the scientific community

(http://www.sanger.ac.uk/Projects/C_elegans/POLYA), polyadenylation signal

prediction, be it tuned for a given species or no, presents an interesting computational

and biological problem.
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1.2.6.2. Existing computational methods

Computational polyadenylation signal prediction has been previously

attempted by several groups, though this work has mainly been carried out in H.

sapiens. An early approach was to use a linear discriminant function (Salamov et al.

1997). This method looks for matches to a polyadenylation signal and downstream

element consensus, surrounded by characteristic hexamer and triplet frequencies.

There is a preferred distance between the signal and the element. The linear

discriminant function weighs each of these coefficients according to maximising

discriminatory power on a training set. The most important elements were thought to

be the polyadenylation signal itself and the hexamer frequencies in the downstream

region.

Another group (Tabaska et al. 1999) used a more complex quadratic

discriminant function to learn weight matrices for the AAUAAA motif and the GU

rich element. The downstream GU rich element and its distance from the

polyadenylation signal were once again found to be discriminating, alongside the

separation between the two, and the dinucleotide frequencies of the downstream

region.

A third study assembled weight matrices from alignments of a large number of

sequences containing AAUAAA motifs discovered from EST data (Legendre et al.

2003). This group adjusted the width of putative weight matrices up and downstream

of the AAUAAA motif to optimise prediction accuracy, though maximum

discrimination was found using just the AAUAAA motif and the local downstream

region. This was a similar observation to that gained in the first two studies; in human

and mouse, there appears to be little discriminatory information upstream of the

polyadenylation signal.
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As an alternative to using weight matrices, an investigation into 3' end

processing in S. cerevisiae (Graber et al. 2002) used a hidden Markov model (HMM)

to describe nucleotide frequencies in well-characterised words in the vicinity of the

cleavage site, linked by background frequencies elsewhere. This resulted in a model

of three informative hexamer words, a pentameric cleavage site and a downstream

hexamer word. These words were linked by states having some background

nucleotide frequency distribution and a preferred length.

Less predictive work has been carried out in C. elegans. The current model for

sequence features involved in 3' end formation in C. elegans is focussed entirely on

the AAUAAA motif (Blumenthal et al. 1997). From a predictive standpoint, this

means that one typically scans a weight matrix across the sequence and annotates

those sites scoring over a particular threshold. This is not a reliable method of

prediction, as the hexamer does not carry enough information to define a

polyadenylation signal specifically, compared to the background frequency of

AATAAA and similar motifs in the genome. This simple weight matrix model cannot

interpret context information, should there be any present.

We now proceed to develop software capable of detecting polyadenylation

signals. We can use this to predict signals in C. elegans (chapter 3), C. briggsae

(chapters 5 and 6), D. melanogaster, H. sapiens, and M. musculus (all chapter 4). In

addition to providing a solution to the polyadenylation signal problem, these

predictions enable us to study 3’ UTR sequence evolution (chapter 5) and help us find

a putative 3’ UTR motif (chapter 6).
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2. PAjHMMA – Parameter Adjustable Java Hidden

Markov Model Architecture

2.1. Introduction

In this chapter, we present a flexible software framework, PAjHMMA, for

detecting signals in nucleotide sequences. The resulting model is based on the

observation that regions of different biological function can have constrained sub-

sequences or nucleotide distributions. By varying the parameters in the model, it is

possible to model many different encoded biological signals. The technique used

allows us to model both long-range, diffuse sequence information, as well as exact or

stringent matches to well-characterised sequence motifs. The flexibility of the

framework is provided by the separation of the model from the algorithms used to

search for model hits. For this reason, it is possible to search sequences for different

biological motifs quickly. As the model file is provided in a very simple syntax, a

model can be changed or developed afresh with no change required to the decoding

software. PAjHMMMA is available for download from

http://www.sanger.ac.uk/Software/analysis/pajhmma.

2.2. An overview of hidden Markov models (HMMs)

2.2.1. Background

As discussed in chapter 1, biologically meaningful signals are encoded within

biological sequences as discrete regions of given function, which can range from

being a local exact sequence match (such as an in-frame STOP codon), to much more
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diffuse, poorly-defined motifs, such as eukaryotic promoters (Down et al. 2002).

Hidden Markov models have been used successfully to detect signals of varying

strengths and combine them together, such as in assigning proteins to various families

based on the position and order of protein domains (Bateman et al. 2004), and in gene

finding (Burge et al. 1997; Zhang 2002).

2.2.2. Hidden Markov models

An HMM is a statistical model, which has been used in diverse fields in which

information occurs in sequences of discrete emissions. Examples of such uses include

speech recognition (Rabiner 1989), music recognition (Raphael 1999), gene finding

(Burge et al. 1997), and in other biological sequence analysis (Durbin et al. 1998).

The model has a finite number of states, each of which has a distinctive frequency

distribution over the ‘alphabet’ of possible emissions. The states are connected to one

another by a set of probabilities. A state can be analogous to some kind of functional

or characterised feature, such as a season of the year, which has a distinctive emission

frequency for particular types of weather.

We can think of an HMM as a machine generating a sequence left to right

according to an underlying state path that is hidden from us. The machine has a finite

number of interconnected states, and a fixed alphabet. Hence the machine is

constrained to emit symbols existing only in that alphabet, and at the frequencies

prescribed by the current state. At each stage, the model emits a nucleotide according

to the nucleotide emission characteristics of the model’s current state. It also moves

into a new state (possibly the same one) according to a state-state transition

probability.
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The HMM in Figure 3 shows a model that can generate a sequence of a and b

emissions. Each of the two states has a characteristic emission. The transition

probabilities between the states dictate the order and lengths of the states, and also the

overall topology of a pass through the model. An example of a model-directed

topology is shown; a pass through the model must end in state B. An HMM is a

natural method to model DNA sequence, as regions of different functions typically

have different nucleotide frequencies, and can have functionally constrained positions

relative to each other. The simple model in Figure 3 models two different states with

different emission characteristics, typically encourages state A to emit fewer

emissions than state B, and constrains the model such that a state sequence can swap

between A and B as many times as it likes, but can only terminate when in the B state.

Figure 3. A diagram of an HMM that generates a sequence of a and b emissions.
Note that states A and B have different emission frequencies for possible
emissions a and b. State A has a tendency to emit a, and B a tendency to emit b.
States A and B may transition into themselves or into each other with the given
probabilities. State B can transition into an end state. Emission probabilities
dictate the constitution of each state.

2.2.3. HMMs for prediction

Rather than using the model as a sequence generator, it is possible to score a

given sequence according to all possible state paths through the model. We scan the

sequence, and place each emission in one of the states. We score an observed a with
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0.99 if we decide to put it in state A and 0.01 if it is to be put in state B. The opposite

scoring scheme is used if we encounter a b. At any point, the model must either

transition to a different state, or elect to stay in the same one. This transition has a

characteristic cost, depending on which of the possible transitions occurs. We note the

state into which each emission can be placed, trying to maximise the score at all

times. The state path that scores the highest, represents a demarcation of the sequence

into partitions of different emission frequencies. The highest scoring state path, for a

sequence

aaaaaabbbbbbaaaaaabbbbbb

would be

AAAAAABBBBBBAAAAAABBBBBB

This state path would also be the highest scoring for a sequence

aabaaabbbabbaaabaabbabbb

but not for

aabbaabbaabbaabbaabbaabb

for which the highest scoring state path would be

AABBAABBAABBAABBAABBAABB

The difference in the two highest scoring state paths is that in the final

example, it is deemed preferable to transition into a different state rather than

accommodate a suboptimal emission, which is tolerated in the previous sequence.

Given a sequence, therefore, the inference of this state path represents a

predicted annotation for the sequence. If this is DNA sequence, and the states score
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nucleotides with emission probabilities characteristic of exons, splice sites, and

introns etc., then the highest scoring state path represents a gene prediction.

Each sequence emission in any given state is given a transition and emission

score which is equal to the probability of that transition and emission. The score of a

sequence path through an HMM represents a joint probability distribution over state

paths and sequences. Given a sequence, it is possible to find the most likely state path

using the Viterbi algorithm (Viterbi 1967). Rather than evaluate every sequence

element - nucleotides in the case of a DNA sequence - in every possible state, which

would be a brute-force approach, we can use dynamic programming to search the

state-space more efficiently. The Viterbi algorithm accomplishes this by a

left–to–right sweep to establish partial scores of matching a sequence prefix, given it

ends in some state. At any time during the forward sweep, only the best score so far

ending in each state is stored. This is followed by a trace back from right to left,

extracting the most likely state path. This means that sub-optimal solutions are not

evaluated, and thus the total search time actually used is much smaller than that would

be used by a brute force method.

Additional information available from using an HMM comes from the ability

to calculate the probability that nucleotide n was generated by a state k, using the

forward and backward algorithms, which will be covered later. Later in this chapter, I

give the equations used to implement these algorithms.

2.2.4. HMMs for gene finding

We can partition DNA sequence into exons, introns, intergenic sequence etc.

These have different nucleotide properties on account of their different biological
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functions. As a result, HMMs have been used successfully as gene finders. In a given

genome sequence, the state path of biologically functional regions is hidden in

emissions made up of nucleotides, dinucleotides, or higher order emissions, such as

coding triplets. Using sets of manually annotated genes, it is possible to build states

representing each biological entity, such as an exon, by finding its characteristic

emissions. These states are then connected to each other in a biologically meaningful

manner. By this, we mean that the design of the model must obey the rules of biology

as we understand them. Hence, a reasonable gene prediction must not contain in-

frame stop codons, nor can a model pass in and out of an intron without flanking it

with donor and acceptor splice sites.

HMMs are ideal constructs for modelling 3’ UTRs and polyadenylation

signals, because the region to be modelled can be partitioned into functional areas of

distinctive nucleotide properties, as we shall observe in chapter 3.

Polyadenylation signal prediction can therefore be viewed as a logical

extension to gene prediction, as virtually all protein coding genes have a 3’ UTR and

polyadenylation signal.

2.2.5. Length issues

In a simple HMM, when one state accounts for several bases, it does so by

having some transition back to itself, and some into the next state. The more sequence

is emitted from this state, the more times the transition back to itself must have been

chosen. If the probability of transition to itself is p, then the transition of leaving is (1-

p). Disregarding emission probabilities, the probability of remaining in a state for m

nucleotides
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€ 

P(m residues) = (1− p)pm−1.

This leads to the length of sequences emitted by the state being distributed according

to the geometric distribution; they decay exponentially. Although certain biological

sequence lengths, such as 3’ UTRs, can be approximated using this distribution,

HMMs are weaker at modelling features with distinctive non-geometric length

distributions. There are various strategies allowing a combination of geometric-length

states to model a non-geometric phenomenon (Durbin et al. 1998), but a PAjHMMA

model allows the user to specify an explicit length distribution for a given state when

required. We implement this using a generalised HMM.

2.2.5.1. Generalised HMM

In a generalised HMM a state can emit a region of sequences in one step,

rather than one nucleotide at a time. This means that we can specify the length

distributions for sub-sequences emitted by given states, so we can model states with

non-geometric length distribution shapes more accurately. For example, this technique

can be used to impose a minimum length on introns, which is appropriate, as these

have a biologically constrained minimum length.

The algorithm is extended so that when it transitions into a state with an

explicit length distribution, the whole sequence region is emitted and scored,

according to the provided length distribution. This means that the number of

emissions coming from a particular state is influenced by an observed length

distribution rather than a transition probability.
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2.2.6. Model training

To build an accurate HMM, it is necessary to determine emission and

transition probabilities that closely reflect the biological feature being modelled. As

we shall discover in chapter 3, polyadenylation signals can be found experimentally

for a small number of genes. For some species, this number is big enough to find

emission probabilities by counting nucleotide frequencies. Transition probabilities can

also be found, by counting occurrences of an annotated transition event. Manual

training is also possible, by calculating a transition probability to approximate an

observed length distribution.

Some state sequences correspond to a pass through a weight matrix. There is

one state per weight matrix column. This means that each of these states emits exactly

one nucleotide, so the transition probability from one state to another is always set to

1.

2.3. Software design

To annotate a sequence against an HMM, the user provides a sequence in

FASTA format and a generalised HMM with topology and parameters in a file

described below. We describe the format of the model and the pre-processing of the

sequence, before describing the dynamic programming algorithm.

2.3.1. Objects
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The code is written in the Java programming language. This was partly due to

the availability of the BioJava project (http://www.biojava.org/), which provides easy

access to software libraries for computational biology. Of interest to this project were

classes used for handling FASTA files and DNA sequence utilities.

Having access to objects allows an intuitive setting and access of parameters

for the model. We declare a GeneralisedHMM object, which gives us access to a

number of States, connected by transition probabilities. Each State is also an object,

having methods to return its characteristic nucleotide frequencies, and length

distribution, if it has one.

After a few initialisation steps, dynamic programming is carried out by first

principles. Sequences are parsed using BioJava utilities and converted into streams of

integers. Transition probabilities and state emission frequencies are stored as elements

in two dimensional arrays. Modelling the DNA sequence as a sequence of integers

means that for each emission, emission and transition scores can easily be looked up

by using array indices. Calculated scores are stored in and looked up from a dynamic

programming matrix, which is also a 2D array.

2.3.2. Model

The model to be used for sequence decoding is provided as a simple tab-

delimited text file. It consists of an HMM declaration, followed by a list of states.

Each state consists of a state declaration, followed by the transition, emission, and

(optionally) length parameters. Once the file is parsed, a GeneralisedHMM object and

a collection of State objects is constructed. This allows the formation of lightweight

2D double arrays containing emission and transition frequencies. As we will be

converting the DNA sequence into numbers (ints), this means that all lookups in the
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dynamic programming matrix fill stage will be array lookups, rather than hash

lookups, which are slower.

2.3.2.1. The HMM declaration

HMM C.elegans-3'end 14

This declaration informs the constructor of the GeneralisedHMM object how

many states there are. Although this information is redundant, it is useful to instruct

the program how much memory to allocate. Java memory allocation is automatic, but

pre-specifying the number of states allows the use of arrays. These are used in

preference to ArrayLists, as the latter’s gain in flexibility comes at a price of poorer

performance.

2.3.2.2. The State declaration

State UTR 1    0   2   0   0
Transition UTR  0.99
Transition A1   0.01
Emissions  0.270   0.198   0.127   0.405
EndState
.
.
.
State SP 0 0   1   0   30
Transition C1  1.0
Emissions  0.271   0.138   0.137   0.454
Length /Users/ashwin/models/length_distribution.txt
EndState

The state declaration contains the name of the state, and five numbers. The

first two are flags with 0/1 values for being the initial and terminal states. The third
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value gives the number of states to which this state has legitimate transitions. The

fourth figure gives the order of the state, though mixed order models are not currently

implemented.

The ability to model non-zero order (dinucleotides, trinucleotides, etc)

emissions is important, as certain features are either not coded in mononucleotides

(Gardiner-Garden et al. 1987), or better modelled using a higher order alphabet

(Salzberg et al. 1999). Building higher order models requires more data than zero

order models, on account of the need to avoid overfitting.

The last number in the state declaration is zero for geometric states, but when

a length distribution is explicitly specified, then this value is equal to the length of the

length distribution. As with the HMM declaration, this up-front declaration allows

more efficient parsing of the model file into a Java object.

2.3.2.3. The state specification

For each state, there is a list of legal transitions and their probabilities. All

other transitions are set to zero. There then follows a list of emission frequencies for

each nucleotide, given in alphabetical order. If the StateOrder is the order of the

emissions from a state, the number of emissions expected is 

€ 

4StateOrder+1, so with a first

order model, 16 dinucleotide frequencies should be given.

In the example above, the SP state has a length distribution specified

explicitly. The length declaration is the path to a file containing tab-delimited text in

the form of a length and frequency or count. The distribution counts are normalised to

add up to one.
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2.3.2.4. Model attributes

Once the model file has been parsed, two 2D matrices are created. One is the

transition matrix, and the other is the emission matrix. The transition matrix has

dimensions to contain transition probabilities from each state to every other state in

the model, including itself. Transitions disallowed by the model topology are set to

zero. All values are stored as log-probabilities for arithmetic reasons (discussed

further below).

The emission matrix contains the emission probabilities for each nucleotide

(dinucleotide etc.) within each state. These are also stored as log probabilities.

2.3.3. Sequence pre-processing

The DNA sequence to be annotated is converted to an array of integers

depending on the order of the model. For a zero order model, this array contains

values 0-3, corresponding to A, C, G, and T. There are 16 values if the model is first

order. This pre-processing allows us to avoid the use of hash lookups in the dynamic

programming loops, in favour of array lookups, which are faster. The conversion of

the sequence into a numerical form means that if we refer to a state by a number,

given a model and a sequence, we can call a particular emission probability from the

emission matrix by giving the state number and the nucleotide number as a lookup

from the 2-dimensional array.

2.3.4. Dynamic programming algorithms
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The three algorithms commonly used in annotating a sequence with states

from an HMM are well documented (Durbin et al. 1998). As the HMM used here is

generalised – states are allowed to have an explicitly specified length – modifications

are needed to the Viterbi, forward, and backward algorithms when finding maximal or

sum evaluations in a state with an explicit length.

Given a sequence of length L having emission x at position i., we require a

dynamic programming matrix to store the evaluation of sequence emissions in each

state. For each position in the sequence, this matrix, 

€ 

vk (i), stores the probability of the

highest scoring path ending with the i-th nucleotide in state k.

2.3.4.1. Viterbi algorithm for geometric states

The standard Viterbi algorithm used for states with geometric length

distributions is reproduced with slight alteration below from (Durbin et al. 1998).

€ 

Initialisation (i = 0) : v0(0) =1, vk (0) = 0 for k > 0.

Then for all nucleotides in a given state l, where the previous nucleotide was

in state k, a score vl is calculated. There are two components to this score. The first is

the emission score 

€ 

el (xi) of nucleotide x at position i in state l. This is constant

regardless of the value of the previous state k. The second component is the maximum

value found by evaluating, for all values of k, the product of the previous maximal

score at the previous nucleotide (

€ 

vk (i −1) ) and the transition probability akl from state

k to l. Only storing the maximal of all previous values means that at each extension by

one nucleotide, the extension is being carried out only on the optimal prefix, rather

than on all prefixes. It is for this reason that the Viterbi algorithm finds the optimal
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path, termed π*, much faster than a brute-force evaluation. The two components are

multiplied together to give the score vl at nucleotide position i. To keep track of which

state transitions were occurred at which positions in the optimum path π*, the value at

each l, of the optimal previous state, 

€ 

argmaxk (vk (i −1)akl ) , is stored in an array of

pointers.

€ 

Recursion (i =1...L) : vl (i) = el (xi)maxk (vk (i −1)akl );
pointeri(l) = argmaxk (vk (i −1)akl ).

€ 

Termination : P(x,π *) =maxk (vk (L)ak0);
π L
* = argmaxk (vk (L)ak0).

Then by tracking backwards through the sequence, we know at each nucleotide,

which state the preceding nucleotide was in for an optimal scoring path, so following

this pointer through the whole sequence will give the state annotation that scores

highest, given each state’s characteristic nucleotide emission and the transition

probabilities between the states.

€ 

Traceback (i = L...1) :π i−1
* = pointeri(π i

*).

For a zero order model, an emission equates to one nucleotide, but for higher

order models, the sequence must be tokenised into higher order emissions, such as

hexamers, and the emission scores trained on appropriate measurements.

2.3.4.2. Posterior decoding
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The Viterbi algorithm detailed above gives the most probable state path

through the sequence. However, for modelling a biological system, it is often more

appropriate to find sub-optimal matches to a model. An example of this is in splice

site analysis, in which it has been shown that an exact match to a consensus causes

reduction of splicing activity on account of the U1 snRNA binding too strongly to its

binding site (Lund et al. 2002). The most probable path is also not particularly

informative if there are many high probability paths with very similar probabilities. In

these circumstances, it may be better to capture every occurrence of a sequence being

in a particular state above a threshold probability, so it is informative to know the

probability of being in a particular state at a given nucleotide. This is the posterior

probability, and requires us to calculate the forward and backward probabilities 

€ 

fk (i)

and 

€ 

bk (i) , which are explained below.

The posterior probability of a particular nucleotide at position i in a particular

state k is calculated as

€ 

P(π i = k | x) =
fk (i)bk (i)
P(x)

,

which is the probability of the observed sequence x over all paths up to nucleotide i in

state k (the forward probability) multiplied by the probability of the observed

sequence in all paths following nucleotide i being in state k (backward probability),

divided by the probability of the sequence. To work out these values, we use the

forward and backward algorithms.

2.3.4.3. The forward algorithm
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The forward algorithm calculates the probability of all possible paths through

the sequence instead of the most likely. It is similar to the Viterbi algorithm, but for a

particular position in a particular state, it evaluates the sum of all the possible paths

leading up to the one in question, rather than finding the maximum. The initialisation

is the same, but the recursion and termination stages of the forward algorithm are

therefore summations, not evaluations of the maximum. The probabilities, up to and

including point i, of all paths putting nucleotide i in state k are stored in a forward

matrix (

€ 

fk (i)).

€ 

Recursion (i =1...L) : fl (i) = el (xi) fk (i −1)akl
k
∑ ;

€ 

Termination : P(x) = fk (L)ak0
k
∑ ;

2.3.4.4. The backward algorithm

The backward algorithm 

€ 

bk (i)  calculates the probability of the sequence

following i, given that nucleotide i was put in state k. This is like the forward

algorithm, but has a backward recursion though the sequence, and for a given

nucleotide, score sums are evaluated over which state the next nucleotide can be put.

€ 

Initialisation (i = L) : bk (L) = ak0 for all k.

€ 

Recursion (i = L −1,...,1) : bk (i) = aklel (xi+1)bl (i +1)
l
∑ ;



Chapter 2

34

€ 

Termination : P(x) = a0lel (x1)bl (1).
l
∑

2.3.5. Modifications required for decoding explicit length
states

The length duration of an HMM state is usually implied by the transition

probability for leaving that state. For a state with out-transition probability P, the

probability of remaining in that state after N transitions is (1-P)N. The length of a

sequence that is modelled this way is thus geometrically distributed with mean 1/(1-

P). Geometric length distributions are reasonable approximations for certain

biological sequences, such as eukaryotic intergenic regions (Burge et al. 1997), but

not for others, such as the region between the C. elegans polyadenylation signal and

the cleavage site, as we shall show in chapter 3.

States with an explicit length distribution add a complication to the three

dynamic programming algorithms discussed above. One way to deal with them is to

have different out-transition probabilities dependent on how many emissions have

been made from that state. However, no length information is stored by the Viterbi

algorithm, and thus if a preceding state has a non-geometric length distribution, it is

necessary to evaluate all possible lengths from that state separately.

For a given state transition being evaluated in PAjHMMA, the dynamic

programming loop has a switch that asks whether the next emission/set of emissions

should be scored in an explicit duration state or a geometric one. This information is

stored in each state of the model.
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2.3.5.1. Viterbi algorithm for explicit length states

According to the Viterbi algorithm, for each nucleotide, it is necessary to find

the state that scores it and its prefixed state path maximally. Now in addition, each

time an evaluation is made in a non-geometric state, it is necessary to evaluate (and

maximise over) not just a single emission in that state, but a compound score

calculated over all possible sequences of emissions with that starting point. There are

two components to the extra information required in explicit length states. For a state

length distribution d with D elements, the first is an emission score for the whole

sequence being evaluated within the state, and a length score based on the frequency

of that length in the distribution (Figure 4).

Figure 4. A diagram of a dynamic programming matrix showing one of many
possible paths. States A and B are normal states having geometric length
distributions. The maximal scoring path at any stage is maximised over which
state the next nucleotide should be put in. State C has an explicit length
distribution, shown with red arrows. Certain lengths in this distribution are
favoured. Scores are found for all possible lengths of sequence in this state. The
maximal scoring path is maximised over the combination of (a) the emission
score of all these lengths and (b) a scaling factor according to frequency of each
length in the length distribution.
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All possible lengths within the length distribution are evaluated. At any particular

sampling length m, the score of the maximal prefix to this sequence is found by

looking back m nucleotides. The length score is d(m). If l is a state with a specified

length distribution,

€ 

vl (i) = el (xi)maxk;
m∈{1,...,D}

vk (i −m)akld(m) el (xi−q )
q=1

m

∏ .

Each time the algorithm attempts a transition into an explicit length state, the pointer

containing the optimal source state is kept as before, but it also stores the length of

sequence causing the maximum score. This value is required in the traceback

procedure.

2.3.5.2. Posterior decoding with explicit length states

As with geometric length states, posterior decoding requires the forward and

backward probabilities. The forward algorithm for explicit length state l is once again

similar to the Viterbi; it is simply the sum of all the terms from which the maximum

was stored previously.

€ 

Forward : f l (i) = el (xi) fk (i −m)akld(m) el (xi−q )
q=1

m

∏
k;
m=1

m=D

∑

The backward algorithm differs from the non-explicit length version simply by

having extra terms for the emissions from the m residues being scored in state l, which
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is el(xi+m), the sum of backward scores up to that point bl(i+m), and the length score

d(m).

€ 

Backward : bk (i) = bl (i + m)akld(m) el (xi+q )
q=1

m

∏
l;

m=1

m=D

∑ ;

2.3.6. Preventing numerical underflow

All the algorithms given above feature the multiplication of probabilities. In

particular, in the Viterbi and forward algorithms, the maximum score at nucleotide i is

a product of all the previous maximum scores. The minimum value of a Java double

is   2-1074. A straightforward implementation of even a simple HMM would therefore

underflow (depending on parameters) within a few thousand nucleotides at the most.

A joint sequence probability with a mean probability per nucleotide of 0.5 would

underflow after 1074 residues. To prevent such problems, the standard solution is to

work in log space. This turns all of the multiplications into sums. In the standard

Viterbi algorithm, as the score value is just the product of all the score components,

using logs is simple enough.

€ 

lnvl (i) = lnel (xi) +maxk (lnvk (i −1) + lnakl ).

In the forward and backward algorithm, an added complication is that

calculated path scores have to be summed, so these log values need to be re-

exponentiated before they are summed, and the logarithm found again. Hence for the

forward algorithm.
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€ 

f l (i) = el (xi) fk (i −1)akl
k
∑

ln f l (i) = lnel (xi) + ln fk (i −1)akl
k
∑

= lnel (xi) + ln(exp(n1) + exp(n2) + ...+ exp(nk )),
where nk = ln fk (i −1) + lnakl .

However, these exponentiations are likely to underflow, preventing an accurate

summation, so we instead rearrange, using the following observation:

€ 

ln exp(x)
x= a

b

∑ = ln exp(q) exp(x)
exp(q)x= a

b

∑
 

 
 

 

 
 

= q + ln exp(x − q)
x= a

b

∑
.

If we choose the value of the scaling factor q to be the smallest of all the exponents

(n1,n2…nk), then the smallest exponent becomes 0.

2.3.7. Methods of usage

PAjHMMA has two principal output forms; one is a traceback through the

pointers matrix, which annotates each nucleotide to a state according to the most

probable path through the model, with the state boundaries and sequence being

printed. Alternatively, the dynamic programming algorithm makes the posterior

decoding matrix available to the user. It is thus possible to list the probability of the

sequence being in any given state along its length. For a given sequence, all paths
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having probability greater than some threshold in some state can be output. The use of

this can be seen in Chapter 3.

2.4. Conclusion

In this chapter, I have presented a flexible framework for building an HMM

for nucleotide sequences. The resulting HMM is based on a series of interconnected

states of different possible types. It can be used to annotate a sequence according to its

most probable state path through the model, or the posterior probability of each base

matching a particular state. This software is used throughout this thesis to predict

polyadenylation signals. PAjHMMA allows the user to specify an HMM in a model

file containing the number of states, their characteristic emission frequencies, and

their transition probabilities. A model file is provided; this can contain any reasonable

number of states, each having characteristic nucleotide emission frequencies. One

particular motivation for the design of this software was to support states with an

explicit length distribution.

The standard decoding algorithms have been modified to allow states to have a

user-defined length distribution. Although the software described here was originally

designed for the prediction of C. elegans polyadenylation signals, it is possible, given

a manually built model with nucleotide frequency and length parameters for each

state, to annotate any sequence for any feature having a sequence of states with

distinctive nucleotide frequencies.

I next proceed to use the software described to predict polyadenylation signals

in C. elegans. Chapter 3 explains how to build an accurate model of the C. elegans



Chapter 2

40

polyadenylation signal. Based on the success of this, I build models for other species,

which eventually enables me to carry out analyses on orthologues (chapters 5 and 6).
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3. A Probabilistic Model for 3’ End Formation in C.

elegans

3.1. Introduction

In this chapter, we analyse the polyadenylation and cleavage site from a large

number of C. elegans genes. By aligning cDNAs that diverge from genomic sequence

at the poly-A tract, we accurately identified a large set of true cleavage sites.

Analysis of these cleavage sites showed that in addition to the well known

AAUAAA motif, characteristic nucleotide biases were also seen in well-defined

regions up- and downstream of cleavage sites. Sequences were demarcated according

to the mean lengths of these regions, which were identified manually, and a

PAjHMMA model created.

This model is successful at identifying polyadenylation signals when given a

3’ UTR and downstream genomic DNA (Hajarnavis et al. 2004). The model is also

able to identify sites of alternative polyadenylation. In addition, in an attempt to

model molecular biology in a more realistic manner, a simple coding model was

introduced upstream of the 3’ UTR model, and tested against virtual transcripts,

consisting of the spliced coding sequence, the 3’ UTR, and downstream genomic.

This model showed minimal loss of accuracy versus restricting the search to the 3’

UTR, and overwhelmingly outperformed the only previously available regime of

scanning sequences with an AATAAA weight matrix.

In cases where there are many mRNAs for a gene we can frequently see that

the cleavage site, itself downstream of the AAUAAA, is not clearly defined but

occurs in one of a distribution of sites in a defined interval downstream of the motif.
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For these genes, the posterior probability of a cleavage site prediction at a particular

point as derived from our model appears to mirror closely the observed frequency of

cleavage at that point.

For the work described in this Chapter, I gratefully acknowledge the help of

Dr. Ian Korf, who built the datasets and provided some of the figures. This work was

published in Nucleic Acids Research in 2004 (Hajarnavis et al. 2004), and the figures

are adapted from that paper.

3.2. Background

3.2.1. Polyadenylation signals

We are interested in understanding 3' end formation in Caenorhabditis

elegans. Previous studies on cDNAs have found the presence of the AAUAAA motif

7-22 nucleotides upstream of the cleavage site but none of the other common

elements (Blumenthal et al. 1997; Huang et al. 2001), such as a GU-rich region.

Furthermore, in this set, only approximately 50% of identified polyadenylation signals

are AAUAAA; many single base variants are seen, especially AAUGAA. One

unusual feature of 3' end formation in C. elegans is that the process is associated with

trans-splicing when genes are in operons. In these circumstances, 3' end formation of

the upstream gene has been shown to be functionally upstream of SL2 trans-splicing

of the downstream gene (Evans et al. 2001). As in mammals, CPSF binds the

AAUAAA motif, but unlike in mammals (Chen et al. 1998), there is evidence that

efficient 3' end formation can take place in the absence of a putative CstF binding site

(Huang et al. 2001). CstF is present, but its role is apparently to increase the local
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concentration of SL2 at the trans-splice site and not to specify the position of the

cleavage site (Evans et al. 2001).

3.3. Model building

3.3.1. Introduction

Computational methods typically attempt to identify the polyadenylation

signal itself, rather than the cleavage site. To build a training set of C. elegans

polyadenylation signals, it would be necessary to use a large number of known

signals. However, there are only 152 C. elegans mRNA sequences in EMBL/Genbank

with a ‘polyA_signal’ annotation. A problem with these is that there is no information

provided as to what evidence supports that annotation. Possibly as a result of one very

influential early paper on H. sapiens 3’ end processing (Proudfoot 1991), an annotator

may have looked for the last occurrence, if any, of an exact match to AAUAAA.

Alternatively, there may be mutagenesis evidence that this is indeed the real

polyadenylation signal. Bearing this in mind, it is impossible to know whether an

annotated signal is real. In contrast, given cDNA evidence, the cleavage site is easy to

determine computationally. This is the point where the sequence of a polyadenylated

mRNA ceases to be a copy of the genomic sequence in the 3’ UTR, and turns into a

run of adenylate residues. Hence, any model should be built on sequences with a

correctly annotated cleavage site. Although the polyadenylation signal will still be a

part of the model, this method ensures that each one is upstream of a verified cleavage

site.
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3.3.2. Experimentally derived cleavage sites

The 3’ UTR of a C. elegans gene starts at its stop codon. One of our prior

analyses of 3’ UTRs (as dictated by EST alignments for about 9,000 genes) showed

that 97% of 3’ UTR sequences are under 1 kb long. Hence it is reasonable to assume

for the purposes of model building that the cleavage site will be included if we take

the 1,000 nucleotides 3’ of the stop codon. Current sequencing technology allows for

reads of up to 1000 nt, and WormBase annotators do not annotate a 3’ UTR unless the

3’ EST read extends into the coding sequence. Thus, real 3’ UTRs above 1000 nt

would not be represented in the database. However, the shape of the length

distribution of 3’ UTRs (Figure 9), suggests that there are an insignificant number of

these. Those which do appear above this length are likely to be mapping errors.

22,156 candidate 3’ UTRs up to 1000 bp long were extracted from WormBase

release WS110 (http://ws110.wormbase.org). Sequences were truncated if they

overlapped downstream genes on the same strand. 216,943 C. elegans transcripts

(cDNAs and ESTs) were retrieved from EMBL/GenBank. The transcripts were

processed with a Perl script that used the following rules to identify transcripts

containing a poly-A tail.

The transcript had to be at least 200 nt long. Any sequence with 6 or more

terminal As was kept, and for those sequences without, since the vector may be

present at the end of the sequence, sequences with runs of mostly As near the end

were also kept. The Perl regular expression used to define the run of As with a

potential sequencing error and up to 30 bp of vector was

/(A{3,1000}.?A{3,1000})(.{0,30})$/
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5,306 transcripts passed these tests and the 3’-most 200 nt were searched

against the candidate 3’ UTRs with BLASTN version 2.0MP-WashU 23-May-2003

(W. Gish unpublished, http://blast.wustl.edu) using parameters W=30 M=1 N=-3

Q=3 R=3. These BLAST parameters mean that no alignment is even seeded unless

there is an exact match of 30 contiguous nucleotides between the mRNA and the

genomic sequence. Point mismatches are penalised greater than usual (match (M)

/mismatch (N) values are usually 5/-4). The change in Q (gap opening penalty, default

10) and R (gap extension penalty, default 10) means that insertions and deletions are

penalised at the same rate as mismatches. This is three times the match value,

meaning that our BLAST parameters are extremely stringent. Parameters such as the

large word size mean that mRNAs only align to those parts of the genome where the

query and target sequences are virtually identical. Thus we can be very confident that

a particular aligned mRNA represents a transcript from a particular gene.

Following this process, 1,810 3' UTRs had matching transcripts.  Some of

these sequences are duplicates, on account of having different gene isoforms. By

insisting that each sequence had a unique spacer sequence, these duplicates were

removed, leaving 1,468. This seems like a small number, given the size of the genome

and the amount of cDNA coverage. Approximately half of C. elegans genes do have

some cDNA evidence, normally in the form of Expressed Sequence Tags (ESTs), but

most C. elegans ESTs in GenBank have no initial poly-T tract corresponding to the

poly-A tail because the initial part of the sequencing read was clipped off before

submission for reasons of sequence quality. The traces are not publicly available.

Multiple alignments of each unique candidate 3' UTR were created with their

matching transcripts using a Perl script that employed Bioperl libraries (Stajich et al.
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2002). 1,156 had at least one matching transcript that diverged from the genomic

sequence in what appeared to be a poly-A tail.

3.3.3. Variety of cleavage types

Looking at the cleavage site for each of the genes where there was a clear

dissociation of the mRNA from the genomic into a run of As showed that there were

four classes of cleavage site (Figure 5).

Figure 5. Four classes of cleavage site, as found by the BLAST analysis. The
cleavage site is where the mRNA diverges from genomic sequence. AATAAA
motifs are boxed in yellow.  Green boxes show the range of possible cleavage sites
in the cases where the cleavage occurs adjacent to a genomic A.  (a) a cleavage
between two G residues. (b) a cleavage that could have occured in any of seven
positions. (c) the two mRNAs map to different places in one gene- this gene has
more than one polyadenylation signal and cleavage site. (d) a gene with many
mRNAs. This shows that the cleavage site caused by a given signal is not always
precisely positioned.

Figure 5a shows an example where the cleavage site is clearly visible between

two G residues. There are many cases, however, where the cleavage occurs just

upstream or downstream of a genomic A, or in a run of genomic As. In this case, the

alignment will look the same, regardless of the exact point in the run of As that the
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polyadenylated mRNA switches from templated to non-templated As (Figure 5b). The

precise cleavage site in these circumstances is ambiguous. Figure 5c shows an

example of alternative polyadenylation – there are two separate mRNAs mapping to

different parts of the sequence. The final example shows a case of a gene with many

mRNAs all mapping to approximately the same place, but showing that the cleavage

is an imprecise event.

Of our 1156 cleavage sites found in this way, 156 were of type (a). 855 had a

cleavage occurring within a run of genomic As as in Figure 5b. The remaining

sequences had multiple mRNA hits; 30 distinct (type (c)) and 115 staggered (type (d))

and these were not used in model building. Given the relatively low coverage of the

genome by polyadenylated mRNAs, the relatively large occurrence of non-staggered

cleavage sites is more likely to be a result of the scarcity of mRNAs relative to genes,

rather than there being an overrepresentation of precise cleavage for biological

reasons. Only 262 genes had more than one mRNA aligned.

3.3.4. The problem with ambiguous cleavage sites

To build an accurate model, it is important to train on reliable data. In this

case, we wanted to identify the exact polyadenylation signal and the precise cleavage

site. One hurdle, therefore, was that the majority of the training set contained

ambiguous cleavage sites. We therefore decided to look at those 156 sequences where

the cleavage site was known with certainty.

3.3.5. Sequences with well-defined cleavage sites
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3.3.5.1. Information at the cleavage site

Superimposition of the three nucleotides flanking the cleavage site to make a

weight pictogram (http://genes.mit.edu/pictogram.html) showed that there was little

information at the cleavage site itself (Figure 6), barring a general T-richness, which

is true of the whole C. elegans 3’ UTR. However, there was a marked suppression of

G in the +3 position relative to the cleavage site.

Figure 6. A pictogram of the nucleotide frequencies in the three nucleotides
either side of the cleavage site. The cleavage site from 156 sequences occurs
between columns 3 and 4. There are no As directly flanking the cleavage site, as
it is their absence that defines this class of cleavage. A clear suppression of G is
seen in column 6.

3.3.5.2. Length distribution between AATAAA and cleavage
site

The 156 sequences with well-defined cleavage sites were isolated, and

analysed upstream of the site to look for an exact match to AATAAA. 106 sequences

had exactly one non-overlapping exact match within 40 bases upstream of the

cleavage site, and no other A-rich hexamer. These AATAAA matches were thus

assumed to be real polyadenylation signals. It was observed that the length of
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sequence between the polyadenylation signal and the cleavage site had a distinctive

distribution (Figure 7).

Figure 7. The length distribution of the spacer sequence separating the
polyadenylation signal (exact match to AATAAA) and the unambiguously
defined cleavage site from 106 sequences.

This suggests that there are preferred separation lengths between the

polyadenylation signal and site. Many sources in the literature cite a 10-30nt

separation. We see here that the distribution is not flat, but distinctively shaped. The

distribution is very tight, ranging from 10 to 18 nucleotides and having mode 14.

According to this distribution’s Shannon entropy 

€ 

H(X) = − P(xi)logP(
i
∑ xi), whereas

the flat distribution has 4.39 bits, the observed distribution has 2.63, making it

substantially more specific. A normal distribution with mean 13.92 and standard

deviation 1.71 has 2.60 bits and is a fairly good fit.

3.3.6. Maximum likelihood determination of cleavage sites
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Given this length distribution and a rough idea what a polyadenylation signal

should look like, we can use a previously published weight matrix (Blumenthal et al.

1997), to help us annotate cleavage sites that are ambiguous. Given a sequence with a

run of As at the 3’ end, for every possible cleavage site within the run of As, the

weight matrix was evaluated at every length in the length distribution, calculating a

weight matrix and length distribution score. The maximum likelihood position of the

hexanucleotide and cleavage site was calculated for all 855 ambiguous cleavage sites.

To prevent excessive peaking of the observed maximum likelihood scores, the length

distribution was smoothed asymmetrically, quartering the frequency at each decrease

in length from 10 to 5, and halving it at each increase from 18 to 30. As well as

preventing an overly peaked profile, it gives us some prior frequency for outlying

lengths, as would have occurred had a much larger set been used, from which to

sample the spacer lengths.

Running the maximum likelihood method on the poly-A tail alignments led to

the assignment of a unique maximum likelihood polyadenylation signal and cleavage

site annotation for 961 sequences. 50 sequences, for which there was no single

maximum likelihood (as occurred occasionally when polyadenylation signals

overlap), were discarded. A frequency histogram of the 961 observed motifs (Table 1)

shows that certain hexanucleotide polyadenylation signals are much more common

than others. 21 hexanucleotides, such as AATAAC were observed only once in the

entire set, whereas the other 940 sequences had one of 26 different motifs, each

appearing at least twice in the whole set. As we can have more confidence in the more

frequently occurring motifs, those which appeared only once were regarded as outliers

and discarded.
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Table 1. Those maximum likelihood polyadenylation signals appearing in the set
of 961 more than once.

Hexamer Counts Hexamer Counts
AATAAA 531 AACAAA 6
AATGAA 120 AAGAAA 4
TATAAA 71 TGTAAA 3
GATAAA 43 ACTAAA 3
CATAAA 42 AATAAG 2
TATGAA 22 AATTAA 2
ATTAAA 16 GGTAAA 2
AGTAAA 15 GAAAAA 2
CATGAA 12 TTTAAA 2
AAAAAA 11 ATTGAA 2
GATGAA 8 AAAGAA 2
AATAAT 8 AATATA 2
AATACA 7 TTTGAA 2

531 (56%) were exact AATAAA, 13% were AATGAA, 17% had a single

mutation at the first position (TATAAA, CATAAA, GATAAA), 8% had a single

mutation elsewhere, and 6% had two mutations. The number of double mutations

seems high, and will be discussed in Chapter 5.

3.3.7. Nucleotide frequencies

With a polyadenylation signal and a cleavage site annotated for each sequence,

it was possible to anchor all the sequences on their cleavage site and plot nucleotide

frequency in the vicinity of this region.

Figure 8 shows the different nucleotide frequencies seen in different parts of

the 3’ UTR. Note that the body of the 3’ UTR has a very distinctive distribution

compared to the genome. Globally, because of base pairing, we do not expect one

component of a base pair to outnumber its counterpart, so the levels of A and C

should be equal to those of T and G respectively. In the 3’ UTR, a single stranded
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transcribed feature, it is apparent that there is some strand asymmetry with respect to

nucleotide frequencies, as there is a clear preference for the pyrimidine of each base

pair to be on the sense strand, and the purine on the other. In Figure 8, we can see the

different nucleotide distributions; the UTR is T-rich up to about 20 nt upstream of the

cleavage site. As well as T being favoured over A, the level of C is greater than that of

G. The A-rich region is the AAUAAA motif. Following this, there is a T-rich region

of constrained length, leading up to the cleavage site itself, where there is a spike of

As, as expected by most cleavages being adjacent to an A. Another T-rich region

follows, before the nucleotide distribution returns to genomic levels, some 15-20 nt

downstream of the cleavage site.

Figure 8. The nucleotide frequencies in 3' UTR, the region -80 to +30 about the
cleavage site, and the genomic nucleotide distribution in C. elegans. Each
sequence in the training and test sets was annotated into states according to the
demarcated zones of distinctive nucleotide frequency.

3.3.8. Building an HMM
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Given the information from the anchored alignment, it is possible to build a

model, using the PAjHMMA software described in Chapter 2, to represent the

characteristic length and nucleotide emission spectrum of each of the distinct regions

that can be used to define a 3’ end.

All states emit nucleotides at set frequencies, which are characteristic to each

state. For each state, these frequencies can be calculated by counting bases of

sequences that are split into state sections as described below. The expected length of

each state is either set implicitly by its out-transition probability or specified

explicitly.

3.3.8.1. 3’ UTR state (UTR)

The C. elegans 3’ UTR has a highly variable length. 97% of sequences are

below 1000 nt, and the mean length is 200 nt. For the purposes of the model, let us

define the UTR state to run from the STOP codon (inclusive) to the polyadenylation

signal (exclusive). The length distribution can be seen in (Figure 9)

Figure 9. Bars - The length distribution of the 3' UTR sequences in our set of
940. Line - the expectation from a geometric distribution with a mean of 200. The
sub-50 nt bar is truncated as a result of our length requirements when building
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this dataset. Because of the BLAST word size of 30 nt, no 3' UTRs under this
length were sampled. However, our observations in the genome using 3' UTRs
from EST aligments show that the line is a fair estimate of the observed
frequency of short (< 30 nt) UTRs.

For a state to have its length distributed geometrically, its out-transition

probability is related to the mean length 

€ 

x , such that 

€ 

Pout =
1
x 

, where in this case, 

€ 

x  =

200nt.

3.3.8.2. Polyadenylation signal (AATAAA)

The information in the 940 observed polyadenylation signals can be modelled

using a weight matrix (Table 2). In practice, this evaluates to six consecutive single-

column states, each with its own characteristic emission spectrum, and a transition

probability of 1 to the next column.

Table 2. Polyadenylation weight matrix. In our implementation, this was
modelled by six consecutive single-emission states.

1 2 3 4 5 6

A 0.778 0.952 0.016 0.819 0.989 0.988
C 0.057 0.003 0.006 0.001 0.007 0.001
G 0.058 0.021 0.004 0.178 0.001 0.002
T 0.106 0.023 0.974 0.002 0.002 0.009

Compared to the background nucleotide distribution Q in the genome, we can

find how much information is in each weight matrix column, which has distribution P

over the set of nucleotides i. For each column, the relative difference from the

genomic distribution of nucleotides (the Kullback-Leibler distance) is:
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€ 

H(P ||Q) = P(xi)log
P(xi)
Q(xi)i

∑ .

The entropy of this weight matrix relative to a genomic background is 7.58

bits, which is 1.26 bits per column.

3.3.8.3. Spacer state (SP)

Figure 8 shows that the sequence between the polyadenylation signal and the

nucleotide 5’ of the cleavage site is T rich (rather than pyrimidine rich) and has the

distinctive non-geometric length distribution shown in Figure 7. This length

distribution is modelled explicitly and the transition probability from this state to the

next is 1.

3.3.8.4. Cleavage site (CS)

The cleavage site can be modelled using another weight matrix (Table 3), with

the cleavage occurring between the first (-1) and second (1) columns. Cleavages

adjacent to As have been reintroduced, resulting in some loss of information relative

to Figure 6, though the suppression of G residues is still visible in the +3 position.

The out-transition probability from each column is 1, and from the final column, there

is obligatory entry to the next state.

Table 3. Cleavage site weight matrix. Four consecutive single emission states.
Cleavage occurs between column -1 and 1.
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-1 1 2 3

A 0.483 0.42 0.348 0.276
C 0.131 0.073 0.115 0.145
G 0.137 0.129 0.104 0.086
T 0.249 0.378 0.433 0.49

 This matrix contains less information per column (0.09 bits) than does the

AATAAA weight matrix.

3.3.8.5. Downstream region (DS)

Figure 8 shows that just 3’ of the cleavage site, there is  a T-rich section before

the nucleotide frequency returns to genomic levels. From the gradual drop seen, it

appears that this sequence too has a variable length. This state is thus modelled

geometrically with a mean length of 15.

3.3.8.6. Genomic state

The final state we model is one where the nucleotide emission spectrum

matches that of the whole genome. After annotation of all the other states, the mean

length of these sequences was calculated as 680 nt.

3.3.9. Model topology

The topology of the model is shown in Figure 10.
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Figure 10. State transition diagram for C. elegans cleavage and polyadenylation
site prediction model.

Circular states have geometric length distributions, and thus have out- and

self-transitions related to the mean length. For the UTR, DS, and G states, the mean is

200, 15, and 680 respectively.

Boxed states are fixed-length. Once the AATAAA state is entered, there must

be exactly six emissions before a mandatory transition to the next state. There is a

similar case with the CS state, where there are 4 emissions.

The SP state, shown with the diamond, has a length distribution which is a

smoothed version of Figure 7. The length of this state is absolutely restricted to values

between 5 and 30 nt. As discussed in Chapter 2, each entry into this state requires

evaluation of all possible sequence lengths allowed by the specified length

distribution, prior to an obligatory transition into the CS state. This makes HMM

decoding algorithms more complex than the standard Viterbi/forward/backward, but

the generalised HMM algorithms scale linearly with sequence length.

3.4. Model evaluation

4/5 of the data was used for training and 1/5 for testing. Results for the 5 non-

overlapping test sets were averaged. The length parameters were fixed and not

estimated for each training set. This is important for the spacer state where the length
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distribution was calculated from unambiguous sites that represented a minority of the

data. Transition, emission, and length parameters were estimated with a variety of

Perl scripts. HMM decoding algorithms were written in Java as discussed in Chapter

2.

3.4.1. Prediction of 3’ ends

The performance of the HMM was measured by evaluating sensitivity and

specificity measures on a 5-fold cross-validation of a test set, and also by comparing it

to heuristic methods based on an AATAAA weight matrix (Blumenthal et al. 1997).

Since the location of cleavage sites appears to be imprecise, calculation of accuracy

was based on identifying the correct polyadenylation signal and not the cleavage site.

Basing accuracy on the polyadenylation signal allows the comparison of the HMM

with simple weight matrix methods.

3.4.1.1. Weight matrix strategies

Table 4 shows that a crude scan for all exact matches to AATAAA within

1000 nt of the stop codon correctly identifies 56% of signals, though 46% of the total

predictions are spurious.

Table 4. Accuracy of four different weight matrix and two HMM regimes for
detecting polyadenylation signals in 3' UTR and downstream sequence. TP true
positives, FP false positives, FN false negatives, SN sensitivity (TP/TP+FN), SP
specificity (TP/TP+FP).
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Method TP FP FN SN SP

All AATAAA 531 453 409 0.565 0.54
First AATAAA 482 286 458 0.513 0.628

First Max Score 562 378 378 0.598 0.598
AATAAA 1 mismatch 883 3034 57 0.939 0.225

Viterbi 662 278 278 0.704 0.704
Posterior > 0.1 767 367 173 0.816 0.676
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If we propose that the 5'-most (if there are multiple hits) exact match to

AATAAA is the signal, the proportion of signals detected correctly is reduced by 5%

but there is an 8% increase in specificity.

Using the first maximum score allows for those sequences that contain a

mismatch variant of AATAAA; instead of looking for exact matches to AATAAA,

we scan with a weight matrix and call the highest scoring hexamer a hit. In the case of

multiple identical hits, the 5'-most one is reported, as this would be the first one

exposed on the nascent transcript. This has a sensitivity and specificity of 60%.

A far greater sensitivity (94%) is achieved by reporting all exact matches to

AATAAA and all possible single base mismatches, though there is a large penalty to

specificity.

3.4.1.2. HMM strategies

Two different strategies were used to evaluate the HMM: Viterbi and posterior

decoding. The Viterbi algorithm finds a single maximum likelihood polyadenylation

signal in the sequence while posterior decoding determines the probability of the

signal at each point in the sequence. Posterior decoding therefore allows one to find

the most likely motif and other, less likely ones.

For the posterior, a probability threshold of 0.1 was used, which means that at

most 10 AATAAA motifs can be found. The HMM strategies are far more accurate
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than the weight matrix methods. The Viterbi algorithm recorded 70% sensitivity and

specificity. Posterior decoding maintained a similar 68% specificity but significantly

increased the sensitivity to 82%. These results indicate that the context in which a

polyadenylation signal appears is an important factor for 3' end formation.

Furthermore, it suggests that in cases where the maximum likelihood annotation is

incorrect, the observed AATAAA motif can be found by looking at other high-scoring

positions.

3.4.2. The stochastic nature of 3’-end site selection

While collecting the data set of unique AATAAA and cleavage sites those

genes with high cDNA coverage were unintentionally selected against, as genes

containing a larger number of matching transcripts tended to have multiple distinct

cleavage sites, such as in Figure 5d.

Figure 11a shows the distribution of cleavage sites at each nucleotide for a 3'

UTR with 31 cDNA matches. According to the model, the posterior probability of the

AATAAA motif indicates that there is only one such motif in the region. The

posterior probability of the cleavage site shows a multi-modal distribution. The

frequency of observed cleavage sites is very similar to the posterior probability.

Figure 11b shows a case where there are multiple polyadenylation signals and

cleavage sites. Here too, the posterior probability of the cleavage site is similar to the

observed frequencies. The fact that the model fits the observed distribution so well

suggests that it is capturing most, if not all, of the local information used to select the

cleavage site.
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Figure 11. The posterior probability of the AATAAA motif and cleavage site are
shown in red and blue lines respectively. The observed frequency of cleavage
sites is indicated by a green line. When the cleavage site is ambiguous, the
frequency is averaged over the ambiguous positions, which gives the green line a
flat peak. (a) 31 mRNAs aligned to gene ZK652.4 show that there are multiple,
tightly clustered cleavage sites. (b) 38 mRNAs aligned to gene R09B3.3 show a
broad cluster of cleavage sites which are the result of three predicted AATAAA
motifs.

3.4.3. Genome-wide scan

The HMM was applied to predict cleavage sites for all the genes in the C.

elegans genome. There are 22,168 annotated genes in WormBase release WS110

(http://ws110.wormbase.org). For 9,710 of these, a 3' UTR is annotated in WormBase

by extending from the stop codon to the 3' end of the 3'-most EST match assigned to

the gene. 3’UTRs above 1000 nt are not included. For each gene, the HMM was used
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to search the 1000 bases 3' of each annotated stop codon; it annotated the most likely

cleavage site as determined by the Viterbi algorithm. We expect 70% of these to be

correct, from previous experiments (Table 4). For those genes with 3’ UTRs

annotated in WormBase, the length of the 3’ UTR as determined by ESTs can now be

compared with the length predicted by the HMM.

Figure 12 shows the frequency distribution of the distance between WormBase

3' UTRs and the Viterbi prediction for each of their 3' UTR candidates. Peaks are

visible around –65 and –10, presumably corresponding to different EST clipping

regimes. Based on the graph, we suggest that those predictions that extend the

WormBase 3' UTR up to 80 nt are highly likely to be correct because the EST was

clipped short. Those predictions that are too short by up to 10 nt are consistent with

the local heterogeneity of the cleavage site, and are also likely to be correct. The

proportion of predictions falling within the range –80 to +10 is 70%, as expected.

This results in a set of 6,570 high confidence identifications of C. elegans cleavage

sites, which have been made available through WormBase.
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Figure 12. Frequency distribution of the difference between length of 3' UTR as
determined by EST alignment and our model.

3.4.4. Posterior probabilities of Viterbi predictions

As stated in the previous section, we have a set of predictions that are likely to

be correct, on account of EST support. Each polyadenylation signal prediction is

provided with a posterior probability. Figure 13 shows the distribution of posterior

probabilities of these Viterbi predictions. We are interested in finding out whether the

posterior probability is any indication of the confidence in which we can take the

prediction.

Score histogram of posterior probability of all Viterbi predictions in C. elegans.
Restricted to genes with transcript evidence for 3' UTR. (9710 sequences)
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Figure 13. Posterior probability distribution for the Viterbi polyadenylation
signal predictions in 9710 3' UTR sequences where a given prediction could be
verified by transcript evidence, as ESTs were available.
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The posterior probability of Viterbi predictions is highly skewed toward the

higher probabilities. This is because all the sequences tested are 3’ UTRs and should

thus contain at least one polyadenylation signal each.

Of the 9710 predicted signals, 6570 were deemed to be correct from EST

evidence, and the rest incorrect. Figure 14 shows that the proportion of these

predictions being marked as correct increases with the posterior probability of the

prediction. A tenth of all verifiable Viterbi predictions had a posterior probability

between 0.8 and 0.9. About 60% of these are correct. 60% of the total predictions

have a posterior probability above 0.9 and proportionately, more of these are correct

(78%). Again, a number of these will be correct but will not be reported as such on

account of the site not being represented in the EST set.

A graph showing the proportion of Viterbi predictions within each probability interval, 
that are verified by an EST. (6570 predictions)
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Figure 14. For the 6570 sequences where the position of the Viterbi
polyadenylation signal prediction was verified by an EST, this histogram shows
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what proportion of all the Viterbi predictions within a particular posterior
probability interval were correct.

3.4.5. Testing a scanning model for 3' end recognition

Under a model in which the cleavage and polyadenylation machinery scans

along RNA in a 5' to 3' direction, misidentification of the cleavage site may lead to

truncated proteins if the cleavage occurs in the coding region. In the experiments

above, the only sequence searched for cleavage sites was that found downstream of

the stop codon. In order to test weight matrix approaches and the HMM under

conditions of a full message scanning model, the methods were evaluated on virtual

mature mRNAs containing complete coding sequences plus 1000 nt downstream. In

these experiments, the HMM was modified by including an initial group of three

coding states, with the third looping into the first, which correspond to the nucleotide

frequencies observed in first, second, and third positions within codons. Table 5

shows that the weight matrix methods find a large number of false positives in the

coding sequence. However, the specificity of the HMM degrades only slightly; the

performance difference of the posterior decoding is particularly small. If the

biological machinery scans along the mRNA ‘looking’ for cleavage sites, it is clearly

advantageous to ‘see’ more than just the AATAAA motif.
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Table 5. Accuracy of various weight matrix and HMM regimes for detecting
polyadenylation signals in virtual mature mRNAs. TP true positives, FP false
positives, FN false negatives, SN sensitivity (TP/TP+FN), SP specificity
(TP/TP+FP), CDS fraction of all signal predictions falling in the coding
sequence.

Method TP FP FN SN SP CDS
All AATAAA 525 774 400 0.568 0.404 0.354

First AATAAA 369 436 556 0.399 0.458 0.243
First Max Score 402 523 523 0.435 0.435 0.306

AATAAA 1 mismatch 869 12069 56 0.939 0.067 0.707
Viterbi 632 293 293 0.683 0.683 0.044

Posterior > 0.1 736 405 189 0.796 0.645 0.076C
D

S
 +

 3
’ 
U

TR

3.4.6. Discussion

In this study, we have made a significant step to improving 3' end prediction in

C. elegans by developing an HMM that captures global features present in the 3'

UTR. HMMs have become popular in the sequence analysis community because they

offer a method to incorporate diverse sequence features under a rigorous probabilistic

framework, and because they have established decoding algorithms. HMMs are

stochastic models and this fits well with cleavage site selection, which appears to be a

stochastic process. In cases where there are numerous transcripts aligned downstream

of a stop codon, we found that the posterior probability of cleavage sites derived from

the HMM mirrors the frequencies of experimentally observed cleavage sites. This

suggests that the HMM faithfully represents the local requirements of 3' end

formation. It also suggests that the cleavage site is not a precise, locatable entity, and

it would be more accurate to refer to a frequency distribution of the most probable

sites.
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3.4.7. Incorrect predictions

In order to determine why the HMM missed roughly 20% of real

polyadenylation signals, the 3' UTRs of the incorrect predictions in were examined in

WormBase using ACEDB (http://www.acedb.org). In approximately 30% of cases,

there were additional transcripts (without poly-A tails) that supported the predicted 3'

end. These 3' ends may therefore fall into the class depicted in Figure 5c with multiple

signals. Unfortunately, we do not have access to the raw traces and cannot extend the

sequence into the poly-A tails to find the cleavage site. Thus, we believe it is likely

that a significant proportion of the false positive predictions are real sites.

Another class where ‘incorrect’ predictions are real include instances where

the predicted and observed AATAAA motifs were just a few nucleotides apart. This

occurs in roughly 5% of the incorrect predictions. The original maximum likelihood

assignment of the polyadenylation signal and the cleavage site was based on a weight

matrix for the AATAAA motif and a probability distribution for the distance to the

cleavage site, taken from a subset of the whole training data. As the HMM is a more

explicit model of the 3' end, in these cases the HMM prediction may be more accurate

than the initial maximum likelihood annotation.

Approximately 25% of the missed predictions (5% of the whole set) resulted

from oversights in collecting the data. It was assumed that unlabelled genomic

sequence downstream of a terminal exon contains a 3' UTR followed by genomic

sequence. This is not always the case. Some 3' UTRs contain tentative evidence for an

intron, which means the HMM and the polyadenylation machinery see different

sequences, though we should bear in mind that transcripts with introns 3’ of the STOP

codon are targets for nonsense mediated decay (Chen et al. 2003; Neu-Yilik et al.

2004). Some 3' regions contain transcripts that do not appear to correspond to the 3'
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UTR of the labelled gene and instead contain novel genes such as non-coding RNA

genes. There were also cases where the aligned transcript had a better match

elsewhere in the genome.

In the largest fraction of missed polyadenylation signals, roughly 40% of the

errors or 8% of the total, the cause of the error cannot be determined. It may be that

with greater transcript coverage some of these 3' ends will turn out to have multiple

AATAAA motifs. Alternatively, these 3' ends may form a different class, perhaps

with specific factors that direct their positioning. Indeed, we know that for some

genes, such as the replication-dependent histones, the cleavage site is determined not

by a polyadenylation signal, but by a conserved stem-loop (Dominski et al. 1999). No

unusual compositional biases were detected around the missed sites though, so the

reason for these incorrect predictions remains a mystery.

Taken together, based on the fact that a number of the incorrect predictions are

potentially correct, the HMM is more accurate than we can reliably report, with likely

over 90% sensitivity.

3.4.8. Biological implications

The HMM contains states for the polyadenylation signal, the cleavage site,

and regions on either side of these features. It does not explicitly model other

sequence elements, but it may be taking these into account. For example, the

downstream state is T-rich and this roughly corresponds to a CstF binding site.

Whether or not CstF binding downstream of the cleavage site is actually required for

3' end formation is not known and may be dependent on the nature of the AATAAA

motif (MacDonald et al. 2002).
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Correct identification of full-length transcripts is important both for studying

the process of 3' end formation and for interpreting and integrating experimental

results, such as Northern blots, SAGE tags, and microarrays. Another implication for

this work is that it may improve the quality of gene prediction. One of the difficulties

in gene prediction is identifying the terminal exon. Misidentification can cause single

genes to be split or neighbouring genes to be fused. Employing a more descriptive

model of 3' ends should help reduce this problem.
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4. Polyadenylation Signal Prediction in Other
Eukaryotes

4.1. Introduction

In chapter 3 we showed that the short and long range signals encoding the site for

C. elegans transcript cleavage and polyadenylation can be robustly modelled by

PAjHMMA. In this chapter, we are interested in seeing (a) how the specification of

this signal may vary in different organisms – especially given the variation in

nucleotide compositional biases across different genomes, and (b) whether a

PAjHMMA HMM can successfully capture this information and thus predict

polyadenylation signals accurately in other species.

Nucleotide frequencies around the cleavage site in other species suggest that the

global and local signals used to specify polyadenylation sites appear to vary (Graber

et al. 1999). Thus the existing C. elegans polyadenylation signal model would not be

of much use in any other organism - although it does work in the related nematode C.

briggsae (Chapter 6). Given the flexible nature of PAjHMMA models and the

efficacy of the C. elegans model discussed previously, we attempt to build such

models for other species.

A new method for building cleavage site datasets is introduced, though the logic

behind it remains the same as that used in C. elegans. There is a large amount of

cDNA evidence for mouse and human. This, coupled with the size of the genomes,

suggests that it would be easier to obtain datasets of experimentally determined

cleavage and polyadenylation sites directly from the Ensembl gene build (Hubbard et

al. 2005), rather than repeat the analyses that create the data. Nucleotide frequency

plots for these mammalian models show that both species have similar signals
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dictating the position of the polyadenylation and cleavage site. There are also

significant similarities to the C. elegans model in terms of state length and topology,

though neither contains the long range pyrimidine rich UTR signal exhibited by the

nematode.

Initial data from a previous study gained in this way for Drosophila melanogaster

shows that the model for the fruitfly is quite different from all those previously

observed, on account of its cleavage sites being in a region that is A-rich, rather than

T or pyrimidine-rich as observed in the other species. Ensembl does not provide us

with enough cleavage sites to build statistically significant models for the fly, but as

there are a large number of cDNAs available, a cleavage site dataset was built using

the same alignment method as in C. elegans detailed in chapter 3.
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4.2. Data Acquisition

4.2.1. Mouse and Human

To collect experimentally verified cleavage sites for human and mouse, the

relevant Ensembl databases (v25.34.e.1 and v25.33.a.1 respectively – both October

2004) were queried using the EnsJ Java API (Stabenau et al. 2004). This workflow

can be summarised as below.

This logic is the same as that used in the C. elegans dataset – the region isolated

was the genomic sequence flanking the point where a polyadenylated mRNA

dissociates from being aligned to genomic sequence into a poly-A tail. Model building

was restricted to include only those cleavage sites originating from genes with single

Foreach Gene

Get all Transcripts

Discard if Gene has more than one Transcript

Discard if Transcript has more than one ThreePrimeUTR

For the single Transcript

Find all SupportingFeatures

Discard those that are not DNADNAAligments

For the 3’-most DNADNAAlignment

Obtain the cDNA from EMBL

Check if the last 50 nt of the Alignment are
identical for the genome and the cDNA.

Check if the cDNA contains a pure poly-A tail,
starting just after the point where the
Alignment ends
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transcripts and single 3’ UTRs. This is so that the building procedure would resemble

that employed for the C. elegans model, in which only single transcript genes were

used. As we have already observed, this does not compromise the ability of the model

to recognise multiple polyadenylation signals and sites.

Using data from the Ensembl gene build allowed the collection of verified

cleavage and polyadenylation sites for 2706 genes in human, and 4051 in mouse.

4.2.2. Fruitfly

Building a polyadenylation signal model for Drosophila melanogaster is also

of interest, as there are areas of nucleotide bias, such as a diffuse A-rich region

including the AATAAA motif, extending from the cleavage site to 40 nt upstream, but

there appears to be no long range pyrimidine or purine bias that was characteristic of

the C. elegans 3’ UTR. Another difference is at the cleavage site, where the majority

(>90%) of cleavages occur within a run of As.

The dataset was built in a similar manner to that for the worm. A batch

download of 3’ UTR sequences from EnsMart (Kasprzyk et al. 2004) showed that

95% of fruitfly 3’ UTRs are shorter than 2000 nt. Therefore 2000 nt sequence 3’ of

each predicted gene’s stop codon was isolated. These sequences were truncated if they

overlapped into the next gene. 20601 polyadenylated mRNAs were downloaded from

EMBL/Genbank and aligned to the extended 3’ UTR set as described in Chapter 3.

This led to the generation of 3068 cleavage sites.

4.3. Nucleotide Frequencies

Figure 15 shows the distribution of nucleotide frequencies 50 nt either side of the

cleavage site in four organisms.
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Figure 15. Graphs showing the nucleotide distribution around the cleavage sites
of H. sapiens, M. musculus, D. melanogaster, and C. elegans. The maximum
likelihood cleavage site occurs at 50 nt in each case.

Figure 16 is an example from mouse, showing how nucleotide frequencies vary over a

longer range. A similar graph exists for human (not shown).
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Long Range Nucleotide Frequency about the M. musculus Cleavage Site. Cleavage at 
200 nt.
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Figure 16. M. musculus graph showing how nucleotide frequency varies over
longer ranges.

Figure 15 provides a graphical representation of the local nucleotide frequency

signals captured nearest the cleavage site. In both the mammals and the fly, there is a

pronounced T-rich region (preceded by elevated levels of G), just downstream of the

cleavage site, corresponding to the CStF binding region. Between the polyadenylation

signal and the cleavage site, the spacer is T-rich followed by A-rich, followed by T-

rich. This latter is also visible to a lesser extent in C. elegans. Of the four species

shown here, the position of the polyadenylation signal (relative to the cleavage site)

seems to be more constrained C. elegans than in the others, as can be seen by the

relative widths of the A-rich AATAAA motif peaks. The long range nucleotide

frequency upstream of the cleavage site – maintained throughout the 3’ UTR - is
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slightly T-rich and provides some information in mammals, though less than in C.

elegans.

4.3.1. Long Range 3’UTR (UTR1) and Genomic (G) States

Table 6 shows how much 3’ UTR sequence differs from downstream genomic

nucleotide frequency levels in different species. The UTR1 state extends from the stop

codon to 50 nt upstream of the cleavage site. The genomic state is intended to model

the genomic context in which genes appear, and extends from 50 nt downstream of

the cleavage site. There is variation between the species as to how much the whole 3’

UTR differs from the downstream genomic nucleotide distribution. The worm UTR

has a distinctive nucleotide emission profile, with 0.035 bits per base compared to

compared to the genomic distribution over an average 215 nt, or 7.67 bits in total.

Human only has 0.00108 bits per base, over an average of 815 nt, giving 0.88 bits.

The mouse has 0.0011 bits over a similar length, thus providing slightly more

information at 0.91 bits. Fly contains more information per base (0.0086 bits) than the

mammals, giving 2.51 bits over a mean length of 291 nt

Table 6. Proportions of each nucleotide in several species' UTR1 states and
genomic downstream regions. C. elegans has no 50 nt UTR2 state, so extends
right up to the polyadenylation signal. The mean length of each organism's
UTR1 state used in the model is also given.
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UTR1 Genome
C. elegans 27.3 32.6 A
(215nt) 19.9 17.5 C

12.6 17.7 G
40.3 32.2 T

H. sapiens 26.1 26.4 A
(815nt) 22.3 23.2 C

22.2 23.6 G
29.3 26.8 T

M. musculus 25.9 26.9 A
(830nt) 22.5 22.8 C

22.6 23.0 G
29.0 27.3 T

D. melanogaster 31.8 27.7 A
(291nt) 19.5 21.4 C

18.3 21.8 G
30.4 29.2 T

In C. elegans, this long-range nucleotide distribution does not change

appreciably between the gene’s stop codon and the polyadenylation signal, but for

most other species (an example of which is seen in Figure 16), there is a slight change

about 50 nt upstream of the AATAAA motif, which we model with a separate HMM

state to that modelling the rest of the 3’ UTR. This second UTR state is not used in the

C. elegans model, but it is this state (UTR2) that is visible on the 5’ end of the local

cleavage models shown in Figure 15.

4.3.2. Second 3’ UTR (UTR2) State and purine to pyrimidine
asymmetry

The most striking aspect of the nucleotide frequency in the UTR2 state (as

indeed with the whole 3’ UTR) is the asymmetry of nucleotide bias. This is most

apparent in worm, appears to a lesser extent in the mammals, but is not present at all

in fruitfly.
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For any whole genome, or indeed any double stranded DNA, the number of

pyrimidines and purines must be equal. However, we notice in worm, human, and

mouse, that the proportion of T bases in the region just upstream of the AATAAA

motif is greater than the proportion of As. This asymmetry is possible as the 3’ UTR

is part of a transcript, which is a single stranded feature. Globally, there is no

preferred strand for bases, but transcribed features can have preferred bases on

account of the increased mutability of single stranded DNA. It has been suggested

(Niu et al. 2003; Touchon et al. 2004) that transcribed sequence should show a C to T

mutation bias. This would explain the observed excess of T, but not the less strong

excess of C over G seen in C. elegans. The HMMs described here are built to

recognise features having characteristic nucleotide frequencies. As transcribed DNA

is under different mutation pressure to non-transcribed DNA, this long-range

asymmetry provides a strong signal that the sequence in question is likely to be

transcribed.

4.3.3. A-rich state

All four species show an A-rich peak some 20 nt upstream of the cleavage site.

This peak corresponds to an A-rich polyadenylation signal.

In mouse and human, maximum likelihood signal and cleavage sites were

calculated as in chapter 3 using previously published data (Beaudoing et al. 2000).

In fruitfly, each sequence had a likely polyadenylation signal annotated, again

using the maximum likelihood method. As there was no prior data regarding the

distribution of different AATAAA motifs in Drosophila, some worm data had to be

used. This involved finding the maximum scoring position of the C. elegans
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AATAAA motif weight matrix, scaled by a fly AATAAA – cleavage length

distribution. As with C. elegans,  this length distribution is found by isolating

sequences with an unambiguous exact match to AATAAA for which the cleavage site

does not occur adjacent to an A. As only some 6% of cleavages in Drosophila can be

located exactly (Figure 5a, contrasted with b), this approach was only possible on

account of our relatively large dataset, which provided 105 sequences from which to

calculate the spacer length distribution.

Figure 17 confirms our earlier observation that there is a wider distribution of

spacer lengths in the mammals and the fly, compared to the worm. In addition, the

other spacers seems to be slightly longer than in worm, with means of 17 and 16, and

17 nt for human, mouse and fly respectively, compared to 14 in C. elegans. This may

be as a result of different steric requirements of the proteins in the polyadenylation

and cleavage complexes in the four organisms.

The length distribution of spacers from four organisms.
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Figure 17. A frequency distribution of the lengths of sequence between
unambiguous matches to AATAAA and precisely locatable cleavage sites.

The weight matrices for the four species do show some differences from each

other, though the mouse (Figure 18) and human (Figure 19) signals are similar. It is

pleasing to see that the fly signal (Figure 20) appears to differ from the worm signal

(Figure 21), despite maximal fit to the worm weight matrix being selection criteria for

the fly polyadenylation signal.

Figure 18. M.musculus AATAAA motif.

Figure 19. H. sapiens AATAAA motif.
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Figure 20. D. melanogaster AATAAA motif.

Figure 21. C. elegans AATAAA motif.

Mouse and human seem less resilient to variations at the first position than the

other two species. Interestingly, it appears that the most common non-canonical

AATAAA motif differs between species; AATGAA (worm) seems uncommon in

vertebrates, which prefer ATTAAA.

4.3.4. Spacer and cleavage site

The spacer is the region between a putative AATAAA motif and the

confirmed (or maximum likelihood) cleavage site. In the worm, we used a single T-

rich state with an explicitly specified length distribution. In the two vertebrates, there

is a peak of As that interrupts a T-rich region. Thus for mouse and human, we have a

spacer state with a length distribution calculated as in chapter 3, which extends to

cleavage-6. The peak of As, the return to T-richness, and the cleavage site itself are

modelled by a weight matrix. All species except the worm exhibit a rise in levels of G

just downstream of the cleavage site, so for mouse and human, we use a 16-column

weight matrix, capturing 6 nt upstream of the cleavage site, and 10 downstream.
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The fruitfly spacer seems to have two parts, a T-rich and an A-rich part. We

model these using an explicit length state for the T-rich state, and capture the 8nt

upstream of the cleavage site in an 18 nt cleavage site weight matrix.

Figure 22 and Figure 23 show a graphic of how nucleotide frequency varies

nearest the cleavage site in human and mouse. The weight matrix captures the second

two parts of the three-part spacer (namely the transition from A-richness to T-richness

in columns 1-5). Both organisms tend to cleave within a run of As. It has been

reported that a CA dinucleotide is favoured prior to the cleavage site, (Sheets et al.

1990), but this study is based on a much simpler strategy for dealing with a cleavage

in a run of A, such that the cleavage was always assumed to fall after the first A in a

run of As. Additionally, this finding has been refuted by a mutational analysis, (Chen

et al. 1995).

Figure 22. H. sapiens cleavage site weight matrix. Cleavage between positions 6
and 7.
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Figure 23. M. musculus cleavage site weight matrix. Cleavage between positions
6 and 7.

Downstream of the cleavage site, the beginnings of a T-rich region can be

seen, with G beginning to be preferred to A.

Figure 24 shows the D. melanogaster cleavage site weight matrix. The

preference for an A before the cleavage site is quite striking. It is unknown whether

Cleavage Factors have any sequence specificity, or if they are directed by protein-

protein interaction. Cleavage sites seem to be A-rich, which confirms a previous

mutational analysis (Chen et al. 1995), though the extreme preference for cleavage 3’

of an A seems unusual. Early work from mammals suggests that poly-A polymerase

has slight preference for substrates with a terminal A (Bienroth et al. 1993). The

reason why the Drosophila cleavage site shows such an extreme preference for

cleaving after an A is unclear.
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Figure 24. D. melanogaster cleavage site weight matrix. Cleavage between
positions 8 and 9

4.3.5. T-rich (T) and Downstream region (DS)

All organisms show a T-richness up to 30 bases 3’ of the cleavage site. In C.

elegans, this is not particularly pronounced compared with the rest of the 3’ UTR, but

the three other organisms show a definite elevation of T. This is likely to be a CStF

binding region. As the mammals and fly (Figure 15) show increased G for 10 nt just

3’ of the cleavage site, this region is added to the cleavage site weight matrix, and the

20 nt T-rich region is modelled by a separate state.

Following the T-rich region is another 20 nt region where there is still

asymmetry in the nucleotide distributions. This second downstream region is

modelled by another state. The rest of the sequence is modelled by the genomic state

discussed earlier.

4.4. Model testing
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4.4.1. Introduction

The maximum likelihood cleavage sites for each of the three species were split

into test and training sets. PAjHMMA models were trained on each of the training

sets, and evaluated at the level of AATAAA motif positioning, both in Viterbi

(maximal scoring) and posterior decoding (all nucleotides being in AATAAA motif

state with probability > 10%) modes. Test sequences for each species were the

sequence downstream of each confirmed stop codon such that 95% of 3’ UTRs were

contained within this length, without the sequence being allowed to extend into the

next gene. This length was 4000nt for human and mouse, and 2000nt for fly.

The flexibility of PAjHMMA means that it is easy to change the modelled

emissions to dinucleotides; that is, to build a first order Markov model. Dinucleotide

datasets were built from the cleavage site datasets mentioned, by counting.

To test the efficacy of the extra information non-AATAAA states, a simple

weight matrix scan was also carried out, using the six AATAAA motif states on their

own. As reported in chapter 3, the best weight matrix regime, and the only one found

to have acceptable accuracy was to report the maximum hit from the AATAAA

weight matrix. In the event of multiple, equally scoring hits, the 5’-most hit, being the

first to be exposed in the nascent transcript, was reported.

Publicly available software from two previously published methods for human

and human/mouse polyadenylation signal prediction, ERPIN (Gautheret et al. 2001),

and PolyADQ (Tabaska et al. 1999) were also used for comparison.

4.4.2. ERPIN
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This program reports hits to a set of 1st order weight matrices, ranging from the

AATAAA motif to 46 nt downstream. This should capture signals encoded by the

cleavage site and the downstream rises in G and T. Default parameters were used

(http://tagc.univ-mrs.fr/erpin/), which were tuned by the authors empirically to retain

sequences with a polyadenylation signal hit with a score greater than 70% of the

maximum, and with the downstream region cutoff of 74%. This method does not

accept any polyadenylation signal other than AATAAA and the ATTAAA variant.

4.4.3. PolyADQ

A weight matrix for the AATAAA motif and a 10 bp downstream weight

matrix were constructed by Gibbs sampling. This algorithm finds all occurrences of

AATAAA and ATTAAA in human and mouse, and uses a quadratic discriminant

function to decide whether the weight matrix hit is a real polyadenylation signal by

considering the downstream hit and the distance between the two.

4.4.4. Results

The accuracy with which each algorithm identifies the correct polyadenylation

signal using the HMM, weight matrix and published methods is shown in Table 7.
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Table 7. TP, true positives; FP, false positives; FN, false negative; SN, sensitivity
(TP/TP+FN); SP, specificity (TP/TP+FP).

Method TP FP FN SN SP TP FP FN SN SP
Viterbi 285 266 266 285 420 420
1st order Viterbi 263 288 288 330 375 375
Maximum weight matrix 269 282 282 347 358 358
Posterior >0.1 371 630 180 0.673 0.371 379 949 326 0.538 0.285
1st order Posterior >0.1 310 503 241 0.563 0.381 395 704 310 0.560 0.359
ERPIN 287 605 264 0.521 0.322 344 917 361 0.488 0.273
PolyADQ 403 1049 148 0.731 0.278 391 766 314 0.555 0.338

Method TP FP FN SN SP TP FP FN SN SP
Viterbi 193 307 307 662 278 278
1st order Viterbi 243 257 257 671 269 269
Maximum weight matrix 230 270 270 562 378 378
Posterior >0.1 290 749 210 0.580 0.279 767 367 173 0.816 0.676
1st order Posterior >0.1 302 574 198 0.604 0.345 777 254 163 0.827 0.754
ERPIN - - - - - - - - - -
PolyADQ - - - - - - - - - -

Worm(940)

0.704
0.714
0.598

0.404
0.468
0.492

Mouse(551) Human(705)

0.517

0.486
0.460

0.477
0.488

Fly(500)

0.386

There is an issue regarding how false positives are calculated. In this work, if

the model predicts a polyadenylation signal where there is none annotated according

to our data sets, then this has been counted as a false positive. However, as mentioned

in chapter 3, there is no way to know whether a given prediction is never used as a

real polyadenylation signal. Thus, whilst the false positive rate given may not be an

accurate representation of the real value, it does represent a worst-case value. A more

realistic rate could be found by finding the number of posterior decoding predictions

with greater than 10% probability made per kilobase of random sequence.

At a glance, polyadenylation signal prediction appears to be more difficult in

each of these three species than it is in C. elegans. The benchmark in chapter 3 was to

see if prediction using context information to model the whole 3’ UTR was more

effective than just looking for a close match to AATAAA. In the worm, a zero order

model outperformed the best weight matrix regime by over 10% at sensitivity and
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specificity levels. In human and fly, using just the AATAAA weight matrix

component of the model outperforms using the whole model, so using context

information is misdirecting predictions. Of the three species introduced in this

chapter, only in the mouse do zero order Viterbi predictions outperform a weight

matrix at the sensitivity level, though this is by less than 3%.

Increasing the order of the HMM to model dinucleotides had different effects

on the Viterbi hit in human and mouse. In mouse, the dinucleotide information seems

to reduce prediction accuracy a little, whereas it has a beneficial effect in human. In

Drosophila, a 10% increase in sensitivity and specificity occurred, outperforming the

AATAAA weight matrix on its own. This increase was the largest observed, and was

unexpected, considering that using dinucleotides in C. elegans had a negligible effect

on sensitivity.

Posterior decoding reports not the best scoring hit, but rather calculates the

probability of each nucleotide being in a particular state. Posterior > 0.1 reports all

occurrences of sequences entering the AATAAA motif state with probability > 10%.

This predicts an average of 1.5 sites per sequence, though it can predict up to 9

potential polyadenylation signals per sequence. In all four species, this method has

increased sensitivity compared to zero and first order Viterbi predictions, and also

relative to the weight matrix, whilst maintaining tolerable specificity. As our test

sequences were annotated to contain only one polyadenylation signal, we expect a

decrease in specificity. However, in C. elegans, this decrease is less than 3%,

suggesting that posterior decoding is correctly identifying ‘weaker’, correct

polyadenylation signals that were missed by Viterbi predictions. In the three species

discussed here, the drop in specificity was considerably higher. In all of them, there

were significant gains in sensitivity, though none approached the 82% seen in worm.
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Lexicalizing the emissions into dinucleotides in posterior decoding mode had a varied

effect on sensitivity (a substantial drop vs zero order posterior decoding in mouse, but

a small rise in fly and human), but specificity was consistently increased by the

prediction of fewer false positives.

Both ERPIN and PolyADQ are restricted to AATAAA/ATTAAA, meaning

that no other variants can be predicted, and that the maximum sensitivity is 80% in

human and 86% in our mouse set. PolyADQ is the best performer in mouse, with a

sensitivity of 73%.

For each method, accuracy is almost always higher in mouse than in human.

One interesting observation here is that ERPIN, despite being trained on human data,

also performs slightly better in mouse than in human. This may be explained by our

earlier observations that there is much similarity in the human and mouse cleavage

site models, but that the mouse cleavage site itself is specified with slightly higher

information content than in human, making it slightly easier to detect. Alternatively, it

may be a consequence of the set of genes that were selected for the test sets.

The HMM is arguably outperforming PolyADQ in mouse, depending on the

relative importance attached to sensitivity and specificity. In human, posterior

decoding with dinucleotides outperforms both published methods.

One issue with these two methods is that parts of our test set might have been

included in their training data, so their performance scores on our test set may be

overestimates.

4.5. Discussion
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4.5.1. Sensitivity

Given the success of the zero order hidden Markov model strategy in C.

elegans, the measured sensitivities in the other species, especially human, are

disappointing. It is surprising that a simple weight matrix outperforms a model that

adds context information and looks for a global maximum. A partial explanation

could be at the level of the polyadenylation signal itself. In human and mouse, the two

most frequently occurring signals, (AATAAA and ATTAAA) account for 80 and

86% of all signals in the two respective organisms. This figure is only 69%

(AATAAA and AATGAA) in C. elegans. This means that the weight matrix contains

more information in the two mammals, as it appears to be more constrained. In

addition, because the AT composition of the human and mouse genomes is lower than

in the nematode, there is a lower probability of an AATAAA occurring by chance, so

the probability of a given AATAAA being a real polyadenylation signal is higher. To

compensate for the reduced information in the worm weight matrix, context

information has to be used. Where it is not required, excess context information can

cause incorrect prediction; it has been observed previously in a study on multiple

polyadenylation signals, that adding context information from upstream of the human

AATAAA motif had a negative effect on prediction accuracy (Legendre et al. 2003).

One of the major factors allowing us to identify the worm polyadenylation

signal correctly might be the large amount of long range context information provided

by the whole 3’ UTR having a very distinctive, biased nucleotide distribution. This

striking distribution, constant throughout the whole 3’ UTR, is not seen in any of the

other species. However, it is not clear whether this is information available to the
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biological cleavage process, or a secondary consequence of mutation biases on

transcribed sequence.

Analysis of those human polyadenylation sites incorrectly identified showed

no markedly different nucleotide composition to those identified successfully, so we

do not believe that poor performance is due to a specific type of cleavage site that is a

poor fit to our model.

One of the reasons for low sensitivity could be that the Viterbi path used by

our model is obliged to make exactly one prediction. It may be that a sequence

contains one or more additional as-yet unconfirmed cleavage sites, which have a

higher probability under our model than that in our test set.

At least 54% of human mRNAs are subject to alternative polyadenylation

(Tian et al. 2005), and as we shall see in the next section, as more transcript data is

analysed, this number is likely to increase. With this in mind, for species in which

alternative polyadenylation is this common, it might be a good idea to build models

specifically modelling mRNAs with 2, 3…n  confirmed cleavage and polyadenylation

sites. However, the aim of this chapter was to emulate the work carried out on worm

transcripts, in which we discarded the small number of transcripts with multiple

polyadenylation sites.

Using posterior decoding allows us to predict multiple polyadenylation sites if

each site represents a probable path through the dynamic programming matrix. This is

one reason why sensitivity under posterior decoding is consistently better than under

Viterbi predictions. However, this method is only suitable when the probabilities of

the two paths both pass some threshold (0.1 in our case). Another way of modelling

multiple polyadenylation would be to allow our PAjHMMA model to loop into an

AATAAA motif state at will, predicting multiple sites in a single pass, though this
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would require building of more complex data sets to train emission and transition

parameters. Another factor that could be added for sequences with multiple

polyadenylation signals is to use all cDNAs from a single library, so that if one site

had many polyadenylated mRNAs and another had fewer, some kind of weighting

strategy for the nucleotide frequency distributions at each site could build a more

realistic model.

4.5.2. Specificity

Table 7 shows that no method reaches 50% specificity, apart from in the

worm. This is because of the large number of false positives, caused especially by the

methods which can predict multiple polyadenylation signals in a single sequence, and

by the fact that 3’ UTRs are longer in mammals and flies. Our datasets were built

specifically with sequences containing only one confirmed cleavage and

polyadenylation site. If an algorithm predicts a signal in the test set where there is

none annotated, this is marked as a false positive. However, it is not fair to say that

this predicted site is not a real site, simply because there is no (as yet) polyadenylated

cDNA evidence for it. There is no way to prove that a sequence is not a

polyadenylation signal. Many such false positives in C. elegans were subsequently

found to have EST evidence, so the specificity value obtained represents a lower

bound for some actual value.

4.6. Conclusions
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We have shown in this chapter that the method used in chapter 3 can be

extended to build polyadenylation signal models for other species, and that the

software developed for this purpose is robust and flexible. Although it performs best

on the species for which it was developed, there are some interesting results in other

species. On our test data the human PAjHMMA HMM is the best performer

compared to previously published methods.
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5. On the Evolution of 3’UTRs and Polyadenylation
Signals

5.1. Introduction

In this chapter, we look at how polyadenylation signals evolve between C.

elegans and C. briggsae. This was done by using a set of 3’ UTR sequences from a set

of genes that are considered to be 1:1 orthologues at the protein level.

We analyse a set of orthologous pairs where the polyadenylation signals are

part of a BLAST alignment and align to each other. We observe an interesting pattern

of mutation and conservation between aligned polyadenylation signals of orthologous

pairs. We also consider cases when it appears that non-homologous signals are used in

the two species, i.e., when they do not derive from the same signal in the common

ancestor. This may occur via multiple polyadenylation signals at some point during

evolution.

5.1.1. Caenorhabditis briggsae

C. briggsae is another soil nematode, whose sequence was published in 2003

(Stein et al. 2003). It is thought that C. briggsae and C. elegans diverged from a

common ancestor roughly 100 million years ago.

The neutral substitution rate measured at non-synonymous sites is estimated to

be about 1.75, which is three times the distance between human and mouse. The two

worms, which are similar at the level of ecology and morphology, show extensive

identity at the level of genome organisation. The difference in size between the two

genomes is accounted for almost entirely by repeat regions. Of the c. 19,500 predicted
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protein coding genes in C. briggsae, about 62% have strong one-to-one orthologues in

C. elegans. The availability of a large orthologous gene set allows us to study how 3’

UTRs and in particular, polyadenylation signals change during evolution.

5.1.2. C. elegans – C. briggsae orthologues

The set of orthologous elegans-briggsae pairs on which all the analyses in this

chapter are based come from a hybrid reciprocal best 1:1 BLASTP hit and synteny

analysis (Stein et al. 2003). 12155 pairs exist at the protein level. For each C. elegans

gene with a pair, an orthologous 3’ UTR pair was made by extracting the final coding

exon of the briggsae orthologue, checking that the gene prediction ended at a stop

codon (which was not the case for 3254 genes), and extending from the stop codon

the same length as the elegans non-overlapping 3’ UTR candidate, as discussed in

chapter 3 (1000nt or up to the next gene). This leaves us with 8901 orthologous 3’

UTR pairs. Polyadenylation signals were predicted on all sequences using the C.

elegans PAjHMMA model looking for all signals with a posterior probability greater

than 0.1. Viterbi predictions were also carried out.

5.2. Conservation of absolute position

5.2.1. Introduction

We first examined how 3’ UTR length correlates between orthologous pairs.

For the purposes of this experiment, we define the length of the 3’ UTR as the

distance from the stop codon to the start of the AATAAA motif.
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5.2.2. Results

Figure 25 shows the weak correlation (r=0.45) between absolute positions of

orthologous Viterbi polyadenylation signal predictions. The distribution of signal

positions in both species is very close to the observed length distribution of 3’ UTRs,

and thus the vast majority of the data falls into the bottom-left quadrant. This in itself

shows the relative specificity of the prediction method.

A scatter plot of Viterbi polyadenylation signal prediction position within 3' UTR 
sequences from ortholgous genes in C. elegans and C. briggsae
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Figure 25. A scatter plot showing the absolute positions of Viterbi
polyadenylation signal predictions within the 3' UTRs of 8901 pairs of
orthologous elegans and briggsae genes. The 65 ribosomal protein 3'UTRs in the
orthologous pair set are shown in pink.
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3’ UTR lengths between orthologous genes are rarely conserved exactly, on

account of the sequences readily accepting indels and often containing repeat regions

(Jareborg et al. 1999; Larizza et al. 2002). Of the 8901 pairs plotted, 120 are found to

have perfectly conserved 3’ UTR lengths.

One striking observation is that 24 of the 120 paired 3’ UTRs with conserved

length are from ribosomal protein mRNAs, out of 65 ribosomal genes that are

included in our set of pairs. The proportion of non-ribosomal 3’ UTRs that are under

100 nt and have an orthologous pair of the same length is 2%. Hence, the 24

ribosomal 3’ UTRs appearing with pair having the same length represents a

significant overrepresentation. It is likely that regulatory conservation has restricted

mutation in the 3’ UTR of these genes. As we shall discover in chapter 6, there is a

putative conserved regulatory motif, which spans the polyadenylation signal of

ribosomal protein genes and is also found in other genes implicated in translation.

However, analysis of the non-ribosomal genes having conserved 3’ UTR lengths did

not reveal any functional bias.

5.3. Polyadenylation signals in aligned orthologues

5.3.1. Introduction

As mentioned in chapter 3, we have 6570 C. elegans 3’ UTRs, in which we

have high confidence, on account of there being EST evidence for the predicted

polyadenylation signal. Using this high confidence set, we can look at cases where

orthologous pairs of worm 3’ UTRs can be aligned by BLAST such that the C.

elegans polyadenylation signal is within the alignment. In these cases, we are
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interested in seeing whether the corresponding position in C. briggsae is also a likely

polyadenylation signal, and if so, whether some signal variants are conserved at a

higher rate than others. For example it might be that genes having the AATGAA

variant do so for a specific reason, and perhaps are less likely to allow mutations

which, although not knocking out the function of the signal, would change which

hexamer is used.

There are also cases when the 3’ UTRs of orthologous genes do align, but

have polyadenylation signals that are in different parts of the alignment. This may

give some insight into signal gain and loss over evolution.

5.3.2. Alignment

3400 of the 6570 C. elegans high confidence sequences had orthologous C.

briggsae predictions. Each of these 3400 paired sequences were BLASTed (W=3, E>

0.01, --top) against each other to find regions of sequence homology. 1840 of these

pairs contained a BLAST alignment. There were 545 cases in which orthologous pairs

had signal predictions, but neither of them fell in the alignment. There were 1238

cases where the elegans Viterbi polyadenylation signal was contained in the

alignment. Of these, 1052 had one C. briggsae signal (determined by Viterbi) also in

the alignment.

5.3.3. Results – aligned Viterbi predictions

5.3.3.1. Position of aligned Viterbi signals
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The BLAST output from this alignment is shown in Figure 26. Here we can

see how the GATAAA in C. elegans is aligned with the AATAAA in C. briggsae. A

graphical representation of this case is shown in Figure 27. For the set of 1052 pairs

where the AATAAA motifs from both species were contained in the alignment, 409

(39%) are in corresponding positions as shown in Figure 26, and 643 (61%) are in

non-homologous positions. There is no preference for any offset in the alignment if

the signals themselves are not aligned.

Figure 26. A BLAST alignment showing aligned polyadenylation signals.
AATAAA motif is in red.

Figure 27. A representation of the sequence of a pair of orthologous 3’ UTRs.
From the top, the scale bar, red diamond, and blue bar refer to the C. elegans
sequence, whilst the yellow bar, red diamond, and scale bar refer to C. briggsae
sequence. The positions and coordinates on the blue and yellow bars show details
of the BLAST alignment relative to elegans and briggsae respectively. The
polyadenylation signals indicated by diamonds are in corresponding positions in
the alignment.
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5.3.3.2. Species distribution of aligned signals

If we isolate the ~40% of gene pairs showing aligned polyadenylation signals,

we can see whether different AATAAA motif variants are freely interchangeable

between orthologous genes, or whether genes tend to conserve them. First, though, it

is necessary to ascertain whether there is any difference in the frequency distribution

of AATAAA motifs in the two species. Table 8 shows the overall distributions of

signals in C. elegans and C. briggsae. These distributions are not significantly

different.

Table 8. A table of hexanucleotide frequencies of aligned polyadenylation signals
of orthologous worm genes.

Elegans Briggsae
Count Freq Count Freq

AATAAA 239 0.583 246 0.600
AATGAA 48 0.117 55 0.134
CATAAA 34 0.083 34 0.083
TATAAA 29 0.071 24 0.059
GATAAA 24 0.059 20 0.049
CATGAA 9 0.022 8 0.020
TATGAA 8 0.020 8 0.020
GATGAA 5 0.012 3 0.007
ATTAAA 4 0.010 1 0.002
AGTAAA 3 0.007 3 0.007
GATGGA 1 0.002 0 0.000
CGTAAA 1 0.002 2 0.005
ACTAAA 1 0.002 0 0.000
AATACA 1 0.002 0 0.000
AACGAA 1 0.002 0 0.000
AAAAAA 1 0.002 1 0.002
AATAAT 0 0.000 2 0.005
TTTGAA 0 0.000 1 0.002
TATACA 0 0.000 1 0.002
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As the two species have apparently similar distributions of AATAAA motifs,

an analysis of whether they are conserved between orthologous genes will not be

skewed by a genome-wide flux away from or towards particular signals.

5.3.3.3. Pattern of hexanucleotide mutation in aligned signals

In Figure 26 we see how the polyadenylation signal from two orthologous

genes differ in which AATAAA motif is used. Figure 28 is a full graphical

representation of the AATAAA motif transitions observed in 409 pairs of orthologous

elegans and briggsae aligned polyadenylation signals. It shows that on average, 74%

of pairs conserve the particular variant of AATAAA being used.
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Figure 28. A graph showing the mutations between aligned AATAAA motifs in
411 orthologous worm gene pairs. Nodes represent a particular AATAAA motif.
The number of signals appearing in  C. elegans and C. briggsae are shown below
the AATAAA motif on the left and right respectively. The number of C. elegans
genes with AATAAA aligning to a GATAAA in C. briggsae is 5. Of the 20 genes
in C. briggsae having a GATAAA, 10 have  C. elegans  orthologues where the
polyadenylation signal is an AATAAA. Red arrows denote AATAAA motif
transitions involving the mutation of more than one base pair, such as
AATGAA->TATAAA.
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This raises an interesting point regarding conservation of AATAAA motif. It

is obvious that there is some flux in this system; that is, there are mutations between

aligned orthologous polyadenylation signals. However, there are many nodes where a

large proportion of self-cycling occurs. Figure 29 shows the how the proportion of a

particular AATAAA motif variant that is conserved between species varies with that

motif’s frequency of occurrence.

A graph showing the variation in signal retention frequency for AATAAA motifs of 
different abundances
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Figure 29. A graph showing the proportion of each AATAAA motif in both
worms, and the proportion of each aligned signal being conserved between C.
elegans and C. briggsae orthologues.

For the four most commonly used signals, the proportion of orthologous genes

conserving that signal decreases with the abundance of the motif variant. 59% of the

genes in the orthologous pair set use AATAAA as the polyadenylation signal. 89% of
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these genes’ orthologues also use AATAAA. If we look instead at the 6.5 % of genes

that use a TATAAA, the proportion conserving this across evolution drops to 30%.

Again, just considering the top four signals, it seems that the more commonly used the

motif, the more likely it is to be conserved between species. It could be that some

signals, such as AATAAA, are required for some genes, whereas any variant might be

tolerable for others.

For the other three signals, although the proportion retaining values may be

distorted by small sample size, we notice that 7 of the 9 recorded CATGAA in C.

elegans are retained as CATGAA in C. briggsae. This represents a much larger

proportion of retention than, say GATAAA, where fewer than half (10 out of 24) of

the elegans genes retain this signal. It could be that certain genes’ signals are

constrained between orthologues for functional reasons. However, no distinctive

functional characteristics were found empirically by looking at the functions of the 7

genes conserving CATGAA.

There are also interesting patterns of mutation, if we consider those aligned

signals which differ between the two worms. For example, Figure 28 shows that of

the 24 C. elegans genes with GATAAA, 14 mutate, of which 10 mutate to AATAAA

in C. briggsae. However, of the 34 genes with CATAAA, again 14 mutate, but only

one changes to AATAAA. The majority of those changing mutate to TATAAA

instead. These observations can perhaps be explained by the difference in rates of

transition vs. transversion, but this is inconsistent with the observation that of the 21

genes mutating away from TATAAA, 5 mutate to CATAAA (transition) versus 7

mutating to AATAAA (transversion). It seems in these circumstances that a

transversion event, which should be rarer than transition, is favoured as it introduces a

more commonly used AATAAA motif.
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The second most commonly used AATAAA motif in the worms is AATGAA.

As we see from the red lines in Figure 28, many of which involve AATGAA, there

are several cases where aligned signals have two mutations between species.

Although this should be a relatively rare event, there are similar numbers of changes

from TATAAA to AATGAA, CATAAA, and AATAAA. We have been unable to

find an explanation for this behaviour, which appears not to show the expected

mutation parameters favouring the A/T-richness of the Caenorhabditis genomes nor

the expected proportion of transition to transversion. Perhaps a larger set of aligned

orthologous polyadenylation signals with mutations might show that the weights on

the mutation graph split the AATAAA motifs into cliques, where mutations within

cliques are more favoured than those between cliques.

5.3.4. Evolutionary turnover of polyadenylation signals

We have mentioned earlier that of the orthologous gene pairs in which the 3’

UTRs can be aligned across both species Viterbi polyadenylation signals, 61% of

orthologous gene pairs have the signal predictions in non-corresponding positions.

This suggests a relatively high level of turnover of polyadenylation signals. We wish

to explain possible ways in which this can happen. One way to imagine how a new

cleavage and polyadenylation site evolves is via an intermediate state in which both

sites are active. On divergence, we might expect this to leave a trace of another

potential site at the aligning position.

Figure 30 shows an example in which Viterbi polyadenylation signals do not

align between species.
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Figure 30. An alignment of two orthologous 3' UTR sequences. The extent of C.
elegans and C. briggsae sequence aligned is shown by the blue and yellow bars
respectively. Viterbi polyadenylation signal predictions are shown as red
diamonds. The blue diamond is that part of the C. briggsae sequence, which
aligns to the C. elegans polyadenylation signal.

For 642 such aligned pairs, we analysed the C. briggsae sequences aligned to

the C. elegans Viterbi prediction. Of the whole set, there are only 31 occurrences

where the C. briggsae hexamer sequence, represented by the blue diamond in Figure

30, is exactly the same as the C. elegans AATAAA motif. A further 20 mutate to one

of the other top 8 occurring AATAAA motifs. Hence, 51 C. briggsae genes have a

sequence resembling an AATAAA motif in the same place in the alignment as the C.

elegans Viterbi hit. Only 24 (8% of the 642) of these C. briggsae hits have posterior

probabilities of greater than 10%.

Similarly, when comparing C. elegans posterior decoding (p > 0.1) predictions

to C. briggsae Viterbi predictions in these 642 misaligning pairs, there are 50 cases

(26 identical, 24 variant) of a briggsae Viterbi prediction aligning to a C. elegans

sequence that resembles an AATAAA motif. 12 of these similar motifs are C. elegans

posterior decoding hits. This number may be less than the 24 observed when

analysing C. briggsae posterior decoding on account of our earlier selection against C.

elegans genes with multiple polyadenylation sites (Chapter 3). These observations



Chapter 5

107

show that about half of all orthologous 3’ UTRs that contain an alignment have

polyadenylation signals that are either aligned to an orthologous signal (409 gene

pairs), or to a sequence that may well be a real polyadenylation signal (a further 102

gene pairs, of which 36 had posterior decoding support). For the remaining 511 out of

1052 aligned 3’ UTR pairs, there seems to be no sign of signal position conservation,

even within the context of an alignment. These sequences have diverged so far, that

meaningful polyadenylation signals have been lost.

5.4. Discussion – On the evolution of polyadenylation signals

We have shown here that weakly constrained mutation of 3’ UTRs mean

orthologous genes only weakly conserve the absolute position of polyadenylation

signals. Analysis of those cases where 3’ UTRs can be aligned and where

polyadenylation signal predictions align with each other show an unusual pattern of

substitution. This seems not to match what might be expected from a simple model of

nucleotide mutation, and there may be functional constraints as to the choice of

AATAAA motif that is required for a particular gene. Within alignments, if the most

likely polyadenylation signals themselves do not align, we investigated whether there

are signs that a given gene from the common ancestor to C. elegans and C. briggsae

may have had two equal polyadenylation signals, with the two different species

favouring different signals following the evolutionary split. However, in only one

sixth of these cases could we see a residual aligned site with posterior probability

>10%.

The study of evolution of regulatory regions has been made possible by

comparative studies on recently sequenced genomes, and has focussed mainly on
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enhancers and promoters, such as (Dermitzakis et al. 2003). Whilst it is expected that

sequence with regulatory function should be conserved beyond the background of

non-functional sequence, it is not understood how selection operates on regulatory

regions, and it is surprising that the turnover of polyadenylation signals is so high.

Although there is scant previous work on evolution of polyadenylation signals in

particular, there have been studies on evolutionary dynamics of cis-regulatory regions

(Johnson et al. 2004; Ludwig et al. 2005).

Of particular relevance to this study is the paper by (Ludwig et al. 2000),

which concerns the enhancer element of even-skipped mRNA in Drosophila

melanogaster and related flies. They show that the elements occurring in D .

melanogaster and D. pseudoobscura can be aligned (504 nt in melanogaster vs. 691nt

in pseudoobscura), though the enhancer differs in certain places between the two

species. Constructs containing the whole element from each of the flies give identical

patterns of gene expression in the reporter system, despite the differences. However,

splitting the enhancer in half, and building two chimaeric constructs, each containing

either the first half from one species, and the second from the other both give a mutant

phenotype. Crucially, the two mutant phenotypes are not identical. It is proposed that

stabilising selection is maintaining phenotypic identity in the region, but has allowed

mutational turnover of important regulatory sites.

Although the group do not mention whether evolution has left any trace of an

ancestral site in either species (as was the case for some 17% of the polyadenylation

signals in aligned regions), the work sets a precedent that fast turnover of regulatory

motifs in the context of an aligned background can be expected between species.
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6. Concerning a Sequence Element Detected in
Ribosomal mRNAs

6.1. Introduction

Until now, this thesis has focussed on the identification of the polyadenylation

signal and the end of the 3’ UTR. In this chapter, we change focus to look for other

conserved signals within the 3’ UTR. In particular, we identify a region around the

polyadenylation signal in many ribosomal protein mRNAs in C. elegans and C.

briggsae that contains a conserved sequence motif. Building a statistical model of this

motif and searching a database of C. elegans 3’ UTRs reveals that this motif is also

present in the 3’ UTR of some other genes involved in ribosome maturation and

translation.

6.2. Background

An initial approach that we took to identifying 3’ UTR regulatory elements

was to look for conserved secondary structure components in C. elegans and C.

briggsae. We took the 3’ UTRs from about 9000 C. elegans genes that were

confirmed by ESTs and aligned them to the same length of sequence downstream of

the STOP codon of the C. briggsae one-to-one orthologue. 6000 of these pairs

generated a BLAST alignment according to our alignment parameters. The BLAST

alignments were then submitted to QRNA (Rivas et al. 2001), to see if the mutations

between a pair of aligned ‘orthologous 3’UTRs’ were co-varying; that is, to discover
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whether the sequences were evolving in such a way as to conserve a potential RNA

secondary structure in an area of relatively lower primary sequence conservation.

125 of these aligned orthologous 3’ UTR pairs were considered by QRNA to

contain conserved secondary structures. Of these 125, 14 alignments were from the 3’

UTRs of ribosomal proteins, an example of which is shown in Figure 31. This

represents a significant overrepresentation. Further examination of the secondary

structure alignments of these UTRs showed that it was unlikely that there was a single

secondary structure element common to our set of ribosomal 3’ UTRs. Closer

observation of the alignments suggested that in this case, there might be a conserved

primary sequence which had some potential to fold into a secondary structure, though

the hairpin structure itself was not being specifically conserved. Additionally,

building each aligned pair into a covariance model (Eddy 2002) and searching

nucleotide databanks did not indicate the presence of different, functionally conserved

secondary structures.
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Figure 31. Example output from QRNA when run on a 3' UTR alignment
between a C. elegans ribosomal protein gene and its C. briggsae orthologue. The
polyadenylation signals for the two genes are shown in red. One co-variant
position is seen within the predicted secondary structure.

6.2.1. Polyadenylation Signals

The area of sequence conservation was consistently situated around the

polyadenylation signal as detected in our previous study on C. elegans

polyadenylation signals (Chapter 3).

One approach to finding an unknown, but overrepresented motif or area of

homology is to use expectation maximisation. Submitting C. elegans and C. briggsae

ribosomal mRNA 3’ UTR sequences to the MEME program (Bailey et al. 1994) both

discovered similar motifs, again based around the polyadenylation signal. Figure
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32(a) shows the motif found by MEME by submitting 68 C. elegans ribosomal

protein 3’ UTRs. The AATAAA in the centre represents a real polyadenylation signal.

Figure 32(b) shows the same for 68 C. briggsae 3’ UTRs, whose genes are the best

one-to-one orthologues of the 68 C. elegans genes. In contrast Figure 32(c) shows the

expected base composition about 940 experimentally confirmed C. elegans

polyadenylation signals.

Figure 32. The nucleotide distribution observed in the region around the
polyadenylation signal in (a) 68 C. elegans ribosomal protein genes, (b) 68 C.
briggsae  one-to-one orthologues of the genes in (a), and (c) 940 experimentally
confirmed polyadenylation signals from C. elegans.
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By observation, the sequence directly after the AATAAA motif appears

different in the ribosomal mRNAs, with consensus TTGTT. The ribosomal sequences

also appear to show higher than typical levels of G bases upstream of the signal, and

indeed many have TTGTT, but at variable distances upstream, so the pattern is not

visible in a simple alignment. We therefore conjecture that TTGTT sequences in the

near neighbourhood of the polyadenylation signal may be important for ribosomal

genes. We therefore decided to analyse a large set of aligned ribosomal protein 3’

UTRs, anchored on the polyadenylation signal.

6.3. Model building

6.3.1. Data acquisition

One kilobase sequences representing possible 3’ UTRs from 84 ribosomal

proteins were extracted from WormBase (http://www.wormbase.org/). 68 of these had

putative one-to-one orthologues in C. briggsae. Polyadenylation signal predictions

(Chapter 3) were run on each sequence, and an alignment of the signal and the 20 nt

flanking it on each side was forced by anchoring on the polyadenylation signal. There

were 136 sequences in the alignment. The Jalview alignment viewer (Clamp et al.

2004) was used to hand-edit the alignment (Figure 33) so that TTGTT motifs either

side of the polyadenylation signal were aligned. Any sequences without TTGTT in a

position where it could fit in the alignment were removed. Most sequences had at least

one TTGTT, but not on both sides. Some contained TTATT instead. This strict

removal process left 57 sequences.
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Figure 33. A hand edited alignment of the region around polyadenylation signal
predictions from 57 C. elegans and C. briggsae ribosomal protein mRNAs.
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6.3.2. Model building with HMMER

A motif is conveniently modelled by a hidden Markov model, as it represents

the region as a network of interconnected states, each with characteristic nucleotide

frequencies. Variable insertion probabilities can model different motif spacings. The

alignment in Figure 33 was built automatically into a hidden Markov model (Figure

34), which can capture sequence motif profiles using HMMER

(http://hmmer.wustl.edu). This model was used to search a set of 22156 3’ UTR

candidates from C. elegans (that is, the 1000 bases 3’ of each predicted gene’s STOP

codon, or the longest length up to 1000 nt before overlapping into the 3’ gene.) Hits

above 20 bits were reported. This generated 470 hits, of which 300 flanked a

predicted polyadenylation signal. These 300 hits could be split into two groups of 150,

the first containing an exact TTGTT…PolyA_Signal…TTGTT, with the other set

containing at least one mismatch to one or more of the TTGTT motifs.

Figure 34. Summary of the HMM built from the alignment of 57 ribosomal
mRNA polyadenylation signals.
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Both sets contain hits to non-training set ribosomal protein genes, along with

other genes. However, there are two potential disadvantages to this method. One is

that hits containing non-canonical AATAAA polyadenylation signals are penalised, as

the signal forms part of the overall motif pattern. (Figure 35) shows HMMLS hits on

two sequences, which are identical apart from seq1 containing AATAAA, and seq2

TATAAA. The seq2 score is 2.5 bits lower than the seq1 score, and using a cutoff of

20 bits, seq2, which comes from WormBase CDS F39B2.6 (40S ribosomal protein

S26), would be missed as a false negative.

Figure 35. Output from HMMLS searching two sequences for hits to the HMM
constructed from an alignment of ribosomal mRNA polyadenylation signals
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The other problem is that the separation of the TTGTT to the polyadenylation

signal has a distinctive length distribution, as does the separation on the 3’ side of the

signal. HMMER does not model these two different length distributions explicitly, but

rather allows hits to contain gap symbols with a penalty score, corresponding to a

negative exponential distribution of gap length. The observed gap length distributions

in our alignment are more flat upstream of the signal, and have a definite length

preference downstream.

6.3.3. A more specific model

Both of the problems described above can be solved by incorporating the

ribosomal motif information into a PAjHMMA model for the whole region. This

‘ribosomal’ model can be compared to our standard ‘background’ polyadenylation

model to find cases which closest resemble how the TTGTT motifs flank the

polyadenylation signal in the ribosomal protein mRNAs. The benefits of using

PAjHMMA are that the models are polyadenylation signal-aware, unlike HMMER,

and can explicitly model the observed separation between TTGTT and AATAAA

motifs.

The ribosomal polyadenylation signal PAjHMMA model (Figure 36) is

derived from the standard polyadenylation signal model. There are 12 additional

states. TTGTT motifs (each with a state for each of the 5 columns) are inserted either

side of the AATAAA motif states. The separations (from the AATAAA motif)

between the upstream and downstream TTGTT motifs, are each modelled with

distinctive lengths, corresponding to two more states, U and D. The ribosomal model
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forces each sequence to pass through both TTGTT motifs, though the two separator

states can be bypassed with a probability reflecting the occurrences of upstream or

downstream separator length being zero. The TTGTT motifs themselves are built

empirically, scoring 1/100 for a mismatch and 97/100 for a match. In the third

column, the occurrence of A is penalised to a slightly lesser degree than the others,

scoring 5/100.

Figure 36. State transition diagram for ribosomal polyadenylation signal model.
Circular states have geometric length distributions, boxes represent weight
matrices, and diamond states have explicitly modelled lengths. Where transition
probabilities are not given, they are set to the same values as in the standard
model given in Chapter 3.
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As discussed in Chapter 2, one of the by-products of the forward and backward

algorithms is P(x), the probability of the sequence given the model, or the probability

that the sequence was generated by the given model. For any given sequence, we find

this value given the extended ribosomal polyadenylation signal model, and the

standard C. elegans polyadenylation signal model. The difference in the logarithms of

the probabilities is a bit score measuring how well the sequence fits the ribosomal

model relative to the background.

The observed length distributions upstream (Table 9) and downstream (Table

10) of the AATAAA motif are given below.

Table 9. The length distribution observed between the upstream TTGTT motif
and the polyadenylation signal from 57 ribosomal protein mRNA sequences.

Length i u(i)
0 0.054
1 0.071
2 0.125
3 0.071
4 0.143
5 0.125
6 0.107
7 0.089
8 0.107
9 0.107

Table 10. The length distribution observed between the polyadenylation signal
and the downstream TTGTT motif from 57 ribosomal protein mRNA sequences.

Length i d(i)
0 0.357
1 0.285
2 0.089
3 0.071
4 0.107
5 0.089
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6.4. Model testing

To test whether the ribosomal model is able to differentiate ribosomal protein

3’ UTRs, bit scores relative to the standard model were found for sequences from four

different sets. The four sets were:

(1) Predictions made over 22069 C. elegans non-ribosomal protein 3’ UTRs.

(2) Predictions from 54 C. elegans ribosomal sequences, that were not included in

model training.

(3) Predictions made on 104 sequences of 3’ UTRs from C. elegans. The proteins

of these genes represent the best BLASTP hit for 165 proteins from S.

cerevisiae, that are implicated in pre-ribosomal complex formation in yeast

(Fromont-Racine et al. 2003), but the set includes few ribosomal proteins.

(4) Predictions made on 63 C. briggsae orthologues of the 100 genes from set (1)

that had the highest bit score under the ribosomal model.

6.5. Results

Figure 37 shows that the distributions of score for ribosomal and non-

ribosomal proteins do appear to be different. The peaks in the 0 and 5 bit regions are

caused by single and double mismatches respectively to TTGTT, either upstream or

downstream of the polyadenylation signal. The C. elegans orthologues of the yeast

proteins involved in ribosome assembly have a similar score distribution as the non-
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ribosomal protein set, but does contain a ‘shoulder’ of higher bit scores. It could be

that the motif confers some function or fate involving ribosomal protein mRNAs that

is distinct from ribosome assembly, and a subset of the ribosomal assembly complex

have strong matches to the motif.

Log odds score of sequences, given the ribosomal hidden Markov 
model, relative to the standard polyadenylation signal HMM
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Figure 37. The bit score histogram resulting from finding the log(2) probability
of various 3' UTR sequence sets under the ribosomal model minus the log(2)
probability under the standard model. Dark blue: All C. elegans non-ribosomal
protein genes - this is the background distribution. Pink: C. elegans ribosomal
protein genes. Green: C. elegans orthologues of yeast ribosomal assembly
complex. Light blue: C. briggsae orthologues of C. elegans genes scoring over 7.5
bits.

One hundred C. elegans non-ribosomal protein 3’UTRs have a bit score

greater than 7.5 bits. Looking at the 63 C. briggsae orthologues of these high scoring

C.elegans genes shows that the appearance of high scoring motifs in the 3’ UTR are
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not necessarily completely conserved between species. However, a subset (13%) of

these C. briggsae sequences do appear to have high scores (> 5.5 bits) which are

conserved. A cutoff of 5.5 bits still allows significant overlap with the score

distribution of the ribosomal protein genes.

The highest scoring 100 of the non-ribosomal predictions (~0.5% of the total)

all score over 7.5 bits. These 100 predictions come from genes which may therefore

have some function related to that of the ribosomal protein genes. Most of these (77)

have some annotation evidence, either from WormBase, or from analysis of protein

domains and BLASTP homologies to better annotated proteins. Appendix I shows the

set of 77 C. elegans polyadenylation signal predictions where the motif score was

greater than 7.5 bits. Those genes thought to have some role related to that of the

ribosomal proteins are marked with an asterisk. For those C. elegans genes with a

putative C. briggsae orthologue, ribosomal motif log odds scores were also found for

the orthologue’s 3’ UTR. The ranks of the log odds scores are also provided in the

Appendix.

There are 22 (29% of the 77 having annotation) whose annotations confirm

likely function in translation. Genes in this annotated set include 3 genes related to

eukaryotic translation factors, 5 involved in tRNA synthesis and processing, and 11

contributing to ribosomal and rRNA maturation. These can be seen in Table 11.
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Table 11. A subset of the C. elegans genes having polyadenylation signals closest
resembling those seen in ribosomal proteins. These have a log odds score that is
within the top 0.5% of scores. These are the 22 (of 77) whose annotation suggests
involvement in translation.

Elegans 
CDS

Elegans log 
odds score

Briggsae 
CDS

Briggsae 
log odds 

score
Description

Y48A6B.3 10.909 CBG18231 10.620

Contains Protein domains known in
Ribosomal proteins. Similarity to L7.
COG suggests Box H/ACA snoRNP
component, involved in ribosomal RNA
pseudouridinylation 

F10E9.11 10.878 CBG16573 -3.314
Similarity to elegans helicase, but also
similar to Rat splicing factor and Yeast
rRNA processing protein

F10E7.5 10.711 CBG13068 2.064

Similar to Ribosomal protein L-10 (may
be L-10?) Similar to non-elegans
ribosomal proteins. Cog suggests
involved in mRNA turnover

W06H3.2 10.681 CBG23897 -5.100 pus-1 encodes a putative tRNA
pseudouridine synthase 

C28H8.11a 10.228 no_briggsae - Trp dioxygenase - trp Metabolism  

Y105E8B.7 9.827 CBG19797 -7.843
YEATS family domain - cog suggests
similarity to eukaryotic transcription
factor IIF

ZK524.3b 9.65 no_briggsae - lrs-2 Leucyl tRNA synthetase - probably
mitochondrial

C50F2.1 9.265 no_briggsae - Contains ARM fold often found in RNA
binding.Tranlation initiation proteins

T01C3.7 9.196 CBG11588 11.559 fib-1 Fibrillarin - nucleolar rRNA
processing

Y45F10D.7 9.079 CBG22378 3.040 WD40 repeats - thought to be involved
in 18S rRNA maturation

Y56A3A.11 8.807 no_briggsae - tRNA splicing endonuclease

K07E8.7 8.688 CBG19546 1.800 Mitochondrial pseudouridylate synthase
(RNA)

C01B10.8 8.577 CBG05389 4.274
Spermine/spermidine synthase has S-
adenosyl-methione dependent
methyltransferase activity

F28D1.8 8.413 no_briggsae - Possible peptide-prolyl cis-trans
isomerase

W02A11.1 8.096 CBG13601 2.567
Cog suggests tRNA(1-methyladenosine)
methyltransferase, subunit GCD14
[KOG2915]

Y24D9A.4c 7.995 no_briggsae - Ribosomal protein rpl-7A/rpl-8

F18A11.6 7.758 no_briggsae -
SNAP50 - Small nuclear RNA activating
protein complex - 50kD subunit
(SNAP50) 

T23D8.7 7.734 CBG03777 5.666 High similarity to eif-2C/argonaute
T03F1.7 7.347 CBG11970 1.548 rRNA methyltransferase
F36A2.2 7.337 CBG12371 8.207 tRNA modification

C07E3.2 7.268 CBG02729 -4.740 Predicted protein involved in nuclear
export of pre-ribosomes

W04B5.4 7.148 CBG15659 -6.639 Mitochondrial rpl-30
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Of these 22, 15 have a C. briggsae orthologue. 4 of these contain a motif score

of greater than 5 bits (giving significant overlap with the distribution of ribosomal

genes), of which two are greater than 10 bits. The signal appears to be conserved

across species in only a small number of genes. Bearing in mind the width of the

distribution of the bit scores of ribosomal protein 3’ UTRs (Figure 37) and the

observation that many ribosomal sequences were discarded from the 136 total during

model building to arrive at 57, the function, if any, provided by this motif may be

highly specialised within translation.

6.6. Discussion

It has been observed that the regulation of synthesis of the translational

apparatus is at the translational level (Meyuhas 2000). Ribosomal protein mRNAs

commonly contain a 5’ terminal oligopyrimidine tract (TOP) (Levy et al. 1991),

which is thought to bind to La protein (Cardinali et al. 1993) with Cellular Nucleic

Acid Binding Protein binding downstream (Pellizzoni et al. 1997). Subsequently,

other genes involved in translation and its regulation have been found to have TOP

mRNAs (Meyuhas 2000). The studies carried out in vertebrates suggest that there is a

precedent for searching for some form of class-specific regulation at the mRNA level

in the nematodes.

An important aspect of nematode molecular biology is the phenomenon of

trans-splicing (Blumenthal and Steward, 1997). Approximately 70% of C. elegans

genes are trans-spliced, including all but two of the ribosomal proteins. The efficiency

of the trans-splicing reaction and the introduction of the conserved trans-splice leader
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sequence means that these genes have a very short 5’ UTR, often of just a few bases.

There are only two ribosomal protein genes that do have long 5’ UTR sequences as

determined by EST (Expressed Sequence Tag) alignment. A large number of the

supporting ESTs start with ACTTTT, which is pyrimidine rich, and potentially a good

match to the TOP sequence.

Given the lack of 5’ UTRs in many nematode ribosomal protein mRNAs, it

could be that the element allowing their common control is in the 3’ UTR. Of the

high-scoring set of genes observed above, it seems quite plausible that genes such as

fibrillarin, which is involved in rRNA processing, should be under common control

with the ribosomal protein genes. It is additionally promising that fibrillarin has the

highest bit score in C. briggsae. The appearance in this set of some genes, which are

unlikely to be involved in translation however, suggests that the motif alone may not

be specific for this function.

6.7. Conclusions

We have seen in this chapter that some ribosomal protein genes from both C.

elegans  and C. briggsae contain a distinctive sequence motif around the

polyadenylation signal. This motif is also found around the polyadenylation signals

from other genes, some of which are known to be involved in translation.

There may be other regulatory sequence motifs related to other functions. The

motif described here was found by the coordinated analysis of ribosomal protein

genes; similar functional clustering has been used previously to find novel regulatory

motifs, such as in histones (Dominski et al. 1999).
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One suggestion for future work would be to see if this sequence motif is

specific to nematodes or whether it is found in a wider range of other species. If it is

only required in a subset of ribosomal protein mRNAs, it would be interesting to

rationalise why this subset in particular might need some sequence motif. Another

approach would be to obtain direct experimental evidence for its function.

6.8. Collaboration – the analysis of another 3’ UTR binding
motif

I was involved in collaboration with David Bernstein from Professor Marvin

Wickens’ lab at the University of Wisconsin-Madison. The work concerned an

example of an evolutionarily and functionally conserved 3’ UTR motif. This is that

found in genes regulated by the PUF proteins (Wickens et al. 2002). These proteins

are thought to bind to the 3’ UTR of target genes, and thus repress expression by the

separate mechanisms of promoting mRNA degradation or interfering with the

formation of the mRNA-protein particle (mRNP). Repression by PUF proteins is

particularly important during development; they are thought to maintain stem cells by

preventing premature differentiation, and to repress the C. elegans feminine-repressor

fem-3, thus permitting switching from spermatogenesis to oogenesis in

hermaphrodites.

Looking for 3’ UTRs containing binding sites for PUF proteins can give an

insight into the timing and targets of regulatory events in development. Although

methods for identifying protein-RNA binding exist (Bernstein et al. 2002), it would be

prohibitively onerous to carry out such an analysis on a whole-genome scale.

Accurate computational detection of PUF protein binding sites can reduce the search
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space to a tractable size, and in addition, can provide independent confirmation of in-

vitro/vivo work.

In a collaborative project (see Appendix II), (Bernstein et al. 2005) used

mutagenesis to identify nucleotides that are essential for the binding of a C. elegans

PUF protein, FBF-1, to a target 3’ UTR. Several rounds of mutagenesis allowed the

development and optimisation of binding consensus. The identification of essential

“core” and influential “flanking” bases within the RNA sequence enabled us to build

binding site consensus models (Dsouza et al. 1997), that constrain core residues whilst

allowing for degeneracy outside the region. These were used to search against the set

of C. elegans 3’ UTRs. This computational search enabled the establishment of a set

of 150 possible targets for FBF-1. In the collaborative paper, yeast three-hybrid

analysis confirmed the formation of mRNA-FBF-1 complexes by 70% of a

representative set of sequences from this candidate set. This shows that the

computational model is a reasonable. The further analysis of the 3’ UTR sequence

from those genes found experimentally to have FBF-1 binding sites could be used to

refine the model. This way, a combination of computational and laboratory techniques

has furthered our knowledge of developmental biology. It serves also as a good

example as to how genes can be co-regulated at the post-transcriptional level by a

sequence motif in the 3’ UTR.
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7. Conclusions

Whole genome sequences are now being made available at a rate, the order of

which the early pioneers of DNA sequencing could only have dreamed. However, in

order to achieve a commensurate understanding of systems and molecular biology, it

is necessary to annotate these genomes accurately and to develop new computational

tools to help us. Each genome must be interpreted, both in itself and (now

increasingly importantly) in the context of others, so that functional, regulatory, and

evolutionary information can be found. Without annotation, a genome sequence is of

little use.

In this thesis, the main motivation has been the problem of polyadenylation

signal prediction. Polyadenylation signal prediction can serve as an alternative method

to transcript alignment for annotating 3’ UTRs. Some evidence for alternative

polyadenylation can also be found. Although it does not provide all the information

that we gain by having full-length transcripts, computational polyadenylation signal

detection is fast and easy by comparison, and complements data found in the

laboratory.

In Chapter 3, by the assembly and functional alignment of large sets of

experimentally confirmed cleavage and polyadenylation sites, I have shown that the

information specifying this important signal is encoded within nucleotide frequencies

in the vicinity. I have shown that a hidden Markov model approach is appropriate for

detection of such signals.

The first models built were for the detection of polyadenylation signals in C.

elegans. Sensitivity in this organism may approach 90%, and the model appears to be
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able to simulate observed cleavage site frequencies in deep alignments with large

amounts of cDNA evidence.

I have provided a set of high confidence 3’ UTR sequences that are extended

to a cleavage site, rather than some end defined by the 3’ end of a clipped EST. Data

from this analysis is already being found useful by the scientific community

(Hieronymus et al. 2004; Porter et al. 2005; Zhang et al. 2005).

The parameters (such as emission frequencies and number of states) required

for signal detection in other species such as mouse, human, and fruitfly vary from

those developed for C. elegans. However, the core algorithms required for annotating

a sequence with an HMM remain the same. The problem of how to implement these

algorithms, coupled with the need to quickly modify a model (such as by the addition

of a new state) led to the development of PAjHMMA (Chapter 2). This is a flexible

framework for decoding a generalised hidden Markov model against a DNA

sequence. Changing model parameters require no changes to the code, but simply to a

text file containing a representation of the model, the states, and their properties.

One other key feature of PAjHMMA is its ability to decode generalised

HMMs. This does not lose encoded length information, thus improving over the

(ab)use of generic protein profile HMM software.

In chapter 4, I extend the work carried out in C. elegans, and show that

distinctive nucleotide biases are a feature of polyadenylation signals in other species.

The flexible framework shows itself to be robust and adjustable for use in species

other than the one for which it was originally developed. For D. melanogaster, this

work represents the only example of polyadenylation signal prediction specific for

this species that I am aware of. In mouse and human, the performance of my software

is slightly greater than existing methods at the sensitivity level. On the data set given,
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the HMM also has a slightly higher lower bound for specificity. All three methods

tested detect about 50% of all signals. An annotation pipeline could possibly use all

three groups’ software to generate a set of high confidence predictions if all three

predict at the same site.

Chapter 5 concentrates on the change, gain and loss of polyadenylation signals

over the course of nematode evolution. By comparing orthologous genes in C. elegans

and C. briggsae, over 60% of sites are not conserved, even when the relevant 3’ UTR

sequence can be aligned. This demonstrates a high turnover of cleavage and

polyadenylation sites. High turnover of transcription factor binding sites have been

observed in other organisms’ enhancers (Ludwig et al. 2000), and thus it appears that

our observations are another case where there is high turnover of protein-binding

sites.

In about 40% of aligned orthologous 3’ UTR pairs, polyadenylation signals

are aligned. About a quarter of these aligned hexamer pairs show a mutation, such that

different variants of the AATAAA motif are used. The pattern of mutation is striking.

I have previously mentioned the importance of 3’ UTR regulatory motifs. In

chapter 6, I show that clustering a set of genes known to function together reveals the

conservation of a sequence motif either side of the polyadenylation signal. This signal

is conserved in C. briggsae. In this case, the motif is found initially in the 3’ UTR of

ribosomal protein genes. Searching for matches to the motif in other C. elegans genes

shows that it appears in some other genes having some function in translation. It is

extremely likely that ribosomal genes are co-expressed, alongside the other genes

containing the motif such as translation elongation factors. The appearance of this

motif in C. elegans genes implicated in translation, coupled with its conservation
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between the two nematodes (within ribosomal protein genes), suggests that it has

some regulatory function.

This thesis has focussed on the detection of polyadenylation signals by HMM

methods. Other sequence features could also be modelled. Future projects that could

benefit by utilising the PAjHMMA framework are limited only by researchers’

imaginations. Although beyond the scope of this work, it would be quite possible to

provide parameters for an entire gene model incorporating a full 3’ end model. In

particular this may aid in increasing accuracy of terminal exon prediction.

My work has concerned detection and analysis of a sequence feature that is

required for mRNA processing; its accurate detection will give access to 3’ UTR

sequences in many species. Their coordinated analysis should facilitate the discovery

of conserved regulatory regions. It is this form of annotation, coupled with

breakthroughs in detecting and analysing other sequence features such as promoters

and non-coding RNA genes, that will best complement our current use of protein

coding gene annotation and thus fuel our further understanding of systems biology.
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