
 

 

 

 

 

 

 

Chapter III 

Characterizing the functional classes of mosquito hemocytes 
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1 ScRNA-seq: a new era of cell biology 
 

“Omnis cellula e cellula”  
– Rudolf Virchow 
 
The invention of the microscope revolutionised biological investigations. This new technology 

allowed Robert Hooke to publish in 1665 Micrographia, a collection of his microscopic 

observations. Among these were the depictions of the microscopic units of cork, classically 

considered the first description of cells. Indeed, in Latin cella means a ‘little room with a rigid 

wall.’ And cellular biology was born [325]. 

  
 It took time however to progress from this basic definition of a cell to modern cell 

biology. In 1896 E.B. Wilson finally defined the cell as “the basis of life of all organisms.” 

[326] However, the foundations for this conclusion were laid even earlier, in 1861 by Max 

Schultze, who recognised the importance of a cell not for the rigid wall enclosing it, but rather 

for what it contained. He set out his vision poetically, defining the cell as a “naked speck of 

protoplasm with a nucleus” (where protoplasm is now called cytoplasm) [327]. Nuclei had 

nevertheless been observed before, first by abbot Fontana in 1781, and then by Robert Brown 

in 1831, who recognised the nucleus as an essential component of cells. Finally, in 1838-9 

Jakob Schleiden and Theodor Schwann formulated modern ‘cell theory’ for the first time, 

declaring “the elementary parts of all tissues to be formed of cells.” [328–331] However, it was 

only in the 1850s through the work of Remak, Virchow, and Kölliker that cells were shown to 

form through scission of pre-existing cells, finally disputing the theory of spontaneous 

generation. Virchow went even further, showing cells not only to be the basic unit of life, but 

also of human pathology [332, 333].  

 
 Finally, as the 19th century came to a close, further technological advances in 

microscopy led to the discovery of all the major organelles we now know comprise a cell, 

spearheaded by work of Camillo Golgi [334]. Golgi was also responsible for disproving the 

theory that nervous tissue formed a completely interconnected syncytium. The development of 
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the ‘black reaction’ and the work of Santiago Cajal completely dispelled the syncytium theory 

and confirmed the neurons as the basic cellular unit of the brain [335, 336].   

 

 Single-cell transcriptomic techniques are now becoming just as transformative in 

morphing our understanding of cells, their identities, origins, and functions. Since Hooke’s first 

observations of a cell now almost four centuries ago, generations of scientists have toiled to 

catalogue and describe all the different cell types in humans, animals, and plants by looking at 

morphology and function. Before the advent of scRNA-seq it was thought 210 different cell 

types existed in the human body [337]. And yet, the diversity within all of these cell types is 

still bewildering. Even markers traditionally thought to define individual cell types in fact 

isolate multiple subtler subtypes of cells. Nowadays however we are able to measure the 

expression level of genes in each individual cell and thus define its circuitry through single cell 

transcriptomics. But then, what is a cell state, and what is a cell type? When does a 

transcriptional perturbation define the advent of a new cell? And when is that perturbation a 

transition point between different cell types, and when the consequence of stochastic processes 

with no long-term consequences on cellular function? These are still very much active areas of 

investigations, but at least we now do have for the first time the tools to look anew at the 

cellular landscape of organisms, with a fresh set of eyes, and yet the same thirst for discovery.   

 

We applied these technologies to mosquitoes. Three hemocyte types have been 

described in Anopheles and Aedes based on their morphology[4]. Granulocytes are highly 

phagocytic cells of about 10-20 µm, while oenocytoids are relatively smaller (8-12 µm), round 

cells that produce melanin, an insoluble pigment involved in wound healing and pathogen 

containment by encapsulation.  Finally, prohemocytes are small round cells (4-6 µm) with a 

high nuclear to cytoplasmic ratio, thought to be precursors of the other two cell types.  

Hemocytes can be circulating or sessile, and alternate between these two states[146, 150]. 

However, the full functional diversity of mosquito hemocytes and their developmental 

trajectories have not been established, and it is not clear to what extent morphologically similar 

hemocytes are functionally equivalent. Here, we use single cell RNA sequencing (scRNA-seq) 
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to analyse the transcriptional profiles of individual mosquito hemocytes in response to blood 

feeding or infection with Plasmodium. We reveal a previously unknown functional diversity 

of hemocytes, with different types of granulocytes expressing distinct and evolutionarily 

conserved subsets of effector genes. And we identify two basic lineages and differentiation 

pathways in prohemocytes and granulocytes, and we discover new hemocyte populations and 

markers of immune activation. Finally, a comparison of hemocyte types from Anopheles and 

Aedes show that some are shared, while others appear to be unique to each mosquito species. 

 

 

1.1 Aims 
 

1. To investigate the diversity of the adult A. gambiae M-form (A. coluzzi) hemocytes in 

response to Plasmodium infection by scRNA-seq. 

2. To identify markers of cell types and states and generate RNA-FISH probes and antibodies 

for functional studies. 

3. To learn about cell lineages of hemocyte subtypes and their differentiation to functional 

effector subtypes. 

4. To validate bioinformatic results microscopically in A. gambiae M-form (A. coluzzi) and 

A. gambiae (G3 NIH strain), and characterise hemocyte types in sections, whole-mounts 

and isolated hemolymph of the mosquito through RNA-FISH 

5. To compare Anopheles hemocytes with Aedes hemocytes 

 
 

1.2 Colleagues 
 
Dr. Ana Beatriz Ferreira and the NIH imaging core prepared the single hemocytes RNA-FISH 

/ morphology correlative images, and prepared Aedes samples up to fixed cells. Tom Metcalf 

aided in some of the dissections for bulk RNAseq. Mirjana Efremova calculated correlation 

between Aedes and Anopheles hemocytes. All other data presented is a result of my own work 

unless stated otherwise. 
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2 Methods 
 

2.1 A. gambiae mosquito rearing and P. berghei infection  
 

A. gambiae (G3 NIH strain) and A. gambiae M-form (A. coluzzi) were reared at 28 °C, 80% 

humidity, 12-hour light/dark cycle with standard laboratory procedures. For infections we 

utilized GFP-CON transgenic P. berghei (259cl2 strain), maintained with serial passage in 

female 4-8 weeks old BALC/c mice [319]. Parasitemia was assessed by light microscopy 

following methanol-fixed blood-smears stained with 10% Giemsa and air-dried. Mosquitoes 

were blood-fed on infected mice at a parasitemia of 3-5%, with 1-2 exflagellations per field. 

Infected mosquitoes were kept at 21 °C to allow for infection and midgut invasion. To confirm 

infection 10 mosquito midguts were dissected 5 days post blood-feeding and oocysts counted 

by fluorescence. Aedes mosquitoes were reared and challenged as of Chapter II.2.1-2.4. 

 
2.2 Hemocyte collection, fixation, cell counting 

 
For details of collection apparatus and collection methodology see Chapter II.2.5. Hemocytes 

were collected by gradually injecting in the thorax of cold-anesthetized mosquitoes 10 µL of 

anti-coagulant media (2 µL at a time) composed of 60% Schneider’s insect media, 30% citrate 

buffer, 10% heat-inactivated fetal bovine serum, final pH 7.0-7.4, sterilized by 0.22 µm 

filtration. A total volume of 10 µL was collected per mosquito (8-12 mosquitoes per condition) 

and transferred with a sterile non-stick pipette tip into 500 µL vivoPHIX at room temperature. 

Cells were fixed for 2 hours at RT and then stored at 4C until Chromium 10X processing.  

 
2.3 RNA extraction and bulk RNAseq library preparation 

 
For bulk RNAseq hemocytes were collected as described above from 8 mosquitoes, but 

transferred directly in 500 µL of TRIZOL reagent (Invitrogen). From the same mosquitoes, 

midguts and carcasses were transferred into separate 1.5 mL Eppendorf tubes containing 150 

µL TRIZOL reagent by Tom Metcalf. The samples were well triturated with an electrical 
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homogenizer and disposable pestles before adding 350 µL more TRIZOL reagent and mixing. 

Samples were allowed to lyse for 15-30 minutes at room temperature to allow for full 

dissociation, then stored at 4C overnight and then at -20C until RNA extraction. Non-hemocyte 

samples were then spun for 12,000 RCF, 10 minutes at 4C to remove all insoluble material. 

The supernatant, as well as the homogenate of hemocyte samples were transferred to Phase 

Lock GelHeavy 2 mL tubes that had been pre-spun for 1500 RCF for 1 minute, and allowed to 

incubate for 5 minutes at room temperature. 100 µL of chloroform (200 µL per 1 mL TRIZOL) 

was added, the tubes capped, and then vigorously shaken for 15 seconds. Samples were then 

centrifuged for 12,000 RCF, 10 minutes, 4C. If the clear, aqueous phase was still mixed with 

TRIZOL matrix then 100 µL more of chloroform was added, and the samples again mixed 

vigorously and spun as before. The aqueous phase was then transferred to a fresh 1.5 mL 

Eppendorf tube and the RNA precipitated by adding 0.25 mL of isopropyl alcohol (500 mL per 

1 mL TRIZOL reagent used). For midguts and hemocyte samples 20 µL of glycogen (5 mg / 

mL) were also added to aid in precipitation and pelleting. Samples were mixed by repeated 

inversion 10 times, incubated at 10 minutes at room temperature, and then spun at 12,000 RCF, 

10 minutes, 4C. All the supernatant was removed, and the RNA pellets washed twice with 75% 

ethanol (minimum 1 mL of ethanol per 1 mL of TRIZOL used). Each time the samples were 

mixed by vortexing and centrifuged 7,500 RCF, 5 minutes, 4C. At the end, the supernatant was 

removed and samples air-dried until almost dry, but not completely (still translucent). RNA 

was resuspended with 20 µL of RNAse free water for hemocyte samples, 30 µL for midgut 

samples, and 70 µL for carcass samples, pipetting a few times to homogenize and then 

incubating at 55C for 10 minutes to completely resuspend. Samples were then stored at -20C 

until library preparation by Bespoke Low-Throughput Team at the Wellcome Sanger institute. 

Total RNA quantity was assessed on a Bioanalyser and ranged from 300 ng to 39 µg. mRNA 

was then isolated with the NEBNext Poly(A) mRNA magnetic isolation module. RNA-seq 

libraries were prepared from mRNA using the NEBNext Ultra II Directional RNA Library Prep 

Kit for Illumina (New England Biolabs) as by manufacturer instructions, except that a 

proprietary Sanger UDI (Unique Dual Indexes) adapters / primer system was used. 

Furthermore, Kapa Hifi polymerase rather than NEB Q5 was employed.  
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Fig. III.1 Bulk RNAseq proprietary Sanger UDI adapter / primer system. Used with 
NEBNext Ultra II Directional RNA Library Prep Kit. 
 
 

2.4 scRNA-seq library preparation 
 

2.4.1 Smart-seq2 

See Chapter II.2.8.1 for details. 61 cells passed initial QC after Smart-seq2, as defined by wells 

containing a majority of sequenced reads mapping onto the A. gambiae genome. These cells 

were processed downstream as ChapterIII.2.8.2, and 48 cells passed stricter QC (>100 features 

per cell and <30% total reads in mitochondrial genes) 

2.4.2 Chromium 10X 
 

Fixed hemocytes were mixed with one volume of pure molecular grade ethanol before 

centrifugation for 30 minutes at 3k RCF at room temperature. Supernatant was discarded and 

pellet resuspended in pure molecular grade water before 10X Chromium scRNA-seq library 

processing. See Chapter II.2.8.2 for details.   

 

2.5  Sequencing 
 
For bulk RNAseq samples HS4000, (using kit version 1) 75PE (RNA): libraries were run on 

the Illumina HiSeq 4000 instrument with standard protocols using a 150-cycle kit set to a 75bp 

paired-end configuration. Libraries supplied at 2.8 nM and loaded with a loading concentration 

of 280 pM. For scRNA-seq Chromium 10X V2 and V3 kits, HS4000 (using kit version 1) 10X 

V2 and V3 read lengths: libraries were run on the Illumina HiSeq 4000 instrument with 

standard protocols using a 150-cycle kit set. As recommended by 10x Genomics an elongated 

reverse read was used during the sequencing run.  For V2, the read lengths were as follows: 

Read 1: 26 bases, index 1: 8 bases, read 2: 98 bases. For V3, read lengths were as follows: Read 
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1: 28 bases, index 1: 8 bases, read 2: 91 bases. Libraries supplied at 2.8 nM and loaded with a 

loading concentration of 280 pM. For quality control, lanes passed QC if tags were decoded 

appropriately, reference matches were as expected either A. gambiae or A. aegypti, quality 

metrics met in-house expectations, other run metrics such as error rates were as expected, and 

yield expectation was met (given the number of cycles run and/or platform expectations). The 

data was then fit to the sequencing requested and any significant deviation from expected 

explained and appropriately annotated. For assessment two main pieces of software were used. 

Sequencing Analysis Viewer (SAV) was used to assess the instruments’ performance. The 

Summary tab gave statistics for the whole run in question whereas the Analysis and Imaging 

tabs allowed QC to delve deeper and assess if the lanes have performed as expected across all 

the cycles of the run. NPG pages was used both for staff analysis and annotation, and user’s 

visualisation of data. NPG is an in-house bespoke analysis/software package to include tag 

analysis, reference matching/mapping details and contamination which is the final point where 

lanes or tags in the run either passed or failed QC. 

 
2.6 RNA-FISH 

 
2.6.1 Whole mount 

 
Mosquitoes were cold anesthetized, micro-injected with 69 nL of 16% fresh paraformaldehyde 

(PFA) as of Chapter II.2.2, and after 15 seconds immediately dissected while bathing in freshly 

prepared 4% PFA. Carcasses and midguts were separated by adding carcasses directly into an 

Eppendorf containing 4% PFA on ice, while midguts were quickly fixed for one minute in ice-

cold fresh 4% PFA and then transferred to fresh 1X PBS where they were carefully opened 

along their longitudinal axis with two small gauge needles under the dissecting microscope to 

release the blood meal. Using the surface tension of PBS guts were gently raised up and down 

the PBS to release all blood from the gut until clean and then fixed in a 1.5 mL Eppendorf tube 

containing fresh 4% PFA. The samples were fixed overnight at 4C on a gentle rocker to 

guarantee good mixing and fixation. Non-stick tubes and pipette tips were used to prevent 

sample adhesion. In all next steps care was shown in removing solutions, as guts especially can 

stick onto or be sucked into pipette tips, or remain stuck on tube walls. Solutions were always 
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removed against a source of light to increase contrast and decrease likelihood to remove 

samples by error. Each wash was performed on a gentle rocker, as samples were fragile and 

could easily break apart.  

 

The day after collection all PFA was carefully removed and guts and carcasses washed 

twice with 1mL of PBST (0.1% v/v Tween 20 in 1x PBS). Samples were then incubated for 5 

minutes in a 40C rocking water-bath with 300-500 µL of RNAscope Protease Plus. After 

removing as much solution as possible without disturbing the samples, these were twice 

washed with 500 µL of probe diluent before following the RNAscope 4-plex Ancillary Kit for 

Multiplex Fluorescent Reagent Kit v2 technical note protocol. Briefly, the pre-mixed C1, C2, 

C3, and C4 probes were mixed and then 1 or 2 drops added into each sample tube and incubated 

for 2 hours at 40C. Samples were washed twice for 5 minutes at room temperature on a gentle 

rocker with pre-warmed RNAscope 1X Wash Buffer. Wash buffer had been pre-warmed to 

40C for 10-20 minutes before being diluted from 50X to 1X with distilled water. Samples were 

then either stored overnight in 5X SSC buffer at room temperature or immediately prepared 

for hybridisation. 1-2 drops of RNAscope Multiplex FL v2 Amp1, Amp2, and Amp3 were 

added in series and incubated for 30 minutes (except Amp3 for 15 minutes) in a rocking 40C 

water bath. Between each reagent samples were washed twice with RNAscope 1X Wash Buffer 

for 5 minutes on a gentle rocker. Then Opal fluorophores were prepared at the appropriate 

dilutions (between 1:750 and 1:3000) and each incubated for 30 minutes in a gently rocking 

water bath at 40C in the dark. Before adding each Opal, samples were treated with the 

corresponding RNAscope Multiplex FL v2 HRP-C(1/2/3/4) for 15 minutes in a gently rocking 

water bath at 40C in the dark. Then, samples were treated with RNAscope Multiplex FL v2 

HRP-Blocker for 15 minutes in a gently rocking water bath at 40C in the dark. Between all 

these steps samples were washed twice with RNAscope 1X Wash Buffer for 5 minutes on a 

gentle rocker in the dark. Finally, as much wash buffer was removed before adding 1-2 drops 

of DAPI for 30 seconds. DAPI was then in turn removed and samples added onto a slide with 

1 drop of Prolong Gold antifade reagent. The samples were flattened in the Prolong Gold 

reagent (important: without DAPI or background fluorescence will be high) under a dissecting 
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microscope to prevent flaps and folding of the tissue. After adding coverslips corners were 

sealed with transparent nail polish and the samples let dry overnight at room temperature in the 

dark. The day after nail polish was added all around the slide to seal the samples. These were 

then stored at 4C in the dark until imaging.  

 
Probes Channel Dilution Amount Annotation 

General       
AGAP009623 C1 1:1500 Std GAPDH - mosquito + control 
AGAP008296 C2 1:3000 1/2 Trypsin - gut  
AGAP004203 C2 1:3000 1/2 Vitellogenin - fat body  
Hemocytes / Granulocytes T. I and II     
AGAP004017  C4 1:1000 1.5 LRR. All hemocytes' marker 
AGAP011974 C4 1:1000 Std SCRC1. General hemoc. marker 
AGAP000790 C3 1:1000 Std Prohem. / granulocyte marker 
AGAP003057 C1 1:1000 Std Gran. Type II  
AGAP011871  C2 1:750 Std Gran. Type I   
Rapidly dividing       
AGAP005363  C3 1:750 n/a    
Fat Body - Baseline      
AGAP007033  C1 1:750 n/a    
AGAP028406 C1 1:750 n/a APL11C   
Oenocytoids       
AGAP004981  C2 1:1500 Std PPO4   
AGAP012851 C1 1:1500 Std Aldo-keto-reductase  
AGAP012000 C3 1:1500 Std Fibrinogen/fibronectin  
Effector       
AGAP007318 C3 1:1000 1.5 Transmembrane  
Secretory       
AGAP011239 C1 1:1500 Std Some also in oenocytoids  

 
Table III.1 RNAscope probe channels and Opal dilution for whole-mounts and sections. 
See RNAscope 4-plex Ancillary Kit for Multiplex Fluorescent Reagent Kit v2 technical note 
protocol for details. ‘Amount’ column indicates the ratio of probes added to hybridization mix 
compared to standard protocol. ‘Std’ indicated standard, 0.5 is half of standard. ‘n/a’ indicates 
a probe was not successful even with the strongest Opal dilution (1:750) and highest probe 
amount. Note all dilutions were 1:750 for RNAscope of isolated hemocytes. 
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2.6.2 Isolated hemocytes 
 

Wells of µ-Slide Angiogenesis Chambers (Cat# 81506 from IBIDI) were coated with 3.5 µg / 

cm2 of Cell-Tak Cell and Tissue Adhesive (Corning, 734-1081) by first preparing a fresh 300 

µL coating solution with 10 µL Cell-Tak, 285 µL Sodium Bicarbonate pH 8.0 and 5 µL 1N 

NaOH and immediately coating the glass slides. Wells were incubated at room temperature for 

least an hour, after which they were washed with sterile water, air-dried and stored at 4C for a 

maximum of one day. 

 

Hemocytes were collected as of above but directly onto the wells. Eight mosquitoes were 

processed per sample. Hemocytes were then let to attach onto the coated wells for 15 minutes 

at 28C in an incubator, before removing all of the media, and fixing cells with 4% PFA for an 

hour at room temperature before proceeding to RNA-FISH protocol as of Chapter III.2.7.1. 

The process was made easier by not having to take care of aspirating tissue with the washes, 

however care was shown not to disperse liquid to strongly, but to always do it gently on the 

sides of the well to prevent cell detachment. Dr. Ana Beatriz Ferreira performed the isolated 

P. berghei experiments and the correlative experiments. 

 
2.6.3 Sections 

 
Mosquitoes were cold anesthetized, dipped in 100% ethanol to decrease surface tension, and 

then dipped and fixed in 10% formalin for 18-24 hours overnight at room temperature. 

Following that the Histology Core of the Sanger Institute processed the samples to make slides. 

The Sakura Tissue-Tek VIP Tissue processor on Rapid Biopsy programming was used (10 min 

VIP1 and 10 min VIP2 for each solution except: no VIP2 for 50% and 70% ethanol; first 

paraffin wax 20 min for both VIP1 and VIP2), with the following solutions in order: 50% 

ethanol, 70% ethanol, 90% ethanol, 3X 100% ethanol, 3X xylene, and 4x wax. For embedding, 

two orientations (longitudinal and transverse) were used for each condition (sugar-fed, blood-

fed and P. berghei infection), before 5 µm sectioning. H&E sections were prepared for every 

other section, with the mirror section available for RNA-FISH (RNAscope) as of above. 
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2.7 Imaging 
 
Mosquito sections and whole mounts were imaged with the 3DHISTECH MIDI II automatic 

digital slide scanner (3DHISTECH, Budapest, Hungary), with 20x and 40x objectives 

(numerical aperture 0.8 to 0.95), and a bespoke DAPI, Opal 520, 570, 620 and 690 filter sets 

and a 4.2MP 16-bit camera with wideband LED, or with a 20x bright-field camera for H&E 

mosquito sections and a 4.2MP 16-bit camera with RGB illumination. Sections and whole-

mounts were imaged with extended focus, sequential acquisition, and variable z-steps, mosaic 

size and integration. 

 

For whole-mount and hemocytes samples images were captured at the National Institute of 

Health using a Leica TCS SP8 DMI8 confocal microscope (Leica Microsystems, Wetzlar, 

Germany) with a 20x, 40x and 63x oil immersion objective (using zoom factor of 2, 3 or 4; 

numerical aperture, 1.25 to 1.4) equipped with a photomultiplier tube/hybrid detector. Samples 

were visualized with a white light laser and specific emission and excitation range were used 

depending on the fluorophore used. For these experiments we used the following spectra for 

excitation/ emission: 488/520, 550/ 570 594/620, and 670/690. DAPI was excited using a 405-

nm diode laser. Images were taken using sequential acquisition, and variable z-steps, mosaic 

size and integration. Image processing was performed using proprietary Leica LAS X and 

Imaris 9.2.1 (Bitplane, Concord, MA, USA). At the Wellcome Sanger Institute images were 

captured using a Leica TCS SP8 DMI8 confocal microscope (Leica Microsystems) using a 

40×, 63×, or 100× oil immersion objective (using zoom factor of 2, 3 or 4; numerical aperture, 

1.25 to 1.4) and equipped with photomultiplier tube/hybrid detectors. Fluorochromes were 

excited using a 405nm DMOD laser for DAPI, 488-nm CSU laser for Opal 520, a 552-nm CSU 

laser for Opal 570 and Opal 620, 638-nm CSU laser for Opal 690. Images were taken using 

sequential acquisition, and variable z-steps, mosaic size and integration. Image processing was 

performed using proprietary Leica LAS X and Imaris 9.2.1 (Bitplane, Concord, MA, USA). 
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2.8 Bioinformatics 
 

2.8.1 Bulk RNA-seq  

Sequencing reads in CRAM format were fed into a bespoke BASH pipeline to first 

automatically convert cram files to fastq using biobam’s bamtofastq program (Version 

0.0.191). Then, forward and reverse fastq reads in paired mode were aligned to the A. gambiae 

AgamP4.3 reference genome using hisat2 (Version 2.0.4) and featureCounts (Version 1.5.1) 

with recommended settings. Combined counts matrix was then produced by a python script 

before downstream data processing and analysis within R version 3.5.3 (RStudio version 

1.0.153). Downstream normalization, differential expression analysis and visualization were 

done with DESeq2 R package (Version 1.18.1) [280]. Base factor was defined as the sugar 

condition, and time 0 (non-infected). One outlier was removed (blood fed hemocyte sample at 

48 hours, experiment GR88) after plotting residuals of internal batch correction and visually 

inspecting a PCA plot. Data was normalized by making a scaling factor for each sample. First 

the log(e) of all the expression values were taken, then all rows (genes) were averaged 

(geometric average). Genes with zero counts in one or more samples were filtered out and the 

average log value from log(counts) for all genes was subtracted. Finally, the median of the 

ratios calculated as above for each sample was computed and raised to the e to make the scaling 

factor. Original read counts were divided by the scaling factor for each sample to get 

normalized counts. Then, the dispersion for each gene was estimated, and a negative binomial 

generalized linear model fitted. P values for the differential expression analysis were adjusted 

for multiple testing using the Bonferroni correction. Genes were considered as differentially 

expressed if they had an adjusted P value < 0.001 (Wald T-test) and a log2 fold change > 2. All 

body parts, conditions and timepoints were considered together while running the following 

model for differential expression analysis focused on body part, with experimental repeats, 

time, and effects of treatment (P. berghei, blood feeding and sugar feeding) as covariates: 

ddsMat <- DESeqDataSetFromMatrix(countData = countdata, colData = coldata, 

                  design = ~ 0 + experiment + time + treatment + part) 
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2.8.2 scRNA-seq 

Droplet-based sequencing data were aligned and quantified using the Cell Ranger Single-Cell 

Software Suite [246] (version 2.0, 10x Genomics) against the A. gambiae PEST, AgamP4.9 

reference genome provided by Vectorbase [338]. Cells with fewer than 100 and more than 

2500 genes and for which total mitochondrial gene expression exceeded 20% (or 50%) were 

removed. Genes that were expressed in fewer than three cells were also removed. 

Downstream analyses—such as normalization, shared nearest neighbor graph-based 

clustering, differential expression analysis and visualization—were performed using the R 

package Seurat (version 2.3.4 or 3.0.2) [256, 277, 339]. The two experimental batches were 

integrated using canonical correlation analysis, implemented in the Seurat alignment 

workflow. In the newer Seurat version, batches were integrated with a hybrid CCA / MNN 

strategy identifying ‘anchors’ of similar cells between conditions and CCs. Cells for which the 

expression profile could not be explained by low-dimensional canonical correlation analysis 

compared to low-dimensional principal component analysis were discarded. Clusters were 

identified using the community identification algorithm as implemented in the Seurat 

‘FindClusters’ function. For Seurat V2 the shared nearest neighbour graph was constructed 

using 13 canonical correlation vectors as determined by the dataset variability. The resolution 

parameter to obtain the resulting number of clusters was fine-tuned so that it produced a number 

of clusters large enough to capture most of the biological variability. UMAP analysis was 

performed using the RunUMAP function with default parameters. Differential expression 

analysis was performed based on the Wilcoxon rank-sum test. The P values were adjusted for 

multiple testing using the Bonferroni correction. Clusters were annotated using canonical cell-

type markers. We remove a blood-fed 24 hours post-feeding sample (experiment GR72) 

because it formed a technical outlier in the initial PCA-driven quality control and all cells 

clustered separately without mixing with other samples. Some clusters were further analyzed 

by partitioning the clusters separately and performing the analysis anew, with the same 
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alignment and clustering procedure. For example, all hemocytes were subdivided from other 

non-hemocyte cells and reanalyzed. 

 
Diffusion pseudotime [340] implemented in the SCANPY package [257] was applied 

to find the major non-linear components of variation across cells, using the most highly 

variable genes. The first diffusion component correlated with oenocytoids identity as defined 

by know marker genes, whereas the second diffusion component second diffusion component 

correlated with immune activation and cell division. Genes which changed along the identified 

trajectories (diffusion components) were identified by performing a likelihood ratio test using 

the function differentialGeneTest in the monocle 2 package [341]. The Seurat implementation 

of velocyto [342] was then applied to estimate RNA velocity and infer in which direction cells 

were changing along the previously inferred trajectories or UMAP. scVelo was used as an 

additional RNA velocity analysis tool to confirm the results [343]. 

Lineage tree reconstruction was performed with partition-based graph abstraction 

(PAGA) as implemented in SCANPY package [344]. The graph abstraction algorithm 

combines clustering and trajectory inference to elucidate the variability of scRNA-seq through 

discrete and continuous variables. PAGA takes into consideration a partitioned graph of 

neighbourhood relations. It quantifies distances between nodes with a random-walk based 

measure and then it quantifies what connectivity partitions there is. The abstracted graph is 

anchored on nodes which are the clusters first identified with Seurat. The differentiation tree is 

a tree-like subgraph which best explains topology. Slingshot was another highly rated lineage 

tree reconstruction software that we used to validate PAGA results [309]. With a matrix input 

representing cells in a reduced-dimensional space (UMAP) and a vector of cluster labels the 

Slingshot algorithms then built a minimum spanning tree (MST) of the clusters to infer the 

lineage structure. Finally, smooth lineage curves were built and pseudotime inferred for all 

lineages. We then used the pseudotime values calculated by Slingshot to discover differentially 

expressed genes between the identified lineages with the tradeSeq package (TRAjectory 

Differential Expression analysis for SEQuencing data) [345]. TradeSeq uses pre-calculated 

UMAP coordinates and pseudotime values to fit generalized additive models (GAMs). 
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To compare the A. gambiae with the Aedes cell types, a logistic regression with L2-norm 

regularization and a multinomial learning approach (implemented by the scikit-learn function 

LogisticRegression) was trained on the anopheles gambiae clusters. The log-transformed 

normalized data was used. The model was used to predict the probabilities of each Aedes cell 

belonging to each one of the anopheles gambiae clusters (implemented by the 

predict_log_proba function).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Functional classes of mosquito hemocytes 

3 Results 
 

Hemocytes were obtained from mosquitoes at different states of immune activation in order to 

survey their diversity. In the first experiment we collected mosquitoes at both 24- and 27-hours 

post-infection to potentially gain information about the early hemocyte response to P. berghei. 

The 48- and 72-hours timepoints were chosen to explore hemocyte changes after infection. In 

the second experiment, the 27 hours timepoint was removed to make space (cost concerns) for 

a day 7 timepoint, which we hypothesised could give information on hemocyte deactivation. 

We chose sugar feeding as baseline control. However, we also used blood feeding as control 

for P. berghei infection due to the large changes blood feeding causes in the mosquito. 

Experiment 1 Day 0 Day 1 PF Day 2 PF Day 3 PF 
Condition  24 h 27 h 48 h 72 h 
Cntrl (SF) SF X  X  X Bleed 
Cntrl (BF) BF Bleed Bleed Bleed ↓ 
 P. berghei BF ↓ ↓ ↓ ↓ 

 
Experiment 2 
and bulk Day 0 Day 1 PF Day 2 PF Day 3 PF Day 7 PF 

Condition  24 h 48 h 72 h 7 days 
Cntrl (SF) SF Bleed Bleed  Bleed Bleed 
Cntrl (BF) BF ↓ ↓ ↓ ↓ 
 P. berghei BF ↓ ↓ ↓ ↓ 

 

Table III.2 Experimental strategy: bulk and scRNAseq of Anopheles. PF = post-feeding; BF 
= blood-feeding. Experiment 1 refers to scRNA-seq repeat 1. Experiment 2 was the second 
scRNA-seq repeat and the same scheme was used for the bulk RNAseq samples. 
 
Following hemocyte capture and 10X library preparation and sequencing we then normalized 

and performed QC on all cells from an experiment together, then batch corrected the 

experiments, clustered, and investigated differences between clusters, time points, and 

conditions as of below and method chapter. 
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3.1 scRNA-seq identifies at least six hemocyte subpopulations  
 

3.1.1 QC of Chromium 10X single cell data 
 

Processed scRNA-seq matrices from each individual sample were loaded onto the R-based 

Seurat (v2.4 or v3.0) analysis suite. First, cells were filtered based on QC metrics to remove 

poor quality cells. The total number of genes (or of UMIs) within a cell is traditionally 

considered a useful marker to distinguish low quality cells or empty droplets from healthy cells. 

In addition, an excessive gene count can indicate that the original droplet contained a doublet 

or multiplet and should also be excluded. Cells were thus filtered if they were found to have 

less than 100 or more than 2500 unique genes. Then, we identified which Anopheles genes map 

to the mitochondrial genome to calculate the percentage of reads mapping to mitochondrial 

genes. Typically (though not necessarily always) damaged, dying, and low-quality cells will 

show a high ratio of mitochondrial reads to total reads. In our data-set we initially excluded all 

cells that had more than 20% of total reads mapping onto the mitochondrial genome. We 

repeated this process for both our scRNA-seq experiments, plotting data both with violin plots 

and scatter plots to identify outlier cells. We discarded outlier samples: blood-fed 24 hours 

(experiment 1 and 2), sugar-fed 48 hours (experiment 2).  

 

Filtering appeared successful in removing all outliers, with each parameter showing a 

compact distribution in both experiments [Fig. III.2]. The first experiment had a total of 7762 

cells before QC, with means of 85 genes and 221 UMIs per cell. After QC we were left with 

2081 cells (mean of 180 genes per cell, and 575 UMI per cell). In the second experiment before 

QC we had a total of 3883 cells, with a mean of 380 genes per cell and 1422 UMIs per cell. 

After QC 3162 cells remained, with a mean of 441 genes per cell and 1516 UMIs per cell. 

Statistics showed the first experiment had lower data quality than the second. Of note, samples 

from the first experiment had been stored for about a month at 4C while the second experiment 

was processed within a week of collection. 
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Fig. III.2 Seurat scRNAseq QC. (A) QC metrics for the first experiment. To the left metrics 
before QC, to the right after QC. (B) QC metrics for the second experiment. To the left metrics 
before QC, to the right after QC. nGene = total number of genes detected per cell. nUMI = total 
number of UMIs detected per cell. percent.mito = the proportion of total reads mapping to 
mitochondrial genes. 
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3.1.2 Normalisation, scaling, identification of variable genes, and PCA 
 
Data was then normalized using the Seurat global-scaling normalization method, which 

normalizes gene expression data of our cells by total expression, multiplies it by a scale factor 

of 10,000, and then takes the natural logarithm of the resulting number. Highly variable genes 

(focus of downstream analyses) were calculated with a variance stabilizing transformation 

(VST) [277, 339]. We identified 2000 variable genes in each experiment. We then linearly 

transformed the data (‘scaling’) to pre-process data for dimensionality reduction techniques 

such as PCA, the first step of an integrated analysis. Scaling reduced the importance of highly 

expressed genes. This step shifted gene expression so that the mean across cells is zero, and 

scaled expression so that variance across cells is 1. Many of these highly variable genes were 

common among the two experiments. For instance, AGAP011294, AGAP01002, or 

AGAP011230 were identified as top variable genes in both [Fig. III.3]. 

 

 
Fig. III.3 PCA profiles are similar between the two experiments (A) PCA showing the first 
two principal components for first experiment (B) and PCA of the two first principal 
components for the second experiment 
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3.1.3 Clustering reveals 9 separate cell types 
 

In Seurat 3.0, dataset aggregation was drastically improved by using mutual nearest neighbours 

(MNN) – ‘cell anchors’ – in addition to canonical correlation. Different QC parameters 

returned the same results and so we lowered stringency of mitochondrial gene filtering to 50% 

(see discussion). After aggregating the two experiments we had a total cell count of 5383 

hemocytes after QC, with a mean of 335 genes per cell, and 1142 UMI per cell. We classified 

Anopheles cell types in the hemolymph to identify nine major clusters. Most clusters could be 

further subdivided into smaller clusters by increasing the resolution of the clustering algorithm. 

However, increasing resolution typically identifies cell states rather than cell types and initial 

clustering therefore needs to be more conservative. 

 
 

 
Fig. III.4 Clustering solution of A. gambiae hemocytes. UMAP dimensionality reduction 
separates clusters of cells by overall transcriptomic similarity. Each dot represents a cell, 
whereas different colors identify clusters of similar cells. 
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3.1.4 Varying QC parameters does not alter clustering solution 
 

Compared to simple CCA integration of Seurat v2.4 the v3.0 clustering solution was well 

mixed with regards to both experimental batches as well as individual samples [Fig. III.5A-B]. 

 

 
Fig. III.5 Samples and experiments are well-mixed. (A) Both between the two experiments, 
as well as (B) between samples (separate 10X lanes and chips) 
 

The new clustering strategy is robust to a wide spectrum of parameters and is more 

unsupervised, lowering the risk of bias due to parameter selection. We nevertheless manually 

checked whether results were reasonable by raising the minimum number of genes per cell to 

150 and then to 200, without changes to cluster numbers, structure or markers genes [Fig. III.6].  

 

 
Fig. III.6 Clustering solutions are robust to gene thresholding. Manual QC iteration: 
increasing minimum gene per cell parameter stringency does not alter computer clusters. (A) 
Minimum 150 genes per cell (B) Minimum 200 genes per cell.  
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We then removed mitochondrial genes thresholding. Few cells were added and no changes in 

clustering were detected [Fig. III.7A]. Finally, we compared cells (droplets with more than 100 

genes) and background (droplets with less than 50 genes) with principal component analysis. 

Without calculating a UMAP, already the first two principal components cells and debris 

clearly separate. Combined, the QC tests demonstrate our thresholds are reasonable for this 

dataset [Fig. III.7B]. 

 

 
Fig. III.7 Clustering solutions is robust to more stringent mitochondrial filtering. Debris 
and cells are clearly identifiable. Clustering done as above, except threshold was set with (A) 
maximum 100% of reads mapping to mitochondrial genes, showing no changes (B) Principal 
component analysis of debris (blue, droplets with less than 50 genes per droplet) and cells (red, 
droplets with more than 100 genes per droplet) shows cells separate clearly from debris (PC1 
vs PC2). 
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3.1.5 Differential expression analysis identifies conserved marker 
genes for each cell cluster, and suggest cellular identity 

 
Though the Anopheles genome is poorly annotated we utilised gene ontology 

annotations from g:Profiler [346], as well as manual curation of Anopheles genes [347], to 

understand the identity of each cell cluster. The table below shows the top 10 genes for each 

cluster, annotated, while the full list can be found in the Appendix.  

 

Cluster 0       
Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP012100 RpS26 5.21E-87 0.325 0.97 0.98 40S ribosomal protein S26  
AGAP002464 - 9.33E-75 0.471 0.95 0.90 secreted ferritin G subunit  
AGAP011828 Cp1 1.00E-71 0.498 0.83 0.70 cathepsin L   
AGAP010163 RpL38 2.29E-68 0.322 0.95 0.96 60S ribosomal protein L38  
AGAP000305 - 6.01E-58 0.383 0.88 0.70 SPARC   
AGAP004936 - 5.04E-50 0.428 0.79 0.62 None  
AGAP007740 RpLP1 4.04E-45 0.258 0.96 0.97 60S ribosomal protein LP1  
AGAP002422 CLIPD1 2.74E-41 0.656 0.61 0.54 CLIP-domain serine protease  
AGAP011119 - 1.73E-40 0.421 0.74 0.62 None  
AGAP002465 - 1.54E-36 0.421 0.82 0.77 ferritin heavy chain 
  

      
Cluster 1       
Gene Name Pval_adj Avg_logFC Pct.1 Pct.2 Annotation 

AGAP011228 - 2.12E-189 0.746 0.99 0.75 None  
AGAP007312 - 7.96E-162 0.799 0.77 0.35 None  
AGAP004936 - 1.16E-142 0.596 0.92 0.59 None  
AGAP006278 - 3.23E-137 0.666 0.86 0.53 None  
AGAP000651 actin5c 2.72E-136 0.713 0.78 0.39 Actin-5C   
AGAP004017 - 8.90E-129 0.590 0.82 0.41 None  
AGAP004164 GSTD1 1.58E-125 0.704 0.44 0.13 glutathione S-transf del. c1 
AGAP028028 lrim16a 1.70E-121 0.593 0.82 0.44 leucine-rich immune prot  
AGAP004016 - 2.29E-119 0.557 0.69 0.29 None  
AGAP006367 - 2.62E-118 0.869 0.33 0.08 None  
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Cluster 2        
Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP010968 CLIPA9 0 2.460 0.48 0.04 CLIP-domain serine protease  
AGAP013060 - 0 1.976 0.66 0.09 None  
AGAP012571 - 0 1.943 0.78 0.17 None  
AGAP008011 - 0 1.902 0.48 0.04 None  
AGAP003473 - 2.70E-303 3.031 0.85 0.27 None  
AGAP003474 - 1.54E-298 2.450 0.99 0.95 None  
AGAP005888 - 1.20E-295 1.828 0.96 0.53 None  
AGAP008004 - 7.26E-291 2.367 0.89 0.37 None  
AGAP004674 - 1.01E-278 2.010 0.38 0.02 Phenoloxidase inhibitor prot  
AGAP009527 - 2.92E-272 2.043 0.61 0.10 None  
 
Cluster 3 

 
      

Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP004978 PPO9 0 4.469 0.81 0.12 prophenoloxidase 9  
AGAP011223 - 0 4.448 0.84 0.11 None  
AGAP006258 PPO2 0 4.364 0.79 0.13 prophenoloxidase 2  
AGAP004977 PPO6 0 4.055 0.98 0.34 prophenoloxidase 6  
AGAP012616 PPO5 0 3.961 0.83 0.08 prophenoloxidase 5  
AGAP012851 - 0 3.829 0.74 0.02 Aldo-keto reduct fam 1,C3 
AGAP006570 - 0 3.669 0.73 0.11 myo-inositol-1(4)-monoph  
AGAP006743 - 0 3.489 0.63 0.03 None  
AGAP000162 - 0 3.471 0.80 0.06 Cystathionine beta-synth  
AGAP000679 - 0 3.159 0.98 0.36 Aminoacylase   

 
Cluster 4        
Gene Name Pval_adj Avg_logFC Pct.1 Pct.2 Annotation 

AGAP004203 Vg 2.94E-162 2.998 0.78 0.10 vitellogenin   
AGAP007940 - 9.56E-127 2.767 0.72 0.11 Reticulon-like protein  
AGAP006548 - 1.20E-126 2.565 0.91 0.21 glycine cleavage sys H  
AGAP002593 - 6.61E-114 2.098 0.43 0.04 outer membr lipopr Blc  
AGAP001065 - 8.30E-105 2.551 0.76 0.15 glycine hydromethyltran  
AGAP004700 - 3.30E-100 2.239 0.38 0.03 None  
AGAP010046 - 4.33E-88 2.512 0.29 0.02 None  
AGAP009173 Fbp 7.86E-83 2.189 0.38 0.04 fructose-1,6-bisphosph I  
AGAP001116 - 1.29E-81 1.946 0.44 0.05 D-amino-acid oxidase  
AGAP002198 Gnmt 2.09E-76 2.051 0.46 0.06 glycine N-methyltransf 
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Cluster 5        
Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP005363 - 0 1.729 0.45 0.003 None  
AGAP004962 - 0 1.526 0.41 0.004 cyclin B   
AGAP007855 - 4.72E-295 1.583 0.43 0.007 aurora kinase, other  
AGAP013736 - 8.53E-285 1.075 0.31 0.002 None  
AGAP005019 - 2.01E-274 2.028 0.56 0.018 None  
AGAP003550 - 3.62E-271 1.302 0.32 0.003 None  
AGAP006671 - 1.30E-267 1.117 0.30 0.002 None  
AGAP006105 - 5.29E-230 1.018 0.28 0.003 None  
AGAP004963 - 7.99E-223 0.989 0.25 0.002 cyclin B   
AGAP004239 - 1.13E-212 1.284 0.28 0.003 polo-like kinase 1  
 
Cluster 6 

 
      

Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP009526 - 1.7E-104 2.864 0.74 0.12 None  
AGAP006181 - 1.12E-97 2.621 0.58 0.07 troponin C   
AGAP003939 - 5.44E-83 2.674 0.56 0.08 None  
AGAP001622 - 2.17E-72 2.640 0.76 0.19 myosin light chain 5  
AGAP003778 - 1.13E-70 2.417 0.50 0.07 None  
AGAP001569 - 6.19E-66 2.279 0.48 0.07 myosin alkali light chain 1  
AGAP004161 - 8.04E-64 2.322 0.74 0.20 myofilin variant C 
AGAP002358 - 3.84E-58 2.334 0.45 0.07 ADP,ATP carrier protein 2  
AGAP008311 - 2.87E-50 2.092 0.27 0.03 acylphosphatase  
AGAP004790 - 5.28E-46 1.918 0.91 0.50 Up skl mscl growth 5 hom 
 
Cluster 7        
Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP007347 Lysc1 7.3E-217 4.377 0.91 0.08 C-type lysoz  
AGAP005848 - 6.2E-105 2.455 0.39 0.03 Fic A   
AGAP011294 DEF1 2.59E-69 1.857 0.28 0.02 defensin anti-micr 
AGAP000694 CEC3 2.91E-63 2.455 0.27 0.02 cecropin anti-micr 
AGAP000376 Tsf1 1.50E-51 2.139 0.76 0.24 -  
AGAP011197 - 1.33E-40 1.779 0.78 0.29 -  
AGAP005888 - 2.24E-37 2.573 0.93 0.58 -  
AGAP000693 CEC1 1.49E-32 2.855 0.49 0.13 cecropin anti-microb 
AGAP005612 - 8.23E-23 2.085 0.32 0.07 -  
AGAP010816 TEP3 1.11E-17 1.344 0.34 0.09 thioester-contain prot 3  
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Cluster 8        
Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP007318 - 0 3.648 0.79 0.02 None  
AGAP009053 LL3 7.0E-212 3.014 0.54 0.02 LITAF-l3  
AGAP028208 - 4.0E-195 2.728 0.34 0.01 cuticular prot CPLCP22  
AGAP009051 LL1 1.6E-177 1.972 0.37 0.01 LITAF-l1  
AGAP007320 - 4.3E-175 1.529 0.29 0.01 None  
AGAP001002 - 2.3E-129 3.812 0.42 0.02 Toll   
AGAP001652 - 9.6E-107 2.219 0.61 0.05 lipase   
AGAP003319 - 6.01E-95 2.147 0.49 0.04 None  
AGAP011226 - 1.25E-92 1.941 0.42 0.03 None  
AGAP005209 - 1.06E-73 1.817 0.47 0.04 Uridine kinase  

 

Table III.3 Marker genes for each cell cluster. P_val_adj = P value adjusted for multiple 
testing. Avg_logFC = average log fold change for the gene between cluster of interest and other 
clusters. Pct.1 = percentage of cells in cluster of interest where gene is detectable. Pct.2 = 
percentage of cells in other clusters where gene is detectable. Annotation = electronic 
annotation of gene. 
 

We then assigned putative cell type names based on their gene markers. We molecularly 

confirmed known cell types such as granulocytes, expressing SPARC, collagens, laminins, 

scavenger receptors, LRIMs, Nimrod, LRR8 (leucine-rich-repeats), CLIPs [202, 348]. Putative 

oenocytoids also expressed well known markers such as PPOs (2, 4, 5, 6, 9), fibrinogens, and 

fibronectins. Potential prohemocytes shared many of the granulocyte markers, including 

collagens, LRR (leucine-rich-repeats), SPARC, CLIPD1, but also ferritin and ribosomal genes. 

Of note, expression of granulocyte markers in prohemocytes is not fully abrogated, but rather 

of lower intensity, suggesting granulocytes and prohemocytes might be different cell states, 

and not cell types.  

 
We also characterised previously unknown hemocytes classes. For instance, 120 cells 

baptised ‘secreting hemocytes’ specifically expressed proteins with N-terminal signal peptides 

for secretion, such as e.g. LYSC1, TEP3, ficolins, cecropins, and defensins. A cluster of 131 

‘Rapidly dividing granulocytes’ was enriched in cell cycle and spliceosome markers such as 

aurora kinase, Cyclin Bs (G2/Mitotic specific), polo-kinase 1, inhibitor of apoptosis 5, Barrier-
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to-autointegration factor B. Finally, 85 ‘effector hemocytes’ were characterised by high 

expression of LITAF (LPS-Induced TNF-alpha transcription factor) 3 and LITAF 1, 

AGAP007318 (an uncharacterised membrane protein upregulated in P. berghei infection 

[349]), Toll proteins, NFkappaB essential modulator, CLIPB8. Full table in Appendix. 

 
Interestingly, fat body cells divided into two major cell states, correlated with activation. A 

baseline fat body state of 701 cells expressed many immune-related and regulatory genes such 

as CLIPs (CLIPA1, 7, 8, 9, 14), LRIMs (LRIM 1, 4A, 8A, 8B, 9, 17), lectins (CTL 4, MA2), 

APL1C, SRPN2, TEP1, and phenoloxidase inhibitor protein. Conversely, activated fat body 

cells (149 cells) highly expressed a canonical marker of fat body after feeding: vitellogenin. 

Finally, 121 cells have been classified as muscle cells due to the expression of markers such as 

troponin C, myosin light chain 5, myosin alkali light chain 1, myofilin variant C, and numerous 

transcripts related to energy production. A heatmap of the top 10 marker genes for each subtype 

follows below [Fig. III.9].  

 

We also quantified each cell type cluster, looking at both number of cells and total UMI 

per cell in each cluster to reinforce our hypotheses regarding putative cellular identities. 

Putative cells types were then identified and quantified. Prohemocytes were the most common 

cell type with 2034 cells, followed by granulocytes (1553). Baseline fat body cells followed 

with 701, oenocytoids with 489, and fat body with 149. Rare cells included dividing 

granulocytes (131), muscle (121), secretory cells (120), and effector cells (85). We classified 

cell types by taking into consideration both the RNA content of cells - using the number of 

UMIs per cell as a proxy - as well as the analysis of the differentially expressed genes between 

each cell cluster. Putative prohemocytes were characterised by a low number of UMIs (yet 

distinct from background as shown by Fig. III. 8B), consistent with a high nuclear-cytoplasmic 

ratio and small overall size [Fig. III.8]. Conversely, granulocytes are transcriptionally active, 

have large diameters, and have high UMIs, similarly to oenocytoids. 
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Fig. III.8 UMI count as proxy for size suggests prohemocyte-granulocyte split. Clustering 
done as above, data split to remove oenocytoids, fat body, and muscle cells (A) number of 
UMIs per cell plotted onto the UMAP visualisation of selected cells, capped at 2500 UMIs to 
aid visualisation (B) clustering solution mapped onto UMAP as above. 
 



 

 
Fig. III.9 Heatmap of the top ten gene markers for each cell type identified. DE genes were identified with the Wilcoxon 
rank-sum test. P values were adjusted for multiple testing using the Bonferroni correction. All P-adjusted values < 0.001, ordered 
by average log fold change between cluster of interest and all other cells. Down-sampled to 300 cells per cluster for clarity.



 

 
3.1.6 Specific hemocyte markers for RNA-FISH validation identified 

by combining scRNA-seq and bulk RNA-seq results  
 

We then set out to validate our cell types. The first step was to confirm the exclusive expression 

of cell type markers in hemocytes, excluding those also expressed in the mosquito midgut or 

the rest of the body (carcass). Bulk RNAseq of Anopheles hemocytes, guts, and carcasses was 

performed with the same time-points and conditions of the scRNAseq experiments: 1,3 and 7 

days after sugar-feeding, blood-feeding, or mosquito infection with P. berghei. Between 8-12 

mosquitoes per group were used for each condition, with three biological replicates to increase 

statistical power. After alignment, quantification, and normalisation (see methods) a PCA of 

the samples showed all biological replicates clustering together. Rather, samples correctly split 

by body part. Differences between carcass samples in red, gut samples in green, and hemocyte 

samples in green were the main drivers of sample diversity [Fig. III.10A]. Furthermore, 

sample-to-sample distances were plotted on a distance matrix to obtain a qualitative 

appreciation of similarities between samples. The correlation matrix once again demonstrates 

clear differences between three sample groups: guts, carcasses, and hemocytes. 

 

 
Fig. III.10 Bulk RNA-seq dataset QC. (A) PCA analysis and clustering of samples based on 
overall transcriptional similarity divides samples into three main groups: carcasses in red, guts 
in green, and hemocytes in blue (B) Distance matrix correlating the overall similarity and 
hierarchical clustering of each sample. Three large groups (gut top left block, hemocytes in the 
centre, and carcass at the bottom right) 
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After QC, normalisation, and fitting of a generalised linear model as of methods we performed 

a differential expression analysis with DESeq2 on hemocyte samples against the average 

expression of carcass and gut samples. We filtered for an adjusted p-value after Wald 

significance testing of P<0.001 and an absolute log2 fold change larger than 2 and identified 

5126 differentially expressed genes, of which 1587 were upregulated in hemocytes and 3539 

downregulated. Running separate DE analyses of hemocytes vs guts’ samples and hemocytes 

vs carcasses returned similar results. Among the top upregulated genes in hemocytes we found 

well characterised genes associated either with hemocytes or with immune function, such as 

PPO2,3,5,6,9, fibrinogen and fibronectin, CLIPs, SPARC, laminins, collagens, scavenger 

receptors, toll proteins, LRIMs, TEP4, PPO activating factor, CD63, antimicrobial peptides, 

and REL1. 

 

 
Fig. III.11 Differential expression analysis - hemocytes vs carcasses and guts. DEseq2 DE 
analysis of hemocytes vs averaged gut and carcass expression, filtered for log2 fold change >2 
and Wald significance testing Q <0.001. 
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There was a strong correlation between markers identified by bulk RNAseq and biomarkers of 

scRNA-seq cell clusters. Especially so for common cells such as prohemocytes (91.2% of sc-

RNAseq markers also present in the list of positively upregulated genes in bulk RNAseq 

hemocytes’ samples) and granulocytes (71.3%). Less markers were identified for rare cell types 

such as secretory cells (only 28.1%) or muscle cells (25.9%), and intermediate levels for cell 

types such as dividing cells (44.3%) and effector cells (46.5%). Non-hemocyte contaminants 

such as fat body cells, are also well represented (86.6% and 50.0% for baseline fat body and 

activated fat body respectively). These cells are large and feature substantial amounts of RNA. 

 

Cluster Total markers - scRNAseq Pos. in bulk 
RNAseq Percentage 

Prohemocytes 34 31 91.2 

Granulocytes 178 127 71.3 

Fat B. - Baseline 112 97 86.6 

Oenocytoids 52 39 75.0 

Fat Body 118 59 50.0 

Dividing cells 221 98 44.3 

Secretory 32 9 28.1 

Muscle 58 15 25.9 

Effector 99 46 46.5 
 

Table III.4 Correlation of scRNA-seq markers with positively upregulated bulk RNAseq 
markers in hemocyte samples. First, scRNA-seq marker genes were filtered to select those 
with Wilcoxon test p adjusted value <0.05. The resulting table was then merged with DE 
markers in bulk RNAseq hemocyte samples as above, filtered for log2 fold change >2 and 
Wald significance testing of Q <0.001.   
 

Once DE genes between hemocytes and mosquito midguts and carcasses were identified we 

cross-references the top ten marker genes for each cluster to the bulk RNAseq gene list to 

identify the best marker of each cellular subtype for RNA - FISH validation. Markers were 

selected according to the following criteria: 
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1) Highest and most specific expression of markers in each scRNA-seq cell type cluster 

2) Highest and most specific expression of markers in bulk RNAseq data of hemocytes  
 

Markers were selected using the clustering solution identified with Seurat v2.4. The following 

table summarises our findings. All markers previously identified and then validated via RNA-

FISH were also found to be valid cellular markers in the new Seurat v3 analysis. 
 

Markers scRNA - 
specificity 

scRNA - 
expression 

Bulk vs gut 
- log2 fold 

Bulk vs body 
- log2 fold Description 

General        
AGAP009623 n/a n/a n/a n/a GAPDH – pos. control 
AGAP008296 n/a n/a -13.2 -7.6 Trypsin - gut  
AGAP004203 +++ +++ 4.1 -2.5 Vitellogenin - fat body  
Hemocytes / Granulocytes       
AGAP004017  n/a +++ 7.3 4.8 LRR. All hemocytes 
AGAP011974 n/a ++ 5.6 4.2 SCRC1. General hemos  
AGAP000790 n/a +  6.6 4.7 Prohem. / granulocytes 
AGAP003057 + + 4.7 1.8 Active granulocytes  
AGAP011871  - + 2.6 1.2 Granulocytes   
Rapidly dividing        
AGAP005363  +++ ++ 1.2 0.4    
Fat B. - Baseline       
AGAP007033  + + 6.8 1.2    
AGAP028406 ++  ++ 5.7 3.2 APL1C   
Oenocytoids        
AGAP004981  ++  ++ 10.4 4.8 PPO4   
AGAP012851 +++ +++ 6.9 4.7 Aldo-keto-reductase   
AGAP012000 ++ ++ 8.1 5.5 Fibrinogen/fibronectin  
Effector       
AGAP007318 +++ ++ 5.3 2.8 TM7318   
Secretory        
AGAP011239 ++  ++ 4.0 2.9 Some also in oenos  

 

Table III.5 RNA-FISH markers chosen by total expression and expression specificity in 
scRNA-seq and bulk RNAseq samples. scRNA-seq markers were cross-checked with gene 
tables of DE genes in bulk RNAseq (hemocytes vs guts and hemocytes vs bodies, separately). 
The most specific and highly expressed genes (qualitative assessment) were chosen. 
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3.1.7 RNA-FISH validation of putative cell types  
 

We then validated our cell types via imaging. Dr. Ana Barletta Ferreira recovered hemocytes 

from mosquitoes that were sugar-fed, blood-fed or infected with P. berghei, spun the 

hemocytes onto slides coated with the adhesive Cel-Tek, then fixed them in paraformaldehyde. 

The cellular morphology was first captured by staining cells with actin and imaging them with 

confocal microscopy, and then RNAscope commercial RNA-FISH was then performed with 

the probes of Table III.5, and correlative fluorescent / FISH microscopy was performed by 

imaging the same area of the slide with confocal microscopy [Fig. III.12].  

 
Fig. III.12 Correlation of hemocyte morphology with RNA-FISH markers. Main cell types 
were confirmed by matching to the left cellular morphology (actin), and to the right gene 
markers by RN-FISH. Blue is DAPI nuclear stain. Representative images from over 3200 cells. 
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Granulocytes were identified because of their larger size (10-20 µm) as compared to 

oenocytoids (8-12 µm) and prohemocytes (4-6 µm). In addition, granulocytes featured an 

increased number of pseudopodia. Oenocytoids also had pseudopodia, but they were shorter, 

and less prominent, and cells were rounder. Furthermore, the nuclear size in granulocytes was 

larger than in oenocytoids [Fig. III.12]. LRR8 mostly identified granulocytes and 

prohemocytes, whereas PPO4 identified for the most part oenocytoids. Some cells were double-

positive, but typically LRR8high cells would be PPO4neg or PPO4low, and conversely PPO4high 

cells would be LRR8neg or LRR8low [Fig. III.13] 

 

 
Fig. III.13 Granulocytes vs oenocytoids: morphology and RNA-FISH markers. LRR8+ 
cells could be split into LRR8 high and low. PPO4+ cells (oenocytoids) were more likely to be 
LRR8 negative or low. The opposite for PPO4low cells. Representative images from 435 cells. 
 

We then explored the spatial localisation of hemocytes in the Anopheles mosquitoes. 

Mosquitoes were then sugar-fed, blood-fed or infected with P. berghei, then fixed in 

paraformaldehyde, before paraffin embedding and sectioning. We performed RNA-FISH with 

the commercial technology RNAscope on the sections per RNAscope protocol and then imaged 

samples on an automated slide scanner or with confocal microscopy. We alternated one slide 

for haemotoxylin and eosin (H&E) staining and one slide for RNAscope. H&E staining was 
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useful to orient ourselves and identify the anatomical features of mosquitoes. In Fig. III.14 we 

can observe an H&E stain and mirrored RNA-FISH section of the mosquito. From the left to 

the right we can observe the compound eye, brain, thorax and wing muscles, abdomen and 

foregut, midgut, and fat body, as well as the ovaries.  
 

 
Fig. III.14 Overall view of the A. gambiae body with H&E and RNA-FISH. At the bottom, 
RNA-FISH of hemocytes (red, SCRC1 probe), cellular nuclei (blue DAPI counter-stain), and 
all mosquito cells (green, GAPDH positive control mosquito probe) on a longitudinal section 
of an Anopheles mosquito. At the top, mirrored H&E section. Both imaged with slide scanner. 
 

Hemocytes can be seen patrolling all areas of the mosquito body, including the thorax - 

between flight muscles - and the abdomen, both in the fat body or attached to the gut. 

Hemocytes are found everywhere (except within the gut lumen or the central nervous system) 

but they particularly line areas of the body in potential contact with pathogens, such as the 

salivary glands, the proboscis, the gut lining, the rectal area, and the spermathecal vestibule of 

female mosquitoes. Hemocytes do not normally form clumps but appear as isolated cells, 
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although in these sections we mainly used the SCRC1 probe for our survey. SCRC1 is more 

specific for granulocytes and prohemocytes than oenocytoids, secretory, or effector cells. 

 

 
Fig. III.15 Hemocytes patrolling the thorax of A. gambiae. At the bottom, RNA-FISH of 
hemocytes (red, SCRC1 probe), cellular nuclei (blue DAPI counter-stain), and general 
mosquito cells (green, GAPDH positive mosquito control probe) on longitudinal section of 
Anopheles mosquito. At the top, mirrored H&E section. Both imaged with slide scanner. 
 



 

 
Fig. III.16 Hemocytes patrolling the A. gambiae body (A) Vertical H&E section of mosquito abdomen and (B) mirrored RNA-
FiSH section. From C to F RNA-FISH of: gut lining in abdomen, CNS, proboscis, and gut. Imaged with slide scanner (A-C, E-
F) and confocal microscopy (D). RNA-FISH probes indicated in each separate panel. 
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Hemocytes can be both sessile and motile. Imaging requirements for each are different. To 

capture sessile hemocytes we injected paraformaldehyde inside the mosquito cavity before 

dissecting the mosquito midgut and the mosquito body wall (carcass). Then, whole-mount 

RNA-FISH of the whole organs were done with a modified RNAscope protocol (see methods). 

All hemocyte cell types for which we have probes were identified with the exception of the 

rapidly diving cellular subtype, for which we have yet to develop an appropriate probe. We 

observed the general hemocyte population, as well as specific oenocytoids, granulocytes, 

effector hemocytes, and secretory hemocytes. Body walls were especially rich in immune cells, 

with control blood fed body walls having 286 (±76 CI) hemocytes. Blood-fed control guts 

showed fewer numbers of cells, with a total of 23 (±6.6 CI) hemocytes. We also observed 

pericardial cells, staining positively with the AGAP007318 and AGAP011239 probes (effector 

and secretory probes). These cells could be recognised both by virtue of their characteristic 

arrangement along the dorsal wall as well as their larger size.  

 

 
Fig. III.17 Pericardial cells along the Anopheles body wall (A) 20x whole-mount RNA-
FISH shows AGAP007318 and AGAP011239 positive pericardial cells, in addition to immune 
cells (B) Same as above but without the Fibrinogen-CT probe to show positive staining for 
Transmembrane (Effector) probe (C) 40x whole-mount RNA-FISH of a separate mosquito 
wall. Two effector hemocytes can be seen in close proximity to the pericardial cells complex. 
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Fig. III.18 Mosquito midguts and bodies contain all subtypes of sessile hemocytes (A) A 
20x view of the proximal part of a blood-fed control mosquito gut, with RNA-FISH of 
hemocytes (green, LRR probe), secretory cells (yellow, Fibrinogen C Terminal), effector cells 
(red, transmembrane), and nuclear counterstain (blue, DAPI) on whole mounts of Anopheles 
mosquito. (A) A 40x magnification of the gut. (C) A 20x whole mount view of a mosquito 
body wall with the same probe of above. All imaged with a slide scanner. 
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3.1.8 Distinct states within each cell type 
 

While initially conservative in our clustering as to only capture true cell types rather than cell 

states, thresholding was then relaxed to identify subtler grouping of cells, which could 

theoretically split existing cell types into cell states, differentially responding to stimuli. There 

was hidden diversity within the original mapping, especially in the large granulocyte cluster. 

We observed a central disc of cells, surrounded by two separate hemi-discs. Importantly, the 

central group contained more cells from baseline conditions, whereas the two hemi-discs 

featured more active cells (blood fed and P. berghei-infected) [Fig. III.19A-B]. After iterating 

clustering until all clusters had at least more than 20 meaningful marker genes (adjusted p value 

<0.05) and were well-mixed among samples and conditions, we identified four additional cell 

states. Fat body cells divided into an additional cell state that sat between baseline cells and 

activated cell types based on the UMAP and the marker genes (see table III.6 below for top 10 

genes, as well as figures III.19 and III.20). From the same figures and tables prohemocytes also 

split in two: a more active state defined by increased expression of hemocyte / granulocyte 

genes and a more inactive state with decreased gene expression. Granulocytes showed the 

largest transcriptional diversity, splitting into three different cell states: one putative baseline 

state, as well as two different types of more activated granulocytes [Fig. III.19C]. The baseline 

granulocyte cluster contained the highest number of inactivated cells (sugar-conditions), 

whereas activated cells came either from blood-fed or even more so from P. berghei-infected 

samples [Fig.19A, Fig. IV.1, Fig. IV.2]. A heatmap of the top 10 marker genes for each cell 

state more clearly showed how putative prohemocytes and granulocytes sat in a transcriptional 

programming continuum. Oenocytoids on the other hand still formed a distinct separate group 

on the UMAP, as well as on the marker genes heatmap. Furthermore, the heatmap also showed 

how within the prohemocyte-granulocyte group baseline granulocytes and prohemocytes were 

more similar to each other, whereas Type 1 and Type 2 active granulocytes show larger 

transcriptional differences. 
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Putative inactive prohemocytes     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 

AGAP011828 4.98E-47 0.4644 0.843 0.725 cathepsin L   
AGAP010163 2.85E-39 0.3039 0.943 0.961 60S ribosomal protein L38  
AGAP007740 1.14E-36 0.2630 0.96 0.966 60S ribosomal protein LP1  
AGAP012100 2.03E-36 0.2586 0.966 0.977 40S ribosomal protein S26  
AGAP000305 5.64E-26 0.2972 0.877 0.739 SPARC   
AGAP002464 2.68E-23 0.2907 0.95 0.909 secreted ferritin G subunit  
AGAP029054 7.29E-17 0.3604 0.739 0.645 nimrod B2   
AGAP002422 1.94E-15 0.5140 0.591 0.56 CLIP-domain serine prot  
AGAP002465 5.35E-15 0.3314 0.804 0.78 ferritin heavy chain  
AGAP013186 3.70E-07 0.2842 0.15 0.282 None  

 
Putative active prohemocytes     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP004936 2.69E-63 0.58799 0.873 0.65 None  
AGAP011119 7.93E-54 0.554097 0.843 0.638 None  
AGAP011228 7.70E-47 0.445928 0.981 0.792 None  
AGAP002464 1.29E-45 0.488801 0.974 0.908 secreted ferritin G subunit  
AGAP005611 7.84E-37 0.50457 0.775 0.65 None  
AGAP000305 1.15E-20 0.30061 0.899 0.745 SPARC   
AGAP002465 2.32E-19 0.365025 0.854 0.773 ferritin heavy chain  
AGAP011828 8.19E-19 0.297401 0.86 0.73 cathepsin L   
AGAP002422 1.36E-18 0.475993 0.654 0.551 CLIP-domain serine prot  
AGAP002878 6.99E-13 0.519473 0.509 0.408 Cystatin-like protein  
 
Putative baseline granulocytes     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP011228 4.6E-101 0.74197 0.988 0.796 None  
AGAP011119 7.82E-93 0.682409 0.946 0.628 None  
AGAP004936 2.29E-76 0.630795 0.939 0.646 None  
AGAP007312 1.03E-65 0.66471 0.781 0.428 None  
AGAP006278 7.85E-62 0.583197 0.893 0.583 None  
AGAP005611 2.25E-58 0.519989 0.915 0.632 None  
AGAP002594 1.50E-57 0.602139 0.743 0.426 apolipoprotein D  
AGAP000790 2.86E-56 0.799228 0.47 0.196 None  
AGAP000305 4.56E-56 0.516235 0.961 0.74 SPARC   
AGAP000964 4.50E-51 0.672595 0.66 0.353 None  
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Putative granulocytes T2      
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP006367 6.0E-165 1.427458 0.547 0.104 None  
AGAP004916 1.54E-89 1.210717 0.38 0.087 None  
AGAP004164 8.04E-80 0.974785 0.543 0.181 glutathione S-transf delta cl. 1  
AGAP003016 1.11E-79 0.930581 0.446 0.125 mesenceph. neurotroph hmlg 
AGAP029139 7.64E-76 0.98333 0.604 0.238 None  
AGAP007120 1.16E-72 0.720407 0.901 0.584 nucleoside-diphosphate kinase  
AGAP004743 2.90E-70 0.838938 0.657 0.275 Transmembr. emp24 containing   
AGAP009194 5.10E-67 1.183577 0.407 0.124 glutathione S-transf. epsilon 2  
AGAP005861 1.00E-66 0.877063 0.428 0.131 Translocon-associated subun b  
AGAP004918 1.90E-60 1.094499 0.596 0.282 fibrinogen   
 
Putative granulocytes T1      
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP011828 7.3E-109 0.943378 0.983 0.73 cathepsin L   
AGAP009156 6.93E-97 1.016372 0.505 0.118 None  
AGAP004993 4.51E-93 1.109549 0.84 0.427 laminin subunit alpha  
AGAP009201 1.17E-92 1.130115 0.842 0.481 collagen type IV alpha  
AGAP011974 7.29E-88 1.013233 0.732 0.291 Class C Scavenger Receptor   
AGAP002599 9.63E-83 0.916165 0.818 0.387 polyubiquitin   
AGAP002016 3.58E-82 0.988187 0.545 0.158 iron/zinc purple acid phosphata 
AGAP002879 3.12E-73 0.8705 0.78 0.357 cathepsin F   
AGAP028157 1.02E-70 0.824397 0.452 0.12 None  
AGAP013509 1.26E-70 0.947402 0.72 0.322 carboxylesterase clade H, 1  
 
Putative fat body baseline T.1     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP010968 0 2.657141 0.702 0.053 CLIPA9  
AGAP008013 2.8E-303 1.993149 0.418 0.013 None  
AGAP005563 2.5E-290 2.843697 0.731 0.084 Tret1  
AGAP011792 5.1E-269 2.177422 0.541 0.039 CLIPA7  
AGAP006275 7.7E-261 2.351344 0.86 0.156 None  
AGAP008227 7.3E-258 2.216784 0.737 0.097 trehalose 6-phosphate synth 
AGAP002588 4.2E-254 1.689412 0.38 0.014 None  
AGAP013060 6.1E-250 1.889122 0.804 0.123 None  
AGAP008688 1.0E-245 2.040984 0.392 0.017 None  
AGAP006177 3.9E-245 1.748359 0.406 0.02 None  
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Putative fat body T1     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP004203 8.4E-162 3.006847 0.782 0.096 vitellogenin  
AGAP007940 3.8E-126 2.764072 0.721 0.109 Reticulon-like protein  
AGAP006548 2.6E-124 2.550861 0.912 0.214 glycine cleavage system H  
AGAP002593 8.3E-116 2.110959 0.435 0.035 outer membrane lipoprot Blc 
AGAP001065 1.9E-104 2.542809 0.769 0.15 glycine hydroxymethyltransf 
AGAP004700 7.0E-102 2.252557 0.381 0.03 None  
AGAP010046 1.58E-89 2.525451 0.293 0.019 None  
AGAP009173 2.84E-84 2.202421 0.381 0.037 fructose-1,6-bisphosphatase I  
AGAP001116 5.13E-80 1.918763 0.442 0.054 D-amino-acid oxidase 
AGAP002198 7.81E-78 2.063797 0.463 0.062 glycine N-methyltransferase  

 

Putative fat body T2     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP003473 3.3E-163 2.480769 0.865 0.305 None  
AGAP003474 6.5E-160 2.15225 0.992 0.955 None  
AGAP005888 1.2E-135 1.620302 0.945 0.563 None  
AGAP002632 1.5E-105 2.280139 0.701 0.265 None  
AGAP004203 9.03E-93 2.308033 0.437 0.091 vitellogenin   
AGAP012571 3.67E-91 1.310944 0.673 0.222 None  
AGAP008011 3.37E-85 1.437902 0.382 0.072 None  
AGAP008004 7.54E-82 1.195067 0.813 0.409 None  
AGAP028386 2.64E-81 1.502057 0.799 0.469 NADH dehydr subunit 6  
AGAP028373 3.34E-77 1.474149 0.626 0.23 NADH dehydr subunit 3  

 
Table III.6 Marker genes for each cell state cluster. P_val_adj = P value adjusted for 
multiple testing. Avg_logFC = average log fold change for the gene between cluster of interest 
and other clusters. Pct.1 = percentage of cells in cluster of interest where gene is detectable. 
Pct.2 = percentage of cells in other clusters where gene is detectable. Annotation = electronic 
annotation of gene. 
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Fig. III.19 Diversity within cell types. (A) UMAP coloured by experimental condition. 
Within the putative granulocyte cluster, cells from sugar-fed (in blue) mosquitoes segregated 
from blood-fed mosquitoes (red), and more so P. berghei mosquitoes (green) (B) UMAP of 
cells clustered with 0.3 resolution (conservative subdivision identifying cell types) (C) UMAP 
of cells clustered with 0.7 resolution to identify cell states within the larger cell types. 
 

 

 



 

 
Fig. III.20 Heatmap of top ten gene biomarkers for each cell type or state. DE genes were identified with the Wilcoxon 
rank-sum test. The P values were adjusted for multiple testing using the Bonferroni correction. P-adjusted values < 0.001, ordered 
by average log fold change between cluster of interest vs all other cells. Down-sampled to 300 cells per cluster for clarity.



 

3.1.9 Distinct hemocyte lineages in A. gambiae mosquitoes 
 

Hemocytes differentiation dynamics are unclear. To understand whether prohemocytes are true 

stem cells or a separate lineage we used cellular states subdivision to perform lineage tree 

reconstruction with the partition-based graph abstraction (PAGA) method. By combining 

clustering and pseudotemporal algorithms we were able to infer hemocyte trajectories and 

differentiation paths. We chose PAGA as it was recently shown to be the most accurate and 

robust lineage analysis software for complex datasets [311]. As a positive control, PAGA 

correctly identified fat body cells and muscle cells as separate clusters with no close connection 

to other cell types. Oenocytoids were also shown to be disconnected from other hemocyte 

subtypes, indicating a wholly separate lineage, while all other cell states were connected along 

a linear differentiation trajectory with inactive baseline prohemocytes at one end, moving 

towards active prohemocytes and granulocytes, before splitting into three different lineages. 

Secretory cells formed their own lineage from baseline granulocytes, while the two 

intermediate activated granulocyte cell subtypes split into either effector granulocyte subtypes 

or dividing granulocytes. Dividing cells reverted back into activated granulocytes type 2, 

replenishing the granulocyte cell pool after immune activation. We were thus able to identify 

a branching event centred on granulocytes thanks to an unsupervised network analysis. Nodes 

were identified with Seurat and connected by PAGA into a biologically meaningful network. 

 

 
Fig. III.21 Cell lineages in adult Anopheles. (A) Graphical mapping of cell states with UMAP 
(B) Unsupervised PAGA network analysis of Anopheles hemolymph cells uncovers separate 
lineages and a branching event. Nodes correspond to clusters identified with Seurat while edges 
are putative cluster transitions. 
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We then confirmed the connections between clusters in the granulocyte lineage with a different 

method, diffusion maps. Like PCA, diffusion maps are another popular dimensionality 

reduction technique. However, diffusion mapping is a non-linear dimensionality reduction 

technique which aligns cells based on transcriptional similarities rather than clustering them. 

Hence, diffusion components (DCs) emphasize transcriptional transitions, which is particularly 

useful when analysing processes that are continuous, as for instance differentiation. Our data 

set showed DC1 to recapitulate the interconnectivity of prohemocytes, active prohemocytes, 

granulocytes, and active granulocytes type 1 and 2. These existed in a continuum of 

differentiation which includes dividing cells, whereas effector, secretory, and diving cells split 

along their independent trajectories [Fig. III.22A-B]. A DC1 vs DC3 plot showed that rapidly 

dividing cells and active granulocytes type 2 sat on a common differentiation trajectory, as 

expected from PAGA lineage tracing [Fig. III.22C]. DC1 vs DC3 also showed the opposite 

lineage (effector cells) emerging from active granulocytes type 1 [Fig. III22.D]. DC2 

recapitulated hemocyte cell maturity: young, proliferating cells sat diametrically opposite to 

mature effector cells such as effector and secretory hemocytes [Fig. III.22E]. 

 
Fig. III.22 Diffusion maps confirm hemocyte lineages. (A) 2D diffusion map of granulocytes 
(B) 3D diffusion map of granulocytes (C) Diffusion Component 1 (DC1) vs DC3 plot 
highlights transition between dividing cells and granulocytes T.2 (D) DC1 vs DC3 plot 
highlights transition between effector cells and granulocytes T.1 (E) DC2 showcases hemocyte 
maturity, with proliferating cells on the right and differentiated states on the left.  
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Lastly, hemocyte lineages were also confirmed with the lineage analysis software package 

Slingshot, another highly rated lineage tracing software. It does not perform as well as PAGA 

when dealing with complex dataset containing multiple separate lineages, but it does work well 

in branching analyses [311]. As such, we subset our dataset to only include the three 

interconnected granulocyte-prohemocytes branches, and then run Slingshot. The results 

confirmed PAGA and diffusion maps findings. Slingshot identified three separate lineages 

originating in the inactive, baseline prohemocytes, moving into active prohemocytes and 

standard granulocytes, before branching alternatively into Type 2 active granulocytes and 

dividing granulocytes, or into Type 1 active granulocytes and then effector or secretor cells. 

Cells were ordered along a pseudotemporal dimension showing the differentiation of each 

hemocyte lineage. Pseudotime reconstruction was comparable between Slingshot and diffusion 

maps, with in blue baseline inactive prohemocytes, and in yellow the terminal effector states 

or proliferating cells. The central basal granulocyte cluster appeared once again to be the main 

branching point of the prohemocyte-granulocyte system [Fig. III.23]. 

 
Fig. III.23 Slingshot lineage tracing and pseudotime reconstruction of granulocytes and 
prohemocytes (A) Slingshot analysis after subsetting non-hemocytes and oenocytoids. (B) 
Pseudotime reconstruction on DC1 vs DC2 (C-E) Pseudotime reconstruction with Slingshot 
for each separate lineages from prohemocytes to (C) Dividing (D) Effector (E) Secretory cells. 
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After trajectory identification, generalized additive models (GAMs) were fitted with the 

package tradeSeq, estimating one smoother per lineage with a negative binomial distribution. 

A total of 1018 highly expressed genes were filtered for the analyses. The TMM effective 

library size was internally used as offset by the model, which also allowed to fit zero inflated 

negative binomial to deal with zero inflation. After filtering for Wald test score >150 and a p-

value <0.001 we identified 57 DE genes whose expression changed along lineage 1 

(prohemocytes to granulocytes to rapidly dividing), 28 DE genes for lineage 2 (prohemocytes 

to granulocytes to secretory), and 40 for lineage 3 (prohemocytes to granulocytes to effector 

cells). Lineage 1 DE genes included PPO6, fibrinogen, cofilin, actin 5C, ARP2/3 complex, and 

many ribosomal transcripts. Lineage 2 DE genes featured cecropin, LYSC1, collagen Type IV 

alpha, laminin subunit alpha, cathepsin, LRIM16A, actin 5C, SPARC, class C scavenger 

receptor. DE genes for lineage 3 were largely similar to lineage 2, further demonstrating their 

similarity. LITAF3 (LL3), laminin gamma 1, LRIM16B were however specific for this lineage 

[Fig. III.24]. Overall many marker genes identified with Seurat were also independently found 

in this independent pseudotime-based analysis. 
 

 
Fig. III.24 DE analysis of lineage-specific genes based on Slingshot pseudotime. (A-C) 
Smooth curves showing expression by pseudotime for the top three DE genes for each lineage 
(D-E) Corresponding expression of the top 3 DE genes on UMAP of prohemocyte-granulocyte 
lineage. Blue low transcript counts, yellow highest transcript counts. 
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Lastly, we analysed correlative microscopy images to help validate our lineage tracing 

hypotheses. Putative intermediate and early stages of both hemocytes and oenocytoids could 

be found, defined by a smaller cell size, smaller nuclei, lower expression of marker genes, and 

rounder morphology. Finally, less mature forms were likely to have less, or be void of, 

pseudopodia. The images are consistent with a cell development hypothesis that holds 

prohemocytes as the starting point, before branching differentiated cell types, both for LRR8+ 

hemocytes and oenocytoids [Fig. III.25 and Fig. III.26].  

 
Fig. III.25 Oenocytoid lineage. Red arrow indicates trajectory of maturation. Correlative 
microscopy. 63x merged, RNA-FISH, and morphological (green, actin) view of circulating 
hemocytes (blue, LRR8 probe), and oenocytoids cells (yellow, PPO4). 
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Fig. III.26 Granulocyte lineage. Red arrow indicates trajectory of maturation. Correlative 
microscop. 63x morphological (green, actin), RNA-FISH (blue, LRR8 probe), and merged 
view of circulating hemocytes. 
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3.1.10  Correlation of Aedes and Anopheles hemocytes  
 

To assess which of the newly discovered putative cell types are shared between anopheline and 

culicine mosquitoes, we also analyzed the single-cell transcriptome of 3123 cells from A. 

aegypti, a vector for several viral diseases including yellow fever, dengue, chikungunya and 

Zika. As with Anopheles, a dimensional reduction plot shows both canonical hemocytes and 

other cell types with mostly fat body signatures [Fig. III.27-28]. We once again identified 

canonical oenocytoids (two subtypes, HC1 and HC2), granulocytes (HC4 and HC5), 

prohemocytes (HC3), dividing granulocytes (two subtypes, HC6 and HC7), secretory 

granulocytes (HC8). Fat body cells were characterised by a heightened complexity, with five 

different cell states recognised (FBC1-5).  

 

A cross-species correlation after a logistic regression and multinomial learning 

approach further supported our cell type identification, and revealed similarities and 

differences with Anopheles hemocytes. Two clusters (AaHC1 and AaHC2) both have 

conserved transcriptome signatures for oenocytoids compared to Anopheles oenocytoids 

(AgHC1): 99% and 77% correlation respectively. We again detected different granulocyte 

subtypes, including antimicrobial peptide secreting cells (94% correlation with Anopheles 

secreting granulocytes), and dividing granulocytes (87% with Anopheles progenitor cells). 

Granulocytes and prohemocytes are again positioned on a continuum of transcriptomic 

similarity, with four different cell states, including a proliferating S-phase granulocyte cluster 

(AaHC6) without a clear Anopheles equivalent. Granulocytes once again express laminins, 

leucine-rich repeat proteins, scavenger receptors, Toll receptor 5, and the transcription factor 

Rel2 [Fig. III.28]. However, effector cells (AgHC5) lack an obvious counterpart in Aedes. 



Functional classes of mosquito hemocytes 

 
Fig. III.27 Characterisation Aedes aegypti hemocytes and correlation with Anopheles  
(A) UMAP of 3123 A. aegypti hemocyte clusters colored by cluster identity with Seurat 
clustering. (B) Heatmap showing probability of each A. aegypti hemocyte cell in the cluster 
belonging to each one of the Anopheles cell types after logistic regression and multinomial 
learning approach. Ag, Anopheles; Aa, Aedes. Oen, oenocytoids; Div Gran, dividing 
granulocytes; Gran, granulocytes; Mega, megacytes (effector); AM Gran, secretory 
granulocytes; PHem, prohemocytes. (E) Aedes hemocyte morphology. Stained with phalloidin 
(actin) in green and Hoechst (nuclei) in blue. Scale bar: 5 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Fig. III.28 Heatmap of top ten gene biomarkers for each Aedes cell type or state. DE genes were identified with the Wilcoxon 
rank-sum test. The P values were adjusted for multiple testing using the Bonferroni correction. P-adjusted values < 0.001, ordered by 
average log fold change between cluster of interest vs all other cells. Down-sampled to 300 cells per cluster for clarity.
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AAEL014945
AAEL004492
AAEL008621
AAEL001922
AAEL011321
AAEL008088
AAEL014251
AAEL015458
AAEL003857
AAEL022454
AAEL003723
AAEL004522
AAEL025975
AAEL026353
AAEL025196
AAEL009537
AAEL005641
AAEL022334
AAEL010558
AAEL016972
AAEL012853
AAEL019604
AAEL012856
AAEL004809
AAEL006971
AAEL013875
AAEL010956
AAEL010642
AAEL012538
AAEL023603
AAEL010691
AAEL007291
AAEL001246
AAEL012545
AAEL003681
AAEL010086
AAEL012629
AAEL000165
AAEL024161
AAEL006834
AAEL001194
AAEL005951
AAEL003405
AAEL005790
AAEL011634
AAEL011633
AAEL013980
AAEL000372
AAEL013496
AAEL020579
AAEL004096
AAEL009045
AAEL008468
AAEL003444
AAEL018687
AAEL002675
AAEL020097
AAEL007259
AAEL001863
AAEL018668
AAEL018669
AAEL018664
AAEL026955
AAEL024454
AAEL014768
AAEL009018
AAEL022285
AAEL019745
AAEL009899
AAEL007010
AAEL009630
AAEL019474
AAEL019834
AAEL023187
AAEL002520
AAEL004958
AAEL019694
AAEL002158
AAEL000636
AAEL003339
AAEL010128
AAEL009852
AAEL008789
AAEL015450
AAEL001964
AAEL003457
AAEL000786
AAEL001420
AAEL017536
AAEL017144
AAEL014843
AAEL013492
AAEL000759
AAEL000667
AAEL010480
AAEL015116
AAEL011763
AAEL011764
AAEL011206
AAEL013501
AAEL000304
AAEL011007
AAEL019468
AAEL007103
AAEL014382
AAEL003803
AAEL004022
AAEL008397
AAEL008658
AAEL013656



 

4 Discussion 
 

Clustering analysis with Seurat, diffusion maps, lineage tracing with PAGA and 

Slingshot, and RNA-FISH validation make us posit that 6 hemocyte cell types exist in the 

hemolymph of mosquitoes. These include three main types already known: prohemocytes, 

granulocytes, and oenocytoids. In addition, we found novel cell types, namely dividing 

hemocytes, effector hemocytes, and secretory hemocytes. We classified cell types by taking 

into consideration both the RNA content of cells - using the number of UMIs per cell as a proxy 

- as well as the analysis of the differentially expressed genes between each cell cluster. 

Prohemocytes were characterised by a low number of UMIs (yet distinct from background), 

consistent with the high nuclear-cytoplasmic ratio and small overall size. Conversely, 

granulocytes were transcriptionally active, had large diameters, and exhibited high UMIs. 

Oenocytoids were intermediate in size, RNA content and number of UMIs.  

 

Furthermore, when looking more in detail into cell expression, prohemocytes split into 

two main cell states within their larger group: inactive and active prohemocytes. Granulocytes 

showed the largest diversity, compatible with their effector functions. They subdivided into 

baseline, Type 1 and Type 2 active granulocytes. While baseline granulocytes were well 

represented in sugar-fed, blood-fed, and infected conditions, that was not the case for Type 1 

and Type 2 active granulocytes, which were enriched in blood-fed and P. berghei infected 

conditions. Blood feeding has been shown to activate and induce granulocyte proliferation, in 

keeping with our results[147]. Thus, T.1 and T.2 granulocytes appear to be activated 

granulocyte states, and lineage tracing analysis indeed suggests they are alternative granulocyte 

activation trajectories. Whereas Type 1 active granulocytes appeared to give rise to dividing 

cells, the other differentiation branch split from baseline granulocytes into Type 2 granulocytes 

and then effector or secretory hemocytes. Indeed, effector hemocytes were characterised by 

high expression of LITAF (LPS-Induced TNF-alpha transcription factor), AGAP007318 (an 

uncharacterised membrane protein upregulated with P. berghei infection [349]), Toll proteins, 

and ficolins. LL3 had been previously shown to control oocysts numbers, but the cell 

population responsible for the phenotype was unknown [186]. We hypothesize these cells to 
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be the elusive immune effectors responsible for Plasmodium oocyst control. Secretory 

hemocytes on the other hand constitutively expressed proteins with N-terminal signal peptides 

for secretion either into circulation or lysosomes, such as LYSC1, TEP3, Ficolins, cecropins, 

and defensins. Granulocytes, oenocytoids, prohemocytes could be found both in circulation as 

well as in sessile form, and the same for effector and secretory hemocytes. We did not however 

find dividing cells in tissues. It is possible replicating granulocytes exist only briefly in this cell 

state, or alternatively that only circulating hemocytes replicate. 

 

Genes of interest that should be followed up include AGAP009201, encoding for the 

collagen type IV, highly expressed in circulating hemocytes and the basal lamina and shown 

to be important to reduce oocyst load, to increase phagocytic capabilities of hemocytes, and to 

modulate LRIM1 [324]. In our study AGAP009201 was highly expressed in prohemocytes and 

all granulocytes, including dividing cells. LRR (AGAP004017 and AGAP004016) are leucine-

rich repeat proteins highly expressed in circulating hemocytes (in our data in all hemocytes, 

including some oenocytoids). Of interest AGAP004016 was shown to be a Plasmodium agonist 

[324]. Both LL3 and LL1 are highly expressed in effector hemocytes and  are part of the LITAF 

family (LPS-induced tumor necrosis factor alpha factor) and have important roles in 

Plasmodium control and immune modulation [185]. AGAP011223 was one of the top genes in 

oenocytoids and encodes fibrinogen-related FBN8 (FREP57), which was shown to promote 

phagocytosis and have a role in anti-Plasmodium defences [324]. Finally, among cell cycle 

genes and transcription factors we have NF-X1-type zinc finger protein NFXL1, orthologue to 

Drosophila ‘nessun dorma’, a top gene marker for dividing cells, but with an unknown role in 

hemocyte replication [350]. 

 

There likely exist four distinct hemocyte lineages in the mosquito. Two main lineages, 

the prohemocyte – granulocyte lineage, and the oenocytoids lineage, are distinct as shown by 

clustering, lineage tracing analyses, and correlative microscopy. Prohemocytes have long been 

thought to be the stem cells of the mosquito immune system. In this dataset there was no direct 

evidence for prohemocytes to be stem cell-like, but prohemocytes do appear to be a pool of 



Functional classes of mosquito hemocytes 
inactive, immature immune cells that the mosquito can draw upon when challenged, or when 

overloaded with nutrients such as after blood-feeding. Under these conditions, cell activate and 

replicate. We saw cellular activation shifts in all cell types, with prohemocytes becoming active 

prohemocytes and granulocytes. Baseline granulocytes morphed into two active subtypes, 

which also functioned as intermediate stages before terminal effector and secretory cells, and 

dividing cells. It appears thus more likely that with blood-feeding and infection granulocytes 

undergo a rapid activation and replication, and that prohemocytes are recruited at the same time 

to also become active granulocytes, some of which can then go on to replicate. Whether these 

replicating and active cells can return to an inactive prohemocyte state is yet unknown, and we 

did not find direct evidence for replicating stem cells in our Anopheles dataset. In the 

correlative experiment dataset however, we did find a large number of small cells 

(prohemocytes) expressing markers of cell maturity such as LRR (granulocytes) and PPO4 

(oenocytoids), supporting microscopically the hypothesis that all hemocyte subtypes, including 

oenocytoids, derive from prohemocytes.  

 

Recent studies have shown prohemocytes to have phagocytic capabilities and thus to 

partially resemble granulocytes [192]. Consistently we showed that prohemocytes and 

granulocytes exist on a continuum of activation and development. The prohemocyte-

granulocyte combined lineage split into three subtypes: a) one lineage differentiated from 

prohemocytes into granulocytes, then active granulocytes type 2 and finally dividing 

granulocytes, replenishing the granulocyte cell pool after blood feeding, b) two other lineages 

instead branched off together into active granulocytes type 1 before splitting into effector cells 

and c) secretory cells. Oenocytoids on the other hand appear to be a completely separate 

lineage. We did not find evidence of transcriptomic transition between prohemocytes and 

oenocytoids, but we did find likely transitions between prohemocytes and oenocytoids with 

correlative microscopy. Prohemocytes are also the smallest of hemocytes, and few genes per 

prohemocyte could be captured. The transitions could have thus been missed. Importantly, all 

three lineage tracing algorithms (PAGA, diffusion maps, Slingshots), as well as Seurat agreed 

with one another, reinforcing our confidence in the hypothesised lineages. PAGA in particular 
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is well suited to identify connections between cell types in complex datasets. No clusters were 

removed in the PAGA analysis, and yet the algorithm still correctly identified a transcriptomic 

relationship between all fat body cells, whereas muscle cells formed a separate cluster of its 

own. Surprisingly, oenocytoids were also disconnected from all other cell types. Indeed, even 

when the PAGA threshold was lowered to capture less confident inter-cluster connections, 

oenocytoids still did not connect to any other clusters, even when fat body cells and hemocytes 

did. The lack of connection between fat body cells and hemocytes amounts to a positive control, 

and we thus conclude that oenocytoids and hemocytes either sit on different lineages that likely 

arose during the embryonic and larval stage, or that the depth of coverage of our dataset did 

not allow for the connection to be determined transcriptomically, as few transcription factors 

or lowly expressed genes could be found in prohemocytes. After subsetting the prohemocytes-

granulocytes family we then run separate Slingshot and diffusion maps analyses to confirm the 

data found through PAGA. And indeed, when visualising diffusion component 1 vs component 

3 we could observe direct transitions from active granulocytes type 2 to rapidly diving cells, as 

well as from type 1 granulocytes to effector hemocytes, indicating a differentiation process. 

Furthermore, DC1 vs DC2 and the 3D visualisation of the first three diffusion components also 

showed the secretory subtype emerging from granulocytes. 

 

Slingshot – another top-rated lineage tracing software – further supported our 

hypothesis, recapitulating the differentiation process we had observed with PAGA. A 

pseudotime analysis of the three branches also showed some of the genes involved in the 

transitions. Keeping in mind that most cell cycle genes were not included in the lineage analysis 

due to the strict filtering requirements, many of the genes Seurat identified as markers for each 

cell type were also independently found in the pseudotime-based analysis. For example, lineage 

1, which traces prohemocytes to dividing cells, featured PPO6 and fibrinogen. Of interest, in 

humans and mice extravascular fibrinogen has been shown to induce macrophage chemokine 

expression via Toll-like receptor 4, leading to increased immune surveillance at sites of 

increased inflammation [351]. In our dataset, granulocytes type 2 and many oenocytoids 

expressed fibrinogen and fibronectin-like transcripts. It may be that these cells are 
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immunogenic sensors leading to fibrinogen deposition and activation, followed by mitotic 

division of granulocytes (dividing cells). Lineage 2 genes featured cecropin, LYSC1, collagen 

Type IV alpha, laminin subunit alpha, once again transcripts that were gene markers of 

granulocytes type 1 and secretory cells with Seurat. Lineage 3 genes were very similar but 

LITAF3 (LL3), laminin gamma 1, and LRIM16B were specific for effector cells.  

 

These conclusions were reinforced by the parallel results in our Aedes dataset. The cell 

types originally discovered or confirmed in Anopheles were largely conserved between the two 

species, and thus possibly of functional importance. Because of the increased number of genes 

per cell we were able to detect more granular details, including two different oenocytoid cell 

and dividing granulocytes cell states. Interestingly however, effector cells were not detected at 

all in the Aedes dataset. Furthermore, the gene marker (TM7318) defining them is only present 

in anophelines of the Cellia subgenus (malaria vectors in Africa and Asia). We speculate these 

cells may thus have specific functions in African and Asian Anopheles, potentially connected 

to immune priming and Plasmodium responses (see Chapter IV).   

  

Fat body cells and muscle cells were captured in both species, either because they 

naturally slough off into the hemolymph, or because the shear stress of the anti-coagulant 

buffer injection, or the tearing of the abdomen, dislodges them. Fat body cells had two main 

transcriptomic states: baseline and active. The active fat body cell was highly metabolic, 

characterised by the expression of canonical markers such as vitellogenin. Conversely, baseline 

fat body cells expressed a plethora of immune genes, both pro and anti-inflammatory, although 

many of the top markers are known for dampening the immune system. Inactive fat body cells 

were characterised by high expression of CLIPs, lectins, LRIMs, APL1C, and SRPNs, in 

addition to regulatory genes of the PPO cascade, such as apolipophorins and phenoloxidase 

inhibitor protein. This cell type appears to specifically express Plasmodium infection agonists. 

For example, CLIPA9 expression increases oocyststs load [352], and both CLIPA7 and CTL4 

stop parasite melanisation [353]. LRIM17 is downregulated after infection to activate an 

effective immune response [354], and LYSC1 and CLIPA14 knock-down mosquitoes exhibit 
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increased resistance to P. berghei and bacterial infections [355, 356]. SRPN2 also appears to 

aid malaria parasites [357]. Interestingly, with blood-feeding or infection there was a shift 

towards a metabolically active, and immunologically permissive fat body. The loss of immune 

inhibition by the fat body and the concurrent activation of immune cells in the hemolymph 

suggests the mosquito immune response is tightly integrated with its metabolic functions, with 

different organs interacting to provide an optimal immune response at each phase of the 

mosquito life. 

 

 
 


