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“By heaven, I'll make a ghost of him that lets me”  

― William Shakespeare, Hamlet  

 

Malaria is a deadly global disease. Every year the Plasmodium parasites are responsible for 

219 million cases of malaria and over four hundred thousand deaths, mostly vulnerable young 

African children under 5 years old and pregnant mothers [1]. After decades of steady progress 

malaria incidence is no longer declining. According to the 2018 World Malaria Report, the 

number of malaria cases increased from 217 million cases in 2016 to 219 million cases in 2017, 

resulting in 435,000 deaths [1]. Furthermore, in 2017, 3.5 million more malaria cases were 

recorded in the 10 African countries with the highest disease burden. In the Americas, some 

countries are also seeing large increases in prevalence, namely Brazil, Nicaragua, and 

Venezuela  [1].  

 

Most malaria-related deaths (93%) are concentrated in Africa; particularly so (76%) in 

the 17 sub-Saharan countries with the highest incidence of disease. The stark death toll is due 

to the high prevalence of Plasmodium falciparum malaria – the most virulent form of the 

disease – in the African continent. Here, P. falciparum causes 99.7% of malaria cases, while 

outside of Africa Plasmodium vivax is the most common infection. Other Plasmodium species 

can also cause human disease, such as P. malariae, P. knowlesi and P. ovale, but their 

prevalence is lower [5]. In all cases, Plasmodium parasites are transmitted to humans through 

the bite of an infected mosquito of the Anopheles genus. Anopheles gambiae and coluzzii 

(former A. gambiae molecular “M form”[6]) are the main vectors of P. falciparum malaria in 

Africa. However, over 30 Anopheles species are major disease vectors in other geographic 

regions. 

 

If left untreated, malaria is a chronic and often deadly infection, as the human immune 

system is unable to achieve sterile immunity. Only after years of exposure and repeated bouts 

of infection is the immune system able to contain the parasite, resulting in chronic 
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asymptomatic infections. During the first 5 years of life, malaria infections often cause 

symptoms such as fever and anemia, and a proportion of children (1-2%) develop life-

threatening severe disease and can die[7]. Mild or asymptomatic disease is not observed until 

early adolescence, but febrile episodes can still occur. Only as they reach adulthood, do people 

transition to a chronic state where disease symptoms rarely occur [2, 8]. Because sterilizing 

immunity never develops, adults maintain asymptomatic blood-stage malaria infections 

throughout their lives. They also become asymptomatic gametocyte carriers, infecting 

mosquitoes in their communities and maintaining the transmission cycle [9]. Malaria immunity 

in humans is complex, involving early development of protection from severe disease, followed 

by asymptomatic uncomplicated disease, but rarely, if ever, involving complete resistance to 

infection. Similarly, complex innate immune responses to Plasmodium occur in Anopheles 

mosquitoes, the outcome of which determines disease transmission.  

 

Recent calls for malaria eradication have led to considerable strides in controlling this 

deadly disease[10], but we are far from defeating it. Importantly, we might not even yet have 

the right tools for such a goal, as the first approved vaccine (RTS,S/AS01) only provides partial 

(32-41%) protection [11], and the current arsenal of anti-malarial drugs is becoming less 

effective as Plasmodium resistance spreads[12]. Two vector-control strategies, insecticide-

treated nets (ITN) and indoor residual spraying (IRS), have been key for the successful 

reduction of the burden of malaria in the last ten years, but these gains are in peril as mosquitoes 

develop insecticide resistance[13].  

 

The reproductive rate (R0) is defined as the number of new infection one case can 

generate, on average, over the course of its infectious period. It has been recently calculated 

that the R0 for malaria ranges from 1 to over 3,000, depending on location, parasite species, 

populations and vectors [14]. To put the number into perspective, the flu has an R0 of 10. By 

definition, for malaria to be eradicated, R0 has to drop below 1. From a public health 

perspective, that means no “one-size-fit-all” approach can work, while from a researcher stand-

point, it indicates that vaccines alone might be insufficient to eradicate malaria in areas of high 



 27 

transmission. New control strategies that reduce the rate of re-infection, such as transmission-

blocking vaccines[15], or the use of Metarhizium fungi that rapidly kill insecticide-resistant 

mosquitoes[16], will be required to achieve eradication. Crucial to all such eradication efforts 

is a better understanding of the determinants of malaria transmission by mosquitoes. There is 

ample evidence that mosquitoes have the potential to mount effective anti-plasmodial immune 

responses[2]. The mosquito relies on epithelial, humoral and cellular innate immune responses, 

coordinated by the hemocytes, the equivalent of the human white blood cells in insects [17]. 

My thesis project involves the development of an atlas of the mosquito cellular immune system 

at single-cell resolution as it responds to Plasmodium infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

1 The malaria parasite 
 

"There's more beauty in truth, even if it is dreadful beauty"  

— John Steinbeck, East of Eden 

 

The malaria parasite and mankind are old foes. A recent study has shown the parasite co-

evolved with gorilla parasites and went through an evolutionary bottleneck when it gained the 

ability to infect human hosts between 40,000 and 60,000 years ago. Human-adapted P. 

falciparum thrived when the human population exploded 5,000 years ago thanks to advances 

in farming [18]. As such P. falciparum infection has exerted a strong selective pressure on 

human populations worldwide, perhaps more so than any other pathogen [19]. No example is 

more widely studied in medical schools all around the world than sickle cell anemia. Recent 

medical advances have transformed the life of sickle-cell disease patients, whose life 

expectancy keeps rising and was estimated at 57 years in the US (2014) and 60 years in the UK 

(2016) [20, 21]. However, the homozygous hemoglobin S (HbS) variant was historically 

uniformly lethal in children, and yet was still maintained in the population at a frequency of 

around 15%, thanks to partial protection against severe malaria in heterozygotes [22]. But the 

parasite also had to adapt to the mosquito vector. For example, the Plasmodium surface protein 

Pfs47 allows the parasite to evade the mosquito innate immune system. It is thought that for a 

parasite to be transmitted, it requires a Pfs47 haplotype compatible with the Pfs47 receptor of 

the mosquito. As such, Pfs47 functions as a molecular “key” that turns off mosquito immunity 

through interaction with a receptor (“the lock”) specific for each vector species. Only the right 

“lock and key” combination allows parasites to survive in the mosquito and propagate [23]. 

The parasite’s life cycle is exceedingly complex, in both its human and mosquito hosts. Hence, 

many more such host-parasite immune interactions surely remain to be discovered. One of the 

most widely used animal models to study host-parasite interactions, as well as Plasmodium life 

cycle and development in the mosquitoes is P. berghei, a malaria parasite that infects mice. I 

used this experimental model system extensively in my PhD thesis to investigate the 

transcriptional response of the mosquito hemocytes to Plasmodium infection.   
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Figure I.1: Plasmodium falciparum life cycle. (A) Human malaria infection starts after an 
infected mosquito feeds and releases sporozoites from the salivary gland. (B) Some sporozoites 
escape the dermis, reach a blood vessel, travel to the liver through sinusoids or Kupffer cells 
and infect hepatocytes where they form a parasitophorous vacuole membrane (PVM) and 
undergo schizogony to released thousands of merozoites. (C) These merozoites travel in the 
blood and infect red blood cells, where multiple cycle of asexual reproduction (schizony) will 
occur before another burst and the repeat of the cycle. (D) Some merozoites are activated to 
differentiate to sexual gametocytes. (E) After bone marrow sequestration and maturation 
mosquitoes ingest gametocytes. In the midgut of mosquitoes, male and female gametocytes 
mate and form a zygote. In 24 hours the resulting motile ookinete penetrates the mosquito 
midgut epithelium and encysts. (F) In the oocyst asexual sporozoites replicate, are released in 
hemocoel, and colonize the salivary gland. Figure adapted from Cowman et al. [24] 
 

 

 

 

 



Introduction 

a. Malaria life cycle in humans 

 
Before exploring in detail the mosquito phase of Plasmodium life cycle, it will be useful to 

review the human stages of parasite development. After a mosquito bite, sporozoites that had 

already colonized the salivary gland are injected into the human dermis. Some are able to 

survive local immune responses and move into blood vessels, travelling to the liver. Here they 

cross the hepatic sinusoidal barrier (fenestrated endothelial cells and Kupffer cells - resident 

macrophages), thanks to the action of SPECT, SPECT2, CelTOS, PL, and GEST proteins [24–

28]. Sporozoites activate by binding higher sulfated forms of heparin sulfate proteoglycans 

(HSPGs), tetraspanin CD81, and scavenger receptor B1 (SR-B1) on hepatocytes [29, 30]. As 

circumsporozoite proteins (CSP) bind HSPGs, hepatocyte invasion commences [31]. Over the 

next 2-10 days sporozoites will morph into liver-stage (LS) schizonts, an exo-erythrocytic form 

(EEF) stage in which the parasite multiplies, eventually releasing over 40,000 merozoites per 

infected hepatocyte into the circulatory system [32].  

 

Once released, merozoites infect circulating red blood cells in a three-step process [33]. 

The first and least understood is pre-invasion, in which low affinity binding between 

merozoites and erythrocytes orient the apical end of parasites towards red blood cells (RBCs) 

[34]. Then, specific binding mediated by erythrocyte binding-like proteins (EBA) and 

reticulocyte-binding protein homologs (PfRh) leads to actomyosin-driven host cell 

deformation and erythrocyte invasion [33, 35]. A PfRh5-PfRipr (Rh5-interacting protein) – 

CyRPA (cysteine-rich protective antigen) – basigin complex mediates the close interaction 

between erythrocyte and merozoite membranes, leading to microneme secretion and Ca2+ 

influx inside the red blood cells [36–39]. Merozoites are then irreversibly linked to erythrocytes 

through AMA1-RON tight junction complexes [40]. These are moving junctions, propelling 

the merozoites inside red blood cells just as rhoptry contents are released, which form the 

parasitophorous vacuole membrane (PVM) around the merozoites [41]. As the PVM seals, 

cytosolic water losses within host cells cause echinocytosis. Over the next 48 hours the 
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parasites take advantage of the established nutrient-rich cellular milieu to rapidly divide and 

produce 16 to 32 merozoites each, which then egress as they destroy the RBCs [24]. 

 

During these rounds of cellular replication (schizogony), a small proportion of 

Plasmodium parasites will differentiate into sexual forms, a required step for successful 

transmission to mosquito vectors. Male and female gametocyte differentiation is not fully 

understood, but is regulated by the master switch AP2-G [42] following sensing of 

environmental signals such as high parasitemia or presence of chloroquine in the blood stream. 

Gametocyte development lasts 11 days, during which time committed but not yet mature 

gametocytes hide sequestered in the bone marrow to avoid splenic clearance. Following 

development, mature stage V gametocytes are taken up by feeding mosquitoes to commence 

the mosquito life cycle [43] [Fig. I.2]. 
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Figure I.2: Detailed Plasmodium life cycle in the mosquito and key parasite proteins. (A) 
Plasmodium gametocytes are first ingested when mosquitoes take an infected human blood 
meal. Gametes, both female (macrogametes) and male (microgametes) mature from 
gametocytes to form a zygote (B). After meiosis the zygote morphs into the motile, infective 
ookinete (C) which is able to penetrate through the mosquito midgut. After egressing from the 
midgut Plasmodium ookinetes encyst on the basal end, becoming sessile (D). After 10-14 days 
of growth and mitotic divisions, thousands of motile sporozoites are released into the mosquito 
circulation, travelling in the hemolymph until some reach the mosquito salivary glands (E). 
Here sporozoites attach to the basal side of salivary gland acinar cells, travel through them, and 
enter the ducts, where they await the next mosquito bite to continue the life cycle. Key proteins 
at each step are listed above. Figure adapted from Aly et al. [44] 
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b. Plasmodium life cycle in mosquitoes 
 
Parasites ingested during a blood meal quickly undergo sexual reproduction in the mosquito 

midgut [44]. Gametogenesis starts the moment gametocytes are ingested by feeding mosquitos, 

leading to the formation of mature male and female gametes [45]. Gametogenesis is mediated 

by essential environmental signals such as a 5°C drop in temperature, the rise of extracellular 

pH (from 7.2 to 8), and xanthurenic acid (XA) sensing [46–50]. XA – a byproduct of mosquito 

metabolism – activates guanylyl cyclase, leading to increased second messenger cGMP 

production and protein kinase G (PKG) activation[51, 52]. In addition, XA increases inositol-
(1,4,5)-trisphosphate (IP3) production by activating phospholipase C, causing the opening of 

Ca2+ channels [53–55]. Heightened intracellular Ca2+ releases translational repression in male 

and female gametocytes by activating Ca2+-dependent protein kinase 1 (CDPK1) [56]. 

Gametocyte activation is rapid, and within 15 minutes gametocytes egress from red blood cells 

by rupturing first the PVM and then the erythrocytic membrane (EM), steps respectively 

associated with osmiophilic bodies and egress vesicles [50]. The former is mediated by Pg377, 

MDV-1/Peg3 and GEST [57–59] while egress vesicles release perforin, which breaks the EM 

to release fertile gametes [60]. Activated microgametocytes undergo three rounds of 

replication, becoming octaploid, and producing eight flagellar mature microgametes by mitosis 

(exflagellation)[61]. Exflagellating microgametes adhere to nearby red blood cells, hiding 

within rosettes before detaching from the residual body, searching for macrogametes [45]. 

When a partner is found Pfs47, Pfs48/45, and Pfs230 proteins form complexes responsible for 

the binding of microgametes and macrogametes, commencing fertilization [62–64]. First, the 

plasma membranes of the two gametes fuse. The axoneme and male nucleus then enter the 

female cytoplasm, mediated by HAP2. Finally, nucleus fusion ensues, followed by meiosis and 

the production of a tetraploid zygote (as mediated by NIMA-related kinases Nek-2 and Nek-
4)[65–67]. 

 

 Next, the zygote morphs into a motile ookinete able to colonize mosquitoes. After 

fertilization ninety-one proteins were found to be specifically expressed, with silencing of 
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paternal alleles in both zygotes and ookinetes. These changes are orchestrated by the 

transcription factor AP-2O, the master regulator of ookinete development and motility. 

Furthermore, AP-2O also plays a key role in penetrating the mosquito midgut epithelium and 

protecting ookinetes from immune defenses [56, 68–70]. Among the upregulated genes are 

secreted proteins such as perforins (PPLP3, 4 and 5), PSOP1, 2, 6, 7 and 12, and SOAP, as 

well as WARP, POS1-10, and P25, P28 – all potential or actual targets of transmission-

blocking vaccines [56, 70, 71]. Ookinete maturation completes between 19 and 36 hours after 

an infectious blood-meal, after which ookinetes exit the gut [72–74]. Ookinete motility is 

regulated by PKG and CDPK3 activity, as well as cGMP and Ca2+ levels [75–78]. In order to 

successfully infect a mosquito ookinetes must first penetrate the peritrophic membrane (PM) – 

a chitin structure that functions to protect mosquitoes from bacteria and gross food [79]. To 

break through the PM Plasmodium ookinetes produce a chitinase that is able to hydrolyse the 

chitin [80–82]. Traversal of midgut epithelial cells is mediated by CTRP, a protein secreted by 

the ookinete to form a bridge between the midgut epithelium and the actin/myosin motor of the 

ookinete [83–85]. Three perforins (PPLP3-5), SOAP, WARP, MAOP and CelTOS are all 

microneme proteins required to breach the epithelial membrane [70, 85–91]. Once ookinetes 

have crossed the midgut epithelium they are surrounded by the laminin and collagen of the 

basal lamina. The interaction of Plasmodium with laminin turns ookinetes sessile, which 

encysts on the basal side of the midgut epithelium, triggered by the proteins P25 and P28, with 

help from CTRP and SOAP [71, 92]. Cell transversal is a bottleneck, and only a few ookinetes 

are successful in invading the mosquito midgut [88, 93, 94].  

 

Oocyst development and maturation lasts between 10 and 12 days, and is the only stage 

of the life cycle where the parasite is extracellular for an extended period of time. And yet, 

little is known of host-oocyst interactions. Nutrients flow through the oocyst capsule, formed 

by an outer layer of thick mosquito laminin, parasite transglutaminase, Cap380 (oocyst capsule 

protein)[95], and P25/P28, and an inner oocyst plasma membrane containing Cap93[96] and 

circumsporozoite protein (CSP), a GPI-anchored protein[97]. Oocysts grow to 50-60 µm in 

diameter, forming thousands of sporozoites after multiple rounds of mitotic divisions, mediated 
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by LAPs (LCCL/lectin adhesive-like proteins) expression [98]. CSP is essential in building 

syncytial lobes - called sporoblasts, coordinating the localization of microtubule organizing 

centers (MTOC) underneath sporoblast membranes to make mature sporozoites[99, 100].  

  

 Once sporozoites reach maturity, they egress from oocysts, in a process that involves 

digestion of the capsule mediated by a cysteine protease, ECP1 (egress cysteine protease 

1)[101, 102]. CSPs and a hypothetical oocyst protein also have important roles in sporozoite 

release[103, 104]. Sporozoites in the hemocoel are then carried to all tissues in the mosquito 

body by circulatory flow. Some are deposited to the basal lamina of the salivary gland, where 

CSP again plays a role in attachment [105, 106]. Thrombospondin-related anonymous protein 

(TRAP) is essential for attachment and invasion[102, 107], binding to saglin, a mosquito 

receptor in the distal lobes of the salivary gland [108, 109]. Gliding motility and the actin-

myosin motor are also involved in invasion, mediated by TRAP and TREP (TRAP-related 

protein), as well as cysteine repeat modular proteins (CRMP1 and 2) and MAEBL [110–112]. 

Cellular invasion mechanisms are largely conserved between human and mosquito life stages 

of the parasite. However, while MAEBL-deficient sporozoites can still invade human host 

cells, TRAP-deficient parasites cannot. In fact, acinar cells in the salivary gland are invaded by 

a slightly different mechanism than the parasitophorous vacuole (PV) involved in liver and 

blood-stage invasion. Rather, invasion happens through a specific vacuolar membrane 

produced by the host cell [113]. How the sporozoite is able to induce vacuole formation in the 

salivary gland epithelial cells is unknown. 
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2 Mosquito immune responses 
 
“The world is, of course, nothing but our conception of it”  
― Anton Chekhov 
 

Throughout the life of Plasmodium, the mosquito is far from being a passive vector. There are 

active interactions between parasites and the immune system at each step of the life cycle, 

especially when Plasmodium is extra-cellular. In fact, insects are constantly exposed to a wide 

variety of micro-organisms and pathogens seeking to exploit the host mosquito for their own 

reproductive goals. Viruses, fungi, bacteria, protozoans, and nematodes all invade and infect 

mosquitoes [114–118]. Some pathogens are able to penetrate through the external exoskeleton 

of mosquitoes, formed by hydrophobic chitin, which also lines the foregut, hindgut, and 

tracheas. They accomplish invasion by degrading the cuticle [119, 120]. Other pathogens enter 

mosquitoes through the digestive tract, overcoming physical barriers such as pharyngeal 

armatures and the chitinous peritrophic matrix, as well as digestive enzymes, local microbiota, 

and a hostile pH.  Some pathogens evolved mechanisms to penetrate through these defensive 

mechanisms to reach the hemocoel (blood) of the mosquitoes and replicate, while others remain 

within the gut itself. Mosquitoes have however developed sophisticated immune mechanisms 

to fight off and control these pathogens [117, 119, 121–123]. Mosquito hemocytes, the 

equivalent of human white blood cells, coordinate both cellular and humoral immune 

responses.  Humoral immune responses are mediated by molecules that are secreted into the 

circulating mosquito hemolymph (equivalent to serum in vertebrates) by hemocytes, fat body 

cells or epithelial cells lining the haemocoel, such as midgut and salivary gland cells). For 

example, pattern recognition receptors (PPRs), phenoloxidase cascade components, 

antimicrobial peptides, and elements of the complement-like system are all key mediators of 

the mosquito humoral response [3, 124–127]. The different components of the immune system 

are all interconnected, crafting an exceedingly complex and well-coordinated immunological 

network able to kill pathogens by a variety of effector mechanisms [Fig. I.3]. 
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Figure I.3: Mechanisms of immune killing. Mosquitoes kill pathogens by melanisation, lysis, 
phagocytosis, autophagy, encapsulation, nodulation, apoptosis, and RNA interference. 
Adapted from Hillyer et al. [117] 
 

 

a. Humoral immunity 
 
Mosquitoes lack antibodies, but can activate highly effective humoral mechanisms to control 

infection. For instance, antimicrobial peptides (AMPs) – such as defensins, cecropins, 

gambicin, attacin and holotricin – are small charged molecules that are secreted into the 

hemolymph, with strong anti-bacterial or anti-fungal effects [128]. The composition and spatial 

expression of the “cocktail” of antimicrobial peptides secreted in response to an immune 
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challenge can differ widely among different mosquito species. For example, defensins can 

reach a concentration of 45 µM in Aedes [129], while in Anopheles they reach a maximum of 

1-5 µM [130]. Furthermore, in An. gambiae antimicrobial peptides are produced at higher 

concentrations in the anterior midgut, and indeed Plasmodium oocysts colonise the posterior 

midgut[131]. Conversely, heightened AMP production can reduce parasite load. For instance, 

cecropin A (CecA) was shown to lower P. berghei oocyst counts in transgenic An. gambiae 

overexpressing CecA under the control of the Aedes carboxypeptidase promoter [132].  

 

 Melanisation is another powerful humoral mechanism to control infection. It is a 

biochemically conserved pathway to produce eumelanin from tyrosine and 5,6-

dihydroxyindole (DHI) catalyzed by a cascade of prophenoloxidases (PPOs). The PPO 

enzymatic cascade leads to killing both by starving the invading pathogen of nutrients – walling 

it off from the rest of the body – as well as through the direct toxic effects of chemical 

byproducts. Melanisation is also involved in cuticle hardening and wound healing. 

Furthermore, it causes hemocytes to aggregate – an immune response akin to human 

granulomas, called in mosquitoes nodulation or encapsulation [Fig. I.4][128, 133–136]. The 

melanisation pathway begins with PRR sensing (C-type lectins, Gram-negative bacteria-

binding proteins and beta-1,3 glucan recognition proteins), followed by a serine protease 

cascade leading to the activation of prophenoloxidases (mostly expressed by oenocytoids, a 

hemocyte subtype [136]). PPOs in turns activate melanin production by phenoloxidase. 

Melanisation is tightly regulated by serpins and C-type lectins. Similarly to human clotting, 

excessive activation would be deadly to the mosquito as widespread melanisation would 

damage the mosquito organs [133, 137, 138].  

 
 The complement-like pathway is one other crucial humoral effector mechanism, 

resulting in deposition of thioester-containing protein 1 (TEP1), a C3-like opsonin, on the 

surface of the microbe [139, 140]. Another four important proteins of the pathway are: two 

leucine-rich repeat proteins (APL1C and LRIM1), which stabilize TEP1 in circulation, and two 

clip domain serine protease homologs, (SPCLIP1 and CLIPA2), that modulate TEP1 

activation. CLIPA2 is a negative regulator of TEP1, while SPCLIP1 promotes TEP1 activation. 
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It has been proposed that, following binding of TEP1 and SPCLIP1 recruitment and activation 

onto the pathogen surface, an endogenous TEP1 convertase is also deposited that further 

propagates local activation and binding of TEP1 [137, 141, 141–144].  

 

 
Figure I.4: Melanisation pathway. Abbreviations: PRR, pattern recognition receptor; βGRP, 
β-1,3 glucan recognition protein; CTL, C-type lectin; GNBP, Gram(−) binding protein; PPAE, 
phenoloxidase activating enzyme; PAH, phenylalanine hydroxylase; PO, phenoloxidase; DDC, 
dopa decarboxylase; DCE, dopachrome conversion enzyme. Adapted from Hillyer et al. [117]. 
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b. Cellular immunity 
 
Hemocytes are the primary immune cells circulating in the mosquito hemolymph. Mosquitoes 

have no antibodies or canonical adaptive immunity and entirely rely on innate immunity. 

Cellular responses are quick, with direct interactions between pathogens and the immune cells 

that include phagocytosis, encapsulation, and nodulation [117, 118, 145]. Experiments returned 

wildly discordant estimates of the total number of hemocytes in a mosquito, mostly due to 

technical differences in the collection methodology employed. The scientific community 

agrees that between 2,000 and 10,000 hemocytes patrol a mosquito, although only a fraction is 

motile (~ 500 - 2,000) and numbers vary considerably with blood-feeding and infection [4, 

118, 146]. After morphological, enzymatic, and some functional characterization the consensus 

is that three main hemocyte subtypes exist: granulocytes, oenocytoids, and prohemocytes [Fig. 

I.5]. Of these, the vast majority are small prohemocytes (60-70%), followed by oenocytoids 

(20-30%) and granulocytes (1-10%), although estimates again vary considerably [4, 17, 17, 

118]. Because the classification is largely morphological, subjective differences in 

interpretation and methodology are inevitable. Granulocytes are the main effector phagocytic 

cells in the mosquito, expressing AMPs, complement-pathway components, and low-level PO. 

Oenocytoids contain PPOs and POs at much higher levels. Prohemocytes are still a mystery. 

Originally thought to be progenitor cells, they have recently been shown to possess phagocytic 

capabilities, and are hypothesized to arise from asymmetric cell division of granulocytes [146]. 

 

 While hemocytes remain in the hemocoel, and do not come in direct contact with the  

microbiome in the midgut lumen, transient bacteremia following blood feeding is thought to 

activate hemocyte replication after a blood meal [147–149]. A bacterium, yeast, fungus, or 

malaria parasite in the body cavity of a mosquito is usually quickly tagged, identified, and 

ingested by phagocytic hemocytes. Furthermore, hemocytes have been shown to aggregate 

around bacteria and form nodules [150]. Worms, fungi, or parasites become surrounded by 

melanocytic capsules [151–153]. In Aedes aegypti mosquitoes, hemocytes are also thought to 

play an important role in the systemic dissemination of arboviruses such as Sindbis or dengue 

virus [154, 155]. Hemocytes release microvesicles at sites of Plasmodium ookinete midgut 
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invasion that reduce parasite survival by promoting local activation of the complement-like 

system [156], thus coordinating epithelial and humoral antiplasmodial immune mechanisms to 

achieve an integrated and effective response. 

 

Very little was known of hemocyte development in mosquitoes, except that blood-

feeding increases their numbers[147]. In Drosophila, hematopoiesis is thought to occur in three 

waves: embryonic, larval, and lymph gland[157]. The first two are thought to be responsible 

for routine phagocytic and immunological functions of mosquitoes, whereas lymph gland 

hemocytes arise from synchronous differentiation of progenitors hemocytes within the gland 

following immune and environmental challenges. Crucially, after hemocytes differentiate these 

lymph glands disintegrate before adulthood[157]. Lymph glands have not been observed in 

mosquitoes.  

 

 
Figure I.5 Hemocyte subtypes. Average diameter and representative images of the three 
morphological subtypes of hemocytes in A. gambiae. Personal communication from Jose Luis 
Ramirez.  
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3 Specific Anopheles immune responses to Plasmodium 

a. Midgut epithelial defenses 
 
Mosquitoes ingest a very large, protein-rich meal during blood feeding which has to be digested 

to meet the nutritional needs of developing oocytes. At the same time, mosquitoes build a 

protective peritrophic matrix (PM), an acellular/semi-permeable layer of chitin polymers, that 

surrounds the blood meal and prevents direct contact between the microbiota in the lumen and 

the gut epithelium. The PM is also an important barrier against potential pathogenic organisms.  

At the end of the digestive process the PM matrix sack – containing remnants of the digested 

blood meal – is excreted from the mosquito. A new matrix will be formed when the mosquito 

ingests the next blood meal [158]. Mosquitoes also secrete mucin in the ectoperitrophic space 

between midgut epithelium and the PM, and actively modulate the permeability of this mucous 

layer through the activity of an immune-modulatory peroxidase (IMPer)/dual oxidase (Duox) 

system that catalyzes dityrosine cross-linking [2, 159, 160]. IMPer is secreted into the 

ectoperitrophic space, but is only active when immune elicitors activate Duox, which generates 

hydrogen peroxide a substrate required for IMPer to catalyze the formation of the dityrosine 

network. The end result is a dynamic modulation of the interaction between the immune 

elicitors released by gut flora and the gut epithelium following a blood meal, that allows the 

bacterial flora to survive by preventing constant activation of antibacterial immunity. This 

system also benefits Plasmodium parasites, because it allows them to develop within the 

midgut lumen without activating nitric oxide synthase (NOS) expression in epithelial cells. If 

this barrier is disrupted by silencing IMPer, mosquitoes mount a much stronger epithelial 

nitration response that eliminates Plasmodium [159, 161, 162]. 

 

b. Reactive oxygen/nitrogen species and complement-like defenses 
 
Plasmodium ookinetes must traverse the midgut epithelium to complete their development in 

the mosquito.  In doing so, they breach the peritrophic matrix, allowing the microbiota to come 

in direct contact with epithelial cells and cause irreversible damage as they invade midgut cells. 

Invaded mosquito epithelial cells express high levels of NOS, a response which is necessary, 
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but not sufficient to mount an effective response against Plasmodium. Specifically, increased 

NOS leads to nitric oxide production [161], which is unstable and is thought to rapidly convert 

to nitrite, a more stable molecule that accumulates in the cell [127, 161]. Similarly to what is 

observed in vertebrate macrophages, NOS activation is followed by activation of a peroxidase-

mediated nitration reaction that uses nitrite as a substrate [161]. This is a highly efficient 

nitration reaction catalyzed by HPX2 (Heme peroxidase 2), that requires high local levels of 

hydrogen peroxide – provided by NOX5 (NADPH Oxidase 5) – and nitrite as substrates [159, 

161, 162]. 

 

This NOX5/HPX2-mediated nitration is part of an apoptotic response in 

invaded/damaged midgut cell via JNK signaling that activates caspases expression, and is 

essential for mosquitoes to activate an effective immune response to Plasmodium by the 

mosquito complement-like system [161, 163, 164]. TEP1(C3-like factor), a key effector of the 

complement-like system, is produced by the hemocytes and circulates in the hemolymph as a 

stable complex with two proteins of leucine-rich (LRR) family, LRIM1 and APL1[140, 162, 

165–167]. TEP1, APL1 and LRIM1 are form a MW complex responsible for TEP1 deposition 

on the surface of pathogens that promotes phagocytosis or leads to the formation of a complex 

that will lyse ookinetes [144, 166, 167]. The precise mechanism of killing and complement-

activation is not completely understood, however work from our laboratory revealed that 

nitration of epithelial cells and the midgut basal lamina triggers the release of hemocyte-

derived microvesicles (HdMv) into the basal lamina labyrinth, that is critical for activation of 

complement-mediated Plasmodium lysis [156].  

 

c. Vector susceptibility and Plasmodium immune evasion 
 
There are broad differences in compatibility, the extent to which the mosquito immune system 

limits infection, between different Plasmodium/mosquito combinations[168]. Intriguingly, 

while all ookinetes must come into contact with TEP1 in the mosquito hemolymph, only some 

are lysed [165]. That begs larger questions: how does Plasmodium evade the immune system 
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of mosquito vectors? And why are some Anopheles mosquitoes more susceptible to infection 

than others? Mosquito susceptibility to Plasmodium infection has a strong genetic component.  

For example, the mosquito A. gambiae L3-5 strain was genetically selected to be highly 

resistant to P. cynomolgi (monkey malaria infection), but is also highly refractory to infection 

with P. berhgei, by expressing a TEP1 allele, with heightened anti-parasitic effects [169]. In 

addition, R strains have been shown to be in a state of chronic oxidative stress with increased 

basal levels of ROS and overactivation of JNK signaling, that is exacerbated by blood feeding 

[170].  

 

While higher systemic ROS levels in the R strain result in loss of longevity and fecundity, 

the immune response to Plasmodium invasion is well localized both in time and space [171–

173]. Invaded midgut epithelial cells activate ROS and nitration pathways, but these responses 

are localized and do not “spread” to healthy adjacent cells [162]. Furthermore, detox enzymes 

such as MnSOD (manganese-dependent superoxide dismutase), Gpx (hydrogen peroxide 

detox), and catalase are highly upregulated in healthy midgut cells and throughout the mosquito 

body (e.g. fat tissues), thus controlling any potential spillover and preventing damage. At the 

same time, catalase levels are downregulated in infected midgut cells to allow accumulation of 

ROS [162, 171, 172].  

 

Parasite genetics are just as important in understanding Plasmodium transmission and 

infection. Our laboratory showed that epithelial nitration and microvesicle release are key for 

P. berghei destruction via TEP1-mediated lysis [156, 162]. Intriguingly, some reports had 

shown little [174, 175] to no [176] effects in disrupting the complement-like system when A. 

gambiae is infected with P. falciparum. Later studies demonstrated that susceptibility of P. 

falciparum killing by TEP1 is a Plasmodium-strain and mosquito-species specific response 

[162, 177].  For example, the A. gambiae L3-5 refractory strain activates the complement-like 

system and kills the P. falciparum 7G8 strain from Brazil, while the African GB4 strain is able 

to evade the mosquito immune system and survive [178].  
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The P. falciparum Pfs47 gene – a member of the 6-cystein protein family expressed on 

the surface of female gametocytes and ookinetes – allows the parasite to evade the immune 

responses mediated by TEP1: parasite killing with subsequent melanisation the A. gambiae L3-

5 refractory strain, as well as lysis without melanisation in the susceptible G3 strain [177]. 

Pfs47 is polymorphic and exhibits a marked population structure and extreme fixation in non-

African regions [179, 180]. The global populations structure of Pfs47, together with our 

laboratory experiments infecting anopheline mosquitoes vector species from different 

continents, provided strong evidence that distinct P. falciparum Pfs47 haplotypes were selected 

to be compatible with different mosquito vectors [177]. We then proposed the “lock-and-key 

theory", where Pfs47 is a “key” that allows P. falciparum to evade the mosquito immune 

system by interacting with a mosquito receptor (“the lock”), different in each evolutionarily 

distant anopheline species [23, 181]. Only those parasites with a Pfs47 haplotype compatible 

with a given mosquito species are able to evade the mosquito immune system, and this allows 

them to survive and become established in a given geographic area. 

 

d. Signaling pathways of immune evasion / antiplasmodial immunity 
 

Further work examined the mechanism through which Pfs47 affects the response of the 

mosquito immune system to Plasmodium infection. JNK promotes TEP-1 lysis by inducing 

expression of HPX2 and NOX5 in midgut cells invaded by P. berghei ookinetes [182]. 

However, Pfs47 disrupts JNK signaling, preventing caspases activation and downstream 

midgut nitration in response to P. falciparum invasion [163, 170]. A recent study has shown 

that in P. berghei Pbs47 is also required for ookinetes to avoid destruction by the complement-

system [183]. P. falciparum ookinetes that do not express Pfs47 activate JNK signaling, 

caspase activity and downstream epithelial nitration, triggering a strong activation of the 

mosquito complement system that is very effective killing the parasite [163, 184]. Other 

conserved immune-signaling cascades are important mediators of immune activation and 

killing of Plasmodium: Toll, Imd, and STAT. Toll and Imd activation promote TEP1-mediated 

lysis, but Toll appears to be more effective in limiting P. berghei (with silencing of repressor 
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protein cactus), while Imd is more effective against P. falciparum. These three pathways (Toll, 

Imd, JNK) all converge to TEP1 as the key effector of ookinete lysis [2].  

 

If parasites evade and survive the early complement-mediated response, a different “late-

phase” immune response is thought to further decreases parasite numbers by attacking the 

oocyst stage of Plasmodium [125, 185]. Plasmodium infection triggers a multi-pronged defense 

strategy by the mosquitoes, where an initial complement-mediated response that targets 

ookinetes is followed by activation of the STAT and LPS-induced TNFα transcription factor 

(LITAF)-like 3 (LL3) pathways that limits oocyst survival [185]. Interestingly, both STAT and 

LL3 seem to act independently. The STAT pathway is composed of STAT-B and STAT-A, 

with STAT-B regulating basal levels of STAT-A, which in turns regulated NOS, SOCS, and 

hemocytes differentiation. While STAT-dependent NOS expression reduces oocyst survival 

[125, 127, 185, 186], LL3-dependent midgut NOS induction has the opposite effect, increasing 

oocyst survival [186]. Other unknown factors are most likely at play, including the possibility 

of multiple isoforms of NOS [185].  

 

In addition, while a double knock-down of SOCS (a suppressor of STAT) and NOS leads 

to higher oocyst survival than single SOCS silencing, single NOS knock-down unexpectedly 

leads to almost complete loss of infectivity due impaired epithelial cell invasion [125]. It 

appears that high levels of NOS are deleterious to oocysts, while a minimum level of NOS is 

required for ookinete midgut invasion to occur [125]. Finally, we still do not know what are 

the exact signals that lead to STAT and LL3 activation, although eicosanoids (see next section) 

or the wound-healing response might be implicated, as the AP-1/Fos-TGase2 axis has also been 

linked to increase TEP1 dependent P. falciparum killing [187].  
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e. Hemocytes are key coordinators of immunity in Anopheles and 

mediate mosquito immune memory 
 
Our current understanding of both early and late cellular immune responses to Plasmodium is 

still limited, and much work is required to elucidate the precise molecular details of their 

immune effector functions. Furthermore, despite the ability of hemocytes to coordinate 

immune responses and respond to a variety of insults, including wound healing, and viral, 

bacterial, fungal, and parasitic infection, their exact molecular role in anti-Plasmodium 

immunity remains largely unknown [3, 185, 187–190]. We briefly discussed how three 

morphologically distinct subpopulations of hemocytes are believed to exist in Anopheles: the 

prohemocytes (putative undifferentiated precursors), granulocytes (phagocytic hemocytes), 

and oenocytoids (characterized by phenoloxidase activity) [4]. We have also discussed how 

hemocytes participate in the immune response against Plasmodium through cellular and 

humoral effector mechanisms. But what is the role of specific cell types in Anopheles defense 

mechanisms? And do only three cell types really exist? Already some recent studies suggest 

hemocytes could harbor greater complexity than originally thought, with three phagocytic 

subtypes found within PPO6low populations (equivalent to morphologic granulocytes)[191, 

192].  

 

Besides their conventional role as effectors of mosquito innate immunity, hemocytes 

have also been shown to mediate immunological memory. This phenomenon is called ‘immune 

priming’, and is defined as the ability of mosquitoes that have been infected with Plasmodium 

to develop a life-long, systemic state of enhanced immune surveillance, with an increased 

proportion of circulating granulocytes – the phagocytic cells that are more similar to vertebrate 

macrophages – which enhances their immune response to subsequent infections [193]. In 

addition, there are changes in the morphology and binding properties of granulocytes, with 

larger and more granular cytoplasm, pseudopodial extensions, and increased lectin-binding 

capabilities [193]. Interestingly, NK cells in vertebrates have recently been shown to also 

possess similar mechanisms [2]. The priming response in A. gambiae is activated when 
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Plasmodium ookinetes breach the gut barrier and come into contact with the epithelial midgut 

cells, and damage to Plasmodium is due to a bystander effect [193]. Primed mosquitoes mount 

a stronger antiplasmodial response by greatly increasing the release of hemocyte-derived 

microvesicles [193].  

 

Indeed, our laboratory has shown immune priming to be a ‘two-step approach.’ First, 

ookinete invasion induces expression of HXP7 and HPX8, two heme-peroxidases that catalyze 

prostaglandin E2 (PGE2) synthesis. Epithelial cells release PGE2 into the hemolymph and this 

attracts hemocytes to the basal surface of the gut. The chemotactic response is then followed 

by enhanced patrolling activity of the midgut basal lamina.  If hemocytes detect a nitrated 

surface, they undergo apoptosis and release microvesicles into the basal labyrinth space, in 

close proximity to parasites that have traversed the midgut. The exact contents of these vesicles 

remains to be elucidated, but their release is essential for effective activation of TEP1-mediated 

anti-Plasmodium immunity [156, 194]. 

Following immune activation, primed mosquitoes constitutively release a hemocyte 

differentiation factor (HDF), and this factor persists in the hemolymph for the entire life of the 

mosquito [195]. HDF consists of a lipoxin/lipocalin complex [194]. Lipocalins are a family of 

proteins involved in lipid transport, while prostaglandins and lipoxins are all part of the 

eicosanoid lipid family [196]. Eicosanoids possess important signaling roles in homeostasis, 

inflammation and immunity not only in mammals, but also microbes and invertebrates like 

Anopheles [197]. Interestingly, suppression of host eicosanoid synthesis has been shown to be 

a mechanism of immune evasion by bacteria [197, 198].  

Our laboratory has shown that immune priming involves an increase in lipoxin 

production (especially lipoxinA4) from arachidonic acid, as well as increased expression of 

evokin, a lipid carrier protein of the lipocalin family. In addition, it appears as if LL3 is also 

necessary for HDF production, as silencing it stops HDF release. Priming can also be abolished 

by interfering with the function or movement of hemocytes by injecting water, PBS or 

Sephadex beads into the hemolymph [193]. Importantly, hemocyte differentiation factor 
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(HDF) is sufficient for effective priming, as transfer of both hemolymph, cell-free hemolymph, 

and HDF alone leads to hemocyte differentiation in the mosquitos and transference of enhanced 

antiplasmodial immune capabilities [2, 193]. Interestingly, although priming is elicited when 

ookinete invasion allows direct contact of the gut microbiota with midgut epithelial cells, 

Plasmodium species differ in their ability to establish a priming response, depending on their 

compatibility with the mosquito vector. For example, A. gambiae G3 mosquitoes mount a 

stronger immune response to P. yoelii ookinetes than to P. berghei, while P. falciparum NF54 

fails to elicit an effective immune response. P. yoelii, the parasites that triggers the strongest 

immune response, leads to the strongest priming, while infection with the highly compatible 

P. falciparum NF54 strain results in weaker priming than P. berghei infection [163]. It is not 

clear whether strong epithelial nitration in midgut epithelial cells or the release of microvesicles 

also enhances the long-lasting priming response of hemocytes. Much remains to be discovered 

regarding the role of eicosanoids and hemocytes in insect immunity and immune memory. 
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Figure I.6 Model of hemocytes activation and priming. Model follows Plasmodium 
ookinetes midgut invasion in A. gambiae. PGE2 is released 24 hours post-invasion by the 
midgut, leading to chemotaxis and attachment of hemocytes to the basement membrane. Next, 
hemocytes release micro-vesicles in the basal surface of the midgut epithelial cells. PGE2 and 
likely other signals lead to HDF release 48 hours post-invasion, which activates hemocytes for 
long-term priming and differentiation into granulocytes and oenocytoids. Priming can be 
abolished by interfering with function or movement of hemocytes[2, 193]. In addition, LL3 is 
necessary for HDF production, as silencing it reduces HDF release [Dr. Barillas-Mury, 
personal communication]. None of the other immune pathways so far implicated in 
Plasmodium defense (Toll, Imd, STAT, JNK) are required for HDF release, although Toll, 
STAT, and JNK are all necessary for hemocyte differentiation in response to HDF[17]. Even 
for those pathways, we do not know the effector mechanisms, which receptors activate 
signaling cascades, or the sequence of kinases and transcription factor activation. Adapted 
from: * Crompton et al.[2] and ** Moreno-Garcia et al.[199] 
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4 Single-cell transcriptomics  
 
“From out of all the many particulars comes oneness” 
― Heraclitus 
 

Past microarray studies in mosquitoes have uncovered Plasmodium and bacteria-mediated 

expression changes in genes regulating immunity [200–203]. However, few transcriptomic 

studies have been conducted to explore in depth how hemocytes respond to insults such as 

Plasmodium [192, 204]. And although terms such as “activation”, “priming” and “innate 

memory” are used to describe immune phenomena in mosquitoes, their precise cellular basis 

is poorly understood [201]. As we have seen, many innate immune pathways are encoded in 

mosquito genomes, and have been linked to distinct immune responses by bulk transcriptomics 

and dissected through reverse genetics [17, 200, 202, 203, 205]. It is therefore highly likely 

that the number of relevant functional states in hemocytes is larger than currently known 

molecular markers suggest. In fact, two recent studies by the Levashina and Smith groups have 

started to explore the cellular heterogeneity of the mosquito immune system, but were limited 

by their chosen technology [191, 192]. They were largely unable to differentiate between 

hemocyte populations, since bulk approaches only look at the average expression level, and 

single-cell approaches conversely need large number of cells to make meaningful conclusions.  

 

On the other hand, well designed single cell approaches such as single cell RNA-

sequencing (scRNA-seq) enable researchers to thoroughly map whole immune systems, 

creating atlases of all immune cell type and states, describing their evolution in time and with 

infection.  Critical biological questions can be explored, such as what transcript isoforms are 

variably expressed between different cell types [206–209], how cell types differentiate into one 

another[210, 211], and what is the precise lineage and cell cycle state of individual cells [207, 

211]. In scRNA-seq we sample the transcriptome of each individual cell independently from 

one another, and the technique is quickly becoming the new state-of-the-art in cell biology.  
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Seemingly homogeneous cell populations actually feature great transcriptional heterogeneity, 

both due to external factors such as individual microenvironments, but also internal stochastic 

processes [212]. Bulk approaches are unable to disentangle these differences, especially since 

the vast majority of transcripts in each cell is present in few copies, and most are not even 

messenger RNAs. The apparent randomness of transcriptional expression, even when cells are 

exposed to similar microenvironments – what we call transcriptional noise – is now recognised 

as crucial in determining cell fate decisions [213]. Single cell techniques are new, and both 

technical methodologies and analysis algorithms need to mature further, but a plethora of 

technologies have already emerged to make scRNA-seq the most sensitive, unbiased, and high-

throughput technology to precisely capture these unique cell types, states, and transitions [214, 

215]. 

  

 The field has come a long way since its origins, having first been developed by Tang et 

al. in 2009 for hand-picked mouse blastomeres, which – thanks to their high RNA content 

(over 1 ng/cell) – could be more easily processed [216]. Now, tens of thousands of cells with 

only a few picograms of RNA can be successfully sequenced with highly automated pipelines 

[Fig. I.7]. However, all protocols share an initial reverse transcription to produce cDNA from 

RNA, which then needs to be amplified either by polymerase chain reaction (PCR) or in vitro 

transcription (IVT). As such, some of the original constraints of the technology remain [215, 

217]. For example, it is still challenging to separate technical noise from biological variability 

[209, 210, 218]. In addition, any method only captures poly-adenylated RNA, and is severely 

limited by the suboptimal mRNA capture rate and reverse transcriptase efficiency [209]. The 

latter is the limiting step of scRNA-seq: it is estimated only 10-20% of all transcripts are reverse 

transcribed [219]. Direct RNA sequencing would represent a major step forward but it is still 

under active development [220]. 
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Figure I.7 Evolution of scRNA-seq technologies (A) Technical breakthroughs have increased 
the number of cells processed per run by orders of magnitude. Sample multiplexing was the 
first major innovation [221], followed robotics and fluidics[222, 223], which allowed 
researchers to study for the first-time thousands of cells in parallel. More recently, nanodroplets 
and picowells [224–226], and now in-situ barcoding, are pushing the field even further to its 
current scale [227, 228], as shown in panel (B). Key technologies are discussed below and 
summarized in Table I.1. Figure adapted from Svensson et al. [217]. 
 

a. Single-cell isolation and suspension 

The first hurdle in a successful scRNA-seq experiment is creating a clean, pure, high-quality 

single-cell suspension of well-dissociated cells from the tissue of interest. Far from trivial, this 

initial step is crucial to the quality of downstream scRNA-seq data. The original Tang method 

– and one that is still in use when dealing with exceedingly fragile or rare cells – is low-

throughput micromanipulation. As cells of interest are manually selected, the technique is 

precise, but it is also exceedingly labor-intensive. Alternatively, laser capture microdissection 

can likewise be used to isolate cells from solid samples. Fluorescence Activated Cell Sorting 

(FACS) on the other hand is able to quickly isolate of tens of thousands of cells. In addition, 

surface markers tagged with fluorescently-labelled antibodies can be used to purify cells of 

interest with high fidelity, and most scRNA-seq protocols are compatible with FACS. 

Nevertheless, FACS requires large amounts of starting material, can be rough on delicate cells, 
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and requires a priori knowledge of the system of interest. Alternatively, cells in suspension 

can be isolated and processed with microfluidics chips, which automate many of the required 

cell separation, selection, and collection steps, upstream of fully-automated scRNA-seq 

protocols. However, cellular stress can be high, capture-rate (number of cells sequenced per 

cells loaded) is low, and cell selection is highly dependent on chip-architecture. Recently, 

developments in microdroplet and microwell technologies have achieved significant reductions 

in hands-on time and reaction volumes (leading to lower costs), while increasing cellular 

throughput [209, 215, 229–231].  

However, for tissues and cells rich in RNAses such as the pancreas or granular immune 

cells (e.g. neutrophils and macrophages), maintaining optimal cell and RNA integrity during 

sample preparation is an unsolved technical hurdle [232, 233]. Cells from tissues need to be 

dissociated and resuspended using enzymes such as collagenase and trypsin, which takes hours 

and inevitably affects both cell viability and transcriptome, further confounding biological 

differences. As a result, cells are stressed and their information altered by experimental 

manipulation, while RNA is lost due to the action of endogenous RNAses[234]. New protocols 

such as methanol and Lomant’s fixation partially solved these issues, particularly for cells in 

suspension, however solid tissue dissociation remains a challenge [235, 236]. 

b. scRNA-seq technologies 
 
Protocols can be roughly divided into two separate categories: full-length versus tag-based. 

The original Tang protocol was a full-length method, while the popular commercial 10X 

technology is a tag-counting protocol. Each has its strengths. Full-length scRNA-seq methods 

typically provide more genes per cell and allow a researcher to delve into the data deeper by 

exploring transcript isoform expression, allelic expression, and RNA editing thanks to the 

strand-specific information along the full length of each transcript [237]. Tag-based methods, 

on the other hand, feature higher throughput and lower costs, thus providing the necessary 

power to discover new and rare cellular subtypes or transcriptional states [231]. The most 

utilized methods are described and compared below (see also Table I.1). 
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Full-length protocols 

Quartz-seq 

An improvement over the original Tang method, with simplified workflow and improved 

performance, although quickly rendered obsolete by Smart-seq2 [238–240].  

 

Smart-seq2 

The classic full-length protocol –considered state-of-the-art in terms of genes per cell captured 

– begins with an RT reaction using the Moloney Murine Leukemia Virus (MMLV) RT enzyme 

and oligo-dT primers with template switching oligonucleotides (TSO) to synthesize cDNA. 

The cDNA is then amplified before library preparation. Though the protocol is time 

consuming, robotic handling can simplify the workflow [237, 239, 240]. Importantly, strand 

information is lost with standard Illumina sequencing, and technical errors due to unequal PCR 

amplification are not corrected by unique molecular identifiers (UMIs: unique molecular 

identifiers) as in tag-counting protocols, so that PCR amplification bias remains a concern 

[219].  When using UMIs, every transcript captured gets labeled with its unique barcode (e.g. 

10-12 bp long with Chromium 10X) in addition to a cellular barcode. This allows to distinguish 

sequencing reads originating from unique mRNAs vis-à-vis PCR duplicates.  

 

Tag-based protocols 

CEL-seq, CEL-seq2, and MARS-seq 

This tag-based protocol employs IVT rather than PCR amplification. CEL-seq (Cell Expression 

by Linear Amplification and Sequencing) starts with an RT reaction, before second strand 

cDNA synthesis, pooling, and IVT. Exonic reads are highly strand-specific (over 98% from 

sense strand), barcoding highly efficient, and no gene-length normalization is required. 

However, there is a strong 3’ bias and spliced isoforms cannot be detected. CEL-seq shows 

poor sensitivity for lowly-expressed transcripts [241]. MARS-seq (Massively Parallel RNA 

single-cell sequencing) is a fully automated CEL-seq with UMIs,  enabling the counting of 

individual RNAs [223, 242]. CEL-seq2 improved upon the original protocol by decreasing 

costs and hands-on time, while increasing sensitivity and implementing UMIs [243]. 
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STRT-seq 

STRT-seq (Single-cell Tagged Reverse Transcription Sequencing), is a tag-based method that 

employs anchored oligo-dT primers and a MMLV-based enzyme as Smart-seq2, before PCR 

amplification. Later iterations of the protocol included UMIs and have been automated to allow 

multi-plexing and strand-specificity. Disadvantages are the same as for all tag-based protocols, 

including the inability to detect SNPs or splice variants [244]. 

 

DROP-seq, InDROP and Chromium 10X 

All these three relatively newer technologies work in similar ways to increase throughput and 

lower reaction cost by carrying out all reactions in nanoliter emulsion droplets. These droplets 

contain the lysis buffer, RT, and barcoded microspheres with oligonucleotides to uniquely tag 

both the individual cells, as well as each transcript within those cells. inDrop and 10X are 

characterized by higher cell capture rate, 10X has the highest sensitivity and lowest technical 

noise. Drop-Seq on the other hand is the most cost-effective [224, 225, 245–247]. A detailed 

discussion of 10X follows in the materials and methods. 

 

SeqWell 

The latest addition to the arsenal and one of the most promising recent developments in scRNA-

seq, SeqWell sports the same advantages of emulsion droplet methodologies, but employs 

microarrays and picowells to increase throughput even higher. Seq-Well utilizes PDMS arrays 

that each contain ~88,000 subnanoliter wells with uniquely barcoded poly(dT) mRNA beads. 

The uniquely barcoded mRNA capture beads and cells are both secluded in the wells, which 

are then sealed with semipermeable membranes, leading to a more efficient cell lysis and 

mRNA capture. Beads can then be pooled, thanks to double barcoding for cells and transcripts 

(UMIs). Seq-Well only requires a PDMS array, a polycarbonate membrane, a pipette, a clamp, 

an oven/heat source, and a tube rotator to produce stable cDNA product, making it functional 

in nearly every clinic and laboratory context. The protocol can also be adapted to use harsher 

lysis conditions, useful when dealing with fixed or otherwise challenging material [248, 249].  
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Combinatorial indexing 

Recently, single-cell combinatorial indexing has emerged in different groups as another 

powerful high-throughput scRNA-seq methodology involving the split-pool barcoding of 

either cells or fixed nuclei. For RNAseq, the methods are similar and are alternatively called 

SPLiT-seq, sciRNA-seq, or sci-RNA-seq3 [227, 228, 250] . However, single-molecule 

combinatorial indexing can be used for many other omic techniques to explore chromatin 

accessibility (called sci-ATAC-seq)[251], genome sequence (sci-DNA-seq)[252], genome-

wide chromosome conformation (sci-Hi-C)[253], and DNA methylation (sci-MET)[254]. 

 

 

 

 
Table I.1 Comparison of scRNA-seq methodologies. Abbreviations: cDNA, complementary 
DNA; DNA pol I, polymerase; RNase H, ribonuclease H. Adapted from Chen et al. [214] 
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c. scRNA-seq data analysis 
 

After making a quality single-cell suspension, successfully loading the cells onto the scRNA-

seq platform of choice, making a library of appropriate complexity, and then sequencing it to 

the desired depth (note that 50k reads per cell is thought sufficient to successfully cluster cells 

into subpopulations, including rare cell types) [255], data must be quality controlled before 

downstream biological analyses. Multiple packages have been created to integrate QC 

methodologies and analyses and simplify data exploration and interpretation. Seurat [256], 

Scanpy [257], Scater [258], Monocle [211] and Cellranger [246] are the most popular. 

 

Read Alignment, Expression Quantification, and Quality Control 

The reads to reference transcriptome mapping ratio is an early indicator of scRNA-seq data 

quality. Samples with low mapping percentages likely contain a high amount of damaged or 

degraded RNA and must be removed. Since sequencing output is the same as for bulk RNAseq 

the same software can be used for the first data analysis and QC steps. Alternatively, Kallisto 

and Salmon can both accurately estimate transcript abundance without relying on alignment to 

an existing transcriptome [259, 260]. Most users however use standard splice-aware alignment 

programs using reference assemblies. The most popular tools are TopHat2 [261], STAR [262], 

and HISAT2 [263], although 10X has implemented their version of STAR into a proprietary 

software suite called Cell Ranger [246]. Studies have compared these aligners highlighting 

trade-offs between speed, memory requirements, and alignment efficiency in all [264–266]. 

Which expression quantification method to use varies according to the scRNA-seq technique 

used. For whole-transcript protocols such as Smart-seq2 traditional bulk-RNAseq methods 

suffice. Tag methods such as Chromium 10X will either use the Cell Ranger pipeline or 

specifically-tailored algorithms such as SAVER (Single-cell analysis via expression recovery) 

to take advantage of UMIs and reduce technical noise [231, 267]. Data is then cleaned up to 

exclude reads originating from multiplets, broken cells, or dead cells (unless cell were fixed). 

Even the highest quality, healthiest cells will suffer from low mRNA capture efficiency, bias 

in transcript coverage, and dropout events (lack of transcripts that are known to be expressed 
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in the cells). Nevertheless, poor quality samples and cells will skew biological interpretation 

and must be removed. Some protocols use extrinsic spike-ins (e.g. ERCC) to estimate technical 

noise and cellular quality [268], as cells with high proportions of ERCC spike-ins likely feature 

broken, porous cellular membranes. Furthermore, while cytoplasmic RNA is usually lost when 

a cell ruptures, mitochondria remain within the cell. Thus, a high percentage of mitochondrial 

RNAs to total RNAs can indicate poor quality. Finally, low total gene counts or transcripts 

abundance within cells can also be an indication of low quality, although this can sometimes 

be due to technical limitations or the low total RNA content of the cell of interest [210, 269].  

 
Normalization of scRNA-seq data, and removal of batch effects 

Initial QC must be followed by careful data normalization in order to disentangle the biological 

signal of interest from the variability in capture efficiency, sequencing depth, dropouts, and all 

other technical effects in each individual sample. This intra-sample normalization is important, 

but as scRNA-seq datasets become larger, batch normalization is also becoming crucial. The 

latter takes into consideration all of the above, but also harmonizes samples often run on 

different days, platforms and laboratories. Normalization is an issue also in bulk-RNAseq, 

however it is far more complex in scRNA-seq. Bulk RNA-seq investigators standardize 

libraries by calculating quantities such as transcripts per million (TPM), fragments per kilobase 

of exon per million fragments mapped (FPKM, which takes into consideration both transcript 

length and library size), or size factors [210, 231, 270, 271].  

 

 That is not sufficient for single-cell RNA-seq, which features unique analytical 

challenges requiring specifically-tailored normalization algorithms. For example, scRNA-seq 

data matrices are characterized by abundant zeroes, but ‘zero inflation’ is due to both technical 

reasons (dropouts due to the low reverse transcription efficiency previously mentioned) as well 

as meaningful biological differences (e.g. quiescent or stem cells). Moreover, scRNA-seq is 

characterized by higher technical noise even for non-lowly expressed genes, further augmented 

by true biological heterogeneity. Any overcorrection by normalization algorithms will reduce 

such biological differences. Conversely, under-correction will lead to spurious biological 

conclusions. Traditionally, scRNA-seq normalization methods have employed off-the-shelf or 
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adapted bulk-RNAseq methods. Specifically, median normalization methods are used to 

identify genes whose expression does not change across cells. Non-differentially expressed 

(DE) genes are then used to calculate global scaling factors that are unique for each cell, but 

common for all transcripts within that cell. These methods all assume total RNA in each cell 

is more or less the same and that all variation is technical. However, that is not the case when 

dealing with single cells, especially in heterogenous samples. And further, RNA content in 

different libraries is influenced by both the cell-cycle and the dynamics of transcription 

(including transcriptional bursts) for each individual gene [14, 270–272]. A first attempt to 

circumvent this limitation was the use external spiked-in ERCC artificial RNAs at a set 

concentration in each individual cell library, thus adjusting for technical variation and 

improving the accuracy of global scaling factors [273]. However, issues with spike-ins can lead 

to inconsistent detection and few studies have used this technique [210]. Rather, researchers 

have been using UMIs to successfully remove or reduce cell-specific effects due to 

amplification and gene length, although UMIs can only be used with tagging scRNA-seq 

protocols [219, 224, 242, 270]. As the field matures, more and more sophisticated 

normalization methods are being specifically tailored for scRNA-seq datasets, such as SCnorm, 

SAMstrt, and SCTransorm (as integrated in Seurat V3.0) [272, 274, 275].  

 

As larger scale scRNA-seq experiments become the norm, ‘batch effects’ – the 

aggregated technical variation of different cell dissociation methods, library preparation 

techniques, sequencing platforms, environments, handling, operating equipment, institutes and 

laboratories – are becoming ever more important confounding factors. These confounders are 

especially problematic for large consortium-scale projects such as the Human Cell Atlas, and 

must be minimized. The field is thronged with new computational methods that have begun 

addressing the issue, from the linear regression models of ComBat[276] to the nonlinear 

canonical correlation analysis (CCA) of Seurat [277] or the projection of mutual nearest 

neighbors method (MNNs)[278]. Separately, MAST, DESeq and limma can include batch 

effects as covariates in their DE testing model [279–281]. Principal component analysis (PCA) 

and visualization in low dimensional usually follows. Recently, a dedicated method (kBET) 
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has been developed to further explore batch effects (and their correction), in detail [282]. All 

these normalization, batch correction, and visualization methodologies are summarized below 

in Fig. I.8. 

 

 
 

Figure I.8 Summary of normalisation, batch regression, and assessment techniques. 
Detailed information on each method and full figure in Büttner et al. [282] 

 
 
Dimensionality reduction, feature selection, clustering, and differential expression analysis 

Data matrices downstream of all QC and normalization processing feature many thousands of 

dimensions, with thousands of genes and tens of thousands of cells. Data must be simplified -

dimensions reduced – to aid computations and interpretation while keeping intact key 

biological differences between cells and conditions. PCA is a linear dimensional reduction 

algorithm assuming normal distribution of data. It identifies new variables, called principal 

components (PCs), that are linear combinations of the variables from a dataset. Data is 

standardised so that each gene's mean expression across cells is zero and the PCs are then 

normalised eigenvectors of the genes' covariance matrix. Importantly, the PCS are ordered by 

how much dataset variation they describe. T-distributed stochastic neighbor embedding (t-

SNE) is a non-linear dimensionality reduction technique used for example by Seurat to 

visualize the scRNA-seq data [283]. Both are limited. PCA is unable to fully display data 

complexity, while t-SNE plots are inconsistent and do not preserve global information. Newer 

algorithms such as uniform manifold approximation and projection (UMAP) [284], and scvis 

[285] were designed specifically for scRNA-seq. UMAP is fast, reproducible, and cluster 

organization and display reflects inherent cellular similarity, unlike for t-SNE.  
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 Feature selection is also used to reduce data dimensionality and free-up computational 

resources for downstream analysis such as clustering. Unsupervised algorithms for feature 

selection are divided into three main types. Highly variable genes (HVG) methods as in Seurat 

assume HVG are those that vary because of biology [222, 256]. Spike-in approaches (e.g. 

scLVM and BASiCS) identify genes that have higher variance than spike-ins with similar 

expression levels [270, 273]. Finally, dropout methods such as M3Drop use the dropout 

distribution characteristic of scRNA-seq data to efficiently select all important features in a 

dataset [286].  

 

 After dimensionality reduction we can finally interrogate our data and answer key 

biological questions. For example, what populations and subpopulations of cells do exist in our 

dataset? And what are their cell states? Cell clustering can be done either using known markers, 

or more commonly with unsupervised clustering methods. These are mainly divided into k-

means, hierarchical clustering, density-based clustering, and graph-based clustering 

methodologies. K-means requires setting the number of clusters a priori, and assigns cells to 

nearest cluster center, while all others methods work in unsupervised fashion to establish the 

optimal number of clusters. Some methods such as single-cell consensus clustering (SC3) use 

a combination of methodologies, and the popular Seurat clusters mainly with a shared nearest 

neighbor algorithm (SNN) [287]. Differentially expressed genes (marker genes) are then found 

with differential expression analysis (DE) or analysis of variance (ANOVA). DE analysis is an 

active area of software development. Often, clustering algorithms return not only cell 

subpopulations, but also variable cell states for each of these populations. Software packages 

must be able to differentiate between the two, while dealing with the high noise of scRNA-seq 

data and the large sample size. While bulk RNAseq DE techniques are still used, in recent years 

specific tools such as MAST (linear model fitting and likelihood ratio testing), SCDE 

(Bayesian approach with low-magnitude Poisson), DEsingle (Zero-Inflated Negative 

Binomial), have been developed. Seurat uses the non-parametric Wilcoxon rank sum test as a 

default, but other methodologies such as MAST and DEseq2 can also be employed. Soneson 

et al tested over 36 methods in their recent review [288]. See Table I.2 below for a summary. 
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Clustering  References DE 
analysis  Type References 

Seurat Satija et al., 2015[256] MAST Single-cell Finak et al., 2015[279] 
SC3 Kiselev et al., 2017[289] ROTS Single-cell Seyednasrollah, 2016[290] 
Destiny Angerer et al., 2016[291] BCseq Single-cell Chen et al., 2018[292] 
SNN-Cliq Xu and Su, 2015[293] SCDE Single-cell Kharchenko et al., 2014[294] 
RaceID Grun et al., 2015[295] DEsingle Single-cell Miao et al., 2018[296] 
SCUBA Marco et al., 2014[297] Cencus Single-cell Qiu et al., 2017[298] 
BackSPIN Zeisel et al., 2015[299] D3E Single-cell Delmans et al., 2016[300] 
PAGODA Fan et al., 2016[301] BPSC Single-cell Vu et al., 2016[302] 
CIDR Lin et al., 2017[303] DESeq2 Bulk Love et al., 2014[280] 
pcaReduce Zurauskiene, 2016[304] edgeR Bulk Robinson et al., 2010[305] 
TSCAN Ji et al., 2016[306] Limma Bulk Ritchie et al., 2015[281] 
ZIFA Pierson et al., 2015[307] Ballgown Bulk Frazee et al., 2015[308] 

Table I.2 Summary of clustering and DE analysis software packages. For more information 
please consult these excellent reviews: Andrews and Hemberg (clustering) [287] and Soneson 
et al (DE analysis) [288]. 
 

 

Cell lineage, pseudotime, alternative splicing and gene regulatory networks analysis 

After probing the cellular complexity of tissues and cell populations, data can be used to 

explore the dynamics of cellular development and identify cell types lineages, for example by 

building a pseudotime ordering of cells which can showcase cellular differentiation. 

Pseudotime techniques order cells along a continuous trajectory, aligning cells based on 

transcriptional similarities rather than clustering them. These approaches not only allow 

investigators to probe the initial, transitional, and final cell states of a population, but also the 

genes that are involved in such transitions. Popular tools are Monocle (based on minimum 

spanning tree) [211], Monocle2 (reversed graph embedding) [298], Slingshot (cluster-based 

approach) [309], TSCAN [306], PAGA, and Cellrouter [310]. Saelens et al. recently evaluated 

most pseudotime and lineage approaches and found Monocle2, Slingshot, and PAGA to be 

superior, depending on the individual data structure of the dataset (e.g. linear, bifurcating, 

complex separate trees) [311]. 

 



Introduction 
 Gene regulatory network inference is a common feature of bulk RNAseq analyses, 

normally employing weighted gene co-expression network analysis (WGCNA), which 

assumes all genes that are highly correlated in expression to be co-regulated. By combining 

cells together to build a pseudo bulk-RNAseq dataset we can evaluate gene regulatory networks 

in the same way. However, the analysis needs to be run separately for each subpopulation. 

SCENIC is one such scRNA-seq method that can build gene regulatory networks from single 

cell data and predict transcription factors - target genes interactions [312]. PDIC is an 

alternative software suite to answer the same questions [313]. 

  
 Finally, when data is generated with scRNA-seq protocols producing full-length 

transcripts (such as Smart-seq2) investigators can also analyze alternative splicing. Over 90% 

of human genes undergo alternative splicing, which plays important roles both in tissue 

homeostasis and disease [314]. Data on isoform usage could be crucial in understanding the 

expression dynamics of specific pathogenic isoforms for example, or to further characterize 

the importance of cellular subsets in immune process. However, bulk RNAseq methodologies 

are again unsuitable to the task. Recently new methods have emerged such as SingleSplice, 

Census, BRIE, and Expedition [298, 315–317].  
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5 Aims and outline of the thesis 
 
This dissertation first focuses on dissecting the complexity of the A. gambiae M-form (A. 

coluzzi) immune system under baseline conditions. That knowledge is then leveraged to obtain 

an in-depth understanding of how mosquitoes responds to both blood-feeding and Plasmodium 

infection. In analogy with vertebrates, I posit the existence of different hemocyte 

subpopulations and states, each characterized by distinct gene expression profiles. I will further 

argue that hemocytes transition between distinct states along a range of predetermined routes, 

through which the diversity of functions associated with cellular immunity in invertebrates is 

generated. In addition, I will show that single-cell approaches, coupled with complementary 

bulk techniques and imaging validation, are an effective method to study the cellular arm of 

the immune system of mosquitoes. 

 
In Chapter II, we explored different strategies to isolate hemocytes and create a clean, 

pure single cell suspension for downstream scRNA-seq. We evaluated different methods, 

enzymes, and fixatives to adapt single cell protocols to the unique challenges of mosquito 

immune cells, while maintaining high quality RNA and cellular integrity. As part of this work 

we developed a protocol to fix and sequence hemocytes at single cell resolution making use of 

the droplet-based Chromium 10X technology. We then validated our scRNA-seq results by 

adapting the commercial RNAscope RNA-FISH technology to mosquitoes.  

 
In Chapter III, we used these methods to characterize the functional classes of A. 

gambiae mosquito hemocytes and build a comprehensive atlas of the cellular arm of the 

mosquito immune system to discover new hemocyte cellular subtypes. We then defined marker 

genes for each cell type, and identified surface markers for future functional studies. We 

uncovered different cell states within each hemocyte type, successfully building a lineage tree 

to explain how hemocytes differentiate into each cell type and cell state. Finally, we validated 

these scRNA-seq results with a combination of bulk-RNAseq and RNA FISH techniques and 

visualize each cell type and their spatial-temporal localization in the mosquito. Importantly, 

we not only recapitulated what previous knowledge existed, but also discovered novel effector 
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cellular subtypes, including a cellular subtype potentially akin to lamellocytes in Drosophila, 

likely involved in the ‘late’ cellular immunity against Plasmodium, as well as hemocytes 

responsible for secreting anti-microbial peptides in circulation, revealing a previously 

unknown complexity of this biological system.  

 
In Chapter IV, we challenged A. gambiae mosquitoes first with blood-feeding and then 

with P. berghei and P. falciparum infection. We evaluated how mosquito hemocytes, guts, and 

carcasses respond to these challenges to explore how hemocytes differentiate into their distinct 

cellular states. We identified a trajectory of immune activation following the mosquito on a 

time-course after infection, reaching a peak of transcriptomic activity against the parasite at 

days 2-3 after infection, before returning to baseline at day 7. Finally, we describe how 

hemocytes dynamically respond to infection, going into circulation to respond to injury and 

replenish the immune cell pool. We identified rapidly dividing precursor cells, as well as the 

transcriptomic signatures of the response of hemocytes and fat body to Plasmodium, including 

what pathways are differentially activated in various cellular subtypes. Then, we explored how 

the upregulation of the Toll pathway affects hemocytes and their ability to mount an effective 

immune response to suggest how different hemocyte subtypes are the control of specific and 

distinct immune pathways.  

 
In chapter V, I conclude by providing a summary of our findings and discussing what 

significance they hold in view of the emerging importance of vector-borne diseases for human 

health and disease, not only in the developing world, but increasingly also in the West. 
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