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Gianmarco Raddi – Immunity Against Malaria: an Atlas of the Mosquito Cellular Immune    

System at Single-Cell Resolution 

 

Abstract 

Malaria is a deadly, worldwide disease, yearly responsible for 219 million cases and over four 

hundred thousand deaths[1]. The Anopheles gambiae species complex is the main African 

vector for the most virulent malaria parasite: Plasmodium falciparum[2]. Mosquitos are not 

mere bystanders however, and rely on both humoral and cellular innate immune divisions to 

defeat invading pathogens[2, 3]. These efforts are coordinated by hemocytes, the insect 

equivalent to vertebrate’s white blood cells, circulating in the hemolymph within the insects’ 

body cavity. Yet, hemocyte biology is largely unknown, mainly due to the low number and 

fragility of mosquito immune cells[4]. Here we dissect the Anopheles immune system under 

baseline and challenged conditions with single-cell RNA sequencing to identify previously 

unknown cell types, their gene signatures, and spatial-temporal localization in the mosquito. 

We profiled 5,292 individual Anopheles hemocytes 1,3 and 7 days after sugar-feeding, blood-

feeding, or infection with Plasmodium berghei, as well as 3123 A. aegypti hemocytes. We 

identified 9 cell sub-types, including novel effector, phagocytic, and anti-microbial cell 

subtypes, in addition to dividing progenitor cells, validating the main cell types via correlative 

microscopy and morphology. And we described four lineages of hemocytes, showing them to 

be divided into two branches: oenocytoids and prohemocyte-granulocyte.  We also found both 

blood-feeding and malaria infection to dramatically shift the composition of a mosquito’s 

immune system, activating effector and proliferating cells at days 1 and 3 before returning to 

baseline by day 7. Conversely, human P. falciparum appears to inactivate an important local 

effector subtype. Our work is the first comprehensive transcriptomic study of a whole insect 

immune system. It demonstrates hemocytes are a dynamic, diverse class of insect cells which 

complexity far exceeds what is currently described in the literature. Our methods and results 

will hopefully serve as a resource for many entomologists, and could prove useful in 

developing novel vector control strategies. Our website will ease data access and provide an 

intuitive way to visualise hemocyte information: https://hemocytes.cellgeni.sanger.ac.uk/ 
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“By heaven, I'll make a ghost of him that lets me”  

― William Shakespeare, Hamlet  

 

Malaria is a deadly global disease. Every year the Plasmodium parasites are responsible for 

219 million cases of malaria and over four hundred thousand deaths, mostly vulnerable young 

African children under 5 years old and pregnant mothers [1]. After decades of steady progress 

malaria incidence is no longer declining. According to the 2018 World Malaria Report, the 

number of malaria cases increased from 217 million cases in 2016 to 219 million cases in 2017, 

resulting in 435,000 deaths [1]. Furthermore, in 2017, 3.5 million more malaria cases were 

recorded in the 10 African countries with the highest disease burden. In the Americas, some 

countries are also seeing large increases in prevalence, namely Brazil, Nicaragua, and 

Venezuela  [1].  

 

Most malaria-related deaths (93%) are concentrated in Africa; particularly so (76%) in 

the 17 sub-Saharan countries with the highest incidence of disease. The stark death toll is due 

to the high prevalence of Plasmodium falciparum malaria – the most virulent form of the 

disease – in the African continent. Here, P. falciparum causes 99.7% of malaria cases, while 

outside of Africa Plasmodium vivax is the most common infection. Other Plasmodium species 

can also cause human disease, such as P. malariae, P. knowlesi and P. ovale, but their 

prevalence is lower [5]. In all cases, Plasmodium parasites are transmitted to humans through 

the bite of an infected mosquito of the Anopheles genus. Anopheles gambiae and coluzzii 

(former A. gambiae molecular “M form”[6]) are the main vectors of P. falciparum malaria in 

Africa. However, over 30 Anopheles species are major disease vectors in other geographic 

regions. 

 

If left untreated, malaria is a chronic and often deadly infection, as the human immune 

system is unable to achieve sterile immunity. Only after years of exposure and repeated bouts 

of infection is the immune system able to contain the parasite, resulting in chronic 



Introduction 
asymptomatic infections. During the first 5 years of life, malaria infections often cause 

symptoms such as fever and anemia, and a proportion of children (1-2%) develop life-

threatening severe disease and can die[7]. Mild or asymptomatic disease is not observed until 

early adolescence, but febrile episodes can still occur. Only as they reach adulthood, do people 

transition to a chronic state where disease symptoms rarely occur [2, 8]. Because sterilizing 

immunity never develops, adults maintain asymptomatic blood-stage malaria infections 

throughout their lives. They also become asymptomatic gametocyte carriers, infecting 

mosquitoes in their communities and maintaining the transmission cycle [9]. Malaria immunity 

in humans is complex, involving early development of protection from severe disease, followed 

by asymptomatic uncomplicated disease, but rarely, if ever, involving complete resistance to 

infection. Similarly, complex innate immune responses to Plasmodium occur in Anopheles 

mosquitoes, the outcome of which determines disease transmission.  

 

Recent calls for malaria eradication have led to considerable strides in controlling this 

deadly disease[10], but we are far from defeating it. Importantly, we might not even yet have 

the right tools for such a goal, as the first approved vaccine (RTS,S/AS01) only provides partial 

(32-41%) protection [11], and the current arsenal of anti-malarial drugs is becoming less 

effective as Plasmodium resistance spreads[12]. Two vector-control strategies, insecticide-

treated nets (ITN) and indoor residual spraying (IRS), have been key for the successful 

reduction of the burden of malaria in the last ten years, but these gains are in peril as mosquitoes 

develop insecticide resistance[13].  

 

The reproductive rate (R0) is defined as the number of new infection one case can 

generate, on average, over the course of its infectious period. It has been recently calculated 

that the R0 for malaria ranges from 1 to over 3,000, depending on location, parasite species, 

populations and vectors [14]. To put the number into perspective, the flu has an R0 of 10. By 

definition, for malaria to be eradicated, R0 has to drop below 1. From a public health 

perspective, that means no “one-size-fit-all” approach can work, while from a researcher stand-

point, it indicates that vaccines alone might be insufficient to eradicate malaria in areas of high 
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transmission. New control strategies that reduce the rate of re-infection, such as transmission-

blocking vaccines[15], or the use of Metarhizium fungi that rapidly kill insecticide-resistant 

mosquitoes[16], will be required to achieve eradication. Crucial to all such eradication efforts 

is a better understanding of the determinants of malaria transmission by mosquitoes. There is 

ample evidence that mosquitoes have the potential to mount effective anti-plasmodial immune 

responses[2]. The mosquito relies on epithelial, humoral and cellular innate immune responses, 

coordinated by the hemocytes, the equivalent of the human white blood cells in insects [17]. 

My thesis project involves the development of an atlas of the mosquito cellular immune system 

at single-cell resolution as it responds to Plasmodium infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

1 The malaria parasite 
 

"There's more beauty in truth, even if it is dreadful beauty"  

— John Steinbeck, East of Eden 

 

The malaria parasite and mankind are old foes. A recent study has shown the parasite co-

evolved with gorilla parasites and went through an evolutionary bottleneck when it gained the 

ability to infect human hosts between 40,000 and 60,000 years ago. Human-adapted P. 

falciparum thrived when the human population exploded 5,000 years ago thanks to advances 

in farming [18]. As such P. falciparum infection has exerted a strong selective pressure on 

human populations worldwide, perhaps more so than any other pathogen [19]. No example is 

more widely studied in medical schools all around the world than sickle cell anemia. Recent 

medical advances have transformed the life of sickle-cell disease patients, whose life 

expectancy keeps rising and was estimated at 57 years in the US (2014) and 60 years in the UK 

(2016) [20, 21]. However, the homozygous hemoglobin S (HbS) variant was historically 

uniformly lethal in children, and yet was still maintained in the population at a frequency of 

around 15%, thanks to partial protection against severe malaria in heterozygotes [22]. But the 

parasite also had to adapt to the mosquito vector. For example, the Plasmodium surface protein 

Pfs47 allows the parasite to evade the mosquito innate immune system. It is thought that for a 

parasite to be transmitted, it requires a Pfs47 haplotype compatible with the Pfs47 receptor of 

the mosquito. As such, Pfs47 functions as a molecular “key” that turns off mosquito immunity 

through interaction with a receptor (“the lock”) specific for each vector species. Only the right 

“lock and key” combination allows parasites to survive in the mosquito and propagate [23]. 

The parasite’s life cycle is exceedingly complex, in both its human and mosquito hosts. Hence, 

many more such host-parasite immune interactions surely remain to be discovered. One of the 

most widely used animal models to study host-parasite interactions, as well as Plasmodium life 

cycle and development in the mosquitoes is P. berghei, a malaria parasite that infects mice. I 

used this experimental model system extensively in my PhD thesis to investigate the 

transcriptional response of the mosquito hemocytes to Plasmodium infection.   
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Figure I.1: Plasmodium falciparum life cycle. (A) Human malaria infection starts after an 
infected mosquito feeds and releases sporozoites from the salivary gland. (B) Some sporozoites 
escape the dermis, reach a blood vessel, travel to the liver through sinusoids or Kupffer cells 
and infect hepatocytes where they form a parasitophorous vacuole membrane (PVM) and 
undergo schizogony to released thousands of merozoites. (C) These merozoites travel in the 
blood and infect red blood cells, where multiple cycle of asexual reproduction (schizony) will 
occur before another burst and the repeat of the cycle. (D) Some merozoites are activated to 
differentiate to sexual gametocytes. (E) After bone marrow sequestration and maturation 
mosquitoes ingest gametocytes. In the midgut of mosquitoes, male and female gametocytes 
mate and form a zygote. In 24 hours the resulting motile ookinete penetrates the mosquito 
midgut epithelium and encysts. (F) In the oocyst asexual sporozoites replicate, are released in 
hemocoel, and colonize the salivary gland. Figure adapted from Cowman et al. [24] 
 

 

 

 

 



Introduction 

a. Malaria life cycle in humans 

 
Before exploring in detail the mosquito phase of Plasmodium life cycle, it will be useful to 

review the human stages of parasite development. After a mosquito bite, sporozoites that had 

already colonized the salivary gland are injected into the human dermis. Some are able to 

survive local immune responses and move into blood vessels, travelling to the liver. Here they 

cross the hepatic sinusoidal barrier (fenestrated endothelial cells and Kupffer cells - resident 

macrophages), thanks to the action of SPECT, SPECT2, CelTOS, PL, and GEST proteins [24–

28]. Sporozoites activate by binding higher sulfated forms of heparin sulfate proteoglycans 

(HSPGs), tetraspanin CD81, and scavenger receptor B1 (SR-B1) on hepatocytes [29, 30]. As 

circumsporozoite proteins (CSP) bind HSPGs, hepatocyte invasion commences [31]. Over the 

next 2-10 days sporozoites will morph into liver-stage (LS) schizonts, an exo-erythrocytic form 

(EEF) stage in which the parasite multiplies, eventually releasing over 40,000 merozoites per 

infected hepatocyte into the circulatory system [32].  

 

Once released, merozoites infect circulating red blood cells in a three-step process [33]. 

The first and least understood is pre-invasion, in which low affinity binding between 

merozoites and erythrocytes orient the apical end of parasites towards red blood cells (RBCs) 

[34]. Then, specific binding mediated by erythrocyte binding-like proteins (EBA) and 

reticulocyte-binding protein homologs (PfRh) leads to actomyosin-driven host cell 

deformation and erythrocyte invasion [33, 35]. A PfRh5-PfRipr (Rh5-interacting protein) – 

CyRPA (cysteine-rich protective antigen) – basigin complex mediates the close interaction 

between erythrocyte and merozoite membranes, leading to microneme secretion and Ca2+ 

influx inside the red blood cells [36–39]. Merozoites are then irreversibly linked to erythrocytes 

through AMA1-RON tight junction complexes [40]. These are moving junctions, propelling 

the merozoites inside red blood cells just as rhoptry contents are released, which form the 

parasitophorous vacuole membrane (PVM) around the merozoites [41]. As the PVM seals, 

cytosolic water losses within host cells cause echinocytosis. Over the next 48 hours the 
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parasites take advantage of the established nutrient-rich cellular milieu to rapidly divide and 

produce 16 to 32 merozoites each, which then egress as they destroy the RBCs [24]. 

 

During these rounds of cellular replication (schizogony), a small proportion of 

Plasmodium parasites will differentiate into sexual forms, a required step for successful 

transmission to mosquito vectors. Male and female gametocyte differentiation is not fully 

understood, but is regulated by the master switch AP2-G [42] following sensing of 

environmental signals such as high parasitemia or presence of chloroquine in the blood stream. 

Gametocyte development lasts 11 days, during which time committed but not yet mature 

gametocytes hide sequestered in the bone marrow to avoid splenic clearance. Following 

development, mature stage V gametocytes are taken up by feeding mosquitoes to commence 

the mosquito life cycle [43] [Fig. I.2]. 
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Figure I.2: Detailed Plasmodium life cycle in the mosquito and key parasite proteins. (A) 
Plasmodium gametocytes are first ingested when mosquitoes take an infected human blood 
meal. Gametes, both female (macrogametes) and male (microgametes) mature from 
gametocytes to form a zygote (B). After meiosis the zygote morphs into the motile, infective 
ookinete (C) which is able to penetrate through the mosquito midgut. After egressing from the 
midgut Plasmodium ookinetes encyst on the basal end, becoming sessile (D). After 10-14 days 
of growth and mitotic divisions, thousands of motile sporozoites are released into the mosquito 
circulation, travelling in the hemolymph until some reach the mosquito salivary glands (E). 
Here sporozoites attach to the basal side of salivary gland acinar cells, travel through them, and 
enter the ducts, where they await the next mosquito bite to continue the life cycle. Key proteins 
at each step are listed above. Figure adapted from Aly et al. [44] 
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b. Plasmodium life cycle in mosquitoes 
 
Parasites ingested during a blood meal quickly undergo sexual reproduction in the mosquito 

midgut [44]. Gametogenesis starts the moment gametocytes are ingested by feeding mosquitos, 

leading to the formation of mature male and female gametes [45]. Gametogenesis is mediated 

by essential environmental signals such as a 5°C drop in temperature, the rise of extracellular 

pH (from 7.2 to 8), and xanthurenic acid (XA) sensing [46–50]. XA – a byproduct of mosquito 

metabolism – activates guanylyl cyclase, leading to increased second messenger cGMP 

production and protein kinase G (PKG) activation[51, 52]. In addition, XA increases inositol-
(1,4,5)-trisphosphate (IP3) production by activating phospholipase C, causing the opening of 

Ca2+ channels [53–55]. Heightened intracellular Ca2+ releases translational repression in male 

and female gametocytes by activating Ca2+-dependent protein kinase 1 (CDPK1) [56]. 

Gametocyte activation is rapid, and within 15 minutes gametocytes egress from red blood cells 

by rupturing first the PVM and then the erythrocytic membrane (EM), steps respectively 

associated with osmiophilic bodies and egress vesicles [50]. The former is mediated by Pg377, 

MDV-1/Peg3 and GEST [57–59] while egress vesicles release perforin, which breaks the EM 

to release fertile gametes [60]. Activated microgametocytes undergo three rounds of 

replication, becoming octaploid, and producing eight flagellar mature microgametes by mitosis 

(exflagellation)[61]. Exflagellating microgametes adhere to nearby red blood cells, hiding 

within rosettes before detaching from the residual body, searching for macrogametes [45]. 

When a partner is found Pfs47, Pfs48/45, and Pfs230 proteins form complexes responsible for 

the binding of microgametes and macrogametes, commencing fertilization [62–64]. First, the 

plasma membranes of the two gametes fuse. The axoneme and male nucleus then enter the 

female cytoplasm, mediated by HAP2. Finally, nucleus fusion ensues, followed by meiosis and 

the production of a tetraploid zygote (as mediated by NIMA-related kinases Nek-2 and Nek-
4)[65–67]. 

 

 Next, the zygote morphs into a motile ookinete able to colonize mosquitoes. After 

fertilization ninety-one proteins were found to be specifically expressed, with silencing of 
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paternal alleles in both zygotes and ookinetes. These changes are orchestrated by the 

transcription factor AP-2O, the master regulator of ookinete development and motility. 

Furthermore, AP-2O also plays a key role in penetrating the mosquito midgut epithelium and 

protecting ookinetes from immune defenses [56, 68–70]. Among the upregulated genes are 

secreted proteins such as perforins (PPLP3, 4 and 5), PSOP1, 2, 6, 7 and 12, and SOAP, as 

well as WARP, POS1-10, and P25, P28 – all potential or actual targets of transmission-

blocking vaccines [56, 70, 71]. Ookinete maturation completes between 19 and 36 hours after 

an infectious blood-meal, after which ookinetes exit the gut [72–74]. Ookinete motility is 

regulated by PKG and CDPK3 activity, as well as cGMP and Ca2+ levels [75–78]. In order to 

successfully infect a mosquito ookinetes must first penetrate the peritrophic membrane (PM) – 

a chitin structure that functions to protect mosquitoes from bacteria and gross food [79]. To 

break through the PM Plasmodium ookinetes produce a chitinase that is able to hydrolyse the 

chitin [80–82]. Traversal of midgut epithelial cells is mediated by CTRP, a protein secreted by 

the ookinete to form a bridge between the midgut epithelium and the actin/myosin motor of the 

ookinete [83–85]. Three perforins (PPLP3-5), SOAP, WARP, MAOP and CelTOS are all 

microneme proteins required to breach the epithelial membrane [70, 85–91]. Once ookinetes 

have crossed the midgut epithelium they are surrounded by the laminin and collagen of the 

basal lamina. The interaction of Plasmodium with laminin turns ookinetes sessile, which 

encysts on the basal side of the midgut epithelium, triggered by the proteins P25 and P28, with 

help from CTRP and SOAP [71, 92]. Cell transversal is a bottleneck, and only a few ookinetes 

are successful in invading the mosquito midgut [88, 93, 94].  

 

Oocyst development and maturation lasts between 10 and 12 days, and is the only stage 

of the life cycle where the parasite is extracellular for an extended period of time. And yet, 

little is known of host-oocyst interactions. Nutrients flow through the oocyst capsule, formed 

by an outer layer of thick mosquito laminin, parasite transglutaminase, Cap380 (oocyst capsule 

protein)[95], and P25/P28, and an inner oocyst plasma membrane containing Cap93[96] and 

circumsporozoite protein (CSP), a GPI-anchored protein[97]. Oocysts grow to 50-60 µm in 

diameter, forming thousands of sporozoites after multiple rounds of mitotic divisions, mediated 
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by LAPs (LCCL/lectin adhesive-like proteins) expression [98]. CSP is essential in building 

syncytial lobes - called sporoblasts, coordinating the localization of microtubule organizing 

centers (MTOC) underneath sporoblast membranes to make mature sporozoites[99, 100].  

  

 Once sporozoites reach maturity, they egress from oocysts, in a process that involves 

digestion of the capsule mediated by a cysteine protease, ECP1 (egress cysteine protease 

1)[101, 102]. CSPs and a hypothetical oocyst protein also have important roles in sporozoite 

release[103, 104]. Sporozoites in the hemocoel are then carried to all tissues in the mosquito 

body by circulatory flow. Some are deposited to the basal lamina of the salivary gland, where 

CSP again plays a role in attachment [105, 106]. Thrombospondin-related anonymous protein 

(TRAP) is essential for attachment and invasion[102, 107], binding to saglin, a mosquito 

receptor in the distal lobes of the salivary gland [108, 109]. Gliding motility and the actin-

myosin motor are also involved in invasion, mediated by TRAP and TREP (TRAP-related 

protein), as well as cysteine repeat modular proteins (CRMP1 and 2) and MAEBL [110–112]. 

Cellular invasion mechanisms are largely conserved between human and mosquito life stages 

of the parasite. However, while MAEBL-deficient sporozoites can still invade human host 

cells, TRAP-deficient parasites cannot. In fact, acinar cells in the salivary gland are invaded by 

a slightly different mechanism than the parasitophorous vacuole (PV) involved in liver and 

blood-stage invasion. Rather, invasion happens through a specific vacuolar membrane 

produced by the host cell [113]. How the sporozoite is able to induce vacuole formation in the 

salivary gland epithelial cells is unknown. 
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2 Mosquito immune responses 
 
“The world is, of course, nothing but our conception of it”  
― Anton Chekhov 
 

Throughout the life of Plasmodium, the mosquito is far from being a passive vector. There are 

active interactions between parasites and the immune system at each step of the life cycle, 

especially when Plasmodium is extra-cellular. In fact, insects are constantly exposed to a wide 

variety of micro-organisms and pathogens seeking to exploit the host mosquito for their own 

reproductive goals. Viruses, fungi, bacteria, protozoans, and nematodes all invade and infect 

mosquitoes [114–118]. Some pathogens are able to penetrate through the external exoskeleton 

of mosquitoes, formed by hydrophobic chitin, which also lines the foregut, hindgut, and 

tracheas. They accomplish invasion by degrading the cuticle [119, 120]. Other pathogens enter 

mosquitoes through the digestive tract, overcoming physical barriers such as pharyngeal 

armatures and the chitinous peritrophic matrix, as well as digestive enzymes, local microbiota, 

and a hostile pH.  Some pathogens evolved mechanisms to penetrate through these defensive 

mechanisms to reach the hemocoel (blood) of the mosquitoes and replicate, while others remain 

within the gut itself. Mosquitoes have however developed sophisticated immune mechanisms 

to fight off and control these pathogens [117, 119, 121–123]. Mosquito hemocytes, the 

equivalent of human white blood cells, coordinate both cellular and humoral immune 

responses.  Humoral immune responses are mediated by molecules that are secreted into the 

circulating mosquito hemolymph (equivalent to serum in vertebrates) by hemocytes, fat body 

cells or epithelial cells lining the haemocoel, such as midgut and salivary gland cells). For 

example, pattern recognition receptors (PPRs), phenoloxidase cascade components, 

antimicrobial peptides, and elements of the complement-like system are all key mediators of 

the mosquito humoral response [3, 124–127]. The different components of the immune system 

are all interconnected, crafting an exceedingly complex and well-coordinated immunological 

network able to kill pathogens by a variety of effector mechanisms [Fig. I.3]. 
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Figure I.3: Mechanisms of immune killing. Mosquitoes kill pathogens by melanisation, lysis, 
phagocytosis, autophagy, encapsulation, nodulation, apoptosis, and RNA interference. 
Adapted from Hillyer et al. [117] 
 

 

a. Humoral immunity 
 
Mosquitoes lack antibodies, but can activate highly effective humoral mechanisms to control 

infection. For instance, antimicrobial peptides (AMPs) – such as defensins, cecropins, 

gambicin, attacin and holotricin – are small charged molecules that are secreted into the 

hemolymph, with strong anti-bacterial or anti-fungal effects [128]. The composition and spatial 

expression of the “cocktail” of antimicrobial peptides secreted in response to an immune 
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challenge can differ widely among different mosquito species. For example, defensins can 

reach a concentration of 45 µM in Aedes [129], while in Anopheles they reach a maximum of 

1-5 µM [130]. Furthermore, in An. gambiae antimicrobial peptides are produced at higher 

concentrations in the anterior midgut, and indeed Plasmodium oocysts colonise the posterior 

midgut[131]. Conversely, heightened AMP production can reduce parasite load. For instance, 

cecropin A (CecA) was shown to lower P. berghei oocyst counts in transgenic An. gambiae 

overexpressing CecA under the control of the Aedes carboxypeptidase promoter [132].  

 

 Melanisation is another powerful humoral mechanism to control infection. It is a 

biochemically conserved pathway to produce eumelanin from tyrosine and 5,6-

dihydroxyindole (DHI) catalyzed by a cascade of prophenoloxidases (PPOs). The PPO 

enzymatic cascade leads to killing both by starving the invading pathogen of nutrients – walling 

it off from the rest of the body – as well as through the direct toxic effects of chemical 

byproducts. Melanisation is also involved in cuticle hardening and wound healing. 

Furthermore, it causes hemocytes to aggregate – an immune response akin to human 

granulomas, called in mosquitoes nodulation or encapsulation [Fig. I.4][128, 133–136]. The 

melanisation pathway begins with PRR sensing (C-type lectins, Gram-negative bacteria-

binding proteins and beta-1,3 glucan recognition proteins), followed by a serine protease 

cascade leading to the activation of prophenoloxidases (mostly expressed by oenocytoids, a 

hemocyte subtype [136]). PPOs in turns activate melanin production by phenoloxidase. 

Melanisation is tightly regulated by serpins and C-type lectins. Similarly to human clotting, 

excessive activation would be deadly to the mosquito as widespread melanisation would 

damage the mosquito organs [133, 137, 138].  

 
 The complement-like pathway is one other crucial humoral effector mechanism, 

resulting in deposition of thioester-containing protein 1 (TEP1), a C3-like opsonin, on the 

surface of the microbe [139, 140]. Another four important proteins of the pathway are: two 

leucine-rich repeat proteins (APL1C and LRIM1), which stabilize TEP1 in circulation, and two 

clip domain serine protease homologs, (SPCLIP1 and CLIPA2), that modulate TEP1 

activation. CLIPA2 is a negative regulator of TEP1, while SPCLIP1 promotes TEP1 activation. 
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It has been proposed that, following binding of TEP1 and SPCLIP1 recruitment and activation 

onto the pathogen surface, an endogenous TEP1 convertase is also deposited that further 

propagates local activation and binding of TEP1 [137, 141, 141–144].  

 

 
Figure I.4: Melanisation pathway. Abbreviations: PRR, pattern recognition receptor; βGRP, 
β-1,3 glucan recognition protein; CTL, C-type lectin; GNBP, Gram(−) binding protein; PPAE, 
phenoloxidase activating enzyme; PAH, phenylalanine hydroxylase; PO, phenoloxidase; DDC, 
dopa decarboxylase; DCE, dopachrome conversion enzyme. Adapted from Hillyer et al. [117]. 
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b. Cellular immunity 
 
Hemocytes are the primary immune cells circulating in the mosquito hemolymph. Mosquitoes 

have no antibodies or canonical adaptive immunity and entirely rely on innate immunity. 

Cellular responses are quick, with direct interactions between pathogens and the immune cells 

that include phagocytosis, encapsulation, and nodulation [117, 118, 145]. Experiments returned 

wildly discordant estimates of the total number of hemocytes in a mosquito, mostly due to 

technical differences in the collection methodology employed. The scientific community 

agrees that between 2,000 and 10,000 hemocytes patrol a mosquito, although only a fraction is 

motile (~ 500 - 2,000) and numbers vary considerably with blood-feeding and infection [4, 

118, 146]. After morphological, enzymatic, and some functional characterization the consensus 

is that three main hemocyte subtypes exist: granulocytes, oenocytoids, and prohemocytes [Fig. 

I.5]. Of these, the vast majority are small prohemocytes (60-70%), followed by oenocytoids 

(20-30%) and granulocytes (1-10%), although estimates again vary considerably [4, 17, 17, 

118]. Because the classification is largely morphological, subjective differences in 

interpretation and methodology are inevitable. Granulocytes are the main effector phagocytic 

cells in the mosquito, expressing AMPs, complement-pathway components, and low-level PO. 

Oenocytoids contain PPOs and POs at much higher levels. Prohemocytes are still a mystery. 

Originally thought to be progenitor cells, they have recently been shown to possess phagocytic 

capabilities, and are hypothesized to arise from asymmetric cell division of granulocytes [146]. 

 

 While hemocytes remain in the hemocoel, and do not come in direct contact with the  

microbiome in the midgut lumen, transient bacteremia following blood feeding is thought to 

activate hemocyte replication after a blood meal [147–149]. A bacterium, yeast, fungus, or 

malaria parasite in the body cavity of a mosquito is usually quickly tagged, identified, and 

ingested by phagocytic hemocytes. Furthermore, hemocytes have been shown to aggregate 

around bacteria and form nodules [150]. Worms, fungi, or parasites become surrounded by 

melanocytic capsules [151–153]. In Aedes aegypti mosquitoes, hemocytes are also thought to 

play an important role in the systemic dissemination of arboviruses such as Sindbis or dengue 

virus [154, 155]. Hemocytes release microvesicles at sites of Plasmodium ookinete midgut 
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invasion that reduce parasite survival by promoting local activation of the complement-like 

system [156], thus coordinating epithelial and humoral antiplasmodial immune mechanisms to 

achieve an integrated and effective response. 

 

Very little was known of hemocyte development in mosquitoes, except that blood-

feeding increases their numbers[147]. In Drosophila, hematopoiesis is thought to occur in three 

waves: embryonic, larval, and lymph gland[157]. The first two are thought to be responsible 

for routine phagocytic and immunological functions of mosquitoes, whereas lymph gland 

hemocytes arise from synchronous differentiation of progenitors hemocytes within the gland 

following immune and environmental challenges. Crucially, after hemocytes differentiate these 

lymph glands disintegrate before adulthood[157]. Lymph glands have not been observed in 

mosquitoes.  

 

 
Figure I.5 Hemocyte subtypes. Average diameter and representative images of the three 
morphological subtypes of hemocytes in A. gambiae. Personal communication from Jose Luis 
Ramirez.  
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3 Specific Anopheles immune responses to Plasmodium 

a. Midgut epithelial defenses 
 
Mosquitoes ingest a very large, protein-rich meal during blood feeding which has to be digested 

to meet the nutritional needs of developing oocytes. At the same time, mosquitoes build a 

protective peritrophic matrix (PM), an acellular/semi-permeable layer of chitin polymers, that 

surrounds the blood meal and prevents direct contact between the microbiota in the lumen and 

the gut epithelium. The PM is also an important barrier against potential pathogenic organisms.  

At the end of the digestive process the PM matrix sack – containing remnants of the digested 

blood meal – is excreted from the mosquito. A new matrix will be formed when the mosquito 

ingests the next blood meal [158]. Mosquitoes also secrete mucin in the ectoperitrophic space 

between midgut epithelium and the PM, and actively modulate the permeability of this mucous 

layer through the activity of an immune-modulatory peroxidase (IMPer)/dual oxidase (Duox) 

system that catalyzes dityrosine cross-linking [2, 159, 160]. IMPer is secreted into the 

ectoperitrophic space, but is only active when immune elicitors activate Duox, which generates 

hydrogen peroxide a substrate required for IMPer to catalyze the formation of the dityrosine 

network. The end result is a dynamic modulation of the interaction between the immune 

elicitors released by gut flora and the gut epithelium following a blood meal, that allows the 

bacterial flora to survive by preventing constant activation of antibacterial immunity. This 

system also benefits Plasmodium parasites, because it allows them to develop within the 

midgut lumen without activating nitric oxide synthase (NOS) expression in epithelial cells. If 

this barrier is disrupted by silencing IMPer, mosquitoes mount a much stronger epithelial 

nitration response that eliminates Plasmodium [159, 161, 162]. 

 

b. Reactive oxygen/nitrogen species and complement-like defenses 
 
Plasmodium ookinetes must traverse the midgut epithelium to complete their development in 

the mosquito.  In doing so, they breach the peritrophic matrix, allowing the microbiota to come 

in direct contact with epithelial cells and cause irreversible damage as they invade midgut cells. 

Invaded mosquito epithelial cells express high levels of NOS, a response which is necessary, 
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but not sufficient to mount an effective response against Plasmodium. Specifically, increased 

NOS leads to nitric oxide production [161], which is unstable and is thought to rapidly convert 

to nitrite, a more stable molecule that accumulates in the cell [127, 161]. Similarly to what is 

observed in vertebrate macrophages, NOS activation is followed by activation of a peroxidase-

mediated nitration reaction that uses nitrite as a substrate [161]. This is a highly efficient 

nitration reaction catalyzed by HPX2 (Heme peroxidase 2), that requires high local levels of 

hydrogen peroxide – provided by NOX5 (NADPH Oxidase 5) – and nitrite as substrates [159, 

161, 162]. 

 

This NOX5/HPX2-mediated nitration is part of an apoptotic response in 

invaded/damaged midgut cell via JNK signaling that activates caspases expression, and is 

essential for mosquitoes to activate an effective immune response to Plasmodium by the 

mosquito complement-like system [161, 163, 164]. TEP1(C3-like factor), a key effector of the 

complement-like system, is produced by the hemocytes and circulates in the hemolymph as a 

stable complex with two proteins of leucine-rich (LRR) family, LRIM1 and APL1[140, 162, 

165–167]. TEP1, APL1 and LRIM1 are form a MW complex responsible for TEP1 deposition 

on the surface of pathogens that promotes phagocytosis or leads to the formation of a complex 

that will lyse ookinetes [144, 166, 167]. The precise mechanism of killing and complement-

activation is not completely understood, however work from our laboratory revealed that 

nitration of epithelial cells and the midgut basal lamina triggers the release of hemocyte-

derived microvesicles (HdMv) into the basal lamina labyrinth, that is critical for activation of 

complement-mediated Plasmodium lysis [156].  

 

c. Vector susceptibility and Plasmodium immune evasion 
 
There are broad differences in compatibility, the extent to which the mosquito immune system 

limits infection, between different Plasmodium/mosquito combinations[168]. Intriguingly, 

while all ookinetes must come into contact with TEP1 in the mosquito hemolymph, only some 

are lysed [165]. That begs larger questions: how does Plasmodium evade the immune system 
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of mosquito vectors? And why are some Anopheles mosquitoes more susceptible to infection 

than others? Mosquito susceptibility to Plasmodium infection has a strong genetic component.  

For example, the mosquito A. gambiae L3-5 strain was genetically selected to be highly 

resistant to P. cynomolgi (monkey malaria infection), but is also highly refractory to infection 

with P. berhgei, by expressing a TEP1 allele, with heightened anti-parasitic effects [169]. In 

addition, R strains have been shown to be in a state of chronic oxidative stress with increased 

basal levels of ROS and overactivation of JNK signaling, that is exacerbated by blood feeding 

[170].  

 

While higher systemic ROS levels in the R strain result in loss of longevity and fecundity, 

the immune response to Plasmodium invasion is well localized both in time and space [171–

173]. Invaded midgut epithelial cells activate ROS and nitration pathways, but these responses 

are localized and do not “spread” to healthy adjacent cells [162]. Furthermore, detox enzymes 

such as MnSOD (manganese-dependent superoxide dismutase), Gpx (hydrogen peroxide 

detox), and catalase are highly upregulated in healthy midgut cells and throughout the mosquito 

body (e.g. fat tissues), thus controlling any potential spillover and preventing damage. At the 

same time, catalase levels are downregulated in infected midgut cells to allow accumulation of 

ROS [162, 171, 172].  

 

Parasite genetics are just as important in understanding Plasmodium transmission and 

infection. Our laboratory showed that epithelial nitration and microvesicle release are key for 

P. berghei destruction via TEP1-mediated lysis [156, 162]. Intriguingly, some reports had 

shown little [174, 175] to no [176] effects in disrupting the complement-like system when A. 

gambiae is infected with P. falciparum. Later studies demonstrated that susceptibility of P. 

falciparum killing by TEP1 is a Plasmodium-strain and mosquito-species specific response 

[162, 177].  For example, the A. gambiae L3-5 refractory strain activates the complement-like 

system and kills the P. falciparum 7G8 strain from Brazil, while the African GB4 strain is able 

to evade the mosquito immune system and survive [178].  
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The P. falciparum Pfs47 gene – a member of the 6-cystein protein family expressed on 

the surface of female gametocytes and ookinetes – allows the parasite to evade the immune 

responses mediated by TEP1: parasite killing with subsequent melanisation the A. gambiae L3-

5 refractory strain, as well as lysis without melanisation in the susceptible G3 strain [177]. 

Pfs47 is polymorphic and exhibits a marked population structure and extreme fixation in non-

African regions [179, 180]. The global populations structure of Pfs47, together with our 

laboratory experiments infecting anopheline mosquitoes vector species from different 

continents, provided strong evidence that distinct P. falciparum Pfs47 haplotypes were selected 

to be compatible with different mosquito vectors [177]. We then proposed the “lock-and-key 

theory", where Pfs47 is a “key” that allows P. falciparum to evade the mosquito immune 

system by interacting with a mosquito receptor (“the lock”), different in each evolutionarily 

distant anopheline species [23, 181]. Only those parasites with a Pfs47 haplotype compatible 

with a given mosquito species are able to evade the mosquito immune system, and this allows 

them to survive and become established in a given geographic area. 

 

d. Signaling pathways of immune evasion / antiplasmodial immunity 
 

Further work examined the mechanism through which Pfs47 affects the response of the 

mosquito immune system to Plasmodium infection. JNK promotes TEP-1 lysis by inducing 

expression of HPX2 and NOX5 in midgut cells invaded by P. berghei ookinetes [182]. 

However, Pfs47 disrupts JNK signaling, preventing caspases activation and downstream 

midgut nitration in response to P. falciparum invasion [163, 170]. A recent study has shown 

that in P. berghei Pbs47 is also required for ookinetes to avoid destruction by the complement-

system [183]. P. falciparum ookinetes that do not express Pfs47 activate JNK signaling, 

caspase activity and downstream epithelial nitration, triggering a strong activation of the 

mosquito complement system that is very effective killing the parasite [163, 184]. Other 

conserved immune-signaling cascades are important mediators of immune activation and 

killing of Plasmodium: Toll, Imd, and STAT. Toll and Imd activation promote TEP1-mediated 

lysis, but Toll appears to be more effective in limiting P. berghei (with silencing of repressor 
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protein cactus), while Imd is more effective against P. falciparum. These three pathways (Toll, 

Imd, JNK) all converge to TEP1 as the key effector of ookinete lysis [2].  

 

If parasites evade and survive the early complement-mediated response, a different “late-

phase” immune response is thought to further decreases parasite numbers by attacking the 

oocyst stage of Plasmodium [125, 185]. Plasmodium infection triggers a multi-pronged defense 

strategy by the mosquitoes, where an initial complement-mediated response that targets 

ookinetes is followed by activation of the STAT and LPS-induced TNFα transcription factor 

(LITAF)-like 3 (LL3) pathways that limits oocyst survival [185]. Interestingly, both STAT and 

LL3 seem to act independently. The STAT pathway is composed of STAT-B and STAT-A, 

with STAT-B regulating basal levels of STAT-A, which in turns regulated NOS, SOCS, and 

hemocytes differentiation. While STAT-dependent NOS expression reduces oocyst survival 

[125, 127, 185, 186], LL3-dependent midgut NOS induction has the opposite effect, increasing 

oocyst survival [186]. Other unknown factors are most likely at play, including the possibility 

of multiple isoforms of NOS [185].  

 

In addition, while a double knock-down of SOCS (a suppressor of STAT) and NOS leads 

to higher oocyst survival than single SOCS silencing, single NOS knock-down unexpectedly 

leads to almost complete loss of infectivity due impaired epithelial cell invasion [125]. It 

appears that high levels of NOS are deleterious to oocysts, while a minimum level of NOS is 

required for ookinete midgut invasion to occur [125]. Finally, we still do not know what are 

the exact signals that lead to STAT and LL3 activation, although eicosanoids (see next section) 

or the wound-healing response might be implicated, as the AP-1/Fos-TGase2 axis has also been 

linked to increase TEP1 dependent P. falciparum killing [187].  
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e. Hemocytes are key coordinators of immunity in Anopheles and 

mediate mosquito immune memory 
 
Our current understanding of both early and late cellular immune responses to Plasmodium is 

still limited, and much work is required to elucidate the precise molecular details of their 

immune effector functions. Furthermore, despite the ability of hemocytes to coordinate 

immune responses and respond to a variety of insults, including wound healing, and viral, 

bacterial, fungal, and parasitic infection, their exact molecular role in anti-Plasmodium 

immunity remains largely unknown [3, 185, 187–190]. We briefly discussed how three 

morphologically distinct subpopulations of hemocytes are believed to exist in Anopheles: the 

prohemocytes (putative undifferentiated precursors), granulocytes (phagocytic hemocytes), 

and oenocytoids (characterized by phenoloxidase activity) [4]. We have also discussed how 

hemocytes participate in the immune response against Plasmodium through cellular and 

humoral effector mechanisms. But what is the role of specific cell types in Anopheles defense 

mechanisms? And do only three cell types really exist? Already some recent studies suggest 

hemocytes could harbor greater complexity than originally thought, with three phagocytic 

subtypes found within PPO6low populations (equivalent to morphologic granulocytes)[191, 

192].  

 

Besides their conventional role as effectors of mosquito innate immunity, hemocytes 

have also been shown to mediate immunological memory. This phenomenon is called ‘immune 

priming’, and is defined as the ability of mosquitoes that have been infected with Plasmodium 

to develop a life-long, systemic state of enhanced immune surveillance, with an increased 

proportion of circulating granulocytes – the phagocytic cells that are more similar to vertebrate 

macrophages – which enhances their immune response to subsequent infections [193]. In 

addition, there are changes in the morphology and binding properties of granulocytes, with 

larger and more granular cytoplasm, pseudopodial extensions, and increased lectin-binding 

capabilities [193]. Interestingly, NK cells in vertebrates have recently been shown to also 

possess similar mechanisms [2]. The priming response in A. gambiae is activated when 
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Plasmodium ookinetes breach the gut barrier and come into contact with the epithelial midgut 

cells, and damage to Plasmodium is due to a bystander effect [193]. Primed mosquitoes mount 

a stronger antiplasmodial response by greatly increasing the release of hemocyte-derived 

microvesicles [193].  

 

Indeed, our laboratory has shown immune priming to be a ‘two-step approach.’ First, 

ookinete invasion induces expression of HXP7 and HPX8, two heme-peroxidases that catalyze 

prostaglandin E2 (PGE2) synthesis. Epithelial cells release PGE2 into the hemolymph and this 

attracts hemocytes to the basal surface of the gut. The chemotactic response is then followed 

by enhanced patrolling activity of the midgut basal lamina.  If hemocytes detect a nitrated 

surface, they undergo apoptosis and release microvesicles into the basal labyrinth space, in 

close proximity to parasites that have traversed the midgut. The exact contents of these vesicles 

remains to be elucidated, but their release is essential for effective activation of TEP1-mediated 

anti-Plasmodium immunity [156, 194]. 

Following immune activation, primed mosquitoes constitutively release a hemocyte 

differentiation factor (HDF), and this factor persists in the hemolymph for the entire life of the 

mosquito [195]. HDF consists of a lipoxin/lipocalin complex [194]. Lipocalins are a family of 

proteins involved in lipid transport, while prostaglandins and lipoxins are all part of the 

eicosanoid lipid family [196]. Eicosanoids possess important signaling roles in homeostasis, 

inflammation and immunity not only in mammals, but also microbes and invertebrates like 

Anopheles [197]. Interestingly, suppression of host eicosanoid synthesis has been shown to be 

a mechanism of immune evasion by bacteria [197, 198].  

Our laboratory has shown that immune priming involves an increase in lipoxin 

production (especially lipoxinA4) from arachidonic acid, as well as increased expression of 

evokin, a lipid carrier protein of the lipocalin family. In addition, it appears as if LL3 is also 

necessary for HDF production, as silencing it stops HDF release. Priming can also be abolished 

by interfering with the function or movement of hemocytes by injecting water, PBS or 

Sephadex beads into the hemolymph [193]. Importantly, hemocyte differentiation factor 



 49 

(HDF) is sufficient for effective priming, as transfer of both hemolymph, cell-free hemolymph, 

and HDF alone leads to hemocyte differentiation in the mosquitos and transference of enhanced 

antiplasmodial immune capabilities [2, 193]. Interestingly, although priming is elicited when 

ookinete invasion allows direct contact of the gut microbiota with midgut epithelial cells, 

Plasmodium species differ in their ability to establish a priming response, depending on their 

compatibility with the mosquito vector. For example, A. gambiae G3 mosquitoes mount a 

stronger immune response to P. yoelii ookinetes than to P. berghei, while P. falciparum NF54 

fails to elicit an effective immune response. P. yoelii, the parasites that triggers the strongest 

immune response, leads to the strongest priming, while infection with the highly compatible 

P. falciparum NF54 strain results in weaker priming than P. berghei infection [163]. It is not 

clear whether strong epithelial nitration in midgut epithelial cells or the release of microvesicles 

also enhances the long-lasting priming response of hemocytes. Much remains to be discovered 

regarding the role of eicosanoids and hemocytes in insect immunity and immune memory. 
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Figure I.6 Model of hemocytes activation and priming. Model follows Plasmodium 
ookinetes midgut invasion in A. gambiae. PGE2 is released 24 hours post-invasion by the 
midgut, leading to chemotaxis and attachment of hemocytes to the basement membrane. Next, 
hemocytes release micro-vesicles in the basal surface of the midgut epithelial cells. PGE2 and 
likely other signals lead to HDF release 48 hours post-invasion, which activates hemocytes for 
long-term priming and differentiation into granulocytes and oenocytoids. Priming can be 
abolished by interfering with function or movement of hemocytes[2, 193]. In addition, LL3 is 
necessary for HDF production, as silencing it reduces HDF release [Dr. Barillas-Mury, 
personal communication]. None of the other immune pathways so far implicated in 
Plasmodium defense (Toll, Imd, STAT, JNK) are required for HDF release, although Toll, 
STAT, and JNK are all necessary for hemocyte differentiation in response to HDF[17]. Even 
for those pathways, we do not know the effector mechanisms, which receptors activate 
signaling cascades, or the sequence of kinases and transcription factor activation. Adapted 
from: * Crompton et al.[2] and ** Moreno-Garcia et al.[199] 
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4 Single-cell transcriptomics  
 
“From out of all the many particulars comes oneness” 
― Heraclitus 
 

Past microarray studies in mosquitoes have uncovered Plasmodium and bacteria-mediated 

expression changes in genes regulating immunity [200–203]. However, few transcriptomic 

studies have been conducted to explore in depth how hemocytes respond to insults such as 

Plasmodium [192, 204]. And although terms such as “activation”, “priming” and “innate 

memory” are used to describe immune phenomena in mosquitoes, their precise cellular basis 

is poorly understood [201]. As we have seen, many innate immune pathways are encoded in 

mosquito genomes, and have been linked to distinct immune responses by bulk transcriptomics 

and dissected through reverse genetics [17, 200, 202, 203, 205]. It is therefore highly likely 

that the number of relevant functional states in hemocytes is larger than currently known 

molecular markers suggest. In fact, two recent studies by the Levashina and Smith groups have 

started to explore the cellular heterogeneity of the mosquito immune system, but were limited 

by their chosen technology [191, 192]. They were largely unable to differentiate between 

hemocyte populations, since bulk approaches only look at the average expression level, and 

single-cell approaches conversely need large number of cells to make meaningful conclusions.  

 

On the other hand, well designed single cell approaches such as single cell RNA-

sequencing (scRNA-seq) enable researchers to thoroughly map whole immune systems, 

creating atlases of all immune cell type and states, describing their evolution in time and with 

infection.  Critical biological questions can be explored, such as what transcript isoforms are 

variably expressed between different cell types [206–209], how cell types differentiate into one 

another[210, 211], and what is the precise lineage and cell cycle state of individual cells [207, 

211]. In scRNA-seq we sample the transcriptome of each individual cell independently from 

one another, and the technique is quickly becoming the new state-of-the-art in cell biology.  
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Seemingly homogeneous cell populations actually feature great transcriptional heterogeneity, 

both due to external factors such as individual microenvironments, but also internal stochastic 

processes [212]. Bulk approaches are unable to disentangle these differences, especially since 

the vast majority of transcripts in each cell is present in few copies, and most are not even 

messenger RNAs. The apparent randomness of transcriptional expression, even when cells are 

exposed to similar microenvironments – what we call transcriptional noise – is now recognised 

as crucial in determining cell fate decisions [213]. Single cell techniques are new, and both 

technical methodologies and analysis algorithms need to mature further, but a plethora of 

technologies have already emerged to make scRNA-seq the most sensitive, unbiased, and high-

throughput technology to precisely capture these unique cell types, states, and transitions [214, 

215]. 

  

 The field has come a long way since its origins, having first been developed by Tang et 

al. in 2009 for hand-picked mouse blastomeres, which – thanks to their high RNA content 

(over 1 ng/cell) – could be more easily processed [216]. Now, tens of thousands of cells with 

only a few picograms of RNA can be successfully sequenced with highly automated pipelines 

[Fig. I.7]. However, all protocols share an initial reverse transcription to produce cDNA from 

RNA, which then needs to be amplified either by polymerase chain reaction (PCR) or in vitro 

transcription (IVT). As such, some of the original constraints of the technology remain [215, 

217]. For example, it is still challenging to separate technical noise from biological variability 

[209, 210, 218]. In addition, any method only captures poly-adenylated RNA, and is severely 

limited by the suboptimal mRNA capture rate and reverse transcriptase efficiency [209]. The 

latter is the limiting step of scRNA-seq: it is estimated only 10-20% of all transcripts are reverse 

transcribed [219]. Direct RNA sequencing would represent a major step forward but it is still 

under active development [220]. 
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Figure I.7 Evolution of scRNA-seq technologies (A) Technical breakthroughs have increased 
the number of cells processed per run by orders of magnitude. Sample multiplexing was the 
first major innovation [221], followed robotics and fluidics[222, 223], which allowed 
researchers to study for the first-time thousands of cells in parallel. More recently, nanodroplets 
and picowells [224–226], and now in-situ barcoding, are pushing the field even further to its 
current scale [227, 228], as shown in panel (B). Key technologies are discussed below and 
summarized in Table I.1. Figure adapted from Svensson et al. [217]. 
 

a. Single-cell isolation and suspension 

The first hurdle in a successful scRNA-seq experiment is creating a clean, pure, high-quality 

single-cell suspension of well-dissociated cells from the tissue of interest. Far from trivial, this 

initial step is crucial to the quality of downstream scRNA-seq data. The original Tang method 

– and one that is still in use when dealing with exceedingly fragile or rare cells – is low-

throughput micromanipulation. As cells of interest are manually selected, the technique is 

precise, but it is also exceedingly labor-intensive. Alternatively, laser capture microdissection 

can likewise be used to isolate cells from solid samples. Fluorescence Activated Cell Sorting 

(FACS) on the other hand is able to quickly isolate of tens of thousands of cells. In addition, 

surface markers tagged with fluorescently-labelled antibodies can be used to purify cells of 

interest with high fidelity, and most scRNA-seq protocols are compatible with FACS. 

Nevertheless, FACS requires large amounts of starting material, can be rough on delicate cells, 
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and requires a priori knowledge of the system of interest. Alternatively, cells in suspension 

can be isolated and processed with microfluidics chips, which automate many of the required 

cell separation, selection, and collection steps, upstream of fully-automated scRNA-seq 

protocols. However, cellular stress can be high, capture-rate (number of cells sequenced per 

cells loaded) is low, and cell selection is highly dependent on chip-architecture. Recently, 

developments in microdroplet and microwell technologies have achieved significant reductions 

in hands-on time and reaction volumes (leading to lower costs), while increasing cellular 

throughput [209, 215, 229–231].  

However, for tissues and cells rich in RNAses such as the pancreas or granular immune 

cells (e.g. neutrophils and macrophages), maintaining optimal cell and RNA integrity during 

sample preparation is an unsolved technical hurdle [232, 233]. Cells from tissues need to be 

dissociated and resuspended using enzymes such as collagenase and trypsin, which takes hours 

and inevitably affects both cell viability and transcriptome, further confounding biological 

differences. As a result, cells are stressed and their information altered by experimental 

manipulation, while RNA is lost due to the action of endogenous RNAses[234]. New protocols 

such as methanol and Lomant’s fixation partially solved these issues, particularly for cells in 

suspension, however solid tissue dissociation remains a challenge [235, 236]. 

b. scRNA-seq technologies 
 
Protocols can be roughly divided into two separate categories: full-length versus tag-based. 

The original Tang protocol was a full-length method, while the popular commercial 10X 

technology is a tag-counting protocol. Each has its strengths. Full-length scRNA-seq methods 

typically provide more genes per cell and allow a researcher to delve into the data deeper by 

exploring transcript isoform expression, allelic expression, and RNA editing thanks to the 

strand-specific information along the full length of each transcript [237]. Tag-based methods, 

on the other hand, feature higher throughput and lower costs, thus providing the necessary 

power to discover new and rare cellular subtypes or transcriptional states [231]. The most 

utilized methods are described and compared below (see also Table I.1). 
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Full-length protocols 

Quartz-seq 

An improvement over the original Tang method, with simplified workflow and improved 

performance, although quickly rendered obsolete by Smart-seq2 [238–240].  

 

Smart-seq2 

The classic full-length protocol –considered state-of-the-art in terms of genes per cell captured 

– begins with an RT reaction using the Moloney Murine Leukemia Virus (MMLV) RT enzyme 

and oligo-dT primers with template switching oligonucleotides (TSO) to synthesize cDNA. 

The cDNA is then amplified before library preparation. Though the protocol is time 

consuming, robotic handling can simplify the workflow [237, 239, 240]. Importantly, strand 

information is lost with standard Illumina sequencing, and technical errors due to unequal PCR 

amplification are not corrected by unique molecular identifiers (UMIs: unique molecular 

identifiers) as in tag-counting protocols, so that PCR amplification bias remains a concern 

[219].  When using UMIs, every transcript captured gets labeled with its unique barcode (e.g. 

10-12 bp long with Chromium 10X) in addition to a cellular barcode. This allows to distinguish 

sequencing reads originating from unique mRNAs vis-à-vis PCR duplicates.  

 

Tag-based protocols 

CEL-seq, CEL-seq2, and MARS-seq 

This tag-based protocol employs IVT rather than PCR amplification. CEL-seq (Cell Expression 

by Linear Amplification and Sequencing) starts with an RT reaction, before second strand 

cDNA synthesis, pooling, and IVT. Exonic reads are highly strand-specific (over 98% from 

sense strand), barcoding highly efficient, and no gene-length normalization is required. 

However, there is a strong 3’ bias and spliced isoforms cannot be detected. CEL-seq shows 

poor sensitivity for lowly-expressed transcripts [241]. MARS-seq (Massively Parallel RNA 

single-cell sequencing) is a fully automated CEL-seq with UMIs,  enabling the counting of 

individual RNAs [223, 242]. CEL-seq2 improved upon the original protocol by decreasing 

costs and hands-on time, while increasing sensitivity and implementing UMIs [243]. 
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STRT-seq 

STRT-seq (Single-cell Tagged Reverse Transcription Sequencing), is a tag-based method that 

employs anchored oligo-dT primers and a MMLV-based enzyme as Smart-seq2, before PCR 

amplification. Later iterations of the protocol included UMIs and have been automated to allow 

multi-plexing and strand-specificity. Disadvantages are the same as for all tag-based protocols, 

including the inability to detect SNPs or splice variants [244]. 

 

DROP-seq, InDROP and Chromium 10X 

All these three relatively newer technologies work in similar ways to increase throughput and 

lower reaction cost by carrying out all reactions in nanoliter emulsion droplets. These droplets 

contain the lysis buffer, RT, and barcoded microspheres with oligonucleotides to uniquely tag 

both the individual cells, as well as each transcript within those cells. inDrop and 10X are 

characterized by higher cell capture rate, 10X has the highest sensitivity and lowest technical 

noise. Drop-Seq on the other hand is the most cost-effective [224, 225, 245–247]. A detailed 

discussion of 10X follows in the materials and methods. 

 

SeqWell 

The latest addition to the arsenal and one of the most promising recent developments in scRNA-

seq, SeqWell sports the same advantages of emulsion droplet methodologies, but employs 

microarrays and picowells to increase throughput even higher. Seq-Well utilizes PDMS arrays 

that each contain ~88,000 subnanoliter wells with uniquely barcoded poly(dT) mRNA beads. 

The uniquely barcoded mRNA capture beads and cells are both secluded in the wells, which 

are then sealed with semipermeable membranes, leading to a more efficient cell lysis and 

mRNA capture. Beads can then be pooled, thanks to double barcoding for cells and transcripts 

(UMIs). Seq-Well only requires a PDMS array, a polycarbonate membrane, a pipette, a clamp, 

an oven/heat source, and a tube rotator to produce stable cDNA product, making it functional 

in nearly every clinic and laboratory context. The protocol can also be adapted to use harsher 

lysis conditions, useful when dealing with fixed or otherwise challenging material [248, 249].  



 57 

Combinatorial indexing 

Recently, single-cell combinatorial indexing has emerged in different groups as another 

powerful high-throughput scRNA-seq methodology involving the split-pool barcoding of 

either cells or fixed nuclei. For RNAseq, the methods are similar and are alternatively called 

SPLiT-seq, sciRNA-seq, or sci-RNA-seq3 [227, 228, 250] . However, single-molecule 

combinatorial indexing can be used for many other omic techniques to explore chromatin 

accessibility (called sci-ATAC-seq)[251], genome sequence (sci-DNA-seq)[252], genome-

wide chromosome conformation (sci-Hi-C)[253], and DNA methylation (sci-MET)[254]. 

 

 

 

 
Table I.1 Comparison of scRNA-seq methodologies. Abbreviations: cDNA, complementary 
DNA; DNA pol I, polymerase; RNase H, ribonuclease H. Adapted from Chen et al. [214] 
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c. scRNA-seq data analysis 
 

After making a quality single-cell suspension, successfully loading the cells onto the scRNA-

seq platform of choice, making a library of appropriate complexity, and then sequencing it to 

the desired depth (note that 50k reads per cell is thought sufficient to successfully cluster cells 

into subpopulations, including rare cell types) [255], data must be quality controlled before 

downstream biological analyses. Multiple packages have been created to integrate QC 

methodologies and analyses and simplify data exploration and interpretation. Seurat [256], 

Scanpy [257], Scater [258], Monocle [211] and Cellranger [246] are the most popular. 

 

Read Alignment, Expression Quantification, and Quality Control 

The reads to reference transcriptome mapping ratio is an early indicator of scRNA-seq data 

quality. Samples with low mapping percentages likely contain a high amount of damaged or 

degraded RNA and must be removed. Since sequencing output is the same as for bulk RNAseq 

the same software can be used for the first data analysis and QC steps. Alternatively, Kallisto 

and Salmon can both accurately estimate transcript abundance without relying on alignment to 

an existing transcriptome [259, 260]. Most users however use standard splice-aware alignment 

programs using reference assemblies. The most popular tools are TopHat2 [261], STAR [262], 

and HISAT2 [263], although 10X has implemented their version of STAR into a proprietary 

software suite called Cell Ranger [246]. Studies have compared these aligners highlighting 

trade-offs between speed, memory requirements, and alignment efficiency in all [264–266]. 

Which expression quantification method to use varies according to the scRNA-seq technique 

used. For whole-transcript protocols such as Smart-seq2 traditional bulk-RNAseq methods 

suffice. Tag methods such as Chromium 10X will either use the Cell Ranger pipeline or 

specifically-tailored algorithms such as SAVER (Single-cell analysis via expression recovery) 

to take advantage of UMIs and reduce technical noise [231, 267]. Data is then cleaned up to 

exclude reads originating from multiplets, broken cells, or dead cells (unless cell were fixed). 

Even the highest quality, healthiest cells will suffer from low mRNA capture efficiency, bias 

in transcript coverage, and dropout events (lack of transcripts that are known to be expressed 
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in the cells). Nevertheless, poor quality samples and cells will skew biological interpretation 

and must be removed. Some protocols use extrinsic spike-ins (e.g. ERCC) to estimate technical 

noise and cellular quality [268], as cells with high proportions of ERCC spike-ins likely feature 

broken, porous cellular membranes. Furthermore, while cytoplasmic RNA is usually lost when 

a cell ruptures, mitochondria remain within the cell. Thus, a high percentage of mitochondrial 

RNAs to total RNAs can indicate poor quality. Finally, low total gene counts or transcripts 

abundance within cells can also be an indication of low quality, although this can sometimes 

be due to technical limitations or the low total RNA content of the cell of interest [210, 269].  

 
Normalization of scRNA-seq data, and removal of batch effects 

Initial QC must be followed by careful data normalization in order to disentangle the biological 

signal of interest from the variability in capture efficiency, sequencing depth, dropouts, and all 

other technical effects in each individual sample. This intra-sample normalization is important, 

but as scRNA-seq datasets become larger, batch normalization is also becoming crucial. The 

latter takes into consideration all of the above, but also harmonizes samples often run on 

different days, platforms and laboratories. Normalization is an issue also in bulk-RNAseq, 

however it is far more complex in scRNA-seq. Bulk RNA-seq investigators standardize 

libraries by calculating quantities such as transcripts per million (TPM), fragments per kilobase 

of exon per million fragments mapped (FPKM, which takes into consideration both transcript 

length and library size), or size factors [210, 231, 270, 271].  

 

 That is not sufficient for single-cell RNA-seq, which features unique analytical 

challenges requiring specifically-tailored normalization algorithms. For example, scRNA-seq 

data matrices are characterized by abundant zeroes, but ‘zero inflation’ is due to both technical 

reasons (dropouts due to the low reverse transcription efficiency previously mentioned) as well 

as meaningful biological differences (e.g. quiescent or stem cells). Moreover, scRNA-seq is 

characterized by higher technical noise even for non-lowly expressed genes, further augmented 

by true biological heterogeneity. Any overcorrection by normalization algorithms will reduce 

such biological differences. Conversely, under-correction will lead to spurious biological 

conclusions. Traditionally, scRNA-seq normalization methods have employed off-the-shelf or 
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adapted bulk-RNAseq methods. Specifically, median normalization methods are used to 

identify genes whose expression does not change across cells. Non-differentially expressed 

(DE) genes are then used to calculate global scaling factors that are unique for each cell, but 

common for all transcripts within that cell. These methods all assume total RNA in each cell 

is more or less the same and that all variation is technical. However, that is not the case when 

dealing with single cells, especially in heterogenous samples. And further, RNA content in 

different libraries is influenced by both the cell-cycle and the dynamics of transcription 

(including transcriptional bursts) for each individual gene [14, 270–272]. A first attempt to 

circumvent this limitation was the use external spiked-in ERCC artificial RNAs at a set 

concentration in each individual cell library, thus adjusting for technical variation and 

improving the accuracy of global scaling factors [273]. However, issues with spike-ins can lead 

to inconsistent detection and few studies have used this technique [210]. Rather, researchers 

have been using UMIs to successfully remove or reduce cell-specific effects due to 

amplification and gene length, although UMIs can only be used with tagging scRNA-seq 

protocols [219, 224, 242, 270]. As the field matures, more and more sophisticated 

normalization methods are being specifically tailored for scRNA-seq datasets, such as SCnorm, 

SAMstrt, and SCTransorm (as integrated in Seurat V3.0) [272, 274, 275].  

 

As larger scale scRNA-seq experiments become the norm, ‘batch effects’ – the 

aggregated technical variation of different cell dissociation methods, library preparation 

techniques, sequencing platforms, environments, handling, operating equipment, institutes and 

laboratories – are becoming ever more important confounding factors. These confounders are 

especially problematic for large consortium-scale projects such as the Human Cell Atlas, and 

must be minimized. The field is thronged with new computational methods that have begun 

addressing the issue, from the linear regression models of ComBat[276] to the nonlinear 

canonical correlation analysis (CCA) of Seurat [277] or the projection of mutual nearest 

neighbors method (MNNs)[278]. Separately, MAST, DESeq and limma can include batch 

effects as covariates in their DE testing model [279–281]. Principal component analysis (PCA) 

and visualization in low dimensional usually follows. Recently, a dedicated method (kBET) 
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has been developed to further explore batch effects (and their correction), in detail [282]. All 

these normalization, batch correction, and visualization methodologies are summarized below 

in Fig. I.8. 

 

 
 

Figure I.8 Summary of normalisation, batch regression, and assessment techniques. 
Detailed information on each method and full figure in Büttner et al. [282] 

 
 
Dimensionality reduction, feature selection, clustering, and differential expression analysis 

Data matrices downstream of all QC and normalization processing feature many thousands of 

dimensions, with thousands of genes and tens of thousands of cells. Data must be simplified -

dimensions reduced – to aid computations and interpretation while keeping intact key 

biological differences between cells and conditions. PCA is a linear dimensional reduction 

algorithm assuming normal distribution of data. It identifies new variables, called principal 

components (PCs), that are linear combinations of the variables from a dataset. Data is 

standardised so that each gene's mean expression across cells is zero and the PCs are then 

normalised eigenvectors of the genes' covariance matrix. Importantly, the PCS are ordered by 

how much dataset variation they describe. T-distributed stochastic neighbor embedding (t-

SNE) is a non-linear dimensionality reduction technique used for example by Seurat to 

visualize the scRNA-seq data [283]. Both are limited. PCA is unable to fully display data 

complexity, while t-SNE plots are inconsistent and do not preserve global information. Newer 

algorithms such as uniform manifold approximation and projection (UMAP) [284], and scvis 

[285] were designed specifically for scRNA-seq. UMAP is fast, reproducible, and cluster 

organization and display reflects inherent cellular similarity, unlike for t-SNE.  
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 Feature selection is also used to reduce data dimensionality and free-up computational 

resources for downstream analysis such as clustering. Unsupervised algorithms for feature 

selection are divided into three main types. Highly variable genes (HVG) methods as in Seurat 

assume HVG are those that vary because of biology [222, 256]. Spike-in approaches (e.g. 

scLVM and BASiCS) identify genes that have higher variance than spike-ins with similar 

expression levels [270, 273]. Finally, dropout methods such as M3Drop use the dropout 

distribution characteristic of scRNA-seq data to efficiently select all important features in a 

dataset [286].  

 

 After dimensionality reduction we can finally interrogate our data and answer key 

biological questions. For example, what populations and subpopulations of cells do exist in our 

dataset? And what are their cell states? Cell clustering can be done either using known markers, 

or more commonly with unsupervised clustering methods. These are mainly divided into k-

means, hierarchical clustering, density-based clustering, and graph-based clustering 

methodologies. K-means requires setting the number of clusters a priori, and assigns cells to 

nearest cluster center, while all others methods work in unsupervised fashion to establish the 

optimal number of clusters. Some methods such as single-cell consensus clustering (SC3) use 

a combination of methodologies, and the popular Seurat clusters mainly with a shared nearest 

neighbor algorithm (SNN) [287]. Differentially expressed genes (marker genes) are then found 

with differential expression analysis (DE) or analysis of variance (ANOVA). DE analysis is an 

active area of software development. Often, clustering algorithms return not only cell 

subpopulations, but also variable cell states for each of these populations. Software packages 

must be able to differentiate between the two, while dealing with the high noise of scRNA-seq 

data and the large sample size. While bulk RNAseq DE techniques are still used, in recent years 

specific tools such as MAST (linear model fitting and likelihood ratio testing), SCDE 

(Bayesian approach with low-magnitude Poisson), DEsingle (Zero-Inflated Negative 

Binomial), have been developed. Seurat uses the non-parametric Wilcoxon rank sum test as a 

default, but other methodologies such as MAST and DEseq2 can also be employed. Soneson 

et al tested over 36 methods in their recent review [288]. See Table I.2 below for a summary. 



 63 

Clustering  References DE 
analysis  Type References 

Seurat Satija et al., 2015[256] MAST Single-cell Finak et al., 2015[279] 
SC3 Kiselev et al., 2017[289] ROTS Single-cell Seyednasrollah, 2016[290] 
Destiny Angerer et al., 2016[291] BCseq Single-cell Chen et al., 2018[292] 
SNN-Cliq Xu and Su, 2015[293] SCDE Single-cell Kharchenko et al., 2014[294] 
RaceID Grun et al., 2015[295] DEsingle Single-cell Miao et al., 2018[296] 
SCUBA Marco et al., 2014[297] Cencus Single-cell Qiu et al., 2017[298] 
BackSPIN Zeisel et al., 2015[299] D3E Single-cell Delmans et al., 2016[300] 
PAGODA Fan et al., 2016[301] BPSC Single-cell Vu et al., 2016[302] 
CIDR Lin et al., 2017[303] DESeq2 Bulk Love et al., 2014[280] 
pcaReduce Zurauskiene, 2016[304] edgeR Bulk Robinson et al., 2010[305] 
TSCAN Ji et al., 2016[306] Limma Bulk Ritchie et al., 2015[281] 
ZIFA Pierson et al., 2015[307] Ballgown Bulk Frazee et al., 2015[308] 

Table I.2 Summary of clustering and DE analysis software packages. For more information 
please consult these excellent reviews: Andrews and Hemberg (clustering) [287] and Soneson 
et al (DE analysis) [288]. 
 

 

Cell lineage, pseudotime, alternative splicing and gene regulatory networks analysis 

After probing the cellular complexity of tissues and cell populations, data can be used to 

explore the dynamics of cellular development and identify cell types lineages, for example by 

building a pseudotime ordering of cells which can showcase cellular differentiation. 

Pseudotime techniques order cells along a continuous trajectory, aligning cells based on 

transcriptional similarities rather than clustering them. These approaches not only allow 

investigators to probe the initial, transitional, and final cell states of a population, but also the 

genes that are involved in such transitions. Popular tools are Monocle (based on minimum 

spanning tree) [211], Monocle2 (reversed graph embedding) [298], Slingshot (cluster-based 

approach) [309], TSCAN [306], PAGA, and Cellrouter [310]. Saelens et al. recently evaluated 

most pseudotime and lineage approaches and found Monocle2, Slingshot, and PAGA to be 

superior, depending on the individual data structure of the dataset (e.g. linear, bifurcating, 

complex separate trees) [311]. 
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 Gene regulatory network inference is a common feature of bulk RNAseq analyses, 

normally employing weighted gene co-expression network analysis (WGCNA), which 

assumes all genes that are highly correlated in expression to be co-regulated. By combining 

cells together to build a pseudo bulk-RNAseq dataset we can evaluate gene regulatory networks 

in the same way. However, the analysis needs to be run separately for each subpopulation. 

SCENIC is one such scRNA-seq method that can build gene regulatory networks from single 

cell data and predict transcription factors - target genes interactions [312]. PDIC is an 

alternative software suite to answer the same questions [313]. 

  
 Finally, when data is generated with scRNA-seq protocols producing full-length 

transcripts (such as Smart-seq2) investigators can also analyze alternative splicing. Over 90% 

of human genes undergo alternative splicing, which plays important roles both in tissue 

homeostasis and disease [314]. Data on isoform usage could be crucial in understanding the 

expression dynamics of specific pathogenic isoforms for example, or to further characterize 

the importance of cellular subsets in immune process. However, bulk RNAseq methodologies 

are again unsuitable to the task. Recently new methods have emerged such as SingleSplice, 

Census, BRIE, and Expedition [298, 315–317].  
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5 Aims and outline of the thesis 
 
This dissertation first focuses on dissecting the complexity of the A. gambiae M-form (A. 

coluzzi) immune system under baseline conditions. That knowledge is then leveraged to obtain 

an in-depth understanding of how mosquitoes responds to both blood-feeding and Plasmodium 

infection. In analogy with vertebrates, I posit the existence of different hemocyte 

subpopulations and states, each characterized by distinct gene expression profiles. I will further 

argue that hemocytes transition between distinct states along a range of predetermined routes, 

through which the diversity of functions associated with cellular immunity in invertebrates is 

generated. In addition, I will show that single-cell approaches, coupled with complementary 

bulk techniques and imaging validation, are an effective method to study the cellular arm of 

the immune system of mosquitoes. 

 
In Chapter II, we explored different strategies to isolate hemocytes and create a clean, 

pure single cell suspension for downstream scRNA-seq. We evaluated different methods, 

enzymes, and fixatives to adapt single cell protocols to the unique challenges of mosquito 

immune cells, while maintaining high quality RNA and cellular integrity. As part of this work 

we developed a protocol to fix and sequence hemocytes at single cell resolution making use of 

the droplet-based Chromium 10X technology. We then validated our scRNA-seq results by 

adapting the commercial RNAscope RNA-FISH technology to mosquitoes.  

 
In Chapter III, we used these methods to characterize the functional classes of A. 

gambiae mosquito hemocytes and build a comprehensive atlas of the cellular arm of the 

mosquito immune system to discover new hemocyte cellular subtypes. We then defined marker 

genes for each cell type, and identified surface markers for future functional studies. We 

uncovered different cell states within each hemocyte type, successfully building a lineage tree 

to explain how hemocytes differentiate into each cell type and cell state. Finally, we validated 

these scRNA-seq results with a combination of bulk-RNAseq and RNA FISH techniques and 

visualize each cell type and their spatial-temporal localization in the mosquito. Importantly, 

we not only recapitulated what previous knowledge existed, but also discovered novel effector 
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cellular subtypes, including a cellular subtype potentially akin to lamellocytes in Drosophila, 

likely involved in the ‘late’ cellular immunity against Plasmodium, as well as hemocytes 

responsible for secreting anti-microbial peptides in circulation, revealing a previously 

unknown complexity of this biological system.  

 
In Chapter IV, we challenged A. gambiae mosquitoes first with blood-feeding and then 

with P. berghei and P. falciparum infection. We evaluated how mosquito hemocytes, guts, and 

carcasses respond to these challenges to explore how hemocytes differentiate into their distinct 

cellular states. We identified a trajectory of immune activation following the mosquito on a 

time-course after infection, reaching a peak of transcriptomic activity against the parasite at 

days 2-3 after infection, before returning to baseline at day 7. Finally, we describe how 

hemocytes dynamically respond to infection, going into circulation to respond to injury and 

replenish the immune cell pool. We identified rapidly dividing precursor cells, as well as the 

transcriptomic signatures of the response of hemocytes and fat body to Plasmodium, including 

what pathways are differentially activated in various cellular subtypes. Then, we explored how 

the upregulation of the Toll pathway affects hemocytes and their ability to mount an effective 

immune response to suggest how different hemocyte subtypes are the control of specific and 

distinct immune pathways.  

 
In chapter V, I conclude by providing a summary of our findings and discussing what 

significance they hold in view of the emerging importance of vector-borne diseases for human 

health and disease, not only in the developing world, but increasingly also in the West. 
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Chapter II 

Establishing an experimental system to explore the mosquito 

immune system  
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1 Introduction 
 

“If we knew what it was we were doing, it would not be called research, would it?”  
― Albert Einstein 
 
No comprehensive scRNA-seq study had been done on mosquito or Drosophila immune cells, 

requiring technology development. The envisaged work-flow involved several steps for which 

no established protocols were available (Fig II.1). In particular, techniques for cell collection 

were not designed with subsequent scRNA-seq in mind, and new procedures were needed to 

keep handling of cells to a minimum [209]. When the project first started, no bulk RNAseq 

data of mosquito hemocytes existed either, and available protocols needed to also be adapted. 

For scRNA-seq in particular different sequencing technologies had to be evaluated and 

sequencing library preparation optimised for the specific requirements of mosquito immune 

cells. 

 

 
Fig. II.1 Experimental work-flow. At day 0 A. gambiae M-form (A. coluzzi) adult female 
mosquitoes hatch. After 3-4 days mosquitoes are challenged with P. berghei or P. falciparum 
infection or eicosanoid (lipoxin A4 / prostaglandin E2) injection. Samples are collected 1,2,3,7 
days post-challenge. Following collection, cells are either stained (Hoechst 33342 / calcein) 
and sorted or fixed in vivoPHIX before sorting or direct scRNA-seq library preparation (Smart-
seq2 and 10X chromium). Libraries sequenced on Illumina platforms before data analysis. 
Figure partially adapted from * Kolodziejczyk et al [209] and ** Jose Luis Ramirez (personal 
communication) 

***P. berghei and P. falciparum

Day 5-12 Day 5-12



 
The main limitations were: 

a)  the low number of immune cells available for collection in each mosquito (only a few 

thousand hemocytes per mosquito can be bled with an injection-recovery method), 

many of which with a low RNA content (e.g. prohemocytes). This is a challenge for 

both bulk RNAseq and scRNA-seq methods, and pushed current protocols to the limit.  

b) the heterogenous sizes and shapes of hemocytes, ranging from 3µm in diameter, round 

prohemocytes all the way to 20 µm in diameter, elongated granulocytes, with 

pseudopodia. The heterogeneity of our samples precluded use of the popular Fluidigm 

C1 instrument [318]. In addition, the different amounts of RNA content in each cell 

type presented a technical challenge, potentially requiring different numbers of PCR 

amplification steps for each. 

c) Some subtypes of hemocytes such as granulocytes are very delicate and prone to cell 

death, and are filled with granules containing digesting enzymes detrimental to RNA 

quality. These cells can easily burst, especially when activated. Furthermore, many 

hemocytes attach to surfaces, including Eppendorf tubes and pipette tips, requiring 

investigators to reduce as much as possible hands-on time, centrifugation steps, and 

general handling, while coating all surfaces with silicone [193] 

d) Finally, the final single cell suspension must be created rapidly, while also being void 

of contaminants. Mosquito guts must not be punctured to avoid introducing gut contents 

into the hemolymph. The contamination would lead to both cell loss due to immune 

activation and bursting of hemocytes, as well as to poor scRNA-seq library quality due 

to the debris, RNAses and other enzymes introduced in the reaction mix. In addition, 

mosquito handling must be vigorous enough to release sessile hemocytes into the 

circulation, but gentle enough to avoid excessive fat body and muscle cells 

contamination. That is a challenge on its own, as mosquito micromanipulation and 

hemocyte collection has to be rapidly completed to collect enough cells from as many 

mosquitoes as possible within a limited timeframe to overcome aforementioned issues. 
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1.1 Aims 
 

1. To develop a pure, high quality cell hemocyte suspension for scRNA-seq and bulk RNAseq.  

2. To implement an efficient sorting strategy for downstream scRNA-seq.   

3. To select which scRNA-seq method produces the best quantity (number of cells after QC) 

and quality (as measured by genes per cell and mitochondrial transcripts ratio) single cell 

hemocyte data.  

 
1.2 Colleagues 

 
The data presented in a result of my own work unless stated otherwise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 Methods 
 

2.1 Anopheles gambiae and Aedes aegypti mosquito rearing and P. 
berghei infection  

 
A. gambiae (G3 NIH strain) and A. gambiae M-form (A. coluzzi) were reared at 28 °C, 80% 

humidity, 12-hour light/dark cycle with standard laboratory procedures. For infections we 

utilized GFP-CON transgenic P. berghei (259cl2 strain), maintained with serial passage in 

female 4-8 weeks old BALC/c mice[319]. Parasitemia was assessed by light microscopy 

following methanol-fixed blood-smears stained with 10% Giemsa and air-dried. Mosquitoes 

were fed on infected mice at a parasitemia of 3-5%, with 1-2 exflagellations per field. Infected 

mosquitoes were kept at 21 °C to allow for infection and midgut invasion. To confirm infection 

intensity at least 10 mosquito midguts were dissected 5 days post blood-feeding and oocysts 

counted by fluorescence. A. aegypti (Liverpool strain) mosquitoes were also reared with 

standard insectary conditions at our Laboratory of Malaria and Vector Research (NIH) at 28 

°C, 80% humidity, 12-hour light/dark cycle. Aedes mosquitoes were maintained with 10% 

Karo syrup solution by Mr. Andre Laughinghouse.  

 
2.2 Anopheles mosquito micro-injection with CM-DiL and eicosanoids 

 
To stain hemocytes with the lipophilic dye chloromethylbenzamido-1,1′-dioctadecyl-3,3,3′,3′-

tetramethylindocarbocyanine-perchlorate (CM-DiL), two-day old mosquitos were cold-

anesthetized and injected in the thorax with a Drummond Nanoject II in ‘fast’ filling and release 

mode with 69 nL of 140 µM CM-Dil in DPBS, and then left to recover 2-3 days. To challenge 

the immune system with eicosanoids, single-use aliquots of eicosanoids were thawed and 1.43 

µl of 0.1 µg/µL lipoxin A4 (LXA4), or 1.43 µL of 1 µg/µL of prostaglandin E2 (PGE2), were 

dried with a mild stream of nitrogen gas in amber ampullas to protect the compounds from 

oxidation and light. The compounds were then resuspended with 50 µL of transfer buffer 

composed of 95% Schneider’s Insect media, 5% citrate buffer (98 mM NaOH, 186 mM NaCl, 

1.7 mM EDTA, and 41 mM citric acid; buffer pH to 4.5), final pH buffered to 7.0-7.4, and 

sterilized through a 0.22 µm syringe filter. Injection needles were prepared with a Narishige 
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PC-10 needle puller, using Drummond microinjection capillaries of borosilicate glass 3.5 inch 

in length. The needle puller was set in “Heater N.2” mode, with heater level 55.00 and the tip 

of the needle cut open with fine tweezers approximately 1cm from the fine end, leaving an 

even, clean bore for the injection. Cold-anesthetized four or five-day old mosquitos were then 

injected in the thorax with 138 µL of the 2 ng/µL dilutions (50nM) and let recover for 6 hours 

- 5 days before perfusions. 

 
2.3 Aedes mosquito micro-injection with Lacz 

 
Dr. Ana Beatriz Ferreira cold anesthetized and injected two to three-day old female A. aegypti 

mosquitoes with 69 nl of 3 µg/µl dsRNA solution specific for LacZ, a bacterial gene not related 

to the genome of Aedes mosquitoes. DsRNA of LacZ is used as control during dsRNA-

injection gene knockdown. It was produced as previously described in Molina-Cruz et al. 

[178]: a 218-bp fragment was amplified from LacZ gene cloned into pCRII-TOPO vector using 

M13 primers. Then, 2 days before serum feeding mosquitoes were injected. 

 
2.4 Aedes bacterial feeding  

 
Dr. Ana Beatriz Ferreira performed the bacterial feeding experiments at the NIH with Aedes. 

First the mixture of bacteria to be used for feeding was collected by cleaning sugar-fed 

mosquitoes with 70% ethanol and sterile PBS, and then by dissecting the same mosquitoes in 

sterile PBS. Groups of 5 midguts were homogenised in sterile PBS before LB media incubation 

for at least 16 hours at 28 °C and 250 rpm in a shaker. This stock solution was then frozen and 

kept at -80 °C. The pre-inoculum was set-up before each experiment by scraping frozen stock 

into LB media and incubating for at least 16 hours at 28 °C and 250 rpm in a shaker. The day 

of the experiment pre-inoculum was diluted again in LB and allowed to grow for two hours, as 

above, after which bacteria were pelleted and washed with sterile PBS to remove any produced 

toxins. Concentration was estimated with optical density (OD) measurements at 600 nm, with 

1 OD considered equivalent to 109 bacteria/mL. Three to four-day old mosquitoes were then 

fed 10% sterile sucrose solutions with 100 U/mL penicillin and 100 µg/mL streptomycin for 2 



 
days before feeding the bacterial mixture. Control mosquitoes were instead fed with sterile 

10% bovine serum albumin (BSA) solution in HBSS with no calcium nor magnesium. 

Bacteria-fed mosquitoes were fed the same solution but with 4x109 bacteria/mL in each feeder. 

Four days post-feeding mosquitoes were perfused as of below in section 2.5. Twenty-five 

mosquitoes were perfused per replicate, with 3 replicates per condition in each of the control 

serum fed, bacterial fed and dsRNA injected serum fed conditions. Hemolymph was placed in 

0.5 ml of vivoPHIX for RNA isolation and single cell transcriptome analysis. 

 
2.5 Hemocyte collection, fixation, cell counting 

 
Hemocytes were collected by gradually injecting in the thorax of cold-anesthetized mosquitoes 

10 µL of anti-coagulant media (2 µL at a time) composed of 60% Schneider’s insect media, 

30% citrate buffer, 10% heat-inactivated fetal bovine serum, final pH 7.0-7.4, sterilized 

through a 0.22 µm syringe filter. Fire-polished and thin-wall single barrel TW150-6 

borosilicate glass capillaries 152 mm long with 1.5 / 1.12 OD / ID in mm were prepared with 

a Narishige PC-10 needle puller. Needle puller was set in “Heater N.2” mode, with heater level 

24.8, and the tip of the needle cut open with fine tweezers a few millimeters from the fine end, 

leaving an even, clean bore for the injection. Hemolymph was then collected from the lower 

abdomen where an incision was made with sterile micro-forceps [193]. A total volume of 10 

µL was collected per mosquito and collected with a sterile non-stick pipette tip into non-stick 

Eppendorf tubes coated with silicone to prevent cell attachment. For manual cell counting, 8-

12 mosquito samples per condition per experiment were individually placed in sterile single-

use disposable hemocytometer slides (Neubauer Improved, iNCYTO C-Chip DHC-N01), and 

the number of cells counted manually with a light microscope and a 40X objective. Hemocytes 

were subdivided morphologically into three subtypes (granulocytes, oenocytoids, and 

prohemocytes), as previously described [4].  

 

 For oil-free anti-coagulant buffer injections a custom Tritech Research 

microINJECTOR system was assembled, featuring a microinjector All-Digital Multi-pressure 

system (MINJ-D) controller, a precision N2 cylinder pressure regulator for gas pressure control 
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(TREG-N2), fitted with BS341 cylinder fittings for use in the United Kingdom (TREG-

BR580), and a brass straight-arm needle holder (MINJ-4), originally with Swage / Luer fitting. 

The fitting was then sewn off with an abrasive disk making sure not to dent the thin brass tube. 

Once access to the outside diameter of the MINJ-4's main brass body tube was gained, the 

tubing could be pushed into a dual quick-connect fitting with CT-1 tubing compatible with the 

MINJ-D. When building the system, brass tubing had to be gently pushed a few millimeters, 

and then when resistance was felt the brass tube was firmly pushed all the way in.  Finally, 

holding the quick-connect fitting outer ring outward, pulling the brass tube out from the quick 

connect locked it in position. Regulator was set at 20 psi. Hemolymph was collected as above 

with a steady pressure of 1 psi during injection until 10 µL were collected per mosquito. 

  
Cells were treated with the biomolecule stabiliser and cell fixative vivoPHIX (RNAssist 

Ltd, Cambridge, UK) which protects RNA, DNA and proteins from degradation within fixed 

cell, as well as inactivating viruses and killing bacteria. vivoPHIX, developed from a deep 

eutectic solvent, is non-cross-linking, dissolves fat droplets, and has very low volatility, so that 

fixed cells can be stored for weeks at room-temperature and months at 4C prior to analysis by 

scRNA-seq. When fixing hemocytes with VIVOphix cells were collected as above and then 

plunged into 500 µL of fixative at room temperature. After processing four mosquitoes the 

cell-fixative mix was pipetted up and down 5 times with a P1000 and well mixed. The 

procedure was repeated after adding four more samples, or reaching required amounts (8-12 

mosquitoes per condition). Hemocytes were then fixed for 2 hours at room temperature, before 

being transferred to 4C storage. On the day of processing, fixed hemocytes were mixed with 

one volume of pure, molecular grade ethanol before centrifugation for 30 minutes at 3k RCF 

at room temperature. Supernatant was discarded and the pellet resuspended in pure molecular 

grade water before 10X Chromium scRNA-seq library processing. Alternatively, after primary 

VIVOphix fixation and 60 µm filtering three volumes of glacial acetic acid were added to one 

volume of fixed hemocyte and well-mixed. After 10 minutes incubation samples were 

transferred to ice. Then, one volume of pure molecular grade ethanol was added to the mixture 

and mixed well before centrifugation for 20 minutes at 3k RCF at room temperature. 



 
Supernatant was discarded and pellet resuspended in pure molecular grade water with 0.1% 

BSA, freshly-prepared, before staining and sorting as below and scRNA-seq processing. 

 
2.6 Hemocyte staining, flow cytometry, and sorting 

 
Hemocytes collected for sorting were stained with 1:10,000 dilutions of 20 mM Hoechst 33342 

and 1 mM LIVE/DEAD calcein AM for 15 minutes [150]. Cells were then loaded on BD 

Fortessa analysers for flow cytometry or BD INFLUX Index Cell Sorter / Mo-Flo XDP Cell 

Sorter or a Sony SH800 Sorter for sorting into silicone-coated Eppendorf tubes or 96 / 384 well 

plates with lysis buffer (0.8% Triton-X). Cell populations were determined through physical 

parameters such as forward scatter (FSC) and side scatter (SSC), as well as fluorescence 

intensity. BD INFLUX Index Cell Sorter and Mo-Flo XDP Cell Sorter were operated by the 

Wellcome Sanger Institute Cytometry Facility staff. At first, hemocytes for 10X Chromium 

experiments were sorted at a concentration of 450 cells per µL into siliconized 1.5 mL 

Eppendorf tubes. Hemocytes were also stained with Hcs Lipidtox Green Neutral Lipid Stain 

for quality control by incubating them for 10 minutes with 125 µL of 1:1000 dilution of stock 

Lipidtox. 

 

Alternatively, Sony SH800 was used to sort VIVOphix hemocytes stained for 20 

minutes with 1 drop per 500 µl of sample of NucBlue Live ReadyProbes Reagent (Hoechst 

33342 formulation by ThermoFisher). Sony sorter was operated with 100 µm disposable chips. 

Cells were sorted on fluorescence intensity, with 405 nm laser excitation and Hoechst 33342 

filter, gated to exclude negative events with non-stained control. Forward scatter (FSC) and 

side scatter (SSC) information was also used to exclude doublets and multiplets. Cells were 

sorted into chilled 1.5 mL Eppendorf tubes before scRNA-seq Chromium 10X library 

preparation.  
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2.7 Mouse embryonic stem cell culture 
 

Wild-type E14 mouse ES cells (provided by Kedar Natarajan, Wellcome Sanger Institute) were 

cultured on gelatin-coated dishes with Knockout DMEM, 15% fetal calf serum, 1× penicillin–

streptomycin–glutamine, 1× MEM NEAA, 2-mercaptoethanol, and 1,000 U leukemia 

inhibitory factor. mESCs tested free of mycoplasma contamination were passaged every 2 or 

3 days by Kedar Natarajan. Cells were used to troubleshoot Smart-seq2 scRNA-seq hemocyte 

protocol, and were sorted as of above with the Sony SH800, 100 µm disposable sorting chip. 

 
2.8 scRNAseq library preparations 

 
2.8.1 Smart-seq2 

Hemocytes collected and sorted into 96 and 384 wells plate were processed for Smart-seq2 

single cell RNAseq with a modified protocol from Picelli et al. [239] Briefly, sorted cells were 

lysed in pre-made plates with 0.8% Triton-X100, 10 nM pre-mixed dNTP solution, 1-100 µM 

oligoDts (5′–AAGCAGTGGTATCAACGCAGAGTACT30VN-3′), with 25 µM identified as 

the best dilution, 2.5% v/v SuperRNAsin. and water, for a total of 4 µL per well. Alternatively, 

2µL of RLT buffer, TCL buffer, or Norgen buffer were also used in lieu of Triton-X100. A ten 

second gentle sonication bath step after 3 minutes denaturation at 72C was used to aid with 

lysis. For reverse transcription 5.5 µL of reaction mix was dispensed into each well including: 

0.29 µL of nuclease free water, 0.06 µL of 1mM MgCl2, 2 µL of 5M betaine, 0.1 µL of 1µM 

bioTSO (/5Biosg/AGCAGTGGTATCAACGCAGAGTACATrGrG+G), 2µL of RT buffer 

(5X), 0.5µL of 1mM DTT, 0.25µL of RNAse enzyme (at 20units/µL), and 0.5µL of RT enzyme 

of choice. RT enzymes evaluated were SmartSCRIBE, Superscrip IV, and Maxima. Plates were 

placed in thermocycler to carry out the RT reaction: 42 °C for 90 min, then 10 cycles of 2 

minutes at 42C followed by 2 minutes at 50C, and finally 70 °C for 15 min, 4 °C hold. This 

was followed by a pre-amplification reaction using for each well the KAPA HiFi HotStart 

Ready Mix (12.5 µL) and ISO SMART primer (0.25 µL of 100 µM), plus nuclease free water 

(2.25 µL). Plates were placed in a thermocycler, with the following PCR program: 98 °C for 3 



 
minutes, then 25 cycles of (98 °C for 20 seconds, 67 °C for 20 seconds, 72 °C for 6 minutes), 

4 °C hold. Following PCR, products were cleaned-up with Agencourt Ampure XP beads and 

RNA quality checked on Bioanalyzer with Agilent High Sensitivity DNA chips. Library 

preparation was then performed with NexteraXT library prep kit. First, PCR products were 

tagmented with 2.5 µL Illumina tagmentation buffer and 1.25 µL amplification tagment mix 

per well of an empty plate, onto which 2 µL of cDNA product for small hemocytes and 1.25 

µL for large hemocytes and embryonic stem cells were added. Fifty cells controls were 

normalized by the dilution with 49 µL of pure water. Tagmentation reaction was carried out 

for 10 minutes at 55C and then stopped with NT (neutralize tagment) buffer. After adding 2.5 

µL of pre-diluted Illumina indexes (S indexes on the column and N indexes on the rows, 10 

µL of each per well, which is sufficient for 8 reactions) to each well, 3.75 µL of NPM (Nextera 

PCR master mix) buffer was also added well-wise, ahead of the Nextera XT PCR 

thermocycling program (72 °C for 3 minutes, 95 °C for 30 seconds, then 12 cycles of (95 °C 

for 10 seconds, 55 °C for 30 seconds, 72 °C for 30 seconds), 72 °C for 5 minutes, 4 °C hold. 

Libraries were then combined and again cleaned up with Ampure XP beads and quality quality-

controlled on Bioanalyzer with Agilent High Sensitivity DNA chips before sequencing with 

paired-end 75 base-pairs read length MiSeq Illumina.  

2.8.2 Chromium 10X 
 

After having prepared an appropriate single cell suspension, 10X Genomics Chromium droplet 

single-cell RNAseq master mix was prepared (and all other steps of the protocol followed) per 

manufacturer’s instructions (CG00052_SingleCell3_ReagentKitv2UserGuide_RevD). 

Briefly, the RT master mix was quickly made on ice in a sterile pre-PCR UV hood. 50 µL of 

RT reagent mix, 3.8 µL of RT primer, 2.4 µL of Additive A, and 10 µL of RT enzyme were 

added for a total of 66.2 µL per reaction. The master mix was dispensed into each well of an 

8-tube strip on ice and then the appropriate volumes of nuclease-free water and single-cell 

suspension were added per manufacturer’s recommendations. Then, 90 µL were transferred to 

row 1 of the 10X Chromium Single Cell Chip. After resuspending the gel beads by 30 seconds 
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of vigorous vortexing, 40 µL of beads were slowly loaded onto row 2 of the chip. Finally, 270 

µL of partitioning oil were added onto the row 3 of the chip. Any unused channels were filled 

with 50% glycerol in water with the same amounts of above. After covering the loaded and 

primed chip with a disposable gasket the chip was inserted into the Chromium controller, and 

the Chromium Single Cell A program allowed to run for 6.5 minutes, generating the droplet 

emulsion containing encapsulated single cells with hydrogel beads and reagents (gel in 

emulsion beads, or GEMs). 100 µL of GEMs were then slowly recovered and transferred onto 

an emulsion-compatible 96-well plate, taking care not to disturb the fragile emulsion. Finally, 

the PCR plate was sealed with pierceable foil heat seal and loaded onto a thermocycler with 

the 10X RT program (Step1: 53°C for 45 minutes; Step 2: 85°C for 5 minutes, then 4 °C hold) 

before -20°C storage for maximum one week before post-GEM-RT clean-up.  

 

In the next step of the Chromium 10X library preparation 125 µL of recovery agent was 

added to each well without any mixing. A biphasic mixture formed containing a recovery agent 

- oil pink phase and an aqueous clear phase containing the cDNA. After discarding 125 µL of 

the recovery agent - oil mix from the bottom of the well without disturbing the aqueous phase, 

cDNA purification was performed with 200 µL of magnetic Vortex DynaBeads MyOne Silane 

beads for each sample well. These were prepared as follows: a) 9 µL of nuclease-free water, b) 

182 µL of buffer sample cleanup, c) 4 µL Dynabeads MyOne SILANE, and d) 5 µL of additive 

A. Following two ethanol washes on the magnetic strip, beads were resuspended with 35.5 µL 

of elution solution I (98 µL of Buffer EB, 1 µL of 10% Tween 20, 1 µL of Additive A). 35 µL 

of purified GEM-RT products were transferred to a new plate to prepare for cDNA 

amplification. 65 µL of cDNA amplification reaction mix were added to each well (8 µL 

nuclease free water, 50 µL amplification master mix, 5 µL cDNA additive, 2 µL cDNA primer 

mix). Plate was sealed and loaded onto a thermocycler with the cDNA amplification program 

(98 °C for 3 minutes, then N cycles of (98 °C for 15 seconds, 67 °C for 20 seconds, 72 °C for 

1 minute), 72 °C for 1 minute, 4 °C hold). A custom amount of 14 PCR cycles were used, 

irrespective of the manufacturer’s recommendations. PCR products were cleaned with 60 µL 

of SPRIselect reagent (0.6x) and washed with ethanol before being resuspended in 40.5 µL of 



 
Buffer EB and quantification with Agilent Bioanalyzer High Sensitivity chip. Samples could 

be stored at this point at 4C for 72 hours or -20C for up to a week. Fragmentation buffer was 

prepared for each sample with 10 µL of fragmentation enzyme blend and 5 µL of fragmentation 

buffer. 15 µL were then added onto a new plate and 35 µL of purified cDNA added into each 

well before placing into a 4C pre-cooled thermal cycler with fragmentation program (Step1, 

Fragmentation: 32°C for 5 minutes; Step 2, End Repair and A-Tailing: 65°C for 30 minutes, 

then 4 °C hold). Products underwent a double-sided size selection first by the addition of 30 

µL (0.6x) of SPRIselect reagent, then separation with magnetic beads, and finally transfer of 

75 µL of supernatant into a new plate. 10 µL of SPRIselect reagent (0.8x) were then added to 

each sample and 80 µL of the supernatant removed before washing with ethanol and elution 

with 50.5 µL of buffer EB to isolate the desired products. 

 

Library preparation followed, starting with adaptor ligation. For this, 50 µL of adaptor 

ligation mix was added to each 50 µL of sample (17.5 µL nuclease-free water, 20 µL ligation 

buffer, 10µL DNA ligase, 2.5µL adaptor mix) before incubation for 15 minutes at 20C in a 

thermocycler. Clean-up with 80 µL of SPRIselect reagent (0.8x) followed before ethanol wash 

and resuspension with 30.5 µL of Buffer EB. Sample index PCR was performed by adding to 

each well 60 µL of sample index PCR mix (8 µL nuclease-free water, 50 µL amplification 

master mix, 2 µL of sample index [SI] PCR primers) and 30 µL of post-ligation sample. 10 µL 

of individual Chromium i7 sample indexes were then also added to each separate well and the 

plate was placed in a thermocycler with sample index PCR program (98 °C for 45 seconds, 

then N cycles of (98 °C for 20 seconds, 54 °C for 30 seconds, 72 °C for 20 seconds), 72 °C for 

1 minute, 4 °C hold). The optimal number of cycles must be determined by balancing the need 

to obtain enough material for sequencing and lowering PCR amplification biases. 

Manufacturer’s instructions based on post-cDNA amplification quantification were followed. 

Post-sample index PCR double sided size selection was performed first by the addition of 60 

µL (0.6x) of SPRIselect reagent, then separation with magnetic beads, and finally transfer of 

150 µL of supernatant onto a new plate. 20 µL of SPRIselect reagent (0.8x) were then added 
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to each sample and 165 µL of the supernatant removed before washing with ethanol and lastly 

elution with 35.5 µL of buffer EB to isolate the desired products onto a new plate. Samples 

were then quantified with Agilent Bioanalyzer High Sensitivity chip and stored at 4C for 72 

hours or -20C for long-term. Library preparation after RT reaction and cDNA production were 

performed either by the WTSI Research & Development Department or by Bespoke Low-

Throughput Pipelines staff, also at the Wellcome Sanger Institute. 

 

2.9  Sequencing 
 

Sequencing and QC were performed by Sanger Bespoke Sequencing team. For Smart-seq2 

samples, MiSeq 150PE (using kit version 2): libraries were run on the Illumina MiSeq 

instrument with standard protocols using a 300-cycle kit set to a 150pb paired-end 

configuration. Libraries supplied at 2.8 nM and loaded with a loading concentration of 8 pM. 

For Chromium 10X V1 and V2 kits, HS2500 rapid (using kit version 2): libraries were run on 

the Illumina HiSeq 2500 instrument set to Rapid Run Mode with standard protocols using a 

200-cycle kit set. Libraries supplied at 2.8 nM and loaded with a loading concentration of 8 

pM. For quality control, lanes passed QC if tags were decoded appropriately, reference matches 

were as expected either A. gambiae or A. aegypti, quality metrics met in-house expectations, 

other run metrics such as error rates were as expected, and yield expectation was met (given 

the number of cycles run and/or platform expectations). The data was then fit to the sequencing 

requested and any significant deviation from expected explained and appropriately annotated. 

For assessment two main pieces of software were used. Sequencing analysis viewer (SAV) was 

used to assess the instruments’ performance. The summary tab gave statistics for the whole run 

in question whereas the ‘analysis and imaging’ tabs allowed QC to delve deeper and assess if 

the lanes have performed as expected across all the cycles of the run. NPG pages was used both 

for staff analysis and annotation, and user’s visualisation of data. NPG is an in-house bespoke 

analysis/software package to include tag analysis, reference matching/mapping details and 

contamination which is the final point where lanes or tags in the run either passed or failed QC.  

 



 

3 Results and Discussion 
 

3.1 Establishing an experimental system for scRNA-seq of hemocytes 
 

The first hurdle was to prepare a pure single cell suspension of hemocytes compatible with 

scRNA-seq. First, Smart-seq2 was attempted as it produces full-length sequences with the 

highest reads per cell count and it allows index sorting to correlate expression data with the 

size and granularity of each cell. To perform Smart-seq2 we first needed to develop an ability 

to sort mosquito hemocytes, which at the time had not been done. 

 
3.1.1 Hemocytes are activated by systemic LXA4 and PGE2 injection 

and P. berghei infection 
 

To optimize sorting, I first established whether flow cytometry patterns could be used to 

investigate changes in hemocyte populations in response to different treatments. To distinguish 

hemocytes from other cells which may accidentally get dislodge during hemolymph collection, 

mosquitoes were micro-injected 24 hours prior to immune stimulation with 69 nL of CM-DiL 

at 140 µM. CM-DiL is a lipophilic dye that exclusively stains hemocytes (especially 

granulocytes and oenocytoids) for reasons that are not completely understood [4, 146, 150]. 

Manual counting of Anopheles hemocytes was compared with flow cytometry profiles after 

mosquito injection of LXA4 or PGE2 [Fig. II.2 A-C], or mosquito feeding of an infectious blood 

meal containing P. berghei [Fig. II.2 D-F]. 24 hours after an infectious blood meal the 

proportion of granulocytes observed microscopically increased from ~1-2 % in control 

mosquitos to ~5-8 % in challenged mosquitoes, consistent with previous results [17, 193, 194] 

[Fig. II.2 A, D]. In parallel, flow cytometry detected an increase in large, dye-positive events 

[Fig. II.2 E-F]. Similar increases were found 24 hours after injection of eicosanoids [Fig. II.2 

A-C]. These results confirm the ability of eicosanoids or P. berghei infection to change the 

proportion of mosquito hemocyte cell types [193, 194]. 
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Fig. II.2 Effect of PGE2, LXA4 and P. berghei infection on hemocyte types. All events are 
CM-DiL positive. (A,D) Manual counting of cells by morphological differentiation into 
prohemocytes (small), oenocytoids (medium size and round), granulocytes (large and more 
complex) in PGE2 and LXA4 (A) and P. berghei (D) experiments. Two black asterisks: p < 
0.01 with Student’s T-test; three black asterisks: p < 0.001. Two red asterisks: p < 0.01 with 
Mann-Whitney test, (PGE2 data not in normal distribution). (B-C, E-F) Pseudo-coloring shows 
event density: from light blue to green and red with higher events density. (B,C) Flow 
cytometry forward scatter (size) vs. side scatter (granularity) of (B) control and (C) hemocytes 
after PGE2 injection. (E,F) Flow cytometry forward scatter (size) vs side scatter (granularity) 
of (E) control and (F) hemocytes from mosquitoes exposed to P. berghei. Gate labelled ‘large 
cells’ represents putative granulocytes. Experiments include four biological replicates. 
 
 

 

 

 

 



 
However, when analyzing mosquito hemolymph content by flow cytometry, large 

quantities of non-cellular material were apparent as a sigmoid-shape collection of events [Fig. 

II.3A]. Non-cellular objects consist in part of droplets of mineral oil, required by the injection 

apparatus used to flush hemolymph out of mosquitoes. Silicone coating of Eppendorf tubes to 

prevent adherence of activated hemocytes also contributed to the background noise. Since CM-

DiL also stained small debris and oil particles, hiding small hemocyte populations, I set-out to 

develop an improved sorting scheme to separate hemocytes from background. Additionally, 

injecting mosquitoes has the potential to pre-activate the immune and wound response systems, 

altering baseline mosquito conditions, and should ideally be avoided. 

 

3.1.2 Hemocytes can be isolated via FACS with Hoechst 33342 and 
calcein AM dyes 

 

The live sorting protocol was optimized by using Hoechst 33342 (Hoechst) and acetoxymethyl 

(AM) ester of calcein [Fig. II.3A-C]. Hoechst is a cell-permeant nuclear dye part of the bis-

binzimide family, used to stain DNA. Calcein is used as a LIVE / DEAD discrimination agent 

as it can first permeate cells in a non-active form, but is then cleaved by intracellular esterases, 

resulting in a charged compound that cannot easily cross plasma membranes and is strongly 

fluorescent. If a cell is dead, it will not convert calcein into its active form, or the chemical will 

flow out of the cell’s damaged cell membrane. Most importantly, cells can be directly stained 

after collection for 15 minutes, which avoids the need for dye injection. Calcein alone or a 

combination of Hoechst and calcein successfully distinguishes between cells and debris [Fig. 

II.3C]. Interestingly, while most calcein positive cells also stained positive for Hoechst, there 

were calcein negative non-autofluorescent events that were highly Hoechst + [Fig. II.3B-C]. 

The strong nuclear staining featured intensities that are multiples of each other, suggesting the 

tantalizing possibility these are small, replicating, polyploidy small hemocytes such as 

prohemocytes. Interestingly, polyploid populations were seen by another laboratory, albeit 

with different experimental set-up, collection methods, and nuclear staining [147, 149]. 

However, this possibility was not followed up further as I decided to continue optimizing 

hemocyte collection protocols. This new sorting protocol did solve some of the past issues with 
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CM-DiL. First, there was no need to inject a dye and hence run the risk of prematurely 

activating immune cells, and second, calcein AM appeared more specific and did not stain 

background debris. However, the issue remained of low RNA stability during FACS and 10X 

preparation for these highly active live immune cells. 

 

 
Fig. II.3 Sorting and flow cytometry analysis of hemocyte with Hoechst and calcein AM. 
(A-B) Pseudo-colouring refers to event density, going from light blue to green and finally red 
with higher events density. (A) Events on forward scatter (FSC, size) vs. side scatter (SSC, 
granularity). (B) Separation of Hoechst 33342 vs. calcein AM reveals calcein+/Hoechst+ and 
Hoechst+ only cell populations (C) Final sorting scheme. Granularity (SSC) vs size (FSC) of 
live calcein + cells (red) and Hoechst 33342 + cells. 
 

 

3.1.3 With hemocyte fixation and pneumatic collection sorting 
becomes redundant  

 

Typical hemocyte collection is laborious, time-consuming, and untidy. It involves filling with 

mineral oil pre-pulled needles secured onto a micromanipulator, as well as the tubing 

connecting these needles with a manual dispenser. The needle is prone to breaking, and 

inserting the needle into the tubing can be challenging. Furthermore, injection media can mix 

with the oil even after only one or two needle refills, meaning the whole set-up has to be 

replaced. Particularly during time-sensitive experiments involving multiple conditions and 

batches of mosquitoes this is not feasible. A custom oil-free injector was then developed to 
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displace the hemolymph and collect hemocytes in a cleaner, faster, more efficient manner. 

Details are in the methods section (Chapter 2.3), but briefly, this new methodology avoided 

mixing between oil and anti-coagulant media, providing investigators with the certainty that 

all cells or flow events observed after collection were endogenous to the mosquito (Fig. II.4.B). 

Furthermore, the injection needle did not need replacing as often as with manual collection, 

and refilling was rapid thanks to the negative pressure vacuum function of the custom injector. 

However, the FACS fat droplets issues partially persisted (Fig. II.4.A-B), meaning exogenous 

oil droplets and silicone particles were not the sole issue, and endogenous fat droplets also 

played a role.  

 

 
Fig. II.4 Hemocyte isolation optimisation with FACS. (A-C) Pseudo-colouring refers to 
event density, going from light blue to green and finally red with higher events (A) Standard 
oil-based collection (B) Custom oil-free pneumatic injector system and (C) Pneumatic injector 
plus cells fixed and processed with vivoPHIX. 
 

 To solve this issue, we used a novel, non-crosslinking, non-chaotropic agent called 

vivoPHIX, which fixes cells and preserves RNA while maintaining cellular morphology. 

Preliminary experiments showed vivoPHIX-treated samples were purer when compared to oil-

based or pneumatic hemocyte collection systems. The new protocol made FACS redundant, as 

little background or debris are present in the cell suspension mix. Hemocytes were fixed with 

vivoPHIX, and resuspended in pure molecular grade water after ethanol mixing and density 

centrifugation (3k RCF, 20 minutes, room temperature). We found they had a clean FACS 

profile devoid of the sigmoid fat droplet curve of previous samples [Fig. II.4C] on a Sony 
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SH800 with 100µm disposable chip. The vivoPHIX sample showed an almost identical profile 

(4889 events) to hemocytes collected pneumatically and sorted based on calcein expression 

(6615 events), further demonstrating how vivoPHIX fixation and resuspension is optimal to 

both collect as many cells as possible and also decrease manipulation-induced stress responses 

in the transcriptome [Fig. II.5A-B].  

 

 
Fig. II.5 FACS of vivoPHIX vs. live calcein-stained hemocytes. (A-B) Pseudo-colouring 
refers to event density, going from light blue to green and finally red with higher density. Both 
samples were prepared with the pneumatic injector (A) Hemocytes fixed with vivoPHIX as of 
methods protocol, total of 4889 events (B) Live hemocytes stained for 15 minutes with calcein 
and sorted, for a total of 6615 events 
 
 
 
In addition, centrifugation of vivoPHIX fixed cells with 100% ethanol before water 

resuspension effectively removed most adipocyte contamination, as demonstrated by a direct 

comparison with 70% ethanol spinning (Fig. II.6A-B). Here, hemocytes were stained for 10 

minutes with a 1:1000 dilution of stock LipidTox, followed by sorting on Sony SH800 with 

100 µm chip. Only the 70% ethanol sample showed the presence of highly LipidTox+ cells 

(fat). Due to the efficiency of the sort, the similar FACS profile compared to live calcein+ cells, 

and the added benefit of immediate fixation and RNA preservation, vivoPHIX fixation was 

used for all following experiments in chapters III and IV. 



 

 
Fig. II.6 FACS analyses of vivoPHIX fixed cells stained with LipidTox show few 
adipocytes with 100% ethanol spin-down. To the left, side scatter area (granularity) vs. 
forward-scatter area (granularity). In the middle, forward scatter height (size) vs. side-scatter 
area (granularity), where the straight-line indicates singlets. To the right, LipidTox 
fluorescence (A) 100% ethanol spin down samples stained with LipidTox show few + events 
(B) Conversely, 70% ethanol spin down samples stained with LipidTox demonstrate a lower 
purity with increased LipidTox+ events. 
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3.1.4 Secondary fixation with vivoPHIX-SC 
 
Since inhibition of RNAses by vivoPHIX is reversible, I worked with its inventor, Dr. Andrew 

Goldsborough (University of Bordeaux), to test new formulations to permanently deactivate 

the enzymes through the addition of a secondary fixation step where a strong acid (glacial 

acetic acid) was combined with standard vivoPHIX (vivoPHIX-SC). We hypothesized 

permanent deactivation could lead to higher transcripts per cell counts by preventing 

endogenous RNAses from degrading RNA when cells were resuspended in water. In addition, 

a Hoechst 33342 stain and nuclear sorting step was added to the protocol to precisely quantify 

the number of hemocytes loaded onto the 10X platform. After fixing, staining and sorting as 

of the modified protocol indicated in section 2.4 cells were resuspended in pure molecular 

grade water plus 0.1% BSA, stained with Hoechst 33342, and sorted on Sony SH800 before 

scRNA-seq processing. Importantly, cellular morphology was well-maintained, and sorting 

efficient [Fig. II.7A-B]. After combining three biological repeats for each condition a total of 

6160 cells from bacteria-infected Aedes hemocytes, 5460 cells from serum-fed LacZ dsRNA-

injected Aedes hemocytes, and 8462 cells from serum-fed control Aedes hemocytes were 

sorted. Cells were sorted on Hoechst 33342 + cells after gating auto-fluorescence on a non-

stained control sample containing a mixture of all three conditions. Following sorting all cells 

were loaded onto the Chromium 10X chip for scRNA-seq library preparation (see section 3.3 

below for scRNA-seq results). 

 



 

 
Fig. II.7 FACS of vivoPHIX double-fixed and Hoechst 33342 stained hemocytes. Cells 
fixed with vivoPHIX followed by secondary fixation with acetic acid and stained in water for 
15 minutes with NucBlue Reagent as of methods section (A) Non-stained control. To the left, 
forward scatter (size) vs side-scatter (granularity), where the straight-line indicates singlets. To 
the right, gating to exclude auto-fluorescence (B) Representative stained sample (hemocytes 
from serum-fed Aedes mosquitoes). To the left, forward scatter (size) vs side-scatter 
(granularity), where the straight-line indicates singlets. To the right, gating to include only 
DAPI+ cells that we were certain to be positive singly-nucleated cells. 
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3.2 Smart-seq2 scRNA-seq in mosquito hemocytes 
 
The next step after making a single-cell suspension with flow cytometry or other methods is 

scRNA-seq library preparation. The first technique we attempted was a modified Smart-seq2 

protocol obtained by Dr. Hayley Bennett at the Wellcome Sanger Institute (see methods section 

for details). Hemocytes from non-challenged, sugar-fed mosquitos injected with CM-DiL were 

index sorted into single wells of 96-wells plates with Smart-seq2 lysis buffer. Success rate was 

then determined as the percentage of wells with quantifiable cDNA on Bioanalyser traces. One 

plate contained large cells (“large cells” in Fig. II.4-B) and one small cells/events (“small cells” 

in Fig.II4-B). The first experiments were disappointing, with only a 14% overall success rate 

in our 96-well plates. Of this, large hemocytes had a 28% success rate while small hemocytes 

were a complete failure (0% wells with quantifiable cDNA). A duplicate experiment had 

similar results, with only 19/40 single cells successfully sequenced for the large cells plate, and 

only 2/90 small cells. A Nextera XT scRNA-seq library was nevertheless successfully prepared 

from these 21 cells, showing that when sorting, lysis, and RT did work high-quality data could 

be obtained. Of the original 21 cells 18 yielded >50% reads mapped to A. gambiae. Another 3 

cells were eliminated by manual QC (minimum of 130,000 reads per cell, at least 1000 genes 

per cell, not more than 30% of total reads mapping to mitochondrial genes) or automated QC 

(scater package default settings)[320]. I then used scater’s normalisation strategy, cell-wise 

relative log expression (RLE, or size factor). Following QC, 15/21 cells were retained for 

further analysis, overall expressing 5621 genes of A. gambiae, with a median of 2100 genes 

per cell. We identified two main clusters of cells with similar transcriptomes and a few outliers 

using SC3 (Single-Cell Consensus Clustering scRNAseq analysis package) [Fig. II.6]. Most 

genes expressed were characteristic of hemocytes or typically involved in immunity and wound 

responses, indicating the correct cells had been isolated [Fig. II.7].  

 

 

 



 

 
Fig. II.8   scRNA-seq with Smart-seq2: hemocytes cluster into two main groups. All data 
shown after QC and normalization. (A) Cell clustering with Single-Cell Consensus Clustering 
(SC3) [289]. Matrix shows percentage of times cells were assigned to the same cluster by 
different parameter combinations, with dark red (1) indicating assignment to same cluster every 
time and dark blue (0) indicating cells never assigned to the same cluster. White lines are visual 
guides separating clusters. SC3 outputs most likely clustering with k = 2 clusters. Normalized 
and QCed expression matrix with cells at columns and genes in rows is taken as input. Genes 
are filtered to remove ubiquitous or extremely rare genes and reduce matrix dimensions. 
Distance between the cells is calculated using Euclidean, Pearson and Spearman metrics to 
build distance matrices, which are then transformed by principal component analysis (PCA) or 
eigenvectors calculations. k-means clustering is calculated on the first x eigenvectors with the 
R function k-means with Hartigan-Wong algorithm [321] . Red is similarity among cells. (B) 
Cell expression matrix with SC3. Figure represents input expression matrix with clusters of 
genes in rows and cells in columns, after gene filtering as above. Genes clustered with SC3 
package by k-means with k = 100 (as seen by dendrogram on the left). After log2-scaling, 
heatmap shows expression levels of gene cluster centers.  
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Fig. II.9 scRNA-seq from Smart-seq2: top expressed genes. Note the relatively flat 
distribution which typically indicates good coverage. Yellow (feature control) are 
mitochondrial genes. Proportion of reads mapping to mitochondrial genes may are useful for 
identifying low-quality cells as in broken cells cytoplasmic RNA leaks out, while 
mitochondrial RNAs are preserved [269]. Round circles represent the average expression 
across all cells while each colored bar is a single cell (painted by total genes). Top 50 genes 
accounted for ~38% of the counts. Plot and calculations performed in R with the scater 
package. The top 10 genes were hemocyte or immunity related. Apart from mitochondrial 
genes, they were AGAP009762 (Nimrod), AGAP004936 (hemocyte-specific) [204], 
AGAP000305 (hemocyte-specific) [205], AGAP011228 (fibrinogen), AGAP004977 
(phenoloxidase) [204, 322], and AGAP002464 and AGAP002465 (ferritin) [204], 
AGAP001470 (hemocyte-specific) [202], AGAP000651 (actin 5C) [323], AGAP028028 
(leucine-rich immune protein) [202, 324]. Annotations from VectorBase. 

 

 

 

 

 



 
Light and fluorescence microscopy confirmed that sorting on CM-DiL did not 

distinguish small cells from debris or oil well enough, explaining why few cells were 

sequenced by Smart-seq2. most small events were not cells but debris or oil, explaining the 

small number of successful cells (not shown). Incomplete lysis may have contributed to the 

low yield since by light microscopy lysis was only 60-70% efficient after 5 minutes in Smart-

seq2 lysis buffer at 4°C. Smart-seq2 on mouse embryonic stem cells was also performed. These 

cells are rich in RNA, and thus perfect as positive controls. Live sorted mouse E14 WT 

embryonic stem cells showed 100% cDNA amplification efficiency, with 38/38 positive single 

cells and 1/1 positive 50 cells control (both 100%), confirming our Smart-seq2 protocol 

worked. The main challenge lied in the inherent characteristics of mosquito immune cells. 

 

To increase overall cDNA amplification efficiency a 10 seconds sonication step was 

added to aid cellular lysis. In addition, we set up a dilution series from 1/2 to 1/100 of the 

original oligo(dT) concentration, as too high a concentration can inhibit the RT [Table II.1]. In 

duplicate experiments, cDNA amplification efficiency increased from 17% to 45%. We thus 

showed the optimal oligo(dT) concentration to be between 5 μM and 10 μM. The RNA of 

larger hemocytes was still marginally easier to reverse transcribe and amplify, but we were 

also able to capture small hemocytes (56% vs 44% of cells sorted).  

 

OligoDTs 100 μM 50 μM 10 μM 5 μM 1 μM 
Success rate 

to cDNA 
3/18 (17%) 7/19 (37%) 9/20 (45%) 24/52 (46%) 3/18 (15%) 

 

Table II.1 Optimisation of oligo(dT) concentrations, Smart-Seq2. Percentage of wells with 
quantifiable cDNA after Smart-seq2 library preparation. Numbers indicate successfully 
amplified wells with single cells over the total wells sorted. 
 

Furthermore, after a preliminary comparison of lysis buffers (0.8% Triton X-100, RLT 

buffer, TCL buffer, Norgen buffer) and RT enzymes (SmartSCRIBE, Superscript IV, Maxima), 

the 0.8% Triton X-100 / SmartSCRIBE combination was confirmed as the most efficient, with 

a cDNA amplification success of just under 50% as in the experiments above. 
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In parallel, we directly compared vivoPHIX fixed hemocytes and CMDiL live sorted 

hemocytes. Fixed cells showed comparable (if slightly higher) cDNA amounts [Fig. II.10A-

B]. Smart-seq2 controls (50 single-cells sorted, lysed, and reverse transcribed) from fixed cells 

featured three times higher cDNA levels than live cells [Fig. II.10C]. The difference was likely 

due to increased sorting of cells, rather than debris or vesicles. 

 
Fig. II.10 Bioanalyser traces from fixed and live hemocytes after RT. Heightened [FU] 
readings indicate higher amounts of cDNA (A) To the left and right representative examples 
of cDNA traces from vivoPHIX-fixed single cells (B) To the left and right representative 
examples of cDNA traces of live-sorted hemocytes (C) To the left, cDNA traces after RT of 
50 live-sorted hemocytes. To the right, cDNA traces after RT of 50 vivoPHIX fixed hemocytes. 
Abbreviation: sc (single cell). 
 

A 50% cell capture efficiency is not optimal, but it could have been sufficient for low-

throughput scRNA-seq of mosquito hemocytes. Indeed, I collected the cDNA from the 69 

single cells and positive controls for which RT and cDNA amplification worked and prepared 



 
and sequenced a library with rapid-run Illumina Hiseq2500. Hence, in total we gathered 

information on 90 single cells and positive controls through Smart-seq2. However, parallel 

Chromium 10X scRNA-seq technology optimisation was successful, and hundreds of cells per 

run could be analysed, albeit with a lower genes-per-cell count. We thus focused on Chromium 

10X. Nevertheless, all cells successfully prepared with Smart-seq2 were analysed together, 

after filtering out cells with did not have a majority of reads matching the transcriptome of A. 

gambiae. Reads for positive cells were then aligned with STAR, using the AgamP4.9 

annotation. Thirty-nine cells from the latest library were successfully sequenced, in addition to 

the 22 cells from the previous library, for a total of 61 cells. After processing and QC (filtering 

cells with > 100 features and < 30% mitochondrial reads) 48 cells were left, with a mean gene 

count of 1194 genes per cell and mean mitochondrial gene content of 5.7%. 

 

 
Fig. II.11 scRNAseq QC (Smart-seq2) with Seurat. Violin plots showing QC metrics for 
both Smart-seq2 libraries combined. To the left total number of features per cell. In the middle 
total number of reads per cell and to the right the ratio of total reads in mitochondrial genes.   
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3.3 Chromium 10X scRNA-seq in mosquito hemocytes 
 
In preliminary experiments live hemocyte were either loaded onto the Chromium 10X chip 

after CM-DiL staining and collection with a manual oil injector, or after calcein staining and 

collection with the pneumatic oil-free injector. In addition, we also tested vivoPHIX-fixed 

hemocytes. More recently, we tested vivoPHIX-fixed hemocytes with acetic acid double 

fixation and Hoechst 33342 sorting (see methods). The latter protocol produced a higher cell 

yield, and more genes per cell were detected [Table II.2].  

 

  

Live CM-DiL 

sorted 

hemocytes 

Live calcein-

sorted 

hemocytes 

vivoPHIX-fixed 

hemocytes 

Double-

fixation 

hemocytes 

Number of cells 291 573 459 936 

Genes per cell 61 677 780 947 

Total genes detected n/a 7320 7186 11650 
 
Table II.2 Summary of Chromium 10X scRNA-seq metrics. See methods chapter for 
details. Double-fixation hemocytes includes standard vivoPHIX fixation, post-fixation with 
acetic acid, and Hoechst 33342 staining and sorting ahead of Chromium 10X chip loading. 
Metrics refer to Cell Ranger pipeline outputs, before Seurat QC. 
 

FACS sorting of hemocytes stained with CM-Di resulted in a suspension of 450 cells / µL. 

Loading ~ 1,000 hemocytes onto the Chromium 10X chip produced a low recovery in the first 

pilot experiment, returning 113 to 291 cells per technical repeat after QC, with 29-96 median 

genes per cell (Cell Ranger). Manual analysis with Seurat confirmed the low number of genes 

and UMIs. Multiple factors could have been at play: a) improper alignment or other software 

errors, b) poor cell quality / high cell death due to sorting scheme and wait times, c) low 

transcript capture rate, with selected amplification of just a few transcripts. The difficulties 

experienced with Smart-seq2 suggested hemocytes are exceedingly difficult to lyse and easily 

damaged during sample preparation and sorting. In addition, a more in-depth analysis of Cell 

Ranger output suggested even less cells than hypothesised had been detected. Total cells were 

likely ~50, with a genes per cell count of ~200.  



 
 
Learning from our experience with hemocyte isolation, sorting, and Smart-seq2 processing, 

Chromium 10X sample preparation was improved by using the oil-free pneumatic hemocyte 

collection system and by fixing hemocytes in vivoPHIX or sorting calcein+ cells. Two higher 

quality libraries were prepared. Results were comparable between the two conditions [Fig. 

II.12]. Granulocytes are the largest hemocytes and the most fragile. The results may indicate 

an improved ability of vivoPHIX fixation to preserve larger, RNA-rich cells. By avoiding the 

use of silicone coating, reducing preparation time with live cells (with consequent cell damage 

and RNA degradation), and collecting cells directly into vivoPHIX without losing material by 

sorting we have developed a quick, efficient, and scalable method to explore the cellular 

heterogeneity of the immune system of a mosquito at single cell resolution. This was the 

protocol used to process all of our Anopheles samples. 

 

However, following up on the improvements in cell sorting and RNA preservation 

(using vivoPHIX and acetic acid secondary fixation), we tested whether the updated fixation 

protocol could improve 10X Chromium library preparation, further increasing cell counts and 

genes per cells counts. Dr. Ana Beatriz Ferreira prepared three Aedes hemocyte samples in 

vivoPHIX as described in the methods and shipped them to the Wellcome Sanger Institute. 

Here, I first combined the three repeats and then sorted and loaded onto Chromium 10X 6160 

cells from bacteria-infected Aedes, 5460 cells from serum-fed LacZ dsRNA-injected Aedes, 

and 8462 cells from serum-fed control Aedes. Libraries were of high quality, with 1289 total 

cells (mean of 769 genes per cell) detected in the LacZ-injected sample, 872 cells (686 genes 

per cell) in the serum sample, and 965 (656 genes per cell) in the bacteria-infected sample after 

QC with Seurat. All metrics are improved compared to vivoPHIX alone and in future hemocyte 

work we would use this new protocol.  
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Fig. II.12 Library traces and Cell Ranger statistics: vivoPHIX vs live hemocytes. To the 
left vivoPHIX sample metrics, to the right the live calcein sorted cells. At the top Bioanalyser 
profiles for the libraries, and below Cell Ranger pipeline results. Marked as (A) are the cell 
Ranger default settings underestimating the number of cells detected and overestimating genes 
per cells. (B) A manual cut-off of 200 UMIs results in a comparable number of cells. 
 
 
 
 



 

 

 

 

 

 

 

Chapter III 

Characterizing the functional classes of mosquito hemocytes 
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1 ScRNA-seq: a new era of cell biology 
 

“Omnis cellula e cellula”  
– Rudolf Virchow 
 
The invention of the microscope revolutionised biological investigations. This new technology 

allowed Robert Hooke to publish in 1665 Micrographia, a collection of his microscopic 

observations. Among these were the depictions of the microscopic units of cork, classically 

considered the first description of cells. Indeed, in Latin cella means a ‘little room with a rigid 

wall.’ And cellular biology was born [325]. 

  
 It took time however to progress from this basic definition of a cell to modern cell 

biology. In 1896 E.B. Wilson finally defined the cell as “the basis of life of all organisms.” 

[326] However, the foundations for this conclusion were laid even earlier, in 1861 by Max 

Schultze, who recognised the importance of a cell not for the rigid wall enclosing it, but rather 

for what it contained. He set out his vision poetically, defining the cell as a “naked speck of 

protoplasm with a nucleus” (where protoplasm is now called cytoplasm) [327]. Nuclei had 

nevertheless been observed before, first by abbot Fontana in 1781, and then by Robert Brown 

in 1831, who recognised the nucleus as an essential component of cells. Finally, in 1838-9 

Jakob Schleiden and Theodor Schwann formulated modern ‘cell theory’ for the first time, 

declaring “the elementary parts of all tissues to be formed of cells.” [328–331] However, it was 

only in the 1850s through the work of Remak, Virchow, and Kölliker that cells were shown to 

form through scission of pre-existing cells, finally disputing the theory of spontaneous 

generation. Virchow went even further, showing cells not only to be the basic unit of life, but 

also of human pathology [332, 333].  

 
 Finally, as the 19th century came to a close, further technological advances in 

microscopy led to the discovery of all the major organelles we now know comprise a cell, 

spearheaded by work of Camillo Golgi [334]. Golgi was also responsible for disproving the 

theory that nervous tissue formed a completely interconnected syncytium. The development of 
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the ‘black reaction’ and the work of Santiago Cajal completely dispelled the syncytium theory 

and confirmed the neurons as the basic cellular unit of the brain [335, 336].   

 

 Single-cell transcriptomic techniques are now becoming just as transformative in 

morphing our understanding of cells, their identities, origins, and functions. Since Hooke’s first 

observations of a cell now almost four centuries ago, generations of scientists have toiled to 

catalogue and describe all the different cell types in humans, animals, and plants by looking at 

morphology and function. Before the advent of scRNA-seq it was thought 210 different cell 

types existed in the human body [337]. And yet, the diversity within all of these cell types is 

still bewildering. Even markers traditionally thought to define individual cell types in fact 

isolate multiple subtler subtypes of cells. Nowadays however we are able to measure the 

expression level of genes in each individual cell and thus define its circuitry through single cell 

transcriptomics. But then, what is a cell state, and what is a cell type? When does a 

transcriptional perturbation define the advent of a new cell? And when is that perturbation a 

transition point between different cell types, and when the consequence of stochastic processes 

with no long-term consequences on cellular function? These are still very much active areas of 

investigations, but at least we now do have for the first time the tools to look anew at the 

cellular landscape of organisms, with a fresh set of eyes, and yet the same thirst for discovery.   

 

We applied these technologies to mosquitoes. Three hemocyte types have been 

described in Anopheles and Aedes based on their morphology[4]. Granulocytes are highly 

phagocytic cells of about 10-20 µm, while oenocytoids are relatively smaller (8-12 µm), round 

cells that produce melanin, an insoluble pigment involved in wound healing and pathogen 

containment by encapsulation.  Finally, prohemocytes are small round cells (4-6 µm) with a 

high nuclear to cytoplasmic ratio, thought to be precursors of the other two cell types.  

Hemocytes can be circulating or sessile, and alternate between these two states[146, 150]. 

However, the full functional diversity of mosquito hemocytes and their developmental 

trajectories have not been established, and it is not clear to what extent morphologically similar 

hemocytes are functionally equivalent. Here, we use single cell RNA sequencing (scRNA-seq) 
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to analyse the transcriptional profiles of individual mosquito hemocytes in response to blood 

feeding or infection with Plasmodium. We reveal a previously unknown functional diversity 

of hemocytes, with different types of granulocytes expressing distinct and evolutionarily 

conserved subsets of effector genes. And we identify two basic lineages and differentiation 

pathways in prohemocytes and granulocytes, and we discover new hemocyte populations and 

markers of immune activation. Finally, a comparison of hemocyte types from Anopheles and 

Aedes show that some are shared, while others appear to be unique to each mosquito species. 

 

 

1.1 Aims 
 

1. To investigate the diversity of the adult A. gambiae M-form (A. coluzzi) hemocytes in 

response to Plasmodium infection by scRNA-seq. 

2. To identify markers of cell types and states and generate RNA-FISH probes and antibodies 

for functional studies. 

3. To learn about cell lineages of hemocyte subtypes and their differentiation to functional 

effector subtypes. 

4. To validate bioinformatic results microscopically in A. gambiae M-form (A. coluzzi) and 

A. gambiae (G3 NIH strain), and characterise hemocyte types in sections, whole-mounts 

and isolated hemolymph of the mosquito through RNA-FISH 

5. To compare Anopheles hemocytes with Aedes hemocytes 

 
 

1.2 Colleagues 
 
Dr. Ana Beatriz Ferreira and the NIH imaging core prepared the single hemocytes RNA-FISH 

/ morphology correlative images, and prepared Aedes samples up to fixed cells. Tom Metcalf 

aided in some of the dissections for bulk RNAseq. Mirjana Efremova calculated correlation 

between Aedes and Anopheles hemocytes. All other data presented is a result of my own work 

unless stated otherwise. 
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2 Methods 
 

2.1 A. gambiae mosquito rearing and P. berghei infection  
 

A. gambiae (G3 NIH strain) and A. gambiae M-form (A. coluzzi) were reared at 28 °C, 80% 

humidity, 12-hour light/dark cycle with standard laboratory procedures. For infections we 

utilized GFP-CON transgenic P. berghei (259cl2 strain), maintained with serial passage in 

female 4-8 weeks old BALC/c mice [319]. Parasitemia was assessed by light microscopy 

following methanol-fixed blood-smears stained with 10% Giemsa and air-dried. Mosquitoes 

were blood-fed on infected mice at a parasitemia of 3-5%, with 1-2 exflagellations per field. 

Infected mosquitoes were kept at 21 °C to allow for infection and midgut invasion. To confirm 

infection 10 mosquito midguts were dissected 5 days post blood-feeding and oocysts counted 

by fluorescence. Aedes mosquitoes were reared and challenged as of Chapter II.2.1-2.4. 

 
2.2 Hemocyte collection, fixation, cell counting 

 
For details of collection apparatus and collection methodology see Chapter II.2.5. Hemocytes 

were collected by gradually injecting in the thorax of cold-anesthetized mosquitoes 10 µL of 

anti-coagulant media (2 µL at a time) composed of 60% Schneider’s insect media, 30% citrate 

buffer, 10% heat-inactivated fetal bovine serum, final pH 7.0-7.4, sterilized by 0.22 µm 

filtration. A total volume of 10 µL was collected per mosquito (8-12 mosquitoes per condition) 

and transferred with a sterile non-stick pipette tip into 500 µL vivoPHIX at room temperature. 

Cells were fixed for 2 hours at RT and then stored at 4C until Chromium 10X processing.  

 
2.3 RNA extraction and bulk RNAseq library preparation 

 
For bulk RNAseq hemocytes were collected as described above from 8 mosquitoes, but 

transferred directly in 500 µL of TRIZOL reagent (Invitrogen). From the same mosquitoes, 

midguts and carcasses were transferred into separate 1.5 mL Eppendorf tubes containing 150 

µL TRIZOL reagent by Tom Metcalf. The samples were well triturated with an electrical 
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homogenizer and disposable pestles before adding 350 µL more TRIZOL reagent and mixing. 

Samples were allowed to lyse for 15-30 minutes at room temperature to allow for full 

dissociation, then stored at 4C overnight and then at -20C until RNA extraction. Non-hemocyte 

samples were then spun for 12,000 RCF, 10 minutes at 4C to remove all insoluble material. 

The supernatant, as well as the homogenate of hemocyte samples were transferred to Phase 

Lock GelHeavy 2 mL tubes that had been pre-spun for 1500 RCF for 1 minute, and allowed to 

incubate for 5 minutes at room temperature. 100 µL of chloroform (200 µL per 1 mL TRIZOL) 

was added, the tubes capped, and then vigorously shaken for 15 seconds. Samples were then 

centrifuged for 12,000 RCF, 10 minutes, 4C. If the clear, aqueous phase was still mixed with 

TRIZOL matrix then 100 µL more of chloroform was added, and the samples again mixed 

vigorously and spun as before. The aqueous phase was then transferred to a fresh 1.5 mL 

Eppendorf tube and the RNA precipitated by adding 0.25 mL of isopropyl alcohol (500 mL per 

1 mL TRIZOL reagent used). For midguts and hemocyte samples 20 µL of glycogen (5 mg / 

mL) were also added to aid in precipitation and pelleting. Samples were mixed by repeated 

inversion 10 times, incubated at 10 minutes at room temperature, and then spun at 12,000 RCF, 

10 minutes, 4C. All the supernatant was removed, and the RNA pellets washed twice with 75% 

ethanol (minimum 1 mL of ethanol per 1 mL of TRIZOL used). Each time the samples were 

mixed by vortexing and centrifuged 7,500 RCF, 5 minutes, 4C. At the end, the supernatant was 

removed and samples air-dried until almost dry, but not completely (still translucent). RNA 

was resuspended with 20 µL of RNAse free water for hemocyte samples, 30 µL for midgut 

samples, and 70 µL for carcass samples, pipetting a few times to homogenize and then 

incubating at 55C for 10 minutes to completely resuspend. Samples were then stored at -20C 

until library preparation by Bespoke Low-Throughput Team at the Wellcome Sanger institute. 

Total RNA quantity was assessed on a Bioanalyser and ranged from 300 ng to 39 µg. mRNA 

was then isolated with the NEBNext Poly(A) mRNA magnetic isolation module. RNA-seq 

libraries were prepared from mRNA using the NEBNext Ultra II Directional RNA Library Prep 

Kit for Illumina (New England Biolabs) as by manufacturer instructions, except that a 

proprietary Sanger UDI (Unique Dual Indexes) adapters / primer system was used. 

Furthermore, Kapa Hifi polymerase rather than NEB Q5 was employed.  
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Fig. III.1 Bulk RNAseq proprietary Sanger UDI adapter / primer system. Used with 
NEBNext Ultra II Directional RNA Library Prep Kit. 
 
 

2.4 scRNA-seq library preparation 
 

2.4.1 Smart-seq2 

See Chapter II.2.8.1 for details. 61 cells passed initial QC after Smart-seq2, as defined by wells 

containing a majority of sequenced reads mapping onto the A. gambiae genome. These cells 

were processed downstream as ChapterIII.2.8.2, and 48 cells passed stricter QC (>100 features 

per cell and <30% total reads in mitochondrial genes) 

2.4.2 Chromium 10X 
 

Fixed hemocytes were mixed with one volume of pure molecular grade ethanol before 

centrifugation for 30 minutes at 3k RCF at room temperature. Supernatant was discarded and 

pellet resuspended in pure molecular grade water before 10X Chromium scRNA-seq library 

processing. See Chapter II.2.8.2 for details.   

 

2.5  Sequencing 
 
For bulk RNAseq samples HS4000, (using kit version 1) 75PE (RNA): libraries were run on 

the Illumina HiSeq 4000 instrument with standard protocols using a 150-cycle kit set to a 75bp 

paired-end configuration. Libraries supplied at 2.8 nM and loaded with a loading concentration 

of 280 pM. For scRNA-seq Chromium 10X V2 and V3 kits, HS4000 (using kit version 1) 10X 

V2 and V3 read lengths: libraries were run on the Illumina HiSeq 4000 instrument with 

standard protocols using a 150-cycle kit set. As recommended by 10x Genomics an elongated 

reverse read was used during the sequencing run.  For V2, the read lengths were as follows: 

Read 1: 26 bases, index 1: 8 bases, read 2: 98 bases. For V3, read lengths were as follows: Read 
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1: 28 bases, index 1: 8 bases, read 2: 91 bases. Libraries supplied at 2.8 nM and loaded with a 

loading concentration of 280 pM. For quality control, lanes passed QC if tags were decoded 

appropriately, reference matches were as expected either A. gambiae or A. aegypti, quality 

metrics met in-house expectations, other run metrics such as error rates were as expected, and 

yield expectation was met (given the number of cycles run and/or platform expectations). The 

data was then fit to the sequencing requested and any significant deviation from expected 

explained and appropriately annotated. For assessment two main pieces of software were used. 

Sequencing Analysis Viewer (SAV) was used to assess the instruments’ performance. The 

Summary tab gave statistics for the whole run in question whereas the Analysis and Imaging 

tabs allowed QC to delve deeper and assess if the lanes have performed as expected across all 

the cycles of the run. NPG pages was used both for staff analysis and annotation, and user’s 

visualisation of data. NPG is an in-house bespoke analysis/software package to include tag 

analysis, reference matching/mapping details and contamination which is the final point where 

lanes or tags in the run either passed or failed QC. 

 
2.6 RNA-FISH 

 
2.6.1 Whole mount 

 
Mosquitoes were cold anesthetized, micro-injected with 69 nL of 16% fresh paraformaldehyde 

(PFA) as of Chapter II.2.2, and after 15 seconds immediately dissected while bathing in freshly 

prepared 4% PFA. Carcasses and midguts were separated by adding carcasses directly into an 

Eppendorf containing 4% PFA on ice, while midguts were quickly fixed for one minute in ice-

cold fresh 4% PFA and then transferred to fresh 1X PBS where they were carefully opened 

along their longitudinal axis with two small gauge needles under the dissecting microscope to 

release the blood meal. Using the surface tension of PBS guts were gently raised up and down 

the PBS to release all blood from the gut until clean and then fixed in a 1.5 mL Eppendorf tube 

containing fresh 4% PFA. The samples were fixed overnight at 4C on a gentle rocker to 

guarantee good mixing and fixation. Non-stick tubes and pipette tips were used to prevent 

sample adhesion. In all next steps care was shown in removing solutions, as guts especially can 

stick onto or be sucked into pipette tips, or remain stuck on tube walls. Solutions were always 
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removed against a source of light to increase contrast and decrease likelihood to remove 

samples by error. Each wash was performed on a gentle rocker, as samples were fragile and 

could easily break apart.  

 

The day after collection all PFA was carefully removed and guts and carcasses washed 

twice with 1mL of PBST (0.1% v/v Tween 20 in 1x PBS). Samples were then incubated for 5 

minutes in a 40C rocking water-bath with 300-500 µL of RNAscope Protease Plus. After 

removing as much solution as possible without disturbing the samples, these were twice 

washed with 500 µL of probe diluent before following the RNAscope 4-plex Ancillary Kit for 

Multiplex Fluorescent Reagent Kit v2 technical note protocol. Briefly, the pre-mixed C1, C2, 

C3, and C4 probes were mixed and then 1 or 2 drops added into each sample tube and incubated 

for 2 hours at 40C. Samples were washed twice for 5 minutes at room temperature on a gentle 

rocker with pre-warmed RNAscope 1X Wash Buffer. Wash buffer had been pre-warmed to 

40C for 10-20 minutes before being diluted from 50X to 1X with distilled water. Samples were 

then either stored overnight in 5X SSC buffer at room temperature or immediately prepared 

for hybridisation. 1-2 drops of RNAscope Multiplex FL v2 Amp1, Amp2, and Amp3 were 

added in series and incubated for 30 minutes (except Amp3 for 15 minutes) in a rocking 40C 

water bath. Between each reagent samples were washed twice with RNAscope 1X Wash Buffer 

for 5 minutes on a gentle rocker. Then Opal fluorophores were prepared at the appropriate 

dilutions (between 1:750 and 1:3000) and each incubated for 30 minutes in a gently rocking 

water bath at 40C in the dark. Before adding each Opal, samples were treated with the 

corresponding RNAscope Multiplex FL v2 HRP-C(1/2/3/4) for 15 minutes in a gently rocking 

water bath at 40C in the dark. Then, samples were treated with RNAscope Multiplex FL v2 

HRP-Blocker for 15 minutes in a gently rocking water bath at 40C in the dark. Between all 

these steps samples were washed twice with RNAscope 1X Wash Buffer for 5 minutes on a 

gentle rocker in the dark. Finally, as much wash buffer was removed before adding 1-2 drops 

of DAPI for 30 seconds. DAPI was then in turn removed and samples added onto a slide with 

1 drop of Prolong Gold antifade reagent. The samples were flattened in the Prolong Gold 

reagent (important: without DAPI or background fluorescence will be high) under a dissecting 



 

 109 

microscope to prevent flaps and folding of the tissue. After adding coverslips corners were 

sealed with transparent nail polish and the samples let dry overnight at room temperature in the 

dark. The day after nail polish was added all around the slide to seal the samples. These were 

then stored at 4C in the dark until imaging.  

 
Probes Channel Dilution Amount Annotation 

General       
AGAP009623 C1 1:1500 Std GAPDH - mosquito + control 
AGAP008296 C2 1:3000 1/2 Trypsin - gut  
AGAP004203 C2 1:3000 1/2 Vitellogenin - fat body  
Hemocytes / Granulocytes T. I and II     
AGAP004017  C4 1:1000 1.5 LRR. All hemocytes' marker 
AGAP011974 C4 1:1000 Std SCRC1. General hemoc. marker 
AGAP000790 C3 1:1000 Std Prohem. / granulocyte marker 
AGAP003057 C1 1:1000 Std Gran. Type II  
AGAP011871  C2 1:750 Std Gran. Type I   
Rapidly dividing       
AGAP005363  C3 1:750 n/a    
Fat Body - Baseline      
AGAP007033  C1 1:750 n/a    
AGAP028406 C1 1:750 n/a APL11C   
Oenocytoids       
AGAP004981  C2 1:1500 Std PPO4   
AGAP012851 C1 1:1500 Std Aldo-keto-reductase  
AGAP012000 C3 1:1500 Std Fibrinogen/fibronectin  
Effector       
AGAP007318 C3 1:1000 1.5 Transmembrane  
Secretory       
AGAP011239 C1 1:1500 Std Some also in oenocytoids  

 
Table III.1 RNAscope probe channels and Opal dilution for whole-mounts and sections. 
See RNAscope 4-plex Ancillary Kit for Multiplex Fluorescent Reagent Kit v2 technical note 
protocol for details. ‘Amount’ column indicates the ratio of probes added to hybridization mix 
compared to standard protocol. ‘Std’ indicated standard, 0.5 is half of standard. ‘n/a’ indicates 
a probe was not successful even with the strongest Opal dilution (1:750) and highest probe 
amount. Note all dilutions were 1:750 for RNAscope of isolated hemocytes. 
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2.6.2 Isolated hemocytes 
 

Wells of µ-Slide Angiogenesis Chambers (Cat# 81506 from IBIDI) were coated with 3.5 µg / 

cm2 of Cell-Tak Cell and Tissue Adhesive (Corning, 734-1081) by first preparing a fresh 300 

µL coating solution with 10 µL Cell-Tak, 285 µL Sodium Bicarbonate pH 8.0 and 5 µL 1N 

NaOH and immediately coating the glass slides. Wells were incubated at room temperature for 

least an hour, after which they were washed with sterile water, air-dried and stored at 4C for a 

maximum of one day. 

 

Hemocytes were collected as of above but directly onto the wells. Eight mosquitoes were 

processed per sample. Hemocytes were then let to attach onto the coated wells for 15 minutes 

at 28C in an incubator, before removing all of the media, and fixing cells with 4% PFA for an 

hour at room temperature before proceeding to RNA-FISH protocol as of Chapter III.2.7.1. 

The process was made easier by not having to take care of aspirating tissue with the washes, 

however care was shown not to disperse liquid to strongly, but to always do it gently on the 

sides of the well to prevent cell detachment. Dr. Ana Beatriz Ferreira performed the isolated 

P. berghei experiments and the correlative experiments. 

 
2.6.3 Sections 

 
Mosquitoes were cold anesthetized, dipped in 100% ethanol to decrease surface tension, and 

then dipped and fixed in 10% formalin for 18-24 hours overnight at room temperature. 

Following that the Histology Core of the Sanger Institute processed the samples to make slides. 

The Sakura Tissue-Tek VIP Tissue processor on Rapid Biopsy programming was used (10 min 

VIP1 and 10 min VIP2 for each solution except: no VIP2 for 50% and 70% ethanol; first 

paraffin wax 20 min for both VIP1 and VIP2), with the following solutions in order: 50% 

ethanol, 70% ethanol, 90% ethanol, 3X 100% ethanol, 3X xylene, and 4x wax. For embedding, 

two orientations (longitudinal and transverse) were used for each condition (sugar-fed, blood-

fed and P. berghei infection), before 5 µm sectioning. H&E sections were prepared for every 

other section, with the mirror section available for RNA-FISH (RNAscope) as of above. 
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2.7 Imaging 
 
Mosquito sections and whole mounts were imaged with the 3DHISTECH MIDI II automatic 

digital slide scanner (3DHISTECH, Budapest, Hungary), with 20x and 40x objectives 

(numerical aperture 0.8 to 0.95), and a bespoke DAPI, Opal 520, 570, 620 and 690 filter sets 

and a 4.2MP 16-bit camera with wideband LED, or with a 20x bright-field camera for H&E 

mosquito sections and a 4.2MP 16-bit camera with RGB illumination. Sections and whole-

mounts were imaged with extended focus, sequential acquisition, and variable z-steps, mosaic 

size and integration. 

 

For whole-mount and hemocytes samples images were captured at the National Institute of 

Health using a Leica TCS SP8 DMI8 confocal microscope (Leica Microsystems, Wetzlar, 

Germany) with a 20x, 40x and 63x oil immersion objective (using zoom factor of 2, 3 or 4; 

numerical aperture, 1.25 to 1.4) equipped with a photomultiplier tube/hybrid detector. Samples 

were visualized with a white light laser and specific emission and excitation range were used 

depending on the fluorophore used. For these experiments we used the following spectra for 

excitation/ emission: 488/520, 550/ 570 594/620, and 670/690. DAPI was excited using a 405-

nm diode laser. Images were taken using sequential acquisition, and variable z-steps, mosaic 

size and integration. Image processing was performed using proprietary Leica LAS X and 

Imaris 9.2.1 (Bitplane, Concord, MA, USA). At the Wellcome Sanger Institute images were 

captured using a Leica TCS SP8 DMI8 confocal microscope (Leica Microsystems) using a 

40×, 63×, or 100× oil immersion objective (using zoom factor of 2, 3 or 4; numerical aperture, 

1.25 to 1.4) and equipped with photomultiplier tube/hybrid detectors. Fluorochromes were 

excited using a 405nm DMOD laser for DAPI, 488-nm CSU laser for Opal 520, a 552-nm CSU 

laser for Opal 570 and Opal 620, 638-nm CSU laser for Opal 690. Images were taken using 

sequential acquisition, and variable z-steps, mosaic size and integration. Image processing was 

performed using proprietary Leica LAS X and Imaris 9.2.1 (Bitplane, Concord, MA, USA). 
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2.8 Bioinformatics 
 

2.8.1 Bulk RNA-seq  

Sequencing reads in CRAM format were fed into a bespoke BASH pipeline to first 

automatically convert cram files to fastq using biobam’s bamtofastq program (Version 

0.0.191). Then, forward and reverse fastq reads in paired mode were aligned to the A. gambiae 

AgamP4.3 reference genome using hisat2 (Version 2.0.4) and featureCounts (Version 1.5.1) 

with recommended settings. Combined counts matrix was then produced by a python script 

before downstream data processing and analysis within R version 3.5.3 (RStudio version 

1.0.153). Downstream normalization, differential expression analysis and visualization were 

done with DESeq2 R package (Version 1.18.1) [280]. Base factor was defined as the sugar 

condition, and time 0 (non-infected). One outlier was removed (blood fed hemocyte sample at 

48 hours, experiment GR88) after plotting residuals of internal batch correction and visually 

inspecting a PCA plot. Data was normalized by making a scaling factor for each sample. First 

the log(e) of all the expression values were taken, then all rows (genes) were averaged 

(geometric average). Genes with zero counts in one or more samples were filtered out and the 

average log value from log(counts) for all genes was subtracted. Finally, the median of the 

ratios calculated as above for each sample was computed and raised to the e to make the scaling 

factor. Original read counts were divided by the scaling factor for each sample to get 

normalized counts. Then, the dispersion for each gene was estimated, and a negative binomial 

generalized linear model fitted. P values for the differential expression analysis were adjusted 

for multiple testing using the Bonferroni correction. Genes were considered as differentially 

expressed if they had an adjusted P value < 0.001 (Wald T-test) and a log2 fold change > 2. All 

body parts, conditions and timepoints were considered together while running the following 

model for differential expression analysis focused on body part, with experimental repeats, 

time, and effects of treatment (P. berghei, blood feeding and sugar feeding) as covariates: 

ddsMat <- DESeqDataSetFromMatrix(countData = countdata, colData = coldata, 

                  design = ~ 0 + experiment + time + treatment + part) 
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2.8.2 scRNA-seq 

Droplet-based sequencing data were aligned and quantified using the Cell Ranger Single-Cell 

Software Suite [246] (version 2.0, 10x Genomics) against the A. gambiae PEST, AgamP4.9 

reference genome provided by Vectorbase [338]. Cells with fewer than 100 and more than 

2500 genes and for which total mitochondrial gene expression exceeded 20% (or 50%) were 

removed. Genes that were expressed in fewer than three cells were also removed. 

Downstream analyses—such as normalization, shared nearest neighbor graph-based 

clustering, differential expression analysis and visualization—were performed using the R 

package Seurat (version 2.3.4 or 3.0.2) [256, 277, 339]. The two experimental batches were 

integrated using canonical correlation analysis, implemented in the Seurat alignment 

workflow. In the newer Seurat version, batches were integrated with a hybrid CCA / MNN 

strategy identifying ‘anchors’ of similar cells between conditions and CCs. Cells for which the 

expression profile could not be explained by low-dimensional canonical correlation analysis 

compared to low-dimensional principal component analysis were discarded. Clusters were 

identified using the community identification algorithm as implemented in the Seurat 

‘FindClusters’ function. For Seurat V2 the shared nearest neighbour graph was constructed 

using 13 canonical correlation vectors as determined by the dataset variability. The resolution 

parameter to obtain the resulting number of clusters was fine-tuned so that it produced a number 

of clusters large enough to capture most of the biological variability. UMAP analysis was 

performed using the RunUMAP function with default parameters. Differential expression 

analysis was performed based on the Wilcoxon rank-sum test. The P values were adjusted for 

multiple testing using the Bonferroni correction. Clusters were annotated using canonical cell-

type markers. We remove a blood-fed 24 hours post-feeding sample (experiment GR72) 

because it formed a technical outlier in the initial PCA-driven quality control and all cells 

clustered separately without mixing with other samples. Some clusters were further analyzed 

by partitioning the clusters separately and performing the analysis anew, with the same 
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alignment and clustering procedure. For example, all hemocytes were subdivided from other 

non-hemocyte cells and reanalyzed. 

 
Diffusion pseudotime [340] implemented in the SCANPY package [257] was applied 

to find the major non-linear components of variation across cells, using the most highly 

variable genes. The first diffusion component correlated with oenocytoids identity as defined 

by know marker genes, whereas the second diffusion component second diffusion component 

correlated with immune activation and cell division. Genes which changed along the identified 

trajectories (diffusion components) were identified by performing a likelihood ratio test using 

the function differentialGeneTest in the monocle 2 package [341]. The Seurat implementation 

of velocyto [342] was then applied to estimate RNA velocity and infer in which direction cells 

were changing along the previously inferred trajectories or UMAP. scVelo was used as an 

additional RNA velocity analysis tool to confirm the results [343]. 

Lineage tree reconstruction was performed with partition-based graph abstraction 

(PAGA) as implemented in SCANPY package [344]. The graph abstraction algorithm 

combines clustering and trajectory inference to elucidate the variability of scRNA-seq through 

discrete and continuous variables. PAGA takes into consideration a partitioned graph of 

neighbourhood relations. It quantifies distances between nodes with a random-walk based 

measure and then it quantifies what connectivity partitions there is. The abstracted graph is 

anchored on nodes which are the clusters first identified with Seurat. The differentiation tree is 

a tree-like subgraph which best explains topology. Slingshot was another highly rated lineage 

tree reconstruction software that we used to validate PAGA results [309]. With a matrix input 

representing cells in a reduced-dimensional space (UMAP) and a vector of cluster labels the 

Slingshot algorithms then built a minimum spanning tree (MST) of the clusters to infer the 

lineage structure. Finally, smooth lineage curves were built and pseudotime inferred for all 

lineages. We then used the pseudotime values calculated by Slingshot to discover differentially 

expressed genes between the identified lineages with the tradeSeq package (TRAjectory 

Differential Expression analysis for SEQuencing data) [345]. TradeSeq uses pre-calculated 

UMAP coordinates and pseudotime values to fit generalized additive models (GAMs). 



 

 115 

 

To compare the A. gambiae with the Aedes cell types, a logistic regression with L2-norm 

regularization and a multinomial learning approach (implemented by the scikit-learn function 

LogisticRegression) was trained on the anopheles gambiae clusters. The log-transformed 

normalized data was used. The model was used to predict the probabilities of each Aedes cell 

belonging to each one of the anopheles gambiae clusters (implemented by the 

predict_log_proba function).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Functional classes of mosquito hemocytes 

3 Results 
 

Hemocytes were obtained from mosquitoes at different states of immune activation in order to 

survey their diversity. In the first experiment we collected mosquitoes at both 24- and 27-hours 

post-infection to potentially gain information about the early hemocyte response to P. berghei. 

The 48- and 72-hours timepoints were chosen to explore hemocyte changes after infection. In 

the second experiment, the 27 hours timepoint was removed to make space (cost concerns) for 

a day 7 timepoint, which we hypothesised could give information on hemocyte deactivation. 

We chose sugar feeding as baseline control. However, we also used blood feeding as control 

for P. berghei infection due to the large changes blood feeding causes in the mosquito. 

Experiment 1 Day 0 Day 1 PF Day 2 PF Day 3 PF 
Condition  24 h 27 h 48 h 72 h 
Cntrl (SF) SF X  X  X Bleed 
Cntrl (BF) BF Bleed Bleed Bleed ↓ 
 P. berghei BF ↓ ↓ ↓ ↓ 

 
Experiment 2 
and bulk Day 0 Day 1 PF Day 2 PF Day 3 PF Day 7 PF 

Condition  24 h 48 h 72 h 7 days 
Cntrl (SF) SF Bleed Bleed  Bleed Bleed 
Cntrl (BF) BF ↓ ↓ ↓ ↓ 
 P. berghei BF ↓ ↓ ↓ ↓ 

 

Table III.2 Experimental strategy: bulk and scRNAseq of Anopheles. PF = post-feeding; BF 
= blood-feeding. Experiment 1 refers to scRNA-seq repeat 1. Experiment 2 was the second 
scRNA-seq repeat and the same scheme was used for the bulk RNAseq samples. 
 
Following hemocyte capture and 10X library preparation and sequencing we then normalized 

and performed QC on all cells from an experiment together, then batch corrected the 

experiments, clustered, and investigated differences between clusters, time points, and 

conditions as of below and method chapter. 
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3.1 scRNA-seq identifies at least six hemocyte subpopulations  
 

3.1.1 QC of Chromium 10X single cell data 
 

Processed scRNA-seq matrices from each individual sample were loaded onto the R-based 

Seurat (v2.4 or v3.0) analysis suite. First, cells were filtered based on QC metrics to remove 

poor quality cells. The total number of genes (or of UMIs) within a cell is traditionally 

considered a useful marker to distinguish low quality cells or empty droplets from healthy cells. 

In addition, an excessive gene count can indicate that the original droplet contained a doublet 

or multiplet and should also be excluded. Cells were thus filtered if they were found to have 

less than 100 or more than 2500 unique genes. Then, we identified which Anopheles genes map 

to the mitochondrial genome to calculate the percentage of reads mapping to mitochondrial 

genes. Typically (though not necessarily always) damaged, dying, and low-quality cells will 

show a high ratio of mitochondrial reads to total reads. In our data-set we initially excluded all 

cells that had more than 20% of total reads mapping onto the mitochondrial genome. We 

repeated this process for both our scRNA-seq experiments, plotting data both with violin plots 

and scatter plots to identify outlier cells. We discarded outlier samples: blood-fed 24 hours 

(experiment 1 and 2), sugar-fed 48 hours (experiment 2).  

 

Filtering appeared successful in removing all outliers, with each parameter showing a 

compact distribution in both experiments [Fig. III.2]. The first experiment had a total of 7762 

cells before QC, with means of 85 genes and 221 UMIs per cell. After QC we were left with 

2081 cells (mean of 180 genes per cell, and 575 UMI per cell). In the second experiment before 

QC we had a total of 3883 cells, with a mean of 380 genes per cell and 1422 UMIs per cell. 

After QC 3162 cells remained, with a mean of 441 genes per cell and 1516 UMIs per cell. 

Statistics showed the first experiment had lower data quality than the second. Of note, samples 

from the first experiment had been stored for about a month at 4C while the second experiment 

was processed within a week of collection. 
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Fig. III.2 Seurat scRNAseq QC. (A) QC metrics for the first experiment. To the left metrics 
before QC, to the right after QC. (B) QC metrics for the second experiment. To the left metrics 
before QC, to the right after QC. nGene = total number of genes detected per cell. nUMI = total 
number of UMIs detected per cell. percent.mito = the proportion of total reads mapping to 
mitochondrial genes. 
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3.1.2 Normalisation, scaling, identification of variable genes, and PCA 
 
Data was then normalized using the Seurat global-scaling normalization method, which 

normalizes gene expression data of our cells by total expression, multiplies it by a scale factor 

of 10,000, and then takes the natural logarithm of the resulting number. Highly variable genes 

(focus of downstream analyses) were calculated with a variance stabilizing transformation 

(VST) [277, 339]. We identified 2000 variable genes in each experiment. We then linearly 

transformed the data (‘scaling’) to pre-process data for dimensionality reduction techniques 

such as PCA, the first step of an integrated analysis. Scaling reduced the importance of highly 

expressed genes. This step shifted gene expression so that the mean across cells is zero, and 

scaled expression so that variance across cells is 1. Many of these highly variable genes were 

common among the two experiments. For instance, AGAP011294, AGAP01002, or 

AGAP011230 were identified as top variable genes in both [Fig. III.3]. 

 

 
Fig. III.3 PCA profiles are similar between the two experiments (A) PCA showing the first 
two principal components for first experiment (B) and PCA of the two first principal 
components for the second experiment 
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3.1.3 Clustering reveals 9 separate cell types 
 

In Seurat 3.0, dataset aggregation was drastically improved by using mutual nearest neighbours 

(MNN) – ‘cell anchors’ – in addition to canonical correlation. Different QC parameters 

returned the same results and so we lowered stringency of mitochondrial gene filtering to 50% 

(see discussion). After aggregating the two experiments we had a total cell count of 5383 

hemocytes after QC, with a mean of 335 genes per cell, and 1142 UMI per cell. We classified 

Anopheles cell types in the hemolymph to identify nine major clusters. Most clusters could be 

further subdivided into smaller clusters by increasing the resolution of the clustering algorithm. 

However, increasing resolution typically identifies cell states rather than cell types and initial 

clustering therefore needs to be more conservative. 

 
 

 
Fig. III.4 Clustering solution of A. gambiae hemocytes. UMAP dimensionality reduction 
separates clusters of cells by overall transcriptomic similarity. Each dot represents a cell, 
whereas different colors identify clusters of similar cells. 
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3.1.4 Varying QC parameters does not alter clustering solution 
 

Compared to simple CCA integration of Seurat v2.4 the v3.0 clustering solution was well 

mixed with regards to both experimental batches as well as individual samples [Fig. III.5A-B]. 

 

 
Fig. III.5 Samples and experiments are well-mixed. (A) Both between the two experiments, 
as well as (B) between samples (separate 10X lanes and chips) 
 

The new clustering strategy is robust to a wide spectrum of parameters and is more 

unsupervised, lowering the risk of bias due to parameter selection. We nevertheless manually 

checked whether results were reasonable by raising the minimum number of genes per cell to 

150 and then to 200, without changes to cluster numbers, structure or markers genes [Fig. III.6].  

 

 
Fig. III.6 Clustering solutions are robust to gene thresholding. Manual QC iteration: 
increasing minimum gene per cell parameter stringency does not alter computer clusters. (A) 
Minimum 150 genes per cell (B) Minimum 200 genes per cell.  
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We then removed mitochondrial genes thresholding. Few cells were added and no changes in 

clustering were detected [Fig. III.7A]. Finally, we compared cells (droplets with more than 100 

genes) and background (droplets with less than 50 genes) with principal component analysis. 

Without calculating a UMAP, already the first two principal components cells and debris 

clearly separate. Combined, the QC tests demonstrate our thresholds are reasonable for this 

dataset [Fig. III.7B]. 

 

 
Fig. III.7 Clustering solutions is robust to more stringent mitochondrial filtering. Debris 
and cells are clearly identifiable. Clustering done as above, except threshold was set with (A) 
maximum 100% of reads mapping to mitochondrial genes, showing no changes (B) Principal 
component analysis of debris (blue, droplets with less than 50 genes per droplet) and cells (red, 
droplets with more than 100 genes per droplet) shows cells separate clearly from debris (PC1 
vs PC2). 
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3.1.5 Differential expression analysis identifies conserved marker 
genes for each cell cluster, and suggest cellular identity 

 
Though the Anopheles genome is poorly annotated we utilised gene ontology 

annotations from g:Profiler [346], as well as manual curation of Anopheles genes [347], to 

understand the identity of each cell cluster. The table below shows the top 10 genes for each 

cluster, annotated, while the full list can be found in the Appendix.  

 

Cluster 0       
Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP012100 RpS26 5.21E-87 0.325 0.97 0.98 40S ribosomal protein S26  
AGAP002464 - 9.33E-75 0.471 0.95 0.90 secreted ferritin G subunit  
AGAP011828 Cp1 1.00E-71 0.498 0.83 0.70 cathepsin L   
AGAP010163 RpL38 2.29E-68 0.322 0.95 0.96 60S ribosomal protein L38  
AGAP000305 - 6.01E-58 0.383 0.88 0.70 SPARC   
AGAP004936 - 5.04E-50 0.428 0.79 0.62 None  
AGAP007740 RpLP1 4.04E-45 0.258 0.96 0.97 60S ribosomal protein LP1  
AGAP002422 CLIPD1 2.74E-41 0.656 0.61 0.54 CLIP-domain serine protease  
AGAP011119 - 1.73E-40 0.421 0.74 0.62 None  
AGAP002465 - 1.54E-36 0.421 0.82 0.77 ferritin heavy chain 
  

      
Cluster 1       
Gene Name Pval_adj Avg_logFC Pct.1 Pct.2 Annotation 

AGAP011228 - 2.12E-189 0.746 0.99 0.75 None  
AGAP007312 - 7.96E-162 0.799 0.77 0.35 None  
AGAP004936 - 1.16E-142 0.596 0.92 0.59 None  
AGAP006278 - 3.23E-137 0.666 0.86 0.53 None  
AGAP000651 actin5c 2.72E-136 0.713 0.78 0.39 Actin-5C   
AGAP004017 - 8.90E-129 0.590 0.82 0.41 None  
AGAP004164 GSTD1 1.58E-125 0.704 0.44 0.13 glutathione S-transf del. c1 
AGAP028028 lrim16a 1.70E-121 0.593 0.82 0.44 leucine-rich immune prot  
AGAP004016 - 2.29E-119 0.557 0.69 0.29 None  
AGAP006367 - 2.62E-118 0.869 0.33 0.08 None  
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Cluster 2        
Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP010968 CLIPA9 0 2.460 0.48 0.04 CLIP-domain serine protease  
AGAP013060 - 0 1.976 0.66 0.09 None  
AGAP012571 - 0 1.943 0.78 0.17 None  
AGAP008011 - 0 1.902 0.48 0.04 None  
AGAP003473 - 2.70E-303 3.031 0.85 0.27 None  
AGAP003474 - 1.54E-298 2.450 0.99 0.95 None  
AGAP005888 - 1.20E-295 1.828 0.96 0.53 None  
AGAP008004 - 7.26E-291 2.367 0.89 0.37 None  
AGAP004674 - 1.01E-278 2.010 0.38 0.02 Phenoloxidase inhibitor prot  
AGAP009527 - 2.92E-272 2.043 0.61 0.10 None  
 
Cluster 3 

 
      

Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP004978 PPO9 0 4.469 0.81 0.12 prophenoloxidase 9  
AGAP011223 - 0 4.448 0.84 0.11 None  
AGAP006258 PPO2 0 4.364 0.79 0.13 prophenoloxidase 2  
AGAP004977 PPO6 0 4.055 0.98 0.34 prophenoloxidase 6  
AGAP012616 PPO5 0 3.961 0.83 0.08 prophenoloxidase 5  
AGAP012851 - 0 3.829 0.74 0.02 Aldo-keto reduct fam 1,C3 
AGAP006570 - 0 3.669 0.73 0.11 myo-inositol-1(4)-monoph  
AGAP006743 - 0 3.489 0.63 0.03 None  
AGAP000162 - 0 3.471 0.80 0.06 Cystathionine beta-synth  
AGAP000679 - 0 3.159 0.98 0.36 Aminoacylase   

 
Cluster 4        
Gene Name Pval_adj Avg_logFC Pct.1 Pct.2 Annotation 

AGAP004203 Vg 2.94E-162 2.998 0.78 0.10 vitellogenin   
AGAP007940 - 9.56E-127 2.767 0.72 0.11 Reticulon-like protein  
AGAP006548 - 1.20E-126 2.565 0.91 0.21 glycine cleavage sys H  
AGAP002593 - 6.61E-114 2.098 0.43 0.04 outer membr lipopr Blc  
AGAP001065 - 8.30E-105 2.551 0.76 0.15 glycine hydromethyltran  
AGAP004700 - 3.30E-100 2.239 0.38 0.03 None  
AGAP010046 - 4.33E-88 2.512 0.29 0.02 None  
AGAP009173 Fbp 7.86E-83 2.189 0.38 0.04 fructose-1,6-bisphosph I  
AGAP001116 - 1.29E-81 1.946 0.44 0.05 D-amino-acid oxidase  
AGAP002198 Gnmt 2.09E-76 2.051 0.46 0.06 glycine N-methyltransf 
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Cluster 5        
Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP005363 - 0 1.729 0.45 0.003 None  
AGAP004962 - 0 1.526 0.41 0.004 cyclin B   
AGAP007855 - 4.72E-295 1.583 0.43 0.007 aurora kinase, other  
AGAP013736 - 8.53E-285 1.075 0.31 0.002 None  
AGAP005019 - 2.01E-274 2.028 0.56 0.018 None  
AGAP003550 - 3.62E-271 1.302 0.32 0.003 None  
AGAP006671 - 1.30E-267 1.117 0.30 0.002 None  
AGAP006105 - 5.29E-230 1.018 0.28 0.003 None  
AGAP004963 - 7.99E-223 0.989 0.25 0.002 cyclin B   
AGAP004239 - 1.13E-212 1.284 0.28 0.003 polo-like kinase 1  
 
Cluster 6 

 
      

Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP009526 - 1.7E-104 2.864 0.74 0.12 None  
AGAP006181 - 1.12E-97 2.621 0.58 0.07 troponin C   
AGAP003939 - 5.44E-83 2.674 0.56 0.08 None  
AGAP001622 - 2.17E-72 2.640 0.76 0.19 myosin light chain 5  
AGAP003778 - 1.13E-70 2.417 0.50 0.07 None  
AGAP001569 - 6.19E-66 2.279 0.48 0.07 myosin alkali light chain 1  
AGAP004161 - 8.04E-64 2.322 0.74 0.20 myofilin variant C 
AGAP002358 - 3.84E-58 2.334 0.45 0.07 ADP,ATP carrier protein 2  
AGAP008311 - 2.87E-50 2.092 0.27 0.03 acylphosphatase  
AGAP004790 - 5.28E-46 1.918 0.91 0.50 Up skl mscl growth 5 hom 
 
Cluster 7        
Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP007347 Lysc1 7.3E-217 4.377 0.91 0.08 C-type lysoz  
AGAP005848 - 6.2E-105 2.455 0.39 0.03 Fic A   
AGAP011294 DEF1 2.59E-69 1.857 0.28 0.02 defensin anti-micr 
AGAP000694 CEC3 2.91E-63 2.455 0.27 0.02 cecropin anti-micr 
AGAP000376 Tsf1 1.50E-51 2.139 0.76 0.24 -  
AGAP011197 - 1.33E-40 1.779 0.78 0.29 -  
AGAP005888 - 2.24E-37 2.573 0.93 0.58 -  
AGAP000693 CEC1 1.49E-32 2.855 0.49 0.13 cecropin anti-microb 
AGAP005612 - 8.23E-23 2.085 0.32 0.07 -  
AGAP010816 TEP3 1.11E-17 1.344 0.34 0.09 thioester-contain prot 3  
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Cluster 8        
Gene Name Pval adj Avg logFC Pct.1 Pct.2 Annotation 

AGAP007318 - 0 3.648 0.79 0.02 None  
AGAP009053 LL3 7.0E-212 3.014 0.54 0.02 LITAF-l3  
AGAP028208 - 4.0E-195 2.728 0.34 0.01 cuticular prot CPLCP22  
AGAP009051 LL1 1.6E-177 1.972 0.37 0.01 LITAF-l1  
AGAP007320 - 4.3E-175 1.529 0.29 0.01 None  
AGAP001002 - 2.3E-129 3.812 0.42 0.02 Toll   
AGAP001652 - 9.6E-107 2.219 0.61 0.05 lipase   
AGAP003319 - 6.01E-95 2.147 0.49 0.04 None  
AGAP011226 - 1.25E-92 1.941 0.42 0.03 None  
AGAP005209 - 1.06E-73 1.817 0.47 0.04 Uridine kinase  

 

Table III.3 Marker genes for each cell cluster. P_val_adj = P value adjusted for multiple 
testing. Avg_logFC = average log fold change for the gene between cluster of interest and other 
clusters. Pct.1 = percentage of cells in cluster of interest where gene is detectable. Pct.2 = 
percentage of cells in other clusters where gene is detectable. Annotation = electronic 
annotation of gene. 
 

We then assigned putative cell type names based on their gene markers. We molecularly 

confirmed known cell types such as granulocytes, expressing SPARC, collagens, laminins, 

scavenger receptors, LRIMs, Nimrod, LRR8 (leucine-rich-repeats), CLIPs [202, 348]. Putative 

oenocytoids also expressed well known markers such as PPOs (2, 4, 5, 6, 9), fibrinogens, and 

fibronectins. Potential prohemocytes shared many of the granulocyte markers, including 

collagens, LRR (leucine-rich-repeats), SPARC, CLIPD1, but also ferritin and ribosomal genes. 

Of note, expression of granulocyte markers in prohemocytes is not fully abrogated, but rather 

of lower intensity, suggesting granulocytes and prohemocytes might be different cell states, 

and not cell types.  

 
We also characterised previously unknown hemocytes classes. For instance, 120 cells 

baptised ‘secreting hemocytes’ specifically expressed proteins with N-terminal signal peptides 

for secretion, such as e.g. LYSC1, TEP3, ficolins, cecropins, and defensins. A cluster of 131 

‘Rapidly dividing granulocytes’ was enriched in cell cycle and spliceosome markers such as 

aurora kinase, Cyclin Bs (G2/Mitotic specific), polo-kinase 1, inhibitor of apoptosis 5, Barrier-
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to-autointegration factor B. Finally, 85 ‘effector hemocytes’ were characterised by high 

expression of LITAF (LPS-Induced TNF-alpha transcription factor) 3 and LITAF 1, 

AGAP007318 (an uncharacterised membrane protein upregulated in P. berghei infection 

[349]), Toll proteins, NFkappaB essential modulator, CLIPB8. Full table in Appendix. 

 
Interestingly, fat body cells divided into two major cell states, correlated with activation. A 

baseline fat body state of 701 cells expressed many immune-related and regulatory genes such 

as CLIPs (CLIPA1, 7, 8, 9, 14), LRIMs (LRIM 1, 4A, 8A, 8B, 9, 17), lectins (CTL 4, MA2), 

APL1C, SRPN2, TEP1, and phenoloxidase inhibitor protein. Conversely, activated fat body 

cells (149 cells) highly expressed a canonical marker of fat body after feeding: vitellogenin. 

Finally, 121 cells have been classified as muscle cells due to the expression of markers such as 

troponin C, myosin light chain 5, myosin alkali light chain 1, myofilin variant C, and numerous 

transcripts related to energy production. A heatmap of the top 10 marker genes for each subtype 

follows below [Fig. III.9].  

 

We also quantified each cell type cluster, looking at both number of cells and total UMI 

per cell in each cluster to reinforce our hypotheses regarding putative cellular identities. 

Putative cells types were then identified and quantified. Prohemocytes were the most common 

cell type with 2034 cells, followed by granulocytes (1553). Baseline fat body cells followed 

with 701, oenocytoids with 489, and fat body with 149. Rare cells included dividing 

granulocytes (131), muscle (121), secretory cells (120), and effector cells (85). We classified 

cell types by taking into consideration both the RNA content of cells - using the number of 

UMIs per cell as a proxy - as well as the analysis of the differentially expressed genes between 

each cell cluster. Putative prohemocytes were characterised by a low number of UMIs (yet 

distinct from background as shown by Fig. III. 8B), consistent with a high nuclear-cytoplasmic 

ratio and small overall size [Fig. III.8]. Conversely, granulocytes are transcriptionally active, 

have large diameters, and have high UMIs, similarly to oenocytoids. 
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Fig. III.8 UMI count as proxy for size suggests prohemocyte-granulocyte split. Clustering 
done as above, data split to remove oenocytoids, fat body, and muscle cells (A) number of 
UMIs per cell plotted onto the UMAP visualisation of selected cells, capped at 2500 UMIs to 
aid visualisation (B) clustering solution mapped onto UMAP as above. 
 



 

 
Fig. III.9 Heatmap of the top ten gene markers for each cell type identified. DE genes were identified with the Wilcoxon 
rank-sum test. P values were adjusted for multiple testing using the Bonferroni correction. All P-adjusted values < 0.001, ordered 
by average log fold change between cluster of interest and all other cells. Down-sampled to 300 cells per cluster for clarity.



 

 
3.1.6 Specific hemocyte markers for RNA-FISH validation identified 

by combining scRNA-seq and bulk RNA-seq results  
 

We then set out to validate our cell types. The first step was to confirm the exclusive expression 

of cell type markers in hemocytes, excluding those also expressed in the mosquito midgut or 

the rest of the body (carcass). Bulk RNAseq of Anopheles hemocytes, guts, and carcasses was 

performed with the same time-points and conditions of the scRNAseq experiments: 1,3 and 7 

days after sugar-feeding, blood-feeding, or mosquito infection with P. berghei. Between 8-12 

mosquitoes per group were used for each condition, with three biological replicates to increase 

statistical power. After alignment, quantification, and normalisation (see methods) a PCA of 

the samples showed all biological replicates clustering together. Rather, samples correctly split 

by body part. Differences between carcass samples in red, gut samples in green, and hemocyte 

samples in green were the main drivers of sample diversity [Fig. III.10A]. Furthermore, 

sample-to-sample distances were plotted on a distance matrix to obtain a qualitative 

appreciation of similarities between samples. The correlation matrix once again demonstrates 

clear differences between three sample groups: guts, carcasses, and hemocytes. 

 

 
Fig. III.10 Bulk RNA-seq dataset QC. (A) PCA analysis and clustering of samples based on 
overall transcriptional similarity divides samples into three main groups: carcasses in red, guts 
in green, and hemocytes in blue (B) Distance matrix correlating the overall similarity and 
hierarchical clustering of each sample. Three large groups (gut top left block, hemocytes in the 
centre, and carcass at the bottom right) 
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After QC, normalisation, and fitting of a generalised linear model as of methods we performed 

a differential expression analysis with DESeq2 on hemocyte samples against the average 

expression of carcass and gut samples. We filtered for an adjusted p-value after Wald 

significance testing of P<0.001 and an absolute log2 fold change larger than 2 and identified 

5126 differentially expressed genes, of which 1587 were upregulated in hemocytes and 3539 

downregulated. Running separate DE analyses of hemocytes vs guts’ samples and hemocytes 

vs carcasses returned similar results. Among the top upregulated genes in hemocytes we found 

well characterised genes associated either with hemocytes or with immune function, such as 

PPO2,3,5,6,9, fibrinogen and fibronectin, CLIPs, SPARC, laminins, collagens, scavenger 

receptors, toll proteins, LRIMs, TEP4, PPO activating factor, CD63, antimicrobial peptides, 

and REL1. 

 

 
Fig. III.11 Differential expression analysis - hemocytes vs carcasses and guts. DEseq2 DE 
analysis of hemocytes vs averaged gut and carcass expression, filtered for log2 fold change >2 
and Wald significance testing Q <0.001. 
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There was a strong correlation between markers identified by bulk RNAseq and biomarkers of 

scRNA-seq cell clusters. Especially so for common cells such as prohemocytes (91.2% of sc-

RNAseq markers also present in the list of positively upregulated genes in bulk RNAseq 

hemocytes’ samples) and granulocytes (71.3%). Less markers were identified for rare cell types 

such as secretory cells (only 28.1%) or muscle cells (25.9%), and intermediate levels for cell 

types such as dividing cells (44.3%) and effector cells (46.5%). Non-hemocyte contaminants 

such as fat body cells, are also well represented (86.6% and 50.0% for baseline fat body and 

activated fat body respectively). These cells are large and feature substantial amounts of RNA. 

 

Cluster Total markers - scRNAseq Pos. in bulk 
RNAseq Percentage 

Prohemocytes 34 31 91.2 

Granulocytes 178 127 71.3 

Fat B. - Baseline 112 97 86.6 

Oenocytoids 52 39 75.0 

Fat Body 118 59 50.0 

Dividing cells 221 98 44.3 

Secretory 32 9 28.1 

Muscle 58 15 25.9 

Effector 99 46 46.5 
 

Table III.4 Correlation of scRNA-seq markers with positively upregulated bulk RNAseq 
markers in hemocyte samples. First, scRNA-seq marker genes were filtered to select those 
with Wilcoxon test p adjusted value <0.05. The resulting table was then merged with DE 
markers in bulk RNAseq hemocyte samples as above, filtered for log2 fold change >2 and 
Wald significance testing of Q <0.001.   
 

Once DE genes between hemocytes and mosquito midguts and carcasses were identified we 

cross-references the top ten marker genes for each cluster to the bulk RNAseq gene list to 

identify the best marker of each cellular subtype for RNA - FISH validation. Markers were 

selected according to the following criteria: 
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1) Highest and most specific expression of markers in each scRNA-seq cell type cluster 

2) Highest and most specific expression of markers in bulk RNAseq data of hemocytes  
 

Markers were selected using the clustering solution identified with Seurat v2.4. The following 

table summarises our findings. All markers previously identified and then validated via RNA-

FISH were also found to be valid cellular markers in the new Seurat v3 analysis. 
 

Markers scRNA - 
specificity 

scRNA - 
expression 

Bulk vs gut 
- log2 fold 

Bulk vs body 
- log2 fold Description 

General        
AGAP009623 n/a n/a n/a n/a GAPDH – pos. control 
AGAP008296 n/a n/a -13.2 -7.6 Trypsin - gut  
AGAP004203 +++ +++ 4.1 -2.5 Vitellogenin - fat body  
Hemocytes / Granulocytes       
AGAP004017  n/a +++ 7.3 4.8 LRR. All hemocytes 
AGAP011974 n/a ++ 5.6 4.2 SCRC1. General hemos  
AGAP000790 n/a +  6.6 4.7 Prohem. / granulocytes 
AGAP003057 + + 4.7 1.8 Active granulocytes  
AGAP011871  - + 2.6 1.2 Granulocytes   
Rapidly dividing        
AGAP005363  +++ ++ 1.2 0.4    
Fat B. - Baseline       
AGAP007033  + + 6.8 1.2    
AGAP028406 ++  ++ 5.7 3.2 APL1C   
Oenocytoids        
AGAP004981  ++  ++ 10.4 4.8 PPO4   
AGAP012851 +++ +++ 6.9 4.7 Aldo-keto-reductase   
AGAP012000 ++ ++ 8.1 5.5 Fibrinogen/fibronectin  
Effector       
AGAP007318 +++ ++ 5.3 2.8 TM7318   
Secretory        
AGAP011239 ++  ++ 4.0 2.9 Some also in oenos  

 

Table III.5 RNA-FISH markers chosen by total expression and expression specificity in 
scRNA-seq and bulk RNAseq samples. scRNA-seq markers were cross-checked with gene 
tables of DE genes in bulk RNAseq (hemocytes vs guts and hemocytes vs bodies, separately). 
The most specific and highly expressed genes (qualitative assessment) were chosen. 
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3.1.7 RNA-FISH validation of putative cell types  
 

We then validated our cell types via imaging. Dr. Ana Barletta Ferreira recovered hemocytes 

from mosquitoes that were sugar-fed, blood-fed or infected with P. berghei, spun the 

hemocytes onto slides coated with the adhesive Cel-Tek, then fixed them in paraformaldehyde. 

The cellular morphology was first captured by staining cells with actin and imaging them with 

confocal microscopy, and then RNAscope commercial RNA-FISH was then performed with 

the probes of Table III.5, and correlative fluorescent / FISH microscopy was performed by 

imaging the same area of the slide with confocal microscopy [Fig. III.12].  

 
Fig. III.12 Correlation of hemocyte morphology with RNA-FISH markers. Main cell types 
were confirmed by matching to the left cellular morphology (actin), and to the right gene 
markers by RN-FISH. Blue is DAPI nuclear stain. Representative images from over 3200 cells. 
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Granulocytes were identified because of their larger size (10-20 µm) as compared to 

oenocytoids (8-12 µm) and prohemocytes (4-6 µm). In addition, granulocytes featured an 

increased number of pseudopodia. Oenocytoids also had pseudopodia, but they were shorter, 

and less prominent, and cells were rounder. Furthermore, the nuclear size in granulocytes was 

larger than in oenocytoids [Fig. III.12]. LRR8 mostly identified granulocytes and 

prohemocytes, whereas PPO4 identified for the most part oenocytoids. Some cells were double-

positive, but typically LRR8high cells would be PPO4neg or PPO4low, and conversely PPO4high 

cells would be LRR8neg or LRR8low [Fig. III.13] 

 

 
Fig. III.13 Granulocytes vs oenocytoids: morphology and RNA-FISH markers. LRR8+ 
cells could be split into LRR8 high and low. PPO4+ cells (oenocytoids) were more likely to be 
LRR8 negative or low. The opposite for PPO4low cells. Representative images from 435 cells. 
 

We then explored the spatial localisation of hemocytes in the Anopheles mosquitoes. 

Mosquitoes were then sugar-fed, blood-fed or infected with P. berghei, then fixed in 

paraformaldehyde, before paraffin embedding and sectioning. We performed RNA-FISH with 

the commercial technology RNAscope on the sections per RNAscope protocol and then imaged 

samples on an automated slide scanner or with confocal microscopy. We alternated one slide 

for haemotoxylin and eosin (H&E) staining and one slide for RNAscope. H&E staining was 
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useful to orient ourselves and identify the anatomical features of mosquitoes. In Fig. III.14 we 

can observe an H&E stain and mirrored RNA-FISH section of the mosquito. From the left to 

the right we can observe the compound eye, brain, thorax and wing muscles, abdomen and 

foregut, midgut, and fat body, as well as the ovaries.  
 

 
Fig. III.14 Overall view of the A. gambiae body with H&E and RNA-FISH. At the bottom, 
RNA-FISH of hemocytes (red, SCRC1 probe), cellular nuclei (blue DAPI counter-stain), and 
all mosquito cells (green, GAPDH positive control mosquito probe) on a longitudinal section 
of an Anopheles mosquito. At the top, mirrored H&E section. Both imaged with slide scanner. 
 

Hemocytes can be seen patrolling all areas of the mosquito body, including the thorax - 

between flight muscles - and the abdomen, both in the fat body or attached to the gut. 

Hemocytes are found everywhere (except within the gut lumen or the central nervous system) 

but they particularly line areas of the body in potential contact with pathogens, such as the 

salivary glands, the proboscis, the gut lining, the rectal area, and the spermathecal vestibule of 

female mosquitoes. Hemocytes do not normally form clumps but appear as isolated cells, 
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although in these sections we mainly used the SCRC1 probe for our survey. SCRC1 is more 

specific for granulocytes and prohemocytes than oenocytoids, secretory, or effector cells. 

 

 
Fig. III.15 Hemocytes patrolling the thorax of A. gambiae. At the bottom, RNA-FISH of 
hemocytes (red, SCRC1 probe), cellular nuclei (blue DAPI counter-stain), and general 
mosquito cells (green, GAPDH positive mosquito control probe) on longitudinal section of 
Anopheles mosquito. At the top, mirrored H&E section. Both imaged with slide scanner. 
 



 

 
Fig. III.16 Hemocytes patrolling the A. gambiae body (A) Vertical H&E section of mosquito abdomen and (B) mirrored RNA-
FiSH section. From C to F RNA-FISH of: gut lining in abdomen, CNS, proboscis, and gut. Imaged with slide scanner (A-C, E-
F) and confocal microscopy (D). RNA-FISH probes indicated in each separate panel. 
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Hemocytes can be both sessile and motile. Imaging requirements for each are different. To 

capture sessile hemocytes we injected paraformaldehyde inside the mosquito cavity before 

dissecting the mosquito midgut and the mosquito body wall (carcass). Then, whole-mount 

RNA-FISH of the whole organs were done with a modified RNAscope protocol (see methods). 

All hemocyte cell types for which we have probes were identified with the exception of the 

rapidly diving cellular subtype, for which we have yet to develop an appropriate probe. We 

observed the general hemocyte population, as well as specific oenocytoids, granulocytes, 

effector hemocytes, and secretory hemocytes. Body walls were especially rich in immune cells, 

with control blood fed body walls having 286 (±76 CI) hemocytes. Blood-fed control guts 

showed fewer numbers of cells, with a total of 23 (±6.6 CI) hemocytes. We also observed 

pericardial cells, staining positively with the AGAP007318 and AGAP011239 probes (effector 

and secretory probes). These cells could be recognised both by virtue of their characteristic 

arrangement along the dorsal wall as well as their larger size.  

 

 
Fig. III.17 Pericardial cells along the Anopheles body wall (A) 20x whole-mount RNA-
FISH shows AGAP007318 and AGAP011239 positive pericardial cells, in addition to immune 
cells (B) Same as above but without the Fibrinogen-CT probe to show positive staining for 
Transmembrane (Effector) probe (C) 40x whole-mount RNA-FISH of a separate mosquito 
wall. Two effector hemocytes can be seen in close proximity to the pericardial cells complex. 
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Fig. III.18 Mosquito midguts and bodies contain all subtypes of sessile hemocytes (A) A 
20x view of the proximal part of a blood-fed control mosquito gut, with RNA-FISH of 
hemocytes (green, LRR probe), secretory cells (yellow, Fibrinogen C Terminal), effector cells 
(red, transmembrane), and nuclear counterstain (blue, DAPI) on whole mounts of Anopheles 
mosquito. (A) A 40x magnification of the gut. (C) A 20x whole mount view of a mosquito 
body wall with the same probe of above. All imaged with a slide scanner. 
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3.1.8 Distinct states within each cell type 
 

While initially conservative in our clustering as to only capture true cell types rather than cell 

states, thresholding was then relaxed to identify subtler grouping of cells, which could 

theoretically split existing cell types into cell states, differentially responding to stimuli. There 

was hidden diversity within the original mapping, especially in the large granulocyte cluster. 

We observed a central disc of cells, surrounded by two separate hemi-discs. Importantly, the 

central group contained more cells from baseline conditions, whereas the two hemi-discs 

featured more active cells (blood fed and P. berghei-infected) [Fig. III.19A-B]. After iterating 

clustering until all clusters had at least more than 20 meaningful marker genes (adjusted p value 

<0.05) and were well-mixed among samples and conditions, we identified four additional cell 

states. Fat body cells divided into an additional cell state that sat between baseline cells and 

activated cell types based on the UMAP and the marker genes (see table III.6 below for top 10 

genes, as well as figures III.19 and III.20). From the same figures and tables prohemocytes also 

split in two: a more active state defined by increased expression of hemocyte / granulocyte 

genes and a more inactive state with decreased gene expression. Granulocytes showed the 

largest transcriptional diversity, splitting into three different cell states: one putative baseline 

state, as well as two different types of more activated granulocytes [Fig. III.19C]. The baseline 

granulocyte cluster contained the highest number of inactivated cells (sugar-conditions), 

whereas activated cells came either from blood-fed or even more so from P. berghei-infected 

samples [Fig.19A, Fig. IV.1, Fig. IV.2]. A heatmap of the top 10 marker genes for each cell 

state more clearly showed how putative prohemocytes and granulocytes sat in a transcriptional 

programming continuum. Oenocytoids on the other hand still formed a distinct separate group 

on the UMAP, as well as on the marker genes heatmap. Furthermore, the heatmap also showed 

how within the prohemocyte-granulocyte group baseline granulocytes and prohemocytes were 

more similar to each other, whereas Type 1 and Type 2 active granulocytes show larger 

transcriptional differences. 

 

 

 



Functional classes of mosquito hemocytes 

Putative inactive prohemocytes     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 

AGAP011828 4.98E-47 0.4644 0.843 0.725 cathepsin L   
AGAP010163 2.85E-39 0.3039 0.943 0.961 60S ribosomal protein L38  
AGAP007740 1.14E-36 0.2630 0.96 0.966 60S ribosomal protein LP1  
AGAP012100 2.03E-36 0.2586 0.966 0.977 40S ribosomal protein S26  
AGAP000305 5.64E-26 0.2972 0.877 0.739 SPARC   
AGAP002464 2.68E-23 0.2907 0.95 0.909 secreted ferritin G subunit  
AGAP029054 7.29E-17 0.3604 0.739 0.645 nimrod B2   
AGAP002422 1.94E-15 0.5140 0.591 0.56 CLIP-domain serine prot  
AGAP002465 5.35E-15 0.3314 0.804 0.78 ferritin heavy chain  
AGAP013186 3.70E-07 0.2842 0.15 0.282 None  

 
Putative active prohemocytes     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP004936 2.69E-63 0.58799 0.873 0.65 None  
AGAP011119 7.93E-54 0.554097 0.843 0.638 None  
AGAP011228 7.70E-47 0.445928 0.981 0.792 None  
AGAP002464 1.29E-45 0.488801 0.974 0.908 secreted ferritin G subunit  
AGAP005611 7.84E-37 0.50457 0.775 0.65 None  
AGAP000305 1.15E-20 0.30061 0.899 0.745 SPARC   
AGAP002465 2.32E-19 0.365025 0.854 0.773 ferritin heavy chain  
AGAP011828 8.19E-19 0.297401 0.86 0.73 cathepsin L   
AGAP002422 1.36E-18 0.475993 0.654 0.551 CLIP-domain serine prot  
AGAP002878 6.99E-13 0.519473 0.509 0.408 Cystatin-like protein  
 
Putative baseline granulocytes     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP011228 4.6E-101 0.74197 0.988 0.796 None  
AGAP011119 7.82E-93 0.682409 0.946 0.628 None  
AGAP004936 2.29E-76 0.630795 0.939 0.646 None  
AGAP007312 1.03E-65 0.66471 0.781 0.428 None  
AGAP006278 7.85E-62 0.583197 0.893 0.583 None  
AGAP005611 2.25E-58 0.519989 0.915 0.632 None  
AGAP002594 1.50E-57 0.602139 0.743 0.426 apolipoprotein D  
AGAP000790 2.86E-56 0.799228 0.47 0.196 None  
AGAP000305 4.56E-56 0.516235 0.961 0.74 SPARC   
AGAP000964 4.50E-51 0.672595 0.66 0.353 None  
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Putative granulocytes T2      
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP006367 6.0E-165 1.427458 0.547 0.104 None  
AGAP004916 1.54E-89 1.210717 0.38 0.087 None  
AGAP004164 8.04E-80 0.974785 0.543 0.181 glutathione S-transf delta cl. 1  
AGAP003016 1.11E-79 0.930581 0.446 0.125 mesenceph. neurotroph hmlg 
AGAP029139 7.64E-76 0.98333 0.604 0.238 None  
AGAP007120 1.16E-72 0.720407 0.901 0.584 nucleoside-diphosphate kinase  
AGAP004743 2.90E-70 0.838938 0.657 0.275 Transmembr. emp24 containing   
AGAP009194 5.10E-67 1.183577 0.407 0.124 glutathione S-transf. epsilon 2  
AGAP005861 1.00E-66 0.877063 0.428 0.131 Translocon-associated subun b  
AGAP004918 1.90E-60 1.094499 0.596 0.282 fibrinogen   
 
Putative granulocytes T1      
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP011828 7.3E-109 0.943378 0.983 0.73 cathepsin L   
AGAP009156 6.93E-97 1.016372 0.505 0.118 None  
AGAP004993 4.51E-93 1.109549 0.84 0.427 laminin subunit alpha  
AGAP009201 1.17E-92 1.130115 0.842 0.481 collagen type IV alpha  
AGAP011974 7.29E-88 1.013233 0.732 0.291 Class C Scavenger Receptor   
AGAP002599 9.63E-83 0.916165 0.818 0.387 polyubiquitin   
AGAP002016 3.58E-82 0.988187 0.545 0.158 iron/zinc purple acid phosphata 
AGAP002879 3.12E-73 0.8705 0.78 0.357 cathepsin F   
AGAP028157 1.02E-70 0.824397 0.452 0.12 None  
AGAP013509 1.26E-70 0.947402 0.72 0.322 carboxylesterase clade H, 1  
 
Putative fat body baseline T.1     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP010968 0 2.657141 0.702 0.053 CLIPA9  
AGAP008013 2.8E-303 1.993149 0.418 0.013 None  
AGAP005563 2.5E-290 2.843697 0.731 0.084 Tret1  
AGAP011792 5.1E-269 2.177422 0.541 0.039 CLIPA7  
AGAP006275 7.7E-261 2.351344 0.86 0.156 None  
AGAP008227 7.3E-258 2.216784 0.737 0.097 trehalose 6-phosphate synth 
AGAP002588 4.2E-254 1.689412 0.38 0.014 None  
AGAP013060 6.1E-250 1.889122 0.804 0.123 None  
AGAP008688 1.0E-245 2.040984 0.392 0.017 None  
AGAP006177 3.9E-245 1.748359 0.406 0.02 None  



Functional classes of mosquito hemocytes 

Putative fat body T1     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP004203 8.4E-162 3.006847 0.782 0.096 vitellogenin  
AGAP007940 3.8E-126 2.764072 0.721 0.109 Reticulon-like protein  
AGAP006548 2.6E-124 2.550861 0.912 0.214 glycine cleavage system H  
AGAP002593 8.3E-116 2.110959 0.435 0.035 outer membrane lipoprot Blc 
AGAP001065 1.9E-104 2.542809 0.769 0.15 glycine hydroxymethyltransf 
AGAP004700 7.0E-102 2.252557 0.381 0.03 None  
AGAP010046 1.58E-89 2.525451 0.293 0.019 None  
AGAP009173 2.84E-84 2.202421 0.381 0.037 fructose-1,6-bisphosphatase I  
AGAP001116 5.13E-80 1.918763 0.442 0.054 D-amino-acid oxidase 
AGAP002198 7.81E-78 2.063797 0.463 0.062 glycine N-methyltransferase  

 

Putative fat body T2     
Gene P_val_adj Avg_logFC Pct.1 Pct.2 Annotation 
AGAP003473 3.3E-163 2.480769 0.865 0.305 None  
AGAP003474 6.5E-160 2.15225 0.992 0.955 None  
AGAP005888 1.2E-135 1.620302 0.945 0.563 None  
AGAP002632 1.5E-105 2.280139 0.701 0.265 None  
AGAP004203 9.03E-93 2.308033 0.437 0.091 vitellogenin   
AGAP012571 3.67E-91 1.310944 0.673 0.222 None  
AGAP008011 3.37E-85 1.437902 0.382 0.072 None  
AGAP008004 7.54E-82 1.195067 0.813 0.409 None  
AGAP028386 2.64E-81 1.502057 0.799 0.469 NADH dehydr subunit 6  
AGAP028373 3.34E-77 1.474149 0.626 0.23 NADH dehydr subunit 3  

 
Table III.6 Marker genes for each cell state cluster. P_val_adj = P value adjusted for 
multiple testing. Avg_logFC = average log fold change for the gene between cluster of interest 
and other clusters. Pct.1 = percentage of cells in cluster of interest where gene is detectable. 
Pct.2 = percentage of cells in other clusters where gene is detectable. Annotation = electronic 
annotation of gene. 
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Fig. III.19 Diversity within cell types. (A) UMAP coloured by experimental condition. 
Within the putative granulocyte cluster, cells from sugar-fed (in blue) mosquitoes segregated 
from blood-fed mosquitoes (red), and more so P. berghei mosquitoes (green) (B) UMAP of 
cells clustered with 0.3 resolution (conservative subdivision identifying cell types) (C) UMAP 
of cells clustered with 0.7 resolution to identify cell states within the larger cell types. 
 

 

 



 

 
Fig. III.20 Heatmap of top ten gene biomarkers for each cell type or state. DE genes were identified with the Wilcoxon 
rank-sum test. The P values were adjusted for multiple testing using the Bonferroni correction. P-adjusted values < 0.001, ordered 
by average log fold change between cluster of interest vs all other cells. Down-sampled to 300 cells per cluster for clarity.



 

3.1.9 Distinct hemocyte lineages in A. gambiae mosquitoes 
 

Hemocytes differentiation dynamics are unclear. To understand whether prohemocytes are true 

stem cells or a separate lineage we used cellular states subdivision to perform lineage tree 

reconstruction with the partition-based graph abstraction (PAGA) method. By combining 

clustering and pseudotemporal algorithms we were able to infer hemocyte trajectories and 

differentiation paths. We chose PAGA as it was recently shown to be the most accurate and 

robust lineage analysis software for complex datasets [311]. As a positive control, PAGA 

correctly identified fat body cells and muscle cells as separate clusters with no close connection 

to other cell types. Oenocytoids were also shown to be disconnected from other hemocyte 

subtypes, indicating a wholly separate lineage, while all other cell states were connected along 

a linear differentiation trajectory with inactive baseline prohemocytes at one end, moving 

towards active prohemocytes and granulocytes, before splitting into three different lineages. 

Secretory cells formed their own lineage from baseline granulocytes, while the two 

intermediate activated granulocyte cell subtypes split into either effector granulocyte subtypes 

or dividing granulocytes. Dividing cells reverted back into activated granulocytes type 2, 

replenishing the granulocyte cell pool after immune activation. We were thus able to identify 

a branching event centred on granulocytes thanks to an unsupervised network analysis. Nodes 

were identified with Seurat and connected by PAGA into a biologically meaningful network. 

 

 
Fig. III.21 Cell lineages in adult Anopheles. (A) Graphical mapping of cell states with UMAP 
(B) Unsupervised PAGA network analysis of Anopheles hemolymph cells uncovers separate 
lineages and a branching event. Nodes correspond to clusters identified with Seurat while edges 
are putative cluster transitions. 
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We then confirmed the connections between clusters in the granulocyte lineage with a different 

method, diffusion maps. Like PCA, diffusion maps are another popular dimensionality 

reduction technique. However, diffusion mapping is a non-linear dimensionality reduction 

technique which aligns cells based on transcriptional similarities rather than clustering them. 

Hence, diffusion components (DCs) emphasize transcriptional transitions, which is particularly 

useful when analysing processes that are continuous, as for instance differentiation. Our data 

set showed DC1 to recapitulate the interconnectivity of prohemocytes, active prohemocytes, 

granulocytes, and active granulocytes type 1 and 2. These existed in a continuum of 

differentiation which includes dividing cells, whereas effector, secretory, and diving cells split 

along their independent trajectories [Fig. III.22A-B]. A DC1 vs DC3 plot showed that rapidly 

dividing cells and active granulocytes type 2 sat on a common differentiation trajectory, as 

expected from PAGA lineage tracing [Fig. III.22C]. DC1 vs DC3 also showed the opposite 

lineage (effector cells) emerging from active granulocytes type 1 [Fig. III22.D]. DC2 

recapitulated hemocyte cell maturity: young, proliferating cells sat diametrically opposite to 

mature effector cells such as effector and secretory hemocytes [Fig. III.22E]. 

 
Fig. III.22 Diffusion maps confirm hemocyte lineages. (A) 2D diffusion map of granulocytes 
(B) 3D diffusion map of granulocytes (C) Diffusion Component 1 (DC1) vs DC3 plot 
highlights transition between dividing cells and granulocytes T.2 (D) DC1 vs DC3 plot 
highlights transition between effector cells and granulocytes T.1 (E) DC2 showcases hemocyte 
maturity, with proliferating cells on the right and differentiated states on the left.  
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Lastly, hemocyte lineages were also confirmed with the lineage analysis software package 

Slingshot, another highly rated lineage tracing software. It does not perform as well as PAGA 

when dealing with complex dataset containing multiple separate lineages, but it does work well 

in branching analyses [311]. As such, we subset our dataset to only include the three 

interconnected granulocyte-prohemocytes branches, and then run Slingshot. The results 

confirmed PAGA and diffusion maps findings. Slingshot identified three separate lineages 

originating in the inactive, baseline prohemocytes, moving into active prohemocytes and 

standard granulocytes, before branching alternatively into Type 2 active granulocytes and 

dividing granulocytes, or into Type 1 active granulocytes and then effector or secretor cells. 

Cells were ordered along a pseudotemporal dimension showing the differentiation of each 

hemocyte lineage. Pseudotime reconstruction was comparable between Slingshot and diffusion 

maps, with in blue baseline inactive prohemocytes, and in yellow the terminal effector states 

or proliferating cells. The central basal granulocyte cluster appeared once again to be the main 

branching point of the prohemocyte-granulocyte system [Fig. III.23]. 

 
Fig. III.23 Slingshot lineage tracing and pseudotime reconstruction of granulocytes and 
prohemocytes (A) Slingshot analysis after subsetting non-hemocytes and oenocytoids. (B) 
Pseudotime reconstruction on DC1 vs DC2 (C-E) Pseudotime reconstruction with Slingshot 
for each separate lineages from prohemocytes to (C) Dividing (D) Effector (E) Secretory cells. 
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After trajectory identification, generalized additive models (GAMs) were fitted with the 

package tradeSeq, estimating one smoother per lineage with a negative binomial distribution. 

A total of 1018 highly expressed genes were filtered for the analyses. The TMM effective 

library size was internally used as offset by the model, which also allowed to fit zero inflated 

negative binomial to deal with zero inflation. After filtering for Wald test score >150 and a p-

value <0.001 we identified 57 DE genes whose expression changed along lineage 1 

(prohemocytes to granulocytes to rapidly dividing), 28 DE genes for lineage 2 (prohemocytes 

to granulocytes to secretory), and 40 for lineage 3 (prohemocytes to granulocytes to effector 

cells). Lineage 1 DE genes included PPO6, fibrinogen, cofilin, actin 5C, ARP2/3 complex, and 

many ribosomal transcripts. Lineage 2 DE genes featured cecropin, LYSC1, collagen Type IV 

alpha, laminin subunit alpha, cathepsin, LRIM16A, actin 5C, SPARC, class C scavenger 

receptor. DE genes for lineage 3 were largely similar to lineage 2, further demonstrating their 

similarity. LITAF3 (LL3), laminin gamma 1, LRIM16B were however specific for this lineage 

[Fig. III.24]. Overall many marker genes identified with Seurat were also independently found 

in this independent pseudotime-based analysis. 
 

 
Fig. III.24 DE analysis of lineage-specific genes based on Slingshot pseudotime. (A-C) 
Smooth curves showing expression by pseudotime for the top three DE genes for each lineage 
(D-E) Corresponding expression of the top 3 DE genes on UMAP of prohemocyte-granulocyte 
lineage. Blue low transcript counts, yellow highest transcript counts. 
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Lastly, we analysed correlative microscopy images to help validate our lineage tracing 

hypotheses. Putative intermediate and early stages of both hemocytes and oenocytoids could 

be found, defined by a smaller cell size, smaller nuclei, lower expression of marker genes, and 

rounder morphology. Finally, less mature forms were likely to have less, or be void of, 

pseudopodia. The images are consistent with a cell development hypothesis that holds 

prohemocytes as the starting point, before branching differentiated cell types, both for LRR8+ 

hemocytes and oenocytoids [Fig. III.25 and Fig. III.26].  

 
Fig. III.25 Oenocytoid lineage. Red arrow indicates trajectory of maturation. Correlative 
microscopy. 63x merged, RNA-FISH, and morphological (green, actin) view of circulating 
hemocytes (blue, LRR8 probe), and oenocytoids cells (yellow, PPO4). 
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Fig. III.26 Granulocyte lineage. Red arrow indicates trajectory of maturation. Correlative 
microscop. 63x morphological (green, actin), RNA-FISH (blue, LRR8 probe), and merged 
view of circulating hemocytes. 
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3.1.10  Correlation of Aedes and Anopheles hemocytes  
 

To assess which of the newly discovered putative cell types are shared between anopheline and 

culicine mosquitoes, we also analyzed the single-cell transcriptome of 3123 cells from A. 

aegypti, a vector for several viral diseases including yellow fever, dengue, chikungunya and 

Zika. As with Anopheles, a dimensional reduction plot shows both canonical hemocytes and 

other cell types with mostly fat body signatures [Fig. III.27-28]. We once again identified 

canonical oenocytoids (two subtypes, HC1 and HC2), granulocytes (HC4 and HC5), 

prohemocytes (HC3), dividing granulocytes (two subtypes, HC6 and HC7), secretory 

granulocytes (HC8). Fat body cells were characterised by a heightened complexity, with five 

different cell states recognised (FBC1-5).  

 

A cross-species correlation after a logistic regression and multinomial learning 

approach further supported our cell type identification, and revealed similarities and 

differences with Anopheles hemocytes. Two clusters (AaHC1 and AaHC2) both have 

conserved transcriptome signatures for oenocytoids compared to Anopheles oenocytoids 

(AgHC1): 99% and 77% correlation respectively. We again detected different granulocyte 

subtypes, including antimicrobial peptide secreting cells (94% correlation with Anopheles 

secreting granulocytes), and dividing granulocytes (87% with Anopheles progenitor cells). 

Granulocytes and prohemocytes are again positioned on a continuum of transcriptomic 

similarity, with four different cell states, including a proliferating S-phase granulocyte cluster 

(AaHC6) without a clear Anopheles equivalent. Granulocytes once again express laminins, 

leucine-rich repeat proteins, scavenger receptors, Toll receptor 5, and the transcription factor 

Rel2 [Fig. III.28]. However, effector cells (AgHC5) lack an obvious counterpart in Aedes. 
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Fig. III.27 Characterisation Aedes aegypti hemocytes and correlation with Anopheles  
(A) UMAP of 3123 A. aegypti hemocyte clusters colored by cluster identity with Seurat 
clustering. (B) Heatmap showing probability of each A. aegypti hemocyte cell in the cluster 
belonging to each one of the Anopheles cell types after logistic regression and multinomial 
learning approach. Ag, Anopheles; Aa, Aedes. Oen, oenocytoids; Div Gran, dividing 
granulocytes; Gran, granulocytes; Mega, megacytes (effector); AM Gran, secretory 
granulocytes; PHem, prohemocytes. (E) Aedes hemocyte morphology. Stained with phalloidin 
(actin) in green and Hoechst (nuclei) in blue. Scale bar: 5 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Fig. III.28 Heatmap of top ten gene biomarkers for each Aedes cell type or state. DE genes were identified with the Wilcoxon 
rank-sum test. The P values were adjusted for multiple testing using the Bonferroni correction. P-adjusted values < 0.001, ordered by 
average log fold change between cluster of interest vs all other cells. Down-sampled to 300 cells per cluster for clarity.
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AAEL013980
AAEL000372
AAEL013496
AAEL020579
AAEL004096
AAEL009045
AAEL008468
AAEL003444
AAEL018687
AAEL002675
AAEL020097
AAEL007259
AAEL001863
AAEL018668
AAEL018669
AAEL018664
AAEL026955
AAEL024454
AAEL014768
AAEL009018
AAEL022285
AAEL019745
AAEL009899
AAEL007010
AAEL009630
AAEL019474
AAEL019834
AAEL023187
AAEL002520
AAEL004958
AAEL019694
AAEL002158
AAEL000636
AAEL003339
AAEL010128
AAEL009852
AAEL008789
AAEL015450
AAEL001964
AAEL003457
AAEL000786
AAEL001420
AAEL017536
AAEL017144
AAEL014843
AAEL013492
AAEL000759
AAEL000667
AAEL010480
AAEL015116
AAEL011763
AAEL011764
AAEL011206
AAEL013501
AAEL000304
AAEL011007
AAEL019468
AAEL007103
AAEL014382
AAEL003803
AAEL004022
AAEL008397
AAEL008658
AAEL013656



 

4 Discussion 
 

Clustering analysis with Seurat, diffusion maps, lineage tracing with PAGA and 

Slingshot, and RNA-FISH validation make us posit that 6 hemocyte cell types exist in the 

hemolymph of mosquitoes. These include three main types already known: prohemocytes, 

granulocytes, and oenocytoids. In addition, we found novel cell types, namely dividing 

hemocytes, effector hemocytes, and secretory hemocytes. We classified cell types by taking 

into consideration both the RNA content of cells - using the number of UMIs per cell as a proxy 

- as well as the analysis of the differentially expressed genes between each cell cluster. 

Prohemocytes were characterised by a low number of UMIs (yet distinct from background), 

consistent with the high nuclear-cytoplasmic ratio and small overall size. Conversely, 

granulocytes were transcriptionally active, had large diameters, and exhibited high UMIs. 

Oenocytoids were intermediate in size, RNA content and number of UMIs.  

 

Furthermore, when looking more in detail into cell expression, prohemocytes split into 

two main cell states within their larger group: inactive and active prohemocytes. Granulocytes 

showed the largest diversity, compatible with their effector functions. They subdivided into 

baseline, Type 1 and Type 2 active granulocytes. While baseline granulocytes were well 

represented in sugar-fed, blood-fed, and infected conditions, that was not the case for Type 1 

and Type 2 active granulocytes, which were enriched in blood-fed and P. berghei infected 

conditions. Blood feeding has been shown to activate and induce granulocyte proliferation, in 

keeping with our results[147]. Thus, T.1 and T.2 granulocytes appear to be activated 

granulocyte states, and lineage tracing analysis indeed suggests they are alternative granulocyte 

activation trajectories. Whereas Type 1 active granulocytes appeared to give rise to dividing 

cells, the other differentiation branch split from baseline granulocytes into Type 2 granulocytes 

and then effector or secretory hemocytes. Indeed, effector hemocytes were characterised by 

high expression of LITAF (LPS-Induced TNF-alpha transcription factor), AGAP007318 (an 

uncharacterised membrane protein upregulated with P. berghei infection [349]), Toll proteins, 

and ficolins. LL3 had been previously shown to control oocysts numbers, but the cell 

population responsible for the phenotype was unknown [186]. We hypothesize these cells to 
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be the elusive immune effectors responsible for Plasmodium oocyst control. Secretory 

hemocytes on the other hand constitutively expressed proteins with N-terminal signal peptides 

for secretion either into circulation or lysosomes, such as LYSC1, TEP3, Ficolins, cecropins, 

and defensins. Granulocytes, oenocytoids, prohemocytes could be found both in circulation as 

well as in sessile form, and the same for effector and secretory hemocytes. We did not however 

find dividing cells in tissues. It is possible replicating granulocytes exist only briefly in this cell 

state, or alternatively that only circulating hemocytes replicate. 

 

Genes of interest that should be followed up include AGAP009201, encoding for the 

collagen type IV, highly expressed in circulating hemocytes and the basal lamina and shown 

to be important to reduce oocyst load, to increase phagocytic capabilities of hemocytes, and to 

modulate LRIM1 [324]. In our study AGAP009201 was highly expressed in prohemocytes and 

all granulocytes, including dividing cells. LRR (AGAP004017 and AGAP004016) are leucine-

rich repeat proteins highly expressed in circulating hemocytes (in our data in all hemocytes, 

including some oenocytoids). Of interest AGAP004016 was shown to be a Plasmodium agonist 

[324]. Both LL3 and LL1 are highly expressed in effector hemocytes and  are part of the LITAF 

family (LPS-induced tumor necrosis factor alpha factor) and have important roles in 

Plasmodium control and immune modulation [185]. AGAP011223 was one of the top genes in 

oenocytoids and encodes fibrinogen-related FBN8 (FREP57), which was shown to promote 

phagocytosis and have a role in anti-Plasmodium defences [324]. Finally, among cell cycle 

genes and transcription factors we have NF-X1-type zinc finger protein NFXL1, orthologue to 

Drosophila ‘nessun dorma’, a top gene marker for dividing cells, but with an unknown role in 

hemocyte replication [350]. 

 

There likely exist four distinct hemocyte lineages in the mosquito. Two main lineages, 

the prohemocyte – granulocyte lineage, and the oenocytoids lineage, are distinct as shown by 

clustering, lineage tracing analyses, and correlative microscopy. Prohemocytes have long been 

thought to be the stem cells of the mosquito immune system. In this dataset there was no direct 

evidence for prohemocytes to be stem cell-like, but prohemocytes do appear to be a pool of 



Functional classes of mosquito hemocytes 
inactive, immature immune cells that the mosquito can draw upon when challenged, or when 

overloaded with nutrients such as after blood-feeding. Under these conditions, cell activate and 

replicate. We saw cellular activation shifts in all cell types, with prohemocytes becoming active 

prohemocytes and granulocytes. Baseline granulocytes morphed into two active subtypes, 

which also functioned as intermediate stages before terminal effector and secretory cells, and 

dividing cells. It appears thus more likely that with blood-feeding and infection granulocytes 

undergo a rapid activation and replication, and that prohemocytes are recruited at the same time 

to also become active granulocytes, some of which can then go on to replicate. Whether these 

replicating and active cells can return to an inactive prohemocyte state is yet unknown, and we 

did not find direct evidence for replicating stem cells in our Anopheles dataset. In the 

correlative experiment dataset however, we did find a large number of small cells 

(prohemocytes) expressing markers of cell maturity such as LRR (granulocytes) and PPO4 

(oenocytoids), supporting microscopically the hypothesis that all hemocyte subtypes, including 

oenocytoids, derive from prohemocytes.  

 

Recent studies have shown prohemocytes to have phagocytic capabilities and thus to 

partially resemble granulocytes [192]. Consistently we showed that prohemocytes and 

granulocytes exist on a continuum of activation and development. The prohemocyte-

granulocyte combined lineage split into three subtypes: a) one lineage differentiated from 

prohemocytes into granulocytes, then active granulocytes type 2 and finally dividing 

granulocytes, replenishing the granulocyte cell pool after blood feeding, b) two other lineages 

instead branched off together into active granulocytes type 1 before splitting into effector cells 

and c) secretory cells. Oenocytoids on the other hand appear to be a completely separate 

lineage. We did not find evidence of transcriptomic transition between prohemocytes and 

oenocytoids, but we did find likely transitions between prohemocytes and oenocytoids with 

correlative microscopy. Prohemocytes are also the smallest of hemocytes, and few genes per 

prohemocyte could be captured. The transitions could have thus been missed. Importantly, all 

three lineage tracing algorithms (PAGA, diffusion maps, Slingshots), as well as Seurat agreed 

with one another, reinforcing our confidence in the hypothesised lineages. PAGA in particular 
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is well suited to identify connections between cell types in complex datasets. No clusters were 

removed in the PAGA analysis, and yet the algorithm still correctly identified a transcriptomic 

relationship between all fat body cells, whereas muscle cells formed a separate cluster of its 

own. Surprisingly, oenocytoids were also disconnected from all other cell types. Indeed, even 

when the PAGA threshold was lowered to capture less confident inter-cluster connections, 

oenocytoids still did not connect to any other clusters, even when fat body cells and hemocytes 

did. The lack of connection between fat body cells and hemocytes amounts to a positive control, 

and we thus conclude that oenocytoids and hemocytes either sit on different lineages that likely 

arose during the embryonic and larval stage, or that the depth of coverage of our dataset did 

not allow for the connection to be determined transcriptomically, as few transcription factors 

or lowly expressed genes could be found in prohemocytes. After subsetting the prohemocytes-

granulocytes family we then run separate Slingshot and diffusion maps analyses to confirm the 

data found through PAGA. And indeed, when visualising diffusion component 1 vs component 

3 we could observe direct transitions from active granulocytes type 2 to rapidly diving cells, as 

well as from type 1 granulocytes to effector hemocytes, indicating a differentiation process. 

Furthermore, DC1 vs DC2 and the 3D visualisation of the first three diffusion components also 

showed the secretory subtype emerging from granulocytes. 

 

Slingshot – another top-rated lineage tracing software – further supported our 

hypothesis, recapitulating the differentiation process we had observed with PAGA. A 

pseudotime analysis of the three branches also showed some of the genes involved in the 

transitions. Keeping in mind that most cell cycle genes were not included in the lineage analysis 

due to the strict filtering requirements, many of the genes Seurat identified as markers for each 

cell type were also independently found in the pseudotime-based analysis. For example, lineage 

1, which traces prohemocytes to dividing cells, featured PPO6 and fibrinogen. Of interest, in 

humans and mice extravascular fibrinogen has been shown to induce macrophage chemokine 

expression via Toll-like receptor 4, leading to increased immune surveillance at sites of 

increased inflammation [351]. In our dataset, granulocytes type 2 and many oenocytoids 

expressed fibrinogen and fibronectin-like transcripts. It may be that these cells are 
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immunogenic sensors leading to fibrinogen deposition and activation, followed by mitotic 

division of granulocytes (dividing cells). Lineage 2 genes featured cecropin, LYSC1, collagen 

Type IV alpha, laminin subunit alpha, once again transcripts that were gene markers of 

granulocytes type 1 and secretory cells with Seurat. Lineage 3 genes were very similar but 

LITAF3 (LL3), laminin gamma 1, and LRIM16B were specific for effector cells.  

 

These conclusions were reinforced by the parallel results in our Aedes dataset. The cell 

types originally discovered or confirmed in Anopheles were largely conserved between the two 

species, and thus possibly of functional importance. Because of the increased number of genes 

per cell we were able to detect more granular details, including two different oenocytoid cell 

and dividing granulocytes cell states. Interestingly however, effector cells were not detected at 

all in the Aedes dataset. Furthermore, the gene marker (TM7318) defining them is only present 

in anophelines of the Cellia subgenus (malaria vectors in Africa and Asia). We speculate these 

cells may thus have specific functions in African and Asian Anopheles, potentially connected 

to immune priming and Plasmodium responses (see Chapter IV).   

  

Fat body cells and muscle cells were captured in both species, either because they 

naturally slough off into the hemolymph, or because the shear stress of the anti-coagulant 

buffer injection, or the tearing of the abdomen, dislodges them. Fat body cells had two main 

transcriptomic states: baseline and active. The active fat body cell was highly metabolic, 

characterised by the expression of canonical markers such as vitellogenin. Conversely, baseline 

fat body cells expressed a plethora of immune genes, both pro and anti-inflammatory, although 

many of the top markers are known for dampening the immune system. Inactive fat body cells 

were characterised by high expression of CLIPs, lectins, LRIMs, APL1C, and SRPNs, in 

addition to regulatory genes of the PPO cascade, such as apolipophorins and phenoloxidase 

inhibitor protein. This cell type appears to specifically express Plasmodium infection agonists. 

For example, CLIPA9 expression increases oocyststs load [352], and both CLIPA7 and CTL4 

stop parasite melanisation [353]. LRIM17 is downregulated after infection to activate an 

effective immune response [354], and LYSC1 and CLIPA14 knock-down mosquitoes exhibit 
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increased resistance to P. berghei and bacterial infections [355, 356]. SRPN2 also appears to 

aid malaria parasites [357]. Interestingly, with blood-feeding or infection there was a shift 

towards a metabolically active, and immunologically permissive fat body. The loss of immune 

inhibition by the fat body and the concurrent activation of immune cells in the hemolymph 

suggests the mosquito immune response is tightly integrated with its metabolic functions, with 

different organs interacting to provide an optimal immune response at each phase of the 

mosquito life. 

 

 
 



 

 

 

 

 

Chapter IV 

The immune response of Anopheles to malaria 
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1 The understated importance of the mosquito immune system in 
developing effective transmission-blocking strategies for malaria 
 

“It’s time to close the books on infectious diseases, and declare war against pestilence won” 
 
When dealing with vector-transmitted infectious diseases, the importance of the vector’s 

immune system has long been underappreciated. Only in the last few years has interest in so-

called transmission blocking strategies (TBS) blossomed. These are different from traditional 

control measures in that they do not kill mosquitoes, and do not select them towards survival 

like insecticides [15, 358]. Three main strategies are being evaluated. The first entails killing 

gametocytes with drugs to stop mosquito midguts colonisation. The second pursues the same 

goal by vaccinating a population against the late human or early mosquito life stages of malaria. 

And the last seeks to make the mosquitoes refractory to infection and transmission. Especially 

for the latter, a thorough understanding of how the immune system of mosquitoes works both 

with blood-feeding and with immune challenge is required. Mosquitoes do not possess an 

adaptive immune response and as such rely solely on innate defence mechanisms. As such, the 

malaria parasite did not need to develop immune-evasion strategies quite as sophisticated in 

mosquitoes than in humans. And that represents an opportunity for intervention.  

 

Three main strategies have been employed to increase the number of malaria-refractory 

mosquitoes: replacement of the native mosquito population, artificial gene drive, and use of 

other organisms for delivery. In all cases effective anti-malarial molecules are required. 

Phospholipase A2 (PLA2) has already been trialled as one such effector molecule [359]. While 

the mechanism was originally unknown, work in our laboratory (see main introduction) 

demonstrated the importance of eicosanoids (LXA4 and PGE2) in controlling malaria infection. 

As the upstream enzyme in the eicosanoid pathway, PLA2 at least partially decreases oocysts 

load by increasing the availability of eicosanoids in the mosquito.  Another molecules used to 

control infection has been the gland and midgut peptide 1 (SM1), which blocks recognition 

sites of sporozoites and ookinetes [360].  
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The most potent molecule is still useless without efficient delivery systems, or an 

effective way to release modified mosquitoes in the wild. Population replacement is the 

simplest approach, but requires initial native mosquito elimination campaigns to decrease the 

number of local susceptible mosquitoes. Furthermore, even the slightest fitness cost will result 

in the need for continuous releases of modified organisms. Not to mention the important ethical 

issues related to releasing biting Anopheles mosquitoes around human populations. An 

alternative is the use of gene drive systems, which can decrease the amounts of mosquito 

releases required, and thus spread malaria resistance faster and more effectively (or even 

eliminate malaria-transmitting species altogether) [361]. Finally, bacteria and fungi can also 

be harvested as expression systems for Plasmodium-killing molecules, as was done with a 

strain of Escherichia coli expressing a fusion antibody against Pbs2, thereby reducing oocyst 

load by 95% [362]. Another example is a fusion protein of SM1 and scorpine (antimicrobial 

toxin) in the fungus Metarhizium anisopliae. These fungal spores were able to decrease P. 

falciparum sporozoites by 98% in A. gambiae.  Alternatively, the bacterium Wolbachia has 

shown direct transmission-blocking effects, but there are limitations in terms of natural 

Wolbachia density levels [363]. 

 

 All in all, the number of effector molecules and delivery strategies that could induce a 

refractory state in mosquitoes remain limited, and more research is required into the way 

Plasmodium colonises Anopheles, and how the mosquito’s immune system responds to 

infection.  A thorough understanding of the immune system of mosquitoes is crucial to stop 

transmission of diseases such as malaria that are spread by arthropod vectors. The mosquito’s 

immune system limits Plasmodium infection in several ways[364, 365], and hemocytes, the 

insect white blood cells, are key players in these defense responses[366, 367]. Ookinete 

invasion triggers a strong nitration response in invaded midgut epithelial cells and their basal 

lamina[368, 369]. Hemocytes that come in contact with a nitrated midgut basal lamina release 

microvesicles into the epithelial basal labyrinth and promote local complement activation, 

inducing parasite lysis[367]. An infection with Plasmodium primes mosquitoes to mount a 

stronger immune response to subsequent infections[370]. Primed mosquitoes release a 
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hemocyte differentiation factor (HDF) into the hemolymph[370], consisting of a complex of 

lipoxin A4 bound to the lipocalin carrier evoking [371]. HDF increases the proportion of 

circulating granulocytes, promotes microvesicle release, and enhances complement-mediated 

parasite lysis[367]. Enhanced immunity is lost if HDF synthesis is blocked[371]. Silencing the 

transcription factor LL3 also disrupts priming, and LL3 is expressed in hemocytes[372].  

However, it is not clear whether LL3 is essential for HDF synthesis or for hemocytes to respond 

to HDF, nor which hemocyte subtypes express LL3.  

 

 In this chapter we shed light on the role of LL3 and of a subset of hemocytes (effector 

cells) in orchestrating the hemocyte responses to HDF. We also explored how the cell 

populations we identified in Chapter III change with blood feeding and infection, and we 

looked at whether the increase in circulating granulocytes is solely due to granulocyte 

proliferation and differentiation from prohemocytes or also to mobilization of sessile 

hemocytes. And finally, we assessed the transcriptomic changes brought about by blood 

feeding and P. berghei infection via both scRNA-seq and bulk RNAseq. 
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1.1 Aims 
 

1. To explore how the immune system of Anopheles mosquitos reacts to blood feeding and P. 

berghei or P. falciparum infection. 

2. To determine cell types and states associated with malaria infection 

3. To explore the role of LL3 in priming 

4. To identify genes associated with immunity to malaria and anti-plasmodial effector states 

5. To visualise how hemocyte populations change in time and space after P. berghei or P. 

falciparum infection, both on the surface of the body wall and the gut, and in circulation.  

 

 
 

1.2 Colleagues 
 
Dr. Ana Beatriz Barletta-Ferreira and the NIH imaging core prepared and imaged the isolated 

P. berghei-infected hemocyte RNA-FISH. Alvaro Molina Cruz and Gaspar Canepa grew the 

P. falciparum cultures. Rafael Cantera took care of the electron-microscopy. Jose Luis Ramirez 

performed the LL3 experiment. All other data and analyses presented is a result of my own 

work unless stated otherwise. 
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2 Methods 
 
Most experiments in this thesis were performed in my other laboratory at the National Institutes 

of Health (NIH), and as such employed A. gambiae (G3 NIH strain) rather than the A. gambiae 

M-form (A. coluzzi) used for the scRNA-seq experiments. 

 
2.1 A. gambiae mosquito rearing and P. falciparum infection  

 
A. gambiae (G3 NIH strain) and A. gambiae M-form (A. coluzzi) were reared at 28 °C, 80% 

humidity, 12-hour light/dark cycle with standard laboratory procedures. The P. 

falciparum strains used were NF54 (WT P. falciparum), and NF54-Pfs47KO (Knock-out P. 

falciparum). They were maintained in O+ human erythrocytes with RPMI 1640 medium with 

25 mM HEPES, 50 mg/l hypoxanthine, 25 mM NaHCO3, and 10% (v/v) heat-inactivated type 

O+ human serum supplementation (Interstate Blood Bank, Inc., Memphis, TN) at 37°C and 

with a gas mixture of 5% O2, 5% CO2, and balance N2. P. falciparum infections were done by 

diluting to 0.1% gametocytemia mature NF54 gametocytes. Mosquitoes were then allowed to 

feed with an artificial membrane feeder. NF54 with human red blood cells to 45% haematocrit 

was placed in warmed to 37C water-jacketed glass membrane feeders and mosquitoes allowed 

to feed for 20 minutes. Fed mosquitoes were then incubated at 26°C and 80% humidity. 

Infection levels (oocyst numbers) were checked by first dissecting midguts in 1× PBS and then 

staining them in 0.1% mercurochrome ahead of compound microscope visualization.   

 

2.2  A. gambiae dsRNA micro-injections and LL3 knockdown  
 

Two to three-day old female A. gambiae G3 mosquitoes were cold anesthetized and injected 

with 69 nl of 3 µg/µl dsRNA solution specific for LacZ, a bacterial gene not found in the 

genome of mosquitoes. dsRNA of LacZ is used as control during dsRNA-injection gene 

knockdown. A 218-bp fragment was amplified from LacZ gene cloned into pCRII-TOPO 

vector using M13 primers to add a T7 tail. For dsLL3 synthesis, a fragment was amplified with 

a T7 tail using the following primers as previously described:  
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T7-LL3 F - 

TTAATACGACTCACTATAGGGAGAATGACTACCATCATAGTGACGAACCC  

T7-LL3 R –

TTAATACGACTCACTATAGGGAGATTACACCATTATTAAATAAATAACACAACTT

GAG. 

The PCR product, from LacZ and LL3, was used as a template for dsRNA synthesis with 

Megascript RNAi kit (ThermoFisher Scientific) according to the manufacturer’s instructions. 

 

2.3  Generation of naïve (-HDF) and challenged (+HDF) hemolymph and 
injection in LL3-knockdown recipients  

 

Mosquitoes were infected with P. berghei and following blood feeding, the naive group was 

placed at 28oC to prevent infection; while the challenged group was maintained at 21oC for 

48h, for normal infection to proceed. Subsequently, the challenged group was transferred to 

28oC to reduce parasite load. Hemolymph from naïve and challenged groups was collected at 

seven days post-infection and centrifuged at 4oC, 10,000 rpms for 10 min. The cell-free 

supernatant was transferred to a new microcentrifuge tube and stored at -80oC until its use. To 

evaluate the effects of LL3 depletion on the hemocyte’s capacity to respond to HDF, 2-3-day 

old mosquitoes injected with dsRNA for LL3 or LacZ (control) were then injected with 138 nl 

of cell-free hemolymph from Naïve (- HDF) or Challenged (+ HDF) donors at 3 days post-

silencing. Hemocyte differentiation was assessed in two independent experiments at four days 

post-hemolymph transfer.   

 
2.4 Imaging 

 
RNA-FISH performed as of Chapter II and III. EM performed by Dr. Rafael Cantera. 

 
2.4.1 Image analysis 

 
Acquisition as of Chapter III. For image analysis see below. Whole-mount RNA-FISH positive 

cells were manually counted by an observer blinded to experimental conditions using the 
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3DHISTECH CaseViewer 2.3 software (3DHISTECH, Budapest, Hungary). Body wall and 

gut areas were measured with the analysis tools of the same software. For P. falciparum RNA-

FISH experiments of hemocytes in circulation, positive cells were counted automatically using 

the segmentation and thresholding features of the Leica LAS X 3D visualization and analysis 

software (Leica UK, Milton Keys, UK). For P. berghei RNA-FISH experiments of hemocytes 

in circulation, image processing was performed using Imaris 9.2.1 (Bitplane, Concord, MA, 

USA). Error bars represent 95% confidence intervals calculated with the T-test distribution on 

the number of samples obtained, and the standard deviation of the samples for each condition. 

 
2.5 Bioinformatics 

 
2.5.1 Bulk RNA-seq  

Sequencing reads in CRAM format were fed into a personal BASH pipeline to convert cram 

files to fastq using biobam’s bamtofastq program (Version 0.0.191). Forward and reverse fastq 

reads in paired mode were aligned to the A. gambiae AgamP4.3 reference genome using hisat2 

(Version 2.0.4) and featureCounts (Version 1.5.1) with recommended settings. Count matrices 

were combined before downstream data processing and analysis within R version 3.5.3 

(RStudio version 1.0.153). Downstream normalization, differential expression analysis and 

visualization were done with the R package DESeq2 (Version 1.18.1) [280], as of chapter III. 

P values for the differential expression analysis were adjusted for multiple testing using the 

Bonferroni correction. Genes were considered as differentially expressed if they had an 

adjusted P value < 0.001 (Wald T-test) and a log2 fold change > 2. Gene lists with vectorbase 

IDs were converted to gene annotations with g:Profiler [346]. g:Profiler utilises Ensembl as its 

primary data source and is anchored to its quarterly release cycle. g:GOSt was used to perform 

functional enrichment analysis on input gene lists to map the data onto enriched biological 

processes or pathways. In addition to Ensembl, also KEGG, Reactome, WikiPathways, 

miRTarBase, and TRANSFAC databases were used. Functional enrichment is evaluated with 

a cumulative hypergeometric test with g:SCS (Set Counts and Sizes) multiple testing correction 

(adjusted P value reported only < 0.05). Gene lists were ordered on log-fold changes. Each 

body part DE analysis was run separately, removing samples from all other body parts from 
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the matrices. The following model was then run for differential expression analysis, focused 

on treatment (P. berghei vs blood fed, and blood fed vs sugar fed). Experimental repeats, time, 

and effect of treatment at different time-point were considered as covariates: 

ddsMat <- DESeqDataSetFromMatrix(countData = countdata, colData = coldata, design 

= ~ time:treatment + experiment + time + treatment) 

2.5.2 scRNA-seq 

For details see methods Chapter II and III. For cell number normalization cells were first 

normalised to 10,000 total cells across all cell states in each condition. The percentage of cells 

in each cluster by condition was then calculated on the total normalised cells per cluster. 

Specific differential expression analyses were performed using the R package Seurat 3.0.2) 

[256, 277, 339]. Batches were integrated with a hybrid CCA / MNN strategy identifying 

‘anchors’: cells with similar transcriptomes between conditions. Analysis of differentially 

expressed genes to identify marker genes for each cell population was performed based on the 

Wilcoxon rank-sum test (minimum Log Fold Change > 0.25, maximum adjusted P value 0.05). 

P values were adjusted for multiple testing using the Bonferroni correction. Differential 

expression analysis between sugar feeding, blood feeding, and P. berghei infection was 

performed with both Wilcoxon rank-sum test (minimum Log Fold Change > 0.25, maximum 

adjusted P value 0.05) and with a MAST (Model-based Analysis of Single-cell 

Transcriptomics) package adaptation for Seurat [279]. MAST is a differential expression 

analysis tool specifically developed for single-cell datasets, which employs a generalized linear 

model framework that considers cellular detection rate of genes as a covariate in the model. 

Volcano plots and labels were plotted with the Enhanced Volcano Plot package for R [373]. 

Gene lists containing vectorbase transcript IDs were converted to usable gene annotations, GO 

terms, and GO enrichment lists using g:Profiler for A. gambiae [346].  
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3 Results 
 

3.1 Cell populations change with blood feeding and malaria infection 
 
To explore how our immune populations change with infection and blood-feeding we first 

quantified the proportion of cells – as defined in our scRNAseq experiment – in each cell state 

by treatment. We found that samples infected with P. berghei showed an increased number of 

active type 1 and type 2 granulocytes. On the other hand, P. berghei treatment decreased the 

proportion of cells categorized as baseline granulocytes. Dividing cells and effector cells 

increased almost equally with both blood fed and infection, whereas secretory cells increased 

mostly with blood-feeding. Furthermore, oenocytoids increased with both blood feeding and 

P. berghei infection, whereas prohemocytes decreased. With regards to non-hemocytes, there 

was a higher number of baseline fat body cells with sugar feeding, whereas activated fat body 

appear to be enriched after P. berghei infection.  

 
Fig. IV.1 Percentage of cells in each cluster by condition. Cell numbers first normalised to 
10,000 total cells across all cell states in each condition. Then the percentage of cells in each 
cluster by condition was calculated on the total normalised cells per cluster. 
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Similarly, when we removed all cells that were not hemocytes from the calculations and again 

normalized the contribution of each cell state to the total number of remaining cells for each 

condition, we saw the same pattern, suggesting non-hemocytes were not skewing the 

calculations. The marked decrease in prohemocytes and correspondent increase in granulocytes 

appeared even more evident. The increased number of active granulocytes with malaria 

infection as compared to blood feeding or sugar feeding was also clearer. Conversely, secretory 

cells increased with blood feeding. 

 
Fig. IV.2 Proportion of cells in each condition by cluster. Cell numbers first normalised to 
the percentage of cells in each condition that are hemocytes. Then the proportion by which 
each cluster contributed to the total number of remaining cells in each condition was 
recalculated. 
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Importantly, total cell numbers could be directly compared with manual hemocyte counts. The 

proportion of prohemocytes were 70.9% with blood feeding and 71.5% with P. berghei 

infection. Oenocytoids went from 23.2% with blood feeding to 17% with P. berghei. 

Granulocytes changed from 5.9% with blood feeding to 11.5% with P. berghei infection, which 

was statistically significant (P = 0.0073). The numbers from the manual hemocyte counting 

and single-cell RNAseq were largely in agreement. Prohemocyte counts were higher with 

manual counting, further suggesting a degree of similarity between prohemocytes and 

granulocytes. P. berghei infected mosquitoes were checked for infection [Fig. IV.3], and all 

mosquitoes were infected, with a median of 10 oocysts per midgut.  

 

 
Fig. IV.3 Manual counting of hemocytes and oocysts. (A) 8 mosquitoes were dissected and 
hemocytes counted with hemocytometer. (B) 8 mosquitoes from the same experiment were 
dissected and oocysts checked with fluorescence microscopy for oocysts of GFP-CON P. 
berghei. Two repeats. Error bars are mean +/- standard deviation for the population for each 
sample. ** (P = 0.0073) 
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3.2 Transcription factor LL3 is required for hemocyte differentiation 
during immune priming 

 
We have mentioned how the transcription factor LL3 can be detected in granulocytes from 

Plasmodium-infected A. gambiae, and that silencing LL3 expression disrupts priming[372].  

And we have seen how Plasmodium infection and blood feeding leads to immune activation 

and granulocyte proliferation (which is mediated by HDF). However, it is not clear whether 

LL3 is essential for HDF synthesis or for hemocytes to respond to HDF.  We found that LL3 

is highly expressed in effector hemocytes and thus explored whether silencing LL3 affects the 

HDF response. Transfer of hemolymph from primed A. gambiae donors had HDF activity and 

elicited a strong priming response in control recipients injected with lacZ double stranded (ds) 

RNA, resulting in a prominent increase in circulating granulocytes, a modest increase in 

oenocytoids and a decrease in prohemocytes.  This response was completely abolished when 

LL3 expression was silenced in the recipients by injection of dsLL3 RNA, indicating that LL3 

and effector cells play a key role in orchestrating hemocyte responses to HDF [Fig. IV.4]. 

 

 
Fig. IV.4 LL3 is expressed in effector cells and required for hemocyte differentiation. (A) 
UMAP visualisation of all hemocytes by LL3 expression. Red indicates cells with more than 1 
UMI (B) Percentage of circulating granulocytes, oenocytoids and prohemocytes of LL3-
silenced mosquitoes injected (+) or not (-) with HDF versus double-stranded lacZ RNA 
injected mosquitoes used as negative controls (**** P<0.0001, Unpaired t-test). Data are 
representative of two independent experiments (mean ± SEM). 
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3.3 Gene changes with blood-feeding and malaria infection 
 

3.3.1 scRNA-seq  
 

After looking at absolute changes in cell numbers we further probed the impact of Plasmodium 

infection on mosquito hemocytes by performing differential expression analysis on our 

scRNA-seq dataset with the Seurat Wilcoxon DE test as well as the Seurat implementation of 

MAST (see methods). As the MAST package produced similar numbers of significantly 

downregulated and upregulated genes when compared to the Wilcoxon-Rank Sum Test, we 

decided to use MAST for all DE analyses. The lists of positively regulated genes did not change 

by using MAST or Wilcoxon. Interestingly, when cells from day 7 post-infection were 

removed we found a heightened number of DE genes, suggesting Plasmodium largely 

modulates the immune system in the first three days of infection. However, prohemocytes saw 

the pattern reverse, with a higher DE gene count when including P. berghei day 7 prohemocytes 

in the analysis. Ooenocytoids did not seem to respond strongly to P. berghei infection at any 

time [Table IV.1]. Effector and secretory cells were too rare. Most DE genes were due to the 

activation of granulocytes, in agreement with the trajectory and differentiation analyses of the 

previous chapter. Genes upregulated included PPO2, 3, 4, 5, laminins, collagens and actins, 

CLIPB8, Tctp, Matuselah receptor 6, PGRPLD, LRIM6, Calreticulin, Cecropin 1, SCRC1. 

Downregulated genes included CLIPD1, fibrinogen, and fibronectins [Fig. IV5A].   
 

Cluster DE genes –  
All days 

DE genes - 
Day 1-3 

Fat Body 75 (U:33-D: 42) 95 (U:45-D:50) 
Prohemocytes 132(69-63) 10 (1-9) 
Granulocytes  53 (23-30) 232 (119-113) 
All hemocytes  
w/o oenocytoids 89 (39-50) 168 (108-60) 

All cells 76 (36-40) 174 (99-75) 
Oenocytoids 16 (2-14) 17 (16-1) 
Dividing cells 1 (0-1) 3 (1-2) 
 
Table. IV.1. Summary of scRNA-seq P. berghei DE analyses. MAST package, filtered for 
absolute log fold change > 0.25 and Q-value <0.1. U = upregulated. D = downregulated. 
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Whereas granulocytes had 232 DE genes, of which 119 upregulated and 113 downregulated 

(days 1, 2, and 3 post Plasmodium infection), prohemocytes only had 10, of which 9 

downregulated. However, when considering all time points the number of DE genes in 

prohemocytes was 132, of which 69 upregulated and 63 downregulated [Fig. IV.5B]. Many of 

the upregulated genes were shared between granulocytes and prohemocytes, including 

calreticulin, SPARC, Tctp, but there were some markers more specific to prohemocytes, 

including 14-3-3 protein epsilon, cofilin, FK506-binding protein 14, calmodulin, cellular 

nucleic acid binding protein, ARP, and PPO6. 

 

 Conversely, very few genes were differentially expressed in oenocytoids, including 

SPARC, and almost none in dividing cells and effector cells. Secretory cell had 26 upregulated 

genes during P. berghei infection. Top genes included all-trans- and 9-cis, SPARC, cathepsin 

F, ARP 2/3 complex, AKT, and PPO6. Fat body cells had 95 DE, of which 45 upregulated and 

50 downregulated. Most downregulated genes in the fat body were not annotated, but among 

the few that were we could find phenoloxidase inhibitor protein, cathepsin L, autophagy related 

gene, or gelsolin, again indicating an increase in the immune activity of this organ. 

 

 
Figure IV.5 scRNA-seq DE gene analyses (A) Volcano plot of DE genes, granulocytes, day 
1-3. (B) Volcano plot of DE genes, prohemocytes, days 1-7. DE with MAST package adapted 
for Seurat scRNA-seq pipeline. Filtered for absolute log fold change > 0.25 and Q-value <0.1. 
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3.3.2 Bulk RNA-seq 
 
In parallel we performed the same analysis in our bulk RNAseq dataset, which had the same 

experimental design as the scRNA-seq experiments. In bulk hemocyte samples 65 genes were 

differentially upregulated (P-adjusted < 0.05 and Log2 Fold >1) after P. berghei infection (day 

1,2,3, and 7), including many immune effectors such as TEP1, APL1C, PGRPS3, PGRPS2, 

PGRPLB, PPO Inhibitor protein, CLIPs, SRPNs, and CTLs [Fig. IV.6]. 

 

 
Fig. IV.6 Differential expression of Anopheles hemocytes – P. berghei vs blood-feeding. 
From a total of 12184 filtered genes, DE and upregulated genes during Plasmodium infection 
to the right, filtered for log2 fold change >1 and Q-value <0.05 
 
 
Similarly, gut samples showed 502 upregulated genes during P. berghei infection, including a 

multitude of immune-related genes such as REL2 (IMD pathway signalling NF-kappaB Relish-

like transcription factor), AGAP005933 (NFkappaB essential modulator), SCRC1, C-type 

lectins, APL1C, IAP2, PGRPLB, CLIPs, LRIMs, LL2 and LL3, TEP1, TEP4, TEP6, TEP14, 

Serpins, TRAF6 (TOLL pathway signalling TNF Receptor-Associated Factor), LYSC4, a PPO 

Inhibitor, and a Toll-interacting protein. TOLL1A, Ftz and Frizzled transcription factors, and 

DUOX were instead downregulated with infection [Fig. IV.7].  
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Fig. IV.7 Differential expression of Anopheles guts – P. berghei vs blood-feeding. From a 
total of 12726 filtered genes, DE and upregulated genes during Plasmodium infection to the 
right, filtered for log2 fold change >1 and Q-value <0.05 
 

 
And finally, there were 10 upregulated genes and 10 downregulated genes in mosquito 

carcasses (fat body, ovaries, muscle, brain, skeleton, etc.) in response to P. berghei infection, 

showing a more subdued response compared to guts or hemocytes. Many DE genes are 

uncharacterized, but interestingly TRAF6 was upregulated in guts and carcasses [Fig. IV.8]. 
   

 
Fig. IV.8 Differential expression of Anopheles carcasses – P. berghei vs blood-feeding. 
From a total of 12952 filtered genes, DE and upregulated genes during Plasmodium infection 
to the right, filtered for log2 fold change >1 and Q-value <0.05 
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 Conversely, blood feeding caused a tremendous rearrangement of the mosquito 

metabolism and transcriptional programming, in all tissues analyzed. When combining all 

samples together and performing a unified analysis 1731 genes were differentially expressed. 

Results were very similar when analyzing samples separately: 1778 DE genes if only looking 

at hemocytes, 1733 DE genes when analyzing the gut, and finally 1601 DE genes in the 

mosquito carcasses [Fig. IV.9]. A GO enrichment analysis showed that genes upregulated in 

sugar-fed conditions were involved in carbohydrate metabolism and transport. Conversely, 

mosquito carcasses were characterized by genes that involved in cellular reproduction, purine 

metabolism, DNA elongation and replication, lipid metabolism and transport (e.g. 

Vitellogenin). Many anti-microbial peptides and immune genes were also upregulated, such as 

defensins, gambicin, prophenoloxidases, Toll 1A, TNF receptor-associated factor 4, LRR [Fig. 

IV.10-11].  

 
 

Fig. IV.9 Differential expression of Anopheles tissues – Blood feeding vs sugar feeding. 
From a total of 13048 filtered genes, DE and upregulated genes during Plasmodium infection 
to the right, filtered for log2 fold change >1 and Q-value <0.05 (A) All tissues combined (B) 
Hemocyte samples only (C) Gut samples only (D) Carcasses samples only. 
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Fig. IV.10 GO Enrichment – Sugar samples. From a total of 13048 filtered genes, DE and 
upregulated genes during Plasmodium infection to the right, filtered for log2 fold change >2 
and Q-value <0.05, imported into G:Profiler as of methods section.  
 

 
Fig. IV.11 GO Enrichment – Fat body samples. From a total of 13048 filtered genes, DE 
and upregulated genes during Plasmodium infection to the right, filtered for log2 fold change 
>2 and Q-value <0.05, imported into G:Profiler as of methods section.  
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3.4 P. berghei infection increases FBN-7+ circulating hemocytes 
 

We then further probed the changes brought about by P. berghei infection in circulating 

hemocytes by collecting cells from infected and blood-fed mosquitoes, and doing RNA-FISH 

with the markers described for each cell type in Chapter III. We quantified the expression of 

key RNA-FISH markers in over 3200 hemocytes (two biological repeats), and found an 

increase in the number of cells positive for fibrinogen (FBN7) after P. berghei infection, as 

compared to blood feeding. This was true both for LRR8+ hemocytes, where FBN+ cells went 

from 18% to 77% [Fig. IV.12], and PPO4+ oenocytoids, where FBN+ cells increased from 

22% to 66% [Fig. IV.13]. While FBN7 was originally chosen as the RNA-FISH marker for 

secretory cells, the expression seems to be upregulated in all morphological cell types upon 

infection [Fig. IV 12-13]. There were no changes in the other markers. 

 

 

 
 
Fig. IV.12 P. berghei infection increases the number of FBN7+ hemocytes in circulation. 
From 3200 hemocytes, 2 biological repeats. LRR+ cells were considered. 
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Fig. IV.13 P. berghei infection increases the number of FBN7+ oenocytoids in 
circulation. From 3200 hemocytes, 2 biological repeats. PPO4+ cells were considered. 
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3.5 Plasmodium recruits hemocytes from the fat body wall 
 
Next, to understand how Plasmodium infection affects not only circulating but also sessile 

hemocytes (the hemocytes that are associated with mosquito organs and tissues) we did RNA-

FISH on fat body walls and guts of blood-fed or P. berghei infected A. gambiae mosquitoes. 

There was a striking reduction in hemocytes per mm2 of body wall (LRR8+ cells) in infected 

samples, from 286±76 to 90±34 /mm2. Fibrinogen-CT+ (Secretory) and Transmembrane+ 

(Effector) cells remained constant: 6.7±6.1 vs 6.1±3.5 /mm2 and 4.7±1.5 to 3.3±1.2 /mm2 

respectively. Oenocytoids were unchanged, 14.5±9.0 to 7.0±5.5 /mm2, while total cells 

decreased from 312±85 to 106±41 /mm2, largely due to LRR8+ cells [Fig. IV.14-15]. 

 
Fig. IV.14 Quantification of cell types on the body wall of Anopheles mosquitoes. 16 body 
walls of blood-fed and 12 of P. berghei-infected mosquitoes, followed by RNA-FISH. To the 
left cell counts normalized by mm2 of body wall area. To the right percentages of each cell type 
from total RNA-FISH positive cells. Error bars indicate 95% Confidence Interval. **** (P ≤ 
0.0001), ** (P ≤ 0.01), * (P ≤ 0.05) – Welch T-Test. Three biological repeats. 
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Furthermore, while the percentage of LRR8+ cells also decreased from 92.4% (±2.5) to 85.4% 

(±3.7), and there was an increase in effector and secretory markers: from 1.7% (±0.6) to 3.9% 

(±1.8) and from 2.1% (±1.7) to 5.9% (±2.3) respectively, indicating recruitment of circulating 

hemocytes with infection. The percentage of oenocytoids instead remained unchanged, from 

to 3.8% (±1.5), to 4.8% (±2.3) [Fig. IV.14-15]. 

 

 
Fig. IV.15 Representative RNA-FISH image of A. gambiae mosquito body wall after 
infection. A total of 16 body walls of blood-fed A. gambiae and 12 of A. gambiae infected with 
P. berghei were processed following RNA-FISH protocol. (A-B) Blood-fed controls. (C-D) P. 
berghei infection (A, C) 20X magnification (B, D) 40X magnification.  
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Indeed, when we further explored the surface of the fat body of mosquitoes with electron 

microscopy we noticed granulocytes are only tenuously associated with the fat body, with 

immune cells only connected to the fat body by a few pseudopodia extending from the body 

wall. Our TEM experiment thus showed individual sessile hemocytes bathed by hemolymph 

and attached to the basal lamina of the tissues through pseudopods, indicative of a dynamic 

and potentially transient association, with granulocytes appearing ready to detach into 

circulation when responding to systemic stimuli such as P. berghei infection [Fig. IV 14-16]. 
 

 
Fig. IV.16 Electron-microscopy image of granulocyte attached to fat body. Phago. = 
Phagosome. Mi. = Mitochondrion. RER = Rough Endoplasmic Reticulum. Fat body false-
colored in yellow for orientation. Prepared by Rafael Cantera.  
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3.6 Effect of P. berghei infection to hemocyte numbers in the gut 
 

More hemocytes per mm2 were attached to the body wall than to the gut of Anopheles 

mosquitoes that were either blood-fed or infected with P. berghei, with a total of 23±6.6 vs 

15±3.9 cells/mm2. LRR8+ cells were also present in lower amounts, with 19.4±6.6 to 12.1±3.8 

cells/mm2, which was close to a statistically significant decrease (P = 0.053, Welch T-test). 

Normalised Fibrinogen-CT+ (Secretory), Transmembrane+ (Effector), and oenocytoids cell 

numbers were all unchanged: 0.38±0.26 to 0.13±0.12 cells/mm2, 1.87±1.06 to 0.87±0.64 

cells/mm2, and 1.55±0.9 to 1.66±0.56 cells/mm2 respectively. Percentages were all unchanged, 

but oenocytoids increased from 7.8% (±4.3) to 15.0% (±7.4), which was almost statistically 

significant (P=0.083 Welch T-test) [Fig. IV.17]. 

 
Fig. IV.17 Quantification of cell types on the gut of Anopheles mosquitoes. From 19 body 
walls of blood-fed mosquitoes and 17 of mosquitoes infected with P. berghei, followed by 
RNA-FISH as of methods. To the left cell counts normalized by mm2 of body wall area. To the 
right percentages of each cell type from total RNA-FISH positive cells. Error bars indicate 95% 
Confidence Interval. * (P ≤ 0.05) – Welch T-Test. Three biological repeats. 
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3.7 Effect of P. falciparum infection on sessile and motile hemocytes  
 

To recapitulate our findings with a parasite more relevant to humans we repeated the 

experiments with P. berghei, but with P. falciparum. Similarly to P. berghei we found a trend 

towards decreased LRR8+ and total cell numbers attached to the body wall of mosquitoes with 

a Pfs47 knock-out P. falciparum which is unable to infect mosquitoes due to increase immune 

system clearance: 687 (±115) to 598 (±46) LRR8+ cells and 802 (±143) to 707 (±67) total cells 

per mm2, albeit the decrease was not statistically significant (P = 0.145 and P = 0.128 

respectively, Welch T-test). The trend seemed to be reversed by wild-type P. falciparum 

infection, with 712 (±152) LRR+ cells and 831 (±171) total cells per mm2.  All other 

normalized cell counts and percentages were the same except for an increase in oenocytoids, 

from 8.1% (±1.1) with blood-feeding to 10.9% (±3.1) with wild-type infection (P = 0.045, 

Welch T-test) and 10.5% (±2.2) with knock-out infection (P = 0.08, Welch T-test) [Fig. IV.18].  

 

 
Fig. IV.18 RNA-FISH quantification of cell types on the body wall of Anopheles. From 6 
blood-fed, 8 wild-type P. falciparum, and 8 Pfs47 KO P. falciparum mosquitoes. To the left 
cell counts normalized by mm2 of body wall area. To the right % of cell type from total RNA-
FISH positive cells. Error bars 95% CI. * (P ≤ 0.05) – Welch T-Test. One biological repeat. 
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In the gut we again found a lower number of adherent hemocytes compared to 

carcasses. Cell numbers with blood-feeding were comparable: 23 (±6.6) in the P. berghei 

experiments and 34 (±20) in the P. falciparum experiments (per mm2). The normalized counts 

showed no difference between P. falciparum infections and control, though confidence 

intervals were large due to low number of samples. We did find an increase in the percentage 

of LRR8+ cells (hemocytes) attached to the gut, which went from 52% (±19) with blood-

feeding to 75% (±5.6) with wild-type infection (P = 0.013, Student T-test) and 69% (±11.5) 

with knock-out infection (P = 0.073, Welch T-test). At the same time, Transmembrane+ 

(Effector) cells decreased from 19.9% (±6.4) with blood-feeding to 7.3% (±5.4) with wild-type 

infection (P = 0.003, Student T-test) and 10.9% (±9.8) with Pfs47 knock-out infection (P = 

0.060, Welch T-test) [Fig. IV.19].  
 

 
Fig. IV.19 RNA-FISH quantification of cell types on the gut of Anopheles mosquitoes. 
From 6 blood-fed, 6 wild-type P. falciparum, and 4 Pfs47 KO P. falciparum mosquitoes. To 
the left cell counts normalized by mm2 of body wall area. To the right percentages of each cell 
type from total RNA-FISH positive cells. Error bars indicate 95% Confidence Interval. ** (P 
≤ 0.01), * (P ≤ 0.05) – Welch T-Test. One biological repeat. 
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In order to recapitulate our findings with respect to the increase in FBN7 hemocytes after P. 

berghei infection we also looked at how FBN7+ hemocytes changed in circulation after P. 

falciparum infection. Again, we found that infection with the wild type P. falciparum 

significantly increased (P < 0.0001, Welch T-test) expression of FBN7 in hemocytes. 

Interestingly, the increase is abrogated by Pfs47 knock-out P. falciparum (P = 0.02, Welch T-

test). FBN7+ cells went from 48.3% (±9.4) with blood-feeding to 83.6% (±11.3) with wild-

type infection and 59.8% (±21.8) with knock-out infection. No other changes were observed 

[Fig. IV.20]. 

 

 
Fig. IV.20 Quantification of Anopheles hemocytes. From a total of 1066 blood-fed cells, 966 
wild-type P. falciparum cells, and 1694 of Pfs47 knock-out cells (8 mosquitoes per repeat), 
followed by RNA-FISH as of methods. Error bars, 95% Confidence Interval. **** (P ≤ 
0.0001), * (P ≤ 0.05) – Welch T-Test. Two biological repeat, two technical repeats each. 
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4 Discussion 
 
In this chapter we looked at how the A. gambiae immune system responds to Plasmodium 

infection. First, we quantified the hemocyte cell clusters obtained via scRNA-seq in control 

(sugar-fed), and challenged conditions (blood feeding and infection). Both caused a decrease 

in the proportion of cells identified as prohemocytes. The proportion of inactive, baseline 

granulocytes was the same in sugar-fed and blood-fed mosquitoes, whereas infection caused a 

large increase in the number of active granulocytes (both type 1 and 2). This suggests a 

recruitment of baseline granulocytes to more active granulocytes states. Other terminal cells 

such as effector cells, oenocytoids, and rapidly dividing cells increased by the same amount 

with both blood-feeding and infection. Secretory cells are an exception and were mostly 

detected in blood-fed samples. Either secretory cells are up-regulated with blood feeding as a 

way to pre-empt invasions of bacteria, or our result was a spurious technical artefact due to 

mosquito manipulation. These are rare cells, and muscle cells were also detected more in blood-

fed samples. It is possible secretory cells could be associated with wing muscles or cardio-

vascular tissues. Fat body cells also increased with P. berghei infection. We hypothesize the 

increase is due to mosquito-wide immune responses causing cells to dislodge more easily. 

However, mobile fat body cells have recently been hypothesized to be genuine cells in 

circulation in the mosquito hemolymph. Indeed, at least some of the large number of fat 

droplets we observed via FACS in the mosquito hemolymph (Chapter II) could have been cells. 

If so, these cells could represent true, yet completely unexplored biology that will need to be 

investigated further. 

 

We confirmed the number of hemocytes estimated by scRNA-seq with manual 

hemocyte counts, and they are reassuringly consistent. When the mosquito immune system is 

not activated, granulocytes are rare, whereas with activation (blood feeding and especially 

Plasmodium infection) large granulocytes can increase to double-digit percentages. We already 

described how prohemocytes and granulocytes lie in a continuum of transcriptomic similarity, 

as likely alternative cell stages along the same cell developmental trajectory. The relative 

absence of activated type 1 and type 2 granulocytes, effector cells, and dividing cells under 
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baseline conditions, and their increase with infection indicate these cells are what we identify 

as granulocytes via manual morphological microscopic analyses. Indeed, correlative 

microscopy experiments confirmed it. The only discrepancy between scRNA-seq and 

microscopy hemocyte numbers was for oenocytoids (~10% in the scRNA-seq dataset vs ~20% 

with microscopy quantification). Either these cells are more difficult to isolate and sequence, 

or not all cells that we previously morphologically identified as oenocytoids are in fact so. 

Correlative microscopy showed similarities between mature oenocytoids and maturing 

granulocytes, suggesting at least a partial overlap between these cell types, making manual 

morphological quantification more challenging.  

 

Importantly, we discovered that the transcription factor LL3 is both highly and 

specifically expressed in a subset of hemocytes, the effector granulocytes. It had been 

separately shown that LL3 is expressed in hemocytes, and that silencing LL3 disrupt the 

mosquito’s priming response[372].  However, the precise role of LL3 is priming was not clear. 

We found that systemically silencing LL3 abrogates the ability of mosquitoes to respond to an 

immune challenge, and that granulocyte numbers don’t increase. Our results suggest that LL3, 

and the effector cells that express it, play an important role in coordinating hemocytes. 

However, we were not able to specifically target effector cells with our silencing because no 

appropriate experimental system existed. Our research will however provide the scientific 

community with the knowledge required to synthesise antibodies to specific hemocyte cell 

types. We hope future adoptive transfer experiments will fully elucidate the role of LL3 and 

effector cells in mosquito immune memory. 

We then explored how P. berghei infection changes the transcriptomic landscape of 

mosquitoes. We performed DE analyses on both of our bulk and scRNA-seq datasets. In both, 

a large number of transcripts were differentially regulated in hemocytes in response to malaria 

infection. The effects of malaria infection peaked between one- and three-days post-infection, 

especially for granulocytes. When hemocytes obtained seven days post-infection were included 

in DE analyses the number of differentially expressed genes decreased, except for 

prohemocytes. Granulocytes thus appear to be the first cell type to respond, and prohemocytes 



The immune response of Anopheles gambiae to malaria 
the last, consistently with the hypothesis that prohemocytes identified transcriptomically via 

scRNA-seq can include both morphological prohemocytes as well as some inactivated 

granulocytes.  

There were many transcripts of interest upregulated in hemocytes upon infection. 

PGRPLD for example has been shown to increase Plasmodium infection prevalence upon 

knock-down [374]. CLIPB8 is required for prophenoloxidase activation and melanization of 

invading pathogens, and is highly upregulated by P. berghei infection [375]. Translationally-

controlled tumor protein homolog (TCTP) has been shown to be an opsonin in silkworm and 

other hemocytes but has never before been implicated in the response against malaria, and 

could be a novel anti-plasmodial effector molecule [376]. The matuselah receptor 6 was also 

upregulated. A paralogue in Drosophila has been linked with effective immune responses and 

increased longevity [377]. Protein homolog 5 was upregulated with infection and has 

epigenetic functions. Memory in mosquitoes has long been thought to be mediated by 

epigenetic changes, and Cbx5 could be involved. Interestingly, an FK506-binding protein was 

also upregulated, especially in prohemocytes. This transcript is an orthologue of Drosophila 

FKBP39, is expressed throughout the life of Drosophila flies, binds DNA, is localized mostly 

in the nucleus, and could be a novel transcription factor important in immunity against 

Plasmodium [378]. In addition, calreticulin was also upregulated. Calreticulin has been shown 

to mediate phagocytosis and encapsulation in Anopheles mosquitoes as well as Drosophila 

[379, 380]. Another interesting transcript is the transcription factor BTF homologue 4, called 

“bicaudal” in Drosophila. During development bicaudal mutations have been shown to abort 

the establishment of the head. In addition, no hemocytes develop in these mutants. BTF4 could 

be important for hemocyte replication and development also in Anopheles mosquitoes [381]. 

Finally, GTP-binding nuclear protein Ran is an orthologue of Drosophila Ran, and is also 

involved in mitosis and cell division. In shrimp hemocytes it instead regulates phagocytosis, 

and in our dataset Ran was particularly upregulated in prohemocytes. 

Most transcripts differentially expressed with infection in prohemocytes were also 

upregulated in granulocytes, but there were some interesting transcripts unique to 
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prohemocytes. For example, ‘cellular nucleic acid binding protein’ is an orthologue of a human 

protein that is involved in steroid signalling and proliferation. 14-3-3 protein epsilon is highly 

conserved in vertebrates and has been shown in lower organisms to promote anti-microbial 

hemocyte function. In addition, cofilin is involved in actin reorganisation and together with the 

actin-related protein (ARP) complex have important roles in immune responses and 

cytokinesis. Furthermore, granulocytes upregulated PPO2, 3, 4 and 5, while prohemocytes 

upregulated PPO6. And lastly, FK506-binding protein 14 expression in Drosophila has been 

shown to be activate Notch signalling and control lineage specification towards crystal cells 

(equivalent to oenocytoids) [382]. Whether late prohemocyte activation leads to oenocytoids 

differentiation remains an open question. 

 

 Interestingly, oenocytoids did not appear to strongly respond to infection. There were 

only ~16-17 DE transcripts, and no significant changes in the number of oenocytoids. Although 

the frequency of FBN7+ oenocytoids increased just as much as that FBN7+ granulocytes all in 

all our data suggests oenocytoids are not crucial mediators of anti-plasmodial defenses. On the 

other hand, fat body cells did respond, especially in the first few days (up to day 3) after 

infection. However, many up and downregulated genes in the fat body are not annotated, and 

much work remains to be done to elucidate what these genes do. Among annotated genes we 

saw downregulation of PPO inhibitor protein, LYSC4, and APG8, consistent with heightened 

immune activation. It has recently been proposed floating fat body cells may serve true immune 

functions, and in our hands the number of fat body cells did increase considerably after P. 

berghei infection. We hope future experiments will elucidate what these cells are and what 

function they possess in health and disease. Few genes were upregulated in dividing cells, 

effector cells, or secretory cells. However, secretory cells interestingly upregulated all-trans- 

and 9-cis-retinoic acids production. Both are important gene expression regulators and have 

essential roles in immunity, including cell proliferation and differentiation. Secretory cells 

could be releasing signals to activate nearby immune cells in response to infection. This 

hypothesis will also need to be tested in future experiments. 
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Comparably fewer differentially expressed genes were detected with bulk RNAseq of 

hemocytes after Plasmodium infection, likely due to a dilution effect from a majority of non-

responding cells. Among the genes that were upregulated we detected LL1 (LITAF-1) - a gene 

also upregulated in effector hemocytes and an LPS-responsive transcription factor - as well as 

TEP1, the key effector molecule for the early anti-Plasmodium responses. Furthermore, three 

peptidoglycan recognition proteins (PGRPs) were among the top differentially expressed 

genes. They are known immune regulators. PGRPS2 and PGRPS3 participate in antiparasitic 

defences, and PGRPLB was shown promote mosquito permissiveness to P. falciparum by 

deactivating the Imd pathway [374]. In addition, PPO inhibitor protein and CLIPA1 were 

upregulated. GO enrichment analyses found an enrichment of immune-related genes, 

confirming that hemocytes actively respond to malaria parasite infection.  

In the gut on the other hand we found hundreds of upregulated genes during P. berghei 

infection, suggesting gut-intrinsic as well as hemocyte-mediated responses. Of all the tissues 

considered, the mosquito gut featured the highest number of DE genes. This is not surprising. 

Plasmodium ookinetes and oocysts mostly interact with the gut within the timeframe of our 

experiments. It would interest to confirm whether this is also true weeks after infection, as 

sporozoites move into salivary glands. The gut upregulated many important immune-related 

genes, including REL2/Imd. The REL2/Imd pathway is one of the two key nuclear factor-κB 

(NF-κB) immune pathways responsible for controlling Plasmodium infection, and the only 

pathway shown to mediate P. falciparum control, in addition to killing of viruses and Gram-

negative bacteria [383]. Rel2 activation is mediated by transmembrane peptidoglycan 

recognition proteins (PGRPs). Then, the IKK-γ subunit of the IKK complex phosphorylates 

the Relish transcription factor, and IAP2 serves as an activator. IKK-γ, IAP2 and PGRPs were 

all upregulated in our hemocyte and gut samples with infection. We conclude that P. berghei 

activates the Rel2/Imd pathway in our mosquitoes. Rel1/Toll is the other key anti-plasmodial 

pathway, responsible for killing Gram-positive bacteria, fungi, and P. berghei [383]. 

Interestingly, 3 of the 4 most upregulated transcripts with infection were odorant binding 

proteins (OBP12, 38, 39), suggesting a role in immunity for this family of proteins. Ornithine 

decarboxylase was also highly upregulated both in the gut and in hemocytes. This protein is 
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thought to control macrophage activation and limit active macrophage M1 formation, 

suggesting hemocyte inhibition [384]. 

Unexpectedly, we could only detect 10 upregulated and 10 downregulated genes in 

mosquito carcasses, suggesting an absent or diluted immune response, and confirming the 

importance of using single cell rather than bulk approaches. We did nevertheless identify 

TRAF6 as an immune-related gene upregulated in the gut after infection. (TNFR)-associated 

factor 6 (TRAF6) is an adaptor protein first identified to mediate IL-1 receptor (IL-1R) NFκB 

activation. TRAF6 is now known to mediate TNFR, toll-like receptor (TLR), and tumor growth 

factor-β receptors (TGFβR) signaling to activate NFκB, MAPK, PI3K, and IRF, serving as a 

master regulator of immunity [385]. To our knowledge this is the first time TRAF6 has been 

involved in anti-plasmodial immunity. 

  

 Conversely, when we analysed the response of mosquitoes to blood feeding vis-à-vis 

sugar feeding we observed a complete rearrangement of the mosquito metabolism. Thousands 

of genes were differentially expressed, and our GO analysis showed the expected 

downregulation of sugar and xanthine metabolism and transport transcripts after blood-feeding 

(glucose, hexose, simple and complex sugar movement and catabolism), whereas transcripts 

involved in lipid metabolism and transport were upregulated. Blood-feeding turns the mosquito 

into a biosynthetic factory, upregulating transcripts involved in IMP and purine biosynthesis, 

amino acid metabolism, protein glycosylation, protein folding, and ER / membrane protein 

targeting. In addition, blood-feeding signals the start of the reproductive life-cycle of 

mosquitoes, with the production of fertile eggs. In our GO analyses the most significantly 

upregulated transcripts were indeed those involved in DNA replication initiation, DNA 

processing, (such as DNA geometric change and unwinding), DNA integrity checkpoints, 

mitotic checkpoints, and mitotic cell cycle.  

 

 We then explored the spatial dynamics of the A. gambiae immune response to 

Plasmodium. We leveraged RNA-FISH to observe how infection changed the proportion of 

sessile, tissue-resident hemocytes in the guts and carcasses of mosquitoes, and of motile 



The immune response of Anopheles gambiae to malaria 
hemocytes in circulation. There were two major changes. First, hemocytes (likely granulocytes 

due to large cellular size and high LRR8 expression) were recruited in large numbers from the 

body wall of mosquitoes into the circulation. The marked increase in type 1 and type 2 

granulocytes observed with infection would thus appear not to be solely caused by the 

heightened activation, replication, and differentiation of existing circulating hemocytes, but 

also by the recruitment of a reservoir of hemocytes attached to the body wall of mosquitoes. 

Indeed, when the interaction between hemocytes and fat body was probed in more detail by 

electron microscopy, we observed that the connection between these cells is tenuous at best, 

with hemocytes almost “walking” on the fat body, connected only through a few pseudopodia 

spreading from the central body of the cell, and thus readily dislodged. While the P. falciparum 

results are not conclusive due to the low number of samples, we observed a decreased number 

of LRR8+ cells attached to the midgut of mosquitoes infected with a P. falciparum Pfs47 

knock-out line that is susceptible to immune killing by the mosquito immune system, whereas 

wild-type P. falciparum infection did not seem to change the number of attached hemocytes. 

Wild-type P. falciparum is able to masque its presence from the mosquito, and not activate 

immune responses, whereas P. berghei is not able to do so. Blocking hemocyte recruitment in 

the circulation could be one of the ways through which P. falciparum is able to survive in the 

mosquito. 

 

The second main finding - a large increase in the number of hemocytes expressing 

fibrinogen (FBN7), a marker of secretory cells - was more surprising. Very few cells were 

positive for fibrinogen-CT (FBN7) in our scRNA-seq dataset. Conversely, the vast majority of 

motile hemocytes in circulation (upwards of 80%) becomes positive for FBN7 when 

mosquitoes are infected with P. berghei. The result holds true also for wild type P. falciparum. 

A Pfs47 P. falciparum knock-out, incapable of developing past the oocyte stage because of 

successful targeting and killing by the mosquito immune system, does not elicit the same 

response. Instead the number of FBN7+ cells is equal to that of blood feeding. More work will 

need to be done to fully understand the role of FBN7 and FBN7+ cells after Plasmodium 

infection. Other scRNA-seq markers of secretory cells included anti-microbial peptides, 
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Cathepsin L (perforin activator) - which in vertebrates promotes NK cell cytotoxicity - and 

Cathepsin F, which in invertebrates is involved in MHC II antigen presentation and Th1-

immune responses [386]. An intriguing speculation is that the malaria parasite is able to skew 

the immune response towards an microbicidal state, akin to M2 state of macrophages in 

vertebrates, while at the same time blocking – and protecting itself from – the more potent 

phagocytic M1-like granulocyte activity. However, while Cathepsin-L is indeed 

downregulated in activated, IFN-g treated, M1 human macrophages [387], these cells also 

upregulate ferritin, which is a conserved inflammatory response of activated M1 macrophages. 

Furthermore, secretory cells are also characterized by high levels of CLIPB4, important to 

control P. berghei infection. In addition, lineage tracing showed secretory and effector cells to 

be relatively similar. As such, it is also possible that fibrinogen-CT(FBN7) is instead 

upregulated as a general non-specific response to the gut wounds that are a result of 

Plasmodium ookinetes’ midgut penetration, but that the expression is so low that our scRNA-

seq library preparation was not able to capture it.  

 

 Finally, with RNA-FISH we saw a decrease in the number of effector hemocytes 

attached to the mosquito gut during P. falciparum WT infection. Infection with Pfs47 KO P. 

falciparum instead showed the number of effector cells to increase back to normal. If our 

hypothesis is correct and effector cells are modulating the immune system to respond to malaria 

infection then our results consistently suggest WT P. falciparum is able to blunt mosquito 

immune responses, and thus limit the number of anti-plasmodial effector cells. The identity of 

these cells will need to be explored further. These are large, rare cells, bigger than normal 

granulocytes, and could thus be the equivalent of Drosophila’s lamellocytes, which until now 

were not thought to exist in Anopheles.



 

Final summary & discussion 
 

As we have seen, Anopheline mosquitoes are responsible for transmitting Plasmodium 

parasites to humans, and are the causative agent for over 219 million cases of malaria, and over 

400,000 deaths annually[388]. However, the mosquito’s immune system is far from being a 

passive bystander, and can limit Plasmodium infection in several ways[364, 365]. Hemocytes, 

the mosquito’s equivalent of our white blood cells, are key players in these defensive responses, 

both through direct killing and through their role in complement activation and consequent 

parasite lysis. Infection with Plasmodium leads to a heightened state of immune activation in 

mosquitoes called priming. Primed mosquitoes are then able to mount a stronger immune 

response to subsequent infections.  This response has been shown to be due to the release of a 

hemocyte differentiation factor (HDF) into the hemolymph[370], which is sufficient to increase 

the proportion of circulating granulocytes (the active subtype), as well as to promote hemocyte 

microvesicle release and subsequent complement activation[367].   

 

 When I started working on this project three hemocyte types, both circulating and 

sessile, had been described in Anopheles gambiae based on cellular morphology[389].  

Granulocytes (10-20 µm) are the main phagocytic cells, while oenocytoids are smaller round 

cells 8-12 µm in diameter responsible for producing melanin, crucial for wound healing and 

pathogen encapsulation.  And lastly, small round prohemocytes (4-6 µm) were thought of as 

the precursor cells of the other two cell subtypes. However, the full functional diversity of 

mosquito hemocytes was unexplored, their developmental trajectories were completely 

unknown, and it was unclear how much morphologically similar hemocytes are also 

functionally equivalent.  

 

In this thesis I used single cell RNA sequencing (scRNA-seq) to profile the 

transcriptomes of 8506 hemocytes of Anopheles gambiae and Aedes aegypti, two important 

mosquito vectors. Blood feeding, infection with malaria parasites and other immune challenges 

revealed a previously unknown functional diversity of hemocytes, with different types of 
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granulocytes expressing distinct and evolutionarily conserved subsets of effector genes. A new 

cell type, which we term effector granulocytes, was defined in Anopheles by a unique 

transmembrane protein marker (TM7318) and high expression of LPS-Induced TNF-alpha 

transcription factor 3 (LL3).  Knock-down experiments indicated that LL3 mediates hemocyte 

differentiation during immune priming. We identified two main hemocyte lineages and 

differentiation pathways in prohemocytes and granulocytes and found evidence of proliferating 

granulocyte populations. We discovered new hemocyte populations and markers of immune 

activation for each. We validated our analysis with RNA in-situ hybridization to integrate the 

transcriptional profiles with morphological analysis of circulating hemocytes and highlighted 

the mobilization of sessile hemocytes into circulation upon infection. And a comparison of 

Anopheles and Aedes hemocytes showed differences and similarities between these two 

mosquito species.  

 

scRNA-seq revealed new types of hemocytes  

First, circulating hemocytes were collected from adult A. gambiae M form (A. coluzzii) females 

that were either kept on a sugar meal or fed on a healthy or a Plasmodium berghei-infected 

mouse. Transcriptomes from 5,383 cells (collected 1, 3, and 7 days after feeding) revealed nine 

major cell clusters. Two clusters originated from adipose tissue and one from muscle tissue. 

Baseline fat body cells expressed several immune-modulatory genes such as CLIPs, LRIMs, 

lectins, and SRPNS, while active fat body cells expressed high levels of vitellogenin after blood 

feeding, a canonical marker of the mosquito fat body[390]. Based on their unique 

transcriptional profiles, we then identified six hemocyte clusters, including known cells such 

as oenocytoids, with high mRNAs levels of prophenoloxidases (e.g. PPO4 and PPO9), and 

granulocytes. We then selected hemocyte specific genes markers for our hemocyte lineages by 

combining scRNA-seq expression data with parallel bulk RNAseq data from different tissues. 

Oenocytoids contained low levels of leucine-repeat protein 8 (LRR8) mRNA, whereas 

granulocytes had an inverse pattern (low or absent PPO4 and high LLR8 levels).  

 



 
 In situ hybridization using these markers confirmed the oenocytoid-like round 

morphology (with few granules and pseudopodia) of circulating PPO4high-LLR8low cells, while 

PPO4low-LLR8high cells looked like prohemocytes and granulocytes (prominent pseudopodia 

and abundant granules). These two cell types appear to lie in a continuum of transcriptomic 

similarity, and while they shared many markers such as SPARC, cathepsin-L and LRR8, they 

differed in the amount of UMIs (73% fewer in prohemocytes). Dividing granulocytes were 

characterised by shared granulocyte markers, as well as their own unique subset of markers 

including cyclin B, aurora kinase and other mitotic markers. Secretory and effector hemocytes 

were both are negative for PPO4 and LLR8low, but while effector hemocytes were large cells 

(25-40 µm) that expressed high levels of an uncharacterized transmembrane protein 

AGAP007318 (TM7318) and LPS-induced TNF-alpha transcription factor 3 (LL3), secretory 

hemocytes were smaller cells negative for both markers and instead expressing antimicrobial 

peptides such as defensin 1 and cecropins 1.  

 
Mosquito hemocyte lineages in Anopheles 

To investigate hemocyte differentiation dynamics, we then re-clustered the Anopheles cellular 

transcriptomes at higher resolution and performed lineage tree reconstruction with partition-

based graph abstraction (PAGA) and found that proliferating cell were connected with the main 

granulocyte population which in turn was linked to effector cells and secretory antimicrobial 

granulocytes and prohemocytes. Sub-clusters within the major granulocyte populations 

reflected transcriptional responses to feeding and Plasmodium infection. Our findings were 

confirmed with both diffusion maps and slingshot analyses. They suggest the existence of a 

proliferative cell population that can replenish the pool of granulocytes, which can then 

differentiate further into more specialized regulatory or end-stage cells represented by effector 

and secretory cells without the need for further proliferation. Our data suggests that granulocyte 

proliferation and prohemocyte differentiation both appear to contribute to the observed 

increase in granulocyte numbers after blood feeding. However, the placement of prohemocytes 

in the granulocyte lineage tree should be considered tentative due to the few markers uniquely 

characterising prohemocytes.  Prohemocytes are proposed to be precursors to both 

granulocytes and oenocytoids but the latter were transcriptionally disconnected from other 
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hemocyte subtypes, and we did not observe transcriptional markers of cell proliferation in 

oenocytoids. This suggests oenocytoids may represent a wholly separate lineage with origins 

either in larval stages or in other adult tissues. Alternatively, oenocytoids could derive from 

granulocytes, but due to a low differentiation rate we may not have captured intermediate cells. 

 

To assess which of the newly discovered cell types are shared between anopheline and 

culicine mosquitoes, we also analysed the single-cell transcriptome of 3123 cells from Ae. 

aegypti, a vector for several relevant arboviruses including dengue. As with Anopheles, a 

dimensional reduction plot showed both canonical hemocytes and other cell types such as fat 

body cells and muscle cells. Our cross-species analysis revealed conserved transcriptome 

signatures for oenocytoids (99% and 77% correlation with Anopheles oenocytoids), and 

granulocyte subtypes, including antimicrobial cells (94% with secreting hemocytes), and 

proliferating granulocytes (87% with dividing granulocytes in Anopheles). Granulocytes and 

prohemocytes were again positioned on a continuum of transcriptomic similarity, with four 

different cell states, including a proliferating S-phase granulocyte cluster without a clear 

Anopheles equivalent. Granulocyte cells instead expressed laminins, leucine-rich repeat 

proteins, scavenger receptors, Toll receptor 5, and the transcription factor Rel2. Conversely, 

Anopheles effector granulocytes lack a counterpart in Aedes, and furthermore the main gene 

marker appear to be restricted to African and Asian Anopheles, suggesting effector hemocytes 

could be unique to a subgroup of Anopheles mosquitoes.  

 

Transcription factor LL3 is required for hemocyte differentiation during priming 

LL3 had been previously detected in granulocytes in response to Plasmodium infection. And 

LL3 silencing had been shown to abolish the Anopheles priming response[372]. Since we found 

LL3 to be a specific marker of effector granulocyte we explored whether silencing LL3 affects 

the ability of hemocytes to respond to HDF and we found the priming response to be 

completely abolished when LL3 expression was silenced in mosquitoes that had received HDF, 

suggesting LL3 and effector granulocytes play an important role in orchestrating the hemocyte 

priming response. 



 
Blood-feeding and Plasmodium infection trigger granulocyte activation and mobilization 

Finally, we explored how the cell types we described respond to malaria infection. It had been 

previously shown that the proportion of circulating granulocytes was low (1-3%) under normal 

conditions but increased after Plasmodium infection[370]. However, it was still unknown 

whether the increase was due to proliferation and differentiation of circulating progenitor cells, 

or mobilization of sessile hemocytes. Our transmission electron microscopy of individual 

sessile granulocytes attached to the basal lamina of the tissues through were indicative of a 

dynamic and potentially transient association. To explore that possibility, we used whole tissue 

mount in situ hybridization to find most sessile hemocytes to be PPO4low/LLR8high 

granulocytes whereas oenocytoids, effector, and secretory cells are rare. Importantly, we found 

a dramatic reduction of sessile PPO4low/LLR8high granulocytes in response to Plasmodium 

infection and no significant difference in the numbers of sessile oenocytoids, effector, or 

secretory cells.  

 

Lastly, in circulating hemocytes both P. berghei and P. falciparum infection induced a 

significant increase in the proportion of FBN7 positive cells, indicating that this is a general 

marker of hemocyte immune activation. Combined, our results suggest that hemocyte 

recruitment from the body wall, granulocyte activation and proliferation, and prohemocyte 

differentiation can all contribute to boost circulating granulocyte numbers upon immune 

challenge. 

 

Final considerations and outlook 

Our knowledge of cellular immunity in vertebrates relies critically on understanding the 

functional diversity of cell types, their developmental trajectories and their trafficking 

dynamics. This thesis represents significant progress towards this understanding for two 

invertebrate immune systems that limit the vectorial capacity of mosquitoes for deadly human 

diseases such as malaria and Dengue. We confirmed the existence of oenocytoids and 

granulocytes and with gene markers we related cellular morphology to a more comprehensive 

molecular characterization of these cells. Unlike current thinking in the field we show 
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prohemocytes and granulocytes are closely related cells, and furthermore discovered the 

transcriptional profiles and molecular markers of novel hemocyte subtypes (effector, dividing, 

and secreting granulocytes), as well as fat body cells with immune-modulatory functions.   

 We defined two main hemocyte lineages in A. gambiae: the oenocytoid lineage, and 

the prohemocyte-granulocyte lineage. The latter can be further split into three sub lineages 

leading to differentiated effector, antimicrobial, or dividing granulocytes. We unearthed their 

precise molecular diversity and showed them to be largely conserved between distantly related 

mosquito genera and as such presumably of functional importance. However, we were not able 

to find effector granulocytes in Aedes mosquitoes. These cells have a unique, large 

morphology, and specifically express LL3. Silencing this transcription factor provided 

tentative evidence for a regulatory role of these cells in immune priming. However, we cannot 

rule out that other hemocyte types or mosquito tissues express LL3 and might thus be directly 

affected by LL3 silencing.  

The cell-type markers and FISH probes we identified and validated will allow 

investigators to probe the immune functions of effector granulocytes and other specialized 

hemocyte types in detail.  We leave open the question of the developmental origin of 

oenocytoids, but we identify two potential origins for the expansion of circulating granulocytes 

after immune challenge (blood feeding or Plasmodium infection). One is the mobilization of 

sessile granulocytes from the body wall, the other is a pool of proliferating, oligopotent 

granulocytes. Whether prohemocytes, which are transcriptionally related but less responsive 

than granulocytes, can transform into granulocytes and whether they can enter the cell cycle, 

also remains to be discovered.  

In summary, the cell-type-specific marker genes, reference transcriptomes, and 

companion website (https://hemocytes.cellgeni.sanger.ac.uk/) from our study provide the first 

atlas of medically relevant invertebrate immune cells at single cell resolution and will serve as 

a resource for the field, providing a starting point for the type of lineage tracing and functional 

experiments which, in vertebrates, are resolving the developmental origins and functions of 

diverse immune cell populations.  



 

References 

1.  WHO | World malaria report 2018. In: WHO. 
http://www.who.int/malaria/publications/world-malaria-report-2018/en/. Accessed 14 
Jan 2019 

2.  Crompton PD, Moebius J, Portugal S, et al (2014) Malaria Immunity in Man and 
Mosquito: Insights into Unsolved Mysteries of a Deadly Infectious Disease. Annu Rev 
Immunol 32:157–187. https://doi.org/10.1146/annurev-immunol-032713-120220 

3.  Hillyer JF (2010) Mosquito immunity. Adv Exp Med Biol 708:218–238 

4.  Castillo JC, Robertson AE, Strand MR (2006) Characterization of hemocytes from the 
mosquitoes Anopheles gambiae and Aedes aegypti. Insect Biochem Mol Biol 36:891–
903. https://doi.org/10.1016/j.ibmb.2006.08.010 

5.  WHO | Malaria. In: WHO. https://www.who.int/ith/diseases/malaria/en/. Accessed 8 Jul 
2019 

6.  Coetzee M, Hunt RH, Wilkerson R, et al (2013) Anopheles coluzzii and Anopheles 
amharicus , new members of the Anopheles gambiae complex. Zootaxa 3619:246–274. 
https://doi.org/10.11646/zootaxa.3619.3.2 

7.  Greenwood B, Marsh K, Snow R (1991) Why do some African children develop severe 
malaria? Parasitol Today 7:277–281. https://doi.org/10.1016/0169-4758(91)90096-7 

8.  Langhorne J, Ndungu FM, Sponaas A-M, Marsh K (2008) Immunity to malaria: more 
questions than answers. Nat Immunol 9:725–732. https://doi.org/10.1038/ni.f.205 

9.  Marsh K, Kinyanjui S (2006) Immune effector mechanisms in malaria. Parasite 
Immunol 28:51–60. https://doi.org/10.1111/j.1365-3024.2006.00808.x 

10.  WHO | World Malaria Report 2014. In: WHO. 
http://www.who.int/malaria/publications/world_malaria_report_2014/report/en/. 
Accessed 2 Sep 2015 

11.  S Clinical Trials Partnership R (2015) Efficacy and safety of RTS,S/AS01 malaria 
vaccine with or without a booster dose in infants and children in Africa: final results of 
a phase 3, individually randomised, controlled trial. The Lancet 386:31–45. 
https://doi.org/10.1016/S0140-6736(15)60721-8 

12.  Miller LH, Ackerman HC, Su X, Wellems TE (2013) Malaria biology and disease 
pathogenesis: insights for new treatments. Nat Med 19:156–167. 
https://doi.org/10.1038/nm.3073 



 

 205 

13.  WHO | Global report on insecticide resistance in malaria vectors: 2010–2016. In: WHO. 
http://www.who.int/malaria/publications/atoz/9789241514057/en/. Accessed 24 Aug 
2019 

14.  Smith DL, McKenzie FE, Snow RW, Hay SI (2007) Revisiting the Basic Reproductive 
Number for Malaria and Its Implications for Malaria Control. PLoS Biol 5:e42. 
https://doi.org/10.1371/journal.pbio.0050042 

15.  Gonçalves D, Hunziker P (2016) Transmission-blocking strategies: the roadmap from 
laboratory bench to the community. Malar J 15:. https://doi.org/10.1186/s12936-016-
1163-3 

16.  Scholte E-J, Knols BGJ, Samson RA, Takken W (2004) Entomopathogenic fungi for 
mosquito control: A review. J Insect Sci 4: 

17.  Ramirez JL, Garver LS, Brayner FA, et al (2014) The role of hemocytes in Anopheles 
gambiae antiplasmodial immunity. J Innate Immun 6:119–128. 
https://doi.org/10.1159/000353765 

18.  Otto TD, Gilabert A, Crellen T, et al (2018) Genomes of all known members of a 
Plasmodium subgenus reveal paths to virulent human malaria. Nat Microbiol 3:687. 
https://doi.org/10.1038/s41564-018-0162-2 

19.  Kwiatkowski DP (2005) How Malaria Has Affected the Human Genome and What 
Human Genetics Can Teach Us about Malaria. Am J Hum Genet 77:171–192 

20.  Elmariah H, Garrett ME, De Castro LM, et al (2014) Factors associated with survival in 
a contemporary adult sickle cell disease cohort. Am J Hematol 89:530–535. 
https://doi.org/10.1002/ajh.23683 

21.  Gardner K, Douiri A, Drasar E, et al (2016) Survival in adults with sickle cell disease in 
a high-income setting. Blood 128:1436–1438. https://doi.org/10.1182/blood-2016-05-
716910 

22.  The impact of parasitic diseases and their control, with an emphasis on malaria and 
Africa | POPLINE.org. https://www.popline.org/node/418298. Accessed 8 Jul 2019 

23.  Molina-Cruz A, Canepa GE, Kamath N, et al (2015) Plasmodium evasion of mosquito 
immunity and global malaria transmission: The lock-and-key theory. Proc Natl Acad 
Sci U S A 112:15178–15183. https://doi.org/10.1073/pnas.1520426112 

24.  Cowman AF, Healer J, Marapana D, Marsh K (2016) Malaria: Biology and Disease. 
Cell 167:610–624. https://doi.org/10.1016/j.cell.2016.07.055 



 
25.  Tavares J, Formaglio P, Thiberge S, et al (2013) Role of host cell traversal by the 

malaria sporozoite during liver infection. J Exp Med 210:905–915. 
https://doi.org/10.1084/jem.20121130 

26.  Ishino T, Yano K, Chinzei Y, Yuda M (2004) Cell-passage activity is required for the 
malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol 2:E4. 
https://doi.org/10.1371/journal.pbio.0020004 

27.  Risco-Castillo V, Topçu S, Marinach C, et al (2015) Malaria Sporozoites Traverse Host 
Cells within  Transient Vacuoles. Cell Host Microbe 18:593–603. 
https://doi.org/10.1016/j.chom.2015.10.006 

28.  Bhanot P, Schauer K, Coppens I, Nussenzweig V (2005) A surface phospholipase is 
involved in the migration of plasmodium sporozoites through cells. J Biol Chem 
280:6752–6760. https://doi.org/10.1074/jbc.M411465200 

29.  Coppi A, Tewari R, Bishop JR, et al (2007) Heparan sulfate proteoglycans provide a 
signal to Plasmodium sporozoites to stop migrating and productively invade host cells. 
Cell Host Microbe 2:316–327. https://doi.org/10.1016/j.chom.2007.10.002 

30.  Rodrigues CD, Hannus M, Prudêncio M, et al (2008) Host scavenger receptor SR-BI 
plays a dual role in the establishment of malaria parasite liver infection. Cell Host 
Microbe 4:271–282. https://doi.org/10.1016/j.chom.2008.07.012 

31.  Herrera R, Anderson C, Kumar K, et al (2015) Reversible Conformational Change in 
the Plasmodium falciparum Circumsporozoite Protein Masks Its Adhesion Domains. 
Infect Immun 83:3771–3780. https://doi.org/10.1128/IAI.02676-14 

32.  Sturm A, Amino R, van de Sand C, et al (2006) Manipulation of host hepatocytes by the 
malaria parasite for delivery into liver sinusoids. Science 313:1287–1290. 
https://doi.org/10.1126/science.1129720 

33.  Weiss GE, Gilson PR, Taechalertpaisarn T, et al (2015) Revealing the sequence and 
resulting cellular morphology of receptor-ligand interactions during Plasmodium 
falciparum invasion of erythrocytes. PLoS Pathog 11:e1004670. 
https://doi.org/10.1371/journal.ppat.1004670 

34.  Holder AA (1994) Proteins on the surface of the malaria parasite and cell invasion. 
Parasitology 108 Suppl:S5-18 

35.  Tham W-H, Healer J, Cowman AF (2012) Erythrocyte and reticulocyte binding-like 
proteins of Plasmodium falciparum. Trends Parasitol 28:23–30. 
https://doi.org/10.1016/j.pt.2011.10.002 



 

 207 

36.  Chen L, Lopaticki S, Riglar DT, et al (2011) An EGF-like protein forms a complex with 
PfRh5 and is required for invasion of human erythrocytes by Plasmodium falciparum. 
PLoS Pathog 7:e1002199. https://doi.org/10.1371/journal.ppat.1002199 

37.  Reddy KS, Amlabu E, Pandey AK, et al (2015) Multiprotein complex between the GPI-
anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum 
erythrocyte invasion. Proc Natl Acad Sci U S A 112:1179–1184. 
https://doi.org/10.1073/pnas.1415466112 

38.  Crosnier C, Bustamante LY, Bartholdson SJ, et al (2011) Basigin is a receptor essential 
for erythrocyte invasion by Plasmodium falciparum. Nature 480:534–537. 
https://doi.org/10.1038/nature10606 

39.  Volz JC, Yap A, Sisquella X, et al (2016) Essential Role of the PfRh5/PfRipr/CyRPA 
Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe 
20:60–71. https://doi.org/10.1016/j.chom.2016.06.004 

40.  Besteiro S, Dubremetz J-F, Lebrun M (2011) The moving junction of apicomplexan 
parasites: a key structure for invasion. Cell Microbiol 13:797–805. 
https://doi.org/10.1111/j.1462-5822.2011.01597.x 

41.  Riglar DT, Richard D, Wilson DW, et al (2011) Super-resolution dissection of 
coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host 
Microbe 9:9–20. https://doi.org/10.1016/j.chom.2010.12.003 

42.  Kafsack BFC, Rovira-Graells N, Clark TG, et al (2014) A transcriptional switch 
underlies commitment to sexual development in malaria parasites. Nature 507:248–252. 
https://doi.org/10.1038/nature12920 

43.  Joice R, Nilsson SK, Montgomery J, et al (2014) Plasmodium falciparum transmission 
stages accumulate in the human bone marrow. Sci Transl Med 6:244re5-244re5. 
https://doi.org/10.1126/scitranslmed.3008882 

44.  Aly ASI, Vaughan AM, Kappe SHI (2009) Malaria Parasite Development in the 
Mosquito and Infection of the Mammalian Host. Annu Rev Microbiol 63:195–221. 
https://doi.org/10.1146/annurev.micro.091208.073403 

45.  Bennink S, Kiesow MJ, Pradel G (2016) The development of malaria parasites in the 
mosquito midgut. Cell Microbiol 18:905–918. https://doi.org/10.1111/cmi.12604 

46.  Kawamoto F, Alejo-Blanco R, Fleck SL, Sinden RE (1991) Plasmodium berghei: ionic 
regulation and the induction of gametogenesis. Exp Parasitol 72:33–42 



 
47.  Billker O, Shaw MK, Margos G, Sinden RE (1997) The roles of temperature, pH and 

mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei 
in vitro. Parasitology 115 ( Pt 1):1–7 

48.  Billker O, Lindo V, Panico M, et al (1998) Identification of xanthurenic acid as the 
putative inducer of malaria development in the mosquito. Nature 392:289–292. 
https://doi.org/10.1038/32667 

49.  Garcia GE, Wirtz RA, Barr JR, et al (1998) Xanthurenic acid induces gametogenesis in 
Plasmodium, the malaria parasite. J Biol Chem 273:12003–12005. 
https://doi.org/10.1074/jbc.273.20.12003 

50.  Sologub L, Kuehn A, Kern S, et al (2011) Malaria proteases mediate inside-out egress 
of gametocytes from red blood cells following parasite transmission to the mosquito. 
Cell Microbiol 13:897–912. https://doi.org/10.1111/j.1462-5822.2011.01588.x 

51.  Muhia DK, Swales CA, Deng W, et al (2001) The gametocyte-activating factor 
xanthurenic acid stimulates an increase in membrane-associated guanylyl cyclase 
activity in the human malaria parasite Plasmodium falciparum. Mol Microbiol 42:553–
560 

52.  McRobert L, Taylor CJ, Deng W, et al (2008) Gametogenesis in malaria parasites is 
mediated by the cGMP-dependent protein kinase. PLoS Biol 6:e139. 
https://doi.org/10.1371/journal.pbio.0060139 

53.  Billker O, Dechamps S, Tewari R, et al (2004) Calcium and a calcium-dependent 
protein kinase regulate gamete formation and mosquito transmission in a malaria 
parasite. Cell 117:503–514. https://doi.org/10.1016/s0092-8674(04)00449-0 

54.  Martin SK, Jett M, Schneider I (1994) Correlation of phosphoinositide hydrolysis with 
exflagellation in the malaria microgametocyte. J Parasitol 80:371–378 

55.  Raabe AC, Wengelnik K, Billker O, Vial HJ (2011) Multiple roles for Plasmodium 
berghei phosphoinositide-specific phospholipase C in regulating gametocyte activation 
and differentiation. Cell Microbiol 13:955–966. https://doi.org/10.1111/j.1462-
5822.2011.01591.x 

56.  Sebastian S, Brochet M, Collins MO, et al (2012) A Plasmodium calcium-dependent 
protein kinase controls zygote development and transmission by translationally 
activating repressed mRNAs. Cell Host Microbe 12:9–19. 
https://doi.org/10.1016/j.chom.2012.05.014 

57.  Alano P, Read D, Bruce M, et al (1995) COS cell expression cloning of Pfg377, a 
Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies. Mol 
Biochem Parasitol 74:143–156 



 

 209 

58.  Ponzi M, Sidén-Kiamos I, Bertuccini L, et al (2009) Egress of Plasmodium berghei 
gametes from their host erythrocyte is mediated by the MDV-1/PEG3 protein. Cell 
Microbiol 11:1272–1288. https://doi.org/10.1111/j.1462-5822.2009.01331.x 

59.  Talman AM, Lacroix C, Marques SR, et al (2011) PbGEST mediates malaria 
transmission to both mosquito and vertebrate host. Mol Microbiol 82:462–474. 
https://doi.org/10.1111/j.1365-2958.2011.07823.x 

60.  Wirth CC, Glushakova S, Scheuermayer M, et al (2014) Perforin-like protein PPLP2 
permeabilizes the red blood cell membrane during egress of Plasmodium falciparum 
gametocytes. Cell Microbiol 16:709–733. https://doi.org/10.1111/cmi.12288 

61.  Janse CJ, Ponnudurai T, Lensen AH, et al (1988) DNA synthesis in gametocytes of 
Plasmodium falciparum. Parasitology 96 ( Pt 1):1–7 

62.  van Dijk MR, Janse CJ, Thompson J, et al (2001) A central role for P48/45 in malaria 
parasite male gamete fertility. Cell 104:153–164. https://doi.org/10.1016/s0092-
8674(01)00199-4 

63.  van Schaijk BCL, van Dijk MR, van de Vegte-Bolmer M, et al (2006) Pfs47, paralog of 
the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium 
falciparum. Mol Biochem Parasitol 149:216–222. 
https://doi.org/10.1016/j.molbiopara.2006.05.015 

64.  Pradel G, Hayton K, Aravind L, et al (2004) A multidomain adhesion protein family 
expressed in Plasmodium falciparum is essential for transmission to the mosquito. J Exp 
Med 199:1533–1544. https://doi.org/10.1084/jem.20031274 

65.  Janse CJ, van der Klooster PF, van der Kaay HJ, et al (1986) DNA synthesis in 
Plasmodium berghei during asexual and sexual development. Mol Biochem Parasitol 
20:173–182 

66.  Reininger L, Billker O, Tewari R, et al (2005) A NIMA-related protein kinase is 
essential for completion of the sexual cycle of malaria parasites. J Biol Chem 
280:31957–31964. https://doi.org/10.1074/jbc.M504523200 

67.  Reininger L, Tewari R, Fennell C, et al (2009) An essential role for the Plasmodium 
Nek-2 Nima-related protein kinase in the sexual development of malaria parasites. J 
Biol Chem 284:20858–20868. https://doi.org/10.1074/jbc.M109.017988 

68.  Ukegbu CV, Cho J-S, Christophides GK, Vlachou D (2015) Transcriptional silencing 
and activation of paternal DNA during Plasmodium berghei zygotic development and 
transformation to oocyst. Cell Microbiol 17:1230–1240. 
https://doi.org/10.1111/cmi.12433 



 
69.  Yuda M, Iwanaga S, Shigenobu S, et al (2009) Identification of a transcription factor in 

the mosquito-invasive stage of malaria parasites. Mol Microbiol 71:1402–1414. 
https://doi.org/10.1111/j.1365-2958.2009.06609.x 

70.  Kaneko I, Iwanaga S, Kato T, et al (2015) Genome-Wide Identification of the Target 
Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor. PLoS Pathog 
11:e1004905. https://doi.org/10.1371/journal.ppat.1004905 

71.  Tomas AM, Margos G, Dimopoulos G, et al (2001) P25 and P28 proteins of the malaria 
ookinete surface have multiple and partially redundant functions. EMBO J 20:3975–
3983. https://doi.org/10.1093/emboj/20.15.3975 

72.  Aikawa M, Carter R, Ito Y, Nijhout MM (1984) New observations on gametogenesis, 
fertilization, and zygote transformation in Plasmodium gallinaceum. J Protozool 
31:403–413 

73.  Sinden RE, Hartley RH, Winger L (1985) The development of Plasmodium ookinetes in 
vitro: an ultrastructural study including a description of meiotic division. Parasitology 
91 ( Pt 2):227–244 

74.  Vlachou D, Zimmermann T, Cantera R, et al (2004) Real-time, in vivo analysis of 
malaria ookinete locomotion and mosquito midgut invasion. Cell Microbiol 6:671–685. 
https://doi.org/10.1111/j.1462-5822.2004.00394.x 

75.  Hirai M, Arai M, Kawai S, Matsuoka H (2006) PbGCbeta is essential for Plasmodium 
ookinete motility to invade midgut cell and for successful completion of parasite life 
cycle in mosquitoes. J Biochem (Tokyo) 140:747–757. 
https://doi.org/10.1093/jb/mvj205 

76.  Moon RW, Taylor CJ, Bex C, et al (2009) A cyclic GMP signalling module that 
regulates gliding motility in a malaria parasite. PLoS Pathog 5:e1000599. 
https://doi.org/10.1371/journal.ppat.1000599 

77.  Ishino T, Orito Y, Chinzei Y, Yuda M (2006) A calcium-dependent protein kinase 
regulates Plasmodium ookinete access to the midgut epithelial cell. Mol Microbiol 
59:1175–1184. https://doi.org/10.1111/j.1365-2958.2005.05014.x 

78.  Siden-Kiamos I, Ecker A, Nybäck S, et al (2006) Plasmodium berghei calcium-
dependent protein kinase 3 is required for ookinete gliding motility and mosquito 
midgut invasion. Mol Microbiol 60:1355–1363. https://doi.org/10.1111/j.1365-
2958.2006.05189.x 

79.  Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 
42:525–550. https://doi.org/10.1146/annurev.ento.42.1.525 



 

 211 

80.  Vinetz JM, Dave SK, Specht CA, et al (1999) The chitinase PfCHT1 from the human 
malaria parasite Plasmodium falciparum lacks proenzyme and chitin-binding domains 
and displays unique substrate preferences. Proc Natl Acad Sci U S A 96:14061–14066. 
https://doi.org/10.1073/pnas.96.24.14061 

81.  Vinetz JM, Valenzuela JG, Specht CA, et al (2000) Chitinases of the avian malaria 
parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of 
the mosquito midgut. J Biol Chem 275:10331–10341. 
https://doi.org/10.1074/jbc.275.14.10331 

82.  Tsai YL, Hayward RE, Langer RC, et al (2001) Disruption of Plasmodium falciparum 
chitinase markedly impairs parasite invasion of mosquito midgut. Infect Immun 
69:4048–4054. https://doi.org/10.1128/IAI.69.6.4048-4054.2001 

83.  Dessens JT, Beetsma AL, Dimopoulos G, et al (1999) CTRP is essential for mosquito 
infection by malaria ookinetes. EMBO J 18:6221–6227. 
https://doi.org/10.1093/emboj/18.22.6221 

84.  Yuda M, Sakaida H, Chinzei Y (1999) Targeted disruption of the plasmodium berghei 
CTRP gene reveals its essential role in malaria infection of the vector mosquito. J Exp 
Med 190:1711–1716. https://doi.org/10.1084/jem.190.11.1711 

85.  Li F, Templeton TJ, Popov V, et al (2004) Plasmodium ookinete-secreted proteins 
secreted through a common micronemal pathway are targets of blocking malaria 
transmission. J Biol Chem 279:26635–26644. https://doi.org/10.1074/jbc.M401385200 

86.  Wirth CC, Bennink S, Scheuermayer M, et al (2015) Perforin-like protein PPLP4 is 
crucial for mosquito midgut infection by Plasmodium falciparum. Mol Biochem 
Parasitol 201:90–99. https://doi.org/10.1016/j.molbiopara.2015.06.005 

87.  Yuda M, Yano K, Tsuboi T, et al (2001) von Willebrand Factor A domain-related 
protein, a novel microneme protein of the malaria ookinete highly conserved throughout 
Plasmodium parasites. Mol Biochem Parasitol 116:65–72 

88.  Dessens JT, Sidén-Kiamos I, Mendoza J, et al (2003) SOAP, a novel malaria ookinete 
protein involved in mosquito midgut invasion and oocyst development. Mol Microbiol 
49:319–329 

89.  Kadota K, Ishino T, Matsuyama T, et al (2004) Essential role of membrane-attack 
protein in malarial transmission to mosquito host. Proc Natl Acad Sci U S A 
101:16310–16315. https://doi.org/10.1073/pnas.0406187101 

90.  Kariu T, Ishino T, Yano K, et al (2006) CelTOS, a novel malarial protein that mediates 
transmission to mosquito and vertebrate hosts. Mol Microbiol 59:1369–1379. 
https://doi.org/10.1111/j.1365-2958.2005.05024.x 



 
91.  Ecker A, Bushell ESC, Tewari R, Sinden RE (2008) Reverse genetics screen identifies 

six proteins important for malaria development in the mosquito. Mol Microbiol 70:209–
220. https://doi.org/10.1111/j.1365-2958.2008.06407.x 

92.  Adini A, Warburg A (1999) Interaction of Plasmodium gallinaceum ookinetes and 
oocysts with extracellular matrix proteins. Parasitology 119:331–336. 
https://doi.org/10.1017/S0031182099004874 

93.  Mahairaki V, Voyatzi T, Sidén-Kiamos I, Louis C (2005) The Anopheles gambiae 
gamma1 laminin directly binds the Plasmodium berghei circumsporozoite- and TRAP-
related protein (CTRP). Mol Biochem Parasitol 140:119–121. 
https://doi.org/10.1016/j.molbiopara.2004.11.012 

94.  Limviroj W, Yano K, Yuda M, et al (2002) IMMUNO-ELECTRON MICROSCOPIC 
OBSERVATION OF PLASMODIUM BERGHEI CTRP LOCALIZATION IN THE 
MIDGUT OF THE VECTOR MOSQUITO ANOPHELES STEPHENSI. J Parasitol 
88:664–672. https://doi.org/10.1645/0022-3395(2002)088[0664:IEMOOP]2.0.CO;2 

95.  Srinivasan P, Fujioka H, Jacobs-Lorena M (2008) PbCap380, a novel oocyst capsule 
protein, is essential for malaria parasite survival in the mosquito. Cell Microbiol 
10:1304–1312. https://doi.org/10.1111/j.1462-5822.2008.01127.x 

96.  Sasaki H, Sekiguchi H, Sugiyama M, Ikadai H (2017) Plasmodium berghei Cap93, a 
novel oocyst capsule-associated protein, plays a role in sporozoite development. Parasit 
Vectors 10:399. https://doi.org/10.1186/s13071-017-2337-8 

97.  Moran P, Caras IW (1994) Requirements for glycosylphosphatidylinositol attachment 
are similar but not identical in mammalian cells and parasitic protozoa. J Cell Biol 
125:333–343. https://doi.org/10.1083/jcb.125.2.333 

98.  Trueman HE, Raine JD, Florens L, et al (2004) FUNCTIONAL 
CHARACTERIZATION OF AN LCCL–LECTIN DOMAIN CONTAINING 
PROTEIN FAMILY IN PLASMODIUM BERGHEI. J Parasitol 90:1062–1071. 
https://doi.org/10.1645/GE-3368 

99.  Sinden RE (1974) Excystment by sporozoites of malaria parasites. Nature 252:314. 
https://doi.org/10.1038/252314a0 

100.  Ménard R, Sultan AA, Cortes C, et al (1997) Circumsporozoite protein is required for 
development of malaria sporozoites in mosquitoes. Nature 385:336. 
https://doi.org/10.1038/385336a0 

101.  Aly ASI, Matuschewski K (2005) A malarial cysteine protease is necessary for 
Plasmodium sporozoite egress from oocysts. J Exp Med 202:225–230. 
https://doi.org/10.1084/jem.20050545 



 

 213 

102.  Sultan AA, Thathy V, Frevert U, et al (1997) TRAP Is Necessary for Gliding Motility 
and Infectivity of Plasmodium Sporozoites. Cell 90:511–522. 
https://doi.org/10.1016/S0092-8674(00)80511-5 

103.  Wang Q, Fujioka H, Nussenzweig V (2005) Exit of Plasmodium Sporozoites from 
Oocysts Is an Active Process That Involves the Circumsporozoite Protein. PLOS Pathog 
1:e9. https://doi.org/10.1371/journal.ppat.0010009 

104.  Lasonder E, Janse CJ, Gemert G-J van, et al (2008) Proteomic Profiling of Plasmodium 
Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and 
Infectivity. PLOS Pathog 4:e1000195. https://doi.org/10.1371/journal.ppat.1000195 

105.  Sidjanski SP, Vanderberg JP, Sinnis P (1997) Anopheles stephensi salivary glands bear 
receptors for region I of the circumsporozoite protein of Plasmodium falciparum. Mol 
Biochem Parasitol 90:33–41. https://doi.org/10.1016/S0166-6851(97)00124-2 

106.  Sinden RE, Matuschewski K (2005) The Sporozoite. Mol Approaches Malar 169–190. 
https://doi.org/10.1128/9781555817558.ch9 

107.  Matuschewski K, Nunes AC, Nussenzweig V, Ménard R (2002) Plasmodium sporozoite 
invasion into insect and mammalian cells is directed by the same dual binding system. 
EMBO J 21:1597–1606. https://doi.org/10.1093/emboj/21.7.1597 

108.  Ghosh AK, Devenport M, Jethwaney D, et al (2009) Malaria Parasite Invasion of the 
Mosquito Salivary Gland Requires Interaction between the Plasmodium TRAP and the 
Anopheles Saglin Proteins. PLOS Pathog 5:e1000265. 
https://doi.org/10.1371/journal.ppat.1000265 

109.  Okulate MA, Kalume DE, Reddy R, et al (2007) Identification and molecular 
characterization of a novel protein Saglin as a target of monoclonal antibodies affecting 
salivary gland infectivity of Plasmodium sporozoites. Insect Mol Biol 16:711–722. 
https://doi.org/10.1111/j.1365-2583.2007.00765.x 

110.  Thompson J, Fernandez-Reyes D, Sharling L, et al (2007) Plasmodium cysteine repeat 
modular proteins 1–4: complex proteins with roles throughout the malaria parasite life 
cycle. Cell Microbiol 9:1466–1480. https://doi.org/10.1111/j.1462-5822.2006.00885.x 

111.  Kariu T, Yuda M, Yano K, Chinzei Y (2002) MAEBL Is Essential for Malarial 
Sporozoite Infection of the Mosquito Salivary Gland. J Exp Med 195:1317–1323. 
https://doi.org/10.1084/jem.20011876 

112.  Kappe SHI, Buscaglia CA, Bergman LW, et al (2004) Apicomplexan gliding motility 
and host cell invasion: overhauling the motor model. Trends Parasitol 20:13–16. 
https://doi.org/10.1016/j.pt.2003.10.011 



 
113.  Pimenta PF, Touray M, Miller L (1994) The Journey of Malaria Sporozoites in the 

Mosquito Salivary Gland. J Eukaryot Microbiol 41:608–624. 
https://doi.org/10.1111/j.1550-7408.1994.tb01523.x 

114.  Mahy BWJ (2004) Vector-borne diseases. In: Microbe-Vector Interact. Vector-Borne 
Dis. /core/books/microbevector-interactions-in-vectorborne-diseases/vectorborne-
diseases/91DB7C46CCE13320BBA5CBCC37CDA140. Accessed 11 Jul 2019 

115.  Pennacchio F, Strand MR (2005) Evolution of developmental strategies in parasitic 
hymenoptera. Annu Rev Entomol 51:233–258. 
https://doi.org/10.1146/annurev.ento.51.110104.151029 

116.  Vega FE, Kaya HK (2012) Insect Pathology. Academic Press 

117.  Hillyer JF (2016) Insect immunology and hematopoiesis. Dev Comp Immunol 58:102–
118. https://doi.org/10.1016/j.dci.2015.12.006 

118.  Hillyer JF, Strand MR (2014) Mosquito hemocyte-mediated immune responses. Curr 
Opin Insect Sci 3:14–21. https://doi.org/10.1016/j.cois.2014.07.002 

119.  Publication : USDA ARS. 
https://www.ars.usda.gov/research/publications/publication/?seqNo115=271050. 
Accessed 11 Jul 2019 

120.  Pedrini N, Crespo R, Juárez MP (2007) Biochemistry of insect epicuticle degradation by 
entomopathogenic fungi. Comp Biochem Physiol Part C Toxicol Pharmacol 146:124–
137. https://doi.org/10.1016/j.cbpc.2006.08.003 

121.  Cirimotich CM, Dong Y, Clayton AM, et al (2011) Natural Microbe-Mediated 
Refractoriness to Plasmodium Infection in Anopheles gambiae. Science 332:855–858. 
https://doi.org/10.1126/science.1201618 

122.  McGreevy PB, Bryan JH, Oothuman P, Kolstrup N (1978) The lethal effects of the 
cibarial and pharyngeal armatures of mosquitoes on microfilariae. Trans R Soc Trop 
Med Hyg 72:361–368. https://doi.org/10.1016/0035-9203(78)90128-1 

123.  Siva-Jothy MT, Moret Y, Rolff J (2005) Insect Immunity: An Evolutionary Ecology 
Perspective. In: Simpson SJ (ed) Advances in Insect Physiology. Academic Press, pp 1–
48 

124.  Pinto SB, Kafatos FC, Michel K (2008) The parasite invasion marker SRPN6 reduces 
sporozoite numbers in salivary glands of Anopheles gambiae. Cell Microbiol 10:891–
898. https://doi.org/10.1111/j.1462-5822.2007.01091.x 



 

 215 

125.  Gupta L, Molina-Cruz A, Kumar S, et al (2009) The STAT Pathway Mediates Late-
Phase Immunity against Plasmodium in the Mosquito Anopheles gambiae. Cell Host 
Microbe 5:498–507. https://doi.org/10.1016/j.chom.2009.04.003 

126.  Lim J, Gowda DC, Krishnegowda G, Luckhart S (2005) Induction of Nitric Oxide 
Synthase in Anopheles stephensi by Plasmodium falciparum: Mechanism of Signaling 
and the Role of Parasite Glycosylphosphatidylinositols. Infect Immun 73:2778–2789. 
https://doi.org/10.1128/IAI.73.5.2778-2789.2005 

127.  Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998) The mosquito Anopheles 
stephensi limits malaria parasite development with inducible synthesis of nitric oxide. 
Proc Natl Acad Sci 95:5700–5705 

128.  Waterhouse RM, Kriventseva EV, Meister S, et al (2007) Evolutionary Dynamics of 
Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science 
316:1738–1743. https://doi.org/10.1126/science.1139862 

129.  Lowenberger CA, Smartt CT, Bulet P, et al (1999) Insect immunity: molecular cloning, 
expression, and characterization of cDNAs and genomic DNA encoding three isoforms 
of insect defensin in Aedes aegypti. Insect Mol Biol 8:107–118 

130.  Richman AM, Bulet P, Hetru C, et al (1996) Inducible immune factors of the vector 
mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial 
peptide and molecular cloning of preprodefensin cDNA. Insect Mol Biol 5:203–210 

131.  Warr E, Aguilar R, Dong Y, et al (2007) Spatial and sex-specific dissection of the 
Anopheles gambiae midgut transcriptome. BMC Genomics 8:37. 
https://doi.org/10.1186/1471-2164-8-37 

132.  Kim W, Koo H, Richman AM, et al (2004) Ectopic expression of a cecropin transgene 
in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects 
on susceptibility to Plasmodium. J Med Entomol 41:447–455. 
https://doi.org/10.1603/0022-2585-41.3.447 

133.  Christensen BM, Li J, Chen C-C, Nappi AJ (2005) Melanization immune responses in 
mosquito vectors. Trends Parasitol 21:192–199. https://doi.org/10.1016/j.pt.2005.02.007 

134.  Neafsey DE, Waterhouse RM, Abai MR, et al (2015) Mosquito genomics. Highly 
evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 
347:1258522. https://doi.org/10.1126/science.1258522 

135.  Ahmed A, Martín D, Manetti AGO, et al (1999) Genomic structure and ecdysone 
regulation of the prophenoloxidase 1 gene in the malaria vector Anopheles gambiae. 
Proc Natl Acad Sci 96:14795–14800. https://doi.org/10.1073/pnas.96.26.14795 



 
136.  Müller HM, Dimopoulos G, Blass C, Kafatos FC (1999) A hemocyte-like cell line 

established from the malaria vector Anopheles gambiae expresses six prophenoloxidase 
genes. J Biol Chem 274:11727–11735. https://doi.org/10.1074/jbc.274.17.11727 

137.  Osta MA, Christophides GK, Kafatos FC (2004) Effects of mosquito genes on 
Plasmodium development. Science 303:2030–2032. 
https://doi.org/10.1126/science.1091789 

138.  An C, Budd A, Kanost MR, Michel K (2011) Characterization of a regulatory unit that 
controls melanization and affects longevity of mosquitoes. Cell Mol Life Sci CMLS 
68:1929–1939. https://doi.org/10.1007/s00018-010-0543-z 

139.  Baxter RHG, Chang C-I, Chelliah Y, et al (2007) Structural basis for conserved 
complement factor-like function in the antimalarial protein TEP1. Proc Natl Acad Sci U 
S A 104:11615–11620. https://doi.org/10.1073/pnas.0704967104 

140.  Levashina EA, Moita LF, Blandin S, et al (2001) Conserved Role of a Complement-like 
Protein in Phagocytosis Revealed by dsRNA Knockout in Cultured Cells of the 
Mosquito, Anopheles gambiae. Cell 104:709–718. https://doi.org/10.1016/S0092-
8674(01)00267-7 

141.  Povelones M, Bhagavatula L, Yassine H, et al (2013) The CLIP-Domain Serine 
Protease Homolog SPCLIP1 Regulates Complement Recruitment to Microbial Surfaces 
in the Malaria Mosquito Anopheles gambiae. PLOS Pathog 9:e1003623. 
https://doi.org/10.1371/journal.ppat.1003623 

142.  Yassine H, Kamareddine L, Chamat S, et al (2014) A serine protease homolog 
negatively regulates TEP1 consumption in systemic infections of the malaria vector 
Anopheles gambiae. J Innate Immun 6:806–818. https://doi.org/10.1159/000363296 

143.  Riehle MM, Xu J, Lazzaro BP, et al (2008) Anopheles gambiae APL1 Is a Family of 
Variable LRR Proteins Required for Rel1-Mediated Protection from the Malaria 
Parasite, Plasmodium berghei. PLOS ONE 3:e3672. 
https://doi.org/10.1371/journal.pone.0003672 

144.  Fraiture M, Baxter RHG, Steinert S, et al (2009) Two Mosquito LRR Proteins Function 
as Complement Control Factors in the TEP1-Mediated Killing of Plasmodium. Cell 
Host Microbe 5:273–284. https://doi.org/10.1016/j.chom.2009.01.005 

145.  Bartholomay LC, Michel K (2018) Mosquito Immunobiology: The Intersection of 
Vector Health and Vector Competence. Annu Rev Entomol 63:145–167. 
https://doi.org/10.1146/annurev-ento-010715-023530 



 

 217 

146.  King JG, Hillyer JF (2013) Spatial and temporal in vivo analysis of circulating and 
sessile immune cells in mosquitoes: hemocyte mitosis following infection. BMC Biol 
11:55. https://doi.org/10.1186/1741-7007-11-55 

147.  Bryant WB, Michel K (2014) Blood feeding induces hemocyte proliferation and 
activation in the African malaria mosquito, Anopheles gambiae Giles. J Exp Biol 
217:1238–1245. https://doi.org/10.1242/jeb.094573 

148.  Castillo J, Brown MR, Strand MR (2011) Blood Feeding and Insulin-like Peptide 3 
Stimulate Proliferation of Hemocytes in the Mosquito Aedes aegypti. PLOS Pathog 
7:e1002274. https://doi.org/10.1371/journal.ppat.1002274 

149.  Bryant WB, Michel K (2016) Anopheles gambiae hemocytes exhibit transient states of 
activation. Dev Comp Immunol 55:119–129. https://doi.org/10.1016/j.dci.2015.10.020 

150.  King JG, Hillyer JF (2012) Infection-Induced Interaction between the Mosquito 
Circulatory and Immune Systems. PLoS Pathog 8:e1003058. 
https://doi.org/10.1371/journal.ppat.1003058 

151.  Michel K, Suwanchaichinda C, Morlais I, et al (2006) Increased melanizing activity in 
Anopheles gambiae does not affect development of Plasmodium falciparum. Proc Natl 
Acad Sci U S A 103:16858–16863. https://doi.org/10.1073/pnas.0608033103 

152.  Christensen BM, Forton KF (1986) Hemocyte-mediated melanization of microfilariae in 
Aedes aegypti. J Parasitol 72:220–225 

153.  Yassine H, Kamareddine L, Osta MA (2012) The Mosquito Melanization Response Is 
Implicated in Defense against the Entomopathogenic Fungus Beauveria bassiana. PLOS 
Pathog 8:e1003029. https://doi.org/10.1371/journal.ppat.1003029 

154.  Cheng G, Liu Y, Wang P, Xiao X (2016) Mosquito Defense Strategies against Viral 
Infection. Trends Parasitol 32:177–186. https://doi.org/10.1016/j.pt.2015.09.009 

155.  Parikh GR, Oliver JD, Bartholomay LC (2009) A haemocyte tropism for an arbovirus. J 
Gen Virol 90:292–296. https://doi.org/10.1099/vir.0.005116-0 

156.  Castillo JC, Ferreira ABB, Trisnadi N, Barillas-Mury C (2017) Activation of mosquito 
complement antiplasmodial response requires cellular immunity. Sci Immunol 
2:eaal1505. https://doi.org/10.1126/sciimmunol.aal1505 

157.  Vlisidou I, Wood W (2015) Drosophila blood cells and their role in immune responses. 
FEBS J 282:1368–1382. https://doi.org/10.1111/febs.13235 

158.  Shen Z, Jacobs-Lorena M (1998) A Type I Peritrophic Matrix Protein from the Malaria 
VectorAnopheles gambiae Binds to Chitin CLONING, EXPRESSION, AND 



 
CHARACTERIZATION. J Biol Chem 273:17665–17670. 
https://doi.org/10.1074/jbc.273.28.17665 

159.  Kumar S, Molina-Cruz A, Gupta L, et al (2010) A Peroxidase/Dual Oxidase System 
Modulates Midgut Epithelial Immunity in Anopheles gambiae. Science 327:1644–1648. 
https://doi.org/10.1126/science.1184008 

160.  Shen Z, Dimopoulos G, Kafatos FC, Jacobs-Lorena M (1999) A cell surface mucin 
specifically expressed in the midgut of the malaria mosquito Anopheles gambiae. Proc 
Natl Acad Sci 96:5610–5615. https://doi.org/10.1073/pnas.96.10.5610 

161.  Kumar S, Gupta L, Han YS, Barillas-Mury C (2004) Inducible Peroxidases Mediate 
Nitration of Anopheles Midgut Cells Undergoing Apoptosis in Response to Plasmodium 
Invasion. J Biol Chem 279:53475–53482. https://doi.org/10.1074/jbc.M409905200 

162.  Oliveira G de A, Lieberman J, Barillas-Mury C (2012) Epithelial Nitration by a 
Peroxidase/NOX5 System Mediates Mosquito Antiplasmodial Immunity. Science 
335:856–859. https://doi.org/10.1126/science.1209678 

163.  Ramphul UN, Garver LS, Molina-Cruz A, et al (2015) Plasmodium falciparum evades 
mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells. 
Proc Natl Acad Sci 112:1273–1280. https://doi.org/10.1073/pnas.1423586112 

164.  Han YS, Barillas-Mury C (2002) Implications of Time Bomb model of ookinete 
invasion of midgut cells. Insect Biochem Mol Biol 32:1311–1316. 
https://doi.org/10.1016/S0965-1748(02)00093-0 

165.  Blandin S, Shiao S-H, Moita LF, et al (2004) Complement-Like Protein TEP1 Is a 
Determinant of Vectorial Capacity in the Malaria Vector Anopheles gambiae. Cell 
116:661–670. https://doi.org/10.1016/S0092-8674(04)00173-4 

166.  Blandin SA, Marois E, Levashina EA (2008) Antimalarial Responses in Anopheles 
gambiae: From a Complement-like Protein to a Complement-like Pathway. Cell Host 
Microbe 3:364–374. https://doi.org/10.1016/j.chom.2008.05.007 

167.  Povelones M, Waterhouse RM, Kafatos FC, Christophides GK (2009) Leucine-Rich 
Repeat Protein Complex Activates Mosquito Complement in Defense Against 
Plasmodium Parasites. Science 324:258–261. https://doi.org/10.1126/science.1171400 

168.  Jaramillo-Gutierrez G, Rodrigues J, Ndikuyeze G, et al (2009) Mosquito immune 
responses and compatibility between Plasmodium parasites and anopheline mosquitoes. 
BMC Microbiol 9:154. https://doi.org/10.1186/1471-2180-9-154 



 

 219 

169.  Blandin SA, Wang-Sattler R, Lamacchia M, et al (2009) Dissecting the Genetic Basis of 
Resistance to Malaria Parasites in Anopheles gambiae. Science 326:147–150. 
https://doi.org/10.1126/science.1175241 

170.  Garver LS, de Almeida Oliveira G, Barillas-Mury C (2013) The JNK Pathway Is a Key 
Mediator of Anopheles gambiae Antiplasmodial Immunity. PLoS Pathog 9:e1003622. 
https://doi.org/10.1371/journal.ppat.1003622 

171.  Molina-Cruz A, DeJong RJ, Charles B, et al (2008) Reactive Oxygen Species Modulate 
Anopheles gambiae Immunity against Bacteria and Plasmodium. J Biol Chem 
283:3217–3223. https://doi.org/10.1074/jbc.M705873200 

172.  Kumar S, Christophides GK, Cantera R, et al (2003) The role of reactive oxygen species 
on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc Natl Acad Sci 
100:14139–14144. https://doi.org/10.1073/pnas.2036262100 

173.  Oliveira JHM, Gonçalves RLS, Oliveira GA, et al (2011) Energy metabolism affects 
susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection. Insect 
Biochem Mol Biol 41:349–355. https://doi.org/10.1016/j.ibmb.2011.02.001 

174.  Mitri C, Jacques J-C, Thiery I, et al (2009) Fine Pathogen Discrimination within the 
APL1 Gene Family Protects Anopheles gambiae against Human and Rodent Malaria 
Species. PLoS Pathog 5:e1000576. https://doi.org/10.1371/journal.ppat.1000576 

175.  Garver LS, Dong Y, Dimopoulos G (2009) Caspar Controls Resistance to Plasmodium 
falciparum in Diverse Anopheline Species. PLoS Pathog 5:e1000335. 
https://doi.org/10.1371/journal.ppat.1000335 

176.  Cohuet A, Osta MA, Morlais I, et al (2006) Anopheles and Plasmodium: from 
laboratory models to natural systems in the field. EMBO Rep 7:1285–1289. 
https://doi.org/10.1038/sj.embor.7400831 

177.  Molina-Cruz A, Garver LS, Alabaster A, et al (2013) The Human Malaria Parasite 
Pfs47 Gene Mediates Evasion of the Mosquito Immune System. Science 340:984–987. 
https://doi.org/10.1126/science.1235264 

178.  Molina-Cruz A, DeJong RJ, Ortega C, et al (2012) Some strains of Plasmodium 
falciparum, a human malaria parasite, evade the complement-like system of Anopheles 
gambiae mosquitoes. Proc Natl Acad Sci 109:E1957–E1962. 
https://doi.org/10.1073/pnas.1121183109 

179.  Manske M, Miotto O, Campino S, et al (2012) Analysis of Plasmodium falciparum 
diversity in natural infections by deep sequencing. Nature 487:375–379. 
https://doi.org/10.1038/nature11174 



 
180.  Anthony TG, Polley SD, Vogler AP, Conway DJ (2007) Evidence of non-neutral 

polymorphism in Plasmodium falciparum gamete surface protein genes Pfs47 and 
Pfs48/45. Mol Biochem Parasitol 156:117–123. 
https://doi.org/10.1016/j.molbiopara.2007.07.008 

181.  Molina-Cruz A, Canepa GE, Barillas-Mury C (2017) Plasmodium P47: a key gene for 
malaria transmission by mosquito vectors. Curr Opin Microbiol 40:168–174. 
https://doi.org/10.1016/j.mib.2017.11.029 

182.  Dong Y, Dimopoulos G (2009) Anopheles Fibrinogen-related Proteins Provide 
Expanded Pattern Recognition Capacity against Bacteria and Malaria Parasites. J Biol 
Chem 284:9835–9844. https://doi.org/10.1074/jbc.M807084200 

183.  Ukegbu CV, Giorgalli M, Yassine H, et al (2017) Plasmodium berghei P47 is essential 
for ookinete protection from the Anopheles gambiae complement-like response. Sci Rep 
7:6026. https://doi.org/10.1038/s41598-017-05917-6 

184.  Smith RC, Jacobs-Lorena M (2015) Malaria parasite Pfs47 disrupts JNK signaling to 
escape mosquito immunity. Proc Natl Acad Sci 112:1250–1251. 
https://doi.org/10.1073/pnas.1424227112 

185.  Smith RC, Barillas-Mury C, Jacobs-Lorena M (2015) Hemocyte differentiation 
mediates the mosquito late-phase immune response against Plasmodium in Anopheles 
gambiae. Proc Natl Acad Sci U S A 112:E3412-3420. 
https://doi.org/10.1073/pnas.1420078112 

186.  Smith RC, Eappen AG, Radtke AJ, Jacobs-Lorena M (2012) Regulation of Anti-
Plasmodium Immunity by a LITAF-like Transcription Factor in the Malaria Vector 
Anopheles gambiae. PLoS Pathog 8:e1002965. 
https://doi.org/10.1371/journal.ppat.1002965 

187.  Nsango SE, Pompon J, Xie T, et al (2013) AP-1/Fos-TGase2 Axis Mediates Wounding-
induced Plasmodium falciparum Killing in Anopheles gambiae. J Biol Chem 
288:16145–16154. https://doi.org/10.1074/jbc.M112.443267 

188.  Lemaitre B, Hoffmann J (2007) The Host Defense of Drosophila melanogaster. Annu 
Rev Immunol 25:697–743. https://doi.org/10.1146/annurev.immunol.25.022106.141615 

189.  Imler J-L (2014) Overview of Drosophila immunity: A historical perspective. Dev 
Comp Immunol 42:3–15. https://doi.org/10.1016/j.dci.2013.08.018 

190.  Lawrence PO (2008) Hemocytes of Insects: Their Morphology and Function. In: 
Capinera JL (ed) Encyclopedia of Entomology. Springer Netherlands, pp 1787–1790 



 

 221 

191.  Severo MS, Landry JJM, Lindquist RL, et al (2018) Unbiased classification of mosquito 
blood cells by single-cell genomics and high-content imaging. Proc Natl Acad Sci 
115:E7568–E7577. https://doi.org/10.1073/pnas.1803062115 

192.  Kwon H, Smith RC (2019) Chemical depletion of phagocytic immune cells in 
Anopheles gambiae reveals dual roles of mosquito hemocytes in anti-Plasmodium 
immunity. Proc Natl Acad Sci 116:14119–14128. 
https://doi.org/10.1073/pnas.1900147116 

193.  Rodrigues J, Brayner FA, Alves LC, et al (2010) Hemocyte Differentiation Mediates 
Innate Immune Memory in Anopheles gambiae Mosquitoes. Science 329:1353–1355. 
https://doi.org/10.1126/science.1190689 

194.  Ramirez JL, de Almeida Oliveira G, Calvo E, et al (2015) A mosquito lipoxin/lipocalin 
complex mediates innate immune priming in Anopheles gambiae. Nat Commun 6:. 
https://doi.org/10.1038/ncomms8403 

195.  Simões ML, Dimopoulos G A mosquito mediator of parasite-induced immune priming. 
Trends Parasitol. https://doi.org/10.1016/j.pt.2015.07.004 

196.  Stanley D (2006) PROSTAGLANDINS AND OTHER EICOSANOIDS IN INSECTS: 
Biological Significance. Annu Rev Entomol 51:25–44. 
https://doi.org/10.1146/annurev.ento.51.110104.151021 

197.  Hoxmeier JC, Thompson BD, Broeckling CD, et al (2015) Analysis of the metabolome 
of Anopheles gambiae mosquito after exposure to Mycobacterium ulcerans. Sci Rep 
5:9242. https://doi.org/10.1038/srep09242 

198.  Hwang J, Park Y, Kim Y, et al (2013) AN ENTOMOPATHOGENIC BACTERIUM, 
Xenorhabdus nematophila, SUPPRESSES EXPRESSION OF ANTIMICROBIAL 
PEPTIDES CONTROLLED BY TOLL AND IMD PATHWAYS BY BLOCKING 
EICOSANOID BIOSYNTHESIS. Arch Insect Biochem Physiol 83:151–169. 
https://doi.org/10.1002/arch.21103 

199.  Moreno-García M, Recio-Tótoro B, Claudio-Piedras F, Lanz-Mendoza H (2014) Injury 
and immune response: applying the danger theory to mosquitoes. Plant Biot Interact 
5:451. https://doi.org/10.3389/fpls.2014.00451 

200.  Choi Y-J, Fuchs JF, Mayhew GF, et al (2012) Tissue-enriched expression profiles in 
Aedes aegypti identify hemocyte-specific transcriptome responses to infection. Insect 
Biochem Mol Biol 42:729–738. https://doi.org/10.1016/j.ibmb.2012.06.005 

201.  Mestas J, Hughes CCW (2004) Of Mice and Not Men: Differences between Mouse and 
Human Immunology. J Immunol 172:2731–2738. 
https://doi.org/10.4049/jimmunol.172.5.2731 



 
202.  Pinto SB, Lombardo F, Koutsos AC, et al (2009) Discovery of Plasmodium modulators 

by genome-wide analysis of circulating hemocytes in Anopheles gambiae. Proc Natl 
Acad Sci 106:21270–21275. https://doi.org/10.1073/pnas.0909463106 

203.  Baton LA, Robertson A, Warr E, et al (2009) Genome-wide transcriptomic profiling of 
Anopheles gambiae hemocytes reveals pathogen-specific signatures upon bacterial 
challenge and Plasmodium berghei infection. BMC Genomics 10:257. 
https://doi.org/10.1186/1471-2164-10-257 

204.  Thomas T, De TD, Sharma P, et al (2016) Hemocytome: deep sequencing analysis of 
mosquito blood cells in Indian malarial vector Anopheles stephensi. Gene 585:177–190. 
https://doi.org/10.1016/j.gene.2016.02.031 

205.  Lombardo F, Ghani Y, Kafatos FC, Christophides GK (2013) Comprehensive Genetic 
Dissection of the Hemocyte Immune Response in the Malaria Mosquito Anopheles 
gambiae. PLoS Pathog 9:e1003145. https://doi.org/10.1371/journal.ppat.1003145 

206.  Guttman M, Garber M, Levin JZ, et al (2010) Ab initio reconstruction of cell type-
specific transcriptomes in mouse reveals the conserved multi-exonic structure of 
lincRNAs. Nat Biotechnol 28:503–510. https://doi.org/10.1038/nbt.1633 

207.  Treutlein B, Brownfield DG, Wu AR, et al (2014) Reconstructing lineage hierarchies of 
the distal lung epithelium using single-cell RNA-seq. Nature 509:371–375. 
https://doi.org/10.1038/nature13173 

208.  Shalek AK, Satija R, Shuga J, et al (2014) Single-cell RNA-seq reveals dynamic 
paracrine control of cellular variation. Nature 510:363–369. 
https://doi.org/10.1038/nature13437 

209.  Kolodziejczyk AA, Kim JK, Svensson V, et al (2015) The Technology and Biology of 
Single-Cell RNA Sequencing. Mol Cell 58:610–620. 
https://doi.org/10.1016/j.molcel.2015.04.005 

210.  Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in 
single-cell transcriptomics. Nat Rev Genet 16:133–145. https://doi.org/10.1038/nrg3833 

211.  Trapnell C, Cacchiarelli D, Grimsby J, et al (2014) The dynamics and regulators of cell 
fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 
32:381–386. https://doi.org/10.1038/nbt.2859 

212.  Bengtsson M, Ståhlberg A, Rorsman P, Kubista M (2005) Gene expression profiling in 
single cells from the pancreatic islets of Langerhans reveals lognormal distribution of 
mRNA levels. Genome Res 15:1388–1392. https://doi.org/10.1101/gr.3820805 



 

 223 

213.  Chang HH, Hemberg M, Barahona M, et al (2008) Transcriptome-wide noise controls 
lineage choice in mammalian progenitor cells. Nature 453:544–547. 
https://doi.org/10.1038/nature06965 

214.  Chen X, Teichmann SA, Meyer KB (2018) From Tissues to Cell Types and Back: 
Single-Cell Gene Expression Analysis of Tissue Architecture. Annu Rev Biomed Data 
Sci 1:29–51. https://doi.org/10.1146/annurev-biodatasci-080917-013452 

215.  Picelli S (2017) Single-cell RNA-sequencing: The future of genome biology is now. 
RNA Biol 14:637–650. https://doi.org/10.1080/15476286.2016.1201618 

216.  Tang F, Barbacioru C, Wang Y, et al (2009) mRNA-Seq whole-transcriptome analysis 
of a single cell. Nat Methods 6:377–382. https://doi.org/10.1038/nmeth.1315 

217.  Svensson V, Vento-Tormo R, Teichmann SA (2018) Exponential scaling of single-cell 
RNA-seq in the past decade. Nat Protoc 13:599–604. 
https://doi.org/10.1038/nprot.2017.149 

218.  Eberwine J, Kim J (2015) Cellular Deconstruction: Finding Meaning in Individual Cell 
Variation. Trends Cell Biol 25:569–578. https://doi.org/10.1016/j.tcb.2015.07.004 

219.  Islam S, Zeisel A, Joost S, et al (2014) Quantitative single-cell RNA-seq with unique 
molecular identifiers. Nat Methods 11:163–166. https://doi.org/10.1038/nmeth.2772 

220.  Depledge DP, Srinivas KP, Sadaoka T, et al (2019) Direct RNA sequencing on 
nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat 
Commun 10:754. https://doi.org/10.1038/s41467-019-08734-9 

221.  Islam S, Kjällquist U, Moliner A, et al (2011) Characterization of the single-cell 
transcriptional landscape by highly multiplex RNA-seq. Genome Res 21:1160–1167. 
https://doi.org/10.1101/gr.110882.110 

222.  Brennecke P, Anders S, Kim JK, et al (2013) Accounting for technical noise in single-
cell RNA-seq experiments. Nat Methods 10:1093–1095. 
https://doi.org/10.1038/nmeth.2645 

223.  Jaitin DA, Kenigsberg E, Keren-Shaul H, et al (2014) Massively Parallel Single-Cell 
RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types. Science 343:776–
779. https://doi.org/10.1126/science.1247651 

224.  Klein AM, Mazutis L, Akartuna I, et al (2015) Droplet Barcoding for Single-Cell 
Transcriptomics Applied to Embryonic Stem Cells. Cell 161:1187–1201. 
https://doi.org/10.1016/j.cell.2015.04.044 



 
225.  Macosko EZ, Basu A, Satija R, et al (2015) Highly Parallel Genome-wide Expression 

Profiling of Individual Cells Using Nanoliter Droplets. Cell 161:1202–1214. 
https://doi.org/10.1016/j.cell.2015.05.002 

226.  Bose S, Wan Z, Carr A, et al (2015) Scalable microfluidics for single-cell RNA printing 
and sequencing. Genome Biol 16:120. https://doi.org/10.1186/s13059-015-0684-3 

227.  Cao J, Packer JS, Ramani V, et al (2017) Comprehensive single-cell transcriptional 
profiling of a multicellular organism. Science 357:661–667. 
https://doi.org/10.1126/science.aam8940 

228.  Rosenberg AB, Roco CM, Muscat RA, et al (2018) Single-cell profiling of the 
developing mouse brain and spinal cord with split-pool barcoding. Science 360:176–
182. https://doi.org/10.1126/science.aam8999 

229.  Gross A, Schoendube J, Zimmermann S, et al (2015) Technologies for Single-Cell 
Isolation. Int J Mol Sci 16:16897–16919. https://doi.org/10.3390/ijms160816897 

230.  Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and 
bioinformatics pipelines. Exp Mol Med 50:96. https://doi.org/10.1038/s12276-018-
0071-8 

231.  Chen G, Ning B, Shi T (2019) Single-Cell RNA-Seq Technologies and Related 
Computational Data Analysis. Front Genet 10:. 
https://doi.org/10.3389/fgene.2019.00317 

232.  Nguyen QH, Pervolarakis N, Nee K, Kessenbrock K (2018) Experimental 
Considerations for Single-Cell RNA Sequencing Approaches. Front Cell Dev Biol 6:. 
https://doi.org/10.3389/fcell.2018.00108 

233.  Tung P-Y, Blischak JD, Hsiao CJ, et al (2017) Batch effects and the effective design of 
single-cell gene expression studies. Sci Rep 7:. https://doi.org/10.1038/srep39921 

234.  van den Brink SC, Sage F, Vértesy Á, et al (2017) Single-cell sequencing reveals 
dissociation-induced gene expression in tissue subpopulations. Nat Methods 14:935–
936. https://doi.org/10.1038/nmeth.4437 

235.  Attar M, Sharma E, Li S, et al (2018) A practical solution for preserving single cells for 
RNA sequencing. Sci Rep 8:2151. https://doi.org/10.1038/s41598-018-20372-7 

236.  Chen J, Cheung F, Shi R, et al (2018) PBMC fixation and processing for Chromium 
single-cell RNA sequencing. J Transl Med 16:. https://doi.org/10.1186/s12967-018-
1578-4 



 

 225 

237.  Ziegenhain C, Vieth B, Parekh S, et al (2017) Comparative Analysis of Single-Cell 
RNA Sequencing Methods. Mol Cell 65:631-643.e4. 
https://doi.org/10.1016/j.molcel.2017.01.023 

238.  Sasagawa Y, Nikaido I, Hayashi T, et al (2013) Quartz-Seq: a highly reproducible and 
sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression 
heterogeneity. Genome Biol 14:R31. https://doi.org/10.1186/gb-2013-14-4-r31 

239.  Picelli S, Faridani OR, Björklund ÅK, et al (2014) Full-length RNA-seq from single 
cells using Smart-seq2. Nat Protoc 9:171–181. https://doi.org/10.1038/nprot.2014.006 

240.  Picelli S, Björklund ÅK, Faridani OR, et al (2013) Smart-seq2 for sensitive full-length 
transcriptome profiling in single cells. Nat Methods 10:1096–1098. 
https://doi.org/10.1038/nmeth.2639 

241.  Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-Seq by 
multiplexed linear amplification. Cell Rep 2:666–673. 
https://doi.org/10.1016/j.celrep.2012.08.003 

242.  Kivioja T, Vähärautio A, Karlsson K, et al (2012) Counting absolute numbers of 
molecules using unique molecular identifiers. Nat Methods 9:72–74. 
https://doi.org/10.1038/nmeth.1778 

243.  Hashimshony T, Senderovich N, Avital G, et al (2016) CEL-Seq2: sensitive highly-
multiplexed single-cell RNA-Seq. Genome Biol 17:77. https://doi.org/10.1186/s13059-
016-0938-8 

244.  Islam S, Kjällquist U, Moliner A, et al (2012) Highly multiplexed and strand-specific 
single-cell RNA 5’ end sequencing. Nat Protoc 7:813–828. 
https://doi.org/10.1038/nprot.2012.022 

245.  Zhang X, Li T, Liu F, et al (2019) Comparative Analysis of Droplet-Based Ultra-High-
Throughput Single-Cell RNA-Seq Systems. Mol Cell 73:130-142.e5. 
https://doi.org/10.1016/j.molcel.2018.10.020 

246.  Zheng GXY, Terry JM, Belgrader P, et al (2017) Massively parallel digital 
transcriptional profiling of single cells. Nat Commun 8:14049. 
https://doi.org/10.1038/ncomms14049 

247.  Single-Cell RNA Sequencing with Drop-Seq | Springer Nature Experiments. 
https://experiments.springernature.com/articles/10.1007/978-1-4939-9240-9_6. 
Accessed 12 Jul 2019 



 
248.  Gierahn TM, Ii MHW, Hughes TK, et al (2017) Seq-Well: portable, low-cost RNA 

sequencing of single cells at high throughput. Nat Methods 14:395–398. 
https://doi.org/10.1038/nmeth.4179 

249.  Seq-Well: A Sample-Efficient, Portable Picowell Platform for Massively Parallel 
Single-Cell RNA Sequencing | Springer Nature Experiments. 
https://experiments.springernature.com/articles/10.1007/978-1-4939-9240-9_8. 
Accessed 12 Jul 2019 

250.  Cao J, Spielmann M, Qiu X, et al (2019) The single-cell transcriptional landscape of 
mammalian organogenesis. Nature 566:496–502. https://doi.org/10.1038/s41586-019-
0969-x 

251.  Cusanovich DA, Daza R, Adey A, et al (2015) Multiplex single-cell profiling of 
chromatin accessibility by combinatorial cellular indexing. Science 348:910–914. 
https://doi.org/10.1126/science.aab1601 

252.  Vitak SA, Torkenczy KA, Rosenkrantz JL, et al (2017) Sequencing thousands of single-
cell genomes with combinatorial indexing. Nat Methods 14:302–308. 
https://doi.org/10.1038/nmeth.4154 

253.  Ramani V, Deng X, Qiu R, et al (2017) Massively multiplex single-cell Hi-C. Nat 
Methods 14:263–266. https://doi.org/10.1038/nmeth.4155 

254.  Mulqueen RM, Pokholok D, Norberg SJ, et al (2018) Highly scalable generation of 
DNA methylation profiles in single cells. Nat Biotechnol 36:428–431. 
https://doi.org/10.1038/nbt.4112 

255.  Pollen AA, Nowakowski TJ, Shuga J, et al (2014) Low-coverage single-cell mRNA 
sequencing reveals cellular heterogeneity and activated signaling pathways in 
developing cerebral cortex. Nat Biotechnol 32:1053–1058. 
https://doi.org/10.1038/nbt.2967 

256.  Satija R, Farrell JA, Gennert D, et al (2015) Spatial reconstruction of single-cell gene 
expression data. Nat Biotechnol 33:495–502. https://doi.org/10.1038/nbt.3192 

257.  Wolf FA, Angerer P, Theis FJ (2018) SCANPY: large-scale single-cell gene expression 
data analysis. Genome Biol 19:15. https://doi.org/10.1186/s13059-017-1382-0 

258.  McCarthy DJ, Campbell KR, Lun ATL, Wills QF (2017) Scater: pre-processing, quality 
control, normalization and visualization of single-cell RNA-seq data in R. Bioinforma 
Oxf Engl 33:1179–1186. https://doi.org/10.1093/bioinformatics/btw777 

259.  Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq 
quantification. Nat Biotechnol 34:525–527. https://doi.org/10.1038/nbt.3519 



 

 227 

260.  Patro R, Duggal G, Love MI, et al (2017) Salmon provides fast and bias-aware 
quantification of transcript expression. Nat Methods 14:417–419. 
https://doi.org/10.1038/nmeth.4197 

261.  Kim D, Pertea G, Trapnell C, et al (2013) TopHat2: accurate alignment of 
transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 
14:R36. https://doi.org/10.1186/gb-2013-14-4-r36 

262.  Dobin A, Gingeras TR (2015) Mapping RNA-seq Reads with STAR. Curr Protoc 
Bioinforma 51:11.14.1-19. https://doi.org/10.1002/0471250953.bi1114s51 

263.  Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low 
memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317 

264.  Engström PG, Steijger T, Sipos B, et al (2013) Systematic evaluation of spliced 
alignment programs for RNA-seq data. Nat Methods 10:1185–1191. 
https://doi.org/10.1038/nmeth.2722 

265.  Everaert C, Luypaert M, Maag JLV, et al (2017) Benchmarking of RNA-sequencing 
analysis workflows using whole-transcriptome RT-qPCR expression data. Sci Rep 
7:1559. https://doi.org/10.1038/s41598-017-01617-3 

266.  Teng M, Love MI, Davis CA, et al (2016) A benchmark for RNA-seq quantification 
pipelines. Genome Biol 17:74. https://doi.org/10.1186/s13059-016-0940-1 

267.  Huang M, Wang J, Torre E, et al (2018) SAVER: gene expression recovery for single-
cell RNA sequencing. Nat Methods 15:539. https://doi.org/10.1038/s41592-018-0033-z 

268.  Jiang L, Schlesinger F, Davis CA, et al (2011) Synthetic spike-in standards for RNA-seq 
experiments. Genome Res 21:1543–1551. https://doi.org/10.1101/gr.121095.111 

269.  Ilicic T, Kim JK, Kolodziejczyk AA, et al (2016) Classification of low quality cells 
from single-cell RNA-seq data. Genome Biol 17:. https://doi.org/10.1186/s13059-016-
0888-1 

270.  Vallejos CA, Risso D, Scialdone A, et al (2017) Normalizing single-cell RNA 
sequencing data: challenges and opportunities. Nat Methods 14:565–571. 
https://doi.org/10.1038/nmeth.4292 

271.  Bacher R, Kendziorski C (2016) Design and computational analysis of single-cell RNA-
sequencing experiments. Genome Biol 17:63. https://doi.org/10.1186/s13059-016-0927-
y 



 
272.  Katayama S, Töhönen V, Linnarsson S, Kere J (2013) SAMstrt: statistical test for 

differential expression in single-cell transcriptome with spike-in normalization. 
Bioinforma Oxf Engl 29:2943–2945. https://doi.org/10.1093/bioinformatics/btt511 

273.  Buettner F, Natarajan KN, Casale FP, et al (2015) Computational analysis of cell-to-cell 
heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of 
cells. Nat Biotechnol 33:155–160. https://doi.org/10.1038/nbt.3102 

274.  Bacher R, Chu L-F, Leng N, et al (2017) SCnorm: robust normalization of single-cell 
RNA-seq data. Nat Methods 14:584–586. https://doi.org/10.1038/nmeth.4263 

275.  Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell 
RNA-seq data using regularized negative binomial regression. bioRxiv 576827. 
https://doi.org/10.1101/576827 

276.  Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray 
expression data using empirical Bayes methods. Biostatistics 8:118–127. 
https://doi.org/10.1093/biostatistics/kxj037 

277.  Butler A, Hoffman P, Smibert P, et al (2018) Integrating single-cell transcriptomic data 
across different conditions, technologies, and species. Nat Biotechnol 36:411–420. 
https://doi.org/10.1038/nbt.4096 

278.  Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018) Batch effects in single-cell 
RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat 
Biotechnol 36:421–427. https://doi.org/10.1038/nbt.4091 

279.  Finak G, McDavid A, Yajima M, et al (2015) MAST: a flexible statistical framework 
for assessing transcriptional changes and characterizing heterogeneity in single-cell 
RNA sequencing data. Genome Biol 16:278. https://doi.org/10.1186/s13059-015-0844-
5 

280.  Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. 
https://doi.org/10.1186/s13059-014-0550-8 

281.  Ritchie ME, Phipson B, Wu D, et al (2015) limma powers differential expression 
analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47–e47. 
https://doi.org/10.1093/nar/gkv007 

282.  Büttner M, Miao Z, Wolf FA, et al (2019) A test metric for assessing single-cell RNA-
seq batch correction. Nat Methods 16:43. https://doi.org/10.1038/s41592-018-0254-1 

283.  Maaten L van der, Hinton G (2008) Visualizing Data using t-SNE. J Mach Learn Res 
9:2579–2605 



 

 229 

284.  Becht E, McInnes L, Healy J, et al (2018) Dimensionality reduction for visualizing 
single-cell data using UMAP. Nat Biotechnol. https://doi.org/10.1038/nbt.4314 

285.  Ding J, Condon A, Shah SP (2018) Interpretable dimensionality reduction of single cell 
transcriptome data with deep generative models. Nat Commun 9:2002. 
https://doi.org/10.1038/s41467-018-04368-5 

286.  Andrews TS, Hemberg M (2018) M3Drop: Dropout-based feature selection for 
scRNASeq. Bioinforma Oxf Engl. https://doi.org/10.1093/bioinformatics/bty1044 

287.  Andrews TS, Hemberg M (2018) Identifying cell populations with scRNASeq. Mol 
Aspects Med 59:114–122. https://doi.org/10.1016/j.mam.2017.07.002 

288.  Soneson C, Robinson MD (2018) Bias, robustness and scalability in single-cell 
differential expression analysis. Nat Methods 15:255–261. 
https://doi.org/10.1038/nmeth.4612 

289.  Kiselev VY, Kirschner K, Schaub MT, et al (2016) SC3 - consensus clustering of 
single-cell RNA-Seq data. bioRxiv 036558. https://doi.org/10.1101/036558 

290.  Seyednasrollah F, Rantanen K, Jaakkola P, Elo LL (2016) ROTS: reproducible RNA-
seq biomarker detector-prognostic markers for clear cell renal cell cancer. Nucleic Acids 
Res 44:e1. https://doi.org/10.1093/nar/gkv806 

291.  Angerer P, Haghverdi L, Büttner M, et al (2016) destiny: diffusion maps for large-scale 
single-cell data in R. Bioinforma Oxf Engl 32:1241–1243. 
https://doi.org/10.1093/bioinformatics/btv715 

292.  Chen L, Zheng S (2018) BCseq: accurate single cell RNA-seq quantification with bias 
correction. Nucleic Acids Res 46:e82. https://doi.org/10.1093/nar/gky308 

293.  Xu C, Su Z (2015) Identification of cell types from single-cell transcriptomes using a 
novel clustering method. Bioinforma Oxf Engl 31:1974–1980. 
https://doi.org/10.1093/bioinformatics/btv088 

294.  Kharchenko PV, Silberstein L, Scadden DT (2014) Bayesian approach to single-cell 
differential expression analysis. Nat Methods 11:740–742. 
https://doi.org/10.1038/nmeth.2967 

295.  Grün D, Lyubimova A, Kester L, et al (2015) Single-cell messenger RNA sequencing 
reveals rare intestinal cell types. Nature 525:251–255. 
https://doi.org/10.1038/nature14966 



 
296.  Miao Z, Deng K, Wang X, Zhang X (2018) DEsingle for detecting three types of 

differential expression in single-cell RNA-seq data. Bioinforma Oxf Engl 34:3223–
3224. https://doi.org/10.1093/bioinformatics/bty332 

297.  Marco E, Karp RL, Guo G, et al (2014) Bifurcation analysis of single-cell gene 
expression data reveals epigenetic landscape. Proc Natl Acad Sci U S A 111:E5643-
5650. https://doi.org/10.1073/pnas.1408993111 

298.  Qiu X, Hill A, Packer J, et al (2017) Single-cell mRNA quantification and differential 
analysis with Census. Nat Methods 14:309–315. https://doi.org/10.1038/nmeth.4150 

299.  Zeisel A, Muñoz-Manchado AB, Codeluppi S, et al (2015) Brain structure. Cell types in 
the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 
347:1138–1142. https://doi.org/10.1126/science.aaa1934 

300.  Delmans M, Hemberg M (2016) Discrete distributional differential expression (D3E)--a 
tool for gene expression analysis of single-cell RNA-seq data. BMC Bioinformatics 
17:110. https://doi.org/10.1186/s12859-016-0944-6 

301.  Fan J, Salathia N, Liu R, et al (2016) Characterizing transcriptional heterogeneity 
through pathway and gene set overdispersion analysis. Nat Methods 13:241–244. 
https://doi.org/10.1038/nmeth.3734 

302.  Vu TN, Wills QF, Kalari KR, et al (2016) Beta-Poisson model for single-cell RNA-seq 
data analyses. Bioinforma Oxf Engl 32:2128–2135. 
https://doi.org/10.1093/bioinformatics/btw202 

303.  Lin P, Troup M, Ho JWK (2017) CIDR: Ultrafast and accurate clustering through 
imputation for single-cell RNA-seq data. Genome Biol 18:59. 
https://doi.org/10.1186/s13059-017-1188-0 

304.  Žurauskienė J, Yau C (2016) pcaReduce: hierarchical clustering of single cell 
transcriptional profiles. BMC Bioinformatics 17:140. https://doi.org/10.1186/s12859-
016-0984-y 

305.  Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. Bioinforma Oxf Engl 
26:139–140. https://doi.org/10.1093/bioinformatics/btp616 

306.  Ji Z, Ji H (2016) TSCAN: Pseudo-time reconstruction and evaluation in single-cell 
RNA-seq analysis. Nucleic Acids Res 44:e117. https://doi.org/10.1093/nar/gkw430 

307.  Pierson E, Yau C (2015) ZIFA: Dimensionality reduction for zero-inflated single-cell 
gene expression analysis. Genome Biol 16:241. https://doi.org/10.1186/s13059-015-
0805-z 



 

 231 

308.  Frazee AC, Pertea G, Jaffe AE, et al (2015) Ballgown bridges the gap between 
transcriptome assembly and expression analysis. Nat Biotechnol 33:243–246. 
https://doi.org/10.1038/nbt.3172 

309.  Street K, Risso D, Fletcher RB, et al (2018) Slingshot: cell lineage and pseudotime 
inference for single-cell transcriptomics. BMC Genomics 19:477. 
https://doi.org/10.1186/s12864-018-4772-0 

310.  Lummertz da Rocha E, Rowe RG, Lundin V, et al (2018) Reconstruction of complex 
single-cell trajectories using CellRouter. Nat Commun 9:892. 
https://doi.org/10.1038/s41467-018-03214-y 

311.  Saelens W, Cannoodt R, Todorov H, Saeys Y (2019) A comparison of single-cell 
trajectory inference methods. Nat Biotechnol 37:547–554. 
https://doi.org/10.1038/s41587-019-0071-9 

312.  Aibar S, González-Blas CB, Moerman T, et al (2017) SCENIC: single-cell regulatory 
network inference and clustering. Nat Methods 14:1083–1086. 
https://doi.org/10.1038/nmeth.4463 

313.  Chan TE, Stumpf MPH, Babtie AC (2017) Gene Regulatory Network Inference from 
Single-Cell Data Using Multivariate Information Measures. Cell Syst 5:251-267.e3. 
https://doi.org/10.1016/j.cels.2017.08.014 

314.  Wang ET, Sandberg R, Luo S, et al (2008) Alternative isoform regulation in human 
tissue transcriptomes. Nature 456:470–476. https://doi.org/10.1038/nature07509 

315.  Welch JD, Hu Y, Prins JF (2016) Robust detection of alternative splicing in a 
population of single cells. Nucleic Acids Res 44:e73. 
https://doi.org/10.1093/nar/gkv1525 

316.  Huang Y, Sanguinetti G (2017) BRIE: transcriptome-wide splicing quantification in 
single cells. Genome Biol 18:123. https://doi.org/10.1186/s13059-017-1248-5 

317.  Song Y, Botvinnik OB, Lovci MT, et al (2017) Single-Cell Alternative Splicing 
Analysis with Expedition Reveals Splicing Dynamics during Neuron Differentiation. 
Mol Cell 67:148-161.e5. https://doi.org/10.1016/j.molcel.2017.06.003 

318.  See P, Lum J, Chen J, Ginhoux F (2018) A Single-Cell Sequencing Guide for 
Immunologists. Front Immunol 9:. https://doi.org/10.3389/fimmu.2018.02425 

319.  Franke-Fayard B, Trueman H, Ramesar J, et al (2004) A Plasmodium berghei reference 
line that constitutively expresses GFP at a high level throughout the complete life cycle. 
Mol Biochem Parasitol 137:23–33. https://doi.org/10.1016/j.molbiopara.2004.04.007 



 
320.  McCarthy D, Wills Q, Campbell K scater: Single-cell analysis toolkit for gene 

expression data in R. In: R Package Version 1113. https://github.com/davismcc/scater. 
Accessed 8 Sep 2016 

321.  Hartigan JA, Wong MA (1979) Algorithm AS 136: A K-Means Clustering Algorithm. J 
R Stat Soc Ser C Appl Stat 28:100–108. https://doi.org/10.2307/2346830 

322.  Volohonsky G, Terenzi O, Soichot J, et al (2015) Tools for Anopheles gambiae 
Transgenesis. G3 GenesGenomesGenetics 5:1151–1163. 
https://doi.org/10.1534/g3.115.016808 

323.  Sandiford SL, Dong Y, Pike A, et al (2015) Cytoplasmic Actin Is an Extracellular Insect 
Immune Factor which Is Secreted upon Immune Challenge and Mediates Phagocytosis 
and Direct Killing of Bacteria, and Is a Plasmodium Antagonist. PLOS Pathog 
11:e1004631. https://doi.org/10.1371/journal.ppat.1004631 

324.  Lombardo F, Christophides GK (2016) Novel factors of Anopheles gambiae haemocyte 
immune response to Plasmodium berghei infection. Parasit Vectors 9:. 
https://doi.org/10.1186/s13071-016-1359-y 

325.  Robert Hooke (1665) Micrographia, or some physiological descriptions of minute 
bodies made by magnifying glasses, with observations and inquiries thereupon. By R. 
Hooke. Printed by JoMartyn, and JaAllestry, printers to the Royal Society, London 

326.  Hyman AH, Simons K (2011) The new cell biology: Beyond HeLa cells. Nature 480:34. 
https://doi.org/10.1038/480034a 

327.  Reynolds A (2008) Amoebae as Exemplary Cells: The Protean Nature of an Elementary 
Organism. J Hist Biol 41:307–337. https://doi.org/10.1007/s10739-007-9142-8 

328.  Fontana F (1781) Traité sur le vénin de la vipère, sur les poisons américaines 

329.  Schleiden: Arch Anat Physiol - Google Scholar. 
https://scholar.google.com/scholar_lookup?title=&journal=Arch.%20Anat.%20Physiol.
%20Wiss.%20Med.&volume=13&pages=137-
176&publication_year=1838&author=Schleiden%2CMJ. Accessed 24 Jul 2019 

330.  Harris H (2000) The Birth of the Cell. Yale University Press 

331.  Brown R (1833) XXXV. On the Organs and Mode of Fecundation in Orchideæ and 
Asclepiadeæ. Trans Linn Soc Lond 16:685–738. https://doi.org/10.1111/j.1095-
8339.1829.tb00158.x 

332.  Russell RJ (1984) The growth of biological thought: Diversity, evolution, and 
inheritance. Ethol Sociobiol 5:63–64. https://doi.org/10.1016/0162-3095(84)90038-4 



 

 233 

333.  Mazzarello P (1999) A unifying concept: the history of cell theory. Nat Cell Biol 1:E13. 
https://doi.org/10.1038/8964 

334.  GOLGI C (1898) Intorno all struttura delle cellule nervose. Arch Ital Biol 30:60–71 

335.  Ramón y Cajal S (1909) Histologie du système nerveux de l’homme & des vertébrés. 
Paris : Maloine 

336.  Mazzarello P (1996) La struttura nascosta: La vita di Camillo Golgi. Cisalpino, Bologna 

337.  Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 
25:1491–1498. https://doi.org/10.1101/gr.190595.115 

338.  Giraldo-Calderón GI, Emrich SJ, MacCallum RM, et al (2015) VectorBase: an updated 
bioinformatics resource for invertebrate vectors and other organisms related with human 
diseases. Nucleic Acids Res 43:D707-713. https://doi.org/10.1093/nar/gku1117 

339.  Stuart T, Butler A, Hoffman P, et al (2019) Comprehensive Integration of Single-Cell 
Data. Cell 177:1888-1902.e21. https://doi.org/10.1016/j.cell.2019.05.031 

340.  Haghverdi L, Büttner M, Wolf FA, et al (2016) Diffusion pseudotime robustly 
reconstructs lineage branching. Nat Methods 13:845–848. 
https://doi.org/10.1038/nmeth.3971 

341.  Qiu X, Mao Q, Tang Y, et al (2017) Reversed graph embedding resolves complex 
single-cell trajectories. Nat Methods 14:979–982. https://doi.org/10.1038/nmeth.4402 

342.  Manno GL, Soldatov R, Zeisel A, et al (2018) RNA velocity of single cells. Nature 
560:494. https://doi.org/10.1038/s41586-018-0414-6 

343.  (2019) Stochastic Single Cell RNA Velocity. Contribute to theislab/scvelo development 
by creating an account on GitHub. Theis Lab 

344.  Wolf FA, Hamey FK, Plass M, et al (2019) PAGA: graph abstraction reconciles 
clustering with trajectory inference through a topology preserving map of single cells. 
Genome Biol 20:59. https://doi.org/10.1186/s13059-019-1663-x 

345.  trajectory-based differential expression analysis for sequencing data. 
https://statomics.github.io/tradeSeq/index.html. Accessed 7 Sep 2019 

346.  Raudvere U, Kolberg L, Kuzmin I, et al (2019) g:Profiler: a web server for functional 
enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 
47:W191–W198. https://doi.org/10.1093/nar/gkz369 



 
347.  Ribeiro JMC, Topalis P, Louis C (2004) AnoXcel: an Anopheles gambiae protein 

database. Insect Mol Biol 13:449–457. https://doi.org/10.1111/j.0962-
1075.2004.00503.x 

348.  Smith RC, King JG, Tao D, et al (2016) Molecular Profiling of Phagocytic Immune 
Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate 
Immunity. Mol Cell Proteomics MCP 15:3373–3387. 
https://doi.org/10.1074/mcp.M116.060723 

349.  Zhao YO, Kurscheid S, Zhang Y, et al (2012) Enhanced survival of Plasmodium-
infected mosquitoes during starvation. PloS One 7:e40556. 
https://doi.org/10.1371/journal.pone.0040556 

350.  Kramerova IA, Kramerov AA (1999) Mucinoprotein is a universal constituent of stable 
intercellular bridges in Drosophila melanogaster germ line and somatic cells. Dev Dyn 
Off Publ Am Assoc Anat 216:349–360. https://doi.org/10.1002/(SICI)1097-
0177(199912)216:4/5<349::AID-DVDY4>3.0.CO;2-X 

351.  Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage 
chemokine secretion through toll-like receptor 4. J Immunol Baltim Md 1950 
167:2887–2894. https://doi.org/10.4049/jimmunol.167.5.2887 

352.  Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the Mosquito Midgut 
Microbiota in the Defense against Malaria Parasites. PLOS Pathog 5:e1000423. 
https://doi.org/10.1371/journal.ppat.1000423 

353.  Volz J, Müller H-M, Zdanowicz A, et al (2006) A genetic module regulates the 
melanization response of Anopheles to Plasmodium. Cell Microbiol 8:1392–1405. 
https://doi.org/10.1111/j.1462-5822.2006.00718.x 

354.  Dong Y, Aguilar R, Xi Z, et al (2006) Anopheles gambiae Immune Responses to 
Human and Rodent Plasmodium Parasite Species. PLOS Pathog 2:e52. 
https://doi.org/10.1371/journal.ppat.0020052 

355.  Kajla MK, Shi L, Li B, et al (2011) A New Role for an Old Antimicrobial: Lysozyme c-
1 Can Function to Protect Malaria Parasites in Anopheles Mosquitoes. PLoS ONE 6:. 
https://doi.org/10.1371/journal.pone.0019649 

356.  Nakhleh J, Christophides GK, Osta MA (2017) The serine protease homolog CLIPA14 
modulates the intensity of the immune response in the mosquito Anopheles gambiae. J 
Biol Chem 292:18217–18226. https://doi.org/10.1074/jbc.M117.797787 

357.  Michel K, Budd A, Pinto S, et al (2005) Anopheles gambiae SRPN2 facilitates midgut 
invasion by the malaria parasite Plasmodium berghei. EMBO Rep 6:891–897. 
https://doi.org/10.1038/sj.embor.7400478 



 

 235 

358.  Ramirez JL, Garver LS, Dimopoulos G (2009) Challenges and approaches for mosquito 
targeted malaria control. Curr Mol Med 9:116–130 

359.  Zieler H, Keister DB, Dvorak JA, Ribeiro JM (2001) A snake venom phospholipase 
A(2) blocks malaria parasite development in the mosquito midgut by inhibiting ookinete 
association with the midgut surface. J Exp Biol 204:4157–4167 

360.  Ito J, Ghosh A, Moreira LA, et al (2002) Transgenic anopheline mosquitoes impaired in 
transmission of a malaria parasite. Nature 417:452–455. 
https://doi.org/10.1038/417452a 

361.  Hammond A, Galizi R, Kyrou K, et al (2016) A CRISPR-Cas9 Gene Drive System 
Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae. 
Nat Biotechnol 34:78–83. https://doi.org/10.1038/nbt.3439 

362.  Yoshida S, Ioka D, Matsuoka H, et al (2001) Bacteria expressing single-chain 
immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem 
Parasitol 113:89–96 

363.  Gomes FM, Barillas-Mury C (2018) Infection of anopheline mosquitoes with 
Wolbachia: Implications for malaria control. PLoS Pathog 14:. 
https://doi.org/10.1371/journal.ppat.1007333 

364.  Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998) The mosquito Anopheles 
stephensi limits malaria parasite development with inducible synthesis of nitric oxide. 
Proc Natl Acad Sci U S A 95:5700–5705. https://doi.org/10.1073/pnas.95.10.5700 

365.  Blandin S, Shiao S-H, Moita LF, et al (2004) Complement-like protein TEP1 is a 
determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 
116:661–670. https://doi.org/10.1016/s0092-8674(04)00173-4 

366.  Ramirez JL, Garver LS, Brayner FA, et al (2014) The role of hemocytes in Anopheles 
gambiae antiplasmodial immunity. J Innate Immun 6:119–128. 
https://doi.org/10.1159/000353765 

367.  Castillo JC, Ferreira ABB, Trisnadi N, Barillas-Mury C (2017) Activation of mosquito 
complement antiplasmodial response requires cellular immunity. Sci Immunol 2:. 
https://doi.org/10.1126/sciimmunol.aal1505 

368.  Kumar S, Gupta L, Han YS, Barillas-Mury C (2004) Inducible peroxidases mediate 
nitration of anopheles midgut cells undergoing apoptosis in response to Plasmodium 
invasion. J Biol Chem 279:53475–53482. https://doi.org/10.1074/jbc.M409905200 



 
369.  Oliveira G de A, Lieberman J, Barillas-Mury C (2012) Epithelial nitration by a 

peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 
335:856–859. https://doi.org/10.1126/science.1209678 

370.  Rodrigues J, Brayner FA, Alves LC, et al (2010) Hemocyte differentiation mediates 
innate immune memory in Anopheles gambiae mosquitoes. Science 329:1353–1355. 
https://doi.org/10.1126/science.1190689 

371.  Ramirez JL, de Almeida Oliveira G, Calvo E, et al (2015) A mosquito lipoxin/lipocalin 
complex mediates innate immune priming in Anopheles gambiae. Nat Commun 6:7403. 
https://doi.org/10.1038/ncomms8403 

372.  Smith RC, Barillas-Mury C, Jacobs-Lorena M (2015) Hemocyte differentiation 
mediates the mosquito late-phase immune response against Plasmodium in Anopheles 
gambiae. Proc Natl Acad Sci U S A 112:E3412-3420. 
https://doi.org/10.1073/pnas.1420078112 

373.  Blighe K (2019) Publication-ready volcano plots with enhanced colouring and labeling: 
kevinblighe/EnhancedVolcano 

374.  Gendrin M, Turlure F, Rodgers FH, et al (2017) The Peptidoglycan Recognition 
Proteins PGRPLA and PGRPLB Regulate Anopheles Immunity to Bacteria and Affect 
Infection by Plasmodium. J Innate Immun 9:333–342. 
https://doi.org/10.1159/000452797 

375.  Zhang X, An C, Sprigg K, Michel K (2016) CLIPB8 is part of the prophenoloxidase 
activation system in Anopheles gambiae mosquitoes. Insect Biochem Mol Biol 71:106–
115. https://doi.org/10.1016/j.ibmb.2016.02.008 

376.  Wang F, Hu C, Hua X, et al (2013) Translationally Controlled Tumor Protein, a Dual 
Functional Protein Involved in the Immune Response of the Silkworm, Bombyx mori. 
PLoS ONE 8:. https://doi.org/10.1371/journal.pone.0069284 

377.  Sung EJ, Ryuda M, Matsumoto H, et al (2017) Cytokine signaling through Drosophila 
Mthl10 ties lifespan to environmental stress. Proc Natl Acad Sci U S A 114:13786–
13791. https://doi.org/10.1073/pnas.1712453115 

378.  Ghartey-Kwansah G, Li Z, Feng R, et al (2018) Comparative analysis of FKBP family 
protein: evaluation, structure, and function in mammals and Drosophila melanogaster. 
BMC Dev Biol 18:7. https://doi.org/10.1186/s12861-018-0167-3 

379.  Rodríguez M del C, Martínez-Barnetche J, Alvarado-Delgado A, et al (2007) The 
surface protein Pvs25 of Plasmodium vivax ookinetes interacts with calreticulin on the 
midgut apical surface of the malaria vector Anopheles albimanus. Mol Biochem 
Parasitol 153:167–177. https://doi.org/10.1016/j.molbiopara.2007.03.002 



 

 237 

380.  Zhang G, Schmidt O, Asgari S (2006) A calreticulin-like protein from endoparasitoid 
venom fluid is involved in host hemocyte inactivation. Dev Comp Immunol 30:756–
764. https://doi.org/10.1016/j.dci.2005.11.001 

381.  Markesich DC, Gajewski KM, Nazimiec ME, Beckingham K (2000) bicaudal encodes 
the Drosophila beta NAC homolog, a component of the ribosomal translational 
machinery*. Dev Camb Engl 127:559–572 

382.  Duvic B, Hoffmann JA, Meister M, Royet J (2002) Notch Signaling Controls Lineage 
Specification during Drosophila Larval Hematopoiesis. Curr Biol 12:1923–1927. 
https://doi.org/10.1016/S0960-9822(02)01297-6 

383.  Zakovic S, Levashina EA (2017) NF-κB-Like Signaling Pathway REL2 in Immune 
Defenses of the Malaria Vector Anopheles gambiae. Front Cell Infect Microbiol 7:. 
https://doi.org/10.3389/fcimb.2017.00258 

384.  Hardbower DM, Asim M, Luis PB, et al (2017) Ornithine decarboxylase regulates M1 
macrophage activation and mucosal inflammation via histone modifications. Proc Natl 
Acad Sci U S A 114:E751–E760. https://doi.org/10.1073/pnas.1614958114 

385.  Walsh MC, Lee J, Choi Y (2015) Tumor necrosis factor receptor associated factor 6 
(TRAF6) regulation of development, function, and homeostasis of the immune system. 
Immunol Rev 266:72–92. https://doi.org/10.1111/imr.12302 

386.  Perišić Nanut M, Sabotič J, Jewett A, Kos J (2014) Cysteine Cathepsins as Regulators 
of the Cytotoxicity of NK and T Cells. Front Immunol 5:. 
https://doi.org/10.3389/fimmu.2014.00616 

387.  Beers C, Honey K, Fink S, et al (2003) Differential Regulation of Cathepsin S and 
Cathepsin L in Interferon γ–treated Macrophages. J Exp Med 197:169–179. 
https://doi.org/10.1084/jem.20020978 

388.  WHO World malaria report 2019 

389.  Castillo JC, Robertson AE, Strand MR (2006) Characterization of hemocytes from the 
mosquitoes Anopheles gambiae and Aedes aegypti. Insect Biochem Mol Biol 36:891–
903. https://doi.org/10.1016/j.ibmb.2006.08.010 

390.  Attardo GM, Hansen IA, Raikhel AS (2005) Nutritional regulation of vitellogenesis in 
mosquitoes: implications for anautogeny. Insect Biochem Mol Biol 35:661–675. 
https://doi.org/10.1016/j.ibmb.2005.02.013 

 

 



 

Appendix 

Seurat Marker Genes - Cell Types    
gene p_val_adj avg_logFC pct.1 pct.2 cluster 
AGAP012100 5.21E-87 0.325 0.973 0.975 0 
AGAP002464 9.33E-75 0.471 0.954 0.896 0 
AGAP011828 1.00E-71 0.498 0.833 0.699 0 
AGAP010163 2.29E-68 0.322 0.95 0.961 0 
AGAP000305 6.01E-58 0.383 0.877 0.702 0 
AGAP004936 5.04E-50 0.428 0.791 0.617 0 
AGAP007740 4.04E-45 0.258 0.964 0.966 0 
AGAP002422 2.74E-41 0.656 0.61 0.54 0 
AGAP011119 1.73E-40 0.421 0.744 0.622 0 
AGAP002465 1.54E-36 0.421 0.815 0.767 0 
AGAP012990 7.94E-33 0.291 0.858 0.89 0 
AGAP010591 3.65E-28 0.259 0.944 0.943 0 
AGAP029054 3.37E-22 0.340 0.73 0.625 0 
AGAP005611 4.83E-21 0.393 0.668 0.669 0 
AGAP004887 1.66E-19 0.254 0.872 0.916 0 
AGAP011424 2.37E-19 0.263 0.81 0.846 0 
AGAP009998 1.93E-17 0.271 0.845 0.894 0 
AGAP009324 5.68E-16 0.285 0.734 0.788 0 
AGAP005602 1.30E-13 0.285 0.133 0.258 0 
AGAP012893 1.25E-11 0.264 0.137 0.255 0 
AGAP008693 1.29E-10 0.288 0.173 0.307 0 
AGAP028028 1.23E-08 0.341 0.562 0.541 0 
AGAP004017 1.98E-07 0.375 0.532 0.525 0 
AGAP013186 4.14E-07 0.292 0.179 0.299 0 
AGAP008165 1.45E-06 0.351 0.175 0.287 0 
AGAP028064 3.02E-06 0.371 0.499 0.482 0 
AGAP004431 8.93E-06 0.345 0.156 0.258 0 
AGAP008432 4.85E-05 0.285 0.163 0.262 0 
AGAP003493 0.0001717 0.310 0.193 0.305 0 
AGAP005685 0.00090264 0.569 0.462 0.538 0 
AGAP002685 0.00908519 0.276 0.259 0.386 0 
AGAP008762 0.01102749 0.355 0.206 0.309 0 
AGAP004993 0.0210001 0.346 0.454 0.462 0 
AGAP000044 0.04556246 0.274 0.266 0.391 0 
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AGAP011228 2.12E-189 0.746 0.986 0.753 1 
AGAP007312 7.96E-162 0.799 0.769 0.353 1 
AGAP004936 1.16E-142 0.597 0.923 0.586 1 
AGAP006278 3.23E-137 0.667 0.864 0.525 1 
AGAP000651 2.72E-136 0.714 0.784 0.394 1 
AGAP004017 8.90E-129 0.591 0.815 0.411 1 
AGAP004164 1.58E-125 0.705 0.444 0.126 1 
AGAP028028 1.70E-121 0.594 0.824 0.437 1 
AGAP004016 2.29E-119 0.557 0.69 0.294 1 
AGAP006367 2.62E-118 0.869 0.331 0.075 1 
AGAP028064 3.88E-118 0.559 0.782 0.369 1 
AGAP007176 4.37E-117 0.674 0.361 0.089 1 
AGAP010580 5.37E-117 0.630 0.521 0.178 1 
AGAP013509 1.04E-116 0.673 0.615 0.247 1 
AGAP011940 3.35E-116 0.543 0.412 0.111 1 
AGAP005820 6.22E-115 0.549 0.639 0.253 1 
AGAP009201 7.87E-114 0.687 0.769 0.404 1 
AGAP000305 5.44E-112 0.535 0.941 0.698 1 
AGAP000927 2.44E-111 0.495 0.701 0.307 1 
AGAP011119 2.70E-111 0.511 0.921 0.566 1 
AGAP010548 3.40E-110 0.682 0.704 0.348 1 
AGAP004918 3.24E-107 0.749 0.549 0.219 1 
AGAP000044 6.26E-106 0.479 0.603 0.238 1 
AGAP008165 1.06E-104 0.462 0.466 0.155 1 
AGAP002878 9.21E-104 0.489 0.693 0.313 1 
AGAP028439 2.13E-103 0.499 0.657 0.278 1 
AGAP002594 2.27E-103 0.502 0.737 0.356 1 
AGAP001064 1.33E-102 0.549 0.651 0.292 1 
AGAP005929 1.80E-102 0.528 0.642 0.281 1 
AGAP000268 5.33E-102 0.468 0.454 0.148 1 
AGAP000964 8.74E-102 0.591 0.646 0.289 1 
AGAP001470 8.97E-102 0.541 0.477 0.163 1 
AGAP008822 1.06E-101 0.488 0.551 0.218 1 
AGAP004993 5.82E-100 0.586 0.722 0.352 1 
AGAP003759 1.36E-99 0.604 0.285 0.063 1 
AGAP011197 5.45E-98 0.496 0.543 0.209 1 
AGAP005914 6.61E-96 0.461 0.489 0.177 1 
AGAP001712 8.24E-94 0.526 0.399 0.13 1 



 

AGAP002016 3.56E-93 0.593 0.371 0.114 1 
AGAP007088 1.78E-92 0.513 0.589 0.254 1 
AGAP003493 3.84E-92 0.438 0.478 0.175 1 
AGAP007045 1.16E-91 0.490 0.395 0.128 1 
AGAP003475 7.65E-91 0.495 0.507 0.195 1 
AGAP012056 4.56E-90 0.523 0.493 0.19 1 
AGAP008908 6.85E-90 0.441 0.435 0.151 1 
AGAP009193 8.50E-90 0.729 0.27 0.065 1 
AGAP012916 2.04E-89 0.750 0.354 0.109 1 
AGAP009194 3.38E-89 0.907 0.312 0.089 1 
AGAP003088 1.06E-88 0.509 0.484 0.186 1 
AGAP001813 1.48E-88 0.465 0.636 0.292 1 
AGAP011859 7.21E-88 0.479 0.327 0.09 1 
AGAP001387 1.05E-87 0.375 0.661 0.298 1 
AGAP029054 4.65E-87 0.463 0.88 0.577 1 
AGAP011974 1.23E-86 0.512 0.551 0.233 1 
AGAP007721 1.41E-86 0.463 0.63 0.292 1 
AGAP000092 4.56E-86 0.452 0.506 0.203 1 
AGAP012893 6.71E-86 0.423 0.397 0.134 1 
AGAP009584 6.50E-85 0.557 0.375 0.126 1 
AGAP010608 3.16E-84 0.454 0.404 0.14 1 
AGAP006921 3.74E-84 0.544 0.439 0.165 1 
AGAP002338 1.47E-83 0.324 0.614 0.268 1 
AGAP004916 1.63E-83 0.870 0.254 0.061 1 
AGAP007629 2.73E-83 0.470 0.555 0.238 1 
AGAP012334 1.94E-81 0.432 0.561 0.245 1 
AGAP000790 3.64E-81 0.474 0.424 0.152 1 
AGAP012014 4.76E-80 0.470 0.464 0.184 1 
AGAP000881 2.88E-79 0.432 0.368 0.123 1 
AGAP010510 3.75E-79 0.356 0.462 0.176 1 
AGAP005618 5.44E-79 0.452 0.379 0.133 1 
AGAP029139 6.34E-79 0.496 0.473 0.194 1 
AGAP011334 4.03E-78 0.465 0.462 0.184 1 
AGAP002685 1.61E-77 0.426 0.555 0.25 1 
AGAP004948 1.69E-77 0.410 0.352 0.115 1 
AGAP001264 3.78E-77 0.441 0.614 0.29 1 
AGAP011076 3.88E-76 0.343 0.471 0.189 1 
AGAP010445 5.75E-76 0.371 0.386 0.137 1 
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AGAP007543 1.48E-75 0.398 0.375 0.131 1 
AGAP001306 8.23E-75 0.336 0.311 0.095 1 
AGAP009156 3.92E-74 0.461 0.296 0.087 1 
AGAP003721 4.24E-74 0.355 0.405 0.151 1 
AGAP002759 4.33E-74 0.507 0.274 0.078 1 
AGAP003057 8.04E-73 0.876 0.292 0.091 1 
AGAP004484 1.79E-72 0.499 0.343 0.12 1 
AGAP004247 2.64E-72 0.271 0.561 0.253 1 
AGAP000385 6.63E-72 0.428 0.42 0.161 1 
AGAP006389 6.66E-72 0.480 0.281 0.083 1 
AGAP008503 9.58E-72 0.379 0.368 0.133 1 
AGAP010298 2.60E-71 0.441 0.33 0.112 1 
AGAP007609 2.71E-71 0.429 0.363 0.129 1 
AGAP009651 3.20E-71 0.303 0.435 0.168 1 
AGAP007619 8.07E-71 0.389 0.305 0.094 1 
AGAP003578 8.46E-71 0.337 0.438 0.171 1 
AGAP004533 2.46E-70 0.407 0.781 0.466 1 
AGAP028157 3.57E-70 0.505 0.288 0.088 1 
AGAP002415 5.52E-70 0.342 0.325 0.106 1 
AGAP010347 5.92E-70 0.347 0.728 0.394 1 
AGAP002459 9.64E-70 0.455 0.315 0.103 1 
AGAP004431 1.24E-69 0.295 0.397 0.147 1 
AGAP004395 2.97E-69 0.320 0.536 0.242 1 
AGAP001718 3.07E-68 0.318 0.421 0.167 1 
AGAP011050 7.16E-68 0.367 0.429 0.173 1 
AGAP003183 2.90E-67 0.387 0.269 0.079 1 
AGAP000358 6.80E-67 0.303 0.575 0.271 1 
AGAP000290 2.32E-66 0.365 0.278 0.084 1 
AGAP010224 2.66E-66 0.387 0.287 0.091 1 
AGAP005528 4.30E-66 0.340 0.337 0.12 1 
AGAP012261 4.92E-66 0.362 0.295 0.095 1 
AGAP000439 7.13E-66 0.339 0.317 0.107 1 
AGAP000852 8.89E-66 0.401 0.342 0.124 1 
AGAP000698 1.04E-65 0.408 0.303 0.102 1 
AGAP002599 2.15E-65 0.397 0.634 0.334 1 
AGAP011098 3.84E-65 0.357 0.352 0.128 1 
AGAP001174 1.08E-64 0.680 0.274 0.087 1 
AGAP008693 8.81E-64 0.268 0.439 0.183 1 



 

AGAP010174 1.01E-63 0.409 0.285 0.092 1 
AGAP003430 2.53E-63 0.370 0.259 0.077 1 
AGAP013511 3.11E-63 0.480 0.254 0.075 1 
AGAP003722 3.84E-63 0.319 0.325 0.114 1 
AGAP000911 3.88E-63 0.334 0.308 0.104 1 
AGAP011984 3.14E-62 0.310 0.261 0.078 1 
AGAP007643 7.58E-62 0.293 0.341 0.127 1 
AGAP007583 2.00E-61 0.299 0.343 0.128 1 
AGAP006459 4.33E-61 0.324 0.628 0.323 1 
AGAP001151 6.27E-61 0.313 0.484 0.219 1 
AGAP000448 8.24E-61 0.395 0.304 0.105 1 
AGAP003553 1.05E-60 0.338 0.356 0.136 1 
AGAP008895 1.44E-60 0.362 0.289 0.098 1 
AGAP028154 5.52E-60 0.341 0.444 0.195 1 
AGAP011824 5.52E-60 0.336 0.392 0.159 1 
AGAP004743 2.06E-59 0.336 0.506 0.236 1 
AGAP009670 2.33E-58 0.318 0.489 0.227 1 
AGAP011284 2.38E-58 0.345 0.343 0.132 1 
AGAP008280 2.40E-58 0.300 0.429 0.184 1 
AGAP009944 6.72E-58 0.358 0.335 0.128 1 
AGAP002413 1.37E-57 0.266 0.37 0.15 1 
AGAP010957 2.05E-57 0.372 0.382 0.157 1 
AGAP004917 1.13E-56 0.320 0.308 0.111 1 
AGAP000414 3.90E-56 0.352 0.256 0.083 1 
AGAP000780 4.04E-56 0.271 0.336 0.131 1 
AGAP003016 1.07E-55 0.414 0.29 0.103 1 
AGAP001069 2.56E-55 0.294 0.31 0.116 1 
AGAP010133 2.74E-55 0.351 0.278 0.096 1 
AGAP010010 3.37E-55 0.324 0.305 0.112 1 
AGAP003069 3.84E-55 0.329 0.407 0.176 1 
AGAP001919 8.87E-55 0.270 0.376 0.155 1 
AGAP007393 1.16E-54 0.313 0.472 0.219 1 
AGAP011828 1.42E-54 0.366 0.901 0.688 1 
AGAP003549 1.82E-54 0.307 0.321 0.122 1 
AGAP005935 3.85E-54 0.281 0.346 0.139 1 
AGAP002473 7.59E-54 0.289 0.352 0.144 1 
AGAP001701 7.37E-53 0.326 0.411 0.185 1 
AGAP003588 4.89E-52 0.275 0.301 0.115 1 
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AGAP000167 5.05E-52 0.305 0.366 0.154 1 
AGAP009271 1.76E-51 0.329 0.458 0.22 1 
AGAP006130 2.48E-51 0.304 0.278 0.101 1 
AGAP002113 7.97E-51 0.366 0.272 0.1 1 
AGAP010257 1.11E-50 0.255 0.943 0.756 1 
AGAP001911 2.55E-50 0.291 0.912 0.658 1 
AGAP006037 5.39E-49 0.312 0.721 0.44 1 
AGAP005611 5.72E-49 0.309 0.858 0.591 1 
AGAP000669 1.23E-48 0.263 0.315 0.128 1 
AGAP007406 2.59E-48 0.285 0.909 0.71 1 
AGAP003556 3.12E-48 0.326 0.709 0.431 1 
AGAP006670 4.06E-48 0.269 0.329 0.134 1 
AGAP010310 6.53E-48 0.311 0.333 0.142 1 
AGAP028143 3.97E-47 0.257 0.322 0.131 1 
AGAP000249 8.61E-47 0.271 0.782 0.484 1 
AGAP004960 1.05E-46 0.329 0.287 0.114 1 
AGAP005960 1.86E-46 0.255 0.94 0.768 1 
AGAP011706 5.25E-45 0.266 0.703 0.417 1 
AGAP008816 1.33E-44 0.314 0.289 0.117 1 
AGAP029078 3.74E-43 0.315 0.635 0.373 1 
AGAP005432 2.43E-42 0.275 0.259 0.101 1 
AGAP002667 5.04E-41 0.263 0.755 0.479 1 
AGAP007050 5.15E-37 0.268 0.258 0.108 1 
AGAP001805 1.78E-35 0.252 0.795 0.537 1 
AGAP004212 2.45E-35 0.261 0.375 0.186 1 
AGAP001826 9.20E-29 0.350 0.336 0.178 1 
AGAP010968 0 2.461 0.475 0.037 2 
AGAP013060 0 1.976 0.66 0.092 2 
AGAP012571 0 1.944 0.783 0.173 2 
AGAP008011 0 1.903 0.479 0.035 2 
AGAP003473 2.70E-303 3.031 0.847 0.268 2 
AGAP003474 1.54E-298 2.451 0.994 0.952 2 
AGAP005888 1.20E-295 1.828 0.959 0.533 2 
AGAP008004 7.26E-291 2.368 0.894 0.368 2 
AGAP004674 1.01E-278 2.010 0.381 0.02 2 
AGAP009527 2.92E-272 2.044 0.606 0.1 2 
AGAP006275 3.50E-259 2.270 0.643 0.134 2 
AGAP013365 3.69E-234 2.218 0.609 0.123 2 



 

AGAP011792 3.46E-232 1.856 0.367 0.027 2 
AGAP002632 2.63E-230 2.413 0.729 0.23 2 
AGAP005563 2.27E-227 2.423 0.491 0.071 2 
AGAP002518 1.19E-225 2.038 0.518 0.085 2 
AGAP007663 4.06E-225 1.820 0.424 0.046 2 
AGAP028065 5.09E-218 1.722 0.546 0.095 2 
AGAP007385 1.74E-217 1.810 0.459 0.062 2 
AGAP028406 7.48E-216 2.130 0.395 0.04 2 
AGAP004742 6.88E-213 1.666 0.439 0.054 2 
AGAP011791 1.44E-205 1.745 0.34 0.027 2 
AGAP012394 1.22E-198 2.093 0.372 0.038 2 
AGAP012352 9.80E-198 1.811 0.562 0.119 2 
AGAP008127 4.60E-194 1.464 0.265 0.012 2 
AGAP005334 1.03E-192 1.652 0.398 0.048 2 
AGAP009859 2.97E-192 2.001 0.509 0.097 2 
AGAP008227 3.20E-191 1.813 0.489 0.085 2 
AGAP013005 1.39E-190 1.916 0.407 0.054 2 
AGAP007711 1.53E-190 1.853 0.494 0.092 2 
AGAP003250 2.01E-188 1.553 0.308 0.023 2 
AGAP011788 2.10E-188 1.519 0.262 0.013 2 
AGAP002890 4.00E-188 1.538 0.337 0.031 2 
AGAP028463 7.71E-180 1.621 0.506 0.099 2 
AGAP007456 1.88E-176 1.610 0.315 0.028 2 
AGAP011369 3.35E-176 2.362 0.723 0.304 2 
AGAP007453 8.69E-165 1.551 0.357 0.045 2 
AGAP005335 1.33E-164 1.443 0.342 0.04 2 
AGAP006911 1.19E-162 1.580 0.367 0.05 2 
AGAP009146 3.08E-162 1.439 0.281 0.024 2 
AGAP011319 4.49E-159 1.572 0.367 0.051 2 
AGAP013348 4.97E-155 1.589 0.277 0.024 2 
AGAP008012 2.95E-153 1.272 0.272 0.023 2 
AGAP007454 2.11E-149 1.308 0.27 0.024 2 
AGAP005889 2.78E-148 2.422 0.449 0.098 2 
AGAP003168 1.13E-144 1.809 0.484 0.116 2 
AGAP005175 3.23E-144 1.520 0.391 0.068 2 
AGAP011604 1.44E-143 1.537 0.324 0.044 2 
AGAP006821 7.65E-142 1.598 0.498 0.126 2 
AGAP005009 8.47E-142 1.556 0.368 0.062 2 



 

 245 

AGAP003350 4.83E-139 1.709 0.277 0.03 2 
AGAP028491 3.25E-138 1.188 0.262 0.025 2 
AGAP002503 2.75E-136 1.402 0.284 0.033 2 
AGAP009176 2.23E-132 1.808 0.398 0.078 2 
AGAP001713 1.09E-130 1.933 0.405 0.085 2 
AGAP012966 1.05E-128 1.229 0.252 0.025 2 
AGAP008061 2.87E-125 1.619 0.394 0.083 2 
AGAP008225 1.85E-120 1.098 0.284 0.038 2 
AGAP028370 2.63E-117 1.547 0.799 0.512 2 
AGAP028164 2.25E-115 1.226 0.27 0.036 2 
AGAP006348 3.48E-114 1.446 0.275 0.039 2 
AGAP028373 3.84E-112 1.278 0.583 0.207 2 
AGAP001065 3.03E-110 1.378 0.454 0.124 2 
AGAP003580 5.09E-110 1.307 0.348 0.07 2 
AGAP008051 1.29E-107 1.668 0.392 0.096 2 
AGAP028386 1.03E-104 1.368 0.746 0.453 2 
AGAP028366 4.43E-98 1.315 0.886 0.712 2 
AGAP013755 3.36E-96 1.685 0.317 0.066 2 
AGAP008141 9.12E-93 1.309 0.307 0.064 2 
AGAP005620 1.71E-91 1.066 0.267 0.046 2 
AGAP028371 1.90E-87 1.482 0.792 0.577 2 
AGAP028380 4.60E-87 1.412 0.742 0.446 2 
AGAP005662 1.12E-86 1.336 0.419 0.133 2 
AGAP028391 1.83E-86 1.199 0.979 0.973 2 
AGAP028387 2.63E-84 1.517 0.732 0.445 2 
AGAP009648 4.20E-68 0.991 0.285 0.07 2 
AGAP028389 5.81E-68 1.143 0.506 0.215 2 
AGAP028360 1.59E-58 1.209 0.491 0.229 2 
AGAP012956 2.42E-57 2.292 0.454 0.209 2 
AGAP028364 5.11E-56 1.225 0.829 0.661 2 
AGAP007460 2.06E-54 1.143 0.372 0.143 2 
AGAP007939 3.39E-54 0.799 0.267 0.074 2 
AGAP005327 2.92E-53 1.016 0.561 0.297 2 
AGAP007119 8.29E-52 0.983 0.281 0.086 2 
AGAP028393 1.68E-45 1.118 0.531 0.29 2 
AGAP013400 1.35E-44 1.095 0.472 0.241 2 
AGAP006548 4.43E-43 0.620 0.445 0.201 2 
AGAP004203 1.05E-41 1.652 0.268 0.092 2 



 

AGAP001826 1.11E-39 0.759 0.428 0.193 2 
AGAP001889 6.97E-39 1.404 0.429 0.215 2 
AGAP004790 5.35E-37 0.640 0.699 0.484 2 
AGAP028382 1.23E-34 1.174 0.471 0.267 2 
AGAP001760 5.14E-33 0.619 0.265 0.098 2 
AGAP007201 1.06E-30 0.519 0.262 0.098 2 
AGAP004710 2.08E-30 0.703 0.672 0.501 2 
AGAP002564 4.93E-20 0.510 0.338 0.176 2 
AGAP011833 3.28E-16 0.618 0.294 0.156 2 
AGAP004616 6.41E-16 0.428 0.598 0.433 2 
AGAP004653 1.80E-15 0.586 0.404 0.259 2 
AGAP000109 6.20E-15 0.458 0.324 0.178 2 
AGAP000897 5.84E-14 0.647 0.301 0.176 2 
AGAP004400 6.17E-13 0.268 0.728 0.606 2 
AGAP011317 8.54E-13 0.488 0.518 0.365 2 
AGAP000260 3.02E-12 0.287 0.514 0.354 2 
AGAP002020 1.05E-10 0.382 0.362 0.232 2 
AGAP002630 2.59E-09 0.257 0.484 0.336 2 
AGAP008724 5.92E-09 0.307 0.529 0.398 2 
AGAP007621 1.35E-07 0.331 0.593 0.482 2 
AGAP000851 4.83E-07 0.298 0.546 0.419 2 
AGAP006630 1.37E-06 0.250 0.441 0.311 2 
AGAP004031 8.46E-06 0.331 0.305 0.204 2 
AGAP008955 0.02805942 0.255 0.287 0.208 2 
AGAP004978 0 4.470 0.812 0.123 3 
AGAP011223 0 4.449 0.84 0.113 3 
AGAP006258 0 4.365 0.789 0.128 3 
AGAP004977 0 4.055 0.98 0.338 3 
AGAP012616 0 3.962 0.828 0.077 3 
AGAP012851 0 3.830 0.742 0.024 3 
AGAP006570 0 3.669 0.734 0.107 3 
AGAP006743 0 3.490 0.628 0.029 3 
AGAP000162 0 3.471 0.802 0.06 3 
AGAP000679 0 3.160 0.984 0.356 3 
AGAP012000 0 2.843 0.425 0.016 3 
AGAP004981 0 2.530 0.632 0.052 3 
AGAP006914 2.15E-277 2.281 0.421 0.024 3 
AGAP006726 6.84E-261 2.213 0.566 0.067 3 
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AGAP011107 8.60E-247 2.331 0.904 0.325 3 
AGAP003490 5.41E-201 2.083 0.462 0.056 3 
AGAP001884 4.96E-175 3.125 0.544 0.107 3 
AGAP004376 4.10E-163 1.995 0.35 0.036 3 
AGAP008000 1.66E-141 1.696 0.658 0.203 3 
AGAP002227 4.99E-141 1.674 0.532 0.118 3 
AGAP002317 3.88E-131 3.195 0.387 0.062 3 
AGAP011158 3.61E-93 2.113 0.344 0.067 3 
AGAP028022 2.66E-90 1.168 0.344 0.067 3 
AGAP006228 1.10E-84 1.224 0.278 0.046 3 
AGAP004775 7.26E-83 1.398 0.55 0.199 3 
AGAP005865 1.06E-81 1.304 0.45 0.129 3 
AGAP004918 6.50E-77 1.208 0.673 0.278 3 
AGAP007572 8.27E-55 0.943 0.513 0.202 3 
AGAP002076 8.85E-54 0.808 0.818 0.565 3 
AGAP005775 1.02E-47 1.122 0.444 0.177 3 
AGAP000249 5.73E-42 0.751 0.8 0.547 3 
AGAP008883 5.14E-39 0.816 0.28 0.085 3 
AGAP006766 4.06E-37 0.654 0.699 0.44 3 
AGAP010188 3.83E-30 0.700 0.258 0.086 3 
AGAP011054 2.58E-26 0.703 0.515 0.278 3 
AGAP006614 1.11E-25 0.544 0.599 0.368 3 
AGAP004916 1.36E-20 0.638 0.26 0.102 3 
AGAP006670 4.37E-18 0.543 0.354 0.174 3 
AGAP001903 1.04E-16 0.444 0.288 0.133 3 
AGAP000385 1.33E-16 0.559 0.401 0.219 3 
AGAP003878 1.75E-13 0.693 0.409 0.248 3 
AGAP005327 6.20E-13 0.569 0.495 0.315 3 
AGAP011092 8.24E-13 0.390 0.742 0.549 3 
AGAP003767 8.47E-10 0.339 0.556 0.382 3 
AGAP009944 5.52E-09 0.358 0.313 0.175 3 
AGAP029078 1.43E-08 0.349 0.611 0.433 3 
AGAP011824 1.09E-07 0.667 0.346 0.214 3 
AGAP008432 4.91E-07 0.396 0.344 0.213 3 
AGAP008909 3.36E-06 0.263 0.292 0.172 3 
AGAP004991 7.09E-06 0.332 0.305 0.186 3 
AGAP006937 0.00418714 0.255 0.272 0.176 3 
AGAP009584 0.00899526 0.338 0.286 0.189 3 



 

AGAP004203 2.94E-162 2.999 0.779 0.096 4 
AGAP007940 9.56E-127 2.767 0.718 0.109 4 
AGAP006548 1.20E-126 2.566 0.913 0.214 4 
AGAP002593 6.61E-114 2.098 0.43 0.035 4 
AGAP001065 8.30E-105 2.552 0.765 0.15 4 
AGAP004700 3.30E-100 2.240 0.376 0.03 4 
AGAP010046 4.33E-88 2.513 0.289 0.019 4 
AGAP009173 7.86E-83 2.190 0.376 0.037 4 
AGAP001116 1.29E-81 1.947 0.443 0.054 4 
AGAP002198 2.09E-76 2.051 0.456 0.062 4 
AGAP007455 5.49E-75 1.797 0.356 0.036 4 
AGAP004954 6.02E-71 1.664 0.275 0.022 4 
AGAP004534 2.34E-70 2.142 0.262 0.02 4 
AGAP012352 1.91E-69 1.812 0.685 0.163 4 
AGAP012966 2.85E-63 1.523 0.369 0.046 4 
AGAP005327 2.86E-48 1.548 0.779 0.319 4 
AGAP001423 1.01E-46 1.988 0.43 0.085 4 
AGAP011504 1.41E-45 1.823 0.544 0.143 4 
AGAP028494 2.69E-45 1.638 0.336 0.052 4 
AGAP002378 1.83E-41 1.987 0.423 0.092 4 
AGAP009182 5.60E-41 1.793 0.409 0.086 4 
AGAP007453 7.04E-37 2.203 0.376 0.078 4 
AGAP005861 1.37E-35 1.664 0.51 0.151 4 
AGAP008761 1.21E-33 1.781 0.55 0.186 4 
AGAP004616 4.48E-33 1.227 0.799 0.445 4 
AGAP004550 6.52E-33 1.179 0.315 0.059 4 
AGAP007456 3.72E-32 1.644 0.309 0.058 4 
AGAP004742 6.99E-32 1.395 0.403 0.096 4 
AGAP011319 1.06E-29 1.381 0.369 0.084 4 
AGAP003473 1.19E-29 0.671 0.738 0.332 4 
AGAP029139 3.41E-29 1.385 0.624 0.265 4 
AGAP001826 3.90E-29 1.493 0.591 0.213 4 
AGAP000179 2.41E-28 1.786 0.289 0.058 4 
AGAP005979 2.88E-28 1.426 0.349 0.081 4 
AGAP004790 3.76E-28 1.245 0.785 0.504 4 
AGAP012515 6.77E-27 1.165 0.832 0.623 4 
AGAP003474 1.59E-26 1.056 0.96 0.957 4 
AGAP007460 3.84E-26 1.503 0.483 0.164 4 
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AGAP004819 1.94E-25 1.546 0.45 0.145 4 
AGAP009859 2.95E-25 1.186 0.463 0.142 4 
AGAP000180 1.38E-23 1.470 0.349 0.092 4 
AGAP005335 1.88E-22 1.166 0.309 0.073 4 
AGAP007768 8.21E-22 0.962 0.779 0.556 4 
AGAP004653 5.46E-21 1.317 0.57 0.27 4 
AGAP028370 8.59E-21 0.877 0.785 0.542 4 
AGAP028143 9.56E-20 1.152 0.47 0.178 4 
AGAP028386 1.38E-19 1.010 0.765 0.484 4 
AGAP013400 1.49E-19 1.270 0.564 0.263 4 
AGAP005334 7.33E-19 1.163 0.322 0.087 4 
AGAP007492 2.85E-18 1.292 0.369 0.118 4 
AGAP007120 2.90E-18 0.800 0.812 0.611 4 
AGAP028463 4.11E-18 1.072 0.423 0.145 4 
AGAP003534 5.82E-18 1.152 0.275 0.07 4 
AGAP002245 5.44E-16 0.894 0.705 0.439 4 
AGAP012418 6.75E-16 0.905 0.772 0.605 4 
AGAP007621 7.31E-16 0.947 0.711 0.491 4 
AGAP028373 9.34E-16 1.027 0.544 0.248 4 
AGAP013365 1.44E-15 0.586 0.477 0.178 4 
AGAP002277 5.40E-15 1.125 0.443 0.185 4 
AGAP008724 7.71E-15 0.988 0.658 0.408 4 
AGAP004890 1.27E-14 1.534 0.409 0.169 4 
AGAP004710 2.39E-14 0.915 0.732 0.518 4 
AGAP000439 2.83E-14 1.387 0.396 0.161 4 
AGAP004400 7.46E-14 0.781 0.779 0.617 4 
AGAP007927 8.42E-14 0.600 0.819 0.72 4 
AGAP005888 8.77E-14 0.536 0.812 0.582 4 
AGAP010337 9.87E-14 0.862 0.732 0.546 4 
AGAP007385 1.80E-13 0.977 0.329 0.107 4 
AGAP000260 3.81E-12 0.950 0.611 0.368 4 
AGAP011833 1.67E-11 1.178 0.389 0.168 4 
AGAP008004 2.02E-11 0.924 0.651 0.43 4 
AGAP011484 2.73E-11 0.766 0.698 0.453 4 
AGAP007711 9.22E-11 0.880 0.356 0.138 4 
AGAP012717 1.08E-10 1.057 0.336 0.129 4 
AGAP008727 1.23E-10 0.771 0.631 0.384 4 
AGAP000165 1.68E-10 0.901 0.295 0.104 4 



 

AGAP007087 4.72E-10 0.433 0.98 0.991 4 
AGAP012188 1.37E-09 0.649 0.711 0.499 4 
AGAP011131 3.91E-09 0.762 0.678 0.481 4 
AGAP009833 4.62E-09 1.071 0.483 0.266 4 
AGAP011832 4.79E-09 1.336 0.376 0.181 4 
AGAP013005 5.37E-09 1.021 0.268 0.095 4 
AGAP006879 1.51E-08 0.650 0.711 0.559 4 
AGAP003538 1.68E-08 0.358 0.893 0.915 4 
AGAP005581 1.81E-08 1.187 0.362 0.168 4 
AGAP010606 3.81E-08 1.033 0.302 0.124 4 
AGAP010177 3.91E-08 1.120 0.255 0.092 4 
AGAP002470 5.79E-08 1.002 0.268 0.101 4 
AGAP028380 2.02E-07 0.583 0.658 0.479 4 
AGAP002499 6.32E-07 1.088 0.362 0.181 4 
AGAP002520 1.60E-06 0.766 0.255 0.098 4 
AGAP001595 2.41E-06 0.487 0.819 0.806 4 
AGAP006630 3.23E-06 0.708 0.517 0.323 4 
AGAP001138 4.18E-06 0.817 0.584 0.404 4 
AGAP000851 5.33E-06 0.661 0.604 0.431 4 
AGAP009527 6.87E-06 0.450 0.356 0.16 4 
AGAP009564 9.85E-06 0.606 0.51 0.305 4 
AGAP002630 4.70E-05 0.599 0.544 0.35 4 
AGAP028366 7.84E-05 0.285 0.819 0.733 4 
AGAP008491 9.05E-05 0.779 0.443 0.271 4 
AGAP011896 0.00025959 0.334 0.832 0.813 4 
AGAP003768 0.00028217 0.334 0.906 0.842 4 
AGAP003599 0.00047237 0.790 0.45 0.287 4 
AGAP010386 0.00059786 0.965 0.262 0.126 4 
AGAP004296 0.00075248 0.634 0.43 0.263 4 
AGAP000109 0.00112229 0.850 0.342 0.193 4 
AGAP009491 0.00130174 0.601 0.611 0.485 4 
AGAP004235 0.00300418 1.044 0.336 0.195 4 
AGAP007574 0.0036735 0.718 0.315 0.168 4 
AGAP009072 0.00599111 0.542 0.416 0.253 4 
AGAP004743 0.00724895 0.632 0.47 0.309 4 
AGAP009865 0.00736454 0.677 0.255 0.124 4 
AGAP003900 0.01079693 0.693 0.282 0.147 4 
AGAP028389 0.01431724 0.505 0.403 0.249 4 
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AGAP010464 0.0145139 0.766 0.295 0.162 4 
AGAP010517 0.01821295 0.796 0.322 0.192 4 
AGAP028360 0.02371424 0.451 0.409 0.259 4 
AGAP003864 0.04423235 0.455 0.49 0.331 4 
AGAP005363 0 1.730 0.45 0.003 5 
AGAP004962 0 1.527 0.412 0.004 5 
AGAP007855 4.72E-295 1.583 0.427 0.007 5 
AGAP013736 8.53E-285 1.076 0.313 0.002 5 
AGAP005019 2.01E-274 2.028 0.557 0.018 5 
AGAP003550 3.62E-271 1.303 0.321 0.003 5 
AGAP006671 1.30E-267 1.118 0.298 0.002 5 
AGAP006105 5.29E-230 1.019 0.282 0.003 5 
AGAP004963 7.99E-223 0.989 0.252 0.002 5 
AGAP004239 1.13E-212 1.284 0.282 0.003 5 
AGAP004753 3.00E-189 1.310 0.305 0.006 5 
AGAP011219 1.17E-188 1.380 0.313 0.006 5 
AGAP007706 1.48E-176 1.128 0.275 0.005 5 
AGAP029045 1.31E-153 1.297 0.305 0.009 5 
AGAP008420 5.52E-151 1.078 0.29 0.008 5 
AGAP028483 2.60E-149 1.042 0.275 0.007 5 
AGAP008753 1.59E-83 1.710 0.718 0.132 5 
AGAP005778 7.04E-64 1.403 0.45 0.061 5 
AGAP012334 1.61E-49 1.455 0.832 0.324 5 
AGAP012202 2.52E-45 1.775 0.504 0.107 5 
AGAP006238 2.80E-43 0.872 0.252 0.027 5 
AGAP010929 1.89E-39 1.235 0.504 0.113 5 
AGAP007569 4.70E-38 0.724 0.336 0.051 5 
AGAP000531 9.61E-30 0.712 0.298 0.05 5 
AGAP009444 4.92E-24 0.820 0.374 0.09 5 
AGAP004164 2.37E-23 0.836 0.603 0.208 5 
AGAP001219 7.15E-22 0.799 0.382 0.097 5 
AGAP028034 1.45E-21 1.266 0.595 0.218 5 
AGAP001387 4.70E-20 0.808 0.779 0.394 5 
AGAP011859 2.20E-19 0.657 0.489 0.15 5 
AGAP001321 2.67E-19 0.676 0.298 0.067 5 
AGAP001701 2.96E-19 0.618 0.634 0.24 5 
AGAP003561 3.22E-19 0.574 0.282 0.062 5 
AGAP028149 3.80E-19 1.213 0.71 0.32 5 



 

AGAP007867 7.96E-19 0.821 0.527 0.186 5 
AGAP006818 6.26E-17 0.850 0.282 0.067 5 
AGAP000651 1.75E-16 0.813 0.863 0.498 5 
AGAP003936 2.09E-16 0.823 0.336 0.091 5 
AGAP003069 1.76E-15 0.517 0.611 0.233 5 
AGAP007397 1.84E-15 0.811 0.305 0.082 5 
AGAP012028 2.63E-15 0.590 0.389 0.119 5 
AGAP011050 7.62E-15 0.765 0.573 0.239 5 
AGAP011346 9.56E-15 0.757 0.298 0.08 5 
AGAP013296 1.88E-14 0.440 0.313 0.086 5 
AGAP005136 2.35E-14 0.394 0.328 0.091 5 
AGAP013511 2.51E-14 0.647 0.382 0.12 5 
AGAP008344 3.30E-14 0.433 0.275 0.069 5 
AGAP012397 1.20E-13 0.487 0.336 0.098 5 
AGAP006733 1.30E-13 0.393 0.305 0.084 5 
AGAP002459 1.64E-13 0.497 0.45 0.157 5 
AGAP006367 1.68E-13 0.668 0.42 0.142 5 
AGAP009192 2.69E-13 0.499 0.328 0.095 5 
AGAP003016 5.82E-13 0.567 0.427 0.15 5 
AGAP008045 6.07E-13 0.493 0.26 0.066 5 
AGAP002387 6.75E-13 0.482 0.267 0.07 5 
AGAP002338 1.16E-12 0.709 0.718 0.359 5 
AGAP013008 1.79E-12 0.508 0.305 0.088 5 
AGAP002032 1.91E-12 0.652 0.305 0.089 5 
AGAP028143 1.95E-12 0.528 0.473 0.179 5 
AGAP005749 2.47E-12 0.642 0.344 0.109 5 
AGAP005314 2.50E-12 0.563 0.282 0.079 5 
AGAP010510 3.01E-12 0.578 0.58 0.251 5 
AGAP004317 6.72E-12 0.573 0.359 0.117 5 
AGAP007088 1.13E-11 0.546 0.695 0.342 5 
AGAP007699 1.21E-11 0.549 0.542 0.23 5 
AGAP009944 1.42E-11 0.536 0.466 0.181 5 
AGAP010718 1.47E-11 0.600 0.26 0.07 5 
AGAP009194 1.69E-11 0.450 0.412 0.147 5 
AGAP005540 1.72E-11 0.448 0.298 0.089 5 
AGAP010682 1.89E-11 0.526 0.29 0.085 5 
AGAP005929 2.03E-11 0.632 0.702 0.377 5 
AGAP004395 2.88E-11 0.531 0.641 0.319 5 
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AGAP001501 3.17E-11 0.488 0.305 0.094 5 
AGAP009687 6.72E-11 0.374 0.298 0.09 5 
AGAP011197 1.01E-10 0.602 0.641 0.297 5 
AGAP012056 1.10E-10 0.441 0.603 0.269 5 
AGAP002265 1.40E-10 0.369 0.359 0.121 5 
AGAP009271 2.07E-10 0.493 0.603 0.28 5 
AGAP003135 3.19E-10 0.462 0.328 0.107 5 
AGAP007024 3.48E-10 0.483 0.45 0.179 5 
AGAP009201 3.87E-10 0.597 0.817 0.501 5 
AGAP002470 4.06E-10 0.337 0.313 0.1 5 
AGAP002706 4.93E-10 0.380 0.405 0.149 5 
AGAP008249 8.80E-10 0.460 0.374 0.137 5 
AGAP010440 1.70E-09 0.376 0.267 0.081 5 
AGAP003021 2.50E-09 0.298 0.305 0.098 5 
AGAP011076 2.63E-09 0.402 0.565 0.263 5 
AGAP008299 2.85E-09 0.604 0.282 0.092 5 
AGAP009075 2.96E-09 0.371 0.336 0.118 5 
AGAP008393 2.98E-09 0.515 0.298 0.097 5 
AGAP007505 4.17E-09 0.409 0.374 0.139 5 
AGAP010580 5.55E-09 0.366 0.595 0.269 5 
AGAP006937 5.86E-09 0.426 0.435 0.178 5 
AGAP028064 9.22E-09 0.512 0.786 0.481 5 
AGAP003462 9.50E-09 0.489 0.29 0.098 5 
AGAP007574 1.36E-08 0.397 0.412 0.166 5 
AGAP002415 1.42E-08 0.481 0.412 0.163 5 
AGAP004916 1.68E-08 0.490 0.321 0.112 5 
AGAP011473 1.85E-08 0.508 0.374 0.143 5 
AGAP002520 2.09E-08 0.422 0.29 0.098 5 
AGAP004917 2.46E-08 0.391 0.412 0.162 5 
AGAP002061 2.69E-08 0.396 0.29 0.099 5 
AGAP000439 2.75E-08 0.396 0.405 0.162 5 
AGAP009209 3.02E-08 0.454 0.29 0.099 5 
AGAP008909 3.87E-08 0.304 0.427 0.177 5 
AGAP003057 4.31E-08 0.524 0.366 0.144 5 
AGAP003134 5.72E-08 0.273 0.374 0.144 5 
AGAP010225 5.86E-08 0.489 0.321 0.113 5 
AGAP002087 8.01E-08 0.322 0.412 0.166 5 
AGAP005523 1.05E-07 0.366 0.26 0.086 5 



 

AGAP004079 1.11E-07 0.444 0.298 0.106 5 
AGAP011634 1.39E-07 0.272 0.374 0.146 5 
AGAP002140 1.49E-07 0.386 0.282 0.097 5 
AGAP004484 1.56E-07 0.376 0.427 0.179 5 
AGAP003162 1.72E-07 0.279 0.275 0.092 5 
AGAP001998 1.72E-07 0.332 0.328 0.121 5 
AGAP010253 1.82E-07 0.335 0.267 0.09 5 
AGAP000044 1.85E-07 0.423 0.641 0.336 5 
AGAP008612 2.22E-07 0.272 0.321 0.118 5 
AGAP004668 2.28E-07 0.515 0.282 0.099 5 
AGAP011444 2.39E-07 0.357 0.344 0.132 5 
AGAP001069 2.63E-07 0.374 0.405 0.166 5 
AGAP011190 2.74E-07 0.279 0.351 0.136 5 
AGAP000881 2.87E-07 0.376 0.435 0.188 5 
AGAP011733 3.26E-07 0.438 0.313 0.116 5 
AGAP028439 3.38E-07 0.466 0.679 0.38 5 
AGAP001064 4.04E-07 0.383 0.702 0.388 5 
AGAP012014 4.60E-07 0.364 0.542 0.258 5 
AGAP029139 5.82E-07 0.393 0.557 0.268 5 
AGAP007120 5.93E-07 0.388 0.885 0.61 5 
AGAP005432 6.58E-07 0.336 0.359 0.141 5 
AGAP002521 6.87E-07 0.325 0.275 0.095 5 
AGAP010445 6.90E-07 0.373 0.458 0.203 5 
AGAP001505 7.03E-07 0.324 0.26 0.089 5 
AGAP002931 7.21E-07 0.336 0.45 0.196 5 
AGAP008632 7.50E-07 0.286 0.366 0.146 5 
AGAP007583 8.22E-07 0.274 0.427 0.184 5 
AGAP010347 9.26E-07 0.399 0.771 0.484 5 
AGAP001364 9.95E-07 0.327 0.29 0.106 5 
AGAP011940 1.38E-06 0.393 0.435 0.192 5 
AGAP009193 1.42E-06 0.330 0.313 0.119 5 
AGAP011531 1.50E-06 0.342 0.305 0.114 5 
AGAP006040 1.52E-06 0.348 0.282 0.103 5 
AGAP000546 1.69E-06 0.346 0.298 0.111 5 
AGAP013336 1.76E-06 0.350 0.359 0.147 5 
AGAP003919 1.81E-06 0.486 0.313 0.121 5 
AGAP008008 1.85E-06 0.446 0.618 0.311 5 
AGAP008345 2.08E-06 0.337 0.282 0.104 5 
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AGAP012135 2.25E-06 0.256 0.282 0.102 5 
AGAP013102 2.57E-06 0.320 0.29 0.108 5 
AGAP005410 2.59E-06 0.261 0.351 0.141 5 
AGAP007629 2.72E-06 0.407 0.626 0.322 5 
AGAP012524 2.82E-06 0.318 0.641 0.332 5 
AGAP002020 2.88E-06 0.322 0.511 0.243 5 
AGAP007575 2.95E-06 0.320 0.321 0.124 5 
AGAP000669 3.16E-06 0.252 0.412 0.176 5 
AGAP008163 3.30E-06 0.558 0.397 0.177 5 
AGAP008693 3.57E-06 0.271 0.527 0.25 5 
AGAP006944 3.92E-06 0.279 0.359 0.147 5 
AGAP007721 4.15E-06 0.352 0.695 0.382 5 
AGAP011907 4.34E-06 0.634 0.29 0.11 5 
AGAP005820 4.82E-06 0.457 0.649 0.357 5 
AGAP004839 4.94E-06 0.337 0.328 0.132 5 
AGAP000448 5.36E-06 0.257 0.374 0.157 5 
AGAP013291 5.73E-06 0.348 0.29 0.11 5 
AGAP002413 6.27E-06 0.271 0.45 0.208 5 
AGAP000949 6.45E-06 0.388 0.305 0.118 5 
AGAP009738 7.14E-06 0.384 0.336 0.137 5 
AGAP010331 7.26E-06 0.367 0.298 0.116 5 
AGAP009584 8.03E-06 0.361 0.42 0.192 5 
AGAP001068 9.65E-06 0.337 0.321 0.127 5 
AGAP002917 1.12E-05 0.380 0.26 0.096 5 
AGAP013509 1.15E-05 0.393 0.634 0.346 5 
AGAP004212 1.22E-05 0.414 0.489 0.234 5 
AGAP007614 1.35E-05 0.257 0.267 0.099 5 
AGAP007393 1.43E-05 0.357 0.557 0.285 5 
AGAP009305 1.77E-05 0.461 0.298 0.119 5 
AGAP010957 1.80E-05 0.502 0.443 0.217 5 
AGAP004993 1.87E-05 0.453 0.725 0.452 5 
AGAP006670 1.96E-05 0.361 0.412 0.185 5 
AGAP006607 2.06E-05 0.280 0.351 0.15 5 
AGAP008837 4.33E-05 0.276 0.328 0.137 5 
AGAP013228 4.57E-05 0.307 0.313 0.129 5 
AGAP009907 5.37E-05 0.351 0.26 0.098 5 
AGAP009202 5.55E-05 0.357 0.344 0.15 5 
AGAP000290 6.33E-05 0.354 0.321 0.135 5 



 

AGAP004852 7.24E-05 0.289 0.305 0.126 5 
AGAP003759 7.33E-05 0.276 0.305 0.123 5 
AGAP011800 9.16E-05 0.340 0.427 0.21 5 
AGAP010464 9.34E-05 0.260 0.359 0.161 5 
AGAP009651 0.00010774 0.393 0.481 0.239 5 
AGAP011228 0.00010962 0.280 0.962 0.817 5 
AGAP004296 0.00012429 0.307 0.511 0.261 5 
AGAP003851 0.00014452 0.361 0.634 0.364 5 
AGAP028157 0.00014811 0.289 0.328 0.141 5 
AGAP003360 0.00021573 0.281 0.29 0.12 5 
AGAP001718 0.00023109 0.273 0.473 0.235 5 
AGAP004721 0.00023432 0.262 0.656 0.371 5 
AGAP004743 0.00025339 0.379 0.565 0.308 5 
AGAP001311 0.00034795 0.304 0.282 0.117 5 
AGAP002606 0.00036802 0.482 0.267 0.11 5 
AGAP004960 0.00040251 0.304 0.344 0.16 5 
AGAP003553 0.00046293 0.366 0.397 0.195 5 
AGAP008816 0.00048233 0.266 0.351 0.162 5 
AGAP004606 0.00051606 0.338 0.389 0.185 5 
AGAP028617 0.00060721 0.307 0.282 0.118 5 
AGAP000852 0.00081411 0.269 0.382 0.182 5 
AGAP002935 0.00083071 0.272 0.351 0.163 5 
AGAP003367 0.0009167 0.254 0.45 0.225 5 
AGAP004918 0.001039 0.348 0.542 0.308 5 
AGAP000927 0.00163827 0.277 0.679 0.414 5 
AGAP001976 0.00181993 0.331 0.252 0.105 5 
AGAP002759 0.0019539 0.438 0.29 0.131 5 
AGAP004026 0.00223784 0.428 0.252 0.105 5 
AGAP010608 0.00243062 0.274 0.42 0.211 5 
AGAP000414 0.00253615 0.295 0.29 0.129 5 
AGAP003721 0.00414231 0.324 0.42 0.219 5 
AGAP009152 0.00910534 0.278 0.351 0.175 5 
AGAP007312 0.01111189 0.311 0.718 0.467 5 
AGAP002422 0.0143814 0.267 0.832 0.56 5 
AGAP028028 0.02248838 0.251 0.802 0.543 5 
AGAP009526 1.72E-104 2.864 0.736 0.117 6 
AGAP006181 1.12E-97 2.622 0.579 0.069 6 
AGAP003939 5.44E-83 2.675 0.562 0.078 6 
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AGAP001622 2.17E-72 2.641 0.76 0.189 6 
AGAP003778 1.13E-70 2.418 0.504 0.071 6 
AGAP001569 6.19E-66 2.280 0.479 0.067 6 
AGAP004161 8.04E-64 2.322 0.736 0.196 6 
AGAP002358 3.84E-58 2.334 0.446 0.065 6 
AGAP008311 2.87E-50 2.093 0.273 0.026 6 
AGAP004790 5.28E-46 1.919 0.909 0.503 6 
AGAP011484 9.81E-46 2.081 0.86 0.451 6 
AGAP003474 4.98E-41 0.920 1 0.956 6 
AGAP000693 6.27E-39 1.360 0.521 0.126 6 
AGAP012418 3.01E-32 1.539 0.868 0.604 6 
AGAP004400 9.69E-32 1.549 0.86 0.616 6 
AGAP006879 2.41E-31 1.531 0.851 0.556 6 
AGAP011131 5.24E-31 1.621 0.793 0.479 6 
AGAP003473 3.70E-29 0.703 0.769 0.334 6 
AGAP003586 2.91E-28 2.010 0.306 0.056 6 
AGAP009491 8.13E-28 1.367 0.793 0.481 6 
AGAP004710 1.10E-27 1.390 0.835 0.516 6 
AGAP000260 2.87E-26 1.687 0.702 0.367 6 
AGAP002245 1.84E-24 1.521 0.744 0.439 6 
AGAP007768 2.47E-24 1.444 0.793 0.557 6 
AGAP000851 1.18E-23 1.628 0.711 0.43 6 
AGAP005888 2.27E-22 0.551 0.868 0.582 6 
AGAP010337 3.17E-22 1.430 0.777 0.546 6 
AGAP008724 2.11E-21 1.515 0.694 0.409 6 
AGAP012188 2.26E-20 1.522 0.736 0.5 6 
AGAP008727 3.88E-19 1.418 0.669 0.385 6 
AGAP007621 6.59E-19 1.439 0.736 0.491 6 
AGAP004616 2.88E-18 1.425 0.694 0.449 6 
AGAP013092 3.53E-18 1.365 0.744 0.541 6 
AGAP000849 8.95E-17 1.532 0.62 0.36 6 
AGAP013365 3.44E-15 1.115 0.471 0.18 6 
AGAP009537 4.37E-15 1.470 0.587 0.319 6 
AGAP012515 6.18E-15 1.031 0.769 0.626 6 
AGAP010672 6.85E-13 1.554 0.455 0.208 6 
AGAP002564 8.62E-13 1.552 0.438 0.191 6 
AGAP002632 2.09E-10 0.892 0.545 0.289 6 
AGAP011159 7.14E-10 1.452 0.537 0.324 6 



 

AGAP008004 2.50E-09 0.564 0.678 0.431 6 
AGAP013060 6.42E-09 0.930 0.397 0.161 6 
AGAP012533 8.92E-06 1.258 0.438 0.262 6 
AGAP012571 1.16E-05 0.685 0.463 0.248 6 
AGAP011829 7.90E-05 1.244 0.463 0.308 6 
AGAP001138 0.00013625 0.981 0.529 0.406 6 
AGAP003538 0.00016288 0.336 0.917 0.914 6 
AGAP001889 0.00036591 0.735 0.421 0.239 6 
AGAP009859 0.00067777 0.952 0.306 0.147 6 
AGAP009564 0.00095546 1.170 0.446 0.307 6 
AGAP003328 0.0023294 1.253 0.331 0.184 6 
AGAP003864 0.00380745 1.136 0.455 0.333 6 
AGAP003599 0.00393763 1.207 0.421 0.289 6 
AGAP013400 0.00861525 1.033 0.405 0.268 6 
AGAP009527 0.01766886 0.972 0.306 0.163 6 
AGAP007841 0.01977527 1.122 0.43 0.311 6 
AGAP008955 0.02020887 1.158 0.347 0.215 6 
AGAP007297 1 0.969 0.322 0.256 6 
AGAP007347 7.26E-217 4.377 0.908 0.084 7 
AGAP005848 6.18E-105 2.456 0.392 0.026 7 
AGAP011294 2.59E-69 1.857 0.283 0.02 7 
AGAP000694 2.91E-63 2.455 0.267 0.02 7 
AGAP000376 1.50E-51 2.140 0.758 0.237 7 
AGAP011197 1.33E-40 1.780 0.775 0.294 7 
AGAP005888 2.24E-37 2.574 0.933 0.581 7 
AGAP000693 1.49E-32 2.856 0.492 0.127 7 
AGAP005612 8.23E-23 2.085 0.317 0.071 7 
AGAP010816 1.11E-17 1.344 0.342 0.094 7 
AGAP004721 3.78E-12 0.936 0.658 0.371 7 
AGAP028463 1.74E-10 1.596 0.367 0.147 7 
AGAP010225 1.62E-09 1.061 0.317 0.113 7 
AGAP012708 1.75E-08 0.611 0.842 0.579 7 
AGAP004918 6.89E-08 0.786 0.558 0.308 7 
AGAP009849 3.22E-07 1.212 0.267 0.098 7 
AGAP005149 7.34E-07 1.161 0.442 0.234 7 
AGAP007721 1.11E-06 0.714 0.625 0.384 7 
AGAP003851 1.37E-06 0.745 0.6 0.366 7 
AGAP007087 1.10E-05 0.356 1 0.99 7 
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AGAP002338 1.90E-05 0.860 0.558 0.364 7 
AGAP004710 3.32E-05 0.482 0.75 0.518 7 
AGAP028439 0.0001014 0.664 0.583 0.383 7 
AGAP011802 0.00012866 0.328 1 0.983 7 
AGAP007619 0.00015509 0.976 0.317 0.151 7 
AGAP001718 0.00152987 0.814 0.4 0.237 7 
AGAP004743 0.00217728 0.679 0.492 0.31 7 
AGAP001971 0.00326132 0.502 0.692 0.557 7 
AGAP011824 0.00491245 0.790 0.392 0.222 7 
AGAP004790 0.02712352 0.251 0.708 0.508 7 
AGAP011228 0.03268744 0.318 0.983 0.816 7 
AGAP008163 0.03889787 0.800 0.325 0.179 7 
AGAP007318 0 3.649 0.788 0.021 8 
AGAP009053 6.97E-212 3.014 0.541 0.016 8 
AGAP028208 3.96E-195 2.728 0.341 0.005 8 
AGAP009051 1.62E-177 1.973 0.365 0.008 8 
AGAP007320 4.28E-175 1.529 0.294 0.004 8 
AGAP001002 2.27E-129 3.813 0.424 0.018 8 
AGAP001652 9.61E-107 2.220 0.612 0.05 8 
AGAP003319 6.01E-95 2.148 0.494 0.035 8 
AGAP011226 1.25E-92 1.942 0.424 0.026 8 
AGAP005209 1.06E-73 1.818 0.471 0.041 8 
AGAP010759 2.84E-65 2.023 0.694 0.105 8 
AGAP009098 2.29E-58 1.554 0.259 0.015 8 
AGAP003352 7.88E-53 1.353 0.376 0.035 8 
AGAP002379 8.34E-42 1.548 0.271 0.023 8 
AGAP002878 1.78E-32 1.539 0.918 0.415 8 
AGAP006367 2.30E-30 1.494 0.6 0.142 8 
AGAP010548 4.91E-29 1.652 0.859 0.444 8 
AGAP000964 6.85E-27 1.504 0.835 0.385 8 
AGAP028157 1.64E-21 1.062 0.529 0.139 8 
AGAP003088 6.13E-21 1.358 0.682 0.265 8 
AGAP004247 5.34E-20 1.442 0.765 0.335 8 
AGAP001174 1.10E-18 1.266 0.494 0.135 8 
AGAP000651 3.16E-18 1.172 0.859 0.501 8 
AGAP012916 9.91E-18 1.045 0.565 0.173 8 
AGAP013511 1.95E-17 1.086 0.459 0.121 8 
AGAP013027 2.78E-17 0.650 0.259 0.042 8 



 

AGAP005246 2.59E-16 0.959 0.435 0.115 8 
AGAP003057 3.68E-16 1.012 0.494 0.144 8 
AGAP007176 2.02E-14 1.025 0.506 0.162 8 
AGAP010133 4.46E-14 1.110 0.471 0.143 8 
AGAP009156 7.35E-13 0.900 0.459 0.143 8 
AGAP000321 2.98E-12 0.732 0.424 0.126 8 
AGAP012396 9.79E-12 1.004 0.6 0.242 8 
AGAP011334 1.37E-11 0.929 0.612 0.258 8 
AGAP028617 2.11E-11 0.883 0.4 0.118 8 
AGAP011958 3.75E-11 0.616 0.424 0.127 8 
AGAP000235 1.80E-10 0.704 0.318 0.082 8 
AGAP002473 2.34E-10 0.901 0.529 0.199 8 
AGAP007721 3.55E-10 0.818 0.753 0.384 8 
AGAP012056 3.93E-10 0.986 0.612 0.272 8 
AGAP010175 1.15E-09 0.939 0.271 0.066 8 
AGAP005933 1.44E-09 0.707 0.294 0.076 8 
AGAP003475 2.17E-09 0.764 0.635 0.279 8 
AGAP000385 4.73E-09 0.721 0.565 0.23 8 
AGAP001823 5.17E-09 0.670 0.294 0.079 8 
AGAP006745 7.05E-09 0.703 0.341 0.1 8 
AGAP005931 1.70E-08 0.762 0.388 0.129 8 
AGAP003722 1.83E-08 0.861 0.459 0.17 8 
AGAP007583 1.84E-08 0.591 0.494 0.185 8 
AGAP010307 2.17E-08 0.794 0.365 0.118 8 
AGAP009305 5.33E-08 0.769 0.365 0.119 8 
AGAP008905 5.35E-08 0.608 0.365 0.118 8 
AGAP003408 1.47E-07 0.565 0.365 0.12 8 
AGAP007864 3.68E-07 0.760 0.282 0.082 8 
AGAP000927 3.73E-07 0.676 0.741 0.415 8 
AGAP028154 4.13E-07 0.704 0.576 0.262 8 
AGAP007941 5.85E-07 0.637 0.259 0.072 8 
AGAP009110 7.10E-07 0.650 0.271 0.077 8 
AGAP007049 8.42E-07 0.550 0.329 0.106 8 
AGAP008895 1.56E-06 0.694 0.4 0.149 8 
AGAP013331 2.48E-06 0.703 0.271 0.08 8 
AGAP010233 3.06E-06 0.623 0.271 0.081 8 
AGAP001285 7.36E-06 0.617 0.341 0.121 8 
AGAP009464 8.32E-06 0.556 0.306 0.101 8 
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AGAP001616 9.23E-06 0.513 0.271 0.082 8 
AGAP010298 1.54E-05 0.528 0.424 0.171 8 
AGAP005121 1.83E-05 0.730 0.259 0.08 8 
AGAP006204 0.00011402 0.352 0.306 0.105 8 
AGAP005160 0.00014013 0.825 0.306 0.113 8 
AGAP002569 0.00016278 0.585 0.282 0.098 8 
AGAP005608 0.00026338 0.405 0.271 0.091 8 
AGAP006389 0.00026475 0.607 0.341 0.137 8 
AGAP007643 0.00031647 0.609 0.412 0.185 8 
AGAP011140 0.00033321 0.424 0.294 0.106 8 
AGAP001306 0.00091632 0.631 0.365 0.154 8 
AGAP007209 0.0009847 0.576 0.294 0.108 8 
AGAP004431 0.00146403 0.447 0.459 0.215 8 
AGAP007157 0.0017956 0.409 0.929 0.781 8 
AGAP003021 0.00241962 0.546 0.271 0.101 8 
AGAP011054 0.00291066 0.570 0.553 0.296 8 
AGAP008094 0.0033246 0.689 0.259 0.095 8 
AGAP001711 0.0044172 0.481 0.365 0.164 8 
AGAP008908 0.00451939 0.526 0.459 0.229 8 
AGAP007609 0.00513771 0.395 0.424 0.193 8 
AGAP011119 0.00641057 0.374 0.929 0.664 8 
AGAP004709 0.0071901 0.432 0.294 0.117 8 
AGAP009883 0.00777433 0.311 0.282 0.109 8 
AGAP009647 0.00805217 0.315 0.553 0.284 8 
AGAP012717 0.01025701 0.434 0.318 0.132 8 
AGAP000565 0.01034011 0.301 0.306 0.124 8 
AGAP011798 0.01111463 0.573 0.259 0.099 8 
AGAP001976 0.01712058 0.340 0.271 0.106 8 
AGAP002931 0.01969398 0.335 0.412 0.199 8 
AGAP004852 0.02508642 0.352 0.306 0.128 8 
AGAP002599 0.03220097 0.435 0.671 0.417 8 
AGAP001971 0.03253498 0.395 0.812 0.556 8 
AGAP002113 0.03696752 0.500 0.329 0.147 8 
AGAP003477 0.04175418 0.310 0.259 0.103 8 
AGAP005462 0.04202719 0.413 0.259 0.104 8 

 


