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Abstract 
 

The work in this thesis is concerned with characterising genes and their distributions in              

Escherichia coli ​and ​Klebsiella pneumoniae ​. While both ​K. pneumoniae and ​E. coli are found              

in the guts of healthy individuals, as well as in animals and in the environment, they are                 

particularly relevant organisms to study, as they represent key players in the dissemination             

of drug resistance and virulence in bacterial populations. Both organisms were given the             

highest priority by the World Health Organisation as organisms that pose the greatest threat              

to human health due to high levels of drug resistance. Additionally, they are both the leading                

cause of life-threatening extra-intestinal disease worldwide. Finally, some ​E. coli variants are            

also a major cause of severe diarrheal disease, most commonly in the developing world.  

The phenomena that is driving these issues is horizontal gene transfer (HGT); the process              

by which new genetic material is introduced into a genome from an outside source. Drug               

resistance is most commonly driven by gene acquisition, and it is through the acquisition of               

virulence genes that ​K. pneumoniae and ​E. coli can cause disease. Indeed, HGT has been               

estimated to occur in high rates in ​K. pneumoniae and ​E. coli ​. Both are highly diverse                

organisms with very large gene pools and multiple co-circulating lineages. These facts make             

studying their gene pools on large scales highly relevant, as new genes and lineages are               

continuously discovered with the sequencing of new genomes.  

The aim of this thesis was to utilise the availability of large public genomic datasets to study                 

the gene pools of ​K. pneumoniae and ​E. coli on a scale and resolution not previously                

possible. Initially, the distribution of toxin-antitoxin (TA) systems was investigated in a            

collection of 259 ​K. pneumoniae ​isolates. TA systems are operons where one gene encodes              

for a toxin which inhibits a cellular process, and the other is an antitoxin which inhibits the                 

toxin’s activity. TA systems are relevant to study in the context of HGT as they have been                 

shown to play a role in the maintenance of resistance and virulence genes and to contribute                

to antibiotic tolerance. The analysis on TA systems in ​K. pneumoniae revealed new insights              

regarding the distribution TA systems in the species. These insights were then expanded to              

examine the distribution of all genes of the ​E. coli gene pool in a collection of thousands of                  

genomes. This analysis revealed that genes from different categories undergo different           

dynamics of gene gain and loss, as well as exposed ​E. coli lineages which may be important                 

in their contribution to gene flow in the population. Due to the novelty and scope of the                 

analyses presented, new computational tools and approaches were developed and are           

presented. 
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5.4.9 Hyper-sharing PopPUNK Clusters possess more “cluster specific rare” genes in 

a single genome relative to the rest of the clusters 1 ​31 

5.4.10 PopPUNK Clusters which shared fewer low frequency genes than expected 

also had the largest number of “cluster specific core” genes 1 ​32 

5.4.11 Cluster specific core genes are often truncated variants of other genes in the 

collection 1 ​32 

5.4.12 STEC PopPUNK Cluster 27 and ExPEC PopPUNK Cluster 44 possess a 

large  number of “cluster specific intermediate” genes. 1 ​33 

            ​5.5 Discussion 1 ​33 

6 Conclusions and Future Directions 1 ​38 

6.1 ​Other use cases of SLING 1 ​38 

6.2 Further exploration of the biological implications of toxin-antitoxin pairings, the 

genetic background of the host and their genetic context 1 ​39 

6.3 Examination of TA systems on even larger scales 1 ​40 

6.4 Therapeutic potential of TA systems 1 ​40 

6.5 More reliable databases and scalable tools are required 1 ​40 

6.6 More systematic sampling of under-represented ​E. coli ​ lineages 1 ​41 

6.7 Further genomic analysis, as well as functional studies to understand the differences 

and commonalities between ​E. coli ​lineages 1 ​42 

6.8 Examining the routes of movement of the shared low frequency genes 1 ​43 

6.9 Further exploration of the rare genes 1 ​44 
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1 Introduction 

The Enterobacteriaceae are a taxonomic family of Gram-negative, rod shaped, facultative 

anaerobic bacteria, containing over 50 genera and 290 species [1]. This family includes some 

of the most clinically important genera of bacteria which are responsible for disease both in 

humans and other animals [2]. Two of these are Escherichia and Klebsiella. While the species 

Escherichia coli and Klebsiella pneumoniae share fewer than 55% genes and are only 82% 

identical in sequence [3], they share characteristics that make them highly relevant to study in 

today’s world where the dissemination of drug resistance genes and virulence genes within 

bacterial populations is a growing issue. Both species are found across niches in the guts of 

healthy individuals, animals and the environment [4], however, both can cause severe life-

threatening disease [5,6]. Indeed, both K. pneumoniae and E. coli are the leading causes of 

urinary tract infections (UTIs), bloodstream infections (BSIs) and meningitis [5,7,8]. Both 

species are ubiquitous worldwide, with multiple lineages co-circulating across different 

geographic locations [9,10]. Both species have large gene pools which further enhances the 

diversity in their populations as co-circulating lineages possess different sets of genes [9,11]. 

The availability of a large gene pool enables quick adaptation in fast-changing environments 

and in response to new pressures. The combination of these factors: an ability to adapt, global 

distribution and omnipresence both in the environment and in the human gut, have made both 

these two species prime players in the dissemination of genes that confer resistance and 

virulence worldwide. Indeed, both are included in the “ESKAPEE” pathogens, pathogens 

which are able to “escape” treatment with antibiotics [12,13]. They are also the highest priority 

on the World Health Organisation's (WHO) list of priority pathogens that pose the highest 

threat to human health due to high levels of resistance [14]. The availability of large datasets 

of these organisms provide the opportunity to examine their gene pools on a scale and 

resolution that was not possible before, along with the necessity to develop new approaches 

- these will be presented and explored in this thesis.  

1.1 The organisms: E. coli and K. pneumoniae 

1.1.1 The species K. pneumoniae  

1.1.1.1 Taxonomy and classification 

K. pneumoniae species complex 
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K. pneumoniae was first described in 1882 by Carl Friedlander when the bacterium was 

isolated from patients who had died from pneumonia [15]. In the last two decades, the species 

definition has undergone major changes. Today it stands that the K. pneumoniae species 

complex contains five unique species and seven subspecies (Table 1.1). The three species in 

the species complex which have been known the longest are K. pneumoniae sensu stricto, K. 

quasipneumoniae and K. variicola. These were originally identified in 2001 by Brisse and 

Verhoef as three phylogroups that make up the K. pneumoniae population and were coined 

as phylogroups KpI, KpII and KpIII respectively [16]. Whole genome sequencing (WGS) of 

these has since proved that these are in fact separate species [9]. Since, K. quasipneumoniae 

and K. variicola were each divided to include two subspecies (Table 1.1) [17–20]. The 

remaining two species, KpVI and KpVII were only discovered in the last three years [20,21]. 

 

While two new species and one new subspecies have been described since 2017, these 

species are not well studied. There are five or fewer complete assemblies of these species 

currently on the National Center for Biotechnology and Information (NCBI) database (Table 

1.1). In this thesis, the focus is on the isolates from the three most well studied subspecies; K. 

pneumoniae sensu stricto (KpI), K. quasipneumoniae subsp. quasipneumoniae (KpII) and K. 

variicola subsp. variiloca (KpIII). For clarity, I will refer to these three subspecies by the names 

K. pneumoniae sensu stricto, K. quasipneumoniae and K. variicola and to all three as K. 

pneumoniae or the K. pneumoniae species complex. 

 

Typing K. pneumoniae  

Traditionally, typing of K. pneumoniae was achieved using phenotyping methods, most 

commonly capsule serotyping of the polysaccharide capsule K antigen and bacteriocin typing 

[22–24]. Molecular typing methods were also developed, however they were not widely used 

due to lack of reproducibility [23]. In 2005, a multi-locus sequence typing scheme (MLST) 

based on seven chromosomal housekeeping genes was established and has since been 

widely used as the accepted scheme for typing K. pneumoniae [23,25]. MLST was proposed 

in 1998 as a standardised, deterministic and universal scheme for typing microorganisms [26]. 

K. pneumoniae sequence types (ST) are denoted at ST258, for instance for sequence type 

258. The Pasteur Institute MLST database for K. pneumoniae contains 3,409 unique STs as 

of January 20th, 20201 (Table 1.1).  

 

 

 

                                                
1 https://bigsdb.pasteur.fr/klebsiella/klebsiella.html 
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Table 1.1: K. pneumoniae species and subspecies.  

Species Subspecies Alt. 
name 

Year 
identified 

Number 
of 
assembli
es on 
NCBI (on 
date 
9.1.20) 

STs  

K. pneumoniae 
sensu stricto  

NA KpI 2001 8810 3132 

K. 
quasipneumoniae  
 

subsp. 

quasipneumoniae 

subsp. 

similipneumoniae 

KpII-A / 
KpII 
 
 
KpII-B / 
KpIV 

2001 

(originally) 

2005 

(subspecies) 

286 75 
 
74 

K. variicola  subsp. K. variicola 

subsp. 

tropicalensis 

KpIII 
KpV 

2001, 2004 

(originally) 

2017, 2019 

(subspecies) 

296 145 
0 

K. quasivariicola  NA KpVI 2017 5 0 

K. africanensis NA KpVII 2019 0 0 

 

1.1.1.2 Pathogenicity and resistance 

K. pneumoniae: an opportunistic pathogen and a leading cause of hospital acquired 

infections 

K. pneumoniae is, in most cases, an opportunistic pathogen causing infections in hospital 

settings amongst immunocompromised patients [5,24]. As of 2014, K. pneumoniae was 

considered the third cause of nosocomial infections in the United States and Europe, being 

the cause of 3%-8% of all hospital acquired infections [7]. An infection with K. pneumoniae 

can cause a range of severe life-threatening diseases including respiratory tract infections, 

meningitis, wound infections and blood-stream infections [5]. A recent incidence report by 

Public Health England (PHE), has shown that K. pneumoniae is the second leading cause for 

Gram-negative BSI in the UK and its prevalence has been increasing (Figure 1.1). 
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Figure 1.1: Incidence of bloodstream infections caused by eight major pathogens in 
England, per 100,000 people from 2014 up to 2018. Taken from English Surveillance 

Programme for Antimicrobial Utilisation and Resistance (ESPAUR) Report 2018 – 2019. 

 

K. pneumoniae colonises both the nasopharynx and the intestinal tract of healthy individuals 

[5,24]. Carriage rates of K. pneumoniae have been reported to be higher amongst hospital 

personnel and patients than in the general public [24]. This leads to high rates of hospital 

acquired infections which are thought to originate from patients’ own gastrointestinal tract, 

hospital equipment or hospital staff. Additionally, there is rapid transmission within hospital 

settings between carers, patients and the environment [24]. Therefore, major hospital 

outbreaks of K. pneumoniae commonly occur worldwide [27,28].  

 

Hypervirulent community acquired K. pneumoniae infections 

In the pre-antibiotic era, K. pneumoniae was considered a community acquired infection which 

predominantly affected alcoholics and diabetics, causing pneumonia, referred to as classical 

community acquired K. pneumoniae [29,30]. However, in the last three decades a 

hypervirulent K. pneumoniae (hvKp) has emerged which causes a new clinical manifestation 

of pyogenic liver abscess that is able to cause metastatic infections [30]. The first cases were 

reported in Taiwan in the 80s and 90s, and were followed by incidents in other countries in 

South-East Asia [29]. This form of community acquired K. pneumoniae infection has increased 

in incidence with time, as well as in other countries worldwide, including in North America and 

Europe  [30,31]. Today it is considered a global threat. Unlike hospital acquired or classical 

community acquired K. pneumoniae, hvKp affects patients which are otherwise healthy [32]. 

Transmission of community acquired K. pneumoniae and hvKp is unclear. It is likely that 
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infection occurs from colonisation of patients’ own gastrointestinal tract, and that transmission 

occurs via food, water, person to person or animal to person transmission [30]. 

 

K. pneumoniae sensu stricto: the leading cause of K. pneumoniae infections? 

In the past it was considered that K. pneumoniae sensu stricto was the leading cause of severe 

infections by the K. pneumoniae species complex, whereas K. quasipneumoniae  and K. 

variicola were less pathogenic species which were associated with carriage in humans and 

bovine [9]. However, in recent years it has become evident that isolates belonging to the other 

species of the K. pneumoniae species complex were often misidentified as K. pneumoniae 

sensu stricto [33,34]. Today it is understood that K. variicola and K. quasipneumoniae also 

cause severe infections and high mortality rates in humans [33–35]. With that being said, 

studies which are biased towards sampling from mammalian-infections consistently reveal a 

similar high prevalence of K. pneumoniae sensu stricto relative to isolates belonging to the 

other two species [36,37].  

 

The new hypervirulence phenotype is mostly restricted to the K. pneumoniae sensu stricto, 

with hvKp mostly belonging to K. pneumoniae sensu stricto ST23 [31]. However, K. 

quasipneumoniae and K. variicola isolates have also been reported to cause community 

acquired hvKp infections in as much as 17% of cases [38–40].  

 

Antimicrobial resistance in K. pneumoniae  
One of the major challenges today is the increase in multidrug resistance which results in 

untreatable bacterial infections. Resistance has been predicted to be the number one cause 

of death in the world by 2,050 [41]. According to a 2019 Centers for Disease Control and 

Prevention (CDC) report, there are over 2.8 million antibiotic-resistant infections and 35,000 

deaths as a result occurring in the United States every year2. K. pneumoniae is one organism 

for which resistance has increased in prevalence in the last few decades [5]. K. pneumoniae 

is often the first organism in which new antimicrobial resistance (AMR) genes are detected, 

before they are observed more widely across other pathogens [4]. In the last four years there 

have been reports worldwide of K. pneumoniae isolates which are pan-resistant and are not 

treatable with any available antibiotic [42–44]. 

 

Resistance in K. pneumoniae evolves with the use of new antibiotics and thus has been 

increasing with time [4]. K. pneumoniae is intrinsically resistant to beta-lactams such as 

ampicillin due to a chromosomally encoded beta-lactamases [9,17]. This has likely allowed K. 

                                                
2 ANTIBIOTIC RESISTANCE THREATS IN THE UNITED STATES, CDC, 2019 
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pneumoniae to initially spread in hospitals. Since then, resistance has emerged to every line 

of antibiotics; aminoglycoside in the 70s, followed by Extended Spectrum Beta-Lactams 

(ESBLs) and fluoroquinolones in the 80s, carbapenems in the 90s and most recently 

resistance to colistin [4,24]. Today, K. pneumoniae is the most common carbapenem resistant 

member of the Enterobacteriaceae causing infections [5]. 

 

Resistance has been reported across K. pneumoniae sensu stricto, K. quasipneumoniae  and 

K. variicola lineages [25], with the highest level of resistance attributed to K. pneumoniae 

sensu stricto, particularly within specific MLST lineages such as STs 258, 11, 15 and 101 

[5,25,36,37].  

 

Hypervirulent and multidrug resistant K. pneumoniae 

While resistance and hypervirulence are both major causes for concern within K. pneumoniae, 

these two phenotypes are mostly mutually exclusive, i.e. multidrug resistant (MDR) isolates 

are generally not hypervirulent [45,46]. In recent years, the emergence of isolates which are 

both resistant to last line antibiotics, including carbapenems, and are hypervirulent have been 

reported [45,47,48]. This convergence of resistance and hypervirulence is a major concern as 

the disease caused by hvKp is severe, affects healthy individuals and would be fatal without 

the ability to treat with antibiotics [5]. A recent study looking at the evolutionary dynamics of 

hypervirulent and MDR K. pneumoniae found that MDR isolates were highly diverse whereas 

hypervirulent isolates showed low levels of diversity, suggesting that the convergence of the 

two phenotypes occurs from the acquisition of virulence factors by resistant isolates, and not 

vice versa [46]. 

1.1.1.3 Genetics 

K. pneumoniae has a large, open pan-genome 

An average K. pneumoniae genome is 5.5 Mbp and consists of approximately 5,500 genes 

[9,25]. Of these genes, fewer than 2,000 represent the core genome of the species, i.e. genes 

which are present in all isolates [9]. The remainder of the genes are part of the accessory 

genome, i.e. genes that are only present in some isolates and lineages. The sum of all the 

genes of the species, core and accessory, is termed the “pan-genome”. A “pan-genome” which 

increases in size with sampling of new genomes, i.e. more genes are discovered with new 

isolates is termed “open” (Figure 1.2). The K. pneumoniae pan-genome is open and has been 

estimated to contain at least 30,000 protein-coding genes [9]. Most of the genes making up 

the K. pneumoniae gene pool are rare and found in fewer than 5% of sequenced isolates [9].  
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Figure 1.2: Pan-genome definition, taken from [49]. The Venn diagrams represent the 

overlaps in gene content between isolates belonging to the same species. The set of all genes 

shared by all isolates is termed the “pan-genome”. Genes which are shared by all isolates are 

termed “core” and the rest “accessory”. The size of the pan-genome varies across species 

and provides an indication on lifestyle.  

 

K. pneumoniae sensu stricto, K. quasipneumoniae and K. variicola are separately 

evolving species. 

The three species K. pneumoniae sensu stricto, K. quasipneumoniae and K. variicola, are 

separately evolving populations with barriers to gene flow between these closely related 

species [9]. This is indicated by high average nucleotide identity (ANI) within the species 

compared to between species (96%-97% compared with 99.5% within) [9]. An ANI cutoff of 

95%-96% is usually used to define a species [50]. Indeed, there is little evidence of 

recombination between the three species as high sequence divergence has been shown to 

affect efficiency of recombination [9,51]. Finally, the accessory gene content has been found 

to often be species specific [9].  
 

Genetic determinants of virulence 

Virulence factors enable K. pneumoniae to colonise, multiply and survive within the host [5]. 

Unlike a “classical” pathogen which actively attacks the host, K. pneumoniae virulence is 

mostly driven by the evasion of the host immune response and biofilm formation [52]. The best 
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characterised and primary virulence factor is the polysaccharide capsule, which contains the 

K-antigen, and is determined by the cps locus [24,53]. Second, the lipopolysaccharide 

component (LPS) of the outer-membrane, which contains the O-antigen, is determined by the 

rfb locus [5,54,55]. Both the capsule and the O-antigen allow K. pneumoniae to evade immune 

defenses [5,53,55]. Pili (fimbriae) enable K. pneumoniae to adhere to host cells as well as to 

medical equipment such as urinary catheters [56,57]. Other virulence factors such as type VI 

secretion systems and siderophores for iron acquisition have also been described [5]. 

 

The presence of combinations of these virulence factors and more have been shown to be 

associated with the hypervirulent phenotype [30]. Multiple studies have found that the capsule 

type of hvKp is most commonly K1 or K2, suggesting it plays a role in hypervirulence [5,45]. 

However, there are K1/K2 capsule type isolates which are not hypervirulent, whereas some 

hypervirulent isolates are non K1/K2 [45]. Siderophores salmochelin and aerobactin, encoded 

by iro and iuc respectively, have also been implicated in hypervirulence [9,58,59].  

 

Genetic determinants of resistance  

Intrinsic resistance to beta-lactams within the K. pneumoniae species complex are orthologous 

to each K. pneumoniae species and has evolved from a common ancestor that diverged with 

the species; blaSHV in K. pneumoniae sensu stricto, blaOKP in K. quasipneumoniae and 

blaLEN in K. variicola [9,17]. A number of chromosomal alterations lead to reduced 

susceptibility to antibiotics. These include induced expression of efflux pumps, reduced 

permeability by loss of outer membrane porins, or mutations in the antibiotic’s target. These 

include mutations in gyrA and parC, targets of topoisomerase, confer reduced susceptibility to 

fluoroquinolones [60,61]. Resistance to colistin, a last resort treatment for MDR strains, has 

been reported due to mutations in genes of the PhoQ/PhoP system, a two component gene 

system that regulates several cellular activities [62–65]. Resistance to other antibiotics is 

mostly driven through the accessory genome, with resistance determinants being acquired 

mostly on plasmids [5,25]. Carbapenem resistance in K. pneumoniae is mainly driven by the 

presence of one of three carbapenemases; OXA-48, NDM-1 and KPC [4,66]. In total, over 400 

unique AMR genes have been identified in K. pneumoniae [4,9]. In K. pneumoniae, plasmid 

mediated colistin resistance is mostly driven by mobilisable colistin resistance (mcr) genes 

mcr-1 and mcr-2 [5,25]. Worryingly, a hvKp carrying mcr-1 has been reported in China [68]. 
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1.1.2 The species E. coli 

1.1.2.1 Taxonomy and classification  

Typing of E. coli 
E. coli was first described in 1885 by Theodor Escherich [69]. It has since been the most 

commonly used laboratory strain as it is easy to grow in culture and to apply genetic 

manipulations [70]. The diversity of the species in the early days was measured using typing 

methods similar to those used in K. pneumoniae: phage-typing and serotyping [71]. Antibodies 

against the O antigen on the lipopolysaccharide and the H antigen on the flagellar were the 

most commonly used approach to distinguish between E. coli isolates [71,72]. These 

serotypes are still used today to identify particular high-risk clones [73,74]. However, 

serotyping does not inform on the phylogenetic relationships between isolates as through 

horizontal gene transfer (HGT) two distantly related isolates may have the same serotype and 

vice versa [75]. In more recent years, multiple MLST schemes for E. coli have been proposed 

[76–79]. Two schemes, Achtman and Pasteur, are still maintained on the public MLST 

database (https://pubmlst.org/mlst/) [80]. Both schemes are based on different combinations 

of seven or eight housekeeping genes [79]. The Achtman scheme has proved to be the most 

widely used and thus will be used in this thesis [79].  

 

Molecular methods define the E. coli phylogroups 

The first molecular method used to subtype the natural E. coli population was multilocus 

enzyme electrophoresis, a method based on the mobility patterns of enzymes during 

electrophoresis [81–84]. In 1983, Ochman and Selander collected 72 E. coli isolates which 

they believed represented the diversity of the natural population [85]. The isolates were 

chosen based on a principal component analysis (PCA) of the allelic variation of 11 enzymes. 

Additionally, they were chosen to include those collected from different hosts, across 

geographic locations and to include pathogenic and non-pathogenic variants [85]. These were 

termed the E. coli reference (ECOR) collection. The first phylogenetic analyses of this 

collection revealed four major phylogenetic groups, termed “phylogroups”, named A, B1, B2, 

and D and two minor groups named C and E [86,87]. While these were the early days in our 

understanding of the E. coli population structure, the existence of these major phylogroups 

was confirmed by more advanced methods including WGS [75]. During the years, minor 

refinements were made to the phylogroups to include additional phylogroups F and more 

recently G [10,11,78,88,89]. Additionally, five monophyletic cryptic clades, which are 

indistinguishable from E. coli sensu stricto have also been identified [90,91]. More recent 

publications including even more genomes have suggested that these definitions require even 
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further expansion [92]. A phylogenetic analysis of 9,479 Escherichia genomes, taken from 

public databases and representing all sequenced STs, was proposed to represent the total 

known diversity of the genus and was suggested as a new reference collection termed the 

EcoRPlus collection [93]. Figure 1.3 presents the phylogenetic tree of E. coli phylogroups 

using the isolates from the ECOR collection. Importantly, there have been conflicting results 

regarding the relationship between the phenotypic characteristics of the phylogroups [11,94]. 

 

 
Figure 1.3: Population structure of E. coli, based on 83 isolates representing the 

Escherichia phylogroup diversity. Taken from [95]. 

 

Shigella 
Shigella, a closely related species, was first described in 1897 as the causative agent of 

dysentery [96]. In the late 19th century, Shigella and E. coli were determined to be two 

separate species based on phenotypic studies; Shigella is a non-motile, obligate pathogen 

whereas E. coli is motile and commonly found in the gastrointestinal tract of healthy individuals 

[97,98]. Moreover, the two organisms presented different metabolic profiles [94]. It has since 

been confirmed that Shigella in fact contains four species (S. dysenteriae, S. flexneri, S. boydii, 

and S. sonnei) which are nested within the E. coli phylogeny in different locations [99,100]. 

Hence, some E. coli variants are in fact more closely related to Shigella, than the different 
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Shigella species are to each other. Thus, Shigella spp., in regards to species definitions, are 

in fact E. colis which have been given a different name for historical reasons.  

1.1.2.2 Pathogenicity and resistance 

E. coli is a common coloniser of the human gut in healthy individuals [10]. However, particular 

variants of E. coli, termed “pathotypes” or “pathovars”, have specific properties which lead 

them to cause a range of diseases, both in humans and other animals  [6,101,102]. These 

pathotypes are broadly divided into two categories depending on their site of infection.  

 

Diarrheagenic E. coli  
Diarrheagenic E. coli infect the gastrointestinal tract. Seven diarrheagenic pathotypes have 

been described: Enteropathogenic E. coli (EPEC), Enterotoxigenic E. coli (ETEC), 

Enterohaemorrhagic E. coli (EHEC), enteroaggeragive E. coli (EAEC), Enteroinvasive E. coli 

(EIEC), diffusely adherent E. coli (DAEC) and adherent invasive E. coli (AIEC) [6,101,102]. 

Shigella is also a diarrheagenic E. coli and is often classified as an EIEC [101,102]. Both EIEC 

and Shigella are invasive and have an intra-cellular stage within the host cells [101,102]. The 

definition of these pathotypes is based on the presence (or absence) of particular known 

virulence factor genes, phenotypically or otherwise from the disease they cause [6,101,102]. 

These are detailed in Section 1.1.2.3 of this thesis. EPECs, ETECs and Shigella are prevalent 

in the developing world where they cause fatal diarrhea among infants and children [103,104]. 

ETECs, EAECs and Shigella are the most common causes for travellers’ diarrhea [105]. 

EHECs are the only diarrheagenic E. coli that are cause for concern in the developed world 

as their major reservoir is in the gastrointestinal tracts of cattle [106,107]. Transmission occurs 

in the community through bovine-contaminated food, contaminated water or person to person 

transmission [101,106]. EHEC infections cause severe diarrhea and complications of an 

infection can lead to Haemolytic Uraemic Syndrome (HUS), a life-threatening condition which 

can lead to kidney failure [101,106]. EHEC serotype O157:H7 is the most common cause of 

diarrheagenic E. coli outbreaks in the developed world [106]. Importantly, while the pathotype 

definitions are useful, they do not encompass the complete possible range of E. coli 

pathogenicity. An example for this is a new pathotype, a hybrid between EAEC and EHEC 

typed as O104:H4, which emerged in 2011 and caused a large outbreak of bloody diarrhea 

and HUS in Germany [108]. 

 

Extra-intestinal E. coli  
Extra-intestinal E. coli (ExPECs) infect other bodily sites besides the gastrointestinal tract 

[6,102]. The most common infections caused by ExPECs are UTIs, BSIs and meningitis [8]. 

ExPECs have been estimated to cause 80% of community-acquired UTIs [109]. According to 
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a recent report by Public Health England (PHE), E. coli is the leading cause of BSIs and UTIs 

in the UK, and the number of incidences continues to rise year by year3 (Figure 1.1). Similar 

trends were observed in other developed countries worldwide [110–112]. Extra-intestinal 

infections, and in particular UTIs, are most commonly community acquired, but can also be 

transmitted in hospitals [113]. Often a BSI follows a UTI, suggesting transmission occurs 

between the two sites [8,113]. 

 

Lineage association with pathogenicity 

The first study which expanded the ECOR collection to include diarrheagenic E. coli isolates 

demonstrated that the diarrheagenic pathotypes were spread across the phylogeny and do 

not cluster according to their pathogenicity [114]. This was the first indication that pathogenicity 

is most likely horizontally transferred between distantly related strains [75]. In the last decade, 

using larger WGS studies confirmed that diarrheagenic pathotypes span all the E. coli 

phylogroups [115–119]. ExPECs, on the other hand, are primarily associated with phylogroup 

B2 which represents 60%-70% of infections, however extra-intestinal infections are also 

caused from isolates from the other phylogroups [120,121]. Even more, there are four STs 

that represent the predominant lineages which cause almost half of all extra-intestinal 

infections in the developed world: ST131, ST73, ST95 and ST69 [120–122].  

 

Antimicrobial resistance in E. coli  
E. coli was added to the ESKAPE pathogens in 2012 to form the so called ESKAPEE 

pathogens, confirming its status as a major threat for treatment failure and the spread of AMR 

genes worldwide [12,13]. This was done due to the high prevalence of E. coli isolates in a 

study of MDR pathogens in an intensive care unit in Mexico, where more than 76% of sampled 

E. coli isolates were MDR [13]. Similar levels of multidrug resistance among E. coli isolates in 

hospital settings, most prominently resistance to ESBLs, have been reported in other studies 

since [123–127]. Carbapenem resistance among E. coli has been reported to be as high as 

14% [127–129]. Worryingly, colistin resistance has also emerged in E. coli, originating from 

farm animals and more recently spread widely including to healthy individuals [67,130,131]. 

 

Varied resistance profiles have been observed across E. coli pathotypes and lineages [102]. 

In ExPECs, recurring UTIs are common, leading to periodical treatment with antibiotics within 

the same patient, a process which is likely contributing to the high levels of observed 

resistance within this pathotype [132]. Of particular concern is the global ExPEC lineage 

                                                
3 Annual epidemiological commentary: Gram-negative, MRSA and MSSA bacteraemia and C. difficile 
infection data, up to and including financial year April 2018 to March 2019, ESPAUR report 
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ST131 which is repeatedly reported as a leading cause of ESBL resistant UTIs and BSIs 

worldwide [120,121,133]. More recently, ST410 has also been labelled as a high risk ExPEC 

MDR lineage, resistant to both ESBLs and carbapenems [134,135]. Other STs which have 

been implicated in the dissemination of resistance genes among ExPECs are ST405, ST69 

and ST101 [136]. As EPEC, ETEC, EAEC and EIEC (and Shigella) infections are treated with 

antibiotics, there have been increased incidences of resistance among these pathotypes in 

recent years [102,137,138]. Antibiotics are not the recommended treatment for EHEC as it 

causes Shiga toxin-mediated cytotoxicity, nor for DEAC infections which are treated by 

rehydration, however resistance genes to ampicillin, streptomycin, trimethoprim, sulfonamide 

and tetracycline are also common in these pathotypes [102,106].  

 

Resistance to ESBLs is higher within hospital settings either due to a strong positive selection 

within hospitals or due to antibiotic treatment failure in the community4. However, community 

acquired ESBL resistant infections are increasing in prevalence, both for diarrheagenic E. coli 

and ExPECs [139–141] Carbapenem resistance has been reported both among ExPECs and 

diarrheagenic E. coli, predominantly amongst EPECs [102,127,142,143]. Even more, 

carbapenem resistance genes have been identified in the faeces of healthy individuals in the 

community, presenting the potential for these genes to transfer between E. coli pathotypes 

that occupy different niches as well as more broadly across other bacteria [127].  

1.1.2.3 Genetics 

E. coli as a model organism for studying the pan-genome 

Since E. coli is well characterised and arguably one, if not the most, important bacteria used 

to investigate bacterial evolution, laboratory strains of E. coli were some of the first fully 

sequenced genomes [144,145]. The availability of multiple whole genome sequences of this 

organism paved the path for some of the first comparative genomic studies, examining gene 

content across multiple isolates from different pathotypes. A comparison of three whole 

genomes of E. coli (EHEC, ExPEC and E. coli K-12) revealed the mosaic structure of the 

genome and the high diversity in gene content; only 39.2% of the genes identified were 

common to all three isolates [146]. Studies that followed using larger collections of up to 20 

isolates, confirmed that an E. coli genome consists of approximately 5,000 genes, however 

only 2,000 are shared by all isolates [11,92,147]. The E. coli pan-genome is open; sampling 

additional genomes leads to further identification of novel rare genes [11,147,148] (Figure 

1.2). While it was originally estimated to contain 17,000 genes, recent studies analysing over 

                                                
4 English Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR) Report, 
PHE, 2018-2019 
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10,000 genomes have estimated the size of the E. coli pan-genome at over 100,000 genes 

[92]. Furthermore, early studies were able to confirm that genes belonging to the core genome 

are most commonly of known functions and annotated to play a role in metabolism [11,147]. 

Genes in the accessory are mostly mobile elements, prophage remnants or genes that encode 

for outer-membrane proteins [11,147,149]. The vast majority of these accessory genes are 

rare and present in fewer than 15% of isolates [11,120,148]. 

 

Genetic determinants of virulence 

There is a range of factors that confer virulence across the E. coli pathotypes, however, the 

strategies used for infection are broadly shared across the pathotypes. Often, adhesion to host 

cells is required, followed by undermining of the host cells’ cellular processes by secreting 

proteins into the host cell [6,101,102]. The main virulence factors that are used to identify each 

of the pathotypes are detailed below. Additional virulence factors which have been found to 

be associated with the pathotypes have also been described, but are not detailed in this thesis 

[6,101,102]. 

 

EPEC: EPECs are defined by the presence of a pathogenicity island named “locus of 

enterocyte effacement” (LEE) [102,149,150]. The LEE encodes for an outer-membrane 

protein called intimin which enables adhesion (eae gene), a type III secretion system and 

effector proteins, one of which is called Tir [102,149]. The Tir effectors are injected into the 

host cell via the secretion system where they function as receptors for the intimin protein, 

allowing for stronger attachment to the epithelial cells [102,149,151]. EspB, a component of 

the type III secretion system, and intimin have been shown to be essential for EPEC virulence 

and therefore are most commonly used for EPEC identification [149,150,152]. An additional 

virulence factor, bundle-forming pilus (bfp), enables adhesion and has also been described as 

essential for virulence [153]. However, infections by EPECs that do not have bfp have been 

reported and are in fact common in both industrialised and non-industrialised countries 

[102,115,119,154]. These isolates have been termed atypical EPECs (aEPECs) 

[102,149,154]. 

 

EHEC: EHECs are defined by the presence of two virulence determinants: the LEE 

pathogenicity island and Shiga-toxin (Stx) (also known as verocytotoxin) [102,149]. Stx 

cleaves ribosomal RNA, thus killing the infected cell [101]. Stx is secreted in the colon and 

travels to the kidney where it causes damage that can lead to HUS. Stx also causes damage 

in the colon and thus leads to bloody diarrhea [102,155]. Isolates which are Stx-positive but 

do not possess the LEE pathogenicity island are generally termed Shiga-toxin producing E. 

coli (STEC) or verotoxigenic E. coli (VTEC) [102,149].  Atypical EHECs which produce Stx 
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and adhere to the epithelial cells via other adhesins have been also identified [149,156]. These 

include E. coli O104:H4 which produces Stx and has the adhesions of an EAEC [74].  

 

ETEC: ETECs are defined by the ability to produce enterotoxins: heat-labile enterotoxin (LT) 

and heat-stable enterotoxin (ST) [102]. Additionally, ETECs possess a range of colonisation 

factors that enable them to attach to the epithelial cells [102,117,149]. The enterotoxins impact 

the electrolyte transport in the small intestine, leading to watery diarrhoea [157]. 

 

EAEC: EAEC were defined based on their phenotype when grown in vitro on tissue culture 

cells, as they create a “stacked brick” adherence pattern [102,158]. This phenotype has mostly 

been attributed to several different aggregative fimbriae, termed aggregative adherence 

fimbriae (AAFs), which are found on the pAA plasmid [149]. Identification of EAEC today is 

mostly determined genetically based on the presence of the aatA and aaiC genes, encoding 

for virulence protein transporter found on the pAA plasmid and a chromosomally encoded 

gene which has been associated with EAEC virulence [149,159]. However, the presence of 

these genes does not necessarily confer the adherence phenotype, thus there is currently no 

clear genetic definition of this pathotype [102,149].  

 

DAEC: Similar to EAEC, DAEC were defined based on their adherence pattern in vitro on 

tissue cell culture [160]. The main genetic determinant identified for the adherence pattern are 

adhesins Afa/Dr and these are termed “typical DAEC” [102,161]. Atypical DAEC have the 

same adherence phenotype via the presence of other adhesins or otherwise, they possess 

Afa/Dr along with other virulence factors such as the LEE pathogenicity island or enterotoxins 

[102,149]. In those cases, the classification of an isolate would most likely be as an EPEC or 

an ETEC [149]. Thus, the classification of DAEC remains elusive [102].  

 

EIEC/Shigella: The key virulence determinant in EIEC is the pINV plasmid, which is also found 

in Shigella and encodes for the proteins enabling the intracellular lifestyle [162]. Indeed, EIEC 

are phylogenetically and pathogenetically similar to Shigella [163]. The plasmid encodes for a 

type III secretion system which enables host-cell penetration, genes for movement within the 

cell, the invasion of neighbouring cells and evasion of the host immune system [162]. 

 

ExPEC: Unlike diarrheagenic E. coli, ExPECs are defined by their site of infection [102]. 

Therefore, there is no set of genes which is necessary or sufficient to cause extra-intestinal 

infections [164]. Rather, it is considered that most ExPEC infections are opportunistic, causing 

infections from the commensal E. coli population [149]. With that being said, there are 

particular factors that have been found to be enriched in ExPEC infections, suggesting that 
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there are factors that contribute to the ability of ExPECs to colonise other tissues [165]. These 

include type 1 fimbriae, pili, AfA/Dr adhesins, K1 polysaccharide capsule, toxins and genes 

involved in iron acquisition [102,149,165,166]. 
 

Unclear boundaries between the E. coli pathotypes 

The pathotype definitions are highly valuable clinically in order to understand how to treat an 

infection and for epidemiological purposes for surveillance and measuring burden of disease 

of the different groups [149]. Therefore, identification of the mentioned virulence factors in 

clinical laboratories is useful. However, the boundaries between the pathotypes are not 

absolute. Virulence factors are often horizontally transferred, therefore there is no limitation 

for one of the pathotypes to acquire an additional virulence factor leading to “hybrid” 

pathotypes [102,149]. The most recent example of this is the O104:H4 E. coli outbreak in 

Germany in 2011 [108,167]. An EAEC had acquired Stx and thus became a Shiga-toxin 

producing enteroaggregative E. coli [167]. This pathogenic variant caused over 3,000 cases 

in healthy adults and led to 53 deaths [108]. The complexity of the pathotype definitions is 

depicted in Figure 1.4. Furthermore, ExPECs are defined by the site of infection. Thus, a strain 

that possesses the above-mentioned virulence factors which was not isolated from the 

gastrointestinal tract would be defined as ExPEC. 

Figure 1.4: 
Decision 
network of the 
virulence 
factors 
defining the E. 

coli 

pathotypes. 
Each node is an 

E. coli 

pathotype or 

combination of 

pathotypes. The 

edges define 

the presence of 

marker 

virulence 

factors. The complexity of the network expresses the ambiguity of the pathotype definitions.  
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Genetic determinants of resistance 

Resistance in E. coli, similar to K. pneumoniae, is predominantly driven by gene acquisition 

through HGT [168]. Chromosomal alterations that lead to resistance are similar to those in K. 

pneumoniae and include resistance to quinolones due to mutations in gyrA and parC genes 

[169]. Similar to K. pneumoniae, chromosomally encoded colistin resistance is mostly driven 

by mutations in the PhoQ/PhoP system [170]. Finally, chromosomally encoded ESBL 

resistance is driven by the overproduction of the AmpC beta-lactamase [136,171]. Otherwise, 

plasmid encoded resistance to ESBLs is most commonly conferred by the beta-lactamase 

CTX-M family of genes [136,168]. The most widespread CTX variants are CTX-M-14 and 

CTX-M-15 [136,168,172]. CTX-M-15 is most known for leading to ESBL resistance in the 

global MDR clone ST131 [173,174]. Plasmid mediated AmpC resistance is also common in E. 

coli [171]. Resistance to carbapenems in E. coli is mostly commonly conferred by the New 

Delhi metallo-β-lactamase (NDM-1) which is plasmid mediated [168,175]. Plasmid mediated 

colistin resistance in E. coli is encoded mcr genes, with five mcr genes having been identified 

in E. coli named mcr 1 to 5 [176–180].  

1.2 The phenomena: Horizontal gene transfer 

One of the main contributors to the pathogenicity, resistance and the large pan-genomes of 

K. pneumoniae and E. coli is HGT. HGT is the process by which new genetic material is 

introduced into a genome from an outside source, whether within the same species or between 

species [181]. Unlike the intrinsic accumulation of genetic mutations, gene acquisition is a 

rapid evolutionary process which enables immediate adaptation and propagation of genes 

across a whole population, including the spread of genes conferring resistance to antibiotics 

and virulence. HGT occurs at high rates in species that have large pan-genomes, such as K. 

pneumoniae and E. coli [182]. The increased pan-genome size and expansion of gene families 

within these species is driven primarily by HGT [182]. The outcome of gene flow between 

populations is most prominent when a phenotype is under strong selection in a specific 

environment, and thus genes disseminate quickly such has been the case for resistance 

genes in K. pneumoniae and E. coli [183,184].  

1.2.1 Mechanisms of HGT  

1.2.1.1 Inter-cellular mobility 

Conjugation is the process by which genetic material is transferred between two cells through 

direct physical contact (Figure 1.5) [181,185]. A conjugation pilus is formed through which the 

genetic material is transferred [181]. Most commonly, plasmids transfer between cells via 
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conjugation [185]. In order for conjugation to occur, the presence of genes which encode for 

the conjugation machinery is needed. These primarily include the components of a type IV 

secretion system which forms the pilus through which the DNA is transferred, a relaxosome 

complex for processing the DNA and a type IV coupling protein which connects the 

relaxosome to the transport channel [186–188]. Plasmids are considered “conjugative” when 

the conjugation machinery is encoded on the plasmid itself. Plasmids are considered non-

conjugative if they can exploit the conjugation machinery of other plasmids in the same cell to 

transfer between cells, and are these are termed “mobilisable” [185,187,189].  

 

Transduction is the mechanism by which a phage acts as a vector for genetic transfer by 

incorporating genetic material from an infected bacterium during lysis or excision, and carries 

the material to another cell (Figure 1.5) [181]. Transduction can either be generalised or 

specialised. In generalised transduction, a random piece of the host DNA is incorporated into 

the phage DNA, whereas in specialised, the incorporation of host DNA in the phage DNA is 

driven by imprecise replication [181].  

 

 
Figure 1.5: Main mechanisms of HGT. 
Adapted from [181]. Conjugation occurs 

by direct physical contact between two 

cells. In transduction, phage act as 

vectors of gene transfer. Transformation 

is the uptake and integration of DNA from 

the environment. 
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Transformation is the uptake and integration of DNA from the environment under natural 

growth conditions (Figure 1.5) [185]. This ability is driven by the presence of a set of genes 

which enable DNA uptake, termed “competence” [190]. Competence is often regulated based 

on the environmental conditions. Transformation has been observed across a range of 

bacteria and archaea, suggesting it is an important mechanism for introducing genetic 

variation [185,190].  

1.2.1.2 Intra-cellular mobility  

In addition to inter-cellular mobility of genetic material via the above-mentioned mechanisms, 

intra-cellular mobility by recombination and mobile genetic elements (MGEs) is a major 

contributor to the spread of genes in the population [189,191]. 

 

Recombination of genes, or fragments of genes, is the process by which genetic material is 

integrated into the chromosome [192]. This process is broadly divided into homologous 

recombination, which requires sequence homology between the two DNA segments involved, 

and non-homologous recombination [191]. Recombination is important in the integration of 

foreign DNA following inter-cellular transfer. For instance, following transformation, DNA 

molecules which share homology to the host genome can be integrated in the genome via 

homologous recombination. Homologous recombination is mostly driven by the presence of 

the RecA family of proteins [193]. Non-homologous recombination is driven by specialized 

enzymes encoded on particular MGEs and phages [191]. While recombination is widespread 

across bacteria, the level of recombination across species has been estimated to vary widely 

[192,194].  

 

A range of MGEs have been described. Transposon and insertion sequences (IS) are DNA 

segments that encode all the enzymes required for their self transposition to different sites in 

the genome [189,195]. Integrons use site-specific recombination and encode for an integrase 

which enables the recombination of the integron gene cassette into these specific sites [196]. 

Genomic islands are defined as distinct regions of the chromosome which show the 

characteristic of having been horizontally transferred and are usually flanked by direct repeats 

[189]. Integrative conjugative elements (ICEs) are an example of a genomic island [183]. ICEs 

encode for their self conjugation, but unlike plasmids, they are integrated in the chromosome 

[183]. As they are chromosomal, they are vertically inherited, however, they can excise to form 

a circular DNA molecule, conjugate into another cell, and reintegrate in specific sites. The 

conjugative machinery of ICEs can also be exploited by non-conjugative plasmids. Other 

clinically important genomic islands include resistance islands and pathogenicity islands [189].  
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The presence of MGEs on a plasmid enables their transfer onto the chromosome without the 

need for the plasmid to replicate and persist, as the MGE can transfer to the chromosome 

even if the plasmid does not survive [189]. As coined in [189], the plasmids can act as “suicide 

vectors” for the horizontal spread of genes via MGEs. Additionally, their presence enables 

gene duplication within a genome. The duplication of the MGEs in genomes and plasmids 

leads to many homologous regions which can recombine leading to an even further increase 

in genetic diversity [189]. Importantly, this leads to many repeat regions within organisms 

which have a high load of MGEs in their genome. Highly repeated DNA makes the assembly 

of short read whole genome sequences challenging, as it is impossible to determine the order 

of fragments that are flanked by the same repeats [197]. This leads to highly fragmented 

assemblies with many short contigs. 

1.2.2 Barriers to HGT 

In order to investigate the flow of genes and the pan-genomes of K. pneumoniae and E. coli, 

it is essential to understand the barriers for transfer of genetic material between isolates and 

species.  

1.2.2.1 Genetic barriers 

There are genetic barriers that can limit the ability of genetic elements to transfer between 

cells. For instance, in order for homologous recombination to occur, there has to be a certain 

level of sequence similarity between the donor DNA and the host, or otherwise, particular DNA 

integration sites need to be present to be recognised by the integrase [185,198,199]. For 

transformation to occur, genes which enable competence must be present and active [190]. 

 

Plasmids depend on host replication systems for their own replication. Following conjugation, 

if the replication machinery (helicase, primase, polymerase) of the recipient cell is incompatible 

with the plasmid’s replication mechanism, the plasmid will not survive [189]. Plasmids which 

require the same replication factors from the host are termed “incompatible” as they compete 

for the same replication factors in a cell (including for copy-number control), and therefore 

cannot co-exist [189]. Plasmids have been typed into compatibility groups (Inc) based on their 

replicon [200,201]. Plasmids belonging to the same compatibility groups may also undertake 

surface exclusion to prevent a plasmid which uses the same replication factors to conjugate 

into the cell [185].  

 

Transduction may not be possible between two bacteria which are susceptible to different 

phage. For instance, in order for a phage infection to occur, specific surface receptors must 
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be expressed on the outer membrane to enable the infection [202]. Otherwise, immunity to 

phage infection is given by genes which recognise phage associated motifs in the phage 

genome and prevent its replication [203]. These immunity genes may be encoded on other 

phage which are present in the host [204]. Other genetic immunological factors include 

restriction modification systems or CRISPR-cas systems which digest foreign DNA molecules 

[185,202,204,205]. Finally, abortive infections are the equivalent of programmed cell death, 

where a bacterium which has been infected by phage induces its own death to prevent its 

further propagation in the population [204].  

1.2.2.2 Physical barriers 

In addition to genetic barriers, some physical barriers exist which can prevent the transfer of 

DNA. One such barrier is the occupation of different niches [206]. Conjugation requires direct 

physical contact between two cells and transduction can only occur if two cells are in a shared 

ecological environment. For transformation to occur across ecological niches, the DNA must 

persist and be stable in the environment. Finally, studies have shown that the capsule could 

prevent the transfer of genetic material between cells, likely due to the physical barrier it 

creates [207]. However, a recent genomic analysis on a range of species showed a conflicting 

picture where species which encode for more capsules present higher levels of HGT [208]. 

1.2.3 HGT in K. pneumoniae and E. coli 

K. pneumoniae and E. coli cross niches, making them major gene-traffickers 

In order for HGT to occur, the organisms taking part in the transfer of genetic material need to 

reside in the same habitats [4,206]. Organisms that can transfer through different niches, for 

instance, from a human to the environment and back to a human, would thus be major players 

in trafficking genes. Both K. pneumoniae and E. coli are ubiquitous across niches; they are 

colonisers of human guts as well as animal gastrointestinal tracts, found in the environment, 

in plants and in soil [4,209]. The level of movement of these two organisms between niches is 

still unclear, but genomic studies have shown that the same lineages exist across multiple 

niches, suggesting there is no clear separation between niches [4].  

 

Genome plasticity in K. pneumoniae and E. coli is high 

Genome plasticity is another prerequisite for a large pan-genome. An ability to lose and 

acquire genes enables the persistence of low frequency genes in the population [210]. Gene 

gain is most commonly driven by HGT [211].   
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High recombination rates in E. coli have been well established, and are estimated to be twice 

as likely to occur than mutation on any base pair in the genome, meaning that recombination 

is a major driving force in E. coli evolution [11,77]. Studies on recombination within and 

between the E. coli phylogroups have found that inter-phylogroup (and even inter-lineage) 

recombination is low whereas intra-phylogroup recombination is high, suggesting there are 

biological and ecological barriers to gene sharing between distant clades [212,213].  

 

In K. pneumoniae, studies on recombination rates have been conflicting [25]. Recombination 

in K. pneumoniae has been estimated to be low [194]. On the other hand, an example of the 

contribution of recombination to genome plasticity and resistance in K. pneumoniae includes 

the emergence of the carbapenem resistance lineage ST258 which was driven by a large 

recombination event [214]. A more recent study found that large recombination events occur 

frequently in K. pneumoniae and is driving the emergence of novel STs [215]. 

 

High rates of gene gain and loss over time in E. coli are also indicated by the fact that very 

closely related isolates tend to share many genes, whereas distantly related isolates present 

a wide distribution in the number of genes they share [11]. The high number of genes shared 

between closely related isolates indicates recent gene acquisition on short timescales. On 

longer timescales, genes are lost and regained, therefore gene sharing varies and does not 

follow the phylogeny [11].  

 

K. pneumoniae has been associated with hundreds of distinct plasmids spanning many Inc 

types and has been shown to possess, in most cases, between 2-5 plasmids per isolate [4]. 

On the other hand, E. coli has been shown to carry fewer plasmids, between 0-3 per isolate 

on average. The number of plasmids in each isolate can vary significantly, with some E. coli 

and K. pneumoniae isolates predicted to contain as many as 10 plasmids within a single isolate 

[4]. This large plasmid load suggests that K. pneumoniae and E. coli are particularly 

permissive to plasmids, and that these plasmids are able to persist for enough time to 

propagate in the population [4].  

 

Another indication of high genome plasticity is the heterogeneity in genome sizes in both E. 

coli and K. pneumoniae as isolates vary by more than 1 Mb in genome size [4,216,217].  

 

Interestingly, plasmid load, recombination and gene gain and loss rates differ between E. coli 

and K. pneumoniae lineages (and can be consistent within a lineage) [4,77,92,212]. This 

suggests different dynamics of gene acquisition and loss across the species. 
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1.2.4 Contribution of HGT to virulence and resistance  

Resistance genes in K. pneumoniae and E. coli are often mobilised on plasmids 

Resistance to beta-lactams, ESBLs, carbapenems and colistin are all present on plasmids 

[168]. As resistance is often encoded on plasmids, these often encode for additional genes 

that confer resistance to other antibiotics, disinfectants and heavy metals [5,201]. Hence, the 

gain of the resistance phenotype can generally improve fitness due to association with other 

genes on the same plasmid, and the selective pressure led by the presence of a single 

antibiotic leads to dissemination of multidrug resistance [25,136]. With that being said, a large 

resistance plasmid means greater DNA burden and inability to acquire other plasmids of the 

same incompatibility group. Therefore, there is a cost benefit in acquiring these resistance 

plasmids, probably explaining why resistance plasmids are not ubiquitous [189].  

 

One major example is the ESBL resistance variant CTX-M-15 in the MDR E. coli lineage 

ST131, which is commonly found on IncFII plasmids and carries additional resistance genes 

[136,189,201]. Other examples are ST258 and ST11 of K. pneumoniae (of the same clonal 

group), which are commonly associated with carbapenem resistance and 50%-75% of the 

plasmids within these lineages harbour additional resistance genes [4,5,25]. Studies on ST258 

and ST11 have confirmed that each isolate typically harbours 2-6 plasmids, thus isolates 

belonging to these lineages have been shown to contain between 12-15 distinct resistance 

genes [25,218].  

 

Plasmid mediated colistin resistance by the mcr genes has been associated with a range of 

plasmids. The mcr-1 gene has been found on multiple plasmid backbones including IncF, H, 

X and I-complex plasmids, mcr-3 on IncHI plasmids, mcr-2 on IncX plasmids and mcr-4 and 

mcr-5 were reported to be present non-conjugative ColE plasmids and are transmissible via  

transposon mediated transposition or through mobilisation on helper plasmids [176–178,189]. 

 

Hypervirulence genes in K. pneumoniae are horizontally transferred 

A large plasmid, pLVPK, has been named as the main contributor to hypervirulence in K. 

pneumoniae [31,45]. The plasmid contains many of the virulence factors known to be 

associated with hypervirulence, including genes encoding for siderophores and RmpA, the 

regulator of capsule production [45]. Additionally, it has been shown that ST23 isolates, from 

the hypervirulent lineage, which do not have this plasmid show reduced virulence potential 

[219]. Other virulence genes have been associated with the presence of an ICE (ICEKp1) or 

otherwise present in genomic islands [31,220]. WGS comparisons identified additional regions 

which were associated with integrases and had a low GC content that are unique to the 
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hypervirulent strains, further emphasising the contribution of HGT to the hypervirulent 

phenotype [31].  

  

Acquisition of virulence genes defines the E. coli pathotypes 

The Stx, which is present in STEC and EHEC isolates, is acquired by transduction on a 

lambdoid bacteriophage [221–223]. The phage is capable of both lysogenic and lytic growth 

and production of infectious particles, thus Stx can be maintained stably within the bacterial 

host chromosome as well as easily be transmitted to other cells by transduction during lytic 

growth.  

 

Many of the marker virulence genes are found on plasmids and transmitted via conjugation. 

Most prominently these include the LT and ST genes in ETECs which are almost exclusively 

found on plasmids, the pINV in EIEC and Shigella which contains all the genes required for 

invasion and intracellular survival and the pAA plasmid in EAEC [224,225]. Typical EPEC 

isolates possess the pEAF plasmid which contains the genes for forming the bundle-forming 

pilus [102]. In addition to the virulence factors presented in Section 1.1.2.3, many other factors 

have been described to contribute to pathogenicity, such as fimbriae and toxins, and these 

are found on large virulence plasmids and genomic islands [6,102]. Most prominent are 

plasmids pO157 in EHECs, pB171 in EPECs and PcOO in ETECs [102,226]. Pathogenicity 

islands, which are an indication of an HGT event, are also common among pathogenic E. coli. 

One main example is the LEE pathogenicity island found in EPECs and in typical EHECs 

[102]. Pathogenicity islands have also been described in UPECs, EAECs, ETECs and EIECs 

[6].  

 

Contribution of recombination to pathogenicity in E. coli 
There have been conflicting results regarding the contribution of recombination in the core 

genome to the pathogenicity in E. coli. Early studies measuring recombination in MLST genes 

found that recombination rates among pathogenic variants of E. coli are 5-6 times higher than 

recombination rates in commensal non-pathogenic E. coli [77]. Following studies using whole 

genome sequences found that in fact recombination rates among the most virulent lineages, 

ExPECs including ST131 and EHECs, were lower relative to commensal E. coli [212,213]. 

The earlier studies suggested that pathogenic E. coli needed to adapt to changing 

environments, and thus variants that were able to adapt quicker were selected amongst 

pathogens [77]. More recent studies suggest that pathogenic E. coli are highly adapted and 

sexually separated from the rest of the population, thus undergo less recombination [213]. 
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1.3 The genes: Toxin antitoxin systems 

Virulence and resistance plasmids in K. pneumoniae and E. coli are often very large, and 

therefore are a metabolic burden on their host as their replication requires energy and 

metabolic sources. Hence, with no selection pressure, there are mechanisms in place for their 

maintenance [189]. Toxin-antitoxin (TA) systems likely play a role in K. pneumoniae and E. 

coli pathogenicity and resistance by the maintenance of these plasmids.  

 

TA systems are bicistronic operons composed of a toxin gene and antitoxin gene [227]. The 

toxin inhibits cellular processes, such as translation or transcription, and thus leads to growth 

arrest or cell death. The antitoxin is co-transcribed with the toxin and inactivates the toxin’s 

activity by different modes of inhibition. Typically, the antitoxin is less stable than the toxin as 

it is targeted to be degraded by cellular proteases such as Lon or Clp [228]. Thus, when a cell 

does not inherit the TA system post division, the existing antitoxin will degrade prior to the 

toxin and the cell will cease to grow or die [229]. This process was termed “post segregational 

killing” (PSK) [230]. Therefore, in the absence of selection, these plasmids are thought to be 

maintained by addiction to the TA system [226]. The existence of the phenomena of PSK has 

been under debate recently, as there are concerns that over-production of any protein would 

lead to cell death and that the expression levels used in-vitro are biologically irrelevant [231]. 

Nonetheless, there is clear evidence that TA systems play a role in the maintenance of 

plasmids, simply not necessarily by PSK but by growth inhibition [231]. 

1.3.1 Classification 

Seven types of TA systems have been described based on the properties of the antitoxin and 

its mode of inhibition of the toxin (Figure 1.6). Type I system antitoxins are antisense RNAs 

which inhibit the toxin’s activity by binding to the toxin’s mRNA [232]. Antitoxins of type II 

systems are proteins which bind directly to the toxin, thus inhibiting its activity [227]. The 

antitoxins of type III systems are RNAs that form a pseudoknot that binds directly to the toxin 

[233]. Antitoxins of type IV systems are proteins that interact directly with the toxin’s target 

[234]. Antitoxins of type V systems are RNAse that cleave the toxin mRNA [235]. Antitoxins of 

type VI systems are proteins that promote the degradation of the toxin by a protease [236]. 

Type VII TA systems have only more recently been described, where the antitoxin is a protein 

that leads to the modification of a cysteine residue on the toxin and inactivates it [237]. 
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Figure 1.6: Types of TA systems. Taken from [238]. Toxins are shown in orange and 

antitoxins in blue. The newly described Type VII system is not shown. 

1.3.2 Mechanisms 

Toxins have been shown to have a variety of cellular targets. The toxins of type I systems, 

which are most commonly short proteins of only 60 aa, have a specific structure which 

localises in the inner membrane leading to membrane damage [232,239].  

 

The proteins of type II systems are the most varied and have a range of cellular processes 

that they target [232]. CcdB and ParE toxins target DNA gyrase [240,241]. The Zeta toxin of 

a three component TA system ω-ε-ζ interrupts peptidoglycan synthesis [242]. VapC inhibits 

transcription by site specific cleavage of tRNAs [243]. HipA phosphorylates and inactivates 

GltX, the protein in charge of charging glutamate onto tRNAs [244]. Doc targets the ribosome 

leading to inhibition of protein synthesis [245]. RelE and MazF are RNAses that inhibit 

translation by cleavage of mRNA [246,247].  

 

There are only a few representatives of the less well studied TA systems, types III-VII.The 

type III toxin, toxN, is RNAse and inhibits translation [248]. The type IV toxin, CbtA, inhibits 
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the polymerisation of cytoskeletal proteins MreB and FtsZ [249]. The type V toxin, GhoT, is a 

hydrophobic peptide similar to that of type I systems that disrupts the cell membrane [235]. 

The VI toxin, SocA, blocks replication elongation [236]. Finally, the target of the most recently 

discovered type VII toxin, Hha, is still unknown [237].  

1.3.3 Role in resistance and pathogenicity 

Maintenance of virulence and AMR genes 

The most common type of TA systems thought to maintain virulence and resistance plasmids 

are type II systems, with some plasmids containing more than one TA system [226]. The 

VapBC system is found on the EIEC/Shigella pINV plasmid and has been shown to be 

essential for the maintenance of the plasmid in Shigella [250]. The CcdAB and RelBE TA 

systems are found on E. coli virulence plasmids pO157 and pB171 (described in Section 

1.2.4.2) [226]. Computational analyses on TA systems found that beyond plasmids, TA 

systems are often found with other MGEs such as ICEs and pathogenicity islands, suggesting 

they play a role in maintenance of other MGEs [227,251]. 

 

Persistence 

Bacterial cells enter a state of dormancy termed “persistence” in response to stress, for 

instance, in the presence of antibiotics or lack of nutrients [238,252]. Unlike resistance, 

persistence is a state which a cell can enter and exit, rather than a change in phenotype 

conferred by mutation or gene acquisition [238,252]. During this state, antibiotics are less 

effective as the bacterium is not growing. Thus, this phenomenon is thought to be the cause 

of failure of antibiotic treatment and recurrent infections, as once the antibiotic is removed the 

persisters can revert to a growing state and repopulate the population [238,252]. It has been 

established that TA systems, particularly type II TA systems, contribute to this phenotype. For 

instance, knock out of the hipA TA systems leads to reduced persistence, and expression of 

TA systems has been observed in persisters in macrophages [244,253]. The exit and entrance 

from the persister state is thought to be achieved by type II TA systems through a process 

called “conditional cooperativity” [254]. The toxin and antitoxin form a complex that regulates 

the expression of the TA operon. Depending on the stoichiometry of toxin and antitoxin, the 

complex of toxin and antitoxin either induces further expression of the antitoxin or represses 

it leading to growth arrest and persistence. 

 

Modification of regulation 

TA systems can affect gene regulation, and thus increase virulence. This may occur via a 

transcriptional read-through: the TA is inserted in the promoter region of another gene leading 
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to changes in the gene’s expression [255]. Alternatively, antitoxins of type II systems often 

serve as transcriptional regulators, thus they may affect the regulation of other genes [227]. 

Finally, toxins of type II systems are often RNAses which may lead to selective degradation of 

mRNAs and thus to changes in gene expression [227]. 

 

Virulence caused by toxins 

Another potential role of TA systems in virulence is that the toxins of the TA system can 

themselves be toxic to the host and thus increase virulence [227]. For instance, in the case of 

intracellular pathogens, toxins of type I systems may interfere with the host cell membrane, or 

otherwise toxins of type II systems that are mRNAses may degrade host mRNA. 

 

TA systems as barriers to transduction 

TA systems have been shown to play a role in inhibition of phage propagation. A type II system 

MazF/MazE, type III system ToxN/ToxI and type IV system AbiEii/AbiEi were all shown to 

reduce propagation of phage [256–258]. This is likely achieved by arrested growth which 

prevents further propagation of the phage [231]. As transduction with phage is one of the major 

mechanisms of HGT, the presence of different TA systems may act as defense systems 

against phage and may affect transduction rates and possibility of phage to infect different 

species and transfer genetic material between species, including resistance and virulence 

genes.  

 

Biofilm formation 

Deletion of TA systems in E. coli, V. cholerae and P. aeruginosa have been shown to reduce 

biofilm formation [259–262]. Biofilms are communities of microorganisms that attach to 

surfaces. They are extremely important clinically as they form the bacterial communities that 

contaminate catheters and medical implants [263]. Additionally, biofilms have been shown to 

be less sensitive to antimicrobial treatment [264].  

1.4 The approach: comparative genomics using public 

databases 

In 2001, two whole E. coli genomes were available for the first time with the sequencing of E. 

coli Sakai O157:H7, four years after the completion of the sequencing of the first E. coli 

genome K-12, enabling the first comparative genomic study [144,145]. With time and the 

development of sequencing technologies, the number of genomes available has been growing 

exponentially and thus the number of genomes used in these comparisons has increased 
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(Figure 1.7). A little over ten years  ago, Touchon et al. investigated 20 complete E. coli 

genomes with the quote “We have thus taken advantage of the unprecedented availability of 

20 completely sequenced genomes of the same species to analyse the evolution of the gene 

repertoire” [11]. Today, the largest published study on E. coli comparative genomics included 

4,071 E. coli isolates from a single lineage ST131 [265]. The EcoRPlus collection, mentioned 

in Section 1.1.2.1, includes 9,479 Escherichia genomes [93]. As of today, EnteroBase, a 

database which performs daily scans of the Sequence Read Archive (SRA) to curate a 

collection of genomes of enteric pathogens, has over 130,000 E. coli and Shigella assemblies, 

and a recent preprinted study has analysed the E. coli population on that scale [92,93].  

 

Figure 1.7: Number of bacterial and archaeal genomes released each year on NCBI. 
Taken from the genbank_prokaryotes.txt file, downloaded on May 27th, 2020.  

 

The increasing number of genomes and technological advances enabled to address new 

questions regarding the evolution and lifestyle of these bacteria. First and foremost, we have 

been able to investigate the population structure and level of diversity in gene content between 

members of the same species [9,117,121]. Comparisons of pathogenic and non-pathogenic 

isolates have helped to identify novel virulence factors or to understand which mechanisms 

contribute to a pathogenic lifestyle, for instance, recombination rates, gene loss etc. [9,147]. 

On an epidemiological and clinical level, comparative genomes can unravel how bacterial 

populations spread geographically and to investigate outbreaks [266,267]. Publicly available 

genomes can be added to such analyses to put local investigations in a global context. 
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1.4.1 Methods for comparative genomics  

The general approach for comparing genomes requires an initial subdivision of the population 

based on relatedness of the genomes, along with understanding the evolutionary relationships 

between these groups. It is important to subdivide the population in order to find biases in the 

data, and to be able to infer relatedness of isolates across studies. For comparing gene 

content, tools must first identify the genes of interest and be able to group the genes by 

homology. The diversity in gene presence or absence and variation within the genes that are 

present can then be compared across the population. The availability of easy-to-use scalable 

tools provides the foundation to conduct large scale comparative genomic analyses.  

1.4.1.1 Defining the population structure 

The genomes in a collection can be divided into groups by application of in-silico methods for 

typing of bacteria based on their genetic variation. The most basic in-silico approaches use 

similar marker genes to those used in laboratory settings to type bacteria. For instance, the 

16S rRNA can be used for taxonomic identification [268]. In-silico serotyping can be used to 

define the antigen composition of sequenced isolates [269]. In E. coli, in-silico polymerase 

chain reaction (PCR) can be used to assign a phylogroup to a genome based on a set of 

marker genes [270,271]. An increased level is achieved by using the set of genes used in the 

MLST schemes, which uses the genetic variations of 7-10 housekeeping genes [272]. Finally, 

the highest resolution is afforded by grouping isolates based on the gene content across the 

whole genome. Whole genome multilocus sequencing typing (wgMLST) and core genome 

multilocus sequence typing (cgMLST) are new approaches which cover the full range of 

nucleotide differences in all core ORFs of an organism, expanding the original MLST 

definitions which include only a few genes [273–275]. cgMLST and wgMLST schemes 

transform variations between genes into simple character data, which reduces the 

computation power for comparing whole genomes. 

 
Methods which are independent of gene content and are based on whole genome composition 

can also be used to define groups in the population. BAPS clustering is a Bayesian approach 

which stochastically partitions the population based on the molecular data [276]. More 

recently, methods that are based on the k-mer composition of genomes have been developed 

as they scale better with the increase in the number of genomes [277–279]. K-mers are 

extracted from a genome by counting all words of size “k'' in the sequence. The similarity in k-

mer composition can be measured between every pair of genomes and thus they can be 

clustered into groups. The distance in k-mers between every two clusters is used to elucidate 

the relationships between clusters [278]. 



 31 

 

Construction of a phylogenetic tree is used to define the evolutionary relationship between 

groups [280]. Tree topology and branch lengths are inferred from a multiple sequence 

alignment (MSA). The input MSA could include a set of genes, for instance, all the MLST 

genes or all core genes. Maximum likelihood and bayesian methods explicitly state a statistical 

model of sequence evolution [280]. They use a heuristic approach to sample different tree 

topologies and for each topology they calculate the branch lengths and parameters of the 

evolutionary model that produce the highest likelihood or posterior probabilities of the tree 

given the MSA [280–282]. These methods can be computationally demanding and they do not 

scale for very large sample sizes [280]. Given the increasing number of available genomes, 

approaches which are distance based or based on K-mer compositions can be used to 

estimate phylogenetic relatedness [278]. 

1.4.1.2 Methods for gene detection  

Identifying a single gene of interest 

The most basic form of comparing two genomes, is to identify the presence or absence of a 

particular gene in the query genomes. This is achieved by constructing a database of the 

gene(s) of interest, for instance, a database of AMR genes, and searching for those genes in 

the query genomes. The tools to search for the genes fall into two main categories: those that 

are based on searching for the genes in an assembly or otherwise those that align the genome 

reads against a database of genes [283]. From the first category, Basic Local Alignment 

Search Tool (BLAST) or DIAMOND are alignment tools which align an assembly against a 

gene database [284,285]. Tools for finding resistance genes (res-finder, Arg-annot), virulence 

genes (virulence-finder) and plasmid replicons (plasmid-finder) are all based on using BLAST+ 

with a curated database of genes [286–289]. The disadvantage of these tools is that genes 

may be missed if they were misassembled. To account for this, tools from the second category 

map the reads against a database of genes and thus are independant of the quality of the 

assembly [283,290]. Both these searches highly depend on the quality of the database of 

genes constructed. For instance, if the gene variant used to build the database is not 

representative of the genome being queried, the gene might not be found. Additionally, 

mutations in all positions are treated the same as a simple identity cutoff is used across the 

entire gene sequence.  

 

An alternative approach is to use statistical representations of nucleotide or protein sequences 

based on an MSA of the gene being searched. These sorts of statistical representations can 

capture the diversity of a sequence and allow for variation in the search that are weighted by 
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their biological significance. These include position-specific scoring matrices and hidden 

markov models (HMMs) [291].  

 

Defining the complete gene repertoire of a genome 

Given a complete genome sequence, all the genes or coding sequences (CDSs) of the 

genome can be identified using genome annotation tools. The most widely used tool for 

predicting CDSs in genomes is Prodigal [292]. Prodigal uses a training set of well annotated 

genomes to learn the properties of a CDS in a query organism. These include the gene length, 

start codon usage, ribosomal binding site motif usage, GC bias and more [292]. These 

properties are used to choose the optimal set of genes. Pipelines for the complete annotation 

of prokaryotic genomes have been developed which use Prodigal for the CDS prediction 

[293,294]. These pipelines include an additional step to predict the function of the CDSs. They 

align the CDSs against databases of known sequences using BLAST+ and transfer the 

function from known homologous sequences [293,295]. Additionally, they use HMMER to scan 

the CDSs for domain HMMs from curated databases of HMM profiles like TIGRFAM and Pfam 

[296–298].  

1.4.1.3 Grouping homologous sequences 

Homologous genes are defined as genes that have shared common ancestry [299]. Grouping 

the identified genes by homology is a difficult task due to the different evolutionary trajectories 

that occur in prokaryotic evolution. Homologous sequences may be either orthologs or 

paralogs. Orthologs are homologs which share function and have evolved through speciation 

[299]. Paralogs are homologs that are the result of gene duplication events and are likely 

serving different functions [299]. In organisms with high rates of HGT, such as K. pneumoniae 

and E. coli, a large number of gene duplication events can lead to a very large number of 

homologs. Homology is thus inferred based on sequence identity. It is difficult to determine 

which identity threshold to use as a threshold for separating two sequences and define them 

as homologous or not [299]. In most cases this is solved by choosing an arbitrary value of 

percentage identity for two sequences to be homologs [299]. Following that, different 

approaches are used to distinguish between orthologs and paralogs. Some tools use a 

reciprocal best hits approach where two sequences are defined as orthologous only if they are 

each other’s best BLAST hit [300–302]. Other methods use phylogenetic comparisons of a 

gene tree and a species tree to infer gene duplication and loss events and thus infer paralogy 

or orthology [303]. Other tools to separate homologous sequences based on their gene 

neighbourhood analysis (synteny) [304–306]. This approach can lead to over inflation of gene 

predictions in genomes with high levels of recombination. All of the above are further 
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complicated by the fact that it is difficult to benchmark any of the tools and predictions as the 

true grouping of genes cannot be truly known [307]. 

1.4.1.4 Pan-genome analysis 

A pan-genome analysis requires defining groups of orthologous sequences in a collection of 

genomes to identify which genes are shared or unique across isolates or groups of isolates 

(Figure 1.2) [308]. Following the prediction of all the CDSs in the collection, the general 

approach is to infer sequence similarity between every two CDSs using tools like BLAST or 

DIAMOND and group them into orthologous sequences using the approaches described in 

section 1.4.1.3 [284,285]. For instance, it is possible to apply tools that were designed for 

general orthology inference on the collection of all CDSs extracted from the genomes of 

interest [301,304]. Additionally, there is a wide range of bespoke tools that were specifically 

designed for pan-genome analyses. The most widely used tool is Roary [305]. Roary uses 

BLAST+ to infer the sequence similarity between every two CDSs and groups the genes 

accordingly using markov clustering. Orthologs and paralogs are split based on local gene 

synteny. Other tools, like PanX and Pantaugral, use a phylogeny-based approach to split the 

genes into orthologs rather than gene synteny [309,310]. As a pan-genome analysis requires 

comparing all CDSs against each other, with the increasing size of genome collections being 

used, both the biological and computational complexities increase. For that reason, new tools 

are continuously being developed to address this problem. 

1.5 Thesis outline 

The increasing availability of a large number of complete genomes in public databases 

provides the opportunity to examine the gene pools of K. pneumoniae and E. coli on a scale 

larger than previously possible. In this thesis, novel insights on the distribution of genes and 

the patterns of gene sharing were investigated. The analyses presented required the 

development of novel approaches to answer the relevant questions and handle large datasets. 

The first half of the thesis (Chapters 2-3) is focused on a single class of genetic system, TA 

systems, primarily in K. pneumoniae. The second half of the thesis (Chapters 4-5) builds upon 

the insights found on the diversity of TA systems in K. pneumoniae, to answer similar 

questions on the distribution of all genes in a much larger collection of E. coli genomes. In 

Chapter 2, a tool to Search for LInked Genes (SLING) in large bacterial datasets is described. 

SLING is a command line tool that enables to search for gene arrays that are physically linked 

on the genome and to visualize their diversity across large collections. Examples are given for 

using SLING on 90 E. coli isolates and for two operons: TA systems and RND efflux pumps. 

In Chapter 3, the diversity and evolution of TA systems in a global collection of K. pneumoniae 
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genomes is thoroughly investigated using SLING. The analysis presents a classification of TA 

systems based on their distribution patterns in the K. pneumoniae population. Additionally, a 

diverse range of novel antitoxins were found and the fluid association between toxins and their 

antitoxins is described. Chapter 4 details the process of building a high-quality collection of 

over 10,000 E. coli isolates and defining the genes in the collection. Additionally, the properties 

of the collection are described including the population structure, all associated metadata as 

well as the efforts made to reduce the biases in the dataset. Chapter 5 uses the final curated 

collection of genes and genomes to classify the entire E. coli gene pool based on the 

distribution patterns of the genes in the dataset. Additionally, using the classification scheme, 

the level of gene sharing was measured between different E. coli lineages, exposing lineages 

which may be important in their contribution to gene flow in the E. coli population. 
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2 SLING: A tool to Search for LINked Genes in 

bacterial datasets 

This chapter is a modified version of the published paper “SLING: a tool to search for linked 

genes in bacterial datasets” [311]. Alexander Harms, Cinzia Fino, Leopold Parts, Kenn 

Gerdes, Eva Heinz and Nicholas Robert Thomson contributed to the research of the original 

publication. All final language is my own.  

2.1 Introduction 

Operons or functionally linked gene arrays represent the most basic unit of transcriptional 

organization in prokaryotic genomes [312]. Genes involved in the same process or pathway 

are encoded in a single block, and transcribed under the same regulation [312]. Identifying 

homologues for a single gene is a difficult task that has been tackled using many methods, as 

was described in Section 1.4.1.2. The identification of two genes or more which are physically 

linked to each other further complicates the search. This is because the structure of operons 

and gene arrays with similar functions can vary substantially across isolates and species. The 

order of the genes is often changed, and individual genes may be lost or gained [313–315].  

 

TA systems are an example of a simple two-gene operon and were presented in Section 1.3. 

Databases have been constructed which enable the search for TA systems using simple 

homology based search tools such as Blast+  [227,251,316–321]. The most well-curated and 

accessible database is the TA database, TADB [318,319]. However, a homology-based 

search does not always verify whether the identified genes represent intact CDSs or whether 

the toxin and the antitoxin are adjacent, meaning further downstream manipulations are 

required. Two tools have been published which allow for a direct search of the toxin and the 

antitoxin: RASTA and TAfinder, the TA search tool provided within TADB [318,322]. However, 

both of these tools are provided in an online interface which is not scalable when examining 

these systems on larger scales. Even more, RASTA, which was published over a decade ago, 

no longer in service.  Furthermore, they do not allow the addition of custom sequences or 

domains in the search [318,323,324]. This limits the search, and the quality and relevance of 

the annotation is determined by the quality of the database. Users have to rely on updates to 

obtain the most up to date results. 

 

Many other clinically important gene systems are encoded in operons; all secretion systems 

[323,325], CRISPR-cas systems [315,326], Resistance Nodulation Division (RND) efflux 



 36 

pumps [327], and more follow this organization. For these more complicated operon 

structures, sophisticated methods have been developed for their annotation [318,322–

324,328]. These tools are restricted to the specific operon which is being investigated as they 

rely on previously defined structures and sequences, or require reprogramming for 

identification of new genetic structures.  

 

With the growing availability of large datasets for the surveillance of important pathogens 

[9,329,330], there is a need for a single flexible framework to annotate clinically relevant gene 

arrays across a range of isolates and examine their diversity. While a level of specificity will 

always be required to define the search of a specific operon, there is room to develop generic 

methods which could search for a range of operons with only a few input requirements from 

the user. 

2.2 Aims 

The aim of this chapter was to develop a tool to search for and group operons in large bacterial 

datasets. In many operons or gene arrays, there is a single conserved gene which is always 

present together with its neighbours in a rule-defined proximity and orientation. This property 

provides the potential to capture the diversity of the gene array based on the diversity of the 

single conserved gene and its neighbours. The precise aims of this chapter were: 

● Define the SLING pipeline, a tool to Search for LINked Genes 

● Construct the required settings to search for TA systems, and apply these on a 

collection of E. coli isolates.   

● Construct the required settings to search for RND Efflux Pumps and apply these on a 

collection of E. coli isolates.   

2.3 Methods 

2.3.1 SLING specifications 

SLING was implemented in Python (2.7) and is available to download from 

https://github.com/ghoresh11/sling. The steps of the SLING pipeline are detailed in Section 

2.4.1 and in Figure 2.1. 

 

Genome preparation Complete genomes or assembled contigs in FASTA format were six-

frame translated using Biopython v1.68 [331]. By default, translation is performed using the 

standard codon table and the permitted start codons are [ATG, TTG, GTG]. SLING will search 
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for the longest CDS beginning with ATG, if it is not found it will search for the longest CDS 

beginning with TTG and finally GTG. Annotation files of the provided genomes in GFF format 

can also be provided. 

 

Searching HMMER (v3.1b2) [296] was used to search all CDSs for the profiles of the primary 

gene provided by the user. The cut off used for a CDS to be considered a ‘hit’ for downstream 

analysis is a HMMER bit score of the overall sequence/profile comparison of at least 20. The 

cutoff was chosen based on the scores of toxin HMM profiles in known toxin sequences 

downloaded from TADB [318,319].  

 

Filtering ‘Partner’ genes were searched in proximity to the hits according to structure 

requirements provided by the user. The structure requirements include the orientation of the 

partner gene relative to the conserved gene (upstream, downstream, or both for a three-

component array), the minimum and maximum length of the conserved gene, the minimum 

and maximum lengths of the partner genes (upstream and downstream if applicable), and the 

limitations on the location of the partner gene relative to the conserved gene (maximum 

overlap and distance). If no partner is found under the given requirements, the hit is discarded. 

For the built-in HMM collections presented in this thesis, these requirements are provided by 

SLING; however, the default values can easily be overridden. Partner genes which have eight 

or more consecutive unknown nucleotides (Xs or Ns) are removed at this stage and not 

considered by SLING. 

 

Profile-specific length requirements. The user can provide SLING with a file containing the 

expected length of proteins of each of the profiles in the HMM collection, and a limit on the 

maximum permitted difference between a hit’s length and its expected length. This is useful 

when scanning for multiple profiles of conserved proteins that have versatile expected lengths. 

 

Grouping Sequence similarity networks (SSN) are constructed for all the hits and the partners 

identified using protein-protein BLAST+ (v2.7) [285]. When using an orientation requirement 

of “either”, SLING will treat upstream and downstream partners the same to form a single 

SSN. When using “both”, SLING will generate an SSN for the upstream partners and the 

downstream partners separately. 

 

Each node in an SSN is either a hit or partner sequence. An edge is drawn between two hit 

nodes or two partner nodes only if they meet the minimum requirements of sequence similarity 

as provided by the user for the BLAST output. The default requirements applied for the results 
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in this paper are an e-value of 0.01 and a percent identity of 30. All sequences found in the 

same connected component in the SSN are considered to be in the same hit/partner group.  

 
Figure 2.1: Overview of the SLING pipeline. (1) SLING input. The user may use one of 

the built-in cases or otherwise provide SLING with a collection of HMM profiles and 

structural requirements. The structural requirements presented provide a simple example 

of gene arrays with multiple possible structures (top left). Grey octagons represent variable 

genes. Circles represent conserved genes each with a matching HMM profile represented 

by a unique colour which are used in the SLING search. Squares represent the partner 

genes consistently found in a rule-defined proximity to the conserved gene. (2) HMM 

profile hits are found in the input genomes. (3) Partner genes are located. (4) Partner 

genes are filtered based on the given structural requirements. (5) Hits, partners and 

discarded hits are grouped (alphabetic labelling) using sequence similarity networks. 

Discarded hits are mapped back to the accepted hits. (6) SLING outputs can be loaded 

into ITOL for visualisation of results. The phylogenetic tree must be provided for 

visualisation. 
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Reporting discarded HMM matches The discarded hit sequences are grouped in an SSN 

as described above. Each connected component in this network is then mapped back to the 

clusters in the hits network and the discarded hit clusters are labelled according to their 

equivalent hit cluster. 

2.3.2 Strains and phylogenetic analysis 

The core gene phylogeny of 91 EPEC strains taken from [115] (See Section 1.1.2.3) was 

inferred from a core gene alignment generated using Roary [305], and a maximum likelihood 

tree from the informative single nucleotide polymorphisms (SNPs), chosen using SNP-sites 

[332] (v2.3.2), was constructed using RAxML (v8.2.8) [282]  with 100 bootstrap replicates.    

2.4 Results 

2.4.1 SLING overview 

SLING is a command line tool which requires a collection of assembled genomes (contigs or 

complete), HMMs representing a conserved gene within the gene array of interest and optional 

structural requirements as input (Figure 2.1). Each HMM profile is used to search the genomes 

for the presence or absence of the primary gene. If the gene is detected, referred to as a ‘hit’, 

SLING attempts to identify the partner protein CDSs proximal to it. The results are filtered to 

match the provided structural requirements. These include the distance between the partner 

and hit, their permitted lengths and the orientation of the ‘partner’ gene relative to the 

conserved gene. If the structural requirements are unknown, SLING will search for the closest 

neighbouring genes with no limitations. Hits, partners and discarded hits are grouped using 

SSNs. Finally, SLING reports the number of occurrences of each hit group, partner group, 

complete array group and discarded hit group found in each genome. These can easily be 

loaded into statistical analysis tools or into ITOL [333], an online tool for display and 

management of phylogenetic trees, creating an immediate interface for the user to examine 

the distribution across large datasets. SLING is available to download from 

https://github.com/ghoresh11/sling. Full details are provided in Section 2.3.1 and in the 

package wiki (https://github.com/ghoresh11/sling/wiki). 

2.4.2 TA systems search 

SLING can be used to search for simple two-component operons, such as TA systems. As 

SLING is based on a CDS search, the focus is on type II TA systems where cognate antitoxin 

is a protein which inhibits the toxin through direct interactions [238] (Figure 1.6). For a 
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complete introduction on TA systems, refer to the Section 1.3 of the Introduction. Type II 

systems are well studied and their structure is generally known; the antitoxin and toxin genes 

are transcriptionally coupled with well defined rules describing the gene orientations and 

distance separating them [238,316]. Moreover, TADB, which has an extensive database of 

type II TA systems, was available as a resource to benchmark the approach [318,319] . 

Following the same set of rules, type IV systems were also included in which the antitoxin is 

also a protein which inhibits the toxin’s activity via the toxin’s target [334]. Only a few type IV 

systems have been described so far, and appear to be rare compared to the abundant type II 

TA systems [334].  

2.4.2.1 Construction of profile HMM library and structural requirements  

To generate a collection of toxin HMM profiles, used as the primary gene in SLING, type II 

and type IV toxin sequences were retrieved from the web based resource for TA loci, TADB 

[319] and were supplemented by additional toxin sequences based on a literature search. All 

the toxin sequences were scanned against the Pfam protein domain database (v30.0) with 

HMMER (v3.1b2) to identify known toxin domains, obtaining an initial set of 153 putative HMM 

profiles [296,298]. These HMM profiles were manually curated to remove antitoxin domains 

and domains of non-protein-based TA systems which were not the subject of this investigation.  

Additionally, HMM profiles which had fewer than five hits were removed for further analysis 

unless they were a domain of a well described toxin.  

 

A test dataset of 33 K. pneumoniae genomes and plasmids taken from [335] was scanned 

with the remaining HMM profiles. This dataset was used in order to characterise the Pfam 

profiles on a small collection of genomes. For each profile, the total number of HMMER hits 

were counted across the 33 genomes and their average length was compared to the length of 

the toxins containing the same profile on TADB (Figure 2.2A,B). This enabled the identification 

and removal of Pfam profiles which had many hits of the expected length of a toxin that do not 

always represent a true toxin. Keeping such profiles in the TA search would lead to high false 

discovery rate. For instance, the Acetyltransf domains often had a high number of hits within 

the expected length of a toxin and were removed (Figure 2.2B,C). Other profiles, like DUF294 

and NTP_transf_2 did not have many hits, however, they did show high variability in their 

length relative to the lengths of the toxins containing them on TADB. For these toxins, their 

profiles were kept in the search and an option to apply a profile-specific-length limitation within 

SLING was added. Thus, only hits which were up to 100 aa longer or shorter than the average 

toxin length were accepted for downstream steps (Figure 2.2D). Finally, most profiles showed 

both a low hit count as well as fell within the range of expected lengths (Figure 2.2B,E). The 

final collection, following this curation step, consisted of 54 toxin profiles. 
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Figure 2.2: Defining the HMM collection and structural requirements for toxins. A Mean 

length of toxin sequences in TADB [318,319] containing each of the HMM profiles. B Number 

of hits in 33 Klebsiella genomes relative to the mean difference of those hits in protein length 

relative to the profiles’ mean length as found on TADB (presented in A). Empty dots are 

profiles which were removed due to low specificity as there were many hits which differed 

significantly in length relative to the length of the protein in TADB. C-E Length of all hits in 33 

HMM profile

Removed due to low 
specificity

Acetyltransf_1Acetyltransf_7

Acetyltransf_10

A B

C D

E

F GAntitoxins Toxins
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Klebsiella genomes relative to their HMMer bit-score. Dotted line represents the mean length 

of the profile in TADB (as presented in A). Purple rectangle represents the length cut-off 

defined in SLING for an ORF to be considered a valid toxin. C Example of low specificity HMM 

profile which has been removed. D Example of HMM profile with large length range, but with 

high specificity for ORFs within the expected length range. E Known toxin domain with small 

length-range and number of hits. F, G Length distribution of all antitoxins (F) and toxins (G) 

downloaded from TADB. Purple rectangles represent the length cut-offs defined in SLING. 

 

The length distributions of the toxin and antitoxin sequences downloaded from TADB were 

plotted to define the length requirements. Over 90% of antitoxins were between 50 and 150 

aa long; therefore, these were used as the relevant cut-offs (Figure 2.2F). The permitted length 

of proteins containing toxin profiles which were present in TADB was determined based on 

their mean length in TADB (detailed above). Some toxin profiles were taken from a literature 

search and thus were not present in TADB and an average length was unavailable. For these, 

a minimum length cut-off of 30 aa and maximum length cut-off of 200 aa were chosen as these 

covered over 90% of toxin sequences in TADB (Figure 2.2G).  

 

Table 2.1 Search parameters used in SLING 

 Default TA systems RND efflux pumps 

Order either either upstream 

Minimum hit length (aa) 1 30 700 

Maximum hit length (aa) 10000000 200 1500 

Minimum downstream length 
(aa) 1 50 NA 

Maximum downstream length 
(aa) 10000000 150 NA 

Minimum upstream length (aa) 1 50 100 

Maximum upstream length (aa) 10000000 150 1000 

Maximum distance between hit 
and partner (bp) 10000000 50 20 

Maximum overlap between hit 
and partner (bp) 300 20 500 

Maximum difference from 
average length (if given) (aa) 10000000 100 200 
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Finally, a distance of up to 50 bp and an overlap of at most 20 bp were permitted between the 

toxin and antitoxin genes. The orientation requirement was set based on the knowledge that 

the partner gene, i.e. the antitoxin, can be either upstream or downstream of the toxin gene 

(Table 2.1) [316]. 

2.4.2.2 The process for setting up a TA search are applicable to other operons 

A similar process can be applied to construct the HMM profile libraries of other genes and to 

define the structural parameters. Another example will be presented in Section 2.4.3.1 and 

the general approach is summarised in Figure 2.3. HMM profiles can also be generated 

directly from an MSA of a collection of genes using HMMER [296]. Finally, if the structural 

requirements are unknown, SLING provides default parameters for a flexible search which will 

identify the closest partner genes proximate to the primary gene (Table 2.1).  

 
Figure 2.3: General construction of HMM profiles and structural requirements for SLING 
input. A A collection of known target genes is required, taken from existing databases (toxins; 

TADB, RND pumps; Uniprot), a literature search or other sources. B HMM profiles can be 

generated directly from an MSA of the target sequences using HMMER [296] hmmbuild or can 

be scanned by HMMER hmmscan against existing HMM profile databases, for instance, Pfam 

[298]. C Structural requirements can be inferred from the target gene sequences, known from 

prior knowledge or otherwise, flexible using SLING’s default parameters.  

2.4.3.3 Benchmark on E. coli K-12 

SLING identifies new and known TA systems in E. coli K-12.  
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SLING was used to search E. coli K-12 strain MG1655 (NC_000913.3) for TA systems. SLING 

identified 23 TA systems in total (Figure 2.4B). These results were compared to the E. coli K-

12 strain MG1655 TA systems in TADB and those predicted by TAfinder using the same 

parameters used in SLING [318,319]. Nine of the 23 systems were identified by all three 

methods. TADB missed five TA predictions which were identified by the other two methods, 

whereas TAfinder missed one. A single system, identified by TADB, was missed by both 

SLING and TAfinder, the rnlAB system. The RnlA toxin has a length of 397 aa, beyond the 

maximum length threshold of 200 aa for a toxin applied in our implementation. 

 

SLING identified eight TA systems which were not predicted by TADB or TAfinder. Of these, 

four have been predicted in the past to be TA systems; the YkfI-YafW system [334,336], the 

GnsAB TA system [337], the RatAB system [338] and the YdaST system [339]. Four more 

predictions have not been previously described as TA systems and are candidates for further 

investigation. One contains an HD domain, two contain a GNAT domain and the last contains 

a YdaT toxin domain, consistent with their proposed function. 

 

TADB and TAfinder identified TA systems that were not identified by SLING. Thirteen of the 

TADB results belonged to TA system classes that were not investigated in this study. An 

additional two toxins were predicted which, using HMMER, did not contain any described toxin 

profile used by SLING. Finally, TAfinder predicted three TA systems which we attempted to 

retrieve from the reference genome but were unable to identify complete CDSs at the relevant 

locus. 

2.4.2.4 Application on EPEC collection 

To search for TA systems in a diverse set of related bacteria SLING was applied with the 

settings described for TA search on a collection of 70 EPEC isolate genomes taken from [115], 

supplemented by an additional 21 commonly studied E. coli reference strains (taken from 

[115]). The EPEC isolates were collected from children presenting with diarrhoea from seven 

centres in Africa and Asia [115]. 

 

SLING identified a total of 94 different TA operons in the complete E. coli collection built of 44 

toxin (hit) clusters and 80 antitoxin (partner) clusters. SLING generated an output of the 

absence and presence of these systems across the dataset that can be loaded into a statistical 

learning tool, enabling to look for association with the metadata and view in ITOL. Below are 

examples of three toxins which are presented to illustrate the type of visualisation, analysis 

and interpretation that can be accomplished using SLING (Figure 2.4C). 
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Figure 2.4: Identification of TA systems using SLING. A Possible operon structures of TA 

operons. Each toxin has a unique HMM profile, represented by a different colour. B 

Identification of TA systems in E. coli K-12 using SLING, TADB and TAfinder. Prediction of a 

TA operon by a method is represented in a dark blue square. Novel TAs predicted using 

SLING named by the Pfam profile by which they were identified. C Description of the diversity 

of three toxins and their cognate antitoxins in the E. coli collection. Darker squares represent 

presence of a toxin or operon in an isolate. 
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YoeB toxin presents low antitoxin repertoire, with low evidence of gene loss/gain. The 

YoeB profile containing toxin was always identified as partnered to the same antitoxin. This 

TA pair was ubiquitous, present across all phylogroups. In addition, there was no evidence of 

duplication events, with a single copy of the operon identified in each isolate. yoeB was never 

found as an orphan toxin, however there were examples of loss or gain of the whole operon 

in nine locations in the phylogeny, i.e. the antitoxin was never lost on its own. This observation 

strengthens the hypothesis that this protein serves as a toxin in a TA system.  

 

PemK toxin presents medium antitoxin repertoire, with high evidence of gene loss/gain. 

The second toxin (Figure 2.4C), containing a PemK profile, showed diversity in its antitoxin 

repertoire: it was found with two different antitoxins: A and B. Most copies of this toxin were 

observed with one of the antitoxins (A; 97%), which was present across all the phylogroups. 

For this operon, there was a strong indication of gain events followed by fixation and vertical 

propagation; a subclade with a copy number of n was often found within a clade with copy 

number n-1. This phenomenon occurred independently multiple times in the phylogeny. The 

pervasiveness of this operon can either allude to its importance, or otherwise, suggests it is 

successful at spreading in the population and persisting. The second operon (B) was rare and 

found only in five isolates in a single copy. It was most likely acquired in three independent 

events. Finally, like yoeB toxin, this toxin was always found partnered to an antitoxin. 

 

HipA toxin presents a high antitoxin repertoire, with low evidence of gain/loss of the 

same genes. The final toxin (Figure 2.4C), containing a HipA profile, presents a higher 

diversity in its antitoxin repertoire with five candidate antitoxins. Four of these antitoxins (A-D) 

are upstream to the toxin, whereas the last antitoxin (E) was found downstream to the toxin 

and was always present with one of the upstream antitoxins. 

 

Looking at their phylogenetic distribution, although many of the isolates have more than one 

copy of the hipA toxin, it was apparent that within one genome each individual toxin gene was 

partnered with a different antitoxin. The majority of toxin genes were linked to antitoxin A 

(62%), which together were present across all phylogroups (Figure 2.4C). The three other 

antitoxins (B, C and D) are lineage specific and were only present in phylogroup B2. 

Interestingly, all isolates with antitoxins C or D also had antitoxin B.  

 

Although hipA is a well described toxin, we observed multiple cases in which SLING filtered 

the predicted toxin gene out due to deviations from the expected operon structure of a TA 

system (Figure 2.4C). These genes were marked as discarded by SLING as a result of this. 

However, analysis of these discarded toxins showed that they formed two separate sequence 
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clusters: X1 and X2. All the X1 toxins coincided with isolates which were missing the A antitoxin. 

As for X2, all the discarded toxins were within phylogroup B2, coinciding with isolates which 

were missing antitoxins B and C. 

2.4.3 RND efflux pumps search 

Efflux pumps play an important role in multidrug resistance as they confer a mechanism for 

the efflux of antibiotics [340]. One example of this are the RND family of membrane 

transporters found in Gram-negative bacteria [327,341]. RND family pumps consist of three 

components: an outer membrane protein (OMP), a periplasmic fusion protein (MFP) and an 

RND pump (Figure 2.5A). In most cases, the MFP and RND components are found in an 

operon, whereas the OMP is located in a different location [327]. RND efflux pump operons, 

unlike TA systems, are complex operons which often include a large range of genes often 

found in different orders and orientations [327]. However, these operons always contain an 

RND efflux pump protein which is highly conserved and, in most instances, the MFP is located 

upstream of it and transcriptionally coupled to it [327]. This property makes these operons 

relevant for a search using SLING by setting the RND protein as the primary gene and applying 

flexible structure requirements on the partner gene.   

2.4.3.1 Construction of profile HMM library and structural requirements  

3,325 RND efflux pump sequences were downloaded (on 07.11.17) from Uniprot [342] by 

searching for the name of 26 known RND pump genes (Figure 2.6A) [343].  The sequences 

originated from 295 different genera. Sequences were clustered using cd-hit (v4.7) to remove 

redundant sequences which share 90% identity [344]. The remaining 1,242 sequences were 

searched using HMMER (v3.1b2) against the Pfam database (v30.0) to identify known RND 

pump domains [296,298] (Figure 2.3B). A total of 29 Pfam profiles were identified in these 

sequences, of which a single profile, ACR_tran (PF00873), was present in over 99% of the 

sequences and thus was chosen to represent all RND pumps. 

 

The length distribution of the above mentioned RND pump proteins were plotted (Figure 2.6B). 

A minimum length of 700 aa long and maximum length of 1500 aa long were chosen for the 

RND pump protein, covering over 94% of the downloaded sequences. For the partner gene, 

23,133 MFP sequences were downloaded (on 07.11.17) from Uniprot [342] by a keyword 

search. The length distribution of these proteins was plotted and a minimum length of 100 aa 

and maximum length of 1000 aa were chosen as flexible requirements for different partner 

genes as these thresholds cover the length of over 99% of membrane fusion proteins 
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downloaded [342] (Figure 2.6C). Finally, a maximum of 500 bp distance between the partner 

and the RND pump, and at most 20 bp overlap were allowed (Table 2.1). 

 

 
Figure 2.5: Identification of RND efflux pumps using SLING. A Four example operon 

structures of RND efflux pumps present in E. coli K-12. All RND pump proteins share a single 

conserved HMM profile, represented by a single colour (ACR_tran;PF00873). B The 

corresponding annotation of RND efflux pumps in E. coli K-12 relative to the SLING output. C 

Annotation of RND efflux pumps in the E. coli collection. Darker squares represent presence 

of an RND pump protein or an operon in an isolate. 
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Figure 2.6: Defining the HMM collection and structural requirements for RND efflux 
pumps. A Number of sequences retrieved from Uniprot using a name search of known RND 

efflux pumps genes. B,C Length distribution of RND efflux pump proteins (B) and MFPs (C) 

downloaded from Uniprot. Turquoise lines represent the cut-offs chosen as the length 

structural requirements for search using SLING. 

2.4.3.2 Benchmark on E. coli K-12  

Seven RND efflux pumps are reported in the literature for E. coli K-12 strain W3110 

(AP009048.1) [327]. Of these, SLING identified six RND pumps which fit the structure 

requirements applied in our analysis: acrB, cusA, mdtB, acrF, acrD and mdtF (Figure 2.5B). 

Since mdtC pump is found downstream to another RND pump, mdtB, (Figure 2.5A) this pump 

was discarded by SLING as the upstream gene was not in the correct length. 

2.4.3.4 Application on EPEC collection 

Five unique RND pump operons were identified in a SLING search on the collection of 90 

EPEC and reference E. coli strains (Figure 2.5C). These operons consisted of two unique 

RND protein (hit) clusters (a and b) and four partner protein clusters (A-D). 
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The A partner protein is indeed an MFP and includes all the known MFPs found in E. coli K-

12 (Figure 2.5B). It was highly prevalent and was observed in two different operons, with the 

two RND pump proteins (a and b). The “A-a” operon was ubiquitous, with at least four copies 

per strain. Reducing the identity threshold applied to group the proteins would have likely 

separated this operon into its corresponding operons in K-12.  The “A-b” operon, on the other 

hand, was found in a single copy in most isolates. The “b” pump corresponded to the cusA 

RND pump in E. coli K-12, whereas the “a” pump represented all the other known RND pumps 

in E. coli K-12 (Figure 2.5B). 

  

The B partner protein is a histidine kinase. This protein is identical in sequence to the narQ 

gene, found upstream to the acrD RND pump in E. coli K-12 [327]. This operon was missing 

in specific clades within the B1 and B2 phylogroups. These clades were correlated with the 

discarded hits, suggesting two events occurred that led to deviation from the expected operon 

structure in these clades. 

  

Finally, the C and D partner proteins were only observed once and in a single isolate (ExPEC 

reference strain, E. coli IAI39). Both proteins were short with “C” partner protein 138 aa long 

and the “D” partner protein 310 aa long. BLAST results of protein “C” against the non-

redundant protein sequence database suggest it is a histidine kinase similar to partner protein 

“B” (narQ). Protein “D”, on the other hand, is a truncated RND pump protein.                                                                                                                                                                                                                                                                                                                                 

2.5 Discussion 

SLING is an open source tool to examine the diversity of operons or gene arrays in bacterial 

datasets by using one of the conserved genes within the array to identify the linked genes 

which appear in a rule-defined proximity (Figure 2.7A). By examining the diversity of the 

neighbouring genes, we can elucidate incidences where there are deviations in the operon 

structure between isolates as well as deviations from what is expected to be the canonical 

operon structure of a specific system (Figure 2.7B). Examples of this were presented for the 

diversity of toxins as well as RND efflux pump proteins and their partner genes (i.e. antitoxins 

and MFPs) in a collection of E. coli isolates. While some genes presented a high diversity in 

their possible neighbours, others presented low diversity. Likewise, by examining the diversity 

of the neighbouring genes, SLING helped to further sub-categorise the gene combinations 

according to varying indications of these arrays being lost or gained.  
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Figure 2.7: Utility of SLING. A Search for gene pairs and triplets based on a single conserved 

gene (circle) and set of rules on the order and orientation of the neighbouring genes (squares) 

B Test the defined rules by examining the diversity of the neighbouring genes and identifying 

gene arrays which deviate from the expected structure C Directly identify new genes (squares) 

D Iteratively identify new genes by using the novel neighbour genes (squares) as the input 

HMM profiles.  

 

Two settings for TA systems and RND efflux pumps were described and these are built into 

the SLING interface for quick application using simple command line prompts, which are 

detailed on the tool’s wiki page (https://github.com/ghoresh11/sling/wiki). Beyond these, 

SLING’s advantage is in its flexibility; users can easily provide new profiles into its search, 

enabling identification of new and not well studied systems without relying on the developer to 

update the code or database. Thus, the utility of SLING is not limited to these operons and 

can be applied to other important operons or gene pairs such as CRISPR-cas systems, 

restriction-modification systems, secretion systems, and more. Users may construct HMM 

libraries and structural requirements in their area of expertise which can be shared with the 

community by uploading them to the public repository, enabling the extension of the built-in 

SLING use cases.  

 

Additional advantage of SLING is that its protein search is based on an HMM profile search, 

rather than a sequence-based search, which allows SLING to capture more diverse members 

of a protein and not rely on a single sequence, likely taken from a lab strain which may not be 

representative in a collection of clinical or natural isolates. This advantage is also a limitation, 

it may be difficult to construct an HMM profile for an unknown gene when not many 

representative sequences are available. SLING also searches for the genes using a six-frame 

translation of the input genomes in addition to searching the CDSs predicted by annotation 
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tools. This allows the identification of short CDSs which may have otherwise been omitted by 

the annotation tools.  

 

When searching for an unknown set of linked genes, SLING can also be used as a discovery 

tool. By applying default flexible structural requirements to find a partner gene, SLING can 

identify any set of genes which are linked to the primary gene. SLING can also be used to 

search for novel genes either directly, by looking at the partner genes identified (Figure 2.7C), 

or indirectly, but constructing HMM profiles of the newly identified partner genes and iteratively 

using these as the conserved gene (Figure 2.7D). These ideas are explored in Chapter 3 of 

this thesis, where SLING was used to examine the diversity of TA systems across a global 

collection of K. pneumoniae isolates. 

 

  



 53 

3 The diversity of type II and type IV toxin-antitoxin 

systems in the global K. pneumoniae population 

This chapter is a modified version of the paper “Type II and type IV toxin-antitoxin systems 

show different evolutionary patterns in the global K. pneumoniae population” [345]. Cinzia 

Fino, Matthew Dorman and Alexander Harms conducted the phenotypic experiments for 

testing the activity of toxins and antitoxins which were selected by me. Leopold Parts, Kenn 

Gerdes, Eva Heinz and Nicholas Robert Thomson contributed to the research of the original 

publication. All final language is my own. 

3.1 Introduction 

TA systems are bicistronic operons which encode for a toxin, which inhibits cellular processes, 

and an antitoxin which counteracts the toxins’ activity [346], and were introduced in Section 

1.3 of this thesis. While TA systems have been well studied in a limited number of laboratory 

and clinical isolates of E. coli [347–350] and Salmonella enterica sv. Typhimurium [253], there 

have been few studies in any bacterium that have considered investigating these systems 

using large clinically relevant collections. In this chapter, SLING, which was presented in 

Chapter 2 as a tool to search for operons in large datasets, is used to examine the diversity of 

TA systems across a collection of K. pneumoniae genomes.  

 

Since their first description as plasmid addiction systems, it has become clear that TA systems 

are ubiquitous across a broad range of prokaryotic plasmids and chromosomes 

[251,316,335,350–353]. The first study examining the distribution of TA systems on a large 

scale was conducted in 2005, when Pandey and Gerdes used BLAST to search for TA loci 

across 126 prokaryotic genomes. It was then revealed that TA systems were highly abundant 

in the chromosomes of free-living Gram-negative and Gram-positive bacteria [316]. In 2009, 

Makarova et al. used a guilt-by-association approach to identify novel type II TA combinations 

across the non-redundant protein and COG databases [251,300]. The distribution of the 

predicted TAs was examined across large evolutionary scales, and it was revealed that 

specific TAs were significantly over- or under-represented in various taxa, suggesting different 

dynamics to their propagation depending on the genetic and ecological backgrounds of their 

host. Additionally, the distribution of TAs was examined in more detail in a set of 41 closely 

related prokaryotic genomes. An exceptionally high level of variability in the TA system 

repertoire was observed, even at these close evolutionary ranges. These results paved the 

path for future studies, as it was evident that these were highly diverse genetic systems which 
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have yet to be explored. Since, studies on the distribution of these systems were mostly 

focused on small high-quality genome collections of reference laboratory strains, which do not 

necessarily represent the diversity in clinical samples [335,350]. Nonetheless, a study on the 

distribution of type II TA systems in E. coli revealed that these systems were differentially 

distributed across the E. coli phylogroups [350]. A similar study in K. pneumoniae revealed 

that type II TA systems are differentially distributed across K. pneumoniae isolates from 

different sources and across plasmids and chromosomes [335].  

 

The large range of TA systems and their ubiquitous nature across species, plasmids and 

chromosomes suggest that these elements have an essential role in prokaryotic cell biology, 

beyond their role in plasmid maintenance. Indeed, they have been implicated in other 

important cellular processes, many of which contribute to resistance and pathogenicity (See 

Section 1.3.3). These include the formation of antibiotic-induced persistence [348], defence 

against bacteriophages, biofilm formation [346,354,355], and through transcriptional read-

through, influence the expression of adjoining genes [255]. Therefore, a more systematic 

approach which examines these systems in a collection of clinically relevant genomes can 

reveal whether their presence is associated with clinically important genes.  

3.2 Aims 

The aim of this chapter was to use SLING to systematically analyse the diversity of TA systems 

in a collection of 259 K. pneumoniae isolates. The precise aims of this chapter were: 

● Describe the distribution of toxins and their antitoxins in a global and clinically relevant 

collection of K. pneumoniae isolates using SLING. 

● Test the activity of predicted toxin and antitoxin pairings 

● Examine the connection between the presence of these systems and the presence of 

clinically important genes including AMR genes and virulence genes. 

3.3 Methods 

3.3.1 Strains and phylogenetic analysis 

Assemblies of 259 K. pneumoniae species complex strains taken from [9] were assembled 

using VELVET (v1.2.07) [356] and annotated using Prokka (v1.5) [293] [357]. The core gene 

phylogeny was inferred from a core gene alignment generated using Roary [305], and a 

maximum likelihood tree from the informative SNPs, chosen using SNP-sites [332] (v2.3.2), 

was constructed using RAxML (v8.2.8) [282] with 100 bootstrap replicates.  
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3.3.2 Toxin-antitoxin prediction 

SLING (v1.1) [311] was used to search for toxins and their cognate antitoxins using the built-

in toxin domain database provided in SLING. Please refer to Chapter 2 of this thesis for a 

complete description of SLING’s search strategy. The default structural parameters for a TA 

search in SLING were applied in the filtering step (minimum toxin length: 30 aa, maximum 

toxin length: 200 aa, minimum antitoxin length: 50 aa, maximum antitoxin length: 150 aa, 

maximum overlap between toxin and antitoxin: 20 bp, maximum distance between toxin and 

antitoxin: 50 bp, order: antitoxin either upstream or downstream to toxin, maximum difference: 

100 aa). A cut-off of 75% aa sequence identity was used during the grouping step. 

 

The local sequence identity and alignment coverage per toxin and antitoxin group were 

extracted from the BLAST+ results from the SLING output. All the antitoxin and toxin 

sequences from each group were aligned using MUSCLE (v3.8.31) [358]. The global 

sequence identity was calculated as the pairwise sequence identity between every two 

sequences in the MSA. 

3.3.3 Statistical analysis 

Statistical analyses were performed in R (v3.3.1). Toxin and antitoxin accumulation curves 

were generated using the specaccum function in the vegan [359] library with 100 random 

permutations. PCA was performed using the prcomp function. Association between toxins and 

lineage or the presence of AMR genes, virulence genes or plasmid replicons were performed 

using Fisher’s exact test and corrected for multiple testing using the False Discovery Rate 

(FDR) with the p.adjust function. Differences between groups (K. pneumoniae complex 

species, toxin categories) were assessed using the Wilcoxon test and corrected using FDR. 

Plotting was done using ggplot2 [360]. 

3.3.4 Toxin group classification 

Toxin groups which were observed in over 80% of isolates of all species were assigned as 

“ubiquitous”. Toxin groups which had at least 4 copies and were found to be significantly 

associated with K. pneumoniae complex species (Fisher’s exact test, FDR corrected, p<0.01) 

were assigned “species associated”. Toxin groups which were not ubiquitous or species 

associated were assigned “sporadic” if they had 26 copies or more or otherwise, if they were 

found to be significantly associated with the presence of AMR genes, virulence genes or 

plasmid replicons (Fisher’s exact test, FDR corrected, p<0.01). The remaining toxin groups 

were assigned “rare”. 



 56 

 
Figure 3.1: Effect of modifying the blastp identity threshold in SLING on the toxin group 
clustering. A number of toxin groups from each toxin class for each identity threshold applied. 

Singletons are toxin groups with only one member. B,D Ubiquitous (B) and species associated 

(C) toxin groups under each identity threshold applied. When a bar is missing, the toxin group 

was not classified as ubiquitous or species associated under the given threshold. D,E 

Examples of clusterings across thresholds for a ubiquitous toxin group Fic (D) and a species 

associated toxin group RelE_1 (E).  

 

Changing the sequence similarity thresholds for grouping toxins increased the number of toxin 

groups, however the number of ubiquitous, species-associated and sporadic toxin groups 
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stayed constant. There was an increase in the number of rare toxin groups which is driven by 

an increase in the number of singleton toxin sequences (Figure 3.1A). The ubiquitous toxin 

groups and species-associated toxin groups were robust and stable across all identity 

thresholds (Figure 3.1B,C). The chosen BLAST identity cut-off of 75% allowed separation of 

sequences which share similar domains, for instance, DNA binding domains, yet kept 

homologous sequences together and did not separate sequences by species due to drift 

(Figure 3.1D,E). 

3.3.5 Definition of novel vs known antitoxins 

All in-silico predicted and experimentally validated type II and IV antitoxin sequences were 

downloaded from the toxin-antitoxin database TADB (v2, downloaded on 27.08.17) [318,319] 

and pairwise comparisons between all antitoxin sequences identified by SLING were 

performed using protein-protein BLAST+ (v2.7) [285]. A SLING antitoxin group was marked 

as “known” if one or more of the antitoxins in that group shared at least 75% identity and an 

e-value of 0.01 or lower with an antitoxin from TADB (consistent with the definition of an 

antitoxin group). Interpro-scan (v5) was used to assign function to the sequences of the novel 

antitoxins [361]. Sequences which were assigned as antitoxins by Interpro-scan were also 

marked as “known”. Otherwise, the group was marked as “novel”.  

3.3.6 Orphan antitoxins  

Antitoxin sequences from an antitoxin cluster were grouped using cd-hit (v4.7) [344] with an 

identity threshold of 90% and word size of 5 to remove redundant sequences. An antitoxin 

protein database of the cd-hit representative antitoxins was constructed using BLAST+ (v2.7) 

[285]. The six frame-translated K. pneumoniae genomes from the SLING output [311] were 

aligned against the antitoxin database using blastn [285]. A CDS was considered an “orphan 

antitoxin” if a) it was between 50 and 150 aa long, b) it shared 75% sequence identity or more 

to an antitoxin in the collection and c) the alignment was 50 aa or longer. These settings were 

chosen to be consistent with the definitions of an antitoxin in the original SLING analysis. The 

sequences 1,000bp upstream and downstream to the orphan antitoxins were clustered with 

the respective 1,000bp sequences surrounding the original antitoxin in the viable toxin-

antitoxin pair using cd-hit-est with 80% identity threshold and word size of 5. If orphan antitoxin 

context sequences were in the same cd-hit cluster as the sequences of the original antitoxin, 

they were marked as “same” and “different” otherwise.  
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3.3.7 Identification of AMR genes, virulence genes and plasmid replicons 

A collection AMR genes were obtained from the modified version of ARG-ANNOT available 

on the SRST2 website (https://github.com/katholt/srst2/tree/master/data, downloaded on 

02.10.16) [288,290]. A dataset of virulence factors was obtained from the Klebsiella-specific 

BIGSDB (http://bigsdb.pasteur.fr/klebsiella/klebsiella.html, downloaded on 22/02/16). The 

PlasmidFinder database (v1.3) of plasmid replicons was downloaded using ARIBA (v2.12) 

[283,287]. Presence or absence of a gene in a genome was determined using ARIBA (v2.12) 

with default settings [283]. Nucleotide-nucleotide BLAST+ (v2.7) of the assemblies against the 

target gene databases was used to identify contigs which contained a gene of interest (AMR, 

virulence or plasmid) [285]. A match was determined if any of the associated genes had a 

BLAST bit score of 200 or more. 

3.3.8 Phenotypic testing5 

Bacterial strains, plasmids, and oligonucleotides used in this study are listed in Appendix A. 

The sequences of synthesised genes, including mutated ribosomal binding sites and 

restriction sites where appropriate, are listed in Tables 3.1 and 3.2. 

 

Strains were cultured routinely on lysogeny broth (LB) media. Where appropriate, bacteria 

harbouring plasmids were cultured on LB media supplemented with 100 μg/ml ampicillin or 30 

μg/ml chloramphenicol. 

 

Toxin and antitoxin sequences predicted from computational analysis were synthesised, 

cloned, and sequence-verified using the GeneArt DNA synthesis service (ThermoFisher 

Scientific, DE). Toxin sequences were cloned into pNDM220 under Plac control [362], and 

antitoxin sequences into pBAD33 under Para control [363] (Tables 3.1 and 3.2). LB agar plates 

were supplemented with 1 mM of isopropyl β-D-thiogalactopyranoside (IPTG) for the induction 

of Plac and 0.2% w/v of L-arabinose for the induction of ParaB. Overnight cultures were 

washed once and then serially diluted (10-1 to 10-6) in sterile phosphate-buffered saline (PBS). 

10 µl of the original and diluted cultures (10-1 to 10-6) were spotted on LB agar plates containing 

the induction supplements. 

 

 

 

                                                
5 This work was conducted and written by Cinzia Fino, Matthew Dorman and Alexander 

Harms. 
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Table 3.1 Phenotypic testing of identified toxins. 

Toxin 
ID 

Constuct 
ID 

Pfam 
domain Status Category 

TA 
type 

5' Restriction 
Site 

3' Restriction 
Site 

doc pMJD119 doc 
Control - 

toxic Control II KpnI  KpnI  

27H pMJD127 HipA Toxic Ubiquitous II KpnI  KpnI  

61H pMJD130 CcdB Toxic Sporadic II KpnI  KpnI  

51H 
(39P) pMJD128 HigB Non-Toxic 

Species 
associated II KpnI  KpnI  

51H 
(147P) pMJD131 HigB Toxic 

Species 
associated II KpnI  KpnI  

8H pMJD121 DUF3749 Non-Toxic Ubiquitous II KpnI  KpnI  

87H pMJD132 HicA Toxic 
Species 

associated II KpnI  KpnI  

24H pMJD134 Gp49 Toxic Sporadic II KpnI  KpnI  

72H pMJD129 HD Non-Toxic Sporadic II KpnI  KpnI  

12H pMJD122 RES Non-Toxic Sporadic II KpnI  KpnI  

44H 
pMJD138/

9 ParE Toxic Sporadic II KpnI  KpnI  

14H pMJD133 Gp49 Toxic Sporadic II KpnI  KpnI  

31H pMJD125 HicA Toxic Rare II KpnI  KpnI  

54H 
pNDM_54

H BroN Non-Toxic Rare II KpnI  KpnI  

22H pMJD124 GNAT Non-Toxic Ubiquitous II KpnI  KpnI  

7H pMJD120 Fic Toxic 
Species 

associated II KpnI  KpnI  

11H Failed CptA 
Cloning 
failed Ubiquitous IV KpnI  KpnI  

37H pMJD126 BroN/ANT Toxic 
Species 

associated II KpnI  KpnI  

18H pMJD123 CcdB Non-Toxic Sporadic II KpnI  KpnI  
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Table 3.2 Combinations of toxin-antitoxins tested for antitoxin inhibition. 

Antitoxin 
ID 

Paired 
toxins 

Operon 
structure Status Novelty 

Predicted 
function 

5' 
Restricti
on Site 

3' 
Restricti
on Site 

PhD doc   
Control - 
inhibited Control Control KpnI  HindIII  

52P (31H) 31H (HicA) 52P-31H Inhibited Novel 

Domain of 
unknown 
function 

(DUF1902) KpnI  HindIII  

52P (54H) 31H (HicA) 54H-52P Inhibited Novel 

Domain of 
unknown 
function 

(DUF1902) KpnI  HindIII  

3P 7H (fic) 3P-7H Inhibited Known Known KpnI  HindIII  

168P 7H (fic) 
3P-7H-
168P 

No 
inhibition Novel Unassigned KpnI  HindIII  

24P 27H (hipA) 24P-27H Inhibited Known Known KpnI  HindIII  

27P 14H (Gp49) 14H-27P Inhibited Novel DNA binding KpnI  HindIII  

23P 44H (ParE) 
44P-44H-

23P 
No 

inhibition Novel Unassigned KpnI  HindIII  

44P 44H (ParE) 44P-44H Inhibited Novel Unassigned KpnI  HindIII  

45P 87H (hicA) 87H-45P Toxic Known Known KpnI  HindIII  

48P 61H (CcdB) 48P-61H Inhibited Known Known KpnI  HindIII  

62P 37H (BroN) 62P-37H Toxic Novel 

consensus 
disorder 

prediction KpnI  HindIII  

26P 37H (BroN) 37H-26P 
No 

inhibition Novel 

Domain of 
unknown 
function 

(DUF4222) KpnI  HindIII  

67P 24H (Gp49) 24H-67P 
Partial 

inhibition Known Known KpnI  HindIII  

147P 51H (HigB) 51H-147P Inhibited Novel DNA binding KpnI  HindIII  

39P 51H (HigB) 51H-39P Inhibited Novel DNA binding KpnI  HindIII  

 

Lyophilised plasmids were rehydrated in nuclease-free water. In order to ensure that in vitro 

validation experiments were performed using a single clone of each synthesised construct, 

each plasmid was propagated and prepared from a cloning strain of E. coli. Briefly, E. coli was 
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cultured aerobically in 100 ml LB broth to an OD600 of approximately 0.5 (200 rpm, 37 ˚C). 

Cells were harvested by centrifugation and resuspended in ice-cold 10 mM calcium chloride 

(CaCl2) solution. Cells were washed three times in CaCl2 solution, collected by centrifugation, 

resuspended in 10 mM CaCl2 containing 25% v/v glycerol, and frozen at -80 ˚C. One microlitre 

of each plasmid solution was used to transform these chemically competent E. coli by heat 

shock (plasmid incubated with bacteria on ice for 30 min, heat shock at 42 ˚C for 30 sec, 5 

min immediate recovery on ice). Transformed cells were recovered for one hour at 37 ˚C (200 

rpm), and transformants were selected for on solid LB media supplemented with appropriate 

antibiotics. One colony was picked and single-colony purified; the purified clone was then 

cultured overnight in 5 ml LB supplemented with antibiotics. Plasmids were extracted from 2 

ml of each culture using the QIAprep Spin Miniprep kit (Qiagen, #27104) and the remaining 

culture was mixed with glycerol (25% v/v final concentration) and stored at -80 ˚C. 

3.4 Results 

3.4.1 Type II and type IV TA systems are highly abundant in the K. 

pneumoniae species complex 

259 K. pneumoniae species complex genomes representing the global diversity were included 

in this study [9] (See Section 3.3.1). These include 222 K. pneumoniae sensu stricto, 18 K. 

quasipneumoniae and 19 K. variicola isolates (Figure 3.2A), including isolates taken from 

community and hospital acquired infections, those causing invasive and non-invasive disease 

and those isolated from both animals and plants [9].  

 

SLING was used to search for TA pairs within our genomic dataset [311]. For clarity, a group 

of toxins or antitoxins which have been clustered together based on their amino-acid sequence 

identity are referred to as “toxin group” and “antitoxin group”, respectively. The toxin groups 

were named by the profile by which they were found. 

 

Using a collection of 55 (52 type II, 3 type IV) Pfam toxin profiles as the input for SLING [311], 

a total of 140 toxin groups (130 type II, 10 type IV) and 233 antitoxin groups (211 type II, 23 

type IV), forming 244 different toxin-antitoxin structures in the genomes included in this study 

were identified (Appendix B and E). Altogether, TA systems were highly prevalent in all 

members of the K. pneumoniae species complex, with a median of 19 loci per isolate genome 

(range 11-29, Figure 3.2B). A PCA showed a clear separation into the three species based on 

toxin repertoire (Figure 3.2C). Furthermore, K. variicola had a higher median of 22 TA systems 

per isolate compared to 18 and 19 in the other two species (Figure 3.2D; pairwise Wilcoxon  
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rank sum test p<0.01, FDR corrected). These figures are slightly higher to those observed in 

previous studies on TAs in K. pneumoniae and E. coli [335,350]. 

 

Based on sequence similarity, the number of defined toxin groups per toxin Pfam profile 

ranged from 1-13 (Figure 3.3). The mean sequence variation within any one toxin group 

ranged from 68.95-100% local identity at the amino-acid level covering 59.33-100% of the full 

length of the protein (46.37-100% amino-acid identity over the complete protein) (Appendix 

B). This highlights the diversity of candidate toxins linked to functionally tested domains that 

were identified. For instance, the sequences of toxin group 31H containing the HicA domain 

were aligned to the toxins containing the HicA domain taken from TADB [318,319] (Figure 

3.4). While some key residues are conserved throughout, there are considerable variations 

between the sequences taken from TADB to each other as well as to our predicted toxin.  

 

 

 
Figure 3.3: Number of unique toxin groups for each of the toxin Pfam profiles used in 
the search. Bars are coloured based on the type of TA system the toxin profile is associated 

with. 
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3.4.2 Redefining toxins based on their distribution patterns 

The 140 identified toxin groups were categorised into four categories based on their 

distribution patterns in the dataset (See Section 3.3.4) (Figure 3.2E, Appendix B). Seven toxin 

groups were ubiquitous (one type IV), present in over 80% of the isolates included in this study 

and from all three species. Fifteen toxin groups, all type II toxins, differed in prevalence 

between the three species (Fisher’s exact test p<0.01, FDR corrected, Figure 3.2E). Twenty-

three toxin groups (one type IV) (17%) were distributed sporadically with no species 

association, including a number which were associated with clinically relevant genes. Finally, 

the remaining 95 toxin groups (eight type IV) (68%) were rare and found in fewer than 10% of 

the isolates (Appendix B). 

 

Within the ubiquitous toxin groups, we observed significantly higher nucleotide identity for 

toxins within the same species compared to toxins from other species (median 99.4% 

compared to 93.51%, Wilcoxon rank sum test, p<0.001, Figure 3.5). The median nucleotide 

identity for sporadic toxin groups for toxins within a species was 97.06% compared to 96.57% 

between species. This elucidates the evolution of the ubiquitous toxin groups due to genetic 

drift within a specific member of the species complex, compared to the likely mobile, sporadic 

toxin groups where this effect was not observed. 

 

 
Figure 3.5: Nucleotide identity of toxins within and between species. Mean nucleotide 

identity between toxins originating from the same K. pneumoniae species and from different 

K. pneumoniae species for all the ubiquitous and sporadic toxin groups. 

 

Sporadic
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The seven ubiquitous toxin groups are known to inhibit translation via mechanisms that do not 

include RNA cleavage: toxin group 5H (polyketide_cyc) is a homolog of the RatA toxin in E. 

coli which inhibits translation by binding to the 50S ribosomal subunit [338]. Similarly, toxin 

group 34H (Fic) is a Doc toxin which inhibits translation by phosphorylating and concomitantly 

inactivating elongation factor TU (EF-Tu) [245]. Toxin groups 22H and 8H with the GNAT and 

DUF3749 domains are acetyltransferases known to inhibit translation by acetylating 

aminoacyl-tRNA [366,367]. Group 27H contains a HipA domain which is well described for its 

association with the high persister phenotype [348,368] and inhibits translation by 

phosphorylating and concomitantly inactivating glutamyl-tRNA synthetase [369]. Toxin group 

11H with the CptA domain belongs to type IV TA system which inhibits cytoskeleton assembly 

[370]. Finally, group 10H with the HD domain is a phosphohydrolase which is a putative toxin 

domain from TADB but its exact function is unknown [311,318,319].  

 

The species associated toxin groups presented different distribution patterns across the three 

K. pneumoniae complex species included in this study. K. pneumoniae sensu stricto 

possessed three toxin groups in lower prevalence compared to the other two species (51H 

(HigB), 64H(Fic) and 25H (Gp49)) (Figure 3.2E). K. variicola possessed five toxin groups in 

higher prevalence compared to K. pneumoniae sensu stricto and K. quasipneumoniae (42H 

(YdaT), 9H (Zeta), 2H (PemK), 33H (RelE) and 87H (HicA) domains). Toxin group 87H (HicA) 

was specific to K. variicola and was not observed in the other two species in the dataset. On 

the other hand, toxin groups 16H (ParE) and 17H (RelE) domains were less common in K. 

variicola. Finally, K. quasipneumoniae lacked three toxin groups (21H (PIN), 26H (ParE) and 

13H (Gp49)), and rarely possessed toxin group 7H (Fic). On the other hand, toxin group 37H 

(BroN) was observed in higher prevalence in K. quasipneumoniae relative to the other two 

species. Of these K. quasipneumoniae isolates, 11% possessed three copies of this toxin 

group and 16% possessed two copies (Figure 3.6). 

3.4.3 Prediction of novel antitoxins 

Accumulation curves of the unique toxin and antitoxin groups identified using SLING 

suggested that sampling additional K. pneumoniae species complex genomes would lead to 

further identification of new candidate antitoxins (Figure 3.7A). To assess whether the 

identified antitoxins were known or novel, their sequences were aligned against all type II and 

type IV antitoxin sequences retrieved from the TADB database [318,319] (See Section 3.3.5). 

195 (173 type II, 22 type IV) of the 233 (211 type II, 23 type IV) antitoxins detected in this study 

were not identified in TADB and were seen to be novel candidate antitoxins linked to a known 

toxin (Appendix C). For completeness, a predicted function was assigned to the 195 novel 
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antitoxin groups using interpro-scan (Appendix C) [361]. 19 additional antitoxin groups were 

matched to known antitoxins by interpro-scan which were not in TADB (antitoxins of toxin 

profiles YdaT (8), CbtA (4), CcdB (2), Fic (1), PemK (1), PIN (1), HigB (1) and HicA (1)), leading 

to a final count of 176 novel antitoxins (76%).  

 

Figure 3.6: Copy number of species-associated toxins. Fraction of isolates of each of the 

K. pneumoniae complex species possessing each of the species associated toxin groups. 

Darker shades indicate multiple copies of the toxin group present in an isolate of a species. 

 

72% of novel antitoxins (127/176) could not be assigned a putative function (Appendix C). 

Five groups contained one of the toxin profiles used in the toxin search and are the result of 

disrupted toxins. Twelve groups were predicted to be DNA binding or transcriptional regulators 

which are plausible functions for antitoxins due to the auto-regulation of the TA operon through 

conditional cooperativity [346,371]. Another 12 groups were assigned to be intrinsically 

disordered proteins [372]. The remaining groups contained profiles indicating other functions 

such as domains of unknown function, ABC transporters, prophages and other functional 

categories (Appendix C). 
 

For each of the toxin groups, the arrangement of the linked antitoxin was examined: upstream 

of the toxin (denoted AT-T) or downstream of it (denoted T-AT) (Figure 3.7B). 72% of the 

known antitoxins were located upstream of the toxin compared to 50% of the novel antitoxins, 

i.e. novel antitoxin candidates were more commonly located downstream of the toxin relative 

to the known antitoxins (p = 0.007, Chi squared test). 
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Figure 3.7: Identification of novel antitoxins in the K. pneumoniae genomes. A 

Accumulation curves of unique toxin and antitoxin groups found in an increasing collection of 

K. pneumoniae genomes. B Number of antitoxin groups found only upstream (AT-T) and 

downstream (T-AT) relative to each toxin Pfam profile, coloured by known or novel. C Number 

of toxin groups of each toxin Pfam profile, relative to the number of antitoxin groups found in 

their proximity. 

3.4.4 Fluid association and distribution of toxin-antitoxin pairings 

Looking at the association between specific toxins and antitoxins we found that with a greater 

number and diversity of defined toxin groups belonging to the Pfam profile used to search for 

the toxins, there were concomitantly more antitoxin groups linked to those toxins (0.88 

Pearson correlation, 3.7C). The exceptions included the YdaT domain which was found with 

28 candidate antitoxin groups and linked to only 9 toxin groups. This both suggests there is 

coevolution of TA pairs along with instances where a range of different antitoxins can inhibit 

the same toxin. 
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We found that a single toxin group can be found with up to a maximum of 12 discrete 

antitoxins, highlighting the “mix and match” nature of toxin-antitoxin associations [317]. It is 

important to note that the antitoxin groups are substantially different from each other as a cut 

off of 75% local amino-acid sequence identity was applied for two antitoxins to be in the same 

group. Furthermore, the mean sequence variation within any one antitoxin group ranged from 

74.64-100% local identity at the amino-acid level covering 61-100% of the alignment length 

(59.88-100% aa identity over the complete protein), highlighting further the diversity in the 

candidate antitoxins identified (Appendix C).  

 

In addition to a range of different antitoxins paired to the same toxin, toxins showed a range 

of operon structures (Figure 3.8A); some toxin groups were linked to a single antitoxin in a 

conserved position either upstream or downstream of the toxin. Other toxin groups were found 

in multiple arrangements with the antitoxin sequence and/or location of the antitoxin relative 

to the toxin changing (Figure 3.8B-H). For the ubiquitous toxin groups, three groups were 

found in a single arrangement (groups 11H (CptA, a type IV toxin), 5H (polyketide_cyc) and 

8H (DUF3749)) (Figure 3.8B). Three other toxin groups (groups 22H (GNAT), 34H(Fic) and 

27H(HipA)) were observed in two or three structures often with one structure dominating 

(>90% of isolates) and the others being rare occurrences of the other structures (<3% of 

isolates, Figure 3.8C-D). Although the HD toxin group was classified as ubiquitous, one TA 

arrangement, observed in 80% of isolates, was specific to K. pneumoniae sensu stricto, 

missing in K. variicola and replaced by a structure specific to K. variicola (Figure 3.8D). 

 

The species-associated toxin group 7H (Fic), was observed in one arrangement which was 

specific to K. variicola (Figure 3.8E). Toxin group 51H (HigB) was associated with two unique 

antitoxins with one being specific to K. quasipneumoniae (Figure 3.8F). Alternatively, other 

toxin groups possessed multiple operon structures with no clear species association, for 

instance, toxin group 42H (YdaT) was observed with seven antitoxin groups in eight different 

arrangements (Figure 3.8G). Other than in a single case (18H (CcdB)), the sporadically 

distributed toxins were not seen in species-specific arrangements emphasising they are 

unlikely to be vertically inherited (Figure 3.8H). 

 

Most of the antitoxins identified were toxin group specific. However, antitoxin group 52P was 

observed with toxin group 31H (HicA) in seven isolates and with toxin group 54H (BroN) in a 

single isolate. Interestingly, it was always observed upstream to the 31H (HicA) toxin and 

downstream of 54H (BroN) toxin. The antitoxin proximate to 31H (HicA) shared 83.2% amino 

acid sequence identity with the antitoxin proximate to 54H (BroN) antitoxin. This antitoxin was 
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not found in TADB but encodes for a domain of unknown function DUF1902 (PF08972) which 

is in the same Pfam clan as many other antitoxins (Met_repress, CL0057).  

 

 
Figure 3.8: Diversity in the observed operon structures for the different toxin 
categories. A Examples of range of antitoxins and possible operon structures for a toxin (a) 

toxin group found in a single structure with a single antitoxin group (b) toxin group found in 

two different structures with two different antitoxin groups (c) toxin group found in five different 

structures with four different antitoxin groups. B-H Fraction of isolates from each K. 

pneumoniae complex species possessing each of the operon structures of seven example 

toxin groups: (B-D) ubiquitous, (E-F) species associated, (H) sporadically distributed. 

 

3.4.5 Phenotypic testing in silico predictions of toxins and confirmation of 

novel antitoxins6 

                                                
6 This work was conducted by Cinzia Fino, Matthew Dorman and Alexander Harms. 
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Due to the apparent diversity of TA systems within and between species and the novel 

combinations of toxin and antitoxins found in this study, 17 candidate toxins, representing the 

diversity of toxins within a given group and from a range of genomic backgrounds, were tested 

for their ability to inhibit bacterial growth in an Escherichia coli model system (See Section 

3.3.8). Selected were: four ubiquitous, four species associated, seven sporadically distributed 

and two rare candidate toxins (Table 3.1, Figure 3.9).  

 

The toxicity of all the species associated toxins that were tested was confirmed (groups 51H 

(HigB), 7H (Fic), 87H (HicA) and 37H (BroN)) (Figure 3.9). Of the remaining toxins, toxicity 

was observed for the 27H (HipA) toxin group which is ubiquitous across the species complex 

as well as four of the seven sporadically distributed toxins tested from groups 14H (Gp49), 

24H (Gp49), 61H (CcdB), 44H (ParE), and a rare toxin from the 31H (HicA) group. The 

ubiquitous type IV toxin we tested, 11H ((CptA)), could not be successfully synthesised or 

cloned, likely due to its toxic activity. The rest of the toxins tested showed no toxic activity 

under the conditions tested in our assay (summarised in Table 3.1).  

 

Subsequently, 14 candidate antitoxins were tested for their ability to counteract the toxicity of 

their cognate toxin in the E. coli model system (including 10 novel antitoxins; this study; Figure 

3.10; Table 3.2). Eight of the fourteen antitoxins (57%) led to complete inhibition of the toxic 

activity, five of which were novel antitoxins. Three of the confirmed novel antitoxins were 

predicted to contain DNA binding domains by interpro-scan (39P, 27P, 147P). One antitoxin 

contained a domain of unknown function (52P) and the final antitoxin did not match any 

existing entry in Interpro (44P). Three of the confirmed antitoxins in the T-AT format were 

located downstream of the toxin (groups 27P (Gp49), 147P (HigB) and 39P (HigB)). An 

additional known antitoxin only partially inhibited toxicity (67P).  

 

For completeness, for operons that had the structure AT1-T-AT2, both AT1 and AT2 were 

tested. In both cases, AT1 only was confirmed to inhibit the toxin’s activity while we did not 

observe toxin inhibition activity with AT2.  
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Figure 3.9: Phenotypic testing of selected toxins. This work was conducted by Cinzia Fino, 

Matthew Dorman and Alexander Harms. LB agar plates were supplemented with 1mM IPTG 

for the induction of toxin Plac promoters. Overnight cultures were serially diluted (10-1 to 10-6) 

in PBS containing the inducing supplements.  
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Figure 3.10: Phenotypic testing of predicted toxin-antitoxin combinations. This work was 

conducted by Cinzia Fino, Matthew Dorman and Alexander Harms. Toxins in circles, antitoxins 

in squares. Tested novel antitoxins in green and tested known antitoxins in gray. For operon 

structures AT1-T-AT2, the untested partner antitoxin is in a dashed square. LB agar plates 

were supplemented with 1 mM IPTG for the induction of toxin Plac promoters' and 0.2% w/v 

of L-arabinose for the induction of antitoxin Para promoters’. Overnight cultures were serially 

diluted (10-1 to 10-6) in PBS.  
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Finally, these data revealed some more unexpected findings. In two cases the predicted 

antitoxins were themselves found to be toxic in our experimental system (45P, 62P) (Figure 

3.10). One of these antitoxins is a well-described antitoxin with a HicB domain (62P). In 

addition, we confirmed both versions of antitoxin group 52P, associated with toxins from 

markedly different groups (31H (HicA) and 54H (BroN)), were able to counter toxin group 31H 

(Figures 3.10, 3.9; Table 3.2). Although the antitoxin group was linked to two different toxins 

and the two versions of the antitoxin shared only 83.2% amino acid identity, both versions 

inhibited the activity of this toxin. We were unable to confirm the toxicity of toxin group 54H 

(BroN) (Figure 3.9, Table 3.1), hence we could not confirm inhibition of this toxin group by 

these antitoxins. Finally, two variants of the toxin group 51H were tested (HigB); a shorter 

protein (53 aa) which was observed with antitoxin group 39P and a longer protein (103aa) 

observed with antitoxin group 147P. The C-terminus of the longer toxins was 83% identical to 

the shorter protein. The two antitoxins shared 71% amino-acid identity. We were only able to 

confirm the toxicity of the shorter 51H toxin. Nonetheless, we tested both antitoxins 39P and 

147P with the shorter 51H toxin, and found that both antitoxins were functional and able to 

inhibit the toxin (Figure 3.10).  

3.4.6 Orphan antitoxins are abundant in the dataset  

We sought to determine whether the antitoxins of the TA pairs were also present on the K. 

pneumoniae species complex genomes as orphan genes uncoupled to a candidate toxin 

gene. The predicted antitoxin sequences were aligned against all the genomes and a total of 

2,253 occurrences of orphan antitoxins belonging to 105 of the 233 antitoxin groups defined 

in this study were identified in the genomes (96 type II and 9 type IV) (Figure 3.11A, Appendix 

D). Of these, 25% were known antitoxins found in TADB or Interpro (26/105). For 80% (77/96) 

of type II and 89% (8/9) of type IV antitoxin groups, fewer than 26 orphan copies were identified 

in the entire genome collection, i.e. occurrences of unpaired antitoxins were rare and were 

found in fewer than 10% of genomes (Figure 3.11A). Conversely two antitoxin groups, 

containing the type II Fic and HipA toxin domains, were observed as unpaired in more than 

80% of the genomes (>207 copies) across the species complex. In 35 of the 105 orphan 

antitoxin groups, orphans were detected in a species that was different to that of the original 

valid TA pair (Appendix D). For instance, antitoxin group 89P of the HipA toxin was originally 

identified in K. quasipneumoniae. However, orphan antitoxins were observed only in K. 

variicola (Figure 3.11A). Similarly, antitoxin group 115P belonging to a PemK-containing toxin 

was originally identified in K. variicola, but orphan antitoxins were observed in K. 

quasipneumoniae as well. Altogether there were no significant differences in the number of 
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orphan antitoxins per strain between the three species, with a median of nine orphans per 

strain across the three species (Figure 3.11B) (pairwise Wilcoxon rank sum test, FDR 

corrected).  

 

 
 

To assess the origin of orphan antitoxins the upstream and downstream sequence 

surrounding the antitoxin were aligned with those found in valid TA pairs (Figure 3.11C) (See  

Sam
e  

toxin-context
D

ifferent  
toxin-context

D
ifferent non-toxin-context

Sam
e non-toxin-context

K. pneum
oniae sensu stricto

K. quasipneum
oniaeK. variicola

K
. quaipneum

oniae
K

. pneum
oniae sensu stricto

K
. variicola

Unknown CDS

Discarded

Undetermined

O
riginal TA pair

toxin
antitoxin

S
earch genom

es for orphan antitoxins

C
om

pare toxin and non-toxin contexts

B
oth sam

e

B
oth differ

Toxin-context sam
e

N
on-toxin-context differs

Toxin-context differs
N

on-toxin-context sam
e

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

A
B

D
E

C

Figure 
3.11: 

O
rphan 

antitoxins in K
. pn

eu
m

o
niae 

genom
es. A

 N
u
m

b
e
r o

f o
rp

h
a
n
 

a
n
tito

xin
s id

e
n
tifie

d
 fro

m
 e

a
ch

 

a
n
tito

xin
 g

ro
u
p
, co

lo
u
re

d
 b

y K
. 

pneum
oniae co

m
p
le

x sp
e
cie

s.  

T
h
e
 
to

xin
 
P

fa
m

 
p
ro

file
 
o
f th

e
 

to
xin

 o
f th

e
 va

lid
 T

A
 p

a
ir is in

 

b
ra

cke
ts. 

A
n
tito

xin
 
o
f 

typ
e
 
IV

 

to
xin

s 
a
re

 
h
ig

h
lig

h
te

d
. 

B
 

O
rp

h
a
n
 

a
n
tito

xin
s 

p
e
r 

stra
in

 

stra
tifie

d
 

b
y  

K
. 

pneum
oniae

 

co
m

p
le

x sp
e
cie

s. C
 Illu

stra
tio

n
 

o
f co

n
te

xt a
n
a
lysis a

p
p
lie

d
 t o

 

e
a
ch

 
o
rp

h
a
n
 

a
n
tito

xin
. 

T
h
e
 

fla
n
kin

g
 

se
q
u
e
n
ce

s 
a
ro

u
n
d

 

e
a
ch

 
o
rp

h
a
n
 

a
n
tito

xin
 

w
e
re

 

co
m

p
a
re

d
 

to
 

th
e
 

fla
n
kin

g
 

se
q
u
e
n
ce

s o
f th

e
 va

lid
 T

A
 p

a
ir. 

E
a
ch

 
fla

n
k 

w
a
s 

cla
ssifie

d
 

a
cco

rd
in

g
 to

 w
h
e
th

e
r o

r n
o
t it 

m
a
tch

e
d
 th

e
 se

q
u
e
n
ce

 o
f th

e
 

o
rig

in
a
l T

A
 p

a
ir. D

 N
u
m

b
e
r o

f 

o
ccu

rre
n
ce

s 
o
f 

o
rp

h
a
n
 

a
n
tito

xin
s 

cla
ssifie

d
 

b
y 

th
e
 

sim
ila

rity o
f th

e
ir co

n
te

xts to
 th

e
 

va
lid

 T
A

 p
a
irs

’. E P
re

se
n
ce

 o
f 

a
 

C
D

S
 

in
 

th
e
 

o
rp

h
a
n
 

a
n
tito

xin

’s to
xin

-co
n
te

xt.  

 



 76 

To assess the origin of orphan antitoxins, the upstream and downstream sequence 

surrounding the antitoxin were aligned with those found in valid TA pairs (Figure 3.11C) (See  

Section 3.3.6). 39% of the orphan antitoxins (879/2,253) shared the same toxin-context as the 

valid TA pair. Of these, 92% also shared the same non-toxin-context, indicating that they are 

in the same genetic context as the valid TA pairs from the same group (Figure 3.11D). 65% of 

orphans which did not share the toxin-context of the original TA pair (893/1374) did share the 

non-toxin context. In 20% of cases (470/2,253) neither the toxin-context or the non-toxin-

context matched the valid TA pair, i.e. the orphan antitoxins were surrounded up- and 

downstream by unrelated sequences to any of the detected TA pairs.  

 

To confirm whether these were truly orphan antitoxins, a CDS within the toxin-context was 

searched for that could function as the toxin. In 49% of orphans (1,107/2,253) a CDS within 

the context region was identified that does not contain a known toxin domain and could be a 

candidate for a novel toxin (Figure 3.11E). In 43% of cases (947/2,253) a toxin containing the 

original Pfam profile used in the search was found but the CDS was discarded due to the 

conservative structural requirements applied for a TA system (Figure 3.11E). These may be 

false negatives in the original analysis, or otherwise TAs which have diverged from the 

expected structure for a functional TA pair. In 8% of cases (171/2,253) the predicted antitoxin 

was truly orphan as a CDS longer than 50 aa could not be identified in the context region that 

may function as a toxin. In 1% of cases (28/2,253), the orphan antitoxin was close to the contig 

edge or proximate to a region with more than eight unknown nucleotides (N/X) and therefore 

the presence or absence of a toxin in its proximity could not be confirmed. 

3.4.7 The association between toxins and antimicrobial resistance genes, 

virulence genes or plasmid replicons 

Several of the sporadically distributed toxin groups were associated with clinically relevant 

AMR or virulence genes as well as plasmid replicons linked to the spread of AMR in K. 

pneumoniae and E. coli (Figures 3.12A,B, Fisher’s exact test p<0.01, FDR corrected). These 

included 24H (Gp49) and 72H (HD) toxin groups which were significantly associated with 

multiple AMR genes, including those conferring resistance to aminoglycoside, amphenicol, 

sulfonamide, tetracycline and beta-lactams, with 13-29% of toxin genes found on the same 

contig as the respective AMR genes (Figure 3.12C). 100% and 30% of toxin CDSs’ of toxin 

groups 24H and 72H respectively were on the same contig with an IncA/C plasmid replicon 

(Figure 3.12D). These contigs shared 99% (24H) and 97% (72H) sequence identity with the 

K. pneumoniae IncA/C-LS6 plasmid (JX442976), originally isolated from carbapenem-

resistant K. pneumoniae [373], as well as AMR plasmids pNDM-KN (24H), pRMH760, pIMP-
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PH114 and pR55 (72H) (Appendix D) [374–377]. Two toxin groups with a RES domain, 3H 

and 12H, were associated with multiple virulence genes (Figure 3.12B, Fisher’s exact test 

p<0.01, FDR corrected) and one of these groups (3H) with the presence of an IncHI1B plasmid 

replicon. Contigs containing these two toxins showed over 99% sequence identity to K. 

pneumoniae virulence plasmids pK2044 and pLVPK (Appendix D) [378,379]. Five other toxin 

groups which were associated with AMR or virulence genes were also associated with the 

presence of plasmid replicons (Fisher’s exact test p<0.01, FDR corrected) (see Figures 3.12A-

C).  

 

 
Figure 3.12: Toxin groups associated with AMR genes, virulence genes and plasmid 
replicons. Number of unique AMR (A) and virulence (B) genes associated with each of the 

toxin groups. Circles above bars indicate the toxin group was also associated with the 

presence of a plasmid replicon. C-E Number of occurrences of toxins in the genome collection, 

for the toxin groups associated with AMR genes (C), plasmid replicons (D) and virulence 

genes (E). An occurrence of a toxin is coloured in dark if it was observed on the same contig 

with one or more of the associated genes, light otherwise.  
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3.5 Discussion 

In this chapter was presented a systematic in-depth analysis of the diversity and evolution of 

TA systems in a large collection of a clinically important member of the Enterobacteriaceae, 

the K. pneumoniae species complex. TA systems are highly prevalent in the species complex, 

however, the underlying processes of the evolution of TA systems are likely to be context-

dependent. The toxins of these TA systems could be classified based on their distribution 

patterns as ubiquitous, species associated, sporadically distributed (often with associations to 

clinically important genes) or rare. The evolution of ubiquitous toxins is likely vertically 

inherited, as higher nucleotide identity was observed between toxins of the same species than 

between species. The same effect was not observed for the sporadic toxins, suggesting that 

some TA systems are more mobile than others. Importantly, the classification presented in 

this study was based on the dataset used, which was aimed to capture the diversity of the K. 

pneumoniae species complex. It is possible that further sampling of under-represented 

lineages would increase power and refine the classification.  

 

The pairing of antitoxin to toxin is not fixed; for each toxin a range of candidate antitoxins were 

identified and found in different arrangements, putatively able to inhibit the same toxin. 

Sampling of more genomes would lead to a large diversity in antitoxins relative to toxins, 

suggesting the potential number of interactions between toxins and antitoxins is large. Notably, 

some toxins were more stably coupled to a single antitoxin and observed in a single 

arrangement, while other toxins were observed with a wide range of antitoxins and operon 

arrangements. This highlights that the co-evolution between toxin and antitoxin is dependent 

on the system and context. This has functional implications as the antitoxin and its interaction 

with the toxin can affect the functioning of the TA system ([380]. Some antitoxins play a role 

in the regulation of the TA module as the toxin-antitoxin pair regulate the expression of the TA 

operon [346,371]. Furthermore, the interaction of the toxin with the antitoxin will determine the 

specificity of the inhibition and therefore would affect the dynamics of both activation and 

deactivation of the TA operon. Finally, antitoxin instability is often the result of degradation by 

proteases [346], therefore the inhibition of an antitoxin in response to stress can depend on 

the antitoxin sequence as it would determine the specificity of interaction with proteins that 

lead to its degradation [381].  

 

Even more, a number of toxin or antitoxin groups were observed as specific to a species, i.e. 

a toxin-antitoxin pairing was observed only in one particular genetic background. This 

suggests it may be beneficial to possess a specific toxin-antitoxin pair under one genetic 

background compared to another.  
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Altogether 76% of the identified candidate antitoxins were novel and not identified in the 

existing toxin-antitoxin database TADB or Interpro [318,319,382]. Furthermore, there was 

additional sequence diversity within each antitoxin group that we found. These results 

emphasise the potential large diversity of antitoxins that could inhibit these toxins and our lack 

of knowledge of the complete range and diversity of these systems.  

 

Using an E. coli model system, the toxicity of 10 of 17 tested toxins was confirmed (~59%) 

and the inhibitory activity of 10 of 14 tested antitoxins (~71%). Nine of the tested antitoxins are 

novel and we were able to confirm the inhibition of five of them. We also found candidate 

antitoxins downstream of the toxin, and confirmed the inhibitory activity of three of them, 

highlighting exceptions to the common setup in which the antitoxin is encoded upstream of 

the toxin. These results could form the basis of future studies investigating how different 

autoregulatory principles enabled by upstream or downstream antitoxins might affect the 

biology of a TA system. While some of these candidate antitoxins could be false predictions, 

the observation of known or confirmed antitoxins both upstream and downstream to toxins 

suggests we cannot rule out any antitoxin candidate. Importantly, a negative result in our 

assays does not rule out toxic or inhibitory activity of these proteins, but rather could be the 

result of confounding effects in our assays for example biological differences between E. coli 

K-12 and K. pneumoniae, lack of protein expression or incorrect folding in the heterologous 

host. Furthermore, our assays do not indicate whether these systems are expressed in the 

host bacterium or whether they have a physiological role in the host cell. 

 

There is an abundance of orphan antitoxins present in the population which are unpaired to a 

functional toxin. These include a number of the antitoxins we expressed and were able to 

confirm their inhibitory activity (92 orphan copies of 39P, 17 orphan copies of 24P and 45 

orphan copies of 45P, Figure 3.11). Sources of orphan antitoxins may be degrading TA pairs 

that are in different genetic locations, older degraded TA systems or otherwise, these could 

be candidates for new toxins which share the same antitoxin as we have identified. 

Alternatively, some orphan antitoxins may be paired to a known toxin but were discarded in 

our analysis due to the conservative structural criteria we defined for a TA system, suggesting 

that the prevalence of TA system in the K. pneumoniae species complex presented here may 

be under-estimated. 

 

These orphan antitoxins may be serving a new purpose. For example, they may serve as anti-

addiction modules, preventing the fixation of plasmids or other MGEs [383]. They may be 

interacting with the toxins of active TA pairs and affecting their function. Alternatively, they 
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could also be conserved as remnants of a degraded TA locus that have acquired functions in 

transcriptional regulation of other genes in the genome [384]. 

 

The importance of this type of analysis is not limited to TA systems, and presents general 

trends to distinguish between groups of genes of other gene systems. Pan-genome analysis 

of bacterial datasets is often focused on the description of core compared to accessory genes 

without focusing on the precise details within these two categories. Here we showed a more 

refined description of genes based on their distribution across the K. pneumoniae population 

and in the context of linkage to other genes. This finer grained analysis can be applied in other 

settings and lead to novel, highly relevant insights on evolutionary dynamics of poorly 

understood genetic elements. 
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4 Building a collection of 10,000 E. coli isolates and 

defining the gene content in the collection 

4.1 Introduction 

As of today, there are more than 130,000 E. coli and Shigella genomes available on public 

databases. Indeed, recent studies have utilised the availability of these genomes to better 

understand the population structure and the pan-genome of the species [92,93]. The analysis 

presented in the Chapter 3 revealed interesting patterns regarding the distribution of a single 

genetic system in a collection of 259 K. pneumoniae genomes. The next two chapters will 

expand on the analysis presented on TA systems in K. pneumoniae, to investigate the 

distribution of all genes in a collection of 10,000 E. coli isolates taken from public databases. 

 

While genomic data is widely available online, the process of building a comprehensive and 

high-quality collection of genomes is not trivial. The genomic data is stored across different 

databases which are associated with specific data types. The Sequence Read Archive (SRA) 

is the main repository which contains all the sequence read data worldwide, and is a 

collaboration between three read archives worldwide (European Nucleotide Archive; ENA, 

National Center for Biotechnology Information; NCBI and the DNA Data Bank of Japan; DDBJ) 

[385]. In some cases, the raw read data is not submitted but only an assembled genome. In 

these cases, the data will be found elsewhere, for instance, in the NCBI Assembly database. 

Even more, specific databases have been set up for particular purposes [93,386]. Enterobase, 

mentioned in Section 1.4, is a database which integrates, assembles and analyses the 

genomic data of specific enteric pathogens from the SRA, while providing researchers with 

relevant metadata and software to make these data more accessible [93]. Importantly, when 

collating the data from these multiple sources, genomes are often duplicated or there are 

database specific identifiers which need to be matched. Finally, the metadata associated with 

each genome is often restricted to the publication and is not directly linked to the database 

from which the genome was downloaded. All of these make the primary process of collating 

the data challenging. 

 

Following data collation, multiple steps need to be applied to obtain a high-quality collection 

of genomes and their genes. This includes applying quality control (QC) measures on the 
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downloaded reads to ensure they are of good quality and that there was no contamination. 

Enterobase, for example, applies its own QC pipeline before importing data from the SRA and 

after assembly [93]. The reads need to be assembled and annotated for their gene content. 

Finally, a pan-genome analysis is applied to obtain the gene content across multiple genomes 

(detailed in Section 1.4.1.4). The most widely used tools for genome assembly, annotation 

and pan-genome analysis were published anywhere from five to twelve years ago 

[292,305,356,387]. As the number of genomes has grown exponentially (Figure 1.7), the most 

commonly used tools can become obsolete as they do not scale well for a very large number 

of genomes. For instance, a pan-genome genome analysis requires an all-against-all 

comparison of the CDSs across all isolates being compared. In an analysis of 10,000 isolates, 

each with 5,000 genes, this would require 1.25 quadrillion pairwise comparisons. For this 

reason, some (but not all) existing pan-genome analysis tools use an initial step to remove 

redundant sequences [305,388]. Even so, with a very large dataset of a diverse organism like 

E. coli, the number of unique sequences is large enough that removing redundant sequences 

does not solve the complexity issues. Therefore, existing studies using very large datasets 

have compromised on the level of resolution of the analysis applied and were generally limited 

to high-level descriptive studies with few downstream analyses [92,93].  

4.2 Aims 

The aim of this Chapter was to build a comprehensive and high-quality collection of E. coli and 

Shigella isolates taken from public databases. The work in the Chapter is divided into the 

following steps which were required to obtain a complete collection of 10,000 E. coli isolates 

and their gene content: 

● The data collection process 

● The characteristics of the dataset including associated metadata, population structure 

and AMR and virulence profiles. 

● Definition of the gene content across this collection 

4.3 Methods 

4.3.1 Data collection  

The data collection process for this project is summarised in Figure 4.1 and is detailed in the 

Results section, including specific modifications to the tools used and all the QC measures 

applied. All scripts for downloading and processing the genomes are available at 
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https://github.com/ghoresh11/ecoli_genome_collection. The final collection of genomes 

consisted of 10,159 presumptive E. coli and Shigella genomes. 

 

Figure 4.1: Workflow for collating the E. coli genome collection. Steps taken to obtain a 

final curated, comprehensive and high-quality collection of genomes which include, for all 

genomes, reads, assemblies and annotation files. QC steps are in red hexagons. 

4.3.1.1 Reads 

Reads were downloaded from the SRA using fastq-dump (v2.9.2). Reads which had been 

Illumina sequenced were trimmed using trimmomatic (v0.33) [389] with the TruSeq3-PE-2 

adaptors, a minimum length of 36 bp, and parameters LEADING=10, TRAILING=10, SLIDING 

WINDOW=4:15 and quality encoding Phred33. When reads were unavailable, assemblies 

were shredded into artificial reads (fasta2fastq_shredder.py) with 100bp paired reads from a 

350bp insert every 3 bases along a linear genome. 
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4.3.1.2 Assemblies 

Reads were assembled by VELVET (v1.2.09) [356] using the prokaryotic assembly pipeline 

(v2.0.1) with default setting [357].  

4.3.1.3 Gene calling 

Predicted CDSs, referred to as “genes” were called using a modified version of Prokka (v1.5). 

Prodigal (v2.6) was trained using a random selected set of 100 genomes from the entire 

dataset using the “prodigal.py” script available in Panaroo [292,306]. The training file was then 

used as the input for Prokka for the predicted genes in the entire dataset. This was compared 

against running Prokka without using a training file for all genomes. Panaroo was used to 

compare the gene content of two annotation files by building a synteny graph of the genes 

[306]. 

4.3.2 MLST 

The ST of all genomes was determined by running “mlst_check” (https://github.com/sanger-

pathogens/mlst_check) according to the Achtman MLST scheme downloaded from PubMLST 

on Jan 22nd, 2019 [390]. 

4.3.3 Genome Clustering using PopPUNK  

Population Partitioning Using Nucleotide K-mers (PopPUNK) (v. 1.1.3) was used to group the 

assemblies into PopPUNK Clusters [277]. PopPUNK uses Mash to calculate the pairwise 

distance between every two assemblies. Mash estimates the Jaccard distance between two 

sequences using a reduced set of k-mers of a defined size k [279]. PopPUNK applies Mash 

with increasing values of k. The “core” (") and “accessory” (a) distances between two 

assemblies are estimated in PopPUNK by fitting a function which measures the probability of 

any two sequences matching between the two assemblies across the increasing values of k 

used for Mash (the function: pmatch = (1-a)(1-")k). The “core” and “accessory” distances were 

inferred in this analysis using the k values 18, 21, 24, 27 and 31 as these values generated a 

good fit. Following the distance calculation, the pairwise “core” and “accessory” distances were 

fitted into clusters using two-dimensional Gaussian mixture models to split the points into K 

two-dimensional Gaussian distributions and to identify the “core” and “accessory” distance 

values which represent isolates belonging to the same “strain” or “lineage”. The model fitting 

was applied using six different values of K (5, 8, 11, 14, 17 and 20). The scores generated by 

PopPUNK for all values of K were compared and these are summarised in Table 4.1. The 

value of K=11 was chosen for the clustering as it had the overall lowest entropy and 

comparably high overall score. A network between all assemblies is constructed where each 
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node is an assembly and an edge is drawn between two assemblies only if their “core” and 

“accessory” distance is within the “within strain” cluster in the result of the two-dimensional 

Gaussian mixture models. Each connected component in this network is defined as a 

“PopPUNK Cluster”. 

 

Table 4.1:  PopPUNK Clustering statistics. Statistics retrieved from clustering genomes 

using different values of K when running PopPUNK. Green: The chosen value of K with the 

lowest entropy. 

K Components Density Transitivity Score Entropy 

5 920 0.1444 0.9929 0.8496 0.0082 

8 1120 0.1405 0.9852 0.8467 0.009 

11 1185 0.139 0.982 0.8455 0.0042 

14 1918 0.1 0.8973 0.8075 0.0055 

17 1856 0.1048 0.9093 0.814 0.0053 

20 3361 0.0208 0.6273 0.6143 0.0138 

 

4.3.4 Phylogenetic analysis 

The core gene phylogeny was inferred from the core gene alignment generated using Roary 

for each PopPUNK Cluster [305], and a tree from the SNPs, extracted using SNP-sites [332] 

(v2.3.2), was constructed using FastTree [391]. Treemer (v0.3) [392] was used to select ten 

genomes from each PopPUNK cluster as representatives of that cluster and representative of 

the diversity within that cluster. Treemer greedily prunes leaves off the phylogeny by choosing 

a random lead from the closest pair of leaves in every iteration, until the number of selected 

leaves in the tree is reached. Similarly, only a single representative sequence was chosen 

using Treemer from each of the 50 PopPUNK clusters to generate a minimal tree containing 

only 50 sequences. In both cases, the core gene phylogeny was inferred from a core gene 

alignment generated using Roary on the 500 representative genomes [305]. A maximum 

likelihood tree from the informative SNPs, chosen using SNP-sites (v2.3.2) [332], was 

constructed using RAxML (v8.2.8) [282] with 100 bootstrap replicates.  
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4.3.5 Phylogroup assignment 

EzClermont (v0.4.5) was used to assign the phylogroup of the 500 representative genomes 

selected in the previous section [393]. EzClermont applies in-silico PCR of marker genes to 

assign phylogroup according to the phylotyping scheme presented in [271]. PopPUNK clusters 

were assigned a phylogroup according to the most common phylogroup assignment of the ten 

representative strains. Phylogroup assignments were corrected based on the phylogeny. 

4.3.6 Identification of AMR and virulence genes 

A collection AMR genes were obtained from the modified version of ARG-ANNOT available 

on the SRST2 website (https://github.com/katholt/srst2/tree/master/data, downloaded on 

08.03.18) [288,290]. Virulence factors were downloaded from the Virulence Finder Database 

(https://bitbucket.org/genomicepidemiology/virulencefinder_db/src, downloaded 24/08/18). 

Read files of genomes (real and artificial) were searched for the presence or absence of genes 

against the downloaded databases using ARIBA (v2.14) with default settings [283]. A gene 

was marked as present only if 80% of the database entry was covered, otherwise it was 

marked as absent. 

4.3.7 Pathotype assignments 

Each isolate was assigned a pathotype according to the presence and absence of specific 

virulence genes, as well as the source of isolation (Figure 1.4). If the source of isolation was 

either “blood” or “urine” it was assigned to “ExPEC”. If any variant of shiga-toxin was present 

it was assigned to “STEC”. If eae was present it was assigned to aEPEC/EPEC. If both shiga-

toxin and eae were present it was assigned to “EHEC”. If either aatA, aggR or aaiC were 

present it was assigned EAEC. If est or elt were present it was assigned to ETEC. If ipaH9.8 

or ipaD, characteristic of the invasive virulence plasmid pINV, were present it was assigned to 

EIEC. A pathotype was assigned to a PopPUNK Cluster if at least half of the isolates of the 

cluster were assigned to the same pathotype. 

4.3.8 Pan-genome analysis 

4.3.8.1 Pan-genome analysis on each PopPUNK cluster 

A pan-genome analysis using Roary [305] was applied on each PopPUNK Cluster separately 

using the default identity cut-off of 0.95 with paralog splitting disabled [305]. The gene 

accumulation curves were generated using the specaccum function in the vegan (v2.5.6) 

library with 100 random permutations [359]. 
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4.3.8.2 Combining the pan-genomes of all PopPUNK Clusters 

The outputs of the pan-genome analysis of each PopPUNK Cluster were combined to 

generate a final collection of gene clusters of the entire dataset according in the following 

steps: 

1. Gene cluster definitions, from the Roary analysis within each PopPUNK cluster, were 

assumed to be the best approximation of the representation of the genes that are well-

defined within a closely related group of genomes. Note that each gene cluster has 

multiple members, i.e. sequences (Figure 4.2, Step 1). A representative sequence was 

chosen for each gene cluster as the sequence that had the most common length within 

that gene cluster (the modal length). If there was no mode, a sequence with the median 

length was chosen. 

2. A pan-genome analysis using Roary was applied on all PopPUNK Clusters in a 

pairwise manner using an identity threshold of 0.95 and with paralog splitting disabled. 

Namely, a pan-genome analysis was conducted including all genomes of PopPUNK 

Clusters 1 and 2, 1 and 3, 1 and 4 etc, leading to a total of 1,081 Roary analyses (47 

choose 2). This generated gene clusterings for all pairs of PopPUNK Clusters. Note 

that each gene cluster in the combined Roary analysis had multiple sequences from 

both PopPUNK Clusters (Figure 4.2, Step 2). 

3. A graph was constructed such that each node was one gene cluster from the original 

Roary outputs from Step 1, named the “combined Roary graph” (Figure 4.2, Step 3). 

4. An edge was drawn between a gene cluster of PopPUNK Cluster “A” to a gene cluster 

of PopPUNK Cluster “B” if there was a gene clustering in the combined Roary analysis 

such that 80% of the sequences of the gene cluster of “A” were in the new combined 

clustering and 80% of the members of the gene cluster of “B” were also in the combined 

clustering (Figure 4.2, Step 4). 

5. The following corrections were applied to remove likely incorrect connections between 

gene clusters in the combined Roary graph (Figure 4.2, Step 5): 

1. Density based clustering was applied on each connected component of the 

combined Roary graph using the Jaccard similarity between every two nodes 

with the dbscan method of the python package sci-kit learn[394] with 

parameters epsilon=0.5 and min_samples=6.  Edges between a gene cluster 

of PopPUNK Cluster A and a gene cluster of PopPUNK Cluster B that do not 

belong to the same dbscan cluster were removed. 

2. A nucleotide MSA using mafft (v7.310)[364] with default settings was applied 

to all representative sequences of each gene cluster in a connected component 

of the combined Roary graph. If the alignment of two representative sequences 
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had more than 20% mismatches along the length of the longer sequence, the 

edge between them in the combined Roary graph was removed. 

6. To correct for over splitting, the representative sequences of all the gene clusters of 

the original Roary outputs were aligned to each other using blastp (version 2.9). 

Representative sequences which were more than 95% identical, over 80% of their 

length, were merged. 

7. Following corrections, the connected components of the combined Roary graph were 

recalculated and these were the final set of gene clusters in the entire dataset (Figure 

4.2, Step 6). 

4.3.9 Statistical analysis 

Statistical analyses were performed in R (v3.3+). Ape (v5.3) [395] and ggtree (v1.16.6) [396] 

were used for phylogenetic analysis and visualisation. The ggplot2 (v3.2.1) package was used 

for plotting [360]. 

 

4.4 Results 

4.4.1 Constructing a collection of 10,000 E. coli isolates 

A collection 18,156 E. coli genomes, isolated from human hosts, were downloaded and 

curated to create a final collection of 10,159 genomes as summarised in (Figure 4.1).   

4.4.1.1 Initial collection of 18,156 genomes 

For an initial collection of human E. coli genomes for which complete metadata is available, 

whole genome sequences were downloaded and the metadata combined from recent 

publications describing specific E. coli pathotypes. These included 70 EPEC isolates from 

[115], 398 EPEC isolates from [119], 373 ETEC isolates from [117], 1,509 ExPEC isolates 

from [397], 302 ExPEC isolates from [121], 113 EHEC and EPEC from [116], 538 ExPEC 

isolates from [174] and 25 ExPECs from [398]. Additionally, 140 isolates were taken from the 

Murray collection [399], which includes isolates collected from the pre-antibiotic era. 

Furthermore, 313 genomes were available from the NCTC reference collection which have 

been long read sequenced (https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/). 
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Figure 4.2: Method for combining the pan-genome analysis of all PopPUNK Clusters. 
Step 1: a pan-genome analysis is applied on each PoPPUNK Cluster separately, generating 

gene clusters from all the CDSs of all genomes in that cluster. Step 2: A pan-genome analysis 

using Roary was applied on all PopPUNK Clusters reciprocally, generating new gene clusters. 

Step 3: A graph is constructed where the original gene clusters are the nodes. Step 4: An 

edge between two gene clusters was added if the members of both gene clusters were 

grouped together in the pairwise pan-genome analysis. Step 5: Edges were removed from the 

graph using density-based clustering and sequence alignments. Step 6: Connected 

components were extracted as the final gene cluster definitions.  
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These genomes were supplemented to include other genomes available from public 

databases for which there was only partial associated metadata available. 14,590 genomes 

(isolated from human hosts) were downloaded from EnteroBase [400] on August 1st, 2018. 

EnteroBase searches the NCBI short read archive every day to download (and assemble) 

newly submitted Illumina reads or complete genomes (See Section 1.4). These genomes were 

filtered to include only genomes which were sequenced with Illumina, Pacbio or Minion 

platforms and were open for use, leading to a total of 8,045 genomes. Enterobase’s data 

usage policy states metadata, assemblies and genotyping can only be used for academic 

purposes following their release. Therefore, the remaining genomes in the dataset were mostly 

from either publications or otherwise from public surveillance institutions from which we were 

able to obtain approval to use. These include Public Health England (PHE), the Food and 

Drug Administration (FDA) and the CDC. An additional 6,589 raw read sequences from Public 

Health England Routine surveillance bioproject (PRJNA315192) were downloaded on 

September 17th, 2018.  

 

All downloaded reads were assembled (See Section 4.3.1.2). Artificial reads were generated 

for assemblies for which reads were unavailable (See Section 4.3.1.1). Annotation files were 

generated using a modified version of PROKKA, detailed below [293]. By the end of the data 

collection process, reads, assemblies and annotations were available for all genomes.   

4.4.1.2 Modifying the annotation tool PROKKA to remove errors in gene calling 

between genomes 

Prokka combines the use of five other tools to identify features in the assemblies. Importantly, 

Prokkka uses Prodigal to predict CDSs, or “genes” as they will be referred to in this thesis for 

simplicity [292,293], By default, Prokka will use the input genome to define properties for gene 

calling such as the start codon usage, ribosomal binding site motif usage etc. [292]. In this 

thesis, a collection of 100 randomly sampled genomes from the complete collection of 

genomes were used to train Prodigal to define these properties (See Section 4.3.1.3). All the 

genomes were then annotated using the same training properties. This ensured the gene 

calling was done in a consistent manner for all genomes.  

 

In most cases, the gene content between the modified and default versions Prokka varied by 

less than 4%, with 96.5% of genes being called the same using both versions (Figure 4.3A). 

However, there were a number of outlier genomes for which the difference in gene content 

was much higher. The difference in these cases was mostly driven by genes within each 
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genome which were no longer called when using the same training file across all genomes 

(Figure 4.3B). In general, the genes which were differentially called were shorter, had a more 

varied GC content, were often present on shorter contigs and closer the contig edge, and more 

often began with an alternative start codon (Figure 4.3C-G).  

4.4.1.3 Filtering to a high-quality collection of 10,159 genomes 

Genomes were removed from the collection in multiple steps along the collection process 

when they did not pass the QC measures (Figure 4.1).  

 
Figure 4.3: Effect of modifying Prokka on the CDS prediction. The default version 

generated CDS properties for each genome individually, the modified used the same 

properties for all genomes. A Fraction of genes in each genome which was found in both runs, 

only in the modified run and only in the default. Red text: the average fraction of genes in each 

group across the 10,000 genomes. B Relationship between the number of genes in the default 

run compared to the modified run for each genome. Red: outliers from A for which there is 

more than 5% difference in gene content between both runs. C-G Protein length (C), GC 

content (D), distance from contig end (E), contig length (F) and frequency of ATG usage (G) 

of genes that were called in both, modified and default Prokka runs. 

 

Read filtering: Kraken was used on the reads to determine what organism had been 

sequenced  [401]. Kraken uses a k-mer based search of the reads on a taxonomy tree of 

RefSeq genomes to find the most likely taxon for each read. If fewer than 30% of reads were 

assigned to E. coli or Shigella spp., the genome was removed (Figure 4.1). Following that, 

reads were mapped to an E. coli reference strain cq9 (GCF_003402955.1) and QC stats were 
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calculated. Samples were removed based on the according to the distributions of QC values 

across all reads (Percentage of reads mapped to the reference >60%, the mean insert size 

<80bp, percentage of bases mapped that were mismatches was >0.03,  percentage of 

heterozygous SNPs<3%).  

 

Assembly filtering: Assembled genomes were filtered to remove those with more than 600 

contigs or those that had a total combined contig length of less than 4 Mbps or larger than 6 

Mbps (Figure 4.4A,B, 4.1). 

 

 
Figure 4.4: Quality control measures used to filter E. coli genomes. A Distribution of 

genome lengths in the collection. Red lines: genomes shorter than 4 Mbps or longer than 6 

Mbps were removed. B Distribution of number of contigs per genome in the collection. Red 

line: genomes with more than 600 contigs were removed. C Correlation between genome 

length and number of predicted CDSs using Prokka. Red: Genomes which deviate from the 

expected number of genes were removed. D Relationship between the number of contigs and 

number of predicted genes. Red: Genomes which deviate from the expected number of genes 

presented in C.  
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Annotation filtering: The number of genes from each genome was retrieved from the 

annotations. There was a linear correlation between the size of the genome and the number 

of genes called (Figure 4.4C). Genomes which deviated from linear correlation by 500 genes 

were removed (Figure 4.1). These genomes tended to have fewer contigs, i.e. they were long-

read sequenced (Figure 4.4D).  

 

Average Nucleotide Identity based filtering: Mash distances were calculated between all 

the assemblies [279]. Mash uses a minimised database of k-mers to represent each genome 

(based on the Minhash sketch), and returns the Jaccard distance between the k-mers of every 

two genomes. A network was constructed so that there was an edge between every two 

genomes only if their Mash distance was smaller than 0.04 (equivalent to 96% Average ANI) 

[279]. Isolates from the same species should have an ANI of approximately 95-96%, i.e. Mash 

distance smaller than 0.04 [402]. Therefore, genomes were removed if they were 

disconnected from the largest connected component which should represent the E. coli 

species (Figure 4.1).  

4.4.2 Characteristics of the filtered dataset  

4.4.2.1 Most of the genomes are from developed countries, collected in surveillance 

in clinical settings  

The vast majority of genomes were available from public resources which conduct regular 

surveillance of E. coli in clinical settings. These PHE (5,207 genomes), FDA (883 genomes) 

and the CDC (561 genomes) (Figure 4.5A). The availability of surveillance data from the 

United Kingdom and the United States lead to a biased collection from these countries which 

represented 70% (7,085/10,158) and 15% (1,548/10,158) of the dataset respectively. The rest 

of the genomes originated mostly from other countries in Europe, with only a small fraction of 

genomes available from Asia, Africa and Oceania (Figure 4.5A). The continent and country of 

336 genomes was unknown.  

 

The source of isolation for 38% of the samples considered here were taken from faeces, blood 

and urine (Figure 4.5B). However, the remaining samples were simply recorded as having 

been isolated from unknown “human sources”. Isolates from Africa and Asia include only those 

collected from faecal samples, whereas isolates from Europe and North America include those 

causing both intestinal and extra intestinal disease (Figure 4.5B). 
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Figure 4.5: Source of E. coli genomes. A Source of the E. coli genomes in the collection, 

coloured by the pathotype associated with the specific studies. B Continents from which the 

E. coli genomes were collected, coloured by source of isolation. 

4.4.2.2 Only 5% of all genomes are the cause of diarrheal disease in developing 

countries 

The pathotype for isolates taken from urine and blood samples was assigned as ExPEC (2,299 

genomes, 15%). The metadata of 522 (5%) isolates was available and thus the pathotype was 

known, based on the publication (Figure 4.5A). Within these isolates, the representation of 

diarrheal disease causing E. coli pathotypes, EPECs and ETECs, was very low with only 3% 

and 2% of the genomes belonging to these pathotypes, taken from the The Global Enteric 

Multicenter Study (GEMS collection) and from [117] (Figure 4.5A). For the remainder of the 

genomes, the pathotype could not deterministically be assigned (7,335 genomes). This is due 

to pathotypes not being defined by clear one to one relationship of presence or absence of 

specific virulence genes, but by clinical manifestation or phenotype. In Section 4.4.4.7 of this 

thesis, the virulence profiles of genomes are described as predictive of their pathotype (See 

Section 1.1.2.3, and Figure 1.4).  

4.4.2.3 Six STs represent more than 50% of the genomes in the collection 

993 different STs were identified in the collection. 87 STs (9%) alone account for 80% of the 

isolates. Six STs, 11, 131, 73, 10, 95 and 21, account for 50% of the isolates (Figure 4.6A,B). 

Many of the latter represent important STs linked to human health. For instance, ST11 (30% 

of all genomes) is associated with EHEC serotype O157:H7, a major foodborne pathogen that 

can be contracted by eating contaminated foods, specifically beef products, as since it lives in 
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the guts of cattle and is the cause of HUS (See Section 1.1.2.2). The collection also includes 

STs of non-O157 EHECs, including STs 17 (2%) and 21 (2%).  STs 131 (8%), 73 (4%), and 

95 (3%) are all STs known to be associated with extra-intestinal disease[174,397,403]. ST10 

(3%) is a broad host range ST which has been observed in all E. coli pathotypes and across 

hosts [404]. 

 

 
Figure 4.6: Distribution of STs and PopPUNK Clusters in the collection. A,C Coverage 

of genome collection by increasing the number of STs (A) or PopPUNK clusters (C) included 

in the study. Dotted lines: Number of STs (A) or PopPUNK clusters (C) which account for 0.5 

and 0.8 of all isolated in the genome collection. B,D Number of genomes in the fifty largest 

STs (B) and PopPUNK clusters (D). E-I Examples of ST distributions in five of the PopPUNK 

Clusters - Cluster 1 (E), 2 (F), 3 (G), 17 (H) and 40 (I). 
 

The bias in the collection towards STs which are known to cause severe disease such as HUS 

or invasive infections emphasises the sampling bias; 80% of isolates originate from developed 
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countries where diarrheal disease caused by EPEC and ETEC is less common. 790 STs 

(~80% of the STs) are represented by five isolates or fewer and are rarely observed. Thus, 

this collection is inherently biased towards clinical isolates which are under surveillance in the 

UK and US, and does not represent the human E. coli population.  

4.4.3 PopPUNK can be used to group the collection into isolates 

belonging to the same lineage 

In order to examine the gene pool of the E. coli genomes considered here, the genomes were 

grouped into clusters of closely related isolates using PopPUNK [277]). PopPUNK uses a k-

mer based comparison of genomes to measure the deviation in gene sequence termed the 

“core distance”, and the deviation in gene content, termed the “accessory distance” between 

two genomes (See Section 4.3.3). In E. coli, it was shown that the “core distance” estimated 

by PopPUNK correlates with the pairwise SNP distance between the two genomes being 

compared, and the “accessory distance” correlates with the Jaccard distance based on the 

presence and absence of CDSs extracted from a pan-genome analysis [277]. Genomes which 

were sufficiently similar in both their “core distance” and their “accessory distance” were 

included in the same PopPUNK Cluster (See Section 4.3.3). 

 

This approach was taken in order to handle the biased sampling of the genomes. For instance, 

the dataset is over-represented with ST11; had all isolates been treated with the same weight 

in the analysis, the results would be biased to ST11. By examining the gene content within 

each subpopulation individually and then merging these results while adding weights for the 

sampling bias, conclusions can be drawn. 

 

The grouping produced 1,185 PopPUNK Clusters. The partition of the genomes using 

PopPUNK mostly agreed with partitioning the genomes by ST (rand index of 0.923). 

Therefore, the distribution of PopPUNK cluster sizes was similar to that of the STs with a few 

large clusters representing most of the population (Figure 4.6A,B). A single cluster, PopPUNK 

Cluster 1, contained 34% of all genomes (3,326/10,158) (Appendix E). This cluster was mostly 

comprised of ST11 (Figure 4.6E), i.e. O157:H7 EHEC. Similarly, PopPUNK Cluster 2 

contained 8% of all genomes (781/10,158) consisted mostly of ST131 (Figure 4.6F). The third 

largest cluster, PopPUNK Cluster 3, contained 5% of all genomes (463/10,158) and was 

mostly composed of ST73 (Figure 4.6G). See Appendix E for a summary of all other PopPUNK 

Clusters. There were exceptions for which a higher diversity of STs within a PopPUNK Cluster 

was observed. For instance, PopPUNK Cluster 17 which had 79 isolates, consisting of four 

almost equally distributed STs (14, 404, 1193 and 550) (Figure 4.6H). PopPUNK Cluster 40, 
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which had 28 isolates, was composed of two equally common STs (410 and 23) along with 

another four which were less common (Figure 4.6I). 

 

For this analysis, PopPUNK Clusters of fewer than twenty isolates were removed. There were 

50 PopPUNK Clusters in total which met this requirement and together they contained 7,693 

genomes (76% of the collection) and 271 different STs (27% of collection) (Appendix E). Whilst 

the effect of this is a further reduction in the diversity of the dataset, it is not possible to 

characterise the gene pool of groups for which there were too few representatives. 

Additionally, this approach would further filter out contaminants and isolates which may not be 

E. coli.  

4.4.4 Characteristics of the selected 50 largest PopPUNK Clusters 

4.4.4.1 Genetic diversity 

The median “core distance” and median “accessory distance” estimated within each of the 

remaining PopPUNK Clusters were correlated, with higher deviations in the core indicating 

higher deviations in gene content, i.e. in the accessory genome (linear regression, p=1.342e-

11, R2=0.61) (Figure 4.7). However, differences between the PopPUNK Clusters were evident, 

with some PopPUNK Clusters presenting higher diversity in their accessory genome relative 

to their core genome, and vice versa. For instance, PopPUNK Cluster 40, which contains 

isolates of STs 410 and 23, had high diversity in its accessory genome relative to the core 

genome. There was no connection between the size of the PopPUNK Cluster and the median 

“core” or “accessory” distances (not shown). 

4.4.4.2 Population structure 

The phylogeny of the 50 selected PopPUNK Clusters was examined by selecting ten genomes 

from each PopPUNK cluster that captured most of the diversity of that cluster (See 4.3.4), 

leading to a total of 500 genomes representing the complete dataset. The core genome of 

these 500 genomes was extracted and the phylogenetic tree of the core gene alignment was 

built (Figure 4.8). PopPUNK separated the genomes into clearly distinct lineages based on 

their core genome. The effect of the “accessory distance” between every two isolates was 

minimal as there was a correlation between “core” and “accessory” distance across the 

isolates (Figure 4.7). The exception to this was PopPUNK Cluster 12 which was split into two 

closely related clades. One clade was more closely related to PopPUNK Cluster 28 whereas 

the other to PopPUNK Cluster 35. The “core” and “accessory” distances estimated by 

PopPUNK showed that indeed the “core” distance between PopPUNK Clusters 12, 28 and 35 
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were low and these could be viewed as a single clade according to their core distances. 

However, PopPUNK Clusters 12, 28 and 35 deviate in their accessory gene content from 

PopPUNK Cluster 12 whereas the two clades of PopPUNK Cluster 12 are sufficiently low in 

their accessory distance. That said, PopPUNK Cluster 12 presented the highest median “core 

distance” and median “accessory distance” between every two isolates (Figure 4.7). 

 

 
Figure 4.7: PopPUNK Clusters’ genetic diversity. Median “core distance” and “accessory 

distance” between all isolates of the same PopPUNK Cluster. Line fitted using linear 

regression, showing 0.95 confidence interval.  

 

Although the dataset was substantially reduced to include only PopPUNK Clusters with 20 

genomes or more, the remaining genomes spanned the complete E. coli population, defined 

by having PopPUNK Clusters representing the well described E. coli phylogroups (18 from 

B1, 12 from B2, 4 from A, 5 from D, 4 from F, 3 from E, 1 from C, 2 of Shigella representing 

S. sonnei (45) and S. flexneri (30) and one phylogroup which was undefined according to the 

Clermont 2013 phylotyping scheme (18) [271,393]). 
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Figure 4.8: Population structure of the PopPUNK Clusters. Core gene phylogeny of 10 

representatives from each of the 50 PopPUNK clusters chosen using Treemer [392]. Coloured 

bar indicates the phylogroup assignment of the representatives of that PopPUNK Cluster.  

 

4.4.4.3 Pathogenic and geographic association 

The PopPUNK Clusters broadly divided into those enriched for isolates collected from faecal 

samples (2, 5, 6, 14, 21, 26, 34, 42, 43, 48, 49 and 51) and those collected from blood and 

urine samples (2, 3, 4, 7, 11, 13, 17, 19, 20, 25, 29, 31, 33, 37, 40, 41, 46, and 47), i.e. those 

causing intestinal or extra-intestinal disease (Figure 4.9A). Only PopPUNK Clusters 26, 34 

and 48 of the intestinal causing disease clusters were enriched for samples collected from 

Africa and Asia (Figure 4.9B). These clusters mostly represented EPEC and ETEC isolates 

which had been collected from faecal samples in developing countries as part of the GEMS 

collection, in contrast to the other PopPUNK Clusters containing faecal samples which include 
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STECs or EHECs collected in the developed world. PopPUNK Cluster 12, which consisted of 

78% isolates from ST10, was the only PopPUNK Cluster that spanned all continents and 

consisted of all types of isolation source samples (faecal, blood, urine or unknown).  

 

 
Figure 4.9: Metadata associated with the PopPUNK Clusters. A,B Source of isolation (A) 

and continent (B) of isolates from the fifty PopPUNK Clusters. C Fraction of genomes from 

each of the PopPUNK Clusters collected from each year (where metadata was available). 

4.4.4.4 Sampling time 

A number of PopPUNK Clusters consisted of older isolates taken from the Murray collection. 

Notably, PopPUNK Cluster 30, with contains S. flexneri isolates, had a higher proportion of 
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isolates sampled before 1980 relative to the rest of the collection (Wilcox summed rank test, 

p<0.05, Bonferroni corrected, Figure 4.9C).  39% of the rest of the genomes for which 

sampling date was available, were collected in the last 10 years. 

 

 
Figure 4.10: Gene content in the 50 PopPUNK clusters. A Number of genes (predicted 

CDSs) per isolate across the PopPUNK clusters, divided by their phylogroup. Dashed line: 

mean number of predicted genes across the entire population. B Number of core (>99% of 

isolates), soft-core (95%-99% of isolates), intermediate (15%-95% of isolates) and rare genes 

(<15% of isolates) in each PopPUNK Cluster. Clusters on the x-axis are ordered by their size. 

C Size of PopPUNK Cluster against number of core, soft-core, intermediate and rare genes. 

Line is fitted using a generalised log-linear model with 0.95 confidence interval. 

4.4.4.5 Genome size and number of predicted genes 

The number of genes in a single isolate and the size of the genome varied significantly 

between the PopPUNK clusters (Figure 4.10A). The mean number of genes corrected across 

all PopPUNK Clusters was 4,869 genes and a genome length of 5.2 Mbp. Smaller genomes 

had fewer genes as we used the correlation between genome length and the number of genes 

as a measure of QC, thus these measures are interchangeable (See Section 4.4.1.3). Isolates 

from the Shigella PopPUNK Clusters 30 and 45 had the smallest genomes with a median of 
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4,231 genes per isolate and a genome size of only 4.3 and 4.7 Mbp. PopPUNK Clusters 12, 

40 and 48, had the second smallest genome lengths with a mean of ~4,500 genes and 

genome length of ~4.85Mbp. On the other hand, PopPUNK clusters 5, 6, 8, 15, and 48, all 

from phylogroup B1, had a mean of over 5,100 genes per isolate (200 genes more than the 

population mean). The number of predicted genes/length of the genome was affected by the 

phylogroup (Figure 4.10A). Isolates from phylogroups E, F and B1 tended to have larger 

genomes with a few exceptions. Isolates from phylogroup C, B2 and A tended to have smaller 

genomes, whereas within phylogroup D a wider range of genome sizes was observed. 

4.4.4.6 Antimicrobial resistance profiles  

A total of 153 known resistance genes were identified in the collection (See Section 4.3.6), 

conferring resistance to beta-lactamases, aminoglycosides, macrolides, sulfonamides, 

fluoroquinolones and other antimicrobial classes (Appendix E) [286]. The number of known 

resistance genes found within each isolate ranged from no resistance genes detected to a 

maximum of 18 resistance genes present in a single isolate, conferring resistance to up to 

nine different antimicrobial classes in a single isolate (Figure 4.11A). The median number of 

resistance genes per isolate in the complete dataset was one gene. This was because 99% 

of isolates possess the multidrug resistance efflux pump gene mdfA[405] (Figure 4.11B).  

 

Multidrug resistance in an isolate has been defined as resistance to three classes of antibiotics 

or more [406]. All but six PopPUNK Clusters (21, 28, 36, 43, 47 and 49) had at least one 

isolate which was MDR. An MDR PopPUNK Cluster was defined as one where half of the 

isolates or more were MDR, i.e. resistant to three classes of antibiotics or more (Figure 4.11A, 

Appendix E). 16 of the 50 PopPUNK Clusters investigated in this thesis were MDR. Half of 

these were PopPUNK Clusters which were isolated predominantly from blood and urine 

sample, i.e. ExPECs (Clusters 2, 20, 44, 40, 17, 7, 37 and 9). These include PopPUNK 

Clusters 2 and 20 which both contain isolates of the global ExPEC lineage ST131. Three of 

the ExPEC MDR PopPUNK Clusters belong to phylogroup D (Clusters 19, 7 and 37). These 

three PopPUNK Clusters possessed the same set of genes which confer resistance to ESBLs, 

sulfonamides, tetracycline and aminoglycosides (Figure 4.11B). Three other MDR PopPUNK 

Clusters predominantly contained EPEC isolates from the GEMS collection (Clusters 26, 34 

and 48). The remaining five PopPUNK Clusters (Clusters 32, 35, 18, 16 and 24) were isolated 

from unknown sources. Resistance to carbapenems was most common within PopPUNK 

Cluster 44 of phylogroup F with 44% of the isolates of this Cluster possessing the 

carbapanemase blaKPC-2. Resistance in PopPUNK Clusters 44 as well as PopPUNK Cluster 

37 were generally high, with most of the isolates in these PopPUNK Clusters resistant to seven 

classes of antibiotics or more, comparable and even higher to the resistance observed for 
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ST131 in PopPUNK Clusters 2 and 20. Resistance to colistin was not observed within any of 

the isolates in this dataset. 

 
Figure 4.11: Antimicrobial resistance profiles of the PopPUNK Clusters. A Number of 

antimicrobial classes each isolate is resistant to, stratified by PopPUNK Cluster. Dashed red 

line indicates threshold for multidrug resistance. B Heatmap presenting the frequency of each 

resistance gene within each of the 50 PopPUNK Clusters. (Presenting only genes which were 

found in at least 10% of isolates of one PopPUNK Cluster.) Darker squares indicate higher 

prevalence of a gene in the PopPUNK Cluster. Phylogenetic tree constructed by selecting one 

isolate from each PopPUNK Cluster using Treemmer [392] (See Methods 4.3.4). Asterisk by 

PopPUNK Cluster name indicates MDR cluster.  

 

The presence and absence patterns of antibiotic resistance genes are presented in Figure 

4.11B. Particular resistance genes are widespread in the dataset, these include sul2 and 

blaTEM. Certain resistance gene combinations tended to co-occur multiple times in distantly 

related PopPUNK Clusters. For instance, resistance genes aac6, blaOXA and blaCTX co-

occur in the MDR PopPUNK Clusters 20, 37 and 44. The genes aadA1 and dfrA1 are present 

together in PopPUNK Clusters 31, 17, 18 and 16. Finally, most of the resistance genes 

observed were in fact observed rarely and only present in very low frequencies in this dataset. 
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Figure 4.12: Markers of virulence in the PopPUNK Clusters. A Number of virulence genes 

per isolate, stratified by PopPUNK cluster and coloured according to the most prevalent 

predicted pathotype in the cluster. ND = “Not Determined” B Heatmap presenting distribution 

of the virulence genes across the 50 PopPUNK clusters. Darker squares indicate higher 

prevalence of a gene in a lineage. (Presenting only genes which were found in at least 10% 

of isolates of one PopPUNK Cluster.) Phylogenetic tree constructed by selecting one isolate 

from each PopPUNK cluster using Treemmer [392] (See Methods XX).  

4.4.4.7 Markers of virulence 

Consistent with the collection of E. coli isolates being from human hosts and mostly from 

clinical samples, 439 known virulence factors were observed in our dataset. The isolates had 

a median of nine known virulence factors in a single genome, with a maximum value of 26 

virulence factors present in a single isolate (Figure 4.12A).  

 

A combination of the source of isolation as well as the presence of key virulence factors were 

used to find the most prevalent predicted pathotype of each PopPUNK Cluster (See Section 

4.3.7). 41 of 50 PopPUNK Clusters were identified as predominantly containing one of the 

defined E. coli pathotypes (See Section 1.1.2.2) (Figure 4.12A). Two of the PopPUNK Clusters 

without a prevalent pathotype were PopPUNK Clusters 30 and 45 which represent the Shigella 

species. PopPUNK Cluster 12, which mostly consists of E. coli isolates typing as ST10, was 

the only PopPUNK Cluster which contained isolates assigned to different pathotypes with no 

single pathotype dominating (11% ExPEC, 29% EAEC, 24% EPEC, 9% STEC, 2% EHEC, 
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1% ETEC, and 24% Not Determined (ND)). Indeed, PopPUNK Cluster 12 had the highest 

variability in number of virulence genes per isolate, relative to the rest of the clusters (Figure 

4.12A). The remaining six PopPUNK Clusters which were not assigned a pathotype (21, 38, 

42, 43, 45, 49 and 51) had relatively few virulence factors per isolate as well as low levels of 

predicted resistance, perhaps representing non-virulent lineages (Figure 4.12A). 

 

Phylogroups B2, F, and D predominantly contained ExPEC isolates. PopPUNK Cluster 27 

was the only cluster in phylogroup B2 which contained 67% EHEC isolates and 33% 

aEPEC/EPECs. PopPUNK Cluster 18, also nested within phylogroup B2 but not assigned a 

phylogroup according to the Clermont typing scheme, contained 100% STEC isolates. All 

PopPUNK clusters of phylogroup E contained predominantly EHEC isolates (Figure 4.12A, 

Appendix E). Phylogroups A and B1 had more diversity of pathotypes, containing PopPUNK 

Clusters which were assigned to the range of diarrheagenic pathotypes (EPEC, EHEC, EAEC 

and EIEC). PopPUNK Cluster 24 of phylogroup B1 also contained 38% isolates which were 

stx and eae positive. These are isolates of E. coli serotype O104:H4 taken from the 2011 

German outbreak, which were classified as both shiga-toxin producing EAEC [407] (See 

Section 1.1.2.2). PopPUNK Cluster 40, the only cluster assigned to phylogroup C, was the 

only ExPEC cluster within the B1-C-A clade (Figure 4.12A).  

 

The number of virulence factors per isolate differed between the phylogroups depending on 

their predominant pathotype (Figure 4.12A). Phylogroups containing ExPEC isolates (B2, D, 

F and C) had fewer virulence factors per isolate, relative to phylogroups containing the 

PopPUNK Clusters of the diarrheagenic E. coli (E, B1 and A). This could be a result of biases 

in the virulence factor database and our lack of complete understanding of ExPEC virulence 

factors. 

 

The virulence factors identified in this dataset were more commonly specific to a PopPUNK 

Cluster and were generally not widespread across the whole dataset. PopPUNK Clusters 

which had a large number of virulence genes per isolate tended to possess a set of virulence 

factors which were otherwise not shared with other PopPUNK Clusters. This is exemplified in 

Figure 4.12B for PopPUNK Cluster 27, 10, 35 and more. Exceptions to this exist for virulence 

factors which were shared across PopPUNK Clusters which were assigned to the same 

pathotype, such as the ExPEC PopPUNK Clusters in Phylogroup B2 or the EHEC PopPUNK 

Clusters in phylogroups E and B1. 



 106 

4.4.4.8 Relationship between resistance and virulence 

The PopPUNK Clusters divided into clear groups based on their pathotype when comparing 

the median number of antimicrobial classes each isolate was resistant to against the median 

number of virulence factors identified per isolate for each PopPUNK Cluster (Figure 4.13). 

PopPUNK Clusters which were not assigned to a pathotype were resistant only to a single 

class of antimicrobials, i.e. these were predicted to be non-virulent and non-resistant. 

PopPUNK Clusters containing mostly ExPEC isolates ranged in the number of antimicrobial 

classes they were resistant to, with the most resistant PopPUNK Clusters, 2, 44 and 37, 

containing predominantly ExPEC isolates. However, more than half of the ExPEC PopPUNK 

Clusters (11/19) showed only low levels of resistance. Shiga-toxin producing isolates, EHECs 

and STECs, showed low levels of resistance relative to a high load of virulence factors. 

Exceptions to this were PopPUNK Clusters 16 and 18 which were the only MDR STEC and 

EHEC Clusters. PopPUNK Cluster 18 was particularly peculiar for an STEC as it is nested 

within phylogroup B2 and had low number of virulence factors per isolate relative to other 

STECs. PopPUNK Cluster which contained predominanly EAEC and EPEC isolates were all 

MDR and highly virulent.  

 

Figure 4.13: Relationship between resistance and virulence. Each numbered dot 

represents a PopPUNK Cluster. Clusters are coloured by the most prevalent predicted 

pathotype in the cluster. 
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4.4.4.9 Pan-genomes 

A pan-genome analysis was applied on the isolates of each of the PopPUNK Clusters 

separately (See Section 4.3.8.1). Genes found within each PopPUNK cluster were divided into 

4 categories based on their frequency within the cluster:  genes present in more than 99% of 

isolates of a PopPUNK Cluster were labelled “core”, 95% to 99% of isolates were labelled 

“soft-core”, 15% to 95% of isolates labelled “intermediate” and “rare” were those present in 

fewer than 15% of isolates of a PopPUNK Cluster. The number of “core”, “soft-core” and 

“intermediate” genes in each PopPUNK cluster was stable across the clusters, regardless of 

the number of genomes in the cluster (Figure 4.10B,C). The number of “rare” genes per 

PopPUNK Cluster varied and was dependent on the cluster size, with larger PopPUNK 

clusters possessing more “rare” genes in their pan-genomes than smaller clusters (Figure 

4.10C).  

 

The pan-genome analysis on the PopPUNK clusters showed that there was low genetic 

diversity within PopPUNK clusters 21, 43 and 49. Therefore, these clusters were removed 

from the analysis, as they contain multiple isolates which were all collected at the same time 

and were all collected by the FDA (possibly representing an outbreak investigation). 

4.4.5 Combining pan-genomes of the PopPUNK Clusters 

Following the analysis of the pan-genome of each PopPUNK cluster individually, the outputs 

of all the analyses were combined in order to provide a description of the gene pool in the 

entire E. coli dataset analysed in this thesis. The precise steps taken are detailed in Section 

4.3.7.2. Briefly, a reciprocal pairwise pan-genome analysis was run on every two PopPUNK 

clusters (Figure 4.2). The grouping of genes in every pairwise pan-genome analysis was 

examined to determine whether two genes from two separate PopPUNK clusters should be 

labelled as the same gene in the complete dataset. Since every pairwise comparison between 

genes was applied, it was possible to identify spurious matches between genes that were 

identified in single pan-genome analysis but were not supported across other pairwise gene 

comparisons. In addition, all representative sequences of a gene group were aligned and 

incorrect gene-groupings removed based on the SNP distances between the members.  

4.4.6 Final collection of 55,039 genes 

There were 55,039 genes (predicted CDSs) in the dataset after combining the genes of the 

pan-genomes of the 47 PopPUNK Clusters. As there were 47 PopPUNK clusters, and a 

varying number of isolates per cluster, each gene had its own frequency within each of the 47 

PopPUNK Clusters. For instance, the intA gene, encoding a prophage integrase, was 
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observed in 20 of the PopPUNK Clusters. In two clusters (6 and 9) it was present in over 95% 

of isolates, in another 8 clusters it was present in intermediate frequency (between 15% and 

95%) and in the final 10 clusters it was present in fewer than 15% of isolates (A). In contrast, 

the gene wzyE, a gene involved in antigen biosynthesis, is a core gene which was observed 

across all PopPUNK Clusters in a frequency of over 95% (Figure 4.14B). Principal component 

analysis was applied to all gene frequencies across the PopPUNK Clusters (Figure 4.14C). 

The first and second principal components explained 17.93% and 7.49% of the variance and 

separated the PopPUNK clusters by the phylogeny. 

 
 

Figure 4.14: Gene frequencies across the PopPUNK Clusters. A,B Examples of the 

frequencies of two genes across the 47 PopPUNK Cluster, stratified by phylogroup. intA (A) 

is present in some PopPUNK Clusters and is found in different frequencies within them. wzyE 

(B) is core across all clusters. C PCA plot of the gene frequencies across all clusters.   
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4.5 Discussion 

The process of building and processing a high-quality dataset of thousands of E. coli genomes 

was described, along with the properties of the lineages that are present within the dataset 

and their gene (predicted CDS) content. The construction of this collection presented 

challenges in data accessibility, the scalability of existing tools and general biases in available 

sequencing data. 

 

Aggregating data from diverse sources along with their associated metadata was a time-

consuming effort. Genome identifiers and data formats across publications and databases do 

not always match leading to many conversions which are error prone and require knowledge 

of programming. In addition, computational resources are required in order to apply thousands 

of assembly and annotation calculations. These are all limiting factors to research. This 

emphasises the need to build new resources which maintain high quality genome collections 

where users would more easily be able to both retrieve and apply analysis on large collections. 

Without such resources, we have a mountain of information that is on the one hand available, 

but on the other hand practically unusable. Enterobase has proved to be one of these valuable 

resources, collating genomic data, providing assemblies and complete metadata tables for all 

genomes [93,400]. However, Enterobase currently only includes seven species.  

 

The collection we obtained is biased towards E. coli lineages which have clinical significance. 

Not only that, the vast majority of genomes were available from Europe and North America, 

such that the pathotypes comprising the dataset are those which predominantly affect these 

areas. This was exacerbated by the fact that Enterobase’s policy on data usage was 

ambiguous regarding the correct use of genomes which had been uploaded to public 

databases and have not yet published (or it is hard to confirm if they had been published). In 

the analysis presented here all genomes which were not taken directly from publications or 

from institutions from which approval was acquired were removed. This led to the removal of 

thousands of genomes. Finally, in the final collection, lineages or PopPUNK Clusters which 

had fewer than 20 isolates were also removed. Of the 1,185 PopPUNK Clusters, only 50 

remained. This emphasises our lack of understanding of the true diversity of E. coli as a 

species. Hence, sampling should be increased in under-represented areas in the world as well 

as sampling of non-clinical isolates.  

 

Existing tools were often designed to handle smaller collections or were not suitable for the 

analysis of a biased and diverse collection. Division of the dataset into groups of closely related 

isolates had been applied before when analysing diverse collections [408]. Indeed, Roary was 
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designed to define the pan-genome of groups of closely related isolates, and thus was suitable 

when investigating the pan-genome of each PopPUNK Cluster [305]. However, an option to 

merge results of multiple pan-genome analyses had not been implemented and hence was 

built in this thesis. Additionally, Prokka, a commonly annotation tool, was not originally 

designed for genome comparison but rather for the annotation of a single genome [293]. A 

modified version of Prokka needed to be designed in order to remove artefacts when 

comparing multiple genomes. With more genomes, new methods need to be designed that 

are scalable when analysing diverse and large datasets.  

 

Biological differences between the PopPUNK Clusters (lineages) were revealed from the initial 

investigation presented in this chapter. There were clear differences in the genome size 

between different phylogroups and PopPUNK Clusters. Higher variability in genome size with 

a phylogroup or PopPUNK Cluster could be an indication of higher rates of gene gain and loss 

within that cluster, as observed in phylogroup D. A larger genome size may also help to equip 

a lineage to survive in a range of niches as observed for PopPUNK Clusters of phylogroups 

E, F and B1 [4] (Figure 4.10A). Considering the major discrepancies in genome size between 

PopPUNK Clusters, it is interesting that the size of the core-genome across all the clusters is 

stable. This suggests that within a closely related group of genomes there is a specific number 

of genes, approximately 4,000 genes, that are required to define a lineage of closely related 

isolates (Figure 4.10B). The number of rare genes in a pan-genome was dependent on the 

cluster size, suggesting that the pan-genome of all lineages is open and is driven by 

continuous discovery of rare variants. A PCA plot of the gene frequencies as extracted from 

the complete dataset suggests that the phylogeny is driving the differences in gene content 

between the PopPUNK clusters. Questions regarding the distributions of different genes and 

the levels of gene sharing between the PopPUNK Clusters are further examined in Chapter 5 

of this thesis. 
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5 Redefining the E. coli pan-genome reveals new 

patterns of gene gain/loss and gene sharing 

between lineages 

5.1 Introduction 

HGT is common in E. coli and is a major contributor to resistance and pathogenicity. E. coli 

has a high plasmid load, with many resistance genes present on these plasmids [4]. The 

virulence genes which are used as markers to identify the different E. coli pathotypes are also 

horizontally transmitted, either by plasmids, phage or other MGEs [102,221–223]. Additionally, 

recombination rates have been estimated to be high in E. coli [11,77,212,213]. All of the above 

emphasise the importance of HGT to the lifestyle and pathogenicity of E. coli (See Section 

1.2.4 of Introduction for more details). 

 

Genome size, plasmid load and recombination rates, along with rates of gene gain and loss, 

have all been shown to differ across E. coli lineages and phylogroups [4,77,92,212]. Indeed, 

there are differences in the distribution of the pathotypes across the phylogroups and it has 

been shown that particular genetic backgrounds are required for the acquisition of specific 

virulence factors [409,410]. Phylogroup F, B2 and D predominantly contain ExPEC isolates 

whereas phylogroups B1 and E predominantly contain diarrheal E. coli pathotypes (See 

Section 4.4.47, Figure 4.12). Phylogroup A contains isolates from the different E. coli 

pathotypes and has been termed a “generalist” phylogroup [411]. Concordantly, phylogroup 

A, as well as C, have been estimated to have high rates of HGT with high rates of gene 

gain/loss and high recombination rates [77,92,212,213]. Conversely, reduced recombination 

rates were estimated within the global MDR ExPEC lineage, ST131 of phylogroup B2 and the 

common EHEC lineage ST11/O157:H7 of phylogroup E, suggesting a clonal expansion of 

these lineages due to their clinical success [213].  

 

These existing studies examining HGT in E. coli were mostly focused on high-level 

descriptions of the relationships between the phylogroups and have not looked at the 

resolution of specific E. coli lineages [92,212]. Even more, these studies have mostly 

considered only the core genome when estimating recombination rates [77,213], or otherwise, 

when measuring dynamics of gene gain/loss dynamics or gene sharing, have treated all genes 

of the gene pool equally [11,92,212]. These approaches are likely to mask particular signals 
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in the data. When considering only the core genome, the added information of the accessory 

genome, which represents the main fraction of the gene pool which undergoes HGT, is entirely 

missing in the analysis. When treating all genes equally in gene gain/loss or gene sharing 

calculations, rare events would be lost in the background. For instance, if 90% of genes are 

shared according to phylogenetic relatedness whereas only 10% are not, the signal for the 

unique 10% would not be observed when events are summed across the entire gene pool. 

Therefore, a higher resolution approach needs to be applied to understand the dynamics of 

different genes and how these dynamics differ across lineages. 

 

In the previous chapter, a high-quality collection of E. coli genomes was built and the lineages 

of the collection, termed PopPUNK Clusters, were defined and characterised for their 

resistance and pathogenic profiles. The described dataset is novel in its resolution as it 

includes 47 well-characterised lineages (PopPUNK Clusters) with multiple representatives, 

and the frequency of each gene of the gene pool within each PopPUNK Cluster is known. This 

dataset provides the ability to identify different types of genes in the E. coli gene pool based 

on their distribution across the 47 lineages, and to unravel the differences between these 

lineages. 

5.2 Aims 

The work presented in this Chapter is a novel approach to classifying and analysing the 

patterns of gene sharing and gene gain and loss in the collection of 7,500 E. coli isolates 

presented in Chapter 4. The specific aims of this chapter were: 

● Define a novel approach for describing the E. coli pan-genome. 

● Unravel the properties of genes from the newly defined gene-classes in terms of their 

function and dynamics of gain and loss. 

● Understand the differences between the PopPUNK Clusters in terms of their gene 

content and the levels of gene sharing between them.  

5.3 Methods 

5.3.1 Gene classification into “occurrence classes” 

The genes were classified into “occurrence classes” based on their distribution patterns in the 

dataset. Each gene was assigned to an occurrence class based on its frequency within 

genomes belonging to the same phylogenetic clusters, termed PopPUNK Clusters. Within 

each PopPUNK Cluster, a gene was defined as “core” if it was present in more than 95% of 
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the isolates of that cluster, “intermediate” if present in 15% to 95% of isolates of the cluster, 

and “rare” if present in up to 15% of the isolates of the cluster. Three main occurrence classes, 

“Core”, “Intermediate” and “Rare”, contained all the genes that were always observed as being 

“core”, “intermediate” or “rare” respectively across all PopPUNK Clusters in which they were 

present. However, within these four occurrence classes, whilst the frequency was maintained 

within a cluster, genes were seen to be “core”, “intermediate” or “rare” across different 

numbers of clusters. Hence, to capture the distribution of all genes these occurrence classes 

were further subdivided into a total of eleven subclasses based on the number of PopPUNK 

Clusters in which a gene was observed and the frequency of that gene within those clusters 

(Figure 5.1). 

 

“Dataset core” genes were present and “core” in all PopPUNK Clusters. “Multi-cluster core”, 

“multi-cluster intermediate” and “multi-cluster rare” genes were present in multiple PopPUNK 

Clusters in their respective frequencies. “Cluster specific core”, “Cluster specific intermediate” 

and “Cluster specific rare” genes were present only in one PopPUNK Cluster in their 

respective frequencies. The final main occurrence class “Varied” included all the genes which 

were observed as either combination of “core”, “intermediate” or “rare” across multiple 

PopPUNK Clusters. These combinations were “core, intermediate and rare”, “core and 

intermediate”, “core and rare” and “intermediate and rare” (Figure 5.1). 

5.3.2 Measuring the genetic composition of each PopPUNK Cluster 

The number of genes from each of the eleven occurrence classes was counted in each of the 

7,693 E. coli genomes remaining in the collection described in Section 4.4.6. The mean 

number of genes and the standard deviation of the number of genes from each occurrence 

class was calculated per PopPUNK Cluster using built-in R functions. To measure the genetic 

composition of a typical E. coli genome within our dataset, the mean and standard deviations 

were calculated on the mean counts of all the 47 PopPUNK Clusters. 

5.3.3 Phylogenetic analysis 

5.3.3.1 Phylogenetic tree construction 

A representative sequence from all 47 PopPUNK Clusters was chosen using Treemmer [392]. 

Treemer greedily prunes leaves off the phylogeny by choosing a random leaf from the two 

most closely related pairs of leaves in every iteration, until the desired number of leaves in the 

tree is reached. The core gene alignment of the 47 selected isolates was generated using 
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Roary [305], and a tree from the SNPs, taken using SNP-sites [332] (v2.3.2), was constructed 

using RaXML (v8.2.8) using a GTR+gamma model with 100 bootstrap replicates [282]. 

 

 
 

Figure 5.1: Gene classification into occurrence classes. The figure presents a hypothetical 

example of comparing a total of 3 PopPUNK Clusters written on the y-axis. The x-axis 

represents the frequency of the gene in each of the three clusters being compared. A gene is 

considered “core” in a cluster if it was present in >95% of isolates of the cluster, “intermediate” 

if it was present in 15%-95% of the the isolates of the cluster, and “rare” if present in <15% of 

isolates of the cluster. Each panel is an example of a gene from the given occurrence class. 

A dark square indicates the gene is present in the cluster and the frequency of that gene in 

the cluster. As there are three clusters, each gene can be observed in any combination of 

frequencies across the three clusters. “Core” genes were observed in core frequencies in all 

(dataset core), some (multi-cluster core) or one (cluster specific core) cluster. “Intermediate” 

genes were observed in intermediate frequencies in some (multi-cluster intermediate) or one 

(cluster specific intermediate) cluster. “Rare” genes were observed in rare frequencies in some 

(multi-cluster rare) or one (cluster specific rare) cluster. “Varied” genes were observed in 

different frequencies across multiple clusters. For instance, the “Core and intermediate” gene 
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presented is core in cluster 2 and rare in cluster 1 (and absent in 3). The “Core and rare” gene 

is core in cluster 3 and rare in cluster 2 (and absent in 1) etc. 

5.3.3.2 Phylogenetic distance calculations 

The phylogenetic distance between every two PopPUNK Clusters was measured as the 

patristic distance using the function ‘cophenetic’ from the R package APE (v5.3) [395]. The 

patristic distance is the sum of the total distance between two leaves of the tree, which 

represent the PopPUNK Clusters in this thesis, and hence summarises the total genetic 

change in the core gene alignment represented in the tree.  

5.3.3.3 Ancestral state reconstruction 

The leaves or tips of the phylogenetic tree constructed in Section 5.3.3.1 represent the 47 

PopPUNK Clusters. Presence of a gene in a PopPUNK Cluster (tree leaf) was defined as the 

gene being observed at least once in at least one isolate of the PopPUNK Cluster. The 

presence or absence of a gene in an ancestral node, i.e. an internal node, was determined 

using accelerated transformation (ACCTRAN) reconstruction implemented in R [412]. 

ACCTRAN is a maximum parsimony-based approach which minimises the number of 

transition events on the tree (from absence to presence and vice versa) while preferring 

changes along tree branches closer to the root of the tree. 

5.3.3.4 Counting gain and loss events 

Gain and loss events were counted based on the results of the ancestral state reconstruction. 

If there was a change from absence to presence from an ancestor to a child along a branch 

in the phylogeny, a gain event was counted. If there was a change from presence to absence 

a loss event was counted. The total number of gain and loss events was counted for each 

gene as well as on each branch for all occurrence classes. 

5.3.4 Functional assignment of COG categories 

The predicted function and COG category of each gene cluster were assigned using eggNOG-

mapper (1.0.3) on the representative sequence of each of the gene clusters [413]. Diamond 

was used for a fast-local protein alignment of the representative sequences against the 

eggNOG protein database (implemented within eggNOG-mapper). The COG (Clusters of 

Orthologous Groups) classification scheme comprises 22 COG categories which are broadly 

divided into functions relating to cellular processes and signaling, information storage and 

processing, metabolism and genes which are poorly categorised [414]. When no match was 

found in the eggNOG database, the genes were marked as “?” in their COG category.  
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Sub-sentences of all lengths were extracted from each of the functional predictions for each 

gene cluster using the function “combinations” from the python package “itertools”, while 

ignoring common words. For instance, for the functional prediction “atp-binding component of 

a transport system”, the words “of”, “a” and “system” were ignored, and the extracted sub-

sentences were “atp-binding component”, “atp-binding component transport” and “component 

transport”. The number of times each sub-sentence appeared in each occurrence class was 

counted. Overlapping sub-sentences which only had a difference of 3 or smaller in their total 

counts per occurrence class were merged in the final count to include only the longer sub-

sentence. For instance, if “atp-binding component transport” was counted 100 times and “atp-

binding component” was counted 103 times, the final count would only include the longer sub-

sentence “atp-binding component transport” with a count of 100. 

5.3.5 Identifying gene variants 

The function makeblastdb from the Blast+ package (v2.9) was used to construct a database 

from the 50,039 genes of the E. coli pan-genome taken from Chapter 4 of this thesis [285,321]. 

Blastp was used to apply a pairwise all-against-all comparison of all the protein sequences. If 

two proteins shared more than 95% sequence identity over 95% of the total length of the 

shorter sequence, they were considered “partner genes”, with one being the “shorter variant” 

and the other the “longer variant”.  

5.3.6 Gene property calculations 

The length of each gene cluster was calculated as the mean length of all the members of that 

gene cluster. The GC content was calculated using Biopython (v1.72) on all the members of 

a gene cluster and the mean was taken as the value for that gene cluster. The fraction of 

members in a gene cluster that had ATG as their start codon was measured as the “ATG 

fraction”. If an alternative start codon was used in more than 50% of the members of a gene 

cluster then that cluster was considered as starting with an alternative start codon. The contig 

length was calculated for all the members of a gene cluster and the mean was calculated 

across all members.  

5.3.7 Statistical analysis 

Statistical analyses were performed in R (v3.3+). Ape (v5.3) [395] and ggtree (v1.16.6) [396] 

were used for phylogenetic analysis and visualisation. ggplot2 was used for all plotting [360]. 
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5.4 Results 

5.4.1 A novel approach for examining the E. coli pan-genome 

In a standard pan-genome analysis, genes are classified into four categories: core, soft-core, 

intermediate and rare. These definitions are based on the frequency of the genes in the 

dataset. For instance, the default settings in Roary are that genes found in over 99% of the 

genomes are “core”, between 95% and 99% “soft-core”, between 15% and 95% “intermediate” 

and fewer than 15% “rare” [305]. In Section 4.4.4.9 of this thesis, these definitions were used 

to describe the pan-genomes of each of the 47 PopPUNK Clusters individually. Roary was 

originally designed for a pan-genome analysis of a single Salmonella enterica serovar (Typhi), 

thus the default approach used in Section 4.4.4.9 was valid for a pan-genome analysis on 

each PopPUNK Cluster which represents a group of closely related isolates. When expanding 

the pan-genome analysis to examine the pan-genome of an entire species, which in this case 

includes 47 different PopPUNK Clusters, new definitions needed to be established. Hence, a 

new set of rules was defined to classify the genes into four broad “occurrence classes”: “core”, 

“intermediate”, “rare” and “varied” genes. These four occurrence classes could be further 

subdivided into eleven sub-classes as detailed below. These definitions were based on the 

number of PopPUNK Clusters in which a gene was present (1 to 47), and the frequency of the 

gene in the clusters in which it was present (Figure 5.1). 

 

Core genes were always observed in high frequencies (>95%) in one or multiple PopPUNK 

Clusters (Figure 5.1). These genes represented 9% (4,998/50,039) of the E. coli pan-genome 

(Figure 5.2A). Core genes included 1,426 genes (3% of all genes) which are the “dataset core” 

genes as they were core in all 47 of 47 PopPUNK Clusters (Figure 5.2B,C, 5.1). On the other 

side of the spectrum, there were 2,040 genes (4% of all genes) which were “cluster specific 

core” genes as they were core in a single PopPUNK Cluster. A set of 1,532 genes (3% of all 

genes) were defined as “multi-cluster core” as they were core to a subset of the PopPUNK 

Clusters (2-45 PopPUNK Clusters). 
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Figure 5.2: Distribution of the E. coli gene-pool based on the rules defined. A Number of 

genes from each of the occurrence classes. B Distribution of the number of genes in each 

occurrence class relative to the number of PopPUNK Clusters in which they were found. C 
Mean frequency of each gene in the PopPUNK Clusters in which it was observed, plotted 

against the number of PopPUNK Clusters it was observed in, coloured by occurrence class. 

D The relative abundance and count of genes from each of the occurrence classes in a single 

representative E. coli genome in our dataset. 

 

Intermediate genes, representing 5% of all genes, were always observed in intermediate 

frequencies (15%-95%) in one or multiple PopPUNK Clusters (Figure 5.1, 5.2A). 87% of these 

genes (2,329/2,685) were only observed in a single PopPUNK Cluster and were termed 

“cluster-specific intermediate” genes (Figure 5.2B,C). The remaining intermediate frequency 

genes (356) were termed “multi-cluster intermediate”. These were mostly shared between a 

maximum of five PopPUNK Clusters (97%, 346/356) and their mean frequency within those 

clusters ranged from 16% to 94% of isolates, representing the full range of possible 

frequencies for intermediate genes. There were four genes (1%, 4/356) which were observed 

in intermediate frequencies in more the 10 PopPUNK Clusters. One gene was of particular 

interest as it was observed in 20 PopPUNK Clusters and its mean frequency across the these 

clusters was 0.57, appearing be a truly intermediate frequency gene (Figure 5.2C). A closer 

examination of the precise frequencies in which this gene was observed across the 20 clusters 

confirmed that it was indeed observed in 30-70% of isolates in all the clusters, with most 

PopPUNK Clusters having 50-60% of isolates possessing this gene. Further analysis on the 

Dataset
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sequence of this gene revealed that this is a a short protein, only 53 aa long, which could not 

been assigned to any known function using functional annotation tools. 

 

Rares genes were always observed in low frequencies (<15%) in one or multiple PopPUNK 

Clusters (Figure 5.1). This occurrence class represented the largest fraction of the entire gene 

pool consisting of a total of 34,624 genes, representing 63% (34,624/55,039) of the entire 

gene pool (Figure 5.2A). Of these, 67% were “cluster specific rare” genes (23,175/34,624) as 

they were observed only in a single PopPUNK Cluster (Figure 5.2B,C). The remaining “rare” 

genes were observed in multiple PopPUNK Clusters, termed “multi-cluster rare”. 76% 

(8,800/11,449) of these were observed in five PopPUNK Clusters or fewer. There were 651 

(5%) genes which were observed in rare frequencies across 10 PopPUNK Clusters or more, 

i.e. rare genes across multiple PopPUNK clusters were more common than intermediate 

genes across multiple clusters.  

 

Varied genes were observed in different frequencies across multiple PopPUNK Clusters 

(Figure 5.1). These genes represented 23% of the gene pool (12,732/55,039) (Figure 5.2A). 

These were further divided depending on the precise combination of frequencies in which they 

were found: “Core and intermediate”, “Core, intermediate and rare”, “Core and rare” or 

“Intermediate and rare” (Figure 5.1). Varied genes which were observed in more PopPUNK 

Clusters were more commonly observed in higher frequencies within those clusters and thus 

belonged to the group of “Core and intermediate'' genes (Figure 5.2B,C). On the other hand, 

varied genes which were observed in fewer PopPUNK Clusters were more commonly 

observed in low frequencies within those clusters and thus belonged to the group of 

“Intermediate and rare'' varied genes (Figure 5.2B,C).  

5.4.2 The typical composition of an E. coli genome 

A typical E. coli genome contained 1,422±4 genes (~30%) “dataset core” genes (core across 

the entire dataset) (Figure 5.2D; see Section 5.3.2). There were 483±66 (~10%) “multi-cluster 

core” genes which were core to a subset of the population and 43±55 (1-2%) genes which 

were “cluster specific core” genes, present and core only in a single PopPUNK Cluster (Figure 

5.2D). A typical genome also contained 11±7 (~0.3%) “multi-cluster intermediate” and 26±23 

(0.5-1%) “cluster specific intermediate” genes (Figure 5.2D). Similarly, there were 26±11 

(~0.5%) “multi-cluster rare” genes 5.2D) and 11±9 (~0.3%) “cluster specific rare” genes in 

each genome (Figure 5.2D). Although the “rare” and “intermediate” genes made up more than 

60% of the entire gene pool (34,543/55,039), they each represented fewer than 1% of the 

genes within a single isolate (Figure 5.2D). The “varied” genes represented approximately 
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60% of all the genes in a typical E. coli genome (Figure 5.2D). Most of these were “core and 

intermediate” genes (1802±87, ~40%) (Figure 5.2D). Additionally, each genome contained 

71±13 (1-2%) “core and rare” genes, 614±116 (10-15%) “core, intermediate and rare” genes, 

and 189±51 (3-5%) “intermediate and rare” genes. 

5.4.3 Rates of gene gain and loss differ across the occurrence classes 

 
Figure 5.3: Example of the 
distribution patterns of two 
genes, along with the number of 
gain and loss events required to 
explain their distribution across 
the tree tips. A gene is defined as 

present in a tip (dark grey) if at least 

one genome of the lineage had the 

gene. Gain (green circle) and loss 

(red circle) were estimated using 

ancestral state reconstruction. A A 

“multi-cluster core” gene which is 

associated with two clades and 

required only 2 gain events to 

explain its distribution. B An 

“intermediate and rare” gene which 

was not clade associated required 

8 gain and 3 loss events to explain 

its distribution along the tree tips.  

 

 

The presence and absence 

patterns of genes which were present across multiple PopPUNK Clusters were used to count 

the number of gain and loss events estimated to have occurred along the tree branches. This 

was achieved using a parsimony-based ancestral state reconstruction approach to infer the 

minimum number of gain and loss events required to explain the distribution of a gene on the 

tree tips. (See Sections 5.3.3.3-4). For instance, if a gene was present in only two clades 

(regardless of its frequency when present), its distribution along the tree tips could be 

explained by two gain events on two branches (Figure 5.3A). If a gene was distributed across 

A B

Gene present in 
lineage

Gene absent in 
lineage

Gene gain Gene loss

Inter.

Inter.

C

D
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the tree tips with no clear pattern, many more gain or loss events were required to explain its 

distribution on the tree tips (Figure 5.3B).  

 

The number of gain and loss events which occurred for each gene varied across the 

occurrence classes (Figure 5.4A).  For comparison, the specific combinations of gain and loss 

events across all genes for each of the occurrence classes are summarised in Figure 5.4B-H. 

These will be referred to in the following sections. Note that due to the method by which genes 

from the different PopPUNK Clusters were grouped as described in Section 4.3.8 of this thesis, 

gene loss could indicate either complete loss, truncation by more than 20% of the gene length 

or diversification beyond the 95% sequence identity threshold used to group genes together. 

 

 
Figure 5.4: Gain and loss events per gene. A Number of gain and loss events per gene 

stratified by occurrence class. B-H Fraction of genes which have undergone specific 

combinations of gain and loss events for each occurrence class. The shade of each square 

indicates the fraction of genes from the occurrence class which have undergone the specific 

combination of gain and loss events. 
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5.4.4 “Multi-cluster core” genes represent the shifts in core genome of E. 

coli clades 

The median number of gain and loss events estimated for “multi-cluster core” genes was a 

single gain event and a no loss events (Figure 5.4A). The majority (68%) of the presence and 

absence patterns of these genes could be explained by up to two gain or loss events along 

the tree branches (Figure 5.4B). Most prominently, a single gain event and no loss events was 

observed for 24% of these genes, i.e. these genes were gained in a single point in time and 

were fixed within the lineages downstream from the point of introduction. On the other hand, 

15% of these genes were estimated to have been lost in a single event that led to the absence 

of the gene from a subset of the PopPUNK Clusters. While some genes were estimated to 

have been gained and lost on more occasions, these were the exception rather than the rule 

for this occurrence class (Figure 5.4A,B). 

 

The number of gain and loss events predicted to have occurred on each branch were counted 

(Figure 5.5A,B). Gain and loss events of “multi-cluster core” genes most commonly occurred 

along the internal branches which define the phylogroups (Figure 5.5A, B, C). A large number 

of gain events occurred on the branches leading to phylogroups B2 (104 gain events), E (66), 

F (52) and two clades of phylogroup D (90 and 64) (Figure 5.5A,C). Two PopPUNK Clusters 

within phylogroup E, Clusters 1 and 16, were also estimated to undergo a large number of 

gene gain events (97). The branches leading to the clades of phylogroups A, Shigella, B1 and 

C were not estimated to have undergone a large number of gene gain events. Phylogroup B2 

was the only phylogroup which had undergone excessive gene loss in addition to gene gain 

(52 loss events) (Figure 5.5B,C). Otherwise, gene loss occurred most commonly along the 

tree tips (Figure 5.5C). Most prominently, PopPUNK Clusters 30 and 45 which represent S. 

sonnei and S. flexneri respectively, as well as PopPUNK Cluster 18 which has not been 

assigned to any of the phylogroups, have undergone the largest number of recent loss events 

(90, 52 and 65) (Figure 5.5B, D). 
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Figure 5.5: Gain and loss events per branch. A,B Example for “multi-cluster core” genes 

on the precise counts of “gain” and “loss” events across all genes of this occurrence class 

predicted to have occurred on each branch. Darker branches indicate a larger number of 

events occurring on the branch. C Summary of the total number of gain and loss events on 

key branches for all the occurrence classes. The top panel for the “multi-cluster core” genes 

summarises panels A and B. 

 

ShigellaShigella

Sh
ig
el
la



 124 

 
Figure 5.6: Properties of high frequency genes in the E. coli dataset. A,D Number of 

“multi-cluster core” genes (A) and “core and intermediate” genes (D) per genome in each of 

the 47 PopPUNK Clusters, grouped by phylogroup.  B, E, G Relationship between the number 

of genes shared between every two PopPUNK Clusters and phylogenetic distance between 

them for “multi-cluster core” genes (B), “core and intermediate” genes (E) and “multi-cluster 

intermediate” genes (G). Coloured dots indicate that the two PopPUNK Clusters being 

compared are from the same phylogroup, whereas gray dots indicate that the two clusters 

being compared are from different phylogroups. C, F, H Relationship between the number of 

genes shared between every two PopPUNK Clusters and the size of the smaller PopPUNK 

Cluster of the two being compared for “multi-cluster core” genes (C), “core and intermediate” 

genes (F) and “multi-cluster intermediate” genes (H). 

 

In agreement with the above, while the mean number of “multi-cluster core” genes was 483 

per genome, isolates belonging to phylogroups B1, C, and A tended to have ~400 multi-cluster 

core genes per genome compared with ~500 for those belonging to phylogroups E, D, F and 
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B2 (Figure 5.6A). PopPUNK Clusters of Shigella spp. had the fewest number of “multi-cluster 

core” genes per genome with ~350 multi-cluster core genes per genome (Figure 5.6A).  

 

The above analysis suggests that “multi-cluster core” genes represent the changes in the core 

genome between the clades. Accordingly, the number of “multi-cluster core” genes shared 

between every two PopPUNK Clusters was correlated negatively with the phylogenetic 

distance between them (linear regression, R2=0.42, p<2e-16), i.e. two PopPUNK Clusters 

which were close phylogenetically shared more “multi-cluster core” genes (Figure 5.6B). There 

was no connection between the size of the two PopPUNK Clusters being compared and the 

number of “multi-cluster core” genes they shared (linear regression, R2=0, p=0.51) (Figure 

5.6C). 

5.4.5 “Core and intermediate” represent the “soft-core” genome 

The properties of the “core and intermediate” genes, which represented 40% of the genes in 

a single E. coli genome and 5% of the entire gene pool (Figure 5.2A,D), prove that these genes 

present similar distribution patterns, patterns of gain and loss and predicted functions to the 

defined “multi-cluster core” and “dataset core” genes.  

 

59% of these genes (1,566/2,674) were observed in 40 PopPUNK Clusters or more, and in 

high frequencies within those clusters (Figure 5.2B,C). In fact, 37% of the “core and 

intermediate” genes were ubiquitous, i.e. they were present in 47 of 47 PopPUNK Clusters 

(Figure 5.2B). The median number of gain and loss events occurring per gene for “Core and 

intermediate” genes was a single gain event and a single loss event (Figure 5.4A). Similar to 

the “multi-cluster core” genes, 51% of the presence and absence patterns of these genes 

could be explained by up to two gain and loss events (Figure 5.4C). Gain events of “core and 

intermediate” genes were largest for the branches leading to phylogroups B1 and E (87 and 

66) (Figure 5.5C). Rates of gene loss were generally higher in this occurrence class compared 

with the “multi-cluster core genes”. Similarly, loss events predominantly occurred within 

Shigella and phylogroup B2 (Figure 5.5C). Indeed, these phylogenetic clusters had the lowest 

number of “core and intermediate” genes per genome relative to the other phylogroups 

whereas PopPUNK Clusters of Phylogroup B1 had the highest number of these genes per 

genome (Figure 5.6D).  

 

“Core and intermediate” genes were also more commonly shared between closely related 

isolates (linear regression, R2=0.39, p<2e-16) (Figure 5.6E), and there was no connection 

between the size of the two PopPUNK Clusters being compared and the number of core and 
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intermediate genes shared between them (linear regression, R2=0.0007, p=0.18) (Figure 

5.6F). 

 

The distribution of predicted functions of this set of genes was similar to the predicted functions 

of the “dataset core” genes (Figure 5.7). COG categories were assigned to all the genes with 

eggNOG-mapper on the representative protein sequence of each gene cluster [413,414] (See 

Section 5.3.6). 34% of the “core and intermediate” genes were assigned to be involved in 

metabolism, similar to 40% of the “dataset core” genes. 14% and 13% were predicted to be 

involved in “information storage and processing” and “cellular processes and signalling” 

relative to 19% and 20% of the “dataset core” genes. Even more, the relative abundance of 

the specific COG categories was similar between the “dataset core” and the “core and 

intermediate” genes (Figure 5.7). 

5.4.6 “Multi-cluster intermediate” genes are shared between closely 

related PopPUNK Clusters, but have different functional profiles to the 

“core” genes 

In 89% of cases, “multi-cluster intermediate” genes were gained in 1-3 events and not lost 

(Figure 5.4D, 5.4C). Additionally, above a certain phylogenetic distance, the number of “multi-

cluster intermediate” genes shared between every two PopPUNK Clusters drops to zero, 

meaning that these genes were only shared between closely related isolates (Figure 5.6G). 

Shared “multi-cluster intermediate” genes were only observed within PopPUNK Clusters 

which had fewer than 200 isolates (Figure 5.6H). These findings together suggest that these 

genes are confined to a phylogenetically close subset of the population, yet were gained 

multiple times within this subset. Unlike the “core and intermediate” genes, 77% “multi-cluster 

intermediate” genes were assigned a category of “poorly characterised” in their function 

prediction, and fewer than 1% were predicted to have a function related to cell metabolism 

(Figure 5.7). While these genes are shared between closely related PopPUNK Clusters as 

was observed for the “multi-cluster core” and the “core and intermediate” genes, they evidently 

differ in their functional profiles.  
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Figure 5.7: Fraction of genes from each occurrence class which were assigned each of 
the COG categories. D (Cell cycle control, cell division, chromosome partitioning), M ( Cell 

wall/membrane/envelope biogenesis), N (Cell motility), O (Post-translational modification, 

protein turnover, and chaperones), T (Signal transduction mechanisms), U (Intracellular 

trafficking, secretion, and vesicular transport), Z (Cytoskeleton), V (Defense mechanisms), A 

(RNA processing and modification), B (Chromatin structure and dynamics), J (Translation, 

ribosomal structure and biogenesis), K (Transcription), L (Replication, recombination and 

repair), C (Energy production and conversion), E (Amino acid transport and metabolism), F 

(Nucleotide transport and metabolism), G (Carbohydrate transport and metabolism), H 

(Coenzyme transport and metabolism), I (Lipid transport and metabolism), P (Inorganic ion 

transport and metabolism), Q (Secondary metabolites biosynthesis, transport, and 

catabolism), S (Function unknown) and “?” (unassigned). 
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5.4.7 Low frequency genes are gained and lost at high rates, and their 

sharing is independent of the phylogeny  

Shared low frequency genes include “multi-cluster rare”, “intermediate and rare” and “core, 

intermediate and rare” and “core and rare” genes as these were most commonly found in a 

small number of PopPUNK Clusters and in a low frequency within those clusters (Figure 

5.2B,C). Unlike their high frequency counter-parts (“multi-cluster core”, “multi-cluster 

intermediate” and “core and intermediate” genes), the estimated number of gain and loss 

events predicted to have occurred for these occurrence classes was often estimated to be as 

high as four events and more (Figure 5.4A,E-H). “Multi-cluster rare” genes were not commonly 

lost as they were generally observed across a smaller number of PopPUNK Clusters and 

hence were mostly commonly gained 2-3 times along the tree tips (Figure 5.2B, 5.3H, 5.4C). 

Gain events of low frequency genes mostly occurred recently along the tree tips (Figure 5.5C). 

Phylogroup E was an exception which presented a large number of acquisition events of low 

frequency genes. A large number of gain events of “Core, intermediate and rare” genes were 

predicted to have occurred on the branch leading to Phylogroup B1. 

 

The number of genes shared between every two PopPUNK Clusters for the “multi-cluster 

rare”, “intermediate and rare” and “core, intermediate and rare” genes did not correlate with 

the phylogenetic distance between the clusters (linear regression, R2<0.03, Figure 5.8A-C). 

On the other hand, the number of shared genes was positively correlated with the size of the 

two PopPUNK Clusters being compared, with larger clusters sharing more genes (linear 

regression, R2=[0.566,0.349,0.22], p<2.2e-16) (Figure 5.8D-F). This is because more 

genomes need to be sampled in order for the same low frequency gene to be observed in two 

PopPUNK Clusters. However, the number of genes shared plateaued after a particular 

PopPUNK Cluster size (Figure 5.8D-F). This number was smaller when the PopPUNK 

Clusters were from two different phylogroups, compared to when they were from the same 

phylogroup (Figure 5.8D-F).  
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Figure 5.8: Properties of low frequency genes in the E. coli dataset. A-C Relationship 

between the number of genes shared between every two PopPUNK Clusters and phylogenetic 

distance between for “multi-cluster rare” genes (A), “intermediate and rare” genes (B) and 

“core, intermediate and rare” genes (C). Coloured dots indicate that the two PopPUNK 

Clusters being compared are from the same phylogroup whereas gray dots indicate the two 

clusters being compared are from different phylogroups. D-F Relationship between the 

number of genes shared between every two PopPUNK Clusters and the size of the smaller 

PopPUNK Cluster of the two being compared between for “multi-cluster rare” genes (D), 

“intermediate and rare” genes (E) and “core, intermediate and rare” genes (F). G Most 

common phrases taken from the predicted functional annotations of the “multi-cluster rare”, 

“intermediate and rare” and “core, intermediate and rare”, divided into the four main COG 

categories.  
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A large fraction of genes from these three gene categories were assigned a COG category of  

“Poorly Characterised” (Figure 5.7). The most common predicted terms  for these genes were 

prophage related (Figure 5.8G). These included terms such as “tail fiber”, “baseplate 

assembly”, “terminase” and “Mu-like prophage”. Other common annotations in the other COG 

categories included “conjugal transfer”, “type IV pilus”, “restriction endo-nuclease”, “integrase 

catalytic”and “transposase”.  

5.4.8 PopPUNK Clusters of broad host range lineage ST10 and MDR 

lineage ST410 share more low frequency genes with distantly related 

PopPUNK Clusters than expected 

To explore the distribution of low frequency genes further I identified PopPUNK Clusters which 

share a large number of low frequency genes with other PopPUNK Clusters that are distantly 

related to them. The median number of low frequency genes each cluster shares with all other 

clusters that are distant from it (patristic distance higher than 0.4) was compared against the 

size of the cluster (Figure 5.9A). As expected, there was a linear relationship between the size 

of the PopPUNK Cluster and the median number of low frequency genes that a cluster shared 

with distantly related PopPUNK Clusters (log linear regression, R2=0.547, p=2.965e-08). 

However, there were also a number of PopPUNK Clusters that shared more low frequency 

genes with distant PopPUNK Clusters than expected for their size. These include PopPUNK 

Clusters 12 and 40 (Figure 5.9A). Accordingly, the branches leading to these PopPUNK 

Clusters had been predicted to have undergone a large number of gain-events of “core, 

intermediate and rare” and “intermediate and rare” genes relative to the rest of the tips (Cluster 

12: 682 and 1574 events, Cluster 40: 333 and 836 events, Tip-mean: 182 and 530 events, not 

shown). 78% of the isolates from PopPUNK Cluster 12 are of ST10, members of which are 

known to have a broad host-range. 30% of the isolates in PopPUNK Cluster 40 are from ST410 

known as an MDR lineage and another 43% are from ST23. Multidrug resistance was common 

amongst the other PopPUNK Clusters which deviated from the expected number of shared 

genes, including PopPUNK Clusters 19, 26 and 34 with resistance observed to 

aminoglycoside, sulfonamides, beta-lactams and more (See Appendix E). Clusters 26 and 34 

predominantly contained EPEC isolates from the GEMs collection (see Section 4.4.4.7). 
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Figure 5.9: Cluster specific genes in the E. coli dataset. A Median number of low frequency 

genes shared by each PopPUNK Cluster, with other clusters which are phylogenetically 

distant from it, relative to the size of the cluster. Line fitted using linear regression, shaded 

area is the 95% confidence interval. B-D Number of “cluster specific rare” genes (B), “cluster 

specific intermediate” genes (C), and “cluster specific core” genes (D) per genome in each of 

the 47 PopPUNK Clusters, grouped by phylogroup. E Fraction of cluster specific genes that 

were found to either be a short variant or a long variant of another gene in the dataset. F 

Distribution of GC content, contig length and protein length of the genes of cluster specific 

occurrence classes, compared to the “dataset core” genes.  

5.4.9 Hyper-sharing PopPUNK Clusters possess more “cluster specific 

rare” genes in a single genome relative to the rest of the clusters 

PopPUNK Clusters 48, 26, 40, 12 and 19 had more “cluster specific rare” genes per genome 

relative to the rest of the PopPUNK Clusters (Figure 5.9B). There was an overlap between 

clusters which had a high number of “cluster specific rare” genes in each genome and the 

clusters which shared more low frequency genes with distant PopPUNK Clusters in the 

dataset. Similar to the “multi-cluster rare” genes, the “cluster specific rare” genes were most 

commonly predicted to be phage derived or otherwise had other annotations related to HGT 

such as “conjugational transfer”, “restriction modification”, “resolvase” and more (not shown).  
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5.4.10 PopPUNK Clusters which shared fewer low frequency genes than 

expected also had the largest number of “cluster specific core” genes  

PopPUNK Clusters which were not assigned a phylogroup based on the Clermont phylotyping 

scheme (18) and the Shigella PopPUNK Clusters (30,40) shared fewer low frequency genes 

with distantly related PopPUNK Clusters than expected for their size. The branches leading to 

these PopPUNK Clusters were estimated to have undergone a large number of gene loss 

events of “multi-cluster core” genes (Figure 5.5B,C). Additionally, these clusters possessed 

more “cluster specific core” and “cluster specific intermediate” genes relative to the rest of the 

PopPUNK Clusters (Figure 5.9A,C,D). While this was expected for Shigella spp., PopPUNK 

cluster 18 is nested within phylogroup B2. This cluster had a mean of 123 “cluster-specific 

core” genes, relative to a mean of 25 cluster-specific core genes in the rest of the clusters in 

phylogroup B2. 60% of the isolates of this cluster are from ST504 which has been described 

in the past as atypical STEC as they have been misclassified as Shigella spp. due to the 

biochemical phenotype these present [415]. Indeed, 100% of the isolates in PopPUNK Cluster 

18 were positive for the shiga-toxin gene stx1B.  

5.4.11 Cluster specific core genes are often truncated variants of other 

genes in the collection 

The sequences of the cluster specific genes, including “cluster specific core”, “cluster specific 

intermediate” and “cluster specific rare” genes, were aligned against all the other genes in the 

collection (See Section 5.3.5). Strikingly, 50% of the “cluster specific core” genes were 

identical along their full length to a region of another gene in the collection (Figure 5.9E). 17% 

of the “cluster specific intermediate” genes were also identified as shorter variants of other 

genes in the dataset (Figure 5.9E). Shorter variants of other genes more commonly had an 

alternative start codon relative to other genes (22% of short variants versus 10% of the rest). 

Even though only a subset of genes from these occurrence classes were identified as shorter 

variants of other genes, the length of all cluster specific genes was an order of magnitude 

shorter than the observed lengths of the “dataset core” genes (Figure 5.9F) The “cluster 

specific core” genes shared a similar predicted functional profile to those given to the “dataset 

core and the “multi-cluster core” genes, suggesting these are variants of this same subset of 

genes (Figure 5.7). Conversely, cluster specific genes had more extreme values in their GC 

content, particularly the “cluster specific rare genes”, and were more commonly found on 

shorter contigs (Figure 5.9F).  
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5.4.12 STEC PopPUNK Cluster 27 and ExPEC PopPUNK Cluster 44 

possess a large number of “cluster specific intermediate” genes. 

PopPUNK Cluster 44 of phylogroup F and PopPUNK Cluster 27 of phylogroup B2 possessed 

a high number of “cluster specific intermediate” genes relative to the rest of the clusters (Figure 

5.9EC). These clusters had a mean of 60 and 142 “cluster specific intermediate” genes per 

genome, relative to the mean in the dataset of only 10 “cluster specific intermediate” genes 

per genome. 100% of the isolates of cluster 44 were from ST648 and were mostly (72%) 

ExPECs collected from either blood or urine samples. These isolates are multi-drug resistant, 

with observed resistance to fluoroquinolones, macrolides, aminoglycosides and beta-lactams 

including ESBLs and carbapenems (See Section 4.4.4.6). ST648 has been described as an 

emerging multi-drug resistant lineage of phylogroup F, present both in humans and animals 

[416,417]. Cluster 27, on the other hand, contains 88% isolates from ST583 and 66% of the 

isolates were collected from fecal samples. Additionally, 66% of isolates from PopPUNK 

Cluster 27 were positive for shiga toxin gene stx2B and 100% positive for eae (See Sections 

1.1.2.2-3 of Introduction for pathotype definitions). No resistance was observed in this cluster. 

Thus, these two PopPUNK Clusters with high loads of “cluster specific intermediate” frequency 

genes are different in their pathogenic and resistance profiles. Their shared property is that 

they are both out-groups of other clades; PopPUNK Cluster 27 is an out-group of a clade in 

phylogroup B2 and PopPUNK cluster 44 an out-group in phylogroup F (Chapter 4, Figure 4.8). 

This resembles the phylogenetic locations of the Shigella PopPUNK Clusters 30 and 45 

relative to phylogroup B1. PopPUNK Cluster 27 is also similar to these clusters as it shares 

fewer low frequency genes with distantly related PopPUNK Clusters than expected for its size 

and the branch leading to PopPUNK Cluster 27 has been estimated to undergone a large 

number of gain and loss events of “multi-cluster core” genes (Figure 5.9A, 5.4A,B).  

5.5 Discussion 

An accurate description of the pan-genome of thousands of E. coli genomes, when 

considering all the biases in public genome datasets, required redefining the approach used 

to understand the distribution of the genes in that dataset. The new approach presented is an 

extension of previous approaches used for the exploration of the pan-genome in a single 

species or lineage.  In addition to classifying the genes based on their frequency in a lineage, 

the rules extend to examine the number of lineages, or PopPUNK Clusters, each gene was 

observed in. The classification presented in this thesis is appropriate given the diversity of the 

dataset used; Roary, for instance, was designed to handle a dataset with low gene content 

and sequence diversity and thus would not be applicable to this dataset [305]. Additionally, 
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this approach corrects for the over-representation of particular lineages in the dataset. For 

instance, genes which were core and specific to a single PopPUNK Cluster that has a low 

representation in the dataset would have been mistaken for “rare” genes had we treated all 

gene-counts equally. However, it is still important to note that the analysis presented here is 

still an approximation to our understanding of the true distribution of genes in the E. coli 

population. The true representation of each lineage in the natural E. coli population is unknown 

because most of the sequenced isolates in this study, and indeed the public databases have 

clinical relevance and as such were highly biased in their sampling. Notwithstanding this, as 

this approach uses two metrics, it provides a higher-resolution to classify the genes in the 

dataset into occurrence classes which were fully characterised in this thesis, revealing their 

different functions and dynamics of gain and loss.  

 

There were only 1,426 “dataset core” genes which are the set of genes which are present in 

every single E. coli PopPUNK Cluster and in more than 95% of the isolates of that cluster. 

These only represent ~30% of the genes in a typical E. coli genome. However, there were 

twice as many genes which were observed in both “core and intermediate” frequencies in 

multiple PopPUNK Clusters (2,674) and these represent ~40% of the genes in a single E. coli 

genome. The number of PopPUNK Clusters in which these genes were most commonly 

observed, their mean frequency within those clusters, their predicted functions and their level 

of association with the population structure revealed that these genes resemble the “dataset 

core” and the “multi-cluster core” genes, more than they do to the other occurrence classes. 

Thus, the "core and intermediate" genes represent a level of error that is tolerated using our 

approach, and they likely represent the "soft-core" genome of the dataset. The fact that these 

genes were at times observed in intermediate frequencies in particular clusters could be the 

result of mistakes in sequencing, assembly, annotation or pan-genome pipelines. 

Alternatively, these genes may be in the process of being lost in some clades. We observed 

the loss of these genes in PopPUNK Clusters which are undergoing gene degradation like the 

Shigella spp. clusters strengthening the hypothesis that they may be undergoing loss (Figures 

5.4C). Importantly, setting a single cut-off between “intermediate” and “core” genes across the 

entire dataset removes the additional level of understanding of the intricate differences 

between the genes. Including the “core and intermediate” genes which were observed in 40 

PopPUNK Clusters or more as part of the core genome would double the size of the E. coli 

core-genome in this analysis and its relative proportion in a single genome. 

 

Genes which were either core and specific multiple PopPUNK Clusters, i.e. “multi-cluster core” 

genes, were most commonly found to be gained or lost in a single event on an internal branch 

in the phylogeny (Figure 5.4,5.5). Genes from these occurrence classes should be further 
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investigated as they represent the changes in gene content between the clades in the E. coli 

dataset, including the differences between the phylogroups. The fact that these genes had 

mostly undergone a single gain or loss event suggests that independant shifts in the “core” 

genome of two or more unrelated lineages are less common. Even so, in 32% of cases 

changes in the core occur on 3 or more events and in 25% of cases “multi-cluster core” genes 

are shared between distantly related PopPUNK Clusters. It would be interesting to explore 

these cases as these could shed light on the commonality of distantly related PopPUNK 

Clusters and whether they are likely to share similar ecological environments or pressures that 

lead to the selection of the same genes under different genetic backgrounds. 

 

In most cases, gene sharing of low frequency genes was found to be independent of the 

phylogenetic distance between the two PopPUNK Clusters being compared. This is an 

indication of a lack of barrier for movement of these genes between distantly related isolates, 

for instance, compatibility of phage receptors across the species. Additionally, low frequency 

genes were estimated to have undergone a large number of gain and loss events along the 

tree branches, mostly commonly on the tree tips. This means that low frequency genes 

transfer between distantly related isolates and this happens on short evolutionary timescales. 

The dependency between the size of the two PopPUNK Clusters being compared and the 

number of low frequency genes shared between them means that we do not observe sharing 

of genes due to under-representation of particular lineages rather than lack of sharing between 

them. This is a likely scenario in the case of low frequency genes as more isolates need to be 

sampled for these genes to be observed. We have not sampled enough from most of the 

PopPUNK Clusters in this study in order to truly understand the level of gene sharing of low 

frequency genes between them. For the largest clusters, we observed a plateau in the number 

of shared low-frequency genes, meaning that from a specific sample size we were able to 

capture most of the low frequency genes that are shared between these clusters. 

 

Particular PopPUNK Clusters shared more low-frequency genes with distantly related 

PopPUNK Clusters than expected for their size and appeared to have an increased ability to 

acquire genes. Most prominently, these include PopPUNK Cluster 12 which contains isolates 

from ST10 and PopPUNK Cluster 40 which contains isolates from ST23 and ST410, as well 

as other PopPUNK Clusters which contain MDR isolates. Interestingly, these same PopPUNK 

Clusters also contained a high number of “cluster specific rare” genes per genome relative to 

the rest of the dataset. The correlation between the number of rare genes per genome and 

enhanced sharing of low frequency genes suggests that a high frequency of rare variants in a 

single genome can be seen as an enhanced ability to contain low frequency genes in the 

genome and perhaps to donate them. This assumption appears to be particularly relevant as 
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many of the cluster specific rare genes were predicted to be mobile elements, vectors of HGT 

and defense mechanisms that may all contribute to the levels of HGT within these clades and 

with other clades. ST10 and ST23 are known for their ubiquity as they have been described 

as both commensal and pathogenic, MDR, as well as isolated from human and animal sources 

[404,418]. These properties have labelled these lineages as potential facilitators of gene 

movement in the population [419]. The results in this thesis strengthen these hypotheses. 

Even more, other PopPUNK Clusters which share similar properties to PopPUNK Clusters 12 

and 40 can be viewed as having a high potential to either acquire multidrug resistance or to 

facilitate movement of genes in the population. Interestingly, PopPUNK Clusters 12 and 40 

tended to have smaller genomes relative to the rest of the PopPUNK Clusters in the dataset, 

suggesting a small genome is not necessarily an indication of a small gene pool or lower levels 

of HGT (See Section 4.4.4.5)   

 

Particular PopPUNK Clusters shared fewer low-frequency genes with distantly related 

PopPUNK Clusters than expected for their size. This was particularly apparent in PopPUNK 

Clusters 30, 45 and 18 which either belong to Shigella spp. (30, 45) or were not assigned a 

phylogroup using the Clermont typing scheme (18). These same clusters had a much larger 

proportion of “cluster specific core” genes in a single genome and had lost a large number of 

“multi-cluster core genes”. These results indicate that these lineages are evolving in a 

separate trajectory to the rest of the PopPUNK Clusters, with little gene sharing and large 

shifts in their core genome that is specific to them. While on the surface the “cluster specific 

core” genes appear to represent the acquisition of new genetic material, we found that these 

genes are commonly short variants of other genes in the dataset, share a similar functional 

profile to the “dataset core” genes and were an order of magnitude shorter than the “dataset 

core” genes. Hence, these genes likely represent the process of loss of function and gene 

degradation rather than gain of function in these clusters. Indeed, major gene degradation has 

been described in Shigella spp. and thus this is an expected result for PopPUNK Clusters 30 

and 45 [420]. PopPUNK Cluster 18, on the other hand, contains STEC isolates of ST504 which 

has been mistaken for Shigella spp. in phenotypic testing [420]. Additionally, clusters 30 and 

45 have smaller genome sizes relative to the rest of the PopPUNK Clusters, fitting with a 

model of gene-degradation (Chapter 4, Figure 4.10A). PopPUNK Cluster 18, on the other 

hand, has a similar genome size to the rest of the clusters in the dataset. This suggests it is 

undergoing an evolutionary process leading to a phenotype that differs from the rest of the 

dataset and resembles Shigella spp. while maintaining production of shiga-toxin and a large 

genome. 
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The new approach for investigating the pan-genome in this study is simple and based on the 

expansion of the existing approaches however, this analysis provides valuable novel insights 

regarding gene-sharing and evolutionary dynamics of the lineages in this dataset. Future 

studies for pan-genomes analysis can use the insights from this study to use more relevant 

properties beyond the frequency, such as gain and loss rates, clade-association and function, 

to better define the gene-pools in large collections.  
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6 Conclusions and Future Directions 

K. pneumoniae and E. coli are clinically important organisms, which have highly diverse 

populations which include multiple co-circulating lineages across ecological niches and 

possess very large gene pools [9,115–117,120]. As such, there is ongoing emergence of novel 

virulent and multi-drug resistant lineages, led predominantly by acquisition of clinically relevant 

genes via HGT [74,421,422]. In this thesis, the gene pools of these two organisms were 

examined in order to answer questions regarding their diversity, the distribution of the genes 

across lineages and the level of gene sharing between lineages. Firstly, these questions were 

focused on the examination of the distribution of TA systems across a global collection of K. 

pneumoniae isolates. Secondly, the observations from the analysis on TA systems were 

expanded to look at the entire gene pool of a collection of 10,000 E. coli isolates. The 

availability of a large number of publicly available genomes, generated worldwide and in 

different settings was utilised to address these questions. The main conclusions and future 

directions are detailed in a point by point basis below.  

6.1 Other use cases of SLING 

In Chapter 2, SLING was presented as a tool that can be used to search for genes which are 

physically linked in large bacterial genomic datasets. Two use cases were presented. The first, 

to search for TA systems which represent a simple two-component operon, and the second, 

to search for RND efflux pumps which represent more complex operons where the order of 

the genes and operon structure vary across isolates. The usefulness of SLING in describing 

the diversity of these systems was illustrated. An analysis of 90 E. coli genomes revealed 

different distribution patterns of these operons and indicated that some genes undergo more 

gain and loss than others. 

 

SLING was designed such that the search is not limited to the two use cases presented in 

Chapter 2. Searches for other important operons can be constructed as detailed on the SLING 

Wikipedia page (https://github.com/ghoresh11/sling/wiki/create_db). Possible searches could 

include examining the distributions of restriction-modification systems, secretion systems and 

CRISPR systems, all important in their contribution to HGT (See Section 1.2.2.1). Importantly, 

we showed that by applying SLING in Chapter 3 to identify TA systems in K. pneumoniae, we 

discovered novel antitoxins. Hence, applying SLING to search for other gene systems could 

lead to the discovery of other novel genes. Finally, SLING can further be used as a discovery 

tool by applying a reverse search (Figure 2.7). For instance, following the discovery of novel 
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antitoxins, novel antitoxin HMM profiles can be constructed as the query gene in SLING. The 

genes found in proximity in the new reverse search are candidate novel toxins.  

6.2 Further exploration of the biological implications of toxin-

antitoxin pairings, the genetic background of the host and their 

genetic context 

Prior to the investigation presented on TA systems in K. pneumoniae in Chapter 3, these 

systems have mostly been studied on small scales in model organisms [253,335,347–350]. 

The analysis on a global clinical collection showed that while TA systems are all given the 

same term, the toxins of these systems can be classified based on their distribution patterns 

in the dataset, as well as based on the level of diversity of their antitoxin repertoire [345]. In 

addition to this, a high load of orphan antitoxins was observed in the genomes. Finally, some 

toxins were commonly associated with the presence of plasmid replicons, AMR genes or 

virulence genes.  

 

The above conclusions require further experiments to explore their implications. These would 

include testing toxin and antitoxin combinations in order to understand the effect of these 

combinations on the functionality of the operon. This should be tested across different host 

genetic backgrounds, as our analysis found that some toxin-antitoxin pairings are specific to 

a species. The orphan antitoxins should be included in these experiments. These would 

include RNAseq experiments which would shed light on whether these systems, including the 

orphan antitoxins, are expressed in their hosts and under which conditions. This will elucidate 

whether the orphan antitoxins are functional antitoxins which can serve as a protective system 

against infection with other TA systems or otherwise, if their presence changes the 

functionality of other TA operons. The coding sequences in proximity to the orphan antitoxins 

should be further explored as candidates for discovery of novel toxins. Finally, it would be 

interesting to apply long-read sequencing on selected strains to identify the genetic context of 

the TA systems. This would shed light on whether ubiquitous or species associated toxins are 

chromosomally encoded, or whether they are present on plasmids which have persisted 

across the species, as well as whether toxins which were associated with clinically relevant 

genes are present on a plasmid with these genes and helping to maintain them. 
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6.3 Examination of TA systems on even larger scales 

The conclusions presented in Chapter 3 regarding the distribution of TA systems were limited 

to an analysis on the global population of K. pneumoniae. The distribution of these systems 

across other species and genera is still unexplored. Early studies examining the distribution 

of TA systems across the entire European Nucleotide Archive (ENA) using BItsliced Genomic 

Signature Index (BIGSI), a tool which enables to query the ENA easily, in combination with 

SLING [311,423] have been set up. In this study, SLING was applied on over 3,000 genomes, 

strengthening its usability in searching for TA systems across large genomic datasets. This 

type of search is agnostic to species or genus boundaries and examines the distribution of 

these systems across thousands of genomes. This search could be further expanded to 

search for these systems in metagenomic datasets as well. 

6.4 Therapeutic potential of TA systems 

The analysis on TA systems presented in Chapter 3 revealed that TA systems are highly 

abundant in the K. pneumoniae species complex. The discovery of the range of TA systems 

present in clinical isolates can be used as a potential therapeutic against K. pneumoniae 

infections. This avenue of research is particulatly relevant to further explore in K. pneumoniae 

due to the increasing levels of multi-drug resistance and the inability to treat infections. 

Assuming these systems are expressed in the host, and that the expression of the toxin inhibits 

growth or leads to cell death in physiological conditions, new drugs, using peptides or small 

molecules, can be designed to inhibit the interaction between the toxin and the antitoxin [352]. 

The classification of the TA systems based on their distribution patterns, presented in Chapter 

3, would lead to different outcomes based on the TA system being targeted. Targetting of 

ubiquitous or species associated TA systems would lead to growth arrest or death of all 

members of the species complex or one of the species. Alternatively, targettting the sporadic 

TA systems, which were found to be associated with the presence of AMR and virulence genes 

and plasmids, can be targeted to prevent the maintenance of these genes and thus lead to 

their loss. These differences between the TA systems highlight the need to better characterise 

the distribution of these systems across both clinical and non-clinical isolates in order to better 

understand their therapeutic potential. 

6.5 More reliable databases and scalable tools are required 

Through the research presented in this thesis, issues were raised regarding the accessibility 

of available genomic data and metadata, as well as the scalability of existing tools. While tools 
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have been developed to address the research questions presented in this thesis, they were 

either not applicable or not scalable to the size of the datasets used. Existing tools to search 

for TA systems could only be applied on a small number of genomes, and hence SLING was 

developed (Chapter 2) [311]. Prokka, the genome annotation tool, was not originally designed 

for comparative genomics, but rather for the annotation of a single genome (Chapter 4) [293]. 

The pan-genome analysis tool Roary, was designed to be applied on relatively clonal 

populations and had to be modified for the purpose of this thesis (Chapter 4) [305]. 

Furthermore, the data collection process was not straightforward and required programming 

skills and computational resources (Chapter 4). 

 

The dataset of E. coli genomes presented in Chapters 4 and 5 should be made available for 

others to easily access without barriers of computational ability or resources. Ideally, this 

would be an online resource which enables users to query an E. coli genome in order to 

investigate its context in the E. coli pan-genome, for instance, by providing an R Shiny app 

[424]. Otherwise, a gene could be used as a query to investigate its distribution across the 

collection. This can provide the context required when working on a single gene system 

relative to E. coli clinical isolates. 

6.6 More systematic sampling of under-represented E. coli 

lineages 

The E. coli genome collection presented was limited to publicly available data, and hence was 

heavily biased towards clinical isolates causing disease in the developed world. The vast 

majority of isolates were collected from Europe and North America and include almost 

exclusively EHECs and ExPECs. This dataset does not represent natural E. coli populations 

nor does it represent the global clinical burden of E. coli, but rather it represents isolates that 

have been heavily sequenced due to their clinical significance where sequencing is available. 

 

Systematic sampling of E. coli isolates is required to cover the full breadth of the E. coli 

diversity. This includes more sampling from under-represented areas of the world, as well as 

increased sampling of non-pathogenic isolates to better understand commensal E. coli 

populations. One possibility is to expand the research presented to include metagenomic 

assembled E. coli genomes, which could represent commensal populations [425]. 

Additionally, isolates from other hosts and environments beyond human isolates should be 

included. The analysis of these genomes can be compared to the dataset presented in this 

thesis to test whether the same gene distribution or lineages are observed across different 
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niches. When investigating gene movement, it is essential to include commensal E. coli and 

isolates from different environments as these could be facilitating the movement of genes 

between lineages and environments. 

6.7 Further genomic analysis, as well as functional studies, to 

understand the differences and commonalities between E. coli 

lineages 

In Chapter 5 of this thesis, it was revealed that a large part of the accessory genome is in fact 

comprised of genes which are core to one lineage or multiple lineages in the dataset. This 

emphasises the need to expand on traditional pan-genome analyses, as genes which on the 

surface are part of the accessory genome are core to part of the dataset. These genes are 

important both to better understand the evolution of the species, and in their potential in 

diagnostics. 

 

The genes which were identified as core to a subset of the dataset should be further explored 

both in-silico and experimentally for their biological implications. A genomic analysis can be 

used to investigate genes which differ across the lineages and explore their predicted 

functions and what implications their presence and absence might have, followed up by 

functional experiments. The “multi-cluster core” genes should be explored as they represent 

the shifts in the core genome between E. coli lineages. “Multi-cluster core genes” which were 

acquired independently in multiple evolutionary events are interesting to explore as cases of 

parallel evolution. The “cluster specific core” should be further explored as they were only 

observed in a single lineage and were core to that lineage.  

 

For instance, the analysis presented revealed that approximately 100 genes were gained on 

the branch leading to phylogroup B2, and approximately 70 genes were, on the other hand, 

lost on that branch. This could be a result of compensatory relationships between these genes, 

or otherwise, may reveal adaptation of this phylogroup to a particular niche which manifests 

in major changes in the core genome. Furthermore, the genetic context of these genes can 

be explored to better understand whether the shifts in the core genome occurred in a single 

evolutionary event which was beneficial and led to the expansion of this phylogroup, or 

alternatively, whether this was the the result of the accumulation of many changes, spread 

across the genome, which occurred over time. 
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The importance of further investigating these genes is particularly relevant for their potential 

use in diagnostics and epidemiology. Whole genome sequencing is often not available in 

clinical laboratories which need to identify the specific causative agent of an infection, nor are 

they always available during epidemiological investigations. The “cluster specific core” genes 

and “multi-cluster core” genes were only observed in specific lineages and were core to them, 

and therefore should be further investigated for their potential as marker genes to identify any 

of the lineages presented in this thesis using simple assays such as PCR. Importantly, the 

biased nature of the dataset presented is a major caveat to this potential. The lack of 

representation of most E. coli lineages means that we cannot rule out that the lineage specific 

genes identified here are not present in any other member of the species. We also cannot rule 

out that other members of a lineage, not sampled in this study, would possess the lineage 

specific genomes observed in this collection as sampling needs to be expanded to include 

other hosts and geographical locations. This emphasises the need to continue to apply similar 

analyses on much broader collections.  

6.8 Examining the routes of movement of the shared low and 

intermediate frequency genes 

Low frequency genes in the E. coli dataset were frequently gained and lost and their sharing 

was independent of the phylogenetic distance between lineages. A number of lineages were 

identified which shared more of these genes than expected, which were termed “hyper-

sharers”.  

 

The routes of movement of these genes should be further investigated. Understanding the 

precise routes of gene movement in the population would reveal and confirm the hypothesis 

presented that some lineages are facilitating the movement of genes in the population more 

than others.  By understanding this, we could begin to tackle the problem of the introduction 

and propagation of novel resistance and virulence genes in the population. Understanding the 

complete routes by which genes are moving in the population is a harder problem to address, 

especially given that the dataset is biased and not densely sampled. While the bias in the 

dataset and under sampling cannot be resolved without more systematic sampling, this 

question can begin to be tackled in various ways. For instance, comparing gene-trees to 

species trees for the mobile genes could unravel whether the “hyper-sharers” are the source 

of many genes, or whether they are a hub and that genes in the dataset are passing through 

them. Additionally, the genetic context of these genes should be investigated, as a shared 

context would imply that genes are moving on the same element. Examining the co-



 144 

occurrence of these genes across the dataset could shed light on whether some of these 

genes are moving together as a unit. Furthermore, additional genomic analysis should be 

applied on the “hyper-sharers” to look at levels of recombination within these isolates, as well 

as presence of particular MGEs or genes which facilitate HGT that may be contributing to the 

observed property. 

6.9 Further exploration of the rare and intermediate genes 

A large proportion of the E. coli gene pool is represented by rare genes that were only 

observed in a single lineage and observed in a low frequency within that lineage. The function 

of most of these rare genes is unknown. The lineages termed “hyper-sharers” tended to have 

more of these rare genes within a single isolate genome relative to the other lineages in the 

dataset. Additionally, we found genes which were found in approximately 50% of isolates, 

across 50% of the lineages, representing genes which were truly intermediate across the 

collection. When we examined one such gene, it was a short protein with unknown function. 

 

The origin and function of these rare and intermediate genes should be further explored. BIGSI 

can be used to search the ENA for these genes to see if they are present in other genera, in 

addition to searching for them in metagenomic samples. Computational approaches could be 

used to reveal more of their function, for instance via a “guilt-by-association” approach, 

followed by functional experiments. Furthering our understanding of these genes is highly 

relevant. First and foremost, they represent the majority of the E. coli gene pool and they have 

mostly been unexplored. Resistance and pathogenicity, as well as colonisation of different 

niches, are almost exclusively driven by the accessory genome in E. coli, therefore a better 

characterisation of the genes that make up the majority of the gene pool is highly relevant. As 

shown in Chapter 4, many AMR and virulence genes were observed in low or intermediate 

frequencies across the lineages (Figures 4.11, 4.12). This suggests that it is beneficial that 

only a fraction of the population would possess these genes as in this way the potential for 

their propagation exists under selective pressure, yet the metabolic burden of possessing 

them does not inhibit the growth of the whole population. Thus, understanding their function 

is essential in order to understand the full potential of the gene pool. Secondly, more of these 

genes were observed in isolates which tended to share more genes with other lineages- it is 

possible that these genes themselves are contributing to gene movement in the population. 

 
 

To conclude, this thesis sets the basis for a range of future studies. These include examining 

TA systems experimentally to investigate the implications of the work presented here, or 
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otherwise to expand the search even more and examine these systems across more 

organisms. Within E. coli, the high-quality dataset presented sets an opportunity to address 

more questions regarding the movement of genes between lineages, the differences between 

the lineages and the function of these genes. This thesis sets a baseline to begin our 

understanding. With the availability of this resource to the broader scientific community, I hope 

that the future directions mentioned above and more will be addressed by us and others. 
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A Strains, plasmids and oligonucleotides used in 
this study 

  

AmpR: ampicillin resistant.  
CmR: chloramphenicol resistant.   

Internal strain ID Strain name Genotype/Details Source/  
Reference 

Escherichia coli    

MJD841 NEB® 5-alpha 
fhuA2 Δ(argF- lacZ)U169 phoA glnV44 
Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 
endA1 thi- 1 hsdR17 

New England 
Biolabs 

CF323 MG1655 Escherichia coli K-12 MG1655: F– λ– 
ilvG– rfb- 50 rph- 1 

wild type 
strain; Gerdes 
laboratory 
collection 

    

Plasmid name 
 Genotype/ Details Source/Reference  

pNDM220 mini- R1 ori; bla; lacIq; Plac 
promoter; AmpR 

doi.org/ 10.1046/ j.1365- 
2958.1998.00993.x 

 

pBAD33 p15A ori; cat; araC; ParaB 
promoter; CmR 

doi: 10.1128/ jb.177.14.4121- 4130.1995  

pAH154_doc_v2 

Derivative of pNDM220 
encoding the doc toxin of the 
bacteriophage P1 Doc- Phd 
toxin- antitoxin module. Amp 
30 µg/ ml 

this study; the ORF of doc was amplified 
from bacteriophage P1vir with a weak 
RBS (ATTCCTCCaacaattttATG) using 
primers prAH1542 /  prAH1541 and 
ligated into pNDM220 downstream Plac 
after digestion of backbone and insert 
with KpnI /  XhoI. IPTG induction of doc 
expression  
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pAH153_phd_CPH_
v1 

Derivative of pBAD33 
encoding the phd antitoxin of 
the bacteriophage P1 Doc- 
Phd toxin- antitoxin module. 
Cam 25 µg/ ml 

this study; the ORF of phd was amplified 
from bacteriophage P1vir with a strong 
RBS (TCAGGAGGatctctATG) using 
primers prAH1810 /  prAH1811 and 
ligated into pBAD33 downstream ParaB 
after digestion of backbone and insert 
with SacI /  PstI. L-arabinose induction of 
phd expression  

pMJD119 pNDM220 Plac- doc; AmpR This study  

pMJD120 pNDM220 Plac- 7H; AmpR This study  

pMJD121 pNDM220 Plac- 8H; AmpR This study  

pMJD122 pNDM220 Plac- 12H; AmpR This study  

pMJD123 pNDM220 Plac- 18H; AmpR This study  

pMJD124 pNDM220 Plac- 22H; AmpR This study  

pMJD125 pNDM220 Plac- 31H; AmpR This study  

pMJD126 pNDM220 Plac- 27H; AmpR This study  

pMJD127 pNDM220 Plac- 37H; AmpR This study  

pMJD128 pNDM220 Plac- 51H- 39; 
AmpR This study  

pMJD129 pNDM220 Plac- 72H; AmpR This study  

pMJD130 pNDM220 Plac- 61H; AmpR This study  

pMJD131 pNDM220 Plac- 51H- 147; 
AmpR This study  

pMJD132 pNDM220 Plac- 87H; AmpR This study  

pMJD138 pNDM220 Plac- 44H; AmpR This study  

pMJD140 pNDM220 Plac- 54H; AmpR This study  

pMJD142 pBAD33 ParaB- 39P; CmR This study  

pMJD143 pBAD33 ParaB- 44P; CmR This study  

pMJD144 pBAD33 ParaB- 45P; CmR This study  

pMJD145 pBAD33 ParaB- 197P; CmR This study  
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pMJD146 pBAD33 ParaB- phd; CmR This study  

pMJD147 pBAD33 ParaB- 3P; CmR This study  

pMJD148 pBAD33 ParaB- 24P; CmR This study  

pMJD149 pBAD33 ParaB- 26P; CmR This study  

pMJD150 pBAD33 ParaB- 27P; CmR This study  

pMJD151 pBAD33 ParaB- 48P; CmR This study  

pMJD152 pBAD33 ParaB- 52P- 31; 
CmR This study  

pMJD153 pBAD33 ParaB- 62P; CmR This study  

pMJD154 pBAD33 ParaB- 67P; CmR This study  

pMJD155 pBAD33 ParaB- 147P; CmR This study  

pMJD156 pBAD33 ParaB- 168P; CmR This study  

   
 

Primer ID Description Sequence 5'- 3'  

prAH1541 rv. Amplification of doc from 
phage P1vir. XhoI RS 

GCCTTCCCTCGAGCTACTCCGCAGAA
CCATACAA  

prAH1542 fw. Amplification of doc from 
phage P1vir. KpnI RS 

CGAGTGGGTACCATTCCTCCAACAATT
TTATGAGGCATATATCACCGGA  

prAH1810 fw. Amplification of phd from 
phage P1vir. SacI RS 

GTTGTCGAGCTCTCAGGAGGATCTCT
ATGCAATCCATTAACTTCCGT  

prAH1811 rv. Amplification of phd from 
phage P1vir. PstI RS 

CTGGGGTCTGCAGTTATCGGTTAACC
AGTTCCTTG  

prAH_pNDM220  fw. Screening for cloning in 
pNDM220 AAAACAGGAAGGCAAAATGC  

prAH500 rv. Screening for cloning in 
pNDM220 and pBAD33 CTGTTTTATCAGACCGCTTC 

 

prAH501 fw. Screening for cloning in 
pBAD33 CGTCACACTTTGCTATGCC  
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B Identified toxin groups 
 

Name Pfam Profile Type Antitoxins Count Category 

local aa 
identity 

(min-max) 

range 
alignment 

length (min-
max) 

global aa 
identity 

(min-max) 

11H Cpta_toxin IV 35P 258 ubiq 

99.79 
(97.06- 
100.0) 

99.56 (43.0- 
100.0) 

99.3 (43.0- 
100.0) 

5H 
Polyketide_cy

c2 II 15P 258 ubiq 

99.27 
(92.16- 
100.0) 

99.51 (91.0- 
100.0) 

98.9 (87.0- 
100.0) 

34H Fic II 173P/ 34P 255 ubiq 
98.7 (93.0- 

100.0) 

100.0 
(100.0- 
100.0) 

98.52 (93.0- 
100.0) 

10H HD II 

81P/ 112P/ 
32P/ 65P/ 

236P 251 ubiq 

98.27 
(90.68- 
100.0) 

99.37 (52.0- 
100.0) 

97.76 (51.0- 
100.0) 

22H 
GNAT_acetylt

ran II 8P/ 98P 250 ubiq 

99.43 
(95.93- 
100.0) 

100.0 
(100.0- 
100.0) 

99.39 (96.0- 
100.0) 

27H HipA_C II 
59P/ 244P/ 

24P 242 ubiq 

98.16 
(63.33- 
100.0) 

97.59 (9.0- 
100.0) 

97.09 (25.0- 
100.0) 

8H DUF3749 II 12P 236 ubiq 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

17H RelE II 
73P/ 36P/ 

9P 282 
species 

associated 

96.97 
(53.75- 
100.0) 

76.76 (14.0- 
100.0) 

75.08 (10.0- 
100.0) 

7H Fic II 168P/ 3P 240 
species 

associated 

99.29 
(96.72- 
100.0) 

100.0 
(100.0- 
100.0) 

99.16 (97.0- 
100.0) 

21H PIN II 
212P/ 31P/ 

5P 238 
species 

associated 
99.5 (95.31- 

100.0) 
98.33 (41.0- 

100.0) 
97.74 (4.0- 

100.0) 

16H ParE_toxin II 4P/ 7P 235 
species 

associated 

96.15 
(77.66- 
100.0) 

99.98 (77.0- 
100.0) 

96.27 (78.0- 
100.0) 

26H ParE_toxin II 127P/ 1P 230 
species 

associated 

98.02 
(91.43- 
100.0) 

96.1 (58.0- 
100.0) 

94.17 (41.0- 
100.0) 

13H Gp49 II 30P 156 
species 

associated 

97.75 
(90.16- 
100.0) 

94.4 (50.0- 
100.0) 

92.16 (44.0- 
100.0) 

9H Zeta_toxin II 63P/ 11P 95 
species 

associated 

99.23 
(95.97- 
100.0) 

98.94 (95.0- 
100.0) 

98.26 (93.0- 
100.0) 
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2H PemK_toxin II 

115P/ 
171P/ 
101P/ 

146P/ 22P 65 
species 

associated 

87.91 
(72.73- 
100.0) 

100.0 
(100.0- 
100.0) 

87.93 (73.0- 
100.0) 

42H YdaT_toxin II 

119P/ 
133P/ 

111P/ 54P/ 
28P/ 210P/ 

47P 63 
species 

associated 

91.39 
(78.26- 
100.0) 

100.0 
(100.0- 
100.0) 

91.33 (78.0- 
100.0) 

37H AntA II 
26P/ 62P/ 

42P 45 
species 

associated 

86.91 
(36.71- 
100.0) 

74.74 (6.0- 
100.0) 

66.75 (14.0- 
100.0) 

25H Gp49 II 70P/ 77P 40 
species 

associated 

97.94 
(94.92- 
100.0) 

98.75 (75.0- 
100.0) 

96.76 (74.0- 
100.0) 

33H RelE II 155P/ 19P 26 
species 

associated 

86.54 
(70.91- 
100.0) 

97.76 (70.0- 
100.0) 

84.76 (52.0- 
100.0) 

87H HicA_toxin II 45P 8 
species 

associated 
98.08 (95.6- 

100.0) 
97.0 (93.0- 

100.0) 
95.25 (89.0- 

100.0) 

51H HigB_toxin II 147P/ 39P 7 
species 

associated 

88.72 
(71.84- 
100.0) 

76.67 (51.0- 
100.0) 

67.14 (43.0- 
100.0) 

64H Fic II 124P/ 201P 5 
species 

associated 

98.16 
(95.76- 
100.0) 

83.2 (58.0- 
100.0) 

82.0 (55.0- 
100.0) 

18H CcdB II 
143P/ 21P/ 

58P 199 sporadic 

96.65 
(77.78- 
100.0) 

87.27 (16.0- 
100.0) 

86.09 (12.0- 
100.0) 

4H PIN II 

204P/ 6P/ 
238P/ 

240P/ 51P/ 
103P 156 sporadic 

92.87 
(77.78- 
100.0) 

94.84 (36.0- 
100.0) 

90.48 (30.0- 
100.0) 

6H Gp49 II 175P/ 17P 120 sporadic 

99.04 
(93.33- 
100.0) 

99.53 (77.0- 
100.0) 

98.53 (73.0- 
100.0) 

14H Gp49 II 27P 105 sporadic 
99.73 (96.0- 

100.0) 
96.28 (43.0- 

100.0) 
96.17 (42.0- 

100.0) 

23H YdaT_toxin II 

93P/ 232P/ 
123P/ 

117P/ 76P/ 
121P/ 33P/ 

192P/ 
221P/ 

176P/ 80P/ 
61P 98 sporadic 

85.29 
(71.91- 
100.0) 

98.17 (50.0- 
100.0) 

83.97 (41.0- 
100.0) 

15H HigB_toxin II 16P 96 sporadic 
99.9 (99.0- 

100.0) 

100.0 
(100.0- 
100.0) 

99.9 (99.0- 
100.0) 

3H RES II 

92P/ 106P/ 
69P/ 13P/ 

231P 70 sporadic 

98.97 
(94.87- 
100.0) 

99.77 (92.0- 
100.0) 

98.63 (88.0- 
100.0) 
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35H HigB_toxin II 14P 59 sporadic 

99.97 
(99.03- 
100.0) 

100.0 
(100.0- 
100.0) 

99.97 (99.0- 
100.0) 

61H CcdB II 48P 57 sporadic 

98.19 
(94.06- 
100.0) 

98.07 (45.0- 
100.0) 

96.25 (44.0- 
100.0) 

45H CbtA_toxin IV 

74P/ 170P/ 
132P/ 75P/ 

234P/ 
179P/ 38P/ 

157P 46 sporadic 

77.84 
(53.33- 
100.0) 

87.27 (25.0- 
100.0) 

70.49 (22.0- 
100.0) 

62H ParE_toxin II 
95P/ 41P/ 

79P 42 sporadic 

96.39 
(71.11- 
100.0) 

85.09 (67.0- 
100.0) 

81.91 (62.0- 
100.0) 

20H NTP_transf_2 II 

223P/ 
207P/ 66P/ 
205P/ 40P 30 sporadic 

96.74 
(82.81- 
100.0) 

84.87 (20.0- 
100.0) 

84.38 (17.0- 
100.0) 

57H NTP_transf_2 II 29P 27 sporadic 

99.92 
(98.96- 
100.0) 

100.0 
(100.0- 
100.0) 

99.93 (99.0- 
100.0) 

28H Bro- N II 
149P/ 

109P/ 120P 26 sporadic 

68.95 
(41.85- 
100.0) 

98.18 (91.0- 
100.0) 

68.25 (40.0- 
100.0) 

12H RES II 105P/ 46P 26 sporadic 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

52H ParE_toxin II 2P 22 sporadic 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

44H ParE_toxin II 44P/ 23P 19 sporadic 
96.7 (77.55- 

100.0) 
94.36 (49.0- 

100.0) 
91.49 (38.0- 

100.0) 

24H Gp49 II 67P 12 sporadic 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

72H HD_3 II 50P 10 sporadic 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

71H DUF955 II 60P 8 sporadic 

99.35 
(98.86- 
100.0) 

100.0 
(100.0- 
100.0) 

99.43 (99.0- 
100.0) 

60H HipA_C II 233P/ 20P 8 sporadic 

94.75 
(82.77- 
100.0) 

100.0 
(100.0- 
100.0) 

94.75 (83.0- 
100.0) 

41H 
HigB- 

like_toxin II 209P/ 154P 7 sporadic 

98.34 
(94.17- 
100.0) 

100.0 
(100.0- 
100.0) 

98.29 (94.0- 
100.0) 

96H AntA II 91P 6 sporadic 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 
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1H Bro- N II 118P/ 136P 15 rare 

98.83 
(97.31- 
100.0) 

91.62 (80.0- 
100.0) 

90.75 (78.0- 
100.0) 

49H Gp49 II 78P 15 rare 

99.63 
(97.25- 
100.0) 

99.75 (99.0- 
100.0) 

99.35 (97.0- 
100.0) 

70H CbtA_toxin IV 

185P/ 
237P/ 88P/ 
49P/ 174P 13 rare 

87.47 
(60.48- 
100.0) 

59.33 (28.0- 
100.0) 

46.37 (12.0- 
100.0) 

32H AbiEii IV 102P 10 rare 
99.86 (99.3- 

100.0) 

100.0 
(100.0- 
100.0) 

99.8 (99.0- 
100.0) 

40H PemK_toxin II 87P 9 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

19H DUF488 II 181P/ 128P 9 rare 

99.24 
(98.31- 
100.0) 

61.78 (33.0- 
100.0) 

71.64 (34.0- 
99.0) 

29H YdaT_toxin II 

126P/ 
104P/ 68P/ 

182P 8 rare 

88.83 
(74.56- 
100.0) 

92.71 (83.0- 
100.0) 

84.5 (65.0- 
100.0) 

56H YdaT_toxin II 218P/ 99P 8 rare 

95.67 
(91.16- 
100.0) 

85.07 (41.0- 
100.0) 

81.11 (40.0- 
100.0) 

73H YdaT_toxin II 
76P/ 80P/ 

123P 7 rare 
99.39 (98.4- 

100.0) 
93.71 (78.0- 

100.0) 
92.95 (78.0- 

100.0) 

67H Gp49 II 152P 7 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

30H YdaT_toxin II 68P 6 rare 

96.22 
(92.91- 
100.0) 

100.0 
(100.0- 
100.0) 

96.27 (93.0- 
100.0) 

31H HicA_toxin II 52P 6 rare 

96.72 
(93.85- 
100.0) 

100.0 
(100.0- 
100.0) 

96.8 (94.0- 
100.0) 

53H Bro- N II 144P 5 rare 

85.94 
(77.41- 
100.0) 

100.0 
(100.0- 
100.0) 

86.1 (78.0- 
100.0) 

107H Bro- N II 107P 5 rare 

99.16 
(97.89- 
100.0) 

100.0 
(100.0- 
100.0) 

99.2 (98.0- 
100.0) 

115H ParE_toxin II 113P/ 196P 5 rare 

95.11 
(92.05- 
100.0) 

100.0 
(100.0- 
100.0) 

95.1 (92.0- 
100.0) 

106H AbiEii IV 
184P/ 

227P/ 166P 5 rare 

96.24 
(90.37- 
100.0) 

73.9 (61.0- 
100.0) 

66.6 (40.0- 
100.0) 

50H DUF955 II 55P 5 rare 
99.5 (98.75- 

100.0) 

100.0 
(100.0- 
100.0) 

99.6 (99.0- 
100.0) 



 

 181 

86H Fic II 135P/ 43P 5 rare 
99.8 (99.49- 

100.0) 

100.0 
(100.0- 
100.0) 

99.6 (99.0- 
100.0) 

74H AntA II 199P 4 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

109H CcdB II 64P 4 rare 
97.67 (97.2- 

98.13) 

100.0 
(100.0- 
100.0) 

97.5 (97.0- 
98.0) 

131H PemK_toxin II 
178P/ 

158P/ 110P 4 rare 

99.53 
(99.07- 
100.0) 

100.0 
(100.0- 
100.0) 

99.5 (99.0- 
100.0) 

54H Bro- N II 52P/ 197P 4 rare 
94.1 (88.21- 

100.0) 
92.5 (85.0- 

100.0) 
87.17 (75.0- 

100.0) 

48H Gp49 II 134P 3 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

68H Bro- N II 186P/ 139P 3 rare 

100.0 
(100.0- 
100.0) 

94.67 (92.0- 
100.0) 

94.67 (92.0- 
100.0) 

77H 
HigB- 

like_toxin II 164P 3 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100H PemK_toxin II 211P/ 245P 3 rare 

86.96 
(81.82- 
96.51) 

85.33 (78.0- 
100.0) 

74.0 (65.0- 
82.0) 

94H ParE_toxin II 225P/ 214P 3 rare 

85.29 
(77.94- 
100.0) 

76.0 (64.0- 
100.0) 

66.0 (49.0- 
100.0) 

82H ParE_toxin II 189P/ 96P 3 rare 

91.93 
(90.53- 
93.68) 

100.0 
(100.0- 
100.0) 

92.33 (91.0- 
94.0) 

39H HicA_toxin II 193P 3 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

88H AbiEii IV 188P 3 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

118H CcdB II 163P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

63H HD_3 II 202P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

130H Fic II 220P/ 129P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

122H ParE_toxin II 160P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 
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113H YafQ_toxin II 138P 2 rare 

97.56 
(97.56- 
97.56) 

100.0 
(100.0- 
100.0) 

98.0 (98.0- 
98.0) 

123H Fic II 116P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

66H 
Peptidase_M

78 II 222P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

139H YafO_toxin II 190P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

83H PIN II 100P 2 rare 

89.55 
(89.55- 
89.55) 

100.0 
(100.0- 
100.0) 

90.0 (90.0- 
90.0) 

90H HigB_toxin II 183P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

84H DUF955 II 215P 2 rare 

99.47 
(99.47- 
99.47) 

100.0 
(100.0- 
100.0) 

99.0 (99.0- 
99.0) 

93H YafO_toxin II 108P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

65H PemK_toxin II 142P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

133H CbtA_toxin IV 198P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

125H Bro- N II 26P/ 107P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

114H AntA II 150P 2 rare 

98.44 
(98.44- 
98.44) 

100.0 
(100.0- 
100.0) 

98.0 (98.0- 
98.0) 

78H HD II 195P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

126H CbtA_toxin IV 145P 2 rare 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

100.0 
(100.0- 
100.0) 

38H HipA_C II 137P 1 rare NA NA NA 

129H RelE II 131P 1 rare NA NA NA 

141H ParE_toxin II 141P 1 rare NA NA NA 

81H DUF3749 II 167P 1 rare NA NA NA 
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121H HicA_toxin II 206P 1 rare NA NA NA 

89H HD II 140P 1 rare NA NA NA 

111H Zeta_toxin II 156P 1 rare NA NA NA 

92H 
HigB- 

like_toxin II 208P 1 rare NA NA NA 

127H YafQ_toxin II 53P 1 rare NA NA NA 

59H ANT II 97P/ 180P 1 rare NA NA NA 

135H DUF4111 II 247P 1 rare NA NA NA 

97H Fic II 82P 1 rare NA NA NA 

58H Gp49 II 56P 1 rare NA NA NA 

85H HicA_toxin II 172P 1 rare NA NA NA 

128H DUF488 II 219P 1 rare NA NA NA 

120H HD II 194P 1 rare NA NA NA 

112H PIN II 10P 1 rare NA NA NA 

105H PemK_toxin II 187P 1 rare NA NA NA 

148H PemK_toxin II 239P 1 rare NA NA NA 

146H DUF4258 II 162P 1 rare NA NA NA 

137H HipA_C II 89P 1 rare NA NA NA 

104H HicA_toxin II 241P/ 246P 1 rare NA NA NA 

43H PIN II 229P 1 rare NA NA NA 

117H Fic II 230P 1 rare NA NA NA 

145H ParE_toxin II 228P 1 rare NA NA NA 

98H ANT II 161P 1 rare NA NA NA 

102H DUF488 II 191P 1 rare NA NA NA 

99H ParE_toxin II 130P 1 rare NA NA NA 

76H 
HigB- 

like_toxin II 235P 1 rare NA NA NA 
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143H AHSA1 II 85P 1 rare NA NA NA 

91H HipA_C II 25P 1 rare NA NA NA 

110H YdaT_toxin II 151P 1 rare NA NA NA 

47H CbtA_toxin IV 84P 1 rare NA NA NA 

142H HD II 243P 1 rare NA NA NA 

108H HigB_toxin II 125P 1 rare NA NA NA 

95H YafO_toxin II 90P 1 rare NA NA NA 

101H RES II 169P 1 rare NA NA NA 

147H CcdB II 242P 1 rare NA NA NA 

136H ParE_toxin II 224P 1 rare NA NA NA 

69H CbtA_toxin IV 38P/ 217P 1 rare NA NA NA 

132H 
Peptidase_M

78 II 153P 1 rare NA NA NA 

103H CcdB II 159P 1 rare NA NA NA 

36H YdaT_toxin II 213P 1 rare NA NA NA 

124H YdaT_toxin II 114P 1 rare NA NA NA 

138H YafO_toxin II 165P 1 rare NA NA NA 

119H PIN II 6P 1 rare NA NA NA 

134H YafO_toxin II 71P 1 rare NA NA NA 

 

 

  



 

 185 

C Identified antitoxin groups 
 

Name 
Pfam 

Profile Toxin 
Typ

e 

Up- 
stream 
count 

Down
strea

m 
count 

 In 
TADB

? Interpro 

Mean local 
aa identity 
(min-max) 

Mean 
alignment 

length (min-
max) 

Mean global 
aa identity 
(min-max) 

15P 
Polyketide

_cyc2 5H II 0 258 No Ubiquitin 

99.29 
(94.79- 
100.0) 

100.0 (100.0- 
100.0) 

99.32 (95.0- 
100.0) 

35P Cpta_toxin 11H IV 258 0 Yes In TADB 

99.96 
(97.73- 
100.0) 

100.0 (100.0- 
100.0) 

99.97 (98.0- 
100.0) 

34P Fic 34H II 255 0 Yes In TADB 

98.78 
(89.09- 
100.0) 

99.78 (93.0- 
100.0) 

98.57 (85.0- 
100.0) 

8P 
GNAT_ace

tyltran 22H II 0 250 No 

Inner 
membrane 
transporter 

98.66 (90.6- 
100.0) 

99.44 (66.0- 
100.0) 

98.07 (62.0- 
100.0) 

36P RelE 17H II 0 243 Yes In TADB 

99.51 
(81.03- 
100.0) 

99.03 (52.0- 
100.0) 

98.53 (43.0- 
100.0) 

24P HipA_C 27H II 242 0 Yes In TADB 

98.04 
(88.17- 
100.0) 

99.41 (93.0- 
100.0) 

97.55 (85.0- 
100.0) 

3P Fic 7H II 240 0 Yes In TADB 

99.69 
(97.26- 
100.0) 

99.64 (61.0- 
100.0) 

99.45 (61.0- 
100.0) 

9P RelE 17H II 238 0 No None 

95.43 
(85.71- 
100.0) 

100.0 (100.0- 
100.0) 

95.39 (86.0- 
100.0) 

12P DUF3749 8H II 0 236 No DUF 

98.84 
(94.44- 
100.0) 

98.03 (48.0- 
100.0) 

96.96 (47.0- 
100.0) 

5P PIN 21H II 236 0 Yes In TADB 

99.87 
(97.56- 
100.0) 

100.0 (100.0- 
100.0) 

99.89 (98.0- 
100.0) 

7P ParE_toxin 16H II 235 0 Yes In TADB 
99.55 (94.5- 

100.0) 
95.75 (80.0- 

100.0) 
95.37 (77.0- 

100.0) 

1P ParE_toxin 26H II 0 229 No None 

97.23 
(85.45- 
100.0) 

100.0 (100.0- 
100.0) 

97.15 (85.0- 
100.0) 

32P HD 10H II 208 0 No None 

98.29 
(88.04- 
100.0) 

99.84 (99.0- 
100.0) 

98.1 (87.0- 
100.0) 

6P PIN 
119H/ 

4H II 157 0 Yes In TADB 

94.45 
(67.74- 
100.0) 

95.9 (36.0- 
100.0) 

93.91 (32.0- 
100.0) 
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30P Gp49 13H II 0 156 No 
DNA 

binding 

98.75 
(94.95- 
100.0) 

98.59 (58.0- 
100.0) 

97.97 (59.0- 
100.0) 

4P ParE_toxin 16H II 0 153 No None 
91.48 (80.3- 

100.0) 
100.0 (100.0- 

100.0) 
91.31 (80.0- 

100.0) 

21P CcdB 18H II 0 142 No None 

98.37 
(86.57- 
100.0) 

98.07 (88.0- 
100.0) 

96.92 (77.0- 
100.0) 

58P CcdB 18H II 126 0 No None 
98.3 (91.94- 

100.0) 
99.91 (98.0- 

100.0) 
98.16 (92.0- 

100.0) 

17P Gp49 6H II 0 120 No 
DNA 

binding 

99.15 
(94.74- 
100.0) 

100.0 (100.0- 
100.0) 

99.19 (95.0- 
100.0) 

27P Gp49 14H II 0 105 No 
DNA 

binding 

99.59 
(95.65- 
100.0) 

99.5 (74.0- 
100.0) 

99.14 (72.0- 
100.0) 

16P HigB_toxin 15H II 0 96 Yes In TADB 
99.27 (95.0- 

100.0) 
100.0 (100.0- 

100.0) 
99.24 (95.0- 

100.0) 

11P Zeta_toxin 9H II 0 85 No 
ABC 

transporter 
96.52 (64.0- 

100.0) 
72.69 (14.0- 

100.0) 
78.73 (38.0- 

100.0) 

13P RES 3H II 70 0 Yes In TADB 

98.86 
(95.92- 
100.0) 

100.0 (100.0- 
100.0) 

98.84 (96.0- 
100.0) 

14P HigB_toxin 35H II 0 59 Yes In TADB 

99.98 
(99.24- 
100.0) 

99.8 (94.0- 
100.0) 

99.76 (94.0- 
100.0) 

48P CcdB 61H II 57 0 Yes In TADB 

98.55 
(93.06- 
100.0) 

98.14 (73.0- 
100.0) 

97.1 (69.0- 
100.0) 

80P YdaT_toxin 
73H/ 
23H II 54 0 No antitoxin 

87.14 
(71.05- 
100.0) 

96.81 (86.0- 
100.0) 

85.48 (67.0- 
100.0) 

28P YdaT_toxin 42H II 0 50 No None 

99.08 
(93.33- 
100.0) 

100.0 (100.0- 
100.0) 

99.01 (93.0- 
100.0) 

22P 
PemK_toxi

n 2H II 45 0 Yes In TADB 

98.15 
(93.58- 
100.0) 

90.87 (47.0- 
100.0) 

91.31 (46.0- 
100.0) 

62P AntA 37H II 42 0 No 

consensus 
disorder 

prediction 
76.99 (37.5- 

100.0) 
72.79 (21.0- 

100.0) 
69.99 (22.0- 

100.0) 

95P ParE_toxin 62H II 42 0 Yes In TADB 

96.86 
(89.02- 
100.0) 

100.0 (100.0- 
100.0) 

96.79 (89.0- 
100.0) 

70P Gp49 25H II 40 0 No None 

94.13 
(86.96- 
100.0) 

79.86 (58.0- 
100.0) 

74.98 (47.0- 
100.0) 

74P CbtA_toxin 45H IV 39 0 No antitoxin 

82.66 
(70.37- 
100.0) 

93.19 (74.0- 
100.0) 

77.99 (58.0- 
100.0) 
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77P Gp49 25H II 0 39 No None 
98.89 (96.0- 

100.0) 
98.26 (67.0- 

100.0) 
97.03 (64.0- 

100.0) 

47P YdaT_toxin 42H II 37 0 No None 

99.85 
(97.18- 
100.0) 

100.0 (100.0- 
100.0) 

99.89 (97.0- 
100.0) 

73P RelE 17H II 32 0 No None 
93.8 (57.32- 

100.0) 
90.54 (54.0- 

100.0) 
86.26 (47.0- 

100.0) 

26P AntA 
37H/ 
125H II 0 30 No DUF 

92.9 (76.27- 
100.0) 

100.0 (100.0- 
100.0) 

92.91 (76.0- 
100.0) 

29P 
NTP_transf

_2 57H II 0 27 Yes In TADB 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

105P RES 12H II 0 26 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

46P RES 12H II 26 0 No None 
99.7 (96.08- 

100.0) 
100.0 (100.0- 

100.0) 
99.69 (96.0- 

100.0) 

19P RelE 33H II 0 25 Yes In TADB 

90.64 
(78.72- 
100.0) 

98.48 (81.0- 
100.0) 

89.43 (65.0- 
100.0) 

76P YdaT_toxin 
73H/ 
23H II 0 25 No 

consensus 
disorder 

prediction 
74.64 (44.3- 

100.0) 
79.09 (24.0- 

100.0) 
59.88 (16.0- 

100.0) 

81P HD 10H II 24 0 No None 

98.87 
(96.36- 
100.0) 

100.0 (100.0- 
100.0) 

98.76 (96.0- 
100.0) 

109P Bro- N 28H II 22 0 No 

regulation 
of 

transcriptio
n 

94.63 
(85.45- 
100.0) 

95.92 (92.0- 
100.0) 

91.18 (78.0- 
100.0) 

2P ParE_toxin 52H II 22 0 Yes In TADB 

99.34 
(98.73- 
100.0) 

100.0 (100.0- 
100.0) 

99.48 (99.0- 
100.0) 

40P 
NTP_transf

_2 20H II 21 0 No DUF 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

101P 
PemK_toxi

n 2H II 20 0 Yes In TADB 

98.04 
(95.29- 
100.0) 

100.0 (100.0- 
100.0) 

97.82 (95.0- 
100.0) 

44P ParE_toxin 44H II 19 0 No None 

97.59 
(80.46- 
100.0) 

99.05 (91.0- 
100.0) 

96.85 (73.0- 
100.0) 

65P HD 10H II 18 0 No None 

98.47 
(95.51- 
100.0) 

100.0 (100.0- 
100.0) 

98.64 (96.0- 
100.0) 

23P ParE_toxin 44H II 0 16 No None 

96.56 
(84.75- 
100.0) 

98.52 (88.0- 
100.0) 

95.28 (76.0- 
100.0) 
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41P ParE_toxin 62H II 0 15 No None 

99.01 
(96.67- 
100.0) 

95.33 (65.0- 
100.0) 

94.36 (62.0- 
100.0) 

78P Gp49 49H II 0 15 Yes In TADB 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

67P Gp49 24H II 0 12 Yes In TADB 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

68P YdaT_toxin 
30H/ 
29H II 0 12 No None 

90.35 
(80.95- 
100.0) 

99.39 (98.0- 
100.0) 

89.61 (80.0- 
100.0) 

136P Bro- N 1H II 0 11 No None 

99.77 
(98.72- 
100.0) 

100.0 (100.0- 
100.0) 

99.82 (99.0- 
100.0) 

54P YdaT_toxin 42H II 11 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

61P YdaT_toxin 23H II 11 0 No antitoxin 

84.86 
(73.61- 
100.0) 

98.73 (93.0- 
100.0) 

84.45 (70.0- 
100.0) 

93P YdaT_toxin 23H II 11 0 No None 

99.37 
(98.85- 
100.0) 

100.0 (100.0- 
100.0) 

99.45 (99.0- 
100.0) 

102P AbiEii 32H IV 0 10 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

50P HD_3 72H II 0 10 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

51P PIN 4H II 0 10 No None 

97.94 
(93.83- 
100.0) 

100.0 (100.0- 
100.0) 

97.96 (94.0- 
100.0) 

63P Zeta_toxin 9H II 10 0 No None 
96.3 (90.74- 

100.0) 
100.0 (100.0- 

100.0) 
96.24 (91.0- 

100.0) 

33P YdaT_toxin 23H II 9 0 No antitoxin 

99.12 
(97.37- 
100.0) 

100.0 (100.0- 
100.0) 

99.25 (97.0- 
100.0) 

49P CbtA_toxin 70H IV 9 0 No antitoxin 

94.38 
(88.23- 
100.0) 

100.0 (100.0- 
100.0) 

94.28 (88.0- 
100.0) 

87P 
PemK_toxi

n 40H II 9 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

92P RES 3H II 0 9 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

123P YdaT_toxin 
73H/ 
23H II 8 0 No antitoxin 

93.76 (80.0- 
100.0) 

100.0 (100.0- 
100.0) 

93.79 (80.0- 
100.0) 
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132P CbtA_toxin 45H IV 0 8 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

146P 
PemK_toxi

n 2H II 0 8 No None 

100.0 
(100.0- 
100.0) 

86.5 (46.0- 
100.0) 

86.5 (46.0- 
100.0) 

168P Fic 7H II 0 8 No None 

96.12 
(87.72- 
100.0) 

100.0 (100.0- 
100.0) 

95.54 (86.0- 
100.0) 

42P AntA 37H II 0 8 No None 

89.29 
(73.68- 
100.0) 

97.86 (96.0- 
100.0) 

87.71 (72.0- 
100.0) 

45P HicA_toxin 87H II 0 8 Yes In TADB 

99.79 
(99.16- 
100.0) 

100.0 (100.0- 
100.0) 

99.75 (99.0- 
100.0) 

60P DUF955 71H II 8 0 No 
DNA 

binding 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

107P Bro- N 
125H/ 
107H II 7 0 No prophage 

91.16 
(78.57- 
100.0) 

100.0 (100.0- 
100.0) 

91.14 (79.0- 
100.0) 

152P Gp49 67H II 0 7 Yes In TADB 
99.7 (98.95- 

100.0) 
100.0 (100.0- 

100.0) 
99.71 (99.0- 

100.0) 

181P DUF488 19H II 0 7 No None 

100.0 
(100.0- 
100.0) 

93.71 (78.0- 
100.0) 

93.71 (78.0- 
100.0) 

20P HipA_C 60H II 7 0 No 
DNA 

binding 

98.25 
(95.92- 
100.0) 

100.0 (100.0- 
100.0) 

98.29 (96.0- 
100.0) 

52P HicA_toxin 
54H/ 
31H II 6 1 No DUF 

98.77 
(97.65- 
100.0) 

92.38 (84.0- 
100.0) 

91.33 (82.0- 
100.0) 

99P YdaT_toxin 56H II 0 7 No None 

98.83 
(95.89- 
100.0) 

100.0 (100.0- 
100.0) 

98.86 (96.0- 
100.0) 

104P YdaT_toxin 29H II 6 0 No antitoxin 

98.58 
(97.59- 
100.0) 

95.2 (92.0- 
100.0) 

94.0 (90.0- 
100.0) 

111P YdaT_toxin 42H II 6 0 No 
DNA 

binding 

98.85 
(97.33- 
100.0) 

100.0 (100.0- 
100.0) 

99.0 (97.0- 
100.0) 

154P 
HigB- 

like_toxin 41H II 0 6 No None 

95.36 
(88.57- 
100.0) 

100.0 (100.0- 
100.0) 

95.4 (89.0- 
100.0) 

91P AntA 96H II 6 0 No prophage 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

121P YdaT_toxin 23H II 5 0 No antitoxin 

100.0 
(100.0- 
100.0) 

99.6 (99.0- 
100.0) 

99.6 (99.0- 
100.0) 
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124P Fic 64H II 5 0 No 

consensus 
disorder 

prediction 

92.36 
(82.02- 
100.0) 

100.0 (100.0- 
100.0) 

92.4 (82.0- 
100.0) 

135P Fic 86H II 0 5 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

144P Bro- N 53H II 5 0 No None 

98.42 
(96.05- 
100.0) 

100.0 (100.0- 
100.0) 

98.4 (96.0- 
100.0) 

39P HigB_toxin 51H II 0 5 No 
DNA 

binding 

99.65 
(98.65- 
100.0) 

81.6 (54.0- 
100.0) 

81.2 (53.0- 
100.0) 

43P Fic 86H II 5 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

55P DUF955 50H II 5 0 No 
DNA 

binding 

99.32 
(98.29- 
100.0) 

99.2 (98.0- 
100.0) 

98.8 (97.0- 
100.0) 

66P DUF4111 20H II 5 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

103P PIN 4H II 0 4 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

110P 
PemK_toxi

n 131H II 4 0 No None 

92.94 
(88.23- 
100.0) 

100.0 (100.0- 
100.0) 

92.67 (88.0- 
100.0) 

118P Bro- N 1H II 0 4 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

133P YdaT_toxin 42H II 4 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

157P CbtA_toxin 45H IV 0 4 No None 

93.33 
(87.69- 
100.0) 

100.0 (100.0- 
100.0) 

93.5 (88.0- 
100.0) 

173P Fic 34H II 0 4 No 

Glutamine 
amidotrans

ferase 

99.18 
(98.36- 
100.0) 

94.5 (91.0- 
99.0) 

94.0 (90.0- 
99.0) 

199P AntA 74H II 4 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

38P CbtA_toxin 
45H/ 
69H IV 4 0 No antitoxin 

79.12 (73.0- 
84.61) 

91.17 (84.0- 
100.0) 

71.83 (60.0- 
84.0) 

64P CcdB 109H II 4 0 No 

consensus 
disorder 

prediction 

97.58 
(95.16- 
100.0) 

100.0 (100.0- 
100.0) 

97.5 (95.0- 
100.0) 

98P 
GNAT_ace

tyltran 22H II 4 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 
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113P ParE_toxin 115H II 3 0 Yes In TADB 

88.55 
(87.84- 
89.19) 

86.33 (80.0- 
93.0) 

77.33 (72.0- 
84.0) 

117P YdaT_toxin 23H II 3 0 No antitoxin 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

119P YdaT_toxin 42H II 3 0 No None 
99.1 (98.65- 

100.0) 
100.0 (100.0- 

100.0) 
99.33 (99.0- 

100.0) 

134P Gp49 48H II 0 3 Yes In TADB 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

164P 
HigB- 

like_toxin 77H II 3 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

185P CbtA_toxin 70H IV 3 0 No 
toxin 

domain 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

188P AbiEii 88H IV 3 0 No 

regulation 
of 

transcriptio
n 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

193P HicA_toxin 39H II 3 0 No DUF 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

197P Bro- N 54H II 3 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

88P CbtA_toxin 70H IV 0 3 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

96P ParE_toxin 82H II 3 0 Yes In TADB 

90.36 
(86.75- 
92.77) 

100.0 (100.0- 
100.0) 

90.67 (87.0- 
93.0) 

100P PIN 83H II 2 0 No antitoxin 

86.91 
(86.91- 
86.91) 

99.0 (99.0- 
99.0) 

86.0 (86.0- 
86.0) 

108P YafO_toxin 93H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

116P Fic 123H II 2 0 No antitoxin 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

120P Bro- N 28H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

126P YdaT_toxin 29H II 2 0 No None 

95.51 
(95.51- 
95.51) 

100.0 (100.0- 
100.0) 

96.0 (96.0- 
96.0) 

128P DUF488 19H II 2 0 No DUF 

97.89 
(97.89- 
97.89) 

92.0 (92.0- 
92.0) 

90.0 (90.0- 
90.0) 
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138P YafQ_toxin 113H II 0 2 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

142P 
PemK_toxi

n 65H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

145P CbtA_toxin 126H IV 0 2 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

147P HigB_toxin 51H II 0 2 No 
DNA 

binding 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

149P Bro- N 28H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

150P AntA 114H II 2 0 No 

Endodeoxy
ribonuclea

se 

97.73 
(97.73- 
97.73) 

100.0 (100.0- 
100.0) 

98.0 (98.0- 
98.0) 

160P ParE_toxin 122H II 2 0 No 
DNA 

integration 

98.65 
(98.65- 
98.65) 

61.0 (61.0- 
61.0) 

60.0 (60.0- 
60.0) 

163P CcdB 118H II 2 0 No antitoxin 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

166P AbiEii 106H IV 0 2 No None 

96.49 
(96.49- 
96.49) 

64.0 (64.0- 
64.0) 

63.0 (63.0- 
63.0) 

179P CbtA_toxin 45H IV 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

183P HigB_toxin 90H II 2 0 No None 

98.44 
(98.44- 
98.44) 

100.0 (100.0- 
100.0) 

98.0 (98.0- 
98.0) 

184P AbiEii 106H IV 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

186P Bro- N 68H II 2 0 No None 
96.3 (96.3- 

96.3) 
100.0 (100.0- 

100.0) 
96.0 (96.0- 

96.0) 

190P YafO_toxin 139H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

192P YdaT_toxin 23H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

195P HD 78H II 0 2 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

196P ParE_toxin 115H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 
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198P CbtA_toxin 133H IV 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

202P HD_3 63H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

207P DUF4111 20H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

210P YdaT_toxin 42H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

211P 
PemK_toxi

n 100H II 2 0 No antitoxin 

87.65 
(87.65- 
87.65) 

100.0 (100.0- 
100.0) 

88.0 (88.0- 
88.0) 

214P ParE_toxin 94H II 0 2 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

215P DUF955 84H II 2 0 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

222P 
Peptidase_

M78 66H II 0 2 No None 

100.0 
(100.0- 
100.0) 

100.0 (100.0- 
100.0) 

100.0 (100.0- 
100.0) 

232P YdaT_toxin 23H II 0 2 No None 

98.84 
(98.84- 
98.84) 

100.0 (100.0- 
100.0) 

99.0 (99.0- 
99.0) 

31P PIN 21H II 2 0 No 
toxin 

domain 

98.08 
(98.08- 
98.08) 

98.0 (98.0- 
98.0) 

96.0 (96.0- 
96.0) 

69P RES 3H II 0 2 No None 

100.0 
(100.0- 
100.0) 

96.0 (96.0- 
96.0) 

96.0 (96.0- 
96.0) 

106P RES 3H II 0 1 No None 100 100 100 

10P PIN 112H II 0 1 No 

consensus 
disorder 

prediction 100 100 100 

112P HD 10H II 1 0 No None 100 100 100 

114P YdaT_toxin 124H II 1 0 No 
DNA 

binding 100 100 100 

115P 
PemK_toxi

n 2H II 0 1 No None 100 100 100 

125P HigB_toxin 108H II 0 1 No None 100 100 100 

127P ParE_toxin 26H II 0 1 Yes In TADB 100 100 100 

129P Fic 130H II 0 1 No None 100 100 100 
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130P ParE_toxin 99H II 1 0 Yes In TADB 100 100 100 

131P RelE 129H II 0 1 Yes In TADB 100 100 100 

137P HipA_C 38H II 1 0 Yes In TADB 100 100 100 

139P Bro- N 68H II 0 1 No None 100 100 100 

140P HD 89H II 1 0 No None 100 100 100 

141P ParE_toxin 141H II 1 0 Yes In TADB 100 100 100 

143P CcdB 18H II 0 1 No 
toxin 

domain 100 100 100 

151P YdaT_toxin 110H II 1 0 No antitoxin 100 100 100 

153P 
Peptidase_

M78 132H II 1 0 No 
DNA 

binding 100 100 100 

155P RelE 33H II 1 0 No 

consensus 
disorder 

prediction 100 100 100 

156P Zeta_toxin 111H II 1 0 No 
ABC 

transporter 100 100 100 

158P 
PemK_toxi

n 131H II 0 1 No None 100 100 100 

159P CcdB 103H II 1 0 No antitoxin 100 100 100 

161P ANT 98H II 1 0 No 

Endodeoxy
ribonuclea

se 100 100 100 

162P DUF4258 146H II 0 1 No None 100 100 100 

165P YafO_toxin 138H II 1 0 No None 100 100 100 

167P DUF3749 81H II 0 1 No 

consensus 
disorder 

prediction 100 100 100 

169P RES 101H II 0 1 No None 100 100 100 

170P CbtA_toxin 45H IV 0 1 No None 100 100 100 

171P 
PemK_toxi

n 2H II 0 1 No None 100 100 100 

172P HicA_toxin 85H II 0 1 No antitoxin 100 100 100 

174P CbtA_toxin 70H IV 1 0 No antitoxin 100 100 100 

175P Gp49 6H II 1 0 No 

consensus 
disorder 

prediction 100 100 100 
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176P YdaT_toxin 23H II 1 0 No None 100 100 100 

178P 
PemK_toxi

n 131H II 0 1 No None 100 100 100 

180P ANT 59H II 1 0 No prophage 100 100 100 

182P YdaT_toxin 29H II 0 1 No None 100 100 100 

187P 
PemK_toxi

n 105H II 1 0 Yes In TADB 100 100 100 

189P ParE_toxin 82H II 0 1 No None 100 100 100 

191P DUF488 102H II 1 0 No 

consensus 
disorder 

prediction 100 100 100 

194P HD 120H II 1 0 No None 100 100 100 

201P Fic 64H II 0 1 No None 100 100 100 

204P PIN 4H II 0 1 No None 100 100 100 

205P DUF4111 20H II 1 0 No None 100 100 100 

206P HicA_toxin 121H II 1 0 No DUF 100 100 100 

208P 
HigB- 

like_toxin 92H II 0 1 No None 100 100 100 

209P 
HigB- 

like_toxin 41H II 0 1 No None 100 100 100 

212P PIN 21H II 0 1 No 
toxin 

domain 100 100 100 

213P YdaT_toxin 36H II 0 1 No None 100 100 100 

217P CbtA_toxin 69H IV 0 1 No None 100 100 100 

218P YdaT_toxin 56H II 0 1 No None 100 100 100 

219P DUF488 128H II 0 1 No None 100 100 100 

220P Fic 130H II 0 1 No None 100 100 100 

221P YdaT_toxin 23H II 1 0 No None 100 100 100 

223P DUF4111 20H II 0 1 No None 100 100 100 

224P ParE_toxin 136H II 1 0 Yes In TADB 100 100 100 

225P ParE_toxin 94H II 1 0 No None 100 100 100 
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227P AbiEii 106H IV 1 0 No None 100 100 100 

228P ParE_toxin 145H II 1 0 No None 100 100 100 

229P PIN 43H II 1 0 Yes In TADB 100 100 100 

230P Fic 117H II 1 0 No None 100 100 100 

231P RES 3H II 0 1 No None 100 100 100 

233P HipA_C 60H II 1 0 No None 100 100 100 

234P CbtA_toxin 45H IV 0 1 No None 100 100 100 

235P 
HigB- 

like_toxin 76H II 0 1 No antitoxin 100 100 100 

236P HD 10H II 0 1 No None 100 100 100 

237P CbtA_toxin 70H IV 0 1 No None 100 100 100 

238P PIN 4H II 0 1 No None 100 100 100 

239P 
PemK_toxi

n 148H II 0 1 No None 100 100 100 

240P PIN 4H II 0 1 No None 100 100 100 

241P HicA_toxin 104H II 1 0 No None 100 100 100 

242P CcdB 147H II 1 0 Yes In TADB 100 100 100 

243P HD 142H II 0 1 No 
toxin 

domain 100 100 100 

244P 
Couple_hip

A 27H II 0 1 No None 100 100 100 

245P 
PemK_toxi

n 100H II 1 0 No None 100 100 100 

246P HicA_toxin 104H II 0 1 Yes In TADB 100 100 100 

247P DUF4111 135H II 1 0 No 

consensus 
disorder 

prediction 100 100 100 

25P HipA_C 91H II 1 0 No None 100 100 100 

53P YafQ_toxin 127H II 1 0 Yes In TADB 100 100 100 

56P Gp49 58H II 0 1 Yes In TADB 100 100 100 

59P HipA_C 27H II 0 1 No None 100 100 100 
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71P YafO_toxin 134H II 1 0 No None 100 100 100 

75P CbtA_toxin 45H IV 1 0 No None 100 100 100 

79P ParE_toxin 62H II 0 1 No None 100 100 100 

82P Fic 97H II 1 0 Yes In TADB 100 100 100 

84P CbtA_toxin 47H IV 0 1 No None 100 100 100 

85P AHSA1 143H II 1 0 No 

consensus 
disorder 

prediction 100 100 100 

89P HipA_C 137H II 0 1 No 
DNA 

binding 100 100 100 

90P YafO_toxin 95H II 1 0 No 

consensus 
disorder 

prediction 100 100 100 

97P ANT 59H II 0 1 No None 100 100 100 
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D Identified orphan antitoxin groups 
 

ID 
Total 

Orphans 

K. 
pneumoni
ae sensu 

stricto  

K. 
quasipneu

moniae   
K. 

variicola  Predicted function 
Original Toxin 

Domain 
Toxin 
type 

104P 1 0 1 0 antitoxin YdaT_toxin II 

106P 59 58 1 0 None RES II 

107P 34 30 3 1 prophage Bro-N II 

109P 3 3 0 0 
regulation of 
transcription Bro-N II 

10P 2 2 0 0 
consensus disorder 

prediction PIN II 

114P 10 5 5 0 DNA binding YdaT_toxin II 

115P 36 0 19 17 None PemK_toxin II 

118P 135 135 0 0 None Bro-N II 

11P 1 1 0 0 ABC transporter Zeta_toxin II 

120P 2 1 1 0 None Bro-N II 

124P 248 219 15 14 
consensus disorder 

prediction Fic II 

126P 1 0 1 0 None YdaT_toxin II 

127P 28 8 19 1 In TADB ParE_toxin II 

128P 8 6 0 2 DUF DUF488 II 

129P 2 0 2 0 None Fic II 

12P 11 10 0 1 DUF DUF3749 II 

132P 5 5 0 0 None CbtA_toxin IV 

134P 6 6 0 0 In TADB Gp49 II 

136P 47 47 0 0 None Bro-N II 

137P 2 2 0 0 In TADB HipA_C II 
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139P 8 4 4 0 None Bro-N II 

13P 25 21 4 0 In TADB RES II 

142P 2 2 0 0 None PemK_toxin II 

143P 110 109 0 1 toxin domain CcdB II 

144P 2 1 1 0 None Bro-N II 

146P 3 3 0 0 None PemK_toxin II 

14P 2 2 0 0 In TADB HigB_toxin II 

150P 13 12 0 1 
Endodeoxyribonuclea

se AntA II 

156P 30 27 0 3 ABC transporter Zeta_toxin II 

15P 1 1 0 0 Ubiquitin 
Polyketide_cyc

2 II 

160P 3 3 0 0 DNA integration ParE_toxin II 

161P 77 69 2 6 
Endodeoxyribonuclea

se ANT II 

162P 4 4 0 0 None DUF4258 II 

166P 8 8 0 0 None AbiEii IV 

167P 37 32 0 5 
consensus disorder 

prediction DUF3749 II 

16P 1 1 0 0 In TADB HigB_toxin II 

172P 1 1 0 0 antitoxin HicA_toxin II 

173P 3 3 0 0 
Glutamine 

amidotransferase Fic II 

181P 21 19 2 0 None DUF488 II 

184P 195 179 0 16 None AbiEii IV 

185P 6 2 2 2 toxin domain CbtA_toxin IV 

188P 1 1 0 0 
regulation of 
transcription AbiEii IV 

191P 1 1 0 0 
consensus disorder 

prediction DUF488 II 

194P 4 4 0 0 None HD II 

195P 6 5 0 1 None HD II 
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19P 1 0 0 1 In TADB RelE II 

1P 10 9 0 1 None ParE_toxin II 

202P 12 12 0 0 None HD_3 II 

204P 4 2 0 2 None PIN II 

205P 2 2 0 0 None DUF4111 II 

206P 1 1 0 0 DUF HicA_toxin II 

207P 3 3 0 0 None DUF4111 II 

212P 1 0 0 1 toxin domain PIN II 

214P 1 1 0 0 None ParE_toxin II 

21P 42 42 0 0 None CcdB II 

224P 2 2 0 0 In TADB ParE_toxin II 

225P 2 2 0 0 None ParE_toxin II 

22P 8 7 0 1 In TADB PemK_toxin II 

231P 123 114 6 3 None RES II 

233P 1 1 0 0 None HipA_C II 

236P 1 0 0 1 None HD II 

238P 6 5 1 0 None PIN II 

23P 1 1 0 0 None ParE_toxin II 

243P 2 2 0 0 toxin domain HD II 

244P 1 1 0 0 None Couple_hipA II 

246P 5 5 0 0 In TADB HicA_toxin II 

24P 17 16 0 1 In TADB HipA_C II 

26P 2 1 1 0 DUF AntA II 

29P 1 1 0 0 In TADB NTP_transf_2 II 

30P 2 2 0 0 DNA binding Gp49 II 
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32P 7 6 1 0 None HD II 

34P 2 2 0 0 In TADB Fic II 

35P 1 1 0 0 In TADB Cpta_toxin II 

36P 6 5 0 1 In TADB RelE II 

38P 2 2 0 0 antitoxin CbtA_toxin IV 

39P 92 80 9 3 DNA binding HigB_toxin II 

3P 1 0 0 1 In TADB Fic II 

40P 4 4 0 0 DUF DUF4111 II 

43P 1 1 0 0 None Fic II 

45P 45 45 0 0 In TADB HicA_toxin II 

49P 2 0 2 0 antitoxin CbtA_toxin IV 

4P 10 10 0 0 None ParE_toxin II 

51P 2 2 0 0 None PIN II 

58P 123 123 0 0 None CcdB II 

59P 251 214 19 18 None HipA_C II 

60P 1 1 0 0 DNA binding DUF955 II 

62P 1 1 0 0 
consensus disorder 

prediction AntA II 

63P 8 0 0 8 None Zeta_toxin II 

66P 80 72 8 0 None DUF4111 II 

68P 2 0 2 0 None YdaT_toxin II 

6P 4 4 0 0 In TADB PIN II 

70P 1 0 1 0 None Gp49 II 

73P 16 13 3 0 None RelE II 

74P 1 1 0 0 antitoxin CbtA_toxin IV 

75P 12 7 4 1 None CbtA_toxin IV 
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76P 18 18 0 0 
consensus disorder 

prediction YdaT_toxin II 

77P 2 0 1 1 None Gp49 II 

78P 1 1 0 0 In TADB Gp49 II 

79P 60 52 6 2 None ParE_toxin II 

7P 11 9 2 0 In TADB ParE_toxin II 

80P 1 0 1 0 antitoxin YdaT_toxin II 

89P 18 0 0 18 DNA binding HipA_C II 

91P 4 3 1 0 prophage AntA II 

92P 5 5 0 0 None RES II 

9P 2 1 1 0 None RelE II 
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E Summary of E. coli PopPUNK Clusters 
 
 
PopPUNK 

Cluster 
Genomes Median 

Length 
Median 
Genes 

Phylo- 
group 

Isolation Continents STs Pathotypes MDR 

1 3266 5.37 5064 E unknown/ 
other 

(0.97); 
faeces 
(0.03) 

Europe 
(0.94); 
North 

America 
(0.05) 

11 
(0.93); 

11~ 
(0.03) 

aEPEC/ 
EPEC (0.05); 
EHEC (0.95) 

No 

2 781 5.16 4844 B2 faeces 
(0.36); 
blood 
(0.31); 
urine 

(0.24); 
unknown/ 

other 
(0.1) 

Europe 
(0.73); nd 

(0.12); 
North 

America 
(0.11); 

Oceania 
(0.03) 

131 
(0.99) 

ExPEC 
(0.54); ND 

(0.46) 

Yes 

3 463 5.13 4738 B2 blood 
(0.7); 

unknown/ 
other 

(0.17); 
urine 
(0.12) 

Europe 
(0.85); 
North 

America 
(0.11); nd 

(0.03) 

73 
(0.93) 

ExPEC 
(0.83); ND 

(0.16); STEC 
(0.01) 

No 

4 363 5.13 4814 B2 blood 
(0.61); 

unknown/ 
other 

(0.17); 
urine 

(0.13); 
faeces 
(0.08) 

Europe 
(0.75); 
North 

America 
(0.22) 

95 
(0.79); 

416 
(0.07); 

421 
(0.03); 

95~ 
(0.03) 

ExPEC 
(0.75); 
EXPEC 

(0.01); ND 
(0.24) 

No 

5 237 5.42 5195 B1 unknown/ 
other 

(0.69); 
faeces 
(0.31) 

North 
America 
(0.63); 
Europe 
(0.33) 

17 
(0.78); 
1967 

(0.11); 
386 

(0.04); 
17~ 

(0.03) 

aEPEC/ 
EPEC (0.04); 
EHEC (0.95); 
STEC (0.01) 

No 

6 239 5.55 5347 B1 unknown/ 
other 

(0.59); 
faeces 
(0.41) 

North 
America 
(0.67); 
Europe 
(0.31) 

21 
(0.87); 

29 
(0.08) 

aEPEC/ 
EPEC (0.04); 
EHEC (0.94); 
STEC (0.01) 

No 

7 174 5.26 4924.5 D blood 
(0.72); 

Europe 
(0.83); 

69 
(0.94); 

EAEC (0.02); 
ExPEC 

Yes 
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unknown/ 
other 
(0.2); 
urine 
(0.07) 

North 
America 

(0.12); nd 
(0.05) 

106 
(0.03) 

(0.79); 
EXPEC 

(0.01); ND 
(0.19) 

8 146 5.47 5178.5 B1 unknown/ 
other 

(0.79); 
faeces 
(0.21) 

Europe 
(0.75); 
North 

America 
(0.25) 

442 
(0.85); 
442~ 

(0.06); 
7714 
(0.05) 

ND (0.06); 
STEC (0.94) 

No 

9 124 5.38 5118 B1 unknown/ 
other 
(0.99) 

Europe 
(0.98); 
North 

America 
(0.02) 

33 
(0.84); 

33~ 
(0.13) 

ND (0.02); 
STEC (0.98) 

No 

10 104 5.29 4987 E unknown/ 
other 

(0.89); 
faeces 
(0.11) 

Europe 
(0.74); 
North 

America 
(0.24) 

32 
(0.87); 

137 
(0.08); 

32~ 
(0.04) 

aEPEC/ 
EPEC (0.1); 
EHEC (0.9) 

No 

11 106 5.12 4740 B2 blood 
(0.48); 
urine 

(0.34); 
unknown/ 

other 
(0.16) 

Europe 
(0.71); 
North 

America 
(0.27) 

127 
(0.91); 
5337 
(0.03) 

EAEC (0.01); 
ExPEC 
(0.83); 
EXPEC 

(0.02); ND 
(0.14) 

No 

12 92 4.87 4540 A unknown/ 
other 
(0.7); 

faeces 
(0.21); 
blood 
(0.05); 
urine 
(0.04) 

Europe 
(0.73); 
Africa 
(0.11); 
North 

America 
(0.07); 
South 

America 
(0.05); Asia 
(0.02); nd 

(0.02) 

10 
(0.76); 

43 
(0.08); 
4305 

(0.05); 
5353 

(0.03); 
10~ 

(0.02) 

aEPEC/ 
EPEC (0.24); 
EAEC (0.29); 
EAEC+STEC 
(0.02); ETEC 

(0.01); 
ExPEC 

(0.11); ND 
(0.24); STEC 

(0.1) 

No 

13 110 5.16 4801.5 B2 blood 
(0.65); 

unknown/ 
other 

(0.18); 
urine 
(0.15) 

Europe 
(0.78); 
North 

America 
(0.16); nd 

(0.04) 

12 
(0.92) 

ExPEC 
(0.81); ND 

(0.19) 

No 

14 109 5.30 5090 B1 unknown/ 
other 
(0.7); 

faeces 
(0.3) 

North 
America 
(0.72); 
Europe 
(0.27) 

16 
(0.93) 

EHEC (0.98); 
STEC (0.02) 

No 
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15 89 5.46 5148 B1 unknown/ 
other 
(0.99) 

Europe 
(0.99) 

25 
(0.65); 

25~ 
(0.1); 
4748 

(0.09); 
811 

(0.09); 
6265~ 
(0.02) 

ND (0.33); 
STEC (0.67) 

No 

16 62 5.34 4995.5 E unknown/ 
other 

(0.79); 
faeces 
(0.21) 

Europe 
(0.87); 
North 

America 
(0.06); Asia 

(0.05) 

335 
(0.95); 
7444 
(0.03) 

aEPEC/ 
EPEC (0.26); 
EHEC (0.62); 
STEC (0.11) 

Yes 

17 79 5.19 4884 B2 blood 
(0.58); 

unknown/ 
other 

(0.29); 
urine 
(0.11) 

Europe 
(0.77); 
North 

America 
(0.18); nd 

(0.05) 

14 
(0.29); 

404 
(0.29); 
1193 

(0.18); 
550 

(0.15); 
1057 

(0.06); 
5669 
(0.03) 

ExPEC (0.7); 
ND (0.29); 

STEC (0.01) 

Yes 

18 55 5.05 4889 U unknown/ 
other (1) 

Europe (1) 504 
(0.53); 
5292 

(0.24); 
6880 

(0.13); 
504~ 
(0.07) 

STEC (1) Yes 

19 66 5.18 4767.5 D blood 
(0.76); 

unknown/ 
other 

(0.12); 
urine 

(0.09); 
faeces 
(0.03) 

Europe 
(0.68); 
North 

America 
(0.24); nd 

(0.05); 
Africa 
(0.03) 

393 
(0.8); 

31 
(0.11); 
1394 
(0.03) 

EAEC (0.12); 
ExPEC 

(0.85); ND 
(0.03) 

Yes 

20 48 5.00 4657 B2 blood 
(0.48); 

unknown/ 
other 

(0.27); 
urine 

(0.23); 
faeces 
(0.02) 

Europe 
(0.75); 
North 

America 
(0.12); nd 

(0.1); 
Oceania 
(0.02) 

131 
(0.94); 
131~ 

(0.02); 
5432 

(0.02); 
5494 
(0.02) 

ExPEC 
(0.71); ND 

(0.29) 

Yes 
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21 70 5.39 5078 B1 faeces 
(1) 

North 
America (1) 

392 
(0.67); 
5738 
(0.33) 

ND (1) No 

22 46 5.21 5017 B1 unknown/ 
other 

(0.87); 
faeces 
(0.13) 

Europe 
(0.76); 
North 

America 
(0.24) 

300 
(0.57); 

343 
(0.2); 
4942 

(0.09); 
300~ 

(0.07); 
5343 

(0.04); 
343~ 

(0.02); 
6668 
(0.02) 

aEPEC/ 
EPEC (0.2); 
EHEC (0.8) 

No 

23 42 5.03 4767 A unknown/ 
other 

(0.98); 
faeces 
(0.02) 

Europe 
(0.93); nd 

(0.05); 
Africa 
(0.02) 

6 
(0.86); 

6~ 
(0.12); 
8300 
(0.02) 

EIEC (1) No 

24 45 5.23 4895 B1 unknown/ 
other 

(0.84); 
faeces 
(0.16) 

Europe 
(0.89); 
North 

America 
(0.07); 
Africa 

(0.02); Asia 
(0.02) 

678 
(0.84); 
678~ 
(0.16) 

EAEC (0.62); 
EAEC+STEC 

(0.38) 

Yes 

25 49 5.09 4728 B2 blood 
(0.51); 

unknown/ 
other 

(0.43); 
urine 
(0.06) 

Europe 
(0.76); 
North 

America 
(0.14); nd 

(0.1) 

141 
(0.71); 

998 
(0.2); 
8290 

(0.04); 
141~ 

(0.02); 
998~ 
(0.02) 

ExPEC 
(0.58); ND 

(0.4); STEC 
(0.02) 

No 

26 44 5.06 4751.5 B1 faeces 
(0.66); 

unknown/ 
other 
(0.34) 

Europe 
(0.39); Asia 

(0.32); 
Africa (0.3) 

517 
(0.8); 
5241 

(0.11); 
517~ 

(0.07); 
5485 
(0.02) 

aEPEC/ 
EPEC (0.93); 
EHEC (0.05); 
EPEC/ ETEC 

(0.02) 

Yes 

27 27 4.95 4738 B2 unknown/ 
other 

(0.89); 

Europe 
(0.93); 
Africa 
(0.04); 

583 
(0.89); 

122 
(0.07); 

aEPEC/ 
EPEC (0.33); 
EHEC (0.67) 

No 
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faeces 
(0.11) 

North 
America 
(0.04) 

7703 
(0.04) 

28 42 5.19 4852.5 A unknown/ 
other (1) 

Europe 
(0.95); 
North 

America 
(0.05) 

10 
(0.86); 

10~ 
(0.14) 

ND (0.1); 
STEC (0.9) 

No 

29 40 5.19 4865 B2 blood 
(0.7); 

unknown/ 
other 
(0.2); 

faeces 
(0.05); 
urine 
(0.05) 

Europe 
(0.85); 
North 

America 
(0.12); 
South 

America 
(0.02) 

144 
(0.95); 
5346 

(0.02); 
703 

(0.02) 

ExPEC 
(0.75); ND 

(0.25) 

No 

30 41 4.28 4231 S. 
sonnei 

unknown/ 
other 

(0.88); 
faeces 
(0.12) 

nd (0.98); 
Europe 
(0.02) 

245 
(0.73); 
1024 

(0.17); 
631 

(0.05); 
1753 

(0.02); 
5233 
(0.02) 

EIEC (0.22); 
ND (0.78) 

No 

31 36 5.28 4987.5 F blood 
(0.67); 

unknown/ 
other 

(0.22); 
faeces 
(0.08); 
urine 
(0.03) 

Europe 
(0.69); 
North 

America 
(0.28); 

Oceania 
(0.03) 

62 
(0.97); 
1810 
(0.03) 

ExPEC 
(0.74); 
EXPEC 

(0.03); ND 
(0.24) 

No 

32 26 5.25 4931.5 B1 unknown/ 
other 

(0.88); 
faeces 
(0.08); 
urine 
(0.04) 

Europe 
(0.88); Asia 

(0.04); 
North 

America 
(0.04); 
South 

America 
(0.04) 

200 
(1) 

EAEC (0.92); 
ETEC 

/  EAEC 
(0.04); 
ExPEC 
(0.04) 

Yes 

33 35 5.19 4948 F blood 
(0.49); 

unknown/ 
other 

(0.46); 
urine 
(0.06) 

Europe 
(0.89); 
North 

America 
(0.09); 
South 

America 
(0.03) 

59 
(0.94); 

415 
(0.03); 
415~ 
(0.03) 

ExPEC 
(0.56); ND 

(0.41); STEC 
(0.03) 

No 
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34 34 5.13 4888 B1 faeces 
(0.88); 

unknown/ 
other 
(0.12) 

Africa 
(0.59); Asia 

(0.21); 
Europe 
(0.15); 
South 

America 
(0.06) 

328 
(0.79); 
328~ 

(0.18); 
5618 
(0.03) 

aEPEC/ 
EPEC (0.85); 
EPEC/ ETEC 

(0.15) 

Yes 

35 22 4.97 4653 A unknown/ 
other 

(0.95); 
faeces 
(0.05) 

Europe 
(0.95); 
South 

America 
(0.05) 

34 
(0.91); 

34~ 
(0.05); 
8053 
(0.05) 

EAEC (1) Yes 

36 24 5.34 4987 B1 unknown/ 
other (1) 

Europe (1) 675 
(0.79); 
675~ 

(0.12); 
180~ 

(0.04); 
7953 
(0.04) 

STEC (1) No 

37 27 5.33 4960 D blood 
(0.74); 

unknown/ 
other 

(0.15); 
urine 

(0.07); 
faeces 
(0.04) 

Europe 
(0.63); 
North 

America 
(0.33); Asia 

(0.04) 

405 
(0.96); 

964 
(0.04) 

ETEC (0.04); 
ExPEC 

(0.85); ND 
(0.08); STEC 

(0.04) 

Yes 

38 27 5.26 4973 F unknown/ 
other 

(0.81); 
blood 
(0.07); 
urine 

(0.07); 
faeces 
(0.04) 

Europe 
(0.52); nd 

(0.41); 
North 

America 
(0.07) 

59 
(0.93); 
2618 

(0.04); 
59~ 

(0.04) 

ExPEC 
(0.16); ND 

(0.84) 

No 

39 29 5.26 4994 B1 unknown/ 
other 

(0.76); 
faeces 
(0.24) 

North 
America 
(0.59); 
Europe 

(0.31); Asia 
(0.07); 
South 

America 
(0.03) 

655 
(1) 

aEPEC/ 
EPEC (0.03); 
EHEC (0.97) 

No 

40 28 4.85 4551 C blood 
(0.57); 
faeces 
(0.21); 

unknown/ 

Europe 
(0.64); 
North 

America 
(0.25); Asia 

23 
(0.39); 

410 
(0.32); 
2230 

ETEC (0.18); 
ExPEC 

(0.57); ND 
(0.04); STEC 

(0.21) 

Yes 



 

 209 

other 
(0.21) 

(0.07); 
South 

America 
(0.04) 

(0.07); 
369 

(0.07); 
5491 

(0.07); 
23~ 

(0.04); 
5286 
(0.04) 

41 26 5.20 4825 B2 blood 
(0.73); 
urine 

(0.15); 
unknown/ 

other 
(0.12) 

Europe 
(0.96); 
North 

America 
(0.04) 

80 
(0.88); 
5351 

(0.04); 
5384 

(0.04); 
5609 
(0.04) 

ExPEC 
(0.88); ND 

(0.12) 

No 

42 27 4.89 4564 B1 faeces 
(0.81); 

unknown/ 
other 

(0.15); 
blood 
(0.04) 

North 
America 
(0.85); 
Europe 
(0.15) 

297 
(0.96); 
297~ 
(0.04) 

ExPEC 
(0.04); ND 

(0.96) 

No 

43 27 4.63 4274 B1 faeces 
(1) 

North 
America (1) 

906 
(1) 

ND (1) No 

44 25 5.37 4995 F blood 
(0.48); 

unknown/ 
other 

(0.28); 
urine 
(0.24) 

Europe 
(0.4); nd 

(0.4); North 
America 

(0.2) 

648 
(1) 

ExPEC 
(0.72); ND 

(0.28) 

Yes 

45 26 4.69 4532.5 S. 
flexneri 

unknown/ 
other 

(0.96); 
faeces 
(0.04) 

nd (0.85); 
Europe 
(0.15) 

152 
(0.96); 
1502 
(0.04) 

EIEC (0.35); 
ND (0.65) 

No 

46 26 5.40 5040 D blood 
(0.5); 

unknown/ 
other 

(0.27); 
faeces 
(0.19); 
urine 
(0.04) 

Europe 
(0.69); nd 

(0.12); 
South 

America 
(0.12); 
North 

America 
(0.08) 

405 
(0.88); 

38~ 
(0.04); 
402~ 

(0.04); 
5377 
(0.04) 

ExPEC 
(0.54); ND 

(0.46) 

No 

47 23 4.94 4614 B2 blood 
(0.78); 

unknown/ 
other 
(0.22) 

Europe 
(0.96); nd 

(0.04) 

357 
(1) 

ExPEC 
(0.78); ND 

(0.22) 

No 
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48 21 5.32 5180 B1 faeces 
(0.81); 

unknown/ 
other 
(0.19) 

Africa 
(0.38); Asia 

(0.29); 
Europe 

(0.19); nd 
(0.05); 
North 

America 
(0.05); 
South 

America 
(0.05) 

3 
(0.9); 

3~ 
(0.05); 
5326 
(0.05) 

aEPEC/ 
EPEC (1) 

Yes 

49 23 5.45 5213 B1 faeces 
(1) 

North 
America (1) 

154 
(1) 

ND (1) No 

51 22 4.95 4575 D faeces 
(1) 

North 
America 
(0.91); 
South 

America 
(0.09) 

501 
(1) 

EAEC (0.05); 
ND (0.95) 

No 

 
 
 


