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Summary 
 

 
 

The pre-clinical evolution of haematological malignancies 
 

Grace Collord 

 

Cancer-associated somatic mutations frequently drive clonal expansions in normal 

ageing tissues. However, the factors governing whether pre-cancerous cells transform into 

cancer are poorly understood, hindering identification of clones that are clinically significant 

rather than benign sequelae of ageing. The main aim of this dissertation has been to explore 

this process in the haematopoietic system, where leukaemia-associated mutations are 

detectable in >10% of individuals over the age of 50. This phenomenon, termed clonal 

haematopoiesis (CH), is associated with an increased risk of blood cancers, though only a 

small minority of individuals progress.  

Acute myeloid leukaemia (AML) is the commonest acute leukaemia in adults, and 

usually presents abruptly with complications of bone marrow failure. Using deep targeted 

sequencing of stored blood DNA samples from individuals who went on to develop AML and 

controls, we identified features of CH that predict leukaemic progression. The number, type 

and burden of genetic changes, as well as certain clinical variables, were predictive of AML-

free survival. Examining the pre-clinical evolution of lymphoid malignancies using a similar 

study design and broader sequencing approach also revealed genetic and clinical features 

predictive of malignant transformation.   

The final part of this study investigates the prevalence of clonal haematopoiesis in 

childhood cancer survivors treated with intensive chemo- or radiotherapy. In contrast to adult 

cancer patients, the prevalence of CH in children is not dramatically increased by cytotoxic 

treatment.  

Collectively, these findings provide proof of principle that benign and pre-malignant 

clonal expansions in normal blood (and perhaps other tissues) may be distinguishable years 

prior to overt malignant transformation. This could in future enable earlier detection of those 

at high risk of blood cancers, and stimulate research into possible interventions to reduce the 

risk of progression. 
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INTR 

Chapter 1 

Introduction 

 

 

 

 

Modern sequencing technologies are catalysing a revolution in our understanding of 

cancer genetics, developmental disorders, and ageing (Behjati et al., 2018; Martincorena and 

Campbell, 2015; Stratton, 2011; Yates and Campbell, 2012). Over the past decade, genomic 

scrutiny of over a million cancers has revealed the oncogenic mutations responsible for 

causing most human malignancies (Tate et al., 2019). These discoveries have enabled 

development of novel targeted cancer therapies and sequencing-based cancer diagnostic 

methods (Chang et al., 2016; Gerstung et al., 2017; Zahn, 2016). In parallel, sequencing of 

normal tissues has demonstrated that somatic mutations accumulate in all cells with age due 

to a host of extrinsic and endogenous exposures (Alexandrov et al., 2013; Hoang et al., 2016; 

Ju et al., 2017; Martincorena and Campbell, 2015; Yizhak et al., 2018). Somatic genetic 

diversity in ageing tissues provides a substrate for natural selection at the cellular level. Most 

somatic mutations have no discernible impact on cell function (Martincorena et al., 2017). 

However, recent studies have demonstrated that canonical cancer driver mutations are 

remarkably common in morphologically and functionally normal tissues and frequently fuel 

clonal expansion (Bowman et al., 2018; Martincorena et al., 2018; Martincorena et al., 2015; 

Moore et al., 2018; Salk et al., 2018; Yizhak et al., 2018; Yokoyama et al., 2019). The ubiquity 

of subclonal cancer evolutionary processes represents a daunting challenge to sequencing-

based early cancer detection efforts and may also increase the toxicity of novel precision 

oncology drugs targeting cancer driver mutations present in a significant fraction of normal 

cells (Busque et al., 2018; Cohen et al., 2018; Martincorena et al., 2015).  The landscape of 

somatic genetic diversity is currently best understood in the haematopoietic system, largely 

due to ease of representative sampling. Clonal haematopoiesis (CH) becomes increasingly 

common with age and is associated with an increased risk of haematological malignancies, 
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though only a small minority of individuals with CH ever develop a blood cancer (Busque et 

al., 2018). The main aim of this dissertation has been to explore the premalignant mutational 

landscape of haematological cancers and the extent to which indolent clones can be 

distinguished from CH at high risk of malignant transformation.  The general introduction to 

this thesis provides an overview of somatic evolution in cancer and normal tissues, with an 

emphasis on the haematopoietic system.  

1. Somatic evolution in cancer  

“At last gleams of light have come, & I am almost convinced (quite contrary to opinion I started 

with) that species are not (it is like confessing a murder) immutable.” 

- Charles Darwin to Joseph Hooker, 11 January 1844 

 

“One general law, leading to the advancement of all organic beings, namely, multiply, vary, 

let the strongest live and the weakest die…. Natural Selection, as we shall hereafter see, is a 

power incessantly ready for action”  

- Charles Darwin, The Origin of Species, 1959 

 

“If, as I believe that my theory is true & if it be accepted even by one competent judge, it will 

be a considerable step in science.” 

- Charles Darwin to Emma Darwin 5 July 1844 

 

As presciently anticipated by Darwin, natural selection is relevant to much more than the 

evolution of free-living species. The cells that make up multicellular organisms possess the 

requisite features for natural selection according to Darwin: heritable variation that impacts 

fitness. Cells, like species, are mutable, inevitably accumulating changes in their genomes due 

to extrinsic factors (e.g., radiation) and endogenous processes (e.g., errors in DNA replication 

and repair) (Alexandrov et al., 2013; Martincorena and Campbell, 2015). According to current 

estimates, most cells accumulate one to two mutations per cell division (Yizhak et al., 2018), 

though this rate may vary considerably (Hoang et al., 2016). Somatic mutations generate 

variety and starting from early embryogenesis, multicellular organisms become mosaics of 
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genetically distinct cells (Behjati et al., 2014; Blokzijl et al., 2016; Ju et al., 2017). This variety 

creates a substrate for natural selection. Although few somatic mutations impact cell function 

(Martincorena et al., 2017), occasionally a mutation confers a fitness advantage, favouring 

clonal expansion of the cell harbouring it (Martincorena and Campbell, 2015; Yates and 

Campbell, 2012). The competitive advantage conferred by a given mutation may be context-

dependent, varying with environmental exposures (Bondar and Medzhitov, 2010; Wong et 

al., 2015b; Yates and Campbell, 2012; Yokoyama et al., 2019). Cell competition has been most 

extensively studied in simpler model organisms, where it is often a beneficial physiological 

process that helps ensure that tissues are made up of the healthiest cellular constituents 

(Amoyel and Bach, 2014; Baker and Li, 2008). In humans, somatic evolution has primarily been 

studied in the context of cancer, where the process produces a cell with a complement of 

mutations enabling it to escape normal constraints on proliferation and to invade other 

tissues (Hanahan and Weinberg, 2000, 2011). However, recent studies of somatic mutation 

in the context of human development, ageing, pre-cancer, cancer and non-malignant disease 

have indicated that the border between normal age-related somatic evolution and 

malignancy can be indistinct (Martincorena et al., 2018; Martincorena et al., 2015; Moore et 

al., 2018; Salk et al., 2018; Yizhak et al., 2018; Yokoyama et al., 2019). This introduction will 

provide an overview of somatic evolution in cancer and ageing with a focus on the 

haematopoietic system, which has been particularly well characterised due to ease of 

representative tissue sampling.  

 

1.1 Cancer is a genetic disease 

“…a malignant cell is a cell with an irreparable defect, located in the nucleus. There is a 

permanent change in the condition of the chromatin which forces the cell to divide.” 

- Theodore Boveri, ‘The Origin of Malignant Tumours’, 1914  (Manchester, 1995) 

 

“I got sort of amused tolerance at the beginning.” 

- Janet Rowley recalling the response of the scientific community to her 1972 discovery 

that chromosomal translocations could cause cancer. (Fox, 2013)   
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The history of the mutational theory of cancer is a reminder of the power of simple 

experiments interpreted well and of the amount of time it can take for pivotal discoveries to 

elicit follow-up work and acceptance. Theodore Boveri is generally credited with being the 

first biologist to recognise that abnormal genetic content is responsible for malignant 

transformation (Rowley, 2001). His observations stemmed from meticulous light microscope 

scrutiny of sea urchin embryo divisions and the observation that aberrant mitoses seemed to 

trigger developmental defects. 

 

“Experiments on sea urchin embryos have led to the result that most chromosome 

combinations that vary from the normal lead to the death of the cell; however, other 

combinations occur, in which the cell, while it remains viable, does not function in a typical 

way.” 

- Theodore Boveri, ‘The Origin of Malignant Tumours’, 1914 (Manchester, 1995)   

 

Boveri concluded that chromosomal content guides embryogenesis and further 

speculated that the entities responsible for Mendelian traits must reside within 

chromosomes: 

 

“I feel beyond any doubt that the individual chromosomes must be endowed with different 

qualities and that only certain combinations permit normal development.”  

- Boveri, 1901 (Hardy and Zacharias, 2005)  

 

‘‘The probability is extraordinarily high that the traits examined in the Mendelian experiments 

are linked to individual chromosomes’’ 

- Boveri, 1914 (Hardy and Zacharias, 2005)  

 

These conclusions led Boveri to revisit observations made over twenty years previously 

by David Hansemann (1858–1920), a German pathologist who had documented asymmetrical 

nuclear segregation in a host of human cancers (Hardy and Zacharias, 2005). Hansemann 

maintained that nuclear abnormalities were most likely to represent characteristic sequelae 

of the malignant process (Hardy and Zacharias, 2005). Boveri, reinterpreting Hansemann’s 

findings in the context of the sea urchin experiments, posited that cancers are the progeny of 
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a single cell that acquired uncontrolled growth potential due to abnormal chromosomal 

content (Hardy and Zacharias, 2005; Manchester, 1995). Boveri’s hypothesis that 

chromosomes contained the material of inheritance was confirmed by the experiments of 

Avery, MacLeod and McCarty in 1944 (Avery et al., 1944). Further evidence that tumours 

often contain wildly bizarre chromosomes accumulated over the ensuing decades as 

cytogenetic methods improved. In the 1950s, Hauschka, Levan, Makino and others 

documented that most cancer cell lines contain aberrant chromosome numbers, as well as 

dicentric and ring chromosomes (Rowley, 2001). However, there was no apparent trend 

between particular abnormalities and cancer type, leading to further scepticism of any role 

in carcinogenesis (Rowley, 2001).  

In the 1960s and 1970s, a clear association emerged between specific chromosomal 

abnormalities and particular leukaemias. In 1960, Nowell and Hungerford reported the 

Philadelphia (Ph) chromosome in almost all cases of chronic myeloid leukaemia (CML) (Nowell 

and Hungerford, 1960). Aided by improved chromosome banding techniques, Janet Rowley 

was able to establish that the Ph chromosome represented an interchange between 

chromosomes 9 and 22 (Rowley, 1973). Several other recurrent translocations were 

discovered in the 1970s by Rowley, Zech and others, notably the AML-associated t(8;21), 

t(8;14) in Burkitt lymphoma and t(15;17) in acute promyelocytic leukaemia (Rowley, 2001; 

Zech et al., 1976). It took until the early 1980s for the diagnostic and prognostic utility of these 

findings to be incorporated into clinical guidance (Rowley, 2001).   

The advent of clinical cytogenetics coincided with further definitive proof that somatic 

mutations in DNA cause cancer. Weinberg, Cooper and colleagues demonstrated that human 

tumour DNA introduced into a mouse fibroblast cell caused malignant transformation 

(Krontiris and Cooper, 1981; Shih et al., 1981). Retrieval of the human sequence from the 

murine malignant cells ruled out spontaneous in vitro transformation, as can occur in many 

putatively normal cell lines (Krontiris and Cooper, 1981; Shih et al., 1981). Isolation of the 

oncogenic DNA fragment led to the discovery of an activating substitution mutation in HRAS, 

thus demonstrating for the first time that simple missense mutations, in addition to 

chromosomal rearrangements, can cause cancer (Reddy et al., 1982; Tabin et al., 1982). This 

discovery stimulated widespread concerted efforts to systematically identify genetic 

mutations capable of causing cancer.  



 14 

Cancer gene discovery efforts further accelerated following the release of the first draft 

human genome sequence in 2000 (Lander et al., 2001; Venter et al., 2001) and the advent of 

massively parallel sequencing a few years later (Stratton, 2011; Stratton et al., 2009). The 

ensuing revolution in genomics has yielded unprecedented insights into the pathogenesis of 

cancer, as well as the inextricably related processes of human development and ageing. The 

next section will give an overview of some important concepts that have emerged from the 

study of the cancer genome.  

1.1.1 Classifying mutations according to selection: ‘driver’ and ‘passenger’ mutations 

To date, over 1.4 million tumour samples have been sequenced, including tens of 

thousands of whole genomes (Sondka et al., 2018). The ability to scrutinise whole genomes 

from diverse cancer types has revealed dramatic variation in somatic mutation burden, 

ranging from over 100 per megabase (Mb) in some melanomas and mismatch-repair deficient 

tumours to fewer than 0.01 mutations/Mb in some childhood cancers and leukaemias 

(Alexandrov et al., 2013; Shlien et al., 2015; Stratton, 2011).  

A key focus of cancer genomics has been to classify somatic mutations according to 

whether or not they are under positive, neutral or negative selective pressure. Identifying the 

minority of mutations that are under positive selection and playing a causative role in 

oncogenesis (hereafter referred to as ‘driver mutations’) from mutations that do not confer 

a fitness advantage (‘passenger mutations’) is an ongoing and complex task (Lawrence et al., 

2013; Martincorena et al., 2017; Stratton et al., 2009). The phenotypic features under positive 

selection in cancers have been conceptualised as the “hallmarks” of cancer and all, in essence, 

promote survival and/or growth (Hanahan and Weinberg, 2000, 2011). The most recent 

release of the Cancer Gene Census included 719 genes implicated in driving human cancers 

(Tate et al., 2019), although this list is constantly being amended and expanded to 

accommodate new genomic and functional evidence. The extent to which negative selection 

shapes somatic evolution in cancers and normal tissues is contentious, though at present 

most evidence suggests that positive selection plays a much more important role in governing 

clonal dynamics (Martincorena et al., 2017; Zapata et al., 2018).  
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1.1.2 Classifying cancer genes: tumour suppressors and oncogenes 

Although often an oversimplification, it has proven conceptually useful to broadly 

classify cancer genes as either tumour suppressor genes or oncogenes. Tumour suppressor 

genes are implicated in oncogenesis through loss-of-function mutations (Stratton et al., 

2009). Tumour suppressor genes frequently encode negative regulators of cell cycle 

progression (e.g., RB1, PTEN), suppressors of cell growth (e.g., NF1), pro-apoptotic signalling 

molecules (e.g., DAXX), proteins linking the DNA damage response to the cell cycle (e.g., ATM, 

TP53), cell-adhesion mediators (e.g., APC), DNA damage repair proteins (e.g., BRCA1) and 

epigenetic regulators (e.g., KDM6A, SETD2, DNMT3A, TET2) (Martincorena et al., 2017; 

Stratton, 2011). Many tumour suppressors, like the prototypical RB1 that gave rise to 

Knudson’s ‘two-hit’ hypothesis (Knudson, 1971), function in a recessive manner (Stratton, 

2011). However, for many tumour suppressors, haploinsufficiency alone promotes cancer 

development (e.g., TP53, RUNX1, PTEN, TET2, DNMT3A)(Döhner et al., 2015; Inoue and Fry, 

2017). Many types of mutations can inactivate tumour suppressor genes, including truncating 

mutations (e.g., nonsense, frameshift, disruptive rearrangements, essential splice site 

mutations, gene deletions) as well as variants that disrupt key functional domains (Inoue and 

Fry, 2017).  

Oncogenes are implicated in cancer through activating mutations and often encode 

growth factors or cytokine receptors (e.g., EGFR, JAK2, KIT, PDGFRA), their downstream 

signalling mediators (e.g., PIK3CA, BRAF, NRAS, KRAS) or negative regulators of tumour 

suppressors (e.g., PPM1D) (Nangalia et al., 2016; Ruark et al., 2013; Stratton, 2011). The types 

of mutations that result in activation or upregulation of oncogenes are diverse and include 

canonical hotspot missense mutations (e.g. JAK2 V617F, BRAF V600E), chromosomal 

translocations or gene amplifications as well as deletions or truncating mutations that disrupt 

inhibitory regulatory domains (e.g., truncating mutations in PPM1D exon 6, intragenic BRAF 

deletions)(Forbes et al., 2011; Ruark et al., 2013; Stratton, 2011; Wegert et al., 2018).  

It is increasingly recognised that many cancer genes, particularly those implicated in 

epigenetic regulation, do not fit tidily into this classification scheme. Many function as either 

tumour suppressors or oncogenes in different cancer types or even at different stages of the 

same cancer type (e.g., EZH2), reflecting the influence of cell-type, developmental context 
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and epistasis on the functional significance of many cancer driver mutations (Feinberg et al., 

2016; Kim and Roberts, 2016; Shen et al., 2018; Van Vlierberghe and Ferrando, 2012).  

Haematological cancers, and acute myeloid leukaemia in particular, are among the 

most extensively sequenced and genomically well-characterised of all cancer types (Medinger 

and Passweg, 2017; TCGA et al., 2013). Hence, the landscape of tumour suppressor and 

oncogenes relevant to these conditions has been well charted and the types of mutations 

that appear to be under positive selection in these genes is reasonably well defined, with 

concordance between many large studies (Bahr et al., 2018; Chen et al., 2018; Medinger and 

Passweg, 2017; Petti et al., 2018; TCGA et al., 2013; Tyner et al., 2018).  The experiments 

described in this dissertation have taken a conservative approach to driver curation based on 

the criteria described in the largest relevant cancer genomics to date (Chapter 2).  

1.1.3 Germline contributions to cancer risk 

Studies of familial cancer predisposition and rare childhood cancer syndromes 

identified some of the first known cancer genes (Knudson, 1971; Maris, 2015). Germline 

variation plays an increasingly recognised role in cancer development, though its impact likely 

remains underestimated (Frick et al., 2018; Hermouet and Vilaine, 2011; Hinds et al., 2016; 

Huang et al., 2018; Loh et al., 2018; Parsons et al., 2016; Zhang et al., 2015). According to 

current estimates, overall approximately 1-2.7% of individuals without cancer have a 

putatively deleterious germline mutation in a cancer-associated gene, compared with 8.5 – 

12.6% of cancer patients (Pritchard et al., 2016; Schrader et al., 2016; Zhang et al., 2015), 

though this rate appears considerably higher for some rare cancer types (Ballinger et al., 

2016; Lu et al., 2015). Germline variants can influence cancer development by diverse 

mechanisms, including by directly driving clonal growth (Loh et al., 2018; Lu et al., 2015), 

increasing global mutation rate (Nik-Zainal, 2014; Shlien et al., 2015), increasing the likelihood 

of acquiring particular somatic driver events (Hermouet and Vilaine, 2011; Hinds et al., 2016; 

Loh et al., 2018) or altering carcinogen metabolism (Ding et al., 2010).  

Studies of cancer predisposition syndromes have also demonstrated that the 

biological and clinical significance of germline and somatic variants in a given gene are often 

dramatically different (Maris, 2015; Maris and Knudson, 2015). For example, childhood 

myeloproliferative disease with germline mutations in PTPN11 may follow an indolent, self-



 17 

resolving course, whereas somatic PTPN11 mutations presage rapid progression and warrant 

prompt haematopoietic stem cell transplantation (HSCT)(Hasle, 2016). Furthermore, 

germline and somatic mutations in several cancer genes, notably TP53 and RB1, drive a 

distinct spectrums of cancer types with predilections for different tissues and age groups 

(Maris and Knudson, 2015). The distinction between germline and somatic drivers is 

particularly relevant when interpreting the results of unmatched sequencing experiments 

such as those described in this thesis, and will be discussed further later on.  

1.1.4 Mutational signatures 

The entire complement of somatic mutations in a genome constitutes a record of the 

types of mutational processes operative during the lifetime of the organism. Certain patterns 

of mutation are characteristic of particular mutagenic exposures. For example, ultraviolet 

light-induced pyrimidine dimers are typically repaired by transcription-coupled nucleotide 

excision repair, which tends to result in C>T mutations on the untranscribed strand 

(Alexandrov et al., 2013). Substitutions, small insertions and deletions (indels) and complex 

structural events can be classified according to sequence context, thus allowing formal 

mathematical extraction of mutational signatures (Alexandrov et al., 2013; Li et al., 2017; 

Petljak et al., 2014).  

Substitution mutational signatures have been most extensively studied. The six types 

of substitution mutation (C>A, C>G, C>T, T>A, T>C and T>G) can be classified into 96 subtypes 

based on their trinucleotide context. Various statistical approaches, predominantly based on 

non-negative matrix factorisation, can discern distinct patterns of co-occurrence of 

substitution types (Alexandrov et al., 2018; Alexandrov et al., 2013).  At present, only a 

minority of putative mutational signatures have a known cause (Alexandrov et al., 2018; 

Alexandrov et al., 2013). Nevertheless, mutational signature analysis has yielded compelling 

insights into the causes and epidemiology of several cancer types, and are increasingly being 

used clinically to guide diagnosis, prognostication and therapeutic strategy (Behjati et al., 

2016; Hoang et al., 2013; Ma et al., 2018; Petljak and Alexandrov, 2016; Poon et al., 2015).  

All cancers harbour a significant number of mutations attributed to ageing-associated 

single base substitution signatures 1 (SBS1) and 5 (SBS5) (Alexandrov et al., 2018; Alexandrov 

et al., 2013). SBS1 is dominated by C>T mutations attributed to spontaneous deamination of 
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5-methylcytosine, whilst SBS5 is of unknown aetiology (Alexandrov et al., 2018; Alexandrov 

et al., 2013). Myeloid malignancies are characterised by very low mutation burdens, similar 

to those observed in normal haematopoietic stem cells from age-matched individuals (Welch 

et al., 2012). Consistent with this finding, most of these mutations are attributable to SBS1 

and SBS5 (Alexandrov et al., 2018; Alexandrov et al., 2013). A significant proportion of AML 

demonstrate evidence of SBS18, attributed to reactive oxygen species-mediated DNA damage 

(Alexandrov et al., 2018). A small proportion of myelodysplasia and myeloproliferative 

disease specimens harbour mutations attributable to SBS32, a signature thought to be caused 

by azathioprine treatment (Alexandrov et al., 2018). Although lymphoid neoplasms are also 

generally dominated by age-related SBS1 and SBS5 (Alexandrov et al., 2018; Alexandrov et 

al., 2013), they tend to have higher mutation burdens than myeloid cancers and a more 

complex mutational signature complement, with some specimens harbouring evidence of 

defective DNA repair mechanisms or APOBEC activity (Alexandrov et al., 2018; Alexandrov et 

al., 2013). 

1.2 Cancer is an evolutionary process 

The notion that cancer development is a clonal (originating from a single ancestral 

cell) evolutionary process can be traced back to Boveri and was further advanced in the 1950s 

based on histological observation of the natural history of precancerous lesions and their 

response to extrinsic irritants (Denoix, 1954; Foulds, 1958). Following the acceptance of the 

mutational theory of cancer, Peter Nowell and John Cairns conceptualised the modern 

understanding of cancer evolution in their seminal 1970s reviews (Cairns, 1975; Nowell, 

1976).  

 

“The acquired genetic instability and associated selection process, most readily recognized 

cytogenetically, results in advanced human malignancies being highly individual 

karyotypically and biologically. Hence, each patient's cancer may require individual specific 

therapy, and even this may be thwarted by emergence of a genetically variant subline 

resistant to the treatment. More research should be directed toward understanding and 

controlling the evolutionary process in tumors before it reaches the late stage usually seen in 

clinical cancer.”  

- Peter Nowell, 1976 (Nowell, 1976) 
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Cairns spoke more explicitly in terms of natural selection acting on inevitable mutations 

arising in stem cells throughout the lifespan of an organism: 

 

“Survival of the rapidly renewing tissues of long-lived animals like man requires that they 

be protected against the natural selection of fitter variant cells (that is, the spontaneous 

appearance of cancer).”  

- Cairns 1975 (Cairns, 1975)  

 

The ability to sequence many specimens of the same tumour type demonstrated 

remarkable genetic diversity within the same histopathological diagnosis (Yates and 

Campbell, 2012). Phylogenetic inference, multi-region tumour sequencing and single cell 

methods revealed striking intra-tumour heterogeneity (Anderson et al., 2011; Gerlinger et al., 

2012; Greaves, 2015; Navin et al., 2011). These observations established that the evolutionary 

routes to cancer are diverse and that malignant clones continue to acquire mutations, 

compete and evolve (Ding et al., 2012; Greaves and Maley, 2012; Nik-Zainal et al., 2012). It 

became possible to construct phylogenetic trees at unprecedented resolution. Consistent 

features of these trees illustrate key principles of cancer pathogenesis. At their base, all 

cancer phylogenetic trees have the ancestral cell with the initial complement of driver 

mutations, along with all other mutations previously acquired by that cell and captured as the 

clone expanded (Yates and Campbell, 2012). Each cell within the expanded clone continues 

to acquire mutations, which are subclonal. With a few exceptions (e.g., chromothripsis 

causing multiple simultaneous driver mutations (Stephens et al., 2011)), in almost all cases 

cancer phylogenies support the gradual, multi-step model of carcinogenesis (Greaves, 2015; 

Yates and Campbell, 2012). Tumour cells continually diversify through acquisition of 

additional mutations and clonal architecture may follow branching, parallel or convergent 

evolutionary trajectories (Greaves, 2015; Yates and Campbell, 2012). The relative influence of 

mutation-induced cell-intrinsic growth advantage, selective pressures and genetic drift in 

cancer evolution remains contentious (Martincorena and Campbell, 2015; Martincorena et 

al., 2017; Sun et al., 2017; Zink et al., 2017). Phylogenetic trees constructed from multi-region 

or serial sampling have yielded insights into some of the selection pressures implicated in 

cancer clonal competition, discussed briefly in the next section. 
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1.2.1 Selection pressures shaping cancer evolution 

1.2.1.1 The tumour microenvironment 

The idea that the tumour microenvironment influences cancer development was first put 

forward in the late 19th century by Ernst Fuchs and Stephen Paget based on detailed 

anatomical studies of tumour metastases (Fuchs, 1882; Paget, 1889). Paget likened tumour 

cells to ‘seeds’ that required a favourable microenvironment, or ‘soil’ to survive and grow 

(Paget, 1889). The factors underpinning the predilection of metastases for certain organs are 

still incompletely understood (Hunter et al., 2018). However, several studies that used multi-

region sampling or tumour organoids have elucidated the phylogenetic relationships between 

primary tumour lesions and metastases and provided insight into the interplay between 

genetic diversification and organ-specific selection pressures (Altorki et al., 2019; Campbell 

et al., 2010; Gundem et al., 2015; Hunter et al., 2018; Makohon-Moore and Iacobuzio-

Donahue, 2016; Roerink et al., 2018; Yachida et al., 2010). It is now clear that interactions 

between cancer cells and tissue microenvironment are relevant far beyond metastasis, 

exerting selective pressures important at all stages of solid and haematological cancer 

development (Medyouf, 2017; Scott and Gascoyne, 2014; Yates and Campbell, 2012; 

Yokoyama et al., 2019).  

1.2.1.2 Cancer therapies 

Anticancer therapy is often one of the most potent selective pressures governing cancer 

evolution (Yates and Campbell, 2012). Resistance mechanisms are diverse (Holohan et al., 

2013), however, as sequencing technologies become more sensitive, it is increasingly clear 

that resistance mutations to both conventional cytotoxic agents and targeted therapies 

frequently predate treatment at extremely low subclonal levels (Karoulia et al., 2017; 

Kennedy et al., 2014; Schmitt et al., 2016; Wong et al., 2015a; Wong et al., 2015b). As 

presciently anticipated by Nowell (Nowell, 1976), the extensive genetic diversity present in 

fully fledged cancers represents a formidable arsenal of potential adaptive strategies and has 

greatly undermined targeted therapy efforts (Holohan et al., 2013).   

 

Scrutiny of cancer genomes has yielded profound insight into the genetic drivers and 

evolutionary dynamics of most human cancer types. However, it is now evident that this work 
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did not adequately capture the somatic genetic diversity and selective pressures shaping the 

pre-cancerous phases of oncogenesis. Recent studies of somatic evolution in morphologically 

normal tissues have yielded compelling biological insights into normal ageing and its 

relationship with cancer development. The next section will give a broad overview of these 

advances with a focus on the haematopoietic system.  

2. Somatic evolution in normal ageing tissues and its 

relationship to cancer  

“Cancer is a chronic disease with a long history extending back for many years before clinical 

signs are evident.” 

- Leslie Foulds, 1958 (Foulds, 1958) 

 

“…the whole body is seeded with tumor cells whose evolutionary potential is revealed at 

unpredictable times thereafter.” 

- Foulds’s summary of a hypothesis proposed by Pierre Denoix in his 1954 paper ‘De la 

diversité de certains cancers’  (Denoix, 1954; Foulds, 1958) 

 

The molecular basis of multi-step carcinogenesis was meticulously dissected in childhood 

leukaemia and colon cancer in the 1980s and 1990s and gave preliminary insights into the 

ambiguous boundary between normal tissue, pre-cancer and fully-fledged malignancy 

(Fearon and Vogelstein, 1990; Greaves et al., 2003). Studies of monozygotic twins concordant 

for leukaemia demonstrated that the initiating event, typically a fusion gene, arises in a single 

cell in utero, which transfers to the second twin via a monochorionic placenta (Greaves and 

Wiemels, 2003). For most childhood leukaemia, the latency to disease onset suggested that 

the initiating translocation (most commonly the TEL–AML1 fusion gene), requires a second 

hit to trigger malignant transformation (Greaves and Wiemels, 2003). In support of this 

hypothesis, several studies screened healthy newborns for leukaemogenic fusions and found 

their prevalence to be considerably higher than the cumulative incidence of childhood 

leukaemia (Greaves et al., 2011; Lausten-Thomsen et al., 2011; Mori et al., 2002; Zuna et al., 

2011). Furthermore, not all twins concordant for the initiating event are concordant for 
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leukaemia (Bateman et al., 2015). Collectively, these findings provided genetic evidence to 

support Foulds and Denoix’s hypothesis that pre-cancer is considerably more common than 

cancer and that malignant progression is not readily predictable. These conclusions were also 

supported by the natural history and molecular features of the adenoma-carcinoma sequence 

in the colon (Fearon and Vogelstein, 1990).  

The advent of sensitive sequencing methods has recently revealed that potentially pre-

malignant clonal expansions are remarkably common in many normal ageing tissues 

(Bowman et al., 2018; Martincorena et al., 2018; Martincorena et al., 2015; Moore et al., 

2018; Salk et al., 2018; Suda et al., 2018; Yizhak et al., 2018; Yokoyama et al., 2019). This 

phenomenon has been most extensively explored in skin (Martincorena et al., 2015), 

oesophagus (Martincorena et al., 2018; Yokoyama et al., 2019), endometrium (Moore et al., 

2018; Salk et al., 2018; Suda et al., 2018) and blood (Bowman et al., 2018), though preliminary 

evidence from bulk RNA sequencing of diverse normal tissues suggests that clonal expansions 

harbouring canonical cancer driver mutations may be ubiquitous in most organs (Yizhak et 

al., 2018). 

Several common themes are beginning to emerge from these findings. Firstly, there is 

generally a clear association between age and prevalence of readily detectable clonal 

expansions, with that latter apparently trending towards inevitability by midlife in many 

tissues (Martincorena et al., 2018; Martincorena et al., 2015; Suda et al., 2018; Young et al., 

2016). However, it is not yet clear to what extent age-related mutation acquisition is a rate-

limiting step in clonal expansion. Potent cancer driver mutations, including hotspot TP53 

mutations, may be dated to early infancy or childhood in several tissues and may never 

contribute to cancer even in high risk individuals (Greaves et al., 2011; Moore et al., 2018; 

Yokoyama et al., 2019). It is increasingly apparent that selective pressures, some correlated 

with ageing, impact the fitness advantage of particular mutations and hence modulate clonal 

dynamics (Hsu et al., 2018; McKerrell and Vassiliou, 2015; Murai et al., 2018; Wong et al., 

2015b; Yokoyama et al., 2019). For example, exposure to smoking and alcohol accelerates 

clonal growth in normal oesophagus (Yokoyama et al., 2019) and ultraviolet radiation 

exposure influences the fitness advantage of epidermal TP53 mutations (Murai et al., 2018). 

The proliferation of clonal expansions with age may reflect both mutation accrual and ageing-

associated changes in tissue microenvironments that confer increasing fitness advantage on 

oncogenic mutations (Armitage and Doll, 1954; Nordling, 1953; Rozhok and DeGregori, 2015).  
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A second observation that has been made in several tissue types is that the mutational 

spectrum of age-associated clonal expansions may differ from that seen in cancer (Busque et 

al., 2018; Martincorena and Campbell, 2015; Martincorena et al., 2018; Xie et al., 2014; 

Yokoyama et al., 2019). For example, putative driver mutations in NOTCH1 are more 

frequently seen in clonal expansions in histologically normal skin and oesophagus than in 

cancers arising from these tissues (Martincorena et al., 2018; Martincorena et al., 2015; 

Yokoyama et al., 2019). Similarly, activating mutations in PPM1D, which encodes a negative 

regulator of TP53, are more frequent in normal blood and oesophagus than in malignancy 

(Bowman et al., 2018; Xie et al., 2014; Yokoyama et al., 2019). Most relevant experiments 

have employed targeted sequencing of known cancer-associated genes, thus hindering an 

unbiased comparison between the mutational landscape of cancer and normal ageing. 

Equally, the ubiquity of certain mutations in normal tissues, and by extension their recurrence 

in the trunks of tumour phylogenetic trees, could lead to overestimates of their importance 

in cancer pathogenesis (Ciccarelli, 2019).  

How mutations and selective pressures interact to determine the likelihood of malignant 

transformation is an important biological question with compelling clinical implications. As 

predicted by Cairns (Cairns, 1975), emerging evidence suggests that some epithelial tissues 

have evolved mechanisms for restraining growth of clones harbouring oncogenic mutations 

(Murai et al., 2018; Ying et al., 2018). Senescence and immune surveillance are also involved 

in policing mutated clones (Collado et al., 2005; Schreiber et al., 2011). However, 

understanding of the factors governing physiological cell competition and tissue homeostasis 

in humans and their relationship with carcinogenesis remains very limited. A significant 

obstacle to studying these questions in most organs is the inability to obtain representative 

tissue samples. The haematopoietic system has proven a privileged setting in which to explore 

somatic evolution and its relationship with ageing and ageing-associated pathologies 

(Bowman et al., 2018; Geiger et al., 2013; Latchney and Calvi, 2017; Lee-Six et al., 2018). The 

next section will summarise current understanding of clonal haematopoiesis and its clinical 

relevance.  
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3. Clonal haematopoiesis 

3.1 Prevalence and mutational landscape of clonal haematopoiesis  

Blood has one of the highest turn-over rates of any tissue, necessitating the 

production of trillions of cells per day by a population of haematopoietic stem cells (HSCs) 

estimated to number between 50,000 and 200,000 (Carrelha et al., 2018; Doulatov et al., 

2012; Lee-Six et al., 2018). Replicative mutagenesis and other sources of genotoxic stress 

cause HSCs to accumulate DNA damage with age, with an estimated 14 mutations 

accumulating per cell per year (Flach et al., 2014; Osorio et al., 2018; Rossi et al., 2007; Welch 

et al., 2012; Yahata et al., 2011). Clonal haematopoiesis (CH) refers to the disproportionate 

expansion of one somatically mutated HSC clone relative to others. Many reports have now 

identified this phenomenon in a significant proportion of individuals without a 

haematological cancer (Acuna-Hidalgo et al., 2017; Akbari et al., 2014; Artomov et al., 2017; 

Bonnefond et al., 2013; Buscarlet et al., 2017; Busque et al., 1996; Busque et al., 2012; 

Coombs et al., 2017; Forsberg et al., 2012; Frick et al., 2018; Genovese et al., 2014; Gibson et 

al., 2017; Gillis et al., 2017; Jacobs et al., 2012; Jaiswal et al., 2014; Jaiswal et al., 2017; Laurie 

et al., 2012; Loftfield et al., 2018b; Loh et al., 2018; Machiela et al., 2015; McKerrell et al., 

2015; Rodriguez-Santiago et al., 2010; Savola et al., 2017; Schick et al., 2013; Takahashi et al., 

2017; Thompson et al., 2019; Vattathil and Scheet, 2016; Xie et al., 2014; Young et al., 2016; 

Zhou et al., 2016; Zink et al., 2017). Clonal haematopoiesis was first recognised in the 1990s 

when Busque and colleagues demonstrated that ageing was associated with increasingly 

skewed X-inactivation in blood cells (Busque et al., 1996). Busque et al. applied a PCR-based 

X-inactivation clonality assay to peripheral blood samples from a cohort of 295 healthy 

females spanning a broad age range (Busque et al., 1996). Using stringent criteria for skewing 

(allele ratios >= 10:1), this approach identified imbalanced X-inactivation in 22.7%, 4.5% and 

1.9% of women aged >=60 years, 28-32 years and <1 month, respectively (Busque et al., 

1996).  

 The advent of molecular karyotyping using SNP arrays demonstrated that a significant 

proportion of the general population harbours clonal, somatic chromosomal abnormalities in 

blood cells (Artomov et al., 2017; Bonnefond et al., 2013; Forsberg et al., 2012; Jacobs et al., 

2012; Laurie et al., 2012; Loftfield et al., 2018a; Loh et al., 2018; Machiela et al., 2015; 
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Rodriguez-Santiago et al., 2010; Schick et al., 2013; Vattathil and Scheet, 2016; Zhou et al., 

2016). These studies identified a clear correlation between age and frequency of clonal 

mosaic aneuploidy or copy-neutral loss of heterozygosity (LOH) events, with prevalence 

varying from <0.5% in individuals under age 50 years to 1.9-3.4% in persons aged >60 

(Forsberg et al., 2012; Jacobs et al., 2012; Laurie et al., 2012). The most recurrent 

abnormalities included del(13q), trisomy 8, del(20q), del(5q) and del(7q), chromosomal 

changes characteristic of haematological malignancies (Forsberg et al., 2012; Jacobs et al., 

2012; Laurie et al., 2012). Mosaic chromosomal changes were associated with a five- to ten-

fold higher risk of subsequently developing haematological cancers (Jacobs et al., 2012; Laurie 

et al., 2012; Schick et al., 2013). Longitudinal tracking of clonal chromosomal abnormalities 

has yielded variable results, with one study suggesting that aberrant clones may become 

undetectable over time (Forsberg et al., 2017), while another series of 47 individuals sampled 

several years apart found that most clones expanded with age (Machiela et al., 2015). 

 Next-generation sequencing technologies enabled higher resolution scrutiny of the 

genetic changes driving clonal haematopoiesis. Sequencing of healthy women with skewed 

X-inactivation identified mutations in the epigenetic regulator TET2 in 5.5% (10/182 

individuals) (Busque et al., 2012). In 2014, three large exome sequencing studies identified 

leukaemia-associated point mutations in the blood of >2% of individuals unselected for 

haematological phenotypes (Genovese et al., 2014; Jaiswal et al., 2014; Xie et al., 2014).  All 

three studies reported a steep rise in CH prevalence with age, ranging from <1% under age 

50 years to around 10% in individuals over age 70 (Genovese et al., 2014; Jaiswal et al., 2014; 

Xie et al., 2014). The majority of candidate driver mutations occurred in TET2, DNMT3A and 

ASXL1, epigenetic regulators commonly mutated in myeloid malignancies (Arber et al., 2016; 

Genovese et al., 2014; Jaiswal et al., 2014; Xie et al., 2014). Jaiswal et al. interrogated a 

predefined set of 160 cancer-associated genes, whereas Genovese et al. and Xie et al. 

screened for CH in an unbiased manner on the basis of unusual allele frequencies (Genovese 

et al., 2014; Xie et al., 2014). The latter approach identified a broader spectrum of putative 

CH drivers, most notably a remarkably high frequency of mutations in PPM1D, a negative 

regulator of TP53 that is infrequently mutated in haematological or solid cancers (Genovese 

et al., 2014; Ruark et al., 2013; Xie et al., 2014). Other recurrently mutated genes included 

JAK2, TP53, spliceosome genes (SF3B1, SRSF2 and U2AF1), CBL, BCORL1, ATM, MYD88 and 

GNAS (Genovese et al., 2014; Jaiswal et al., 2014; Xie et al., 2014).  
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 Later studies of CH in the general population used more sensitive targeted sequencing 

approaches and demonstrated that CH prevalence increases dramatically with assay 

sensitivity (Acuna-Hidalgo et al., 2017; Buscarlet et al., 2017; McKerrell et al., 2015; Young et 

al., 2016; Zink et al., 2017). Young et al. used molecular barcoding to enable detection of 

mutations at a variant allele frequency (VAF) as low as 0.0003 and found CH to be ubiquitous 

in otherwise healthy individuals aged >50 years (Young et al., 2016). The genes recurrently 

implicated in CH were broadly consistent across these studies. However, whilst the 

prevalence of mutations in all genes increased with age, certain mutations were found to be 

particularly enriched in older individuals (McKerrell et al., 2015). In particular, spliceosome 

gene mutations were seen almost exclusively in individuals aged >70 (Acuna-Hidalgo et al., 

2017; McKerrell et al., 2015), whereas the frequency of mutations in DNMT3A and JAK2 

increased more linearly with age (Acuna-Hidalgo et al., 2017; Buscarlet et al., 2017; McKerrell 

et al., 2015). A less dramatic age-dependence has been observed for TET2 mutations 

(Buscarlet et al., 2017).  

Ageing is just one example of how the mutational landscape of CH varies according to 

clinical context. CH is extremely common in aplastic anaemia patients and displays a distinct 

spectrum of somatic mutations (Stanley et al., 2017; Yoshizato et al., 2015). Similarly, CH 

enriched in TP53 and PPM1D mutations is prevalent in individuals who have been exposed to 

chemo- and/or radiotherapy (Coombs et al., 2017; Gibson et al., 2017; Gillis et al., 2017; 

Takahashi et al., 2017).  Further discussion of the interplay between somatic mutations and 

dynamic selection pressures is discussed in section 3.4.  

 Zink et al. conducted a broader, though less sensitive, screen for CH by interrogating 

11,262 whole genomes (median coverage 35x) for unusual SNV allele frequency distribution, 

similar to the variant calling strategies applied by Xie et al. and Genovese et al. (Genovese et 

al., 2014; Xie et al., 2014; Zink et al., 2017).  Consistent with previous data and predictions, 

CH was almost universally detectable in individuals >85 years of age (McKerrell et al., 2015; 

Young et al., 2016; Zink et al., 2017). The overall prevalence of CH (identified on the basis of 

having > 20 putative mosaic point mutations) was 12.5%, higher than that observed in 

previous studies (Zink et al., 2017). Presumptive driver mutations were most frequent in 

DNMT3A, TET2, ASXL1 and PPM1D (Zink et al., 2017). However, candidate driver mutations 

were only identified in a minority of individuals with CH (Zink et al., 2017). The authors suggest 

genetic drift as a likely explanation for this result. However, numerical and structural 
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chromosomal changes were not systematically identified and may account for a significant 

proportion of the CH cases without an apparent point mutation driver (Artomov et al., 2017; 

Bonnefond et al., 2013; Forsberg et al., 2012; Jacobs et al., 2012; Laurie et al., 2012; Loftfield 

et al., 2018a; Loftfield et al., 2018b; Loh et al., 2018; Machiela et al., 2015; Rodriguez-Santiago 

et al., 2010; Schick et al., 2013; Vattathil and Scheet, 2016; Zhou et al., 2016). Contiguous 

gene deletions and rearrangements are common initiating driver events in many 

haematological cancers. It is possible that structural variants under positive selection 

underpinned a significant proportion of the CH cases attributed to drift. It is also conceivable 

that there is only partial overlap between cancer drivers and the mutations that are under 

positive selection in somatic evolution in normal ageing blood. The preponderance of PPM1D 

and NOTCH1 mutations in clonal expansions in normal tissues compared to cancers may 

support this hypothesis (Bowman et al., 2018; Martincorena et al., 2018; Martincorena et al., 

2015; Yokoyama et al., 2019). Zink et al. did perform an unbiased search for novel driver 

genes, but did not identify many candidates (Zink et al., 2017).       

 Mutations in certain common myeloid cancer genes, notably FLT3 and NPM1, were 

consistently absent in even the most sensitive CH screens, supporting their role as late 

cooperating/transforming mutations rather than initiating events (Acuna-Hidalgo et al., 2017; 

Genovese et al., 2014; Jaiswal et al., 2014; McKerrell et al., 2015; Xie et al., 2014).  

3.2 Germline influences on CH 

Extensive evidence demonstrates that germline variation is an important determinant 

of clonal haematopoiesis risk and clinical outcome (Buscarlet et al., 2017; Frick et al., 2018; 

Hinds et al., 2016; Jones et al., 2009; Kilpivaara et al., 2009; Koren et al., 2014; Loftfield et al., 

2018a; Loh et al., 2018; Olcaydu et al., 2009; Thompson et al., 2019; Wright et al., 2017; Zhou 

et al., 2016; Zink et al., 2017). Heritable polymorphisms can influence CH development by 

increasing susceptibility to somatic mutagenesis (Hinds et al., 2016; Jones et al., 2009; 

Kilpivaara et al., 2009; Koren et al., 2014; Loh et al., 2018; Olcaydu et al., 2009; Zhou et al., 

2016) or by modulating positive or negative clonal selection (Hinds et al., 2016; Loh et al., 

2018). For example, the JAK2 46/1 haplotype is a well-recognised risk factor for acquiring JAK2 

V617F-positive CH and progressing to a myeloid neoplasm (Jones et al., 2009; Kilpivaara et 

al., 2009; Olcaydu et al., 2009). Polymorphisms in several other genes, including TERT, TET2, 

ATM and CHEK2, are also associated with JAK2 V617-driven myeloproliferative neoplasms and 



 28 

hence perhaps also antecedent clonal haematopoiesis (Hinds et al., 2016). Over 150 loci have 

now been strongly linked to overall CH risk, or risk of particular chromosomal losses or 

likelihood of specific LOH events amplifying the selective advantage conferred by inherited or 

somatic driver events (Loh et al., 2018; Thompson et al., 2019; Wright et al., 2017; Zink et al., 

2017). Additionally, several germline polymorphisms have been shown to impact leucocyte 

DNA replication timing, and by consequence, the susceptibility of nearby sequence to somatic 

mutagenesis (Koren et al., 2014). In a recent large survey of mosaic chromosomal changes in 

peripheral blood, Loh et al. identified several highly penetrant heritable variants associated 

with increasing mutability of nearby DNA sequence, including in the myeloid oncogene MPL 

(Loh et al., 2018). Several of the variants were also subject to clonal selection and impacted 

risk of progression to haematological cancer (Loh et al., 2018).  

A main emerging message from these studies is the increasingly blurry distinction 

between heritable and somatically acquired determinants of clonal haematopoiesis 

development and natural history. Furthermore, the influence of germline variation on CH 

incidence and outcome probably remains underestimated. Several studies report familial or 

ethnic clustering of CH suggesting yet to be discovered heritable risk factors (Buscarlet et al., 

2017; Frick et al., 2018; Loftfield et al., 2018a). Moreover, a large number of uncommon 

germline variants have emerged as important determinants of haematological phenotypes in 

the general population, and it is plausible that these exert epistatic, lineage biased effects on 

CH evolution (Astle et al., 2016).   

 

3.3 Clinical significance of clonal haematopoiesis  

3.3.1 Impact of clonal haematopoiesis on blood indices 

 Mutations common in CH are implicated in ineffective haematopoiesis, impaired 

differentiation and cytopenias when they occur in individuals with MDS or AML 

(Papaemmanuil et al., 2016; Steensma et al., 2015). However, CH harbouring putative driver 

mutations (CH-PD) is not generally associated with any abnormalities in blood cell counts 

(Buscarlet et al., 2017; Jaiswal et al., 2014; McKerrell et al., 2015). Jaiswal et al. analysed blood 

indices data available for 3107 individuals, 4.5% of whom had CH-PD and found no significant 

differences in haemoglobin levels, platelet counts or white-cell differential counts (Jaiswal et 
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al., 2014). The only blood index that differed significantly was red cell distribution width 

(RDW), which was higher in individuals with CH-PD and correlated with mutation VAF (Jaiswal 

et al., 2014). Moreover, although the prevalence of a single cytopenia was not influenced by 

CH status, individuals with multiple cytopenias were more likely to have CH (odds ratio 

3.0)(Jaiswal et al., 2014).  

 While CH may rarely cause haematological indices to deviate to a clinically significant 

degree, Loh et al. recently demonstrated that some acquired mutations correlate with trends 

in blood counts, though generally within the reference range (Loh et al., 2018). Their findings 

suggest lineage-specific clonal selection pressures mirroring those observed in blood cancers 

(Loh et al., 2018). For example, chromosome 9p LOH (encompassing JAK2) and trisomy 12 

(highly recurrent in CLL) were associated with higher granulocyte and lymphocyte counts, 

respectively (Loh et al., 2018).  

3.3.2 Clonal haematopoiesis and haematological malignancy 

Numerous studies have reported a clear association between CH in haematologically 

normal individuals and risk of developing a haematological malignancy (Coombs et al., 2017; 

Genovese et al., 2014; Gibson et al., 2017; Gillis et al., 2017; Greaves and Wiemels, 2003; 

Jacobs et al., 2012; Jaiswal et al., 2014; Laurie et al., 2012; Loh et al., 2018; Schick et al., 2013; 

Takahashi et al., 2017; Zink et al., 2017). This is perhaps unsurprising given that the multi-step 

model of cancer implies a premalignant phase in cancer evolution (Yates and Campbell, 2012). 

Furthermore, several studies of haematological cancer evolution have demonstrated that 

myeloid malignancies evolve from a population of preleukaemic stem cells harbouring 

initiating driver mutations, and that such preleukaemic HSCs can persist during long-term 

remission and serve as a reservoir for relapse (Greaves et al., 2003; Jan et al., 2012; Shlush et 

al., 2017; Shlush et al., 2014). Similar observations hold true for the commonest lymphoid 

malignancies (Landgren et al., 2009; Ojha et al., 2014; Rawstron et al., 2008). However, the 

prevalence of preleukaemic HSC clones and the rate and determinants of progression to 

leukaemia remain unknown. The studies cited above demonstrate that the rate of CH in the 

general population, and in particular CH harbouring putative driver mutations (CH-PD), vastly 

exceeds the cumulative incidence of blood cancers (Bowman et al., 2018). Given the variation 

in cohort characteristics, follow-up time and CH detection sensitivity, it is unsurprising that 
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the strength of the association reported between CH and haematological cancer risk has 

varied between studies (Coombs et al., 2017; Genovese et al., 2014; Gibson et al., 2017; Gillis 

et al., 2017; Greaves and Wiemels, 2003; Jacobs et al., 2012; Jaiswal et al., 2014; Laurie et al., 

2012; Loh et al., 2018; Schick et al., 2013; Takahashi et al., 2017; Zink et al., 2017). Notably, 

Zink et al. and Genovese et al. found that the risk of malignant progression was the same 

regardless of whether a point mutation driver (versus no driver) was identified (Genovese et 

al., 2014; Zink et al., 2017). However, as discussed previously, it is possible that CH without 

such mutations may reflect unsought structural driver events.  

Most studies of cohorts unselected for cancer or haematological phenotype have 

reported an approximately ten-fold increased risk of blood cancer among individuals with CH 

(Genovese et al., 2014; Jaiswal et al., 2014).  However, this still reflects a low absolute risk for 

malignant progression. Jaiswal et al. found that individuals with CH-PD (assay sensitivity limit 

3.5% and 7.0% for SNVs and indels, respectively) had a 4% risk of blood cancer diagnoses over 

a median follow-up period of 7.9 years (Jaiswal et al., 2014). This translates into an overall 

annual progression rate of 0.5%, rising to 1% per year among individuals with driver mutations 

present at VAF > 0.1 (Jaiswal et al., 2014). Similarly, Genovese et al. reported similar findings, 

and in addition were able to demonstrate a clonal relationship between CH and blood cancer 

in the two individuals for whom diagnostic bone marrow specimens were available (Genovese 

et al., 2014). In both of these cases, the interval between blood sampling and cancer diagnosis 

was modest (2 and 34 months) (Genovese et al., 2014).  Both Jaiswal et al. and Genovese et 

al. found that only a minority of the blood cancers arising during follow-up were diagnosed in 

individuals with antecedent CH: 5/16 (31%) and 13/31 (42%), respectively (Genovese et al., 

2014; Jaiswal et al., 2014). This finding, in conjunction with the ubiquity of CH relative to blood 

cancer incidence, raises clinically and biologically compelling questions about the natural 

history of haematological cancers and the pathophysiological relevance of CH. 

From a clinical perspective, it is sobering that the main cause of mortality from many 

of the commonest adult haematological cancers remains treatment resistance, despite a 

growing arsenal of novel targeted therapies (Abdi et al., 2013; Döhner et al., 2015; Woyach 

and Johnson, 2015). There is hence a compelling rationale for identifying and treating a 

genomically simpler antecedent of the disease. In this context, reduction of clonal size rather 

than complete clonal extinction may be sufficient to significantly reduce the risk of malignant 

progression. Such an approach has proven very effective in CML, which has been transformed 
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into a chronic condition by targeted therapy, whereas CML blast crisis remains very 

challenging to treat (Gore et al., 2018; Hunger, 2017; O'Brien et al., 2003). The eventual 

feasibility of earlier detection and intervention for nascent blood cancers will invariably be 

hampered by the high prevalence of benign CH, given the relative rarity of the former. 

However, CH is associated with and may play a causal role in several much commoner 

conditions, which may broaden indications for its use as a clinical biomarker or a therapeutic 

target for non-haematological pathologies. The broader clinical significance of CH is 

summarised in the following sections.  

3.3.3 Clonal haematopoiesis and non-haematological cancers 

 Clonal haematopoiesis has been associated with both a higher risk of solid cancers 

(Akbari et al., 2014; Artomov et al., 2017; Bowman et al., 2018; Ruark et al., 2013; Thompson 

et al., 2019) and with higher mortality among solid tumour and lymphoma patients (Coombs 

et al., 2017; Gibson et al., 2017). However, it is challenging to study the relationship between 

CH and solid cancer risk given that cancer treatments dramatically increase CH incidence and 

many study participants were not chemotherapy/radiotherapy naïve (Akbari et al., 2014; 

Artomov et al., 2017; Ruark et al., 2013). It is also possible that germline cancer predisposition 

is a confounding risk factor for both CH and overall cancer risk.  

 The association between CH and mortality among cancer patients has been 

consistently observed across diverse cohorts (Coombs et al., 2017; Gibson et al., 2017; Gillis 

et al., 2017), though may also be subject to some confounding factors, e.g., germline cancer 

predisposition. Furthermore, cancer treatment intensity correlates with CH risk (Coombs et 

al., 2017; Gibson et al., 2017; Gillis et al., 2017; Takahashi et al., 2017) and toxicity-related 

mortality, and may be higher in individuals with more advanced malignancies. These potential 

confounders are hard to control for across retrospective cohorts comprising individuals with 

diverse solid cancer types.   

 Any mechanistic link between CH and solid tumour pathogenesis remains speculative. 

It is possible that clonal haematopoiesis may promote solid tumour growth by fostering 

hospitable tissue microenvironments (Bowman et al., 2018). The term ‘tumour-associated 

macrophage’ (TAM) encompasses phenotypically diverse cells that can play both oncogenic 

or tumour-suppressive roles (Mantovani et al., 2017). It is intriguing that the cytokine profile 
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of the TET2-mutated macrophages implicated in atherosclerosis (Jaiswal et al., 2017) shares 

key features with that seen in oncogenic TAMs (Storr et al., 2017; Wang et al., 2018). 

3.3.4 Clonal haematopoiesis and non-malignant conditions  

 Several studies have found that clonal haematopoiesis is associated with a higher 

overall mortality rate that is only partially due to cancer deaths (Coombs et al., 2017; 

Genovese et al., 2014; Gibson et al., 2017; Jaiswal et al., 2014; Loftfield et al., 2018a; Loh et 

al., 2018; Zink et al., 2017). The majority of excess mortality has been attributed to 

cardiovascular disease (CVD), ischaemic stroke and diabetes (Bonnefond et al., 2013; Coombs 

et al., 2017; Fuster et al., 2017; Genovese et al., 2014; Gibson et al., 2017; Jaiswal et al., 2014; 

Jaiswal et al., 2017; Loftfield et al., 2018a; Sano et al., 2018a; Sano et al., 2018b). Preliminary 

evidence also links CH with rarer inflammatory conditions, such as rheumatoid arthritis 

(Savola et al., 2017).  

It has long been recognised that known cardiovascular risk factors - namely 

hypertension, lipid profile, smoking and obesity – only partially account for atherosclerotic 

diseases burden and that other poorly characterised pro-inflammatory processes likely 

contribute (Ross, 1999).  A large prospective case-control study recently confirmed the 

association between CH and risk of coronary heart disease, independent of age and other 

known risk factors (Jaiswal et al., 2017). This association held regardless of whether CH 

harboured mutations in DNMT3A, TET2, JAK2 or ASXL1 (Jaiswal et al., 2017). Individuals with 

CH had significantly more coronary artery calcification, a surrogate marker of atherosclerosis 

severity (Jaiswal et al., 2017).  Moreover, compelling evidence now supports a causal role for 

CH in atherosclerosis and cardiometabolic disease (Fuster et al., 2017; Jaiswal et al., 2017; 

Sano et al., 2018a). Jaiswal et al. engrafted TET2-mutated cells into hypercholesterolaemia-

prone mice and found that the TET2-deficient animals developed accelerated atherosclerotic 

disease (Jaiswal et al., 2017). Transcriptional profiling of TET2-mutant macrophages from 

arterial plaques revealed increased expression of pro-inflammatory mediators implicated in 

atherosclerosis, including CXCL1, CXCL2, IL-1b and IL-6 (Jaiswal et al., 2017). These findings 

were corroborated by a similar mouse model study by Fuster et al., which further 

demonstrated that inhibition of IL-1b secretion was more effective in slowing atherosclerosis 

in mice engrafted with TET2-deficient bone marrow than in controls (Fuster et al., 2017). Sano 
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et al. found that TET2-mutant CH increases IL-1b levels, accelerates cardiac failure in mice, 

and can be mitigated with anti-inflammatory therapy targeting IL-1b production (Sano et al., 

2018a). A recent randomised, double blind trial of canakinumab, a therapeutic monoclonal 

antibody targeting IL-1b, reduced cardiovascular morbidity and mortality in humans 

independent of lipid profile (Ridker et al., 2017). Trial participants were not screened for CH, 

so it remains to be investigated whether CH could serve as a useful human biomarker or 

therapeutic target in its own right.  

 Myeloproliferative diseases are associated with increased cardiovascular morbidity 

and mortality mediated by multiple mechanisms (Deininger et al., 2017). In a retrospective 

nested case-control study including 10,000 individuals without a known myeloid neoplasm, 

JAK2-mutant CH was associated with an increased thrombosis risk (Wolach et al., 2018). This 

association appears at least partially attributable to a mutant JAK2-mediated increase in pro-

thrombotic neutrophil extracellular trap (NET) formation (Wolach et al., 2018). In a mouse 

model of JAK2-mutant CH, NET formation and thrombosis was reduced upon administration 

of ruxolitinib, a JAK2 inhibitor (Wolach et al., 2018).  

It is not yet known whether CH with mutations in other genes plays a causative role in 

atherosclerosis, though the strong association between DNMT3A- and ASXL1-mutant CH and 

CVD (Jaiswal et al., 2017) warrants further investigation. It is intriguing that atherogenic 

haemodynamic stress appears to reprogram endothelial gene expression via a DNA methyl-

transferase (DNMT)-dependent mechanism and that DNMT inhibition with siRNA or 

decitabine can reduce vascular endothelial inflammation and atherosclerosis formation in 

multiple mouse models (Dunn et al., 2014; Zhou et al., 2014).  It is therefore possible that 

DNMT3A-mutant CH promotes endothelial dysfunction by epigenetic mechanisms, and might 

conceivably be amenable to nucleoside analogue treatment.   

The hypothesis that CH can contribute to inflammatory conditions is further 

substantiated by a recent study investigating the impact of donor CH on allogeneic 

haematopoietic stem cell transplantation (HSCT) outcomes (Frick et al., 2018). Frick et al. 

found that recipients of CH-positive transplants had a significantly higher rate of chronic graft 

versus host disease and lower rate of relapse (Frick et al., 2018).  

Collectively, these studies suggest a causal link between CH and non-malignant 

conditions, including leading causes of morbidity and mortality in the general population. It 
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is therefore possible that CH may prove to be a useful biomarker and/or modifiable risk factor 

in a range of clinical contexts.  

3.4 Selection pressures influencing clonal haematopoiesis  

 Which selective pressures influence somatic evolution in the haematopoietic system? 

Do certain driver events confer strong enough cell-intrinsic growth advantage that they 

render clonal expansion inevitable? To what extent do environmental selection pressures 

determine the fitness advantage conferred by mutations and the pathophysiological outcome 

of CH? Are any of these selective pressures clinically modifiable? Although these questions 

remain largely unanswered, it is clear that the incidence and natural history of CH is 

influenced by clinical context.  

3.4.1 Ageing 

 CH prevalence consistently rises with age, which is itself the dominant risk factor for 

most haematological malignancies (Busque et al., 2018). Haematopoietic ageing is 

characterised by HSC functional decline and myeloid bias reflected in a tendency towards 

anaemia and innate and adaptive immune senescence (Pang et al., 2011; Rossi et al., 2007; 

Rossi et al., 2005). Although HSCs accumulate mutations throughout life, ageing is associated 

with accelerated accrual of DNA damage (Flach et al., 2014; Osorio et al., 2018; Rossi et al., 

2007; Welch et al., 2012). Age-associated genotoxic stress can induce apoptosis or 

differentiation, thus potentially depleting the functional HSC pool (Adams et al., 2015; Flach 

et al., 2014; Geiger et al., 2013; Rossi et al., 2007; Yahata et al., 2011). These factors may 

create an environment where HSCs with greater proliferative capacity or resistance to DNA-

damage induced apoptosis and/or terminal differentiation contribute disproportionately to 

haematopoiesis (Latchney and Calvi, 2017; Pang et al., 2017). Mutations in many recurrent 

CH drivers, notably DNMT3A, ASXL1 and TET2, may confer a competitive advantage through 

their ability to increase HSC self-renewal and inhibit differentiation (Abdel-Wahab et al., 2012; 

Challen et al., 2011; Dominguez et al., 2018; Jeong et al., 2018; Ko et al., 2011; Moran-Crusio, 

2011). Similarly, HSC harbouring mutations in TP53 or PPM1D are likely to have a particular 

competitive advantage in the context of genotoxic stress (Bondar and Medzhitov, 2010; Hsu 

et al., 2018; Kahn et al., 2018; Wong et al., 2015b).  
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3.4.2 Cytotoxic therapies 

Studies of CH in cohorts of cancer patients who have received intensive chemo and/or 

radiotherapy have demonstrated an elevated prevalence of CH with marked enrichment for 

PPM1D and TP53 mutated clones (Akbari et al., 2014; Coombs et al., 2017; Gibson et al., 2017; 

Gillis et al., 2017; Ruark et al., 2013; Takahashi et al., 2017). These findings suggest that 

exogenous genotoxic stress confers a strong competitive advantage on HSCs harbouring 

mutations that interfere with the DNA-damage response and apoptosis. In vivo studies of 

murine HSC competition have demonstrated that cells with TP53 or PPM1D mutations 

outcompete their wild-type peers in the context of ionising radiation and chemotherapy, 

respectively (Bondar and Medzhitov, 2010; Hsu et al., 2018; Kahn et al., 2018). CH arising in 

the context of cancer treatment and its relationship with therapy-related myeloid neoplasms 

is further discussed in the introduction to chapter 5.  

3.4.3 Immune-mediated selection 

CH is particularly common in the context of bone marrow failure syndromes (Mehta 

et al., 2010; Reina-Castillon et al., 2017; Stanley et al., 2017; Yoshizato et al., 2015), 

corroborating the notion that HSC functional decline and depletion promotes cell 

competition. CH arising in the context of autoimmune-mediated acquired aplastic anaemia 

(AA) is another example of environmental context influencing HSC somatic evolution 

(McKerrell and Vassiliou, 2015; Yoshizato et al., 2015). CH is present in the majority of AA 

patients, and the mutational spectrum reflects the selective pressure exerted by immune 

attack on HSCs (Stanley et al., 2017; Yoshizato et al., 2015). For example, mutations in PIGA 

are highly recurrent and result in reduced cell surface expression of 

glycophosphotidylinositol-anchored autoantigens (McKerrell and Vassiliou, 2015; Yoshizato 

et al., 2015). Deletion of chromosome 6p, which encompasses human leucocyte antigen 

alleles, is likely to further aid immune escape (Stanley et al., 2017).  



 36 

4. Sequencing strategies for studying somatic evolution 

High resolution insight into somatic evolution in normal ageing tissues requires detection 

of rare mutations and represents a considerable technical challenge. The Illumina sequencing 

platform currently has the lowest error rate, though this varies considerably across different 

genomic regions according to the GC content and other base composition features (Hoang et 

al., 2016; Ross et al., 2013). With sophisticated post-sequencing analysis techniques, 

mutations in less error-prone genomic regions can be detected with a sensitivity >0.1%, 

though this is still inadequate for detecting rare mutations in cells that have not undergone 

appreciable clonal expansion (Gerstung et al., 2014; Hoang et al., 2016; Martincorena et al., 

2015; Ross et al., 2013).  

Strategies for overcoming this challenge include growing single-cell derived colonies (Lee-

Six et al., 2018) or organoids (Blokzijl et al., 2016; Roerink et al., 2018), laser capture 

microdissection of clonal units from tissue sections (Moore et al., 2018), single cell sequencing 

(Navin et al., 2011; Potter et al., 2013; Zong et al., 2012) and error-corrected sequencing using 

molecular barcodes (Kennedy et al., 2014; Kinde et al., 2011; Mattox et al., 2017). The latter 

method involves using barcoded adaptors to label both strands from a single DNA molecule. 

This manoeuvre greatly helps distinguish artefacts (which will almost always be called on one 

strand only) from real mutations (apparent in both strands from the same DNA 

molecule)(Kennedy et al., 2014; Schmitt et al., 2012). However, error-corrected sequencing is 

tractable only for very limited target regions and can be insensitive, in part due to inefficient 

pull-down of target regions (Kennedy et al., 2014; Schmitt et al., 2012). It is also more labour-

intensive and expensive due to the need to sequence each individual molecule sufficiently 

deeply to generate consensus sequences (Kennedy and Ebert, 2017; Kennedy et al., 2014). A 

main emphasis of the work in this thesis is to better define pathophysiologically significant 

clonal haematopoiesis, ideally using clinically tractable sampling and sequencing approaches 

that might eventually be applied in a ‘real world’ setting. The experiments described here 

have primarily used bulk peripheral blood and bone marrow samples. For a subset of this 

work (Chapter 3), we compared the performance of consensus sequencing with molecular 

barcodes and ultradeep targeted sequencing, which is now routinely available in clinical 

diagnostic laboratories.  
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5. Thesis Aims 

In summary, cancer is a clonal genetic disease adept at evolving resistance to both 

conventional and targeted therapies (Stratton, 2011; Stratton et al., 2009; Yates and 

Campbell, 2012). Knowledge of the genetic basis of cancers has galvanised research into early 

detection using increasingly sensitive sequencing technologies (Cohen et al., 2018; Etzioni et 

al., 2003; Newman et al., 2016). It is conceivable that earlier detection of asymptomatic, 

genetically simpler pre-cancerous lesions might enable therapeutic intervention, including 

targeted therapies for single oncogene addictions, analogous to treatment of chronic phase 

CML (O'Brien et al., 2003) or therapies to mitigate selection pressures that favour clonal 

expansion. The success of early cancer detection efforts will hinge upon the ability to 

distinguish pre-cancer from ubiquitous benign clonal expansions in normal ageing tissues. In 

the blood system, CH harbouring canonical leukaemia-associated mutations is a risk factor for 

haematological malignancy (Bowman et al., 2018). However, only a small minority of affected 

individuals progress, and determinants of evolutionary trajectories remain poorly understood 

(Figure 1.1). This dissertation investigates the pre-malignant landscape of several common 

haematological neoplasms and the feasibility of identifying individuals with CH at high risk of 

developing a blood cancer. The main aims of this project are as follows.  

 

1. Describe the premalignant mutational landscape of the commonest haematological 

neoplasms and compare this with age-related CH in the general population.   

2. Investigate the extent to which benign clonal haematopoiesis can be distinguished 

from clones at high risk of malignant transformation.  

3.  Investigate the prevalence of CH in childhood cancer survivors and the natural history 

of childhood therapy-related myeloid neoplasms. 

 

 

 

 

 

 

 



 

Figure 1.1  
 

 

 
 
Figure 1.1 |  Initiation and evolution of clonal haematopoiesis  
Shown is a model illustrating the process of somatic mutation accumulation in HSCs and 
different clonal trajectories, with known and hypothetical influences on mutation 
acquisition and/or positive selection highlighted in red. As yet poorly-defined mutational 
processes acting on HSCs generate somatic genetic diversity in the HSC pool with time, 
represented here as a mosaic of distinctly coloured cells. Cells with a relative fitness 
advantage under the selective pressures prevailing in the haematopoietic 
microenvironment undergo clonal expansion. Clonal haematopoiesis is a nearly inevitable 
consequence of ageing, and may play a role in maintaining adequate haematopoiesis in a 
senescing haemopoietic niche. A minority of individuals may progress to a neoplastic 
disorder. MGUS, monoclonal gammopathy of unknown significance; MBL, monoclonal B-
cell lymphocytosis.  
 
 

38



 39 

Chapter 2 

Materials and Methods 

 

 

 

 

1. Patient samples 

1.1 Pre-AML and control peripheral blood samples (Chapter 3) 

For the study of the pre-clinical evolution of AML described in Chapter 3, samples from 

pre-AML cases and age- and sex-matched controls were collected by collaborators at the 

European Prospective Investigation into Cancer and nutrition (EPIC) study (Riboli et al., 2002). 

Samples were divided into discovery and validation cohorts and sequenced at the Wellcome 

Sanger Institute and the University of Toronto, respectively (see section Methods section 2.1 

and 2.2).  

Written informed consent was obtained from all participants in accordance with the 

Declaration of Helsinki and protocols approved by the relevant ethics committees (IARC Ethics 

Committee approval #14-31, the Weizmann institute of science Ethics board approval #60-1 

and East of England - Cambridgeshire and Hertfordshire Research Ethics Committee reference 

number 98CN01). De novo AML patients were identified based on the following ICD9 codes: 

9861/3 9860/3 9801/3 9866/3 9891/3 9867/3 9874/3 9840/3 9872/3 9895/3 9873/3. All 

patients provided peripheral blood samples from which the buffy coat fractions were 

separated and aliquoted for long-term storage in liquid nitrogen prior to DNA extraction. 

 

1.1.1 Discovery cohort samples 

A total of 509 DNA samples were collected from individuals upon enrolment into the 

EPIC study between 1993 and 1998 across 17 different centres (Riboli et al., 2002). The pre-

AML group comprised 95 individuals who developed de novo AML an average of 6.37 years 
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(IQR=4.88 years) after the sample was collected. The control group included 414 age and 

gender matched individuals with no record of haematological disorders (mean follow-up 

period 11.9 years). The median age at recruitment was 56.75 years (range 36.08 to 74.42). In 

order to minimize any possible demographic biases, an approximate 1:4.5 pre-AML to control 

ratio was maintained across the different centres. Discovery cohort (DC) sample metadata is 

detailed in Appendix 1.  

1.1.2 Validation cohort samples 

Samples were ascertained from individuals enrolled in the EPIC-Norfolk longitudinal 

cohort study between 1994 and 2010 (Day et al., 1999). Samples and clinical metadata were 

available from 37 AML patients (of which 8 were already included in the discovery cohort) 

and 262 age- and gender-matched controls without a history of cancer or any haematological 

condition. The median time between the first blood sampling and AML diagnosis was 12.3 

years (IQR 8.3 years). The median follow-up period for the control cohort was 17.5 years (IQR 

3.8). For 12 individuals in the pre-AML cohort, 2-3 blood specimens were available, taken a 

median of 3.4 years apart. Of the 262 controls, 141 had multiple blood samples available, 

spanning a median of 10.5 years. Blood counts and other clinical parameters were available 

for all study participants (Appendix 2). 

1.2 Childhood cancer survivor cohort samples (Chapter 5) 

We obtained peripheral blood DNA samples from patients enrolled on long-term 

follow-up after treatment for a paediatric malignancy and from 3 age-matched controls with 

no cancer history. Written informed consent was obtained for sample collection and DNA 

sequencing from all patients or their guardian in accordance with the Declaration of Helsinki 

and protocols approved by the relevant institutional ethics committees (approval numbers 

09REG2015, 1-09/12/2015). The median age at cancer diagnosis was 4.5 years, and the 

commonest malignancies were acute lymphoblastic leukaemia (n=21), neuroblastoma (n=17) 

and non-Hodgkin lymphoma (n=10). Nineteen patients had received a hematopoietic stem 

cell transplant (8 allogeneic and 11 autologous). The median interval between completion of 
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cancer treatment and blood sampling was 6 years (range 2 – 25). Patient characteristics are 

summarized in Table 4.1 and individual sample details are shown in Appendix 3.  

1.3 Paediatric therapy-related myeloid neoplasm samples (Chapter 5) 

We obtained bilateral bone marrow biopsies and serial peripheral blood DNA samples 

from a paediatric neuroblastoma patient who developed a therapy-related myeloid 

neoplasm. Written informed consent was obtained for sample collection and DNA sequencing 

from the guardian in accordance with the Declaration of Helsinki and protocols approved by 

the relevant institutional ethics committees (REC reference 16/EE/0394).  

1.4 Pre-lymphoid neoplasm cohort and controls 

For the study of the pre-clinical evolution of lymphoid neoplasms (LN) described in 

Chapter 4, samples from pre-LN cases and age- and sex-matched controls were collected by 

collaborators at the European Prospective Investigation into Cancer and nutrition (EPIC)-

Norfolk study (Day et al., 1999; Riboli et al., 2002).  

Written informed consent was obtained from all participants in accordance with the 

Declaration of Helsinki and protocols approved by the relevant ethics committees (IARC Ethics 

Committee approval #14-31, East of England - Cambridgeshire and Hertfordshire Research 

Ethics Committee reference number 98CN01). Pre-LN cases were identified based on the 

following ICD10 codes: C81*, C82*, C83*, C84*, C85*, C86*, C87*, C88*, C89*, C90*, C91*. 

All patients provided peripheral blood samples from which the buffy coat fractions were 

separated and aliquoted for long-term storage in liquid nitrogen prior to DNA extraction. 

2. Library preparation and sequencing 

2.1  Targeted sequencing of discovery cohort pre-AML and control samples 

(Chapter 3) 

Library preparation and sequencing of discovery cohort samples was performed by Sagi 

Abelson and colleagues (Princess Margaret Cancer Centre, University Health Network, 

Toronto). Targeted deep sequencing was performed using error-corrected sequencing (ECS) 

as detailed below.  
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Ligation of sequencing adaptors. Shearing of genomic DNA, preparation of pre-capture 

sequencing libraries, hybridization-based enrichment, assessment of the libraries quality and 

enrichment following hybridization were performed as previously described (Newman et al., 

2014). Briefly, 100ng of genomic DNA was sheared before library construction (KAPA Hyper 

Prep Kit #KK8504, Kapa Biosystems) with a Covaris E220 instrument using the recommended 

settings for 250bp fragments. Following end repair and A-tailing, adapter ligation was 

performed using 100-fold molar excess of Molecular Index Adapter. Library clean-up was 

performed with Agencourt AMPure XP beads (Beckman-Coulter) and the ligated fragments 

were then amplified for 8 cycles using 0.5μM Illumina universal and indexing primers. 

Target capture. Targeted capture was carried out on pools containing 3 indexed libraries. 

Each pool of adaptor-ligated DNA was combined with 5μl of 1mg/ml Cot-I DNA (Invitrogen), 

and 1 nmol each of xGEN Universal Blocking Oligo – TS-p5, and xGen Universal Blocking Oligo 

– TS-p7 (8nt). The mixture was dried using a SpeedVac and then re-suspended in 1.1μl water, 

8.5μl NimbleGen 2× hybridization buffer and 3.4μl NimbleGen hybridization component A. 

The mixture was heat denatured at 95°C for 10 minutes before addition of 4μL of xGen 

Lockdown Probes (xGen® AML Cancer Panel v1.0, 3pmol). The panel was designed to include 

all genes recurrently mutated in the 2013 TCGA study of AML (TCGA et al., 2013). Each pool 

was then hybridized at 47°C for 72 hr. Washing and recovery of the captured DNA was 

performed according to the manufacturer’s specifications. Briefly, 100μl of clean streptavidin 

beads was added to each capture. Following separation and removal of supernatant on a 

magnet, 200μL 1X Stringent Wash Buffer was added and the reaction was incubated at 65°C 

for 5 min. Supernatant containing unbound DNA was removed before repeating the high 

stringency wash one additional time. Next, the bound DNA was washed as follows: 1) 200μl 

1X Wash Buffer I and separation of the supernatants by magnetic separation, 2) 200μl 1X 

Wash Buffer II following magnetic separation, 3) 200μl 1X Wash Buffer III and removal of the 

supernatants using magnetic separation. The captured DNA on beads was resuspended in 

40μl of Nuclease-Free water before dividing the total volume into 2 PCR tubes and subjecting 

the libraries to 10 cycles of post-capture amplification (manufacturer recommended 

conditions; Kapa Biosystems). Prior to sequencing, libraries were spiked in with 2% PhiX.  

2.2 Targeted sequencing of validation cohort pre-AML and control samples and 

AML diagnostic specimens (Chapter 3) 
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This section describes the sequencing methods for the validation cohort (VC) pre-AML 

and control samples discussed in Chapter 3. 

Targeted sequencing was performed using a custom cRNA bait set (SureSelect, 

Agilent, UK, ELID #0537771, contributed by Dr Elli Papaemmanuil and Dr Peter Campbell) 

designed complementary to all coding exons of 111 genes implicated in myeloid 

leukaemogenesis (Appendix 4). Genomic DNA was sheared using the Covaris M220. 

Equimolar pools of 10 libraries were prepared and sequenced on the Illumina HiSeq 2000 

using 75 base paired-end sequencing as per Illumina and Agilent SureSelect protocols. 

2.3 Multiplex PCR design and sequencing (Chapter 5) 

This section describes the sequencing strategy used to screen peripheral blood samples 

from childhood cancer survivors for clonal haematopoiesis (Chapter 5). The multiplex PCR 

panel was designed by Dr Naomi Park and Dr George Vassiliou as detailed in a published 

protocol (Park and Vassiliou, 2017) and I performed PCR experiments with supervision from 

Dr Park. Primers were designed using mprimer software (Shen et al., 2010) and checked for 

specificity using MFEprimer (Qu and Zhang, 2015). In order to minimise primer dimer 

formation, primers were synthesised to include a single 2’-O-Methyl base substitution, one 

base from the 3’-end. The multiplex PCR amplifies 32 regions of 14 genes frequently mutated 

in CH or t-MN (Table 4.2) (Bowman et al., 2018; McNerney et al., 2017). This is an extension 

of a previously validated assay (McKerrell et al., 2015) to include all coding exons of TP53 and 

PPM1D, genes implicated in t-MN pathogenesis (Gibson et al., 2017; Hsu et al., 2018; 

McNerney et al., 2017). Primer sequences are detailed in Appendix 5. Amplicon libraries were 

sequenced on the Illumina MiSeq platform as detailed in Park et al. (Park and Vassiliou, 2017).  

2.4 Targeted sequencing using a custom pan-haematological cancer panel  

This section describes the sequencing methods for the diagnostic AML bone marrow 

samples discussed in Chapter 3, the pre-lymphoid cancer specimens and controls discussed 

in Chapter 4 and the paediatric therapy-related myeloid neoplasm described in Chapter 5. 

Targeted sequencing was performed using a custom cRNA bait set (SureSelect, Agilent, UK, 

ELID ID: 3129591) designed complementary to all coding exons of 95 genes recurrently 

mutated in myeloid and lymphoid haematological cancers, including the genes most 
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frequently implicated in paediatric MPN/MDS (Appendix 6). Genes implicated in lymphoid 

neoplasms were selected with input from Dr Philip Beer. Genomic DNA was sheared using the 

Covaris M220. Equimolar pools of 10 libraries were prepared and sequenced on the Illumina 

HiSeq 2000 using 75 base paired-end sequencing as per Illumina and Agilent SureSelect 

protocols. 

2.5 Whole genome sequencing  

Whole genome sequencing of peripheral blood DNA (Chapter 5) was performed by 150-

bp- paired-end sequencing on the Illumina Hiseq X10 platform. The Illumina no-PCR protocol 

was followed to construct short insert libraries, prepare flow cells and generate clusters 

(Kozarewa et al., 2009).  

3. Variant calling  

3.1 Variant calling in pre-AML and control samples 

Variant filtering and annotation for the discovery cohort (section 3.1.1) and validation 

cohort (section 3.1.2) was performed by Dr Sagi Abelson and myself, respectively. After 

filtering and annotation, both datasets were combined and driver mutation calling and 

additional artefact filtering was performed by me as detailed in sections 3.1.3 and 3.1.4.  

Figure 2.1 

 

Figure 2.1 | Overview of Chapter 3 experimental design. Discovery and validation cohort pre-

AML and control samples were processed using different sequencing and bioinformatic 

pipelines, summarised above.  
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3.1.1 Discover cohort variant calling and error correction 

126bp paired-end read sequencing data from the Illumina HiSeq2500 platform was 

converted to fastq format. The 2bp molecular barcode information of each read was trimmed 

and incorporated into the read name. The thymine nucleotide required for ligation was 

removed from the sequences. The processed FASTQ files were then aligned to the hg19 

reference genome using the Burroughs-Wheeler Aligner (BWA-MEM) (Li and Durbin, 2010). 

Indel-re-alignment was performed using GATK (McKenna et al., 2010). An in-house algorithm 

was written to collapse read families that share the same molecular barcode sequence, the 

left most genomic position of where each read of the pair maps to the reference and the 

CIGAR string. Families comprised of at least 2 reads were used to generate consensus reads 

(CR) and a consensus base was called when there was at least 70% agreement. When a 

consensus base was called, it was assigned with the maximum base quality score observed in 

its corresponding pre-collapsed reads. Furthermore, when possible, duplex reads (DR) were 

generated from two CR, from a singleton read (SR) and a CR, or from two SR (Kennedy et al., 

2014). For each sequenced sample, we generated two BAM files, called bam1 and bam2. 

Bam1 consists of DR, CR and singleton reads, thereby including some error corrected and non-

error corrected reads. Bam2 consists of DR and CR but not singleton reads. Both files were 

then analysed to detect single nucleotide variants (SNVs) and small insertions and deletions 

(indels) using Varscan2 (Koboldt et al., 2012). In order to further remove sequencing artefacts 

and improve sensitivity, we applied a two-step statistical polishing approach that models the 

error rate at each sequenced genomic position. For both steps, bam1 was used and all the 

samples except the sample being investigated were included for error rate modelling. At step 

one, as previously described (Newman et al., 2014), the error rates were modelled by fitting 

weibull distribution curves to the non-reference allele fractions. SNVs with allele fractions 

that were statistically distinguishable from the background error rates were further analysed. 

At Step 2, the coverage of the non-reference allele fractions was considered by using linear 

line fitting that describes the negative correlation that exist between the log (non-reference 

allele fraction) and the corresponding log(coverage) values. This allowed us to estimate 

different error rates at different coverage depths. Indel errors were filtered using barcode 

mediated error correction alone. At least 10 CR, 5 supporting reads on the forward strand, 5 

supporting reads on the reverse strand, and 2 DR were required to call an indel. Variants were 
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annotated using Annovar (Yang and Wang, 2015). Additional post-processing steps applied to 

data from both the discovery and validation cohorts are detailed in section 3.1.3.  

3.1.2 Validation cohort variant calling 

Sequencing reads were aligned to the reference genome (GRCh37d5) using the 

Burrows-Wheeler aligner (BWA-ALN)(Li and Durbin, 2009). Unmapped reads, PCR duplicates 

and reads mapping to regions outside the target regions (merged exonic regions + 10bp either 

side of each exon) were excluded from analysis. Sequencing depth at each base was assessed 

using Bedtools coverage v2.24.0 (Quinlan and Hall, 2010).  

Substitutions 

Somatic single nucleotide variants (SNVs) were called using Shearwater, an algorithm 

developed for detecting subclonal mutations in deep sequencing experiments 

(https://github.com/gerstung-lab/deepSNV v1.21.5) (Gerstung et al., 2012; Gerstung et al., 

2014; Martincorena et al., 2015) considering only reads with minimum nucleotide and 

mapping quality of 25 and 40, respectively. This algorithm models the error rate at individual 

loci using information from multiple unrelated samples. Additionally, allele counts at the 

recurrent AML mutation hotspots listed in section 3.1.4 were generated using an in-house 

script (https://github.com/cancerit/alleleCount) and manually inspected in the Jbrowse 

genome browser (Buels et al., 2016). To further complement our SNV calling approach, we 

applied an extensively validated in-house version of CaVEMan v1.11.2 (Cancer Variants 

through Expectation Maximization)(Stephens et al., 2012). CaVEMan compares sequencing 

reads between study and nominated normal samples and uses a naïve Bayesian model and 

expectation-maximization approach to calculate the probability of a somatic variant at each 

base (https://github.com/cancerit/CaVEMan). Post-processing filters required that the 

following criteria were met for CaVEMan to call a somatic substitution: 

1) If coverage of the mutant allele was less than 8, at least one mutant allele was 

detected in the first 2/3 of the read.  

2) Less than 3% of the mutant alleles with base quality ≥ 15 were found in the 

nominated normal sample.  

3) Mean mapping quality of the mutant allele reads was ≥ 21. 
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4) Mutation does not fall in a simple repeat or centromeric region. 

5) Fewer than 10% of the reads covering the position contained an indel 

according to mapping. 

6) Less than 80% of the reads report the mutant allele at the same read position.  

7) At least a third of the reads calling the variant had a base quality of 25 or 

higher.  

8) Not all mutant alleles reported in the second half of the read. 

9) Position does not fall within a germline insertion or deletion. 

 

The following additional post-processing criteria were applied to all SNV calls: 

1) Minimum VAF 0.5% with a minimum of 5 bidirectional reads reporting the 

mutant allele (with at least 2 reads in forward and reverse directions).  

2) No indel called within a read length (75bp) of the putative substitution.  

 

Small insertions and deletions 

Small insertions and deletions were sought using two complementary approaches. 

Firstly, an in-house version of Pindel v2.2 (Raine et al., 2015) 

(https://github.com/cancerit/cgpPindel) was applied. We additionally used the 

aforementioned Shearwater algorithm (Gerstung et al., 2012; Gerstung et al., 2014; 

Martincorena et al., 2015) in order to increase sensitivity for indels present at low VAF. VAF 

correction was performed using an in-house script (https://github.com/cancerit/vafCorrect).  

Post-processing filters required that the following criteria were met for a variant to be called: 

1) Minimum of 5 reads supporting the variant with minimum of 2 reads in each 

direction. For Pindel, the total read count was based on the union of BWA and 

Pindel reads reporting the mutant allele. 

2) Minimum VAF 0.5% 

3) Variant not present within an unmatched normal panel of approximately 400 

samples. 

4) No reads supporting the variant identified in the nominated normal sample.  
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Mutations were annotated according to ENSEMBL version 58 using VAGrENT (Menzies 

et al., 2002) for transcript and protein effects (https://github.com/cancerit/VAGrENT) and 

Annovar (Yang and Wang, 2015) for additional functional annotation.  

3.1.3 Additional post-processing filters applied to all data 

The following variants were flagged for additional inspection for potential artefacts, 

germline contamination or index-jumping event: 

1) Any mutant allele reported within 75bp of another variant. 

2) Any mutant allele with a population allele frequency > 1 in 1000 according to 

any of five large polymorphism databases: ExAC, 1000 Genomes Project, 

ESP6500, CG46, Kaviar that is not a canonical hotspot driver mutation with 

COSMIC recurrence > 100. 

3) Mutations that were present in > 10% of the control cohort but not recurrent 

in COSMIC were flagged as potential germline variants or sequencing artefact.  

4) As artefactual indels tend to be recurrent, any indels occurring in >2 samples 

were flagged for additional inspection.  

3.1.4 Curation of oncogenic variants 

Putative oncogenic variants were identified according to evidence for functional 

relevance in AML as previously described and used to define CH-PD (Gerstung et al., 2017; 

Papaemmanuil et al., 2016).  

 

Variants were annotated as likely driver events if they fulfilled any of the following criteria: 

1) Truncating mutations (nonsense, essential splice site or frameshift indel) in the 

following genes implicated in AML pathogenesis by loss-of-function: NF1, 

DNMT3A, TET2, IKZF1, RAD21, WT1, KMT2D, SH2B3, TP53, CEBPA, ASXL1, RUNX1, 

BCOR, KDM6A, STAG2, PHF6, KMT2C. 

2) Truncating variants in CALR exon 9.  

3) JAK2 V617F 

4) FLT3 ITD 
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5) Non-synonymous variants at the following hotspot residues: 

a. CBL E366, L380, C384, C404, R420, C396 

b. DNMT3A R882 

c. FLT3 D835 

d. IDH1 R132 

e. IDH2 R172, R140 

f. KIT W557, V559, D816 

g. KRAS A146, Q61, G13, G12 

h. MPL W515 

i. NRAS Q61, G12, G13 

j. SF3B1 K700, K666 

k. SRSF2 P95 

l. U2AF1 Q157, R156, S34 

6) Non-synonymous variants reported at least 10 times in COSMIC with VAF < 42% 

and population allele frequency < 0.003.  

7) Non-synonymous variants clustering within a functionally validated domain or 

within 4 amino acids of a hotspot variant with population allele frequency < 0.003 

and VAF < 42%. 

8) Non-synonymous variants reported in COSMIC > 100 times with population allele 

frequency < 0.003 regardless of VAF.  

 

This driver curation strategy inevitably runs a small risk of including germline variants 

in familial AML genes, e.g., RUNX1. However, in most settings, where a matched 

constitutional DNA sample is likely to be unavailable, this seems the best approach. 

 

Of note, the entire validation cohort included 37 pre-AMLs, 8 of these were also 

included in the original discovery cohort and therefore were excluded from the validation 

cohort for downstream analysis. Both the discovery and the validation cohorts sourced 

samples from different centres participating in the EPIC study, hence the overlap. However, 

discovery and validation cohorts were sequenced by two independent research groups using 

different methods, as described above. Putative driver mutations detected for the duplicated 

samples by the two different methods were highly similar. All 9 driver mutations detected in 
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the discovery cohort with VAF>0.015 were detected in the validation cohort samples, while 8 

other mutations (7 in TET2 or DNMT3A) with lower VAFs escaped validation. The latter is 

probably due to the higher VAF cut-off applied to the validation cohort sequencing method 

and the stochastic failure to sample a small clone in two independent experiments. 

3.2 Variant calling from multiplex PCR sequencing 

Reads were aligned to human genome build GRCh37d5 using the Burrows-Wheeler 

Aligner (Li and Durbin, 2010) and analysed for somatic single nucleotide variants and indels. 

Allele counts across target hotspots were generated using an in-house script 

(https://github.com/cancerit/alleleCount), considering only loci with ≥1000 reads and 

minimum base and mapping quality of 25 and 35, respectively. In order to identify SNV and 

indels in TP53 and PPM1D, 3 variant callers were applied: Shearwater 

(https://github.com/gerstung-lab/deepSNV v1.21.5)(Gerstung et al., 2012; Gerstung et al., 

2014; Martincorena et al., 2015), cgpPindel v2.2 (Raine et al., 2015) and CaVEMan v1.11.2 

(Cancer Variants through Expectation Maximization, 

https://github.com/cancerit/CaVEMan)(Stephens et al., 2012) as describe in section 3.1.2 

above. 

3.3 Variant calling for non-AML pre-malignant samples and controls 

SNV and indel calling was performed as described in 3.1.2 and 3.1.3. The strategy for 

curating putative driver variants was adjusted to account for the greater number of genes 

included in the larger bait panel (Appendix 6). Specifically, variants were flagged as candidate 

driver events if they fulfilled any of the following criteria: 

1) Nonsense or frameshift mutations in the following genes: ARID1A, ASXL1, ATM, 

B2M, BCOR, BCORL1, CALR, CDKN2A, CEBPA, CREBBP, CSF1R, CSF3R, CUX1, 

DNMT3A, EP300, FBXW7, KDM6A, KMT2C, KMT2D, NF1, NOTCH2, NPM1, PAX5, 

PHF6, POT1, PPM1D, PRDM1, PTEN, RAD21, SETD2, SOCS1, STAG2, TET2, TNFAIP3, 

TNFRSF14, TP53, WT1, ZRSR2 

2) Splice site mutations in the following genes: ARID1A, ATM, BCOR, CBL, CD79B, 

CDKN2A, CUX1, DNMT3A, KDM6A, NF1, PAX5, PHF6, PRDM1, PTEN, SETD2, STAG2, 

WT1, ZRSR2 
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3) Missense mutations in the following genes were considered if they passed SNP 

and artefact filters and had support as candidate drivers based on relevant 

literature (Tate et al., 2019): ARID1A, ASXL1, ATM, B2M, BCL6, BCORL1, BRAF, 

CALR, CARD11, CBL, CD79B, CDKN2A, CEBPA, CREBBP, CSF1R, CSF3R, CUX1, 

DNMT3A, EP300, ETNK1, EZH2, FBXW7, FLT3, GATA2, GNAS, H3F3A, IDH1, IDH2, 

IL7R, JAK2, KIT, KMT2D, KRAS, MPL, MYD88, NF1, NOTCH1, NOTCH2, NRAS, PAX5, 

PDGFRA, PHF6, PIM1, POT1, PPM1D (exon 6), PRDM1, PTEN, PTPN11, RAD21, 

SETBP1, SETD2, SF3B1, SRSF2, STAG2, STAT3, TET2, TNFRSF14, TP53, U2AF1, WT1, 

XPO1, ZEB1, ZRSR2 

4) Non-synonymous variants reported at least 10 times in COSMIC with VAF < 35% 

and population allele frequency < 0.003.  

5) Non-synonymous variants clustering within a functionally domain or within 4 

amino acids of a hotspot variant with population allele frequency < 0.003 and VAF 

< 35%. 

6) Non-synonymous variants reported in COSMIC > 150 times with population allele 

frequency < 0.003 regardless of VAF.  

3.4 Screening for pathogenic germline variants 

All mutations flagged by SNP filters (VAF > 0.42 and present in ExAC, 1000 Genomes 

Project, ESP6500, CG46 or Kaviar databases) were screened against the ClinVar database 

(Landrum et al., 2016) and Human Gene Mutation Database (HGMD) (Stenson et al., 2003) to 

identify potential cancer predisposition germline variants.  

3.5 Variant calling from whole genome sequences (Chapter 5) 

Whole genome sequences were mapped to the GRCh37d5 reference genome using 

the Burroughs-Wheeler Aligner (BWA-mem) (Li and Durbin, 2010). The Cancer Genome 

Project (Wellcome Trust Sanger Institute) variant calling pipeline was used to call somatic 

mutations which includes the following algorithms: CaVEMan (1.11.0)(Jones et al., 2016) for 

substitutions; an in-house version of Pindel (2.2.2; github.com/cancerit/cgpPindel)(Raine et 

al., 2015) for indels; BRASS (5.3.3; github.com/cancerit/BRASS) for rearrangements (Li et al., 

2017), and ASCAT NGS (4.0.0) for copy number aberrations (Van Loo et al., 2010). In addition 
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to filters inherent to the CaVEMan algorithm, the following post-processing filtering criteria 

were applied for substitutions: a minimum two reads in each direction reporting the mutant 

allele; at least ten fold coverage at the mutant allele locus; minimum variant allele fraction 

5%; no insertion or deletion called within a read length (150bp) of the putative substitution; 

no soft-clipped reads reporting the mutant allele; median BWA alignment score of the reads 

reporting the mutant allele ≥ 140. The following variants were flagged for additional 

inspection for potential artefacts, germline contamination or index-jumping event: any 

mutant allele reported within 150bp of another variant; any mutant allele with a population 

allele frequency > 1 in 1000 according to any of five large polymorphism databases: ExAC, 

1000 Genomes Project, ESP6500, CG46, Kaviar.  

To identify potential driver events in whole genome data, I considered variants 

presenting in established cancer genes (Tate et al., 2019). Tumour suppressor coding variants 

were considered if they were annotated as functionally deleterious by an in-house version of 

VAGrENT (http://cancerit.github.io/VAGrENT/) (Menzies et al., 2002), or alternatively if they 

were disruptive rearrangement breakpoints or homozygous deletions. Additionally, 

homozygous deletions were required to be focal (<1 Mb in size) or constitute a known 

contiguous gene syndrome implicated in t-MN (McNerney et al., 2017). Mutations in 

oncogenes were considered driver events if they were located at previously reported 

canonical hot spots (point mutations) or amplified the intact gene. Amplifications also had to 

be focal (<1 Mb) and increase the copy number of oncogenes to a minimum of 5 copies.  

3.6 Copy number variation in targeted sequencing data 

To detect copy number aberrations in the paediatric t-MN case discussed in Chapter 

5, I applied FACETS (Fraction and Allele-Specific Copy Number Estimates from Tumor 

Sequencing), an allele-specific copy number analysis (ASCN) method (Shen and Seshan, 2016). 

4. Predictive modelling 

Regularised logistic and Cox proportional hazards regression approaches were tested in 

generating the predictive models described in Chapters 3 and 4.  
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Dr Moritz Gerstung wrote the initial version of the code for Chapter 3 and closely 

supervised all further iterations of the models described in Chapter 3. The code for the models 

described in Chapter 4 was written by me using a very similar analysis framework and 

methods as in Chapter 3.  

 

4.1 Cox proportional hazards model with random effects  

We used a Cox proportional hazards regression to model haematological malignancy-

free survival as previously described (Gerstung et al., 2017). We used random effects for the 

Cox proportional hazards model in the CoxHD R package developed by Dr Gerstung 

(http://github.com/gerstung-lab/CoxHD). A key strength of this approach is the ability to 

include many variables in one model while shrinking estimated effects for parameters with 

weak support in the data, thus controlling for overfitting. We used weighting to minimise the 

biases introduced by the artificial case-control ratio (Antoniou et al., 2005) and calculated 

hazard ratios relative to the (approximate) true cumulative incidence of either AML (Chapter 

3) or all lymphoid malignancies (Chapter 4) in the given age range over a follow up of 10-20 

years. Full details of model derivation and comparisons with alternative methods are included 

in the accompanying code (Appendix 7). In brief, variables comprised age, gender, the variant 

allele fraction of putative driver mutations and selected clinical variables when available. We 

performed agnostic imputation of missing variables by mean and linear rescaling of gene 

variables by a power of 10 to a magnitude of 1.  

All blood samples taken within 6 months of cancer diagnosis were excluded from 

model training. Among the pre-AML samples (Chapter 3), 4 individuals were thus removed 

from the discovery cohort. For one individual in the validation cohort who provided 3 pre-

diagnostic samples, the 3rd sample was taken within this time frame and was also excluded 

(though their older samples allowed this individual to remain in the modelling analysis).  

 For each model, the following measures of predictive accuracy were evaluated before 

and after leave-one-out cross-validation (LOOCV): (i) concordance (C)(Harrell et al., 1996), (ii) 

time-dependent area under the receiver-operating characteristic curve (AUC)(O'Quigley et 

al., 2005) and (iii) Uno’s estimator of cumulative/dynamic AUC (Uno et al., 2007). Coefficient 

confidence intervals were calculated using 100 bootstrap samples. 
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 Concordance measures were obtained using the survConcordance() function 

implemented in the survival R package (Therneau and Grambsch, 2000). Dynamic AUC was 

calculated with AUC.uno() implemented in the survAUC package (Heagerty et al., 2000). Time-

independent AUC was calculated by the performance function implemented in the ROCR 

package (Sing et al., 2005). The expected incidence of each haematological malignancy was 

calculated from the UK office of national statistics, available at 

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-

cancer-type/. All-cause mortality data was obtained from the office of national statistics 

(https://www.ons.gov.uk/). 

 

4.2 Ridge regularised logistic regression 

Using the same covariates as in the Cox proportional hazard models, we fitted a ridge 

regularised logistic regression model to dichotomised outcome data. While logistic regression 

is a common choice for case-control analyses, a downside of this approach is the inability to 

explicitly use time-dependent covariates. The penalty parameter was chosen using LOOCV on 

the full cohort; this value was then used on the discovery and validation cohorts to yield the 

same scaling of coefficients. Confidence intervals were calculated using 100 bootstrap 

samples. Fitting was performed using the glmnet R package (Simon et al., 2011). AUC as the 

primary performance metric was calculated using the ROCR R package (Sing et al., 2005). 
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Chapter 3 

Predicting acute myeloid leukaemia risk in 

the general population 

 

 

 

 

1. Introduction 

As discussed in Chapter 1, CH harbouring canonical leukaemia-associated mutations is a 

risk factor for haematological malignancy, though only a small minority of affected individuals 

progress (Bowman et al., 2018). Acute myeloid leukaemia (AML) is the commonest acute 

leukaemia in adults and typically presents suddenly as a fulminant disease with a poor 

prognosis (Döhner et al., 2015). This chapter describes an experiment to distinguish 

individuals at high risk of developing de novo acute myeloid leukaemia (AML) from those with 

indolent CH at low risk of malignant transformation. The introduction provides background 

on AML and reviews existing literature on its pre-clinical evolution and relationship to clonal 

haematopoiesis.  

1.1 Acute myeloid leukaemia 

1.1.1 Definition and epidemiology 

AML is an aggressive haematopoietic stem cell disorder characterized by clonal 

proliferation of poorly differentiated myeloid cells (Döhner et al., 2015). It is the commonest 

acute leukaemia among adults, and comprises around 20% of all paediatric leukaemia 

(Döhner et al., 2015).  The incidence of AML increases dramatically with age, and exceeds 100 

cases per 100,000 in those over the age of 60, with a higher risk among men (CRUK, 2018; 
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SEER, 2018). There are around 3,100 new AML cases and 2,500 AML-related deaths each year 

in the UK (CRUK, 2018).  

1.1.2 Aetiology and risk factors 

The dominant AML risk factor is age, though the role ageing plays in the aetiology of 

AML is incompletely understood (Döhner et al., 2015). The somatic mutation burden seen in 

AML correlates with age at diagnosis and is similar to that observed in normal HSCs from age-

matched individuals without a haematological disorder (Welch et al., 2012). Unlike many 

common adult epithelial cancers, the role of extrinsic mutational processes appears to be 

minor, with the age-related mutational SBS11 and SBS5 accounting for the vast majority of 

AML mutations (Alexandrov et al., 2018; Alexandrov et al., 2013).  

Environmental or occupational chemical exposures, notably to benzene and other 

industrial solvents, may play a role in a minority of AML cases, though evidence for a causal 

link is weak (Austin et al., 1988).  

Germline variants in a growing number of genes have been implicated in myeloid 

malignancies, including RUNX1, GATA2, TERT, ATG2B, TP53 and CEBPA (Hinds et al., 2016; 

Saliba et al., 2015; Smith et al., 2004; Zhang et al., 2015). As discussed in the general 

introduction, germline and somatic mutations in the same cancer gene generally carry 

different biological and clinical significance and merit distinction (Arber et al., 2016; Döhner 

et al., 2015). Furthermore, recent evidence has suggested that the distinction between 

germline and somatic mutation is less clear than previously thought, with a growing catalogue 

of highly penetrant germline variants strongly predisposing to acquisition or clonal selection 

of particular somatic mutations (Hinds et al., 2016; Loh et al., 2018). 

Other myeloid neoplasms, most commonly myeloproliferative neoplasms and 

myelodysplastic syndromes, may transform into AML, termed secondary AML (sAML) 

(Deininger et al., 2017; Sperling et al., 2017).  

The most prevalent extrinsic risk factor for AML is previous exposure to chemotherapy 

or radiotherapy, in particular alkylating agents and topoisomerase II inhibitors (McNerney et 

al., 2017). Any AML that arises after cytotoxic treatment is termed therapy-related AML (t-

AML) and is discussed further in the introduction to Chapter 5.  
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AML that presents suddenly with manifestations of bone marrow failure is termed de 

novo AML to distinguish it from sAML and t-AML, although, as discussed later on, these 

distinctions are not always straight-forward or biologically meaningful.  

1.1.3 AML genetics  

The genetic diversity of AML was first revealed by cytogenetic analyses in the 1970s 

(Rowley, 2008), and has since been well characterised by several large genomic studies (Arber 

et al., 2016; Gerstung et al., 2017; Papaemmanuil et al., 2016; TCGA et al., 2013). According 

to the classic “two-hit” model of AML leukaemogenesis proposed by Gilliland and Griffin, two 

types of mutations are required to produce AML: type II mutations that impair differentiation 

and subsequent apoptosis and are typically initiating events, and type I mutations that endow 

pre-leukaemic clones with a proliferative advantage (Gilliland and Griffin, 2002). Genomic 

studies have corroborated the main concepts of this model, providing further evidence that 

the block in differentiation is the initiating event for de novo AML. Many of the commonest 

mutations in AML founding clones target epigenetic regulators (Kronke et al., 2013; Shlush et 

al., 2014; Welch, 2014), which play central roles in haematopoietic stem cell differentiation 

(Abdel-Wahab et al., 2012; Challen et al., 2011; Figueroa et al., 2010a; Figueroa et al., 2010b). 

Furthermore, leukaemia-associated mutations in epigenetic regulators are common drivers 

of CH, whereas ‘type I’ mutations are very rarely observed in association with CH, consistent 

with this class of genetic events occurring later in leukaemogenesis after differentiation arrest 

has been established (Genovese et al., 2014; McKerrell et al., 2015; Xie et al., 2014).  

Although this model remains conceptually useful, sequencing studies have revealed 

diverse genetic routes to AML, with recurrent mutations identified in over 70 genes 

(Papaemmanuil et al., 2016; TCGA et al., 2013). The majority of patients harbour multiple 

driver events, and both individual mutations and co-occurrence patterns are powerful 

determinants of clinical outcome (Gerstung et al., 2017; Huet et al., 2018; Papaemmanuil et 

al., 2016). The most recurrent structural and numerical chromosomal abnormalities include 

t(8;21),  inv(16), t(15;17), 11q (MLL) fusions, inv(3), t(6;9), -7/7q, +8/8q, -5/5q and -17/17p 

(Papaemmanuil et al., 2016; TCGA et al., 2013). The majority of driver events in adult AML, 

however, are point mutations (single nucleotide variants and indels)(Papaemmanuil et al., 

2016; TCGA et al., 2013). Frequently mutated genes include epigenetic regulators (DNMT3A, 
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TET2, IDH1, IDH2), genes involved in the RNA splicing machinery (SF3B1, SRSF2, U2AF1, 

ZRSR2), chromatin regulators (ASXL1, BCOR, STAG2, MLL-PTD, EZH2, PHF6), transcription 

factors (RUNX1, GAT2, CEBPA), NPM1, and genes involved in RAS and/or STAT signalling 

(NRAS, KRAS, PTPN11, NF1, FLT3, CBL, KIT)(Papaemmanuil et al., 2016; TCGA et al., 2013).  

1.1.4 AML classification schemes 

The World Health Organisation (WHO) Classification of Haematopoietic and Lymphoid 

Tissues subdivides AML into four categories: AML with recurrent genetic abnormalities, AML 

with myelodysplasia-related changes, therapy-related AML and AML not otherwise specified 

(NOS)(Arber et al., 2016). The latter group is further subdivided by morphological features. 

The WHO classification scheme was updated in 2016 to include several new disease 

categories within the section of AML with recurrent genetic abnormalities (Arber et al., 2016). 

However, several studies suggest that WHO subgroups still do not adequately capture the 

molecular heterogeneity of AML, which underpins its biological and prognostic features 

(Gerstung et al., 2017; Metzeler et al., 2016; Papaemmanuil et al., 2016). The largest genomic 

study of AML to date included 1540 patients enrolled in three prospective clinical trials and 

identified eleven prognostically relevant molecular-genetic subgroups (Gerstung et al., 2017; 

Papaemmanuil et al., 2016). This study added considerable nuance to our understanding of 

AML biological mechanisms and genetic classification. For example, mutations affecting 

different loci in the same gene, e.g., IDH2 p.R140 and IDH2 p.R172, had divergent co-

occurrence patterns and impacts on clinical outcome.   

1.1.5 Treatment challenges 

Despite much progress in understanding AML genetics and pathogenesis, standard 

AML therapy has changed very little over the past three decades (Döhner et al., 2015; Yates 

et al., 1973). The backbone of therapy remains the combination of two drugs developed in 

the 1950s, namely daunorubicin and cytarabine, compounds serendipitously derived from 

soil microbes and marine sponges, respectively (Schwartsmann et al., 2001; Stutzman-

Engwall and Hutchinson, 1989). Improvements in patient outcomes are primarily attributable 

to better supportive care during periods of myelosuppression (Döhner et al., 2015). Although 

most patients capable of tolerating intensive chemotherapy achieve remission, the majority 
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succumb to relapse (Döhner et al., 2015; Rubnitz et al., 2014). Overall survival rates are 35% 

to 40% for younger patients and 5% to 15% for patients over the age of 60 (Dohner et al., 

2010; Rubnitz et al., 2014). Efforts to target recurrently mutated oncogenes, notably the 

tyrosine kinases FLT3 and KIT, have been met with rapid emergence of disease resistance and 

little improvement in overall survival (Döhner et al., 2015; Stein, 2015; Wander et al., 2014).  

1.2 The relationship between CH and AML  

As discussed in Chapter 1, the two largest studies of clonal haematopoiesis in the 

general population demonstrated an increased risk of haematological cancers in general (not 

specifically AML) in those with CH, which was higher in those with mutations at high VAFs 

(Genovese et al., 2014; Jaiswal et al., 2014).  Genovese et al. identified thirty-one participants 

diagnosed with a hematologic cancer more than 6 months after DNA sampling, of whom 

thirteen (42%) had antecedent CH (Genovese et al., 2014). Of these, two developed AML and 

one developed “acute leukemia of unspecified origin”. Of the remaining ten, three developed 

CLL, two MPN (both JAK2 V617F mutated), one B-cell lymphoma, one multiple myeloma, one 

monoclonal gammopathy of unknown significance, one CMML and one MDS (Genovese et 

al., 2014). Two of the three MDS/AMLs in this paper were diagnosed within two months after 

DNA sampling (Genovese et al., 2014). Furthermore, Genovese et al. found that CH with 

putative drivers (CH-PD) afforded the same risk of haematological cancers as CH without 

known drivers, potentially alluding to indirect risks associated with CH (Jaiswal et al., 2014). 

Similarly, Jaiswal et al. reported sixteen haematological cancers during a median 95-month 

follow-up period, of which only five (31%) had CH detected in their pre-diagnosis sample 

(Jaiswal et al., 2014). Of these, two developed lymphoma, one “cancer of the spleen” (JAK2 

V617F mutated), one “myeloid leukaemia” and one “leukaemia” not otherwise specified 

(Jaiswal et al., 2014). Together, these two studies captured up to five possible AMLs amongst 

29,652 study participants (Genovese et al., 2014; Jaiswal et al., 2014). Collectively, only a 

minority of blood cancers arising during follow-up were diagnosed in individuals with 

antecedent CH, and several of these were indolent myeloproliferative or chronic lymphoid 

conditions. It therefore remained unclear whether or not CH could be used to predict the 

subsequent development of blood cancers, let alone of de novo AML, with any degree of 

sensitivity or specificity.  
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2. Results 

To investigate whether individuals at high risk of developing de novo AML can be 

distinguished from those with benign CH, genes recurrently mutated in AML or CH were deep-

sequenced in peripheral blood cell DNA from a total of 125 individuals sampled before AML 

diagnosis (pre-AML group), together with 676 unselected age- and gender-matched 

individuals (control group). To detect somatic mutations with maximum sensitivity, deep 

error-corrected targeted sequencing was first applied to a discovery cohort of 95 pre-AML 

cases sampled on average 6.3 years before AML diagnosis and 414 age- and gender-matched 

controls (Appendix 1). Error-corrected sequencing was performed by Dr Sagi Abelson as 

detailed in Methods section 2.1. A validation cohort comprising 29 pre-AML cases and 262 

controls (Appendix 2) was analysed using conventional deep sequencing with an overlapping 

gene panel (Methods section 2.2).  

2.1 Prevalence of CH-PD in pre-AML versus controls 

Taking both cohorts together, CH, defined by the presence of mutations in putative 

driver genes (CH-PD), was found in 73.4% of the pre-AML cases at a median of 7.6 years before 

diagnosis (Appendices 8 and 9). By contrast, CH-PD was observed in 36.7% of controls (P < 2.2 

× 10−16, two-sided Fisher’s exact test; Figure 3.1a). This CH-PD prevalence in the controls is 

consistent with data from a study of more than 2,000 healthy individuals assayed using a 

similarly sensitive error-corrected sequencing method (Acuna-Hidalgo et al., 2017). 

Additionally, 39% of pre-AML cases over age 50 had a driver mutation with a VAF exceeding 

10%, compared to only 4% of controls, a prevalence that is in line with the largest studies of 

CH-PD in the general population (Genovese et al., 2014) (P < 2.2 × 10−16, two-sided Fisher’s 

exact test; Figure 3.1b). The median number of driver mutations per individual increased with 

age and was significantly higher in the pre-AML group relative to controls (P < 2.2 × 10−16, 

two-sided Wilcoxon rank-sum test; Figure 3.1c). Furthermore, examination of VAF 

distribution revealed significantly larger clones among the pre-AML cases (P = 1.2 × 10−13, two-

sided Wilcoxon rank-sum test; Figure 3.1d). 
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Figure 3.1 | Prevalence of CH-PD, number of mutations and clone size in pre-AML and 
control cohorts. a, Prevalence of CH-PD among pre-AML cases (red) and controls (blue). 
b, Prevalence of CH-PD clones with VAF > 10% among pre-AML cases (red) and controls 
(blue). c, The number of CH-PD mutations detected in cases and controls according to 
age. Box plot centres, hinges and whiskers represent the median, first and third quartiles 
and 1.5× interquartile range, respectively. d, VAF of CH-PD mutations. All panels show 
data for n = 800 biologically independent samples. *P < 0.0005, two-sided Wilcoxon rank-
sum test with Bonferroni multiple testing correction. 
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2.2 Clonal dynamics over time and evolution to AML 

In order to explore the mechanisms underpinning the higher mutation burden in pre-

AMLs and the relationship between CH-PD and future leukaemia, I sequenced serially 

collected samples available for a subset of the VC (12 pre-AMLs and 141 controls) as well as 

three FFPE-fixed bone marrow biopsy samples available from AML diagnosis (PD29962, 

PD30054, PD30089). Comparison of the pre-AML mutations to the mutations detected in the 

diagnostic specimen demonstrated that most, though not all, drivers persisted and of these 

only a subset expanded to become clonal in the future AML (Figure 3.2a-c). The sensitivity of 

sequencing for the AML diagnostic samples was limited by the low quality of the FFPE-derived 

DNA and variable sequencing coverage. For PD29962, no putative drivers with VAF exceeding 

9% were detected at diagnosis. In this individual, a clone harbouring a TET2 p.E852* variant 

persisted for over 14 years, but decreased in size. A KRAS p.G12D variant also detected pre-

diagnosis became undetectable, though with only 79 reads covering this locus in the diagnosis 

DNA, it is possible that it persisted at a subclonal level. Both PD30054 and PD30089 show 

evidence of persistent clones that became clonal in the AML, as well as new drivers present 

at diagnosis. PD30089 also developed a JAK2 p.V617F-mutated clone, which persisted but 

decreased in size. For an additional case (PD29918), a third blood sample was taken very close 

to AML diagnosis (~1 month prior), demonstrating an SRSF2 p.P95R mutation detected at all 

three time points (Figure 3.2d), which almost certainly contributed to the AML, while the 

second mutation detected (TET2 p.S354*) persisted at declining VAF. Furthermore, data from 

individuals for whom blood sampling was done less than a year before AML diagnosis (n=9) 

show that the majority of these cases have driver mutations at high VAF (Figure 3.2e-f, 

Appendix 9), again suggesting that the pre-AML clones detected are likely to include those 

that later evolved into AML in most cases. Collectively these findings suggest that the driver 

mutations identified in pre-AML cases may represent a combination of pre-leukaemic clones 

as well as additional ‘bystander’ clones which do not transform. Several studies suggest that 

such independent clones may be common in AML patients at diagnosis (Parkin et al., 2017; 

Wong et al., 2015a). For example, a recent study of patients undergoing induction therapy 

found that five out of fifteen had marked expansion of clones unrelated to the founding AML 

clone but detectable in diagnostic specimens using error-corrected sequencing (Wong et al., 

2015a). 
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Figure 3.2 | Evolution of clonal haematopoiesis and relationship with future AML. a-c, 
VAF trajectories of putative driver mutations in three individuals for whom bone marrow biopsy 
specimens taken at time of AML diagnosis (dashed black vertical line) were available for 
sequencing. Note that coverage for the diagnostic sample of PD30089 was insufficient to 
meaningfully compare the relative VAFs of the drivers in DNMT3A and SRSF2. d, VAF trajectories 
of driver mutations in an individual sampled three times, with last sample taken one month 
before AML diagnosis.  
e,f, VAF trajectory of persistent clones carrying putative driver mutations in controls (e) and pre-
AML cases (f). Upper plots: Circles denote individual serial samples and solid lines representing 
the growth trajectory between serial samples. Lower plots: dashed lines indicate the time interval 
between the last sampling and the end of follow-up (controls) or AML diagnosis (cases). Code for 
panels e and f by Dr Sagi Abelson.  
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We sought to formally assess whether the clonal expansion rate was significantly 

different for the serial samples taken from controls versus pre-AMLs. However, this 

measurement is confounded by multiple factors, not least the inability to determine whether 

or not co-occurring mutations reside in the same clone. Hence, this experiment is inadequate 

to draw any conclusions. Studying the impact of mutation on AML development at the clonal 

level, for example by culturing and sequencing single-cell derived colonies, would help to 

address this question (Nangalia et al., 2019).  

2.3 The genetic landscape of pre-AML versus CH 

In line with previous studies of CH in the general population (Jaiswal et al., 2014; Xie 

et al., 2014), DNMT3A and TET2 were the most commonly mutated genes in both groups 

(Figure 3.3a). No canonical NPM1 mutations nor any FLT3-internal tandem duplication 

mutations were detectable, consistent with these arising late in leukaemogenesis (Kronke et 

al., 2013; McKerrell et al., 2015). Recurrent CEBPA mutations, which are implicated in around 

10% of de novo AML (Papaemmanuil et al., 2016), were also absent, suggesting that driver 

events in this gene may also be late events in de novo AML evolution, despite their 

involvement in familial AML. Notably, mutations in splicing factor genes (SF3B1, SRSF2 and 

U2AF1) were significantly enriched among the pre-AML cases relative to the controls (odds 

ratio, 17.5; 95% confidence interval, 8.1–40.4; P = 5.2 × 10−16, two-sided Fisher’s exact test) 

and were present in significantly younger individuals (median age 60.3 compared to 77.3 

years, P = 1.7 × 10−4, two-sided Wilcoxon rank-sum test; Figure 3.3b). Screening all SNPs for 

potential pathogenic germline variants relevant to cancer or blood disorders (Methods 

section 3.4) identified only one likely pathogenic lesion, MPL p.Q186K (ClinVar accession 

RCV000015217.22). This SNP has been implicated in congenital amegakaryocytic 

thrombocytopenia (Ihara et al., 1999), though the participant carrying it (PD30060) had 

normal pre-diagnosis blood counts and developed AML aged 91.   
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Figure 3.3 | The mutational landscape of clonal haematopoiesis in pre-AML and 
controls. a, Proportion of pre-AML cases (red) and controls (blue) who had CH-PD 
mutations in recurrently mutated genes. b, Relative frequency of mutations in the 
indicated genes according to age group for pre-AML cases and controls. *P < 0.05, Fisher’s 
exact test with Bonferroni multiple testing correction. 
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2.4 Genetic AML risk prediction model 

These findings demonstrate marked differences in both mutation burden and driver 

landscape between CH-PD observed in controls and pre-AML. Moreover, these results, in 

conjunction with recent insights into the origins of AML relapse (Shlush et al., 2017), suggests 

that AML progression typically occurs over many years through clonal evolution of pre-

leukaemic haematopoietic stem and progenitor cells (HSPCs) before acquisition of late 

mutations leads to overt malignant transformation. In order to quantify the relative 

contributions of driver mutations and clone sizes to the risk of progressing to AML, we applied 

a Cox proportional hazards regression approach, which achieved similar performance in both 

the discovery cohort (concordance (C) = 0.77 ± 0.03) and the validation cohort (C = 0.84 ± 

0.05; Figure 3.4a-f and Table 3.1). A ridge regularised logistic regression model trained using 

the same variables produced very similar results (Table 3.2) As discussed in Methods section 

4.1, we used weighting to minimise the biases introduced by the artificial case-control ratio 

(Antoniou et al., 2005; Therneau and Grambsch, 2000) and calculated hazard ratios relative 

to the (approximate) true cumulative incidence of about 1-3/1,000 in the given age range 

over a follow up of 10-20 years. The observed driver mutation frequency and VAF in pre-

malignant samples closely resembled values expected based on the estimated risks, indicating 

that risk model and driver prevalence are well aligned (Figure 3.4g-h).  

Table 3.1 Cox proportional hazard model performance 

Cox proportional 
hazards model 

Concordance Standard error Time-dependent AUC 

VC data and fit  0.84 0.05 0.74 

DC data and fit 0.77 0.03 0.78 

VC fit DC data 0.72 0.03 0.7 

DC fit VC data 0.82 0.05 0.79 

Combined cohorts 0.77 0.05 0.79* 

*Derived from 100 bootstraps out-of-bag validation 

DC, discovery cohort; VC, validation cohort 
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Figure 3.4 | AML predictive model performance. a–c, Time-dependent receiver operating 
characteristic curve for Cox proportional hazards model of AML-free survival trained on 
the discovery cohort (n = 505 unique individuals, 91 pre-AML and 414 controls) (a), 
validation cohort (n = 291 unique individuals, 29 pre-AML and 262 controls) (b) and 
combined cohorts (c). d–f, Dynamic AUC for Cox proportional hazards models trained on 
the discovery cohort (d), validation cohort (e) or combined cohort (f). g, h, Red and blue 
bars indicate the observed and expected VAF (g) and driver frequency (h) of pre-AML 
cases and controls for each gene indicated on the x axis. One can speculate that the 
discrepancies between expected and observed driver VAF for RUNX1 and KMT2D relate to 
the relatively high prevalence of pathogenic germline mutations seen in these genes and 
the challenge in distinguishing the latter from somatic drivers. 
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Table 3.2 Ridge regularised logistic regression model performance 

Ridge regularised logistic regression AUC 

VC data and fit 0.85 

DC data and fit 0.76 

VC fit DC data 0.69 

DC fit VC data 0.81 

Combined 0.81* 

*Derived from 100 bootstraps out-of-bag validation 

DC, discovery cohort; VC, validation cohort 

 

Models that were only trained on data from the discovery or validation cohort had 

similar coefficients (Figure 3.5, Appendix 10). We therefore combined the datasets for a more 

accurate analysis of the contributions of mutations in individual genes to risk (C = 0.77 ± 0.05; 

area under curve, 0.79; Figure 3.4c,f and Table 3.1).  

Quantitatively, we found that driver mutations in most genes conferred an 

approximately twofold increased risk of developing AML per 5% increase in clone size (Figure 

3.5). Notable exceptions to this trend were the most frequently mutated CH genes, DNMT3A 

and TET2, which conferred a relatively lower risk of progression to AML (Figure 3.5, Fig 

3.6a,c,e). By contrast, a larger effect size was apparent for TP53 (hazard ratio, 12.5; 95% 

confidence interval, 5.0–160.5) and U2AF1 (hazard ratio, 7.9; 95% confidence interval, 4.1–

192.2) mutations (Figure 3.5, Figure 3.6a,b,d). However, other CH-PD genes, such as SRSF2, 

contributed a similar relative risk owing to their presence at a higher VAF in pre-AML cases 

(Figure 3.5, Figure 3.6a). Because the effect of each driver mutation is deleterious and the 

effect of multiple mutations that are present in the same individual is multiplicative, a higher 

number of mutations is predicted to increase the risk of progression to AML (Figure 3.7a). 

Similarly, the size of the largest driver clone was also strongly associated with the risk of 

progression to AML, in agreement with the risk of individual mutations generally being 

proportional to VAF (Figure 3.7b).  

Estimates of model sensitivity and specificity necessitate arbitrary age-cut-offs which 

dramatically impact the interpretation of predictions. Is it most relevant to know whether or 

not an individual will develop AML before age 100 or before age 60 and which estimate should 

sensitivity/specificity be determined for? The Cox proportional hazards model illustrated in 
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figure 3.5 facilitate a more tangible interpretation of excess risk on an individual level, 

harnessing the genomic snapshot from a blood sample to estimate the risk of developing AML 

over the next 10 years in a manner which accounts both for a person’s age and the incidence 

of AML in their given age bracket.  

Comparing AML risk prediction models based on the VAF of mutations in individual 

genes versus mutation burden alone demonstrated that the gene-level model performed best 

(Figure 3.7c,d). Concordance and AUC were both 3-4% improved for the models incorporating 

gene-level risk, which is a considerable margin, particularly for a rare disease. Moreover, the 

disparities in gene-level hazard ratios (HR) were significant (Figure 3.5), despite the fact that 

the genes with the highest HR are not mutated frequently enough to have a very dramatic 

effect on overall model AUC. Collectively, although the VAF and the number of mutations 

confer much of the predictive value, the gene-level analysis (Figure 3.5) does demonstrate 

distinct gene-level risks, and is able to quantify the cumulative impact of multiple mutations 

and clonal size on the likelihood of progression to AML. Furthermore, in order to examine 

whether the genetic model can distinguish between CH-PD and pre-AML even when 

individuals without mutations were excluded, we retrained the model using only cases and 

controls with CH-PD. We found that performance was if anything marginally improved by this 

manoeuvre (Concordance > 0.8 on both discovery and validation cohorts, Appendix 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3.5 
 

 

 

 

 
Figure 3.5 | Forest plot indicating gene-level hazard ratios for risk of developing AML. 
Purple, orange and green circles indicate hazard ratios (HR) for the discovery (DC), validation 
(VC) and combined cohort, respectively. Horizontal lines denote 95% confidence intervals for 
the combined cohort. For each gene, the indicated HR applies to the 10-year risk of AML 
conferred by each 5% increase in mutation VAF. The green vertical line indicates the mean HR 
across all genes. The HR for RUNX1 must be interpreted with caution owing to the relatively 
high prevalence of deleterious germline variants in this gene, which may not be readily 
distinguishable from somatic mutations in unmatched sequencing assays. The proportion of 
individuals with mutations in each gene and the average VAF are indicated to the right of the 
forest plot.  
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Figure 3.6 | Gene-level impact on AML-free survival. a, Kaplan–Meier (KM) curves of AML-
free survival, defined as the time between sample collection and AML diagnosis, death or 
last follow-up. Survival curves are stratified according to mutation status in genes mutated 
in at least three samples across the combined validation and discovery cohorts. n = 796 
unique individuals. b-c For illustrative purposes, KM curves according to co-mutation status 
in DNMT3A/TET2 and TP32/U2AF1 are shown. All patients harbouring any mutation in TP53 
or U2AF1 (b) or DNMT3A or TET2 (c). d,e The same relationship between mutation status 
and AML-free survival persists when considering only individuals with a total of one driver 
mutation. KM curves for participants with their only driver mutation in either DNMT3A or 
TET2 (d) or U2AF1 or TP53 (e). Red and blue lines indicate mutated and wildtype, 
respectively. P-values for significance of survival differences by mutation status calculated 
by the log-rank test. AML, acute myeloid leukaemia; KM, Kaplan-Meier. 
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Figure 3.7  

a b Figure 3.7 | Performance of AML 
risk prediction models based on 
gene-level factors versus 
mutation burden.  
a-b, Kaplan–Meier curves of 
AML-free survival, defined as the 
time between sample collection 
and AML diagnosis, death or last 
follow-up. Survival curves are 
stratified according to number of 
driver mutations per individual 
(a) and largest clone detected 
(b). VAF bins of 4% are shown in 
(b) to illustrate the consistency 
of the trend towards lower AML-
free survival with larger clone 
size. c, Leave-one-out 
crossvalidated concordance C of 
different risk models based on 
(1) the presence of any mutation, 
(2) the presenced of any 
mutation and the cumulative 
VAF of different clones, (3) the 
number of different driver 
mutations and cumulative VAF as 
predictors and (4) a model 
incorporating the effects of 
individual genes. d, Same models 
as in (c), but using Uno’s dynamic 
AUC as a measure of model 
performance. VAF, variant allele 
fraction; mt, mutation; No. mt, 
number of mutations; AUC, area 
under the curve. 
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2.5 Clinical factors associated with AML risk 

Although genetic features alone are capable of identifying many individuals at risk of 

developing AML in these experimental cohorts, AML incidence rates in the general population 

are low (4:100,000) (Deschler and Lubbert, 2006), and thus millions of individuals would need 

to be screened to identify the few pre-AML cases, with many false positives. To determine 

whether routinely available clinical information could improve prediction accuracy or identify 

a high-risk population for targeted genetic screening, I initially reviewed full blood count and 

biochemistry data that were available for 37 of the pre-AML cases and 262 controls. These 

data also permitted a screen for any potentially undiagnosed cases of MDS, a known risk 

factor for (secondary) AML (Arber et al., 2016). The diagnosis of MDS based on the WHO 

criteria relies not only on the presence of dysplasia in at least one lineage, but also on the 

presence of at least one significant cytopenia (haemoglobin (Hb) <10g/dL; platelet count<100 

x109/L and absolute neutrophil count<1.8 x 109/L)(Arber et al., 2016). The latest WHO criteria 

state verbatim that “Cytopenia is a ‘sine qua non’ for any MDS diagnosis…”, hence enabling 

exclusion of MDS based on normal blood counts alone (Arber et al., 2016). Out of the 37 pre-

AMLs only one had Hb<10g/dL at recruitment (PD30116, Hb 9.8g/dL); however, three years 

later Hb had normalised to 13.7g/dL, thus excluding MDS. The only other cytopenia in a pre-

AML was a sample with platelets of 91 x 109/L at baseline (PD30010); however, 3.7 years later 

the platelet count had risen above the WHO guideline threshold (106 x 109/L), suggesting that 

MDS was not the diagnosis. CH-PD was also overwhelmingly associated with normal blood 

counts in the controls, even in individuals harbouring multiple mutations at high VAF (e.g., 

PD35659c, PD35733b and PD35788b with leukaemia-free follow-up of 20.3, 20.4 and 17 

years, respectively). The presence of normal blood counts in association with large clones 

corroborates the findings of previous studies of CH in the general population (Buscarlet et al., 

2017; Jaiswal et al., 2014; McKerrell et al., 2015). Overall, full blood count data between 

controls and pre-AMLs did not differ, with the notable exception of red cell distribution width 

(RDW) (Figure 3.8a,b) Despite the limited sample size, there was a significant association 

between higher RDW and risk of progression to AML (P = 0.0016, Wald test with Bonferroni 

multiple-testing correction). Although traditionally used in the evaluation of anaemias, raised 

RDW has been correlated with inflammation, ineffective erythropoiesis, CVD and adverse 

outcomes in several inflammatory and malignant conditions (Hu et al., 2017). The correlation 
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between RDW and risk of AML development remained highly significant when only controls 

with CH-PD were compared to pre-AMLs (P = 3.5 × 10−6, Wald test with Bonferroni multiple 

testing correction). Higher RDW has previously been associated with CH and overall mortality 

(Jaiswal et al., 2014; Salvagno et al., 2015), but has never been shown to distinguish CH from 

pre-leukaemia.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3.8 
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Figure 3.8 | Full blood count indices in pre-AMLs and 
controls. a, Box plots of full blood count parameters. Box 
plot centres, hinges and whiskers represent the median, 
first and third quartiles and 1.5× interquartile range, 
respectively. b, Kaplan–Meier curves of AML-free survival, 
defined as the time between sample collection and AML 
diagnosis, death or last follow-up. Survival curve is 
stratified according to RDW measurement data for n = 299 
unique individuals for whom full blood count 
measurements were available. Among the blood indices 
shown, only RDW was significantly different between pre-
AML cases and controls (P = 0.0016, Wald test with 
Bonferroni multiple-testing correction). 
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In order to verify RDW as a predictive factor and determine whether additional clinical 

parameters are associated with risk of AML development, we collaborated with Dr Netta 

Mendelson Cohen, Dr Elisabeth Niemeyer and Dr Noam Barda, who analysed the Clalit 

electronic health record (EHR) database (Balicer and Afek, 2017). This resource contains EHRs 

for an average of 3.45 million individuals per year collected over a 15-year period. Stringent 

criteria based on diagnostic codes and treatment records identified 875 AML cases (Appendix 

11). Consistent with case ascertainment strategy for the genetic model, all cases of secondary 

AML following another myeloid malignancy were excluded. Analysis of RDW trends revealed 

significantly raised measurements several years before AML diagnosis relative to age and sex-

matched controls (Figure 3.9a). The most pronounced increase in RDW was observed at 6-12 

months before diagnosis, with ~10% of pre-AMLs having RDW values which were greater than 

the 99th centile of the controls. Many other blood indices, including several full blood count 

(FBC) parameters, changed six months to a year before diagnosis. Additional parameters that 

correlated with risk of AML development included reductions in monocyte, platelet, red blood 

cell and white blood cell counts (Figure 3.9a). However, in the majority of cases 

measurements did not fall outside the normal reference ranges. Nevertheless, these values 

were statistically distinct from those seen in large numbers of age and sex-matched controls. 

This is important, as it shows that these individuals did not have undiagnosed MDS/MPN, and 

suggests instead that evolving de novo AML may sometimes have a considerable prodrome 

with subtle but discernible clinical manifestations, potentially reflecting large pre-leukaemic 

clones.  

Our collaborators next applied a machine-learning approach to construct an AML 

prediction model based entirely on variables that are routinely documented in electronic 

health records (Appendix 11). This model predicted AML 6–12 months before diagnosis with 

a sensitivity of 25.7% and overall specificity of 98.2%. The model performed consistently 

across different age groups with an increased relative risk of 28 for males and 24 for females 

between the age of 60 and 70 years (Figure 3.9b). To our knowledge this represents the first 

analysis of its kind in AML prediction from routinely collected clinical records. In order to 

better understand which patients are most likely to be accurately classified by this model, our 

collaborators compared absolute laboratory values for true positives and false negatives. This 

revealed that 35.5% of false-negative predictions were for patients for whom infrequent 

blood count data were available. Some of the true-positive cases had mildly abnormal blood 
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counts that would not initiate a diagnostic work-up (Figure 3.9c), whilst cytopenias that would 

be compatible with undiagnosed myelodysplastic syndrome (Arber et al., 2016) were 

uncommon. Other non-haematological variables associated with progression to AML 

included higher triglyceride levels and lower high- and low-density lipoprotein levels (Figure 

3.9d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3.9 
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Figure 3.9 | Increased risk of AML development inferred from electronic health records. a, 
Box plots of normalized laboratory measurements. Increased RDW, reduction in 
monocyte, platelet, red blood cell (RBC) and white blood cell (WBC) counts (top) show a 
high association (bottom) with a higher risk of AML development and differed at least a 
year before AML diagnosis. b, Model performance stratification by age and gender. Age 
ranges are indicated above each graph. c, Absolute laboratory values for true positive 
(TP) and false negative (FN) predictions. d, Box plots of lipid levels. Box plots indicate 
median, first and third quartiles and 1.5× interquartile range. WBC, white blood cell 
count; MONO.abs, absolute monocyte count; PLT, platelet; NEUT, neutrophil; RBC, red 
blood cell; RDW, red cell distribution width; FN, false positive; TP, true positive; AML, 
acute myeloid leukaemia; HDL, high-density lipoprotein; LDL, low-density lipoprotein.  
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3. Discussion 

This study sought to explore the natural history and genetic landscape of nascent AML 

and the extent to which the latter is distinct from CH in the general population. Collectively, 

these findings provide new insights into the pre-clinical evolution of AML and the feasibility 

of identifying CH at high risk of malignant transformation. 

3.1 A long latency period is the rule rather than the exception in AML 

This work demonstrates for the first time that pre-leukaemic clones can be detected 

in the majority of individuals who develop AML 6 or more years before clinical disease 

manifestations, even when interrogating for point mutations alone. This long latency has now 

also been reported by Desai et al, who performed a very similar nested case-control study 

(Desai et al., 2018). Desai and colleagues sequenced 67 AML-associated genes in peripheral 

blood samples from 212 women diagnosed with AML a median of 9.6 years later alongside 

the same number of controls (Desai et al., 2018). Consistent with our results, pre-leukaemic 

clones (VAF>1%) were present in 68.6% and 30.9% of pre-AML cases and controls, 

respectively (Desai et al., 2018). This long pre-clinical evolution highlights important aspects 

of AML biology and reveals that the window for potential intervention is measured in years 

for the majority of individuals who develop AML.  

3.2 The distinct driver landscape of pre-AML 

This work also reveals that the mutational landscape, and not simply the mutation 

burden, differs between CH in controls versus pre-AML. The differences in the mutational 

spectrum observed between pre-AML cases and controls may arise through cell-intrinsic or -

extrinsic factors. As discussed in Chapter 1, previous studies of clonal haematopoiesis have 

demonstrated that clones with particular mutations dominate in the context of specific 

environmental pressures (Gibson et al., 2017; Hsu et al., 2018; McKerrell et al., 2015; 

Takahashi et al., 2017; Wong et al., 2015b), suggesting an important role for cell-extrinsic 

factors in haematopoietic somatic evolution. Although such factors in CH remain poorly 

understood, it is intriguing that mutations in splicing factor genes and TP53 were significantly 

enriched among the pre-AMLs relative to the controls, with the former presenting in 
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significantly younger individuals than in benign CH. Spliceosome mutations appear to confer 

a competitive advantage in the context of ageing, and were almost exclusively observed in 

the general population in individuals over age 70 years (McKerrell et al., 2015). Similarly, 

clones harbouring TP53 mutations expand dramatically with exposure to intensive chemo- 

and/or radiotherapy (Bondar and Medzhitov, 2010; Wong et al., 2015b). However, TP53-

mutated HSC clones are very common at extremely low VAF in the elderly, but tend to remain 

stable in size over time, suggesting only a modest selective advantage in the absence of 

increased genotoxic stress (Wong et al., 2015b). Therefore, it is possible that the significantly 

higher prevalence of clones with TP53 and spliceosome gene mutations in pre-AML cases may 

reflect distinct microenvironmental selection pressures rather than earlier mutation 

acquisition. 

3.3 The significance of the higher mutation burden in pre-AML 

The observation of the higher burden of putatively oncogenic mutations (driver 

mutations) in the pre-AML cases across all age groups raised two main related questions. 

Firstly, what is the mechanism underpinning the discrepancy in mutation burden between 

controls and pre-AMLs? Secondly, do driver mutations detected in pre-AML cases reflect the 

presence of an AML ancestor, or do these mutations behave as surrogate markers of factors 

predisposing to leukaemogenesis?  

Although speculative, several mechanisms may account for the higher mutation 

burden and clone size observed in the pre-AMLs. It could reflect a higher mutation rate in the 

pre-AML cases, for example due to higher HSC turnover, potentially secondary to depletion 

of the functional HSC pool. Alternatively, chance may play a dominant role, with stochastic 

driver mutation acquisition triggering clonal expansion, thus increasing the odds of further 

driver events on a pre-malignant background leading to selection for progressively more 

mutated clones. However, this multistage cancer evolution paradigm does not account for 

the relationship between the fitness advantage conferred by a driver mutation and the 

environmental context of the mutated cell (Rozhok et al., 2014). Clones with drivers could be 

under stronger selective pressure in certain bone marrow environments, as is seen in 

particular clinical contexts such as aplastic anaemia or after intensive cytotoxic therapy (Hsu 

et al., 2018; Wong et al., 2015b; Yoshizato et al., 2015). As discussed in the introduction, the 

presence of selective pressure favouring clonal expansions, rather than mutation acquisition, 



 81 

may thus be an important determinant of the number of mutations detectable by bulk sample 

sequencing.  

Our time series experiment and sequencing of diagnostic specimens helped partially 

address the second question, demonstrating that clones in pre-AML cases represent a 

combination of leukaemia ancestors and ‘bystander’ clones that likely are not related to the 

future AML. However, our experiment using bulk cell populations was too small and hindered 

by confounding factors to enable strong conclusions about clonal growth kinetics or mutation 

rates. We hope that future experiments using single cell and/or highly purified cell population 

studies on viable cells at serial time points will shed light on these questions.  

3.4 Rationale for AML risk prediction and future directions 

Cancer predictive models have enabled successful early detection and intervention 

programmes for several solid tumours (Vickers, 2011; Wang et al., 2014). However, screening 

tests are unavailable for the sub-clinical stages of most haematological malignancies. Given 

that the main cause of mortality in AML is treatment resistance/relapse (Döhner et al., 2015), 

there is a rationale for identifying and treating a genomically simpler antecedent of the 

disease. In this context, reduction of clonal size rather than complete clonal extinction may 

be sufficient to significantly reduce the risk or slow AML progression. Such an approach has 

proven very effective in CML, which has been transformed by targeted therapy into a chronic 

condition with a dramatically reduced incidence of progression to CML blast crisis (Kalmanti 

et al., 2015). Furthermore, CH is associated with and may play a causal role in common non-

malignant conditions (Fuster et al., 2017; Jaiswal et al., 2017), which may strengthen the case 

for screening and intervention. 

3.4.1 Further development of genetic AML prediction methods 

This study provides proof-of-concept for the feasibility of early detection of healthy 

individuals at high risk of developing AML. The models presented here demonstrate that 

somatic genetic features are predictive of AML progression and that the presence of 

mutations in certain genes confers a greater risk. Desai et al have since identified similar gene-

level risk factors (Desai et al., 2018). Consistent with our results, TP53 mutations conferred 

the highest odds ratio of progression from CH to AML, followed by drivers in IDH1/2 and 
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spliceosome genes (Desai et al., 2018). Although Kaplan-Meier analysis (Figure 3.6) is 

consistent with a trend towards shorter AML-free survival with IDH1/2 mutations, we chose 

not to group functionally-related genes in our analysis in order to reach significance, as their 

mechanistic consequences may differ (e.g., IDH2 p.R140 and IDH2 p.R172 (Papaemmanuil et 

al., 2016)). In addition to improving model performance, the identification of highly significant 

disparities in gene-level HR offers compelling biological insights into the determinants of 

clonal progression, which warrant further investigation. 

Given that most of the genetic model’s predictive power stems from mutations with 

VAFs >0.005, our data suggests that conventional deep targeted sequencing, as used for the 

validation cohort, is adequate for future screens when combined with stringent variant calling 

and driver mutation curation. Thus, the additional cost of error correcting sequencing is 

unlikely to be justified. However, it is possible that future studies may show that specific 

mutations may have predictive value when detected accurately even at low VAF (e.g. U2AF1 

hotspot variants). 

As recurrent chromosomal translocations are likely to be initiating events in 

approximately 20% of AML (Papaemmanuil et al., 2016), incorporating these into the genetic 

model is likely to further increase predictive accuracy. McKerrell et al. have shown that it is 

feasible to simultaneously capture several recurrent translocations/inversions with targeted 

panels only slightly larger than the ones used in the current study (McKerrell et al., 2016). 

Additionally, expanding this dataset will make it possible to investigate whether co-mutation 

patterns carry prognostic significance, as is the case in AML (Gerstung et al., 2017; 

Papaemmanuil et al., 2016).  

3.4.2 Combining clinical and genetic information to risk-stratify clonal haematopoiesis  

The predictive model based on mutations and demographic features partially 

overcomes the limitations imposed by the low overall incidence of AML, but does not 

eliminate them. We have shown that commonly recorded clinical parameters, notably RDW 

and other FBC indices, may identify a smaller population with higher pre-test AML risk for 

screening. Although clinical parameters were predictive relatively close to the time of AML 

diagnosis, pre-AML clones can be of significant size many years before diagnosis and it is 

entirely plausible that surrogate laboratory markers of their presence may be identifiable 
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much earlier, as we found for RDW in the validation cohort. Analysis of the 37 individuals for 

whom both genomic and clinical information were available found that 6% of the relative risk 

contribution was attributable to clinical variables, suggesting that combining routinely 

available clinical data with genomic variables may strengthen AML prediction models. 

Extending this analysis in a large EHR database further revealed that pre-AML has additional 

subtle clinical manifestations which in themselves had considerable predictive power 6-12 

months prior AML diagnosis. This further supports a role for clinical variables in strengthening 

genomic prediction models and/or in targeting the population most likely to benefit from 

screening for CH.  

Defining the population most likely to benefit from genetic screening will also depend 

on improved understanding of the role of CH in common non-malignant conditions. If, as 

several recent studies strongly suggest, some pre-leukaemic clones are pro-inflammatory and 

actively promote atherosclerosis and cerebro/cardiovascular adverse events (Fuster et al., 

2017; Jaiswal et al., 2017), then a significantly larger proportion of the population might 

benefit from screening for CH and could thus be considered for possible interventions to 

suppress pre-leukaemic clones and/or mitigate established cardiovascular risk factors (blood 

pressure, dyslipidaemia, etc). Our analysis of a large EHR database reveals that subtle clinical 

manifestations, including trends in triglycerides and RDW that are established risk factors for 

cardio/cerebrovascular disease also correlated with risk of AML. It is conceivable that there 

are unifying characteristics of high-risk CH emblematic of the emerging links between ageing 

and dysregulated inflammation or immune senescence (Green et al., 2011; Shaw et al., 2013).  

 Clearly these findings cannot address the challenging question of how genomic 

screening methods should be implemented in a real-world setting, and a combined clinical 

and genetic screening approach requires validation in large prospective cohort studies. 

Promisingly, the infrastructure for performing such studies is increasingly available, for 

example the UK Biobank (Bycroft et al., 2018). These resources should help stimulate large 

prospective studies that take account of all health outcomes associated with CH.  
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CHAPTER 

Chapter 4 

The pre-clinical evolution of lymphoid 

neoplasms 

 

 

 

1. Introduction 

As discussed in Chapter 1, the initial exome-based screens for CH in the general 

population established that most somatic mutations occur in a limited number of genes most 

frequently implicated in myeloid neoplasms (Genovese et al., 2014; Jaiswal et al., 2014; Xie 

et al., 2014). However, two of these studies screened broadly for candidate driver events and 

revealed a broader mutational spectrum, including rare oncogenic mutations in several genes 

closely associated with lymphoid malignancies, such as ATM, CREBBP and MYD88 (Genovese 

et al., 2014; Xie et al., 2014). The majority of the sensitive, targeted surveys of CH-PD in the 

general population have since been biased towards detecting mutations in myeloid cancer 

genes (Acuna-Hidalgo et al., 2017; Coombs et al., 2017; McKerrell et al., 2015; Young et al., 

2016). Collectively, these studies have yielded several important insights into CH that were 

inaccessible to the initial exome screens, for example the high prevalence of small clones 

harbouring spliceosome gene mutations in older individuals (discussed in Chapter 1, section 

3.4.1)(McKerrell et al., 2015; McKerrell and Vassiliou, 2015). Although there is considerable 

overlap between the cancer genes involved in the commonest lymphoid and myeloid 

malignancies, the former are generally characterised by more diverse genetic landscapes, 
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with a significant proportion of driver events occurring in infrequently mutated cancer genes 

(Bolli et al., 2014; Landau et al., 2015; Landau and Wu, 2013; Reddy et al., 2017; Sabarinathan 

et al., 2017). Given the current literature on CH, it is unclear whether or not a similar spectrum 

of mutations affecting these less recurrent cancer genes is mirrored in the general ageing 

population at very low VAF. This is relevant to understanding the selective pressures 

operative in the ageing haematopoietic niche and to understanding the relationship between 

CH-PD and lymphoid neoplasms.  

As discussed in the introduction to Chapter 3, the studies reporting an association 

between CH and haematological malignancies were not powered to study distinct classes of 

blood cancer (Genovese et al., 2014; Jaiswal et al., 2014). The work described in Chapter 3 

delineates notable differences in the prevalence and mutational landscape of CH-PD in 

individuals who later develop de novo AML versus that seen in controls, and demonstrates 

that these genetic features have predictive value for future AML development. However, the 

extent to which the same is true for other blood cancers remains poorly understood.   

The work described in this chapter aims to explore this question by undertaking a broader 

survey of candidate CH-PD driver genes (Appendix 6) in a cohort of individuals later diagnosed 

with a lymphoid neoplasm and healthy controls, using a nested case-control experimental 

design similar to that described in Chapter 3 for AML.  

 

Aims: 

1) Compare the prevalence and mutational landscape of CH-PD in the general population 

with that observed in individuals who go on to develop a lymphoid neoplasm. 

2) Correlate genetic features and routinely collected clinical variables with risk of 

progression to lymphoid malignancy 

3) Investigate the combined predictive power of genetic, clinical and demographic 

features to identify individuals at high risk of developing a lymphoid neoplasm. 
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2. Results 

2.1 Cohort overview 

 Our EPIC-Norfolk (Day et al., 1999) collaborators (Nick Wareham, Robert Luben, 

Shabina Hayat and Abigail Britten) identified a discovery cohort comprising 118 study 

participants diagnosed with a lymphoid neoplasm a mean of 8.0 years (IQR 4.3 - 11.1) after 

peripheral blood sampling and 118 age- and sex-matched controls with no record of any 

cancer or haematological disorder (Appendix 12). Individuals were excluded if they were 

sampled less than 6 months before diagnosis or had a lymphocyte count of 5 x 109/L or above, 

which might be high enough to trigger a clinical work-up for monoclonal B-cell lymphocytosis 

(MBL) according to current diagnostic criteria (Swerdlow et al., 2016). Given that MBL is a 

known risk factor for chronic lymphocytic leukaemia (Strati and Shanafelt, 2015), the 

commonest chronic leukaemia in adults (Dores et al., 2007), we focussed on individuals with 

lymphocyte counts that would not, in isolation, elicit clinical suspicion of an underlying 

neoplasm (Swerdlow et al., 2016). The mean age at blood sampling for discovery cohort cases 

was 64.6 years (IQR 57.0 - 71.8). A validation cohort was also sourced from EPIC-Norfolk and 

included 71 pre-lymphoid neoplasm (pre-LN) cases and 71 controls (Appendix 13). The mean 

interval between blood sampling and diagnosis for the validation cohort cases was 8.4 years 

(IQR 4.1 – 12.3) and mean age at sampling was 64.0 years (IQR 59.4 – 69.8). For the controls, 

the mean duration of follow-up was 15.4 and 16.4 years for the discovery and validation 

cohorts, respectively. Serial premalignant samples were available for a subset of the discovery 

cohort cases and controls. Clinical metadata including full blood count, lipid profile, blood 

pressure and anthropomorphic measurements were available for the majority of cases and 

controls. Moreover, out of the 262 controls with clinical metadata described in Chapter 3, 189 

were adequately age-and sex-matched to the pre-LN cases, providing a case:control ratio of 

1:2 for analysis of clinical factors associated with progression to lymphoid malignancy. These 

controls were also used to compare mutation frequency in genes that overlapped across the 

gene panels (Appendices 4 and 6). 

The spectrum of future LN diagnoses was similar between the discovery and validation 

cohorts and is summarised in Table 4.1 with complete metadata for both cohorts detailed in 

Appendices 12 and 13. For many cases, particularly individuals later diagnosed with a non-
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Hodgkin lymphoma, histopathological subtype is unknown. Furthermore, disease 

classification schemes have evolved dramatically over the course of the recruitment period 

(Campo et al., 2011; Chapuy et al., 2018; Swerdlow et al., 2016), which would complicate 

translating historical diagnoses into currently recognised disease entities, and is not essential 

for the aforementioned aims of this study.  

 

Table 4.1 | Pre-LN cohort summary  

 

 

2.2 Prevalence of CH-PD and driver mutation burden 

 Peripheral blood samples were deep sequenced with a custom panel comprising 95 

genes implicated in haematological malignancies (Methods section 2.4 and Appendix 6). 

Average sequencing coverage was >5,000 (IQR 4,750 – 5,800). The prevalence of CH-PD was 

significantly higher in pre-LN cases than in controls (P = 0.0019, two-sided Fisher’s exact test), 

though the difference was less dramatic than that observed for pre-AML (Figure 4.1a). Overall 

the prevalence of CH-PD in pre-LN cases and controls was 35.4% and 20.6%, respectively 

(Figure 4.1a,b). These proportions were similar across the discovery cohort (CH-PD prevalence 

of 33.9% in cases and 17.8% in controls) and validation cohort (38% and 25.4% for cases and 

controls, respectively). The average number of driver mutations identified in pre-LN cases was 

0.43 compared to 0.25 for controls (P=0.0016, two-sided Wilcoxon rank-sum test), with a 
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significant trend towards increasing driver mutation burden with age (Figure 4.1c).  

Moreover, as seen for pre-AMLs, the VAF of driver mutations was significantly higher in pre-

LN cases versus controls (median VAF 6.9% and 2.8%, respectively; P = 0.00036, Wilcoxon 

rank-sum test; Figure 4.1d).   
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Figure 4.1 | Prevalence of CH-PD, number of mutations and clone size in pre-LN and 
control cohorts. a, Prevalence of CH-PD among pre-LN cases (green), controls (blue) and 
pre-AML (red; data from chapter 3). b, Prevalence of CH-PD clones with VAF > 2% among 
pre-LN cases (green) and controls (blue) is shown to put the data in the context of the 
historical definition of ‘clonal haematopoiesis of indeterminate potential’ (CHIP). c, The 
number of CH-PD mutations detected in pre-LN cases and controls according to age. Box 
plot centres, hinges and whiskers represent the median, first and third quartiles and 1.5× 
interquartile range, respectively. d, VAF of CH-PD mutations in pre-LN cases (green) and 
controls (blue). * indicates P < 0.1; ** indicates P<0.001, two-sided Wilcoxon rank-sum 
test with Benjamini-Hochberg multiple testing correction.  
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2.3 Mutational spectrum of CH-PD in individuals who later developed a lymphoid 

neoplasm  

Among the 189 discovery and validation cohort controls, the top three most 

frequently mutated genes were DNMT3A, TET2 and ASXL1 (Figure 4.2a-c, Appendix 14), 

consistent with the findings of other studies of CH-PD in the general population (Bowman et 

al., 2018). By contrast, among individuals who later developed a lymphoid blood cancer, the 

most recurrently mutated genes were DNMT3A (16.4% of cases versus 14.4% of controls), 

TET2 (6.9% of cases vs 2.7% of controls), ATM (2.7% of cases vs 0.53% of controls) and TP53 

(2.7% of cases and 1.1% of controls). Among the genes recurrently mutated in both cases and 

controls, the mean mutation VAF was consistently higher in cases, though this difference only 

reached statistical significance on an individual gene level for DNMT3A (mean VAF in cases 

and controls 5.9% and 2.8%, respectively; P = 0.029, two-sided Wilcoxon rank-sum test with 

BH multiple testing correction). Furthermore, CH-PD in the pre-LN cases demonstrated a 

remarkably diverse spectrum of mutations, with putative driver variants identified in a total 

of 24 genes, compared to 11 genes among the controls (Figure 4.2a,b). Although there is 

broad overlap between the cancer genes implicated in myeloid and lymphoid malignancies 

(Arber et al., 2016; Sabarinathan et al., 2017; Swerdlow et al., 2016), several of the genes 

mutated among the cases are predominantly implicated in the latter, including POT1, XPO1, 

HIST1H1E, NOTCH1, NOTCH2, ATM and CCND3 (Arber et al., 2016; Hing et al., 2016; Lunning 

and Green, 2015; Sabarinathan et al., 2017; Swerdlow et al., 2016).  

Although data were too sparse to discern significant changes in the mutational 

spectrum with age, it is noteworthy that mutations in spliceosome genes (SF3B1, SRSF2 and 

U2AF1) were only observed in controls over the age of 70, consistent with previous studies 

strongly associating these mutations with CH-PD in older individuals (Figure 4.2d)(McKerrell 

et al., 2015). Among the cases, the splicing gene mutation with the highest VAF (SF3B1 p. 

K700E, VAF 2.1%) occurred in a 54-year-old man (PD00315) sampled 8 years before diagnosis 

with chronic lymphocytic leukaemia (CLL).   
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Figure 4.2 | The mutational spectrum of clonal haematopoiesis in individuals who 
developed a lymphoid neoplasm years later versus controls. a, Proportion of pre-LN 
cases (green) and controls (blue) with driver mutations each given gene. b, Relative 
frequency of mutations in the indicated genes according to age group for pre-LN cases 
and controls. c, Proportion of pre-AML (red), pre-LN (green) and control (blue) individuals 
with driver mutations in genes sequenced for both the pre-AML (chapter 3) and pre-LN 
cohorts. d, Relative frequency of mutations in the indicated genes according to age group 
for pre-LN cases and controls; only genes mutated at least 5 times included in panel, with 
spliceosome genes SRSF2, SF3B1 and U2AF1 aggregated. 
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2.4 Mutational spectrum in an extension cohort of older individuals with no 

record of cancer or a blood disorder 

The more diverse genetic landscape of CH-PD in the pre-LN cases is intriguing, though 

the limited sample sizes and 1:1 case:control ratio warrant cautious interpretation. Although 

collectively a significant proportion of the mutations observed in the pre-LN cases occur in 

genes never or rarely reported in CH-PD in the general population, individual genes were 

infrequently mutated. Hence, despite the notable differences in mutational spectra between 

pre-LN cases and controls, considering all genes mutated more than 5 times across both 

cohorts on an individual basis, only TET2 mutations approached significance for enrichment 

among the pre-LN cases (6.9% vs 2.7% mutated) (P = 0.05, one-sided Fisher’s exact test with 

BH multiple testing correction). Is the absence of recurrent LN-drivers in the 189 age-and sex-

matched controls included in the discovery and validation cohorts truly representative of the 

frequency of such mutations in the general ageing population? As mentioned in the 

introduction, most of the sensitive targeted surveys of CH-PD have used gene panels 

restricted to the most recurrent CH-PD driver genes and have not included the 

aforementioned LN-associated cancer genes (Acuna-Hidalgo et al., 2017; Coombs et al., 2017; 

Gibson et al., 2017; McKerrell et al., 2017; McKerrell et al., 2015; Young et al., 2016). The 

cumulative incidence of both common adult lymphoid malignancies and of CH-PD increases 

dramatically with age (Howlader et al., 2011), and it is conceivable that a more diverse CH-PD 

genetic landscape enriched for recurrent LN drivers emerges at higher rates in older age 

groups, analogous to the trend observed for spliceosome gene mutations (McKerrell et al., 

2015). To investigate this possibility, we sequenced an extension cohort of 234 individuals 

(n=238 samples) with no record of any prior or subsequent cancer diagnosis or known blood 

disorder. The mean age at blood sampling was 74.4 years (IQR 67.5-81.6), more than ten years 

older on average than the control cohort. The mean follow-up was 11.9 years (IQR 8.0-16.4). 

Out of the 234 individuals, 58 (24.8%) had CH-PD (Appendix 14). Despite high coverage 

(median >5,000X) and sensitivity to detect small clones down to VAF 0.5%, the genetic 

landscape was consistent with that observed in previous studies of CH-PD in the general 

ageing population. In particular, no canonical drivers associated with lymphoid malignancies 

were identified (Figure 4.3a,b), in contrast to the pre-LN cohort.  
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Figure 4.3 | The mutational spectrum of 
clonal haematopoiesis in an extension 
control cohort of older individuals with no 
history of cancer or haematological 
disorder. a, Co-mutation plot including only 
individuals with CH-PD (58 out of 234 
individuals in the older extension cohort). 
The top two rows indicate age at sampling 
and follow-up period in years. Tiles are 
coloured according to mutation status for 
each given gene and number of drivers 
identified: pale grey, wild type; black, one 
driver mutation; red, two driver mutations. 
The mutation VAF (%) is indicated in white 
text within each tile. Where two mutations 
were identified in a given gene and sample 
(red tiles), the highest VAF is shown. b, 
Proportion of individuals with driver 
mutations in each given gene according to 
age group.  
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2.5 Clonal dynamics over time and relationship with future lymphoid neoplasm 

Examining co-mutation patterns in those with a future LN diagnosis (Figure 4.4a-b) 

invites some initial speculation regarding the relationship between CH-PD and future LN. For 

many cases, the only CH-PD mutations detected occur in genes that are seldom implicated as 

drivers in the lymphoid cancer type diagnosed years later. The most notable example is 

DNMT3A, the most frequently mutated gene among both cases and controls (Figure 4.2a). 

Although DNMT3A does play a role in some lymphoid malignancies, particularly T-cell 

leukaemia/lymphoma (Couronne et al., 2012; Haney et al., 2016a; Haney et al., 2016b), it is 

not among the most recurrently mutated genes in these disorders (Brunetti et al., 2017; 

Sabarinathan et al., 2017). By contrast, the BRAF p.V600E, POT1 p.K90E and XPO1 p.E571 

hotspot mutations preceding diagnoses of hairy cell leukaemia (HCL), small cell B-cell 

lymphoma (SLL) and CLL, respectively, are highly plausible drivers of the respective latent 

malignancies, but are rarely if ever associated with CH in the general population (Landau et 

al., 2015; Pinzaru et al., 2016; Tiacci et al., 2011).  

In order to further investigate the relationship between CH-PD detected years before 

LN diagnosis and the future malignancy, serial peripheral blood DNA samples were sequenced 

from 104 individuals, including 69 pre-LN cases and 35 controls. The mean interval between 

earliest and latest sample was 7.3 years. No diagnostic specimens were available; however, 

for 16 of the pre-LN cases, at least one peripheral blood sample taken less than 6 months 

before diagnosis (n = 5 individuals) or after diagnosis (n = 11 individuals) was sequenced.  

Of the 69 serially sampled pre-LN cases, 22 had at least one driver detected in an 

earlier time point sample. Out of the 26 distinct mutations identified, 25 persisted in the later 

sample and 1 became undetectable. The only non-persistent clone harboured a KRAS p.G13D 

mutation present at 1% VAF in PD00003 at age 62.4 and no longer detectable in a sample 

taken 8.5 years later. Among the 35 controls with serial samples, 7 had mutations detected 

in their earlier samples. Of the 10 distinct variants, 5 persisted and 5 were no longer detected 

in the subsequent sample. The latter group comprised low VAF mutations in DNMT3A (n=4) 

and KRAS (n=1). Consistent with the patterns seen in pre-AML cases and controls, examining 

the VAF trajectories of the persistent mutations over time demonstrated variable behaviour, 

including for clones with mutations in the same gene (Figure 4.5a,b). However, the numbers 
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of cases and controls with mutations were insufficient to infer any significant overall 

difference in clonal growth rates between pre-LN cases and controls.  

 Examining the sequence of mutation acquisition and VAF trajectories among the pre-

LN cases revealed several notable findings (Figure 4.6a-k). Among the 16 pre-LN cases with 

peri- or post-diagnosis samples available, 7 harboured antecedent CH-PD. All 7 individuals 

harboured at least one driver in DNMT3A (Figure 4.6a-g), all of which persisted across serial 

samples. In 4/7 cases, the size of the DNMT3A clone(s) diminished over time (Figure 

4.6a,d,f,g), and in 2 of these cases this decline coincided with late acquisition of at least one 

driver mutation in a canonical lymphoid cancer gene, specifically CCND3 and CREBBP in an 

NHL and SF3B1 in a CLL case (Figure 4.6d,g)(Chapuy et al., 2018; Lunning and Green, 2015; 

Mullighan, 2014; Okosun et al., 2014; Sabarinathan et al., 2017). The same phenomenon is 

observed in two other cases, with the appearance of a relatively LN-specific driver mutation 

(e.g., in NOTCH1, POT1 and HIST1H1E)(Sabarinathan et al., 2017; Swerdlow et al., 2016) years 

before diagnosis also coinciding with stable or falling VAF of mutations in the canonical 

CH/myeloid neoplasm drivers DNMT3A and U2AF1, respectively (Figure 4.6i,j). These 

observations strongly suggest the presence of distinct, potentially competing clones and 

supports the hypothesis that a significant proportion of the CH-PD in the pre-LN cases is not 

phylogenetically related to the future malignancy, despite large clone sizes in most instances. 

Four serially-sampled pre-LN cases harboured drivers in genes more frequently mutated in 

LN than in CH-PD, namely CCND3, ATM, BRAF and TP53 (Figure 4.4a), and in each of these 

cases VAF increased over time. Hence, despite limited data, this time series experiment 

suggests that CH-PD in pre-LN cases represents a combination of pre-malignant clones and 

‘bystander’ clones, analogous to the situation observed in pre-AML. 
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Figure 4.4 | Mutation co-occurrence in pre-LN cases according to diagnosis, latency and age at sampling. 
a, Co-mutation plot for all 189 pre-LN cases. Top three rows indicate age at sampling, latency and sample 
and future LN diagnosis. Tiles are coloured according to mutation status for each given gene and number 
of drivers identified: pale grey, wild type; black, one driver mutation; red, two driver mutations. b, Co-
mutation plot including only cases with CH-PD. The mutation VAF percentage is indicated in white text 
within each tile. Where two mutations were identified in a given gene and sample (red tiles), the highest 
VAF is shown. MM, multiple myeloma; NHL NOS, non-Hodgkin lymphoma not otherwise specified; MGUS, 
monoclonal gammopathy of undetermined significance; DLBCL, diffuse large B-cell lymphoma; B-NHL, B-
cell non-Hodgkin lymphoma; CLL, chronic lymphocytic leukemia; HCL, hairy-cell leukemia; PTCL NOS, 
peripheral T-cell lymphoma NOS; WM, Waldenstrom macroglobulinaemia; SLL, small cell B-cell lymphoma; 
HL, Hodgkin lymphoma; LL, lymphoblastic lymphoma; NScHL, nodular sclerosis Hodgkin lymphoma; EP, 
extramedullary plasmacytoma; MF, mycosis fungoides; ALL, acute lymphoblastic leukemia. 
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Figure 4.5 |VAF trajectories of persistent mutations in serially sampled pre-LN cases and 
controls. a-b, VAF trajectories of CH-PD driver mutations persisting across serial samples 
from cases sampled years before diagnosis of a lymphoid neoplasm (a) and controls (b). 
X-axis denotes age at sampling and y-axis mutation VAF.  
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Figure 4.6 | Evolution of clonal haematopoiesis and relationship with future lymphoid 
neoplasm. a-h, VAF trajectories of putative driver mutations in 7 individuals for whom 
peripheral blood taken near or after cancer diagnosis was available for sequencing. Future 
LN diagnosis and age at diagnosis are indicated in parentheses above the plot. Vertical 
dotted lines demarcate pre- and post-diagnosis periods.  i-k, VAF trajectories of putative 
driver mutations in an additional 5 cases sampled multiple times years before cancer 
diagnosis. Age at sampling and mutation VAF are shown on the x- and y-axis, respectively.  
LN, lymphoid neoplasm; VAF, variant allele fraction; MM, multiple myeloma; NHL NOS, 
non-Hodgkin lymphoma not otherwise specified; MGUS, monoclonal gammopathy of 
undetermined significance; B-NHL, B-cell non-Hodgkin lymphoma; CLL, chronic 
lymphocytic leukemia; PTCL NOS, peripheral T-cell lymphoma NOS; SLL, small cell B-cell 
lymphoma. 
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2.6 Clinical factors associated with future development of a lymphoid malignancy  

 Full blood count parameters, lipid profile, C-reactive protein, blood pressure and 

anthropomorphic measurements were available for most of the pre-LN cases and controls 

(Figure 4.7). The case:control ratio for this analysis was 1:2 due to inclusion of 189 age-and 

sex-matched controls from the validation cohort described in Chapter 3. Consistent with the 

observations in the pre-AML cases and controls and previous studies of CH-PD (Jaiswal et al., 

2014; McKerrell and Vassiliou, 2015), blood counts did not differ significantly between pre-

malignant cases and controls or between individuals with and without CH-PD (Figure 4.7). 

Assessing all clinical parameters available for the majority of pre-LN cases and controls 

revealed significantly lower levels of high-density lipoprotein (HDL) in pre-LN cases (P=0.048, 

two-sided Wilcoxon rank-sum test with BH multiple testing correction). No other trends in 

clinical variables remained significant after multiple testing correction. There were no 

significant differences in clinical parameters when only cases and controls with CH-PD were 

compared to each other or when all individuals (cases and controls) with CH-PD were 

compared to individuals with no detectable mutations. Kaplan-Meier analysis of the impact 

of clinical variables on LN-free survival showed trends towards shorter time to cancer 

progression with higher RDW, though this correlation did not reach significance (Figure 4.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4.7 
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Figure 4.7 | Full blood count and metabolic parameters in pre-LN cases and controls. Box 

plots of full blood count parameters (a-h), biochemistry measurements (i-n),  body mass 

index (o), waist circumference (p), and blood pressure (q-r) available for a subset of cases 
and pre-LN controls. Boxplot centres, hinges and whiskers represent the median, first and 

third quartiles and 1.5× interquartile range, respectively. RBC, red blood cell; MCV, mean 

corpuscular volume; WBC, white blood cell; RDW, red cell distribution width; HDL, high density 

lipoprotein; LDL, low density lipoprotein; HbA1c, haemoglobin A1c; CRP, C-reactive protein; BMI, 
body mass index; BP, blood pressure. * P=0.048, two-sided Wilcoxon rank-sum test with BH multiple 
testing correction 
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Figure 4.8  
 

 

 
 
Figure 4.8 | Impact of clinical variables on lymphoid neoplasm-free survival. Kaplan–
Meier curves of LN-free survival, defined as the time between sample collection and LN 
diagnosis, death or last follow-up. Survival curves are stratified according to cutoffs 
indicated in the lower left corner of each plot. n = 567 unique individuals, including 189 pre-
LN cases and 378 age- and sex-matched controls. 95% confidence intervals indicated by 
dashed lines. RBC, red blood cell; MCV, mean corpuscular volume; WBC, white blood cell; 
RDW, red cell distribution width; HDL, high density lipoprotein; LDL, low density lipoprotein; 
HbA1c, haemoglobin A1c; BMI, body mass index; BP, blood pressure. 
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2.7 Predicting progression to lymphoid malignancy 

 On the basis of these findings, an approach similar to that described in Chapter 3 was 

developed to quantify the relative contributions of driver mutations, clone sizes and clinical 

factors to the risk of progressing to a lymphoid malignancy. In keeping with results from 

Chapter 3, Kaplan-Meier analysis of the impact of the number of drivers and mutation VAF 

demonstrated consistent correlation between mutation burden and progression-free 

survival, though these trends did not reach significance (Figure 4.9a). This correlation held 

even when the additional set of controls was incorporated and analysis was restricted to 

genes included in the myeloid panel used in Chapter 3 (Figure 4.9b). Although the relative 

infrequency of CH among pre-LN cases limited the power of KM analysis, a trend towards 

shorter LN-free survival was observed with larger DNMT3A clones (Figure 4.9c) or the 

presence of mutations in any of the LN-associated genes XPO1, POT1, CCND3, HIST1H1E, 

NOTCH1 or NOTCH2 (Figure 4.9d).  KM curves for individual genes are shown in Figure 4.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4.9  
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Figure 4.9 | Impact of mutation burden on lymphoid neoplasm-free survival.  a,b Kaplan–
Meier (KM) curves of LN-free survival, defined as the time between sample collection and 
LN diagnosis, death or last follow-up. Survival curves are stratified according to number of 
driver mutations per individual and largest clone detected. Panel (a) includes all genes 
sequenced across the 189 pre-LN cases and 189 age- and sex-matched controls. The same 
trends, albeit not reaching significance, persist when only mutations in genes sequenced by 
the myeloid panel are included in the analysis (189 pre-LN cases and 378 controls) (b). c, 
KM curves of LN-free survival stratified by DNMT3A mutation status and VAF of DNMT3A 
mutations. d, KM curve of LN-free survival stratified according to mutation status in any of 
six infrequently mutated lymphoid neoplasm-associated driver genes. VAF, variant allele 
fraction. 
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Figure 4.10 
 
 

 

 
 
Figure 4.10 | Gene-level impact on LN-free survival. Kaplan–Meier (KM) curves of LN-free 
survival, defined as the time between sample collection and AML diagnosis, death or last 
follow-up. Survival curves are stratified according to mutation status. n = 378 unique 
individuals (189 pre-LN cases and 189 controls). LN, lymphoid neoplasm; VAF, variant allele 
fraction. Dashed lines indicate 95% confidence intervals.  
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However, the high proportion of infrequently mutated genes dominating the genetic 

landscape of CH-PD among pre-LN cases and lower prevalence of CH-PD among pre-LN 

relative to pre-AML hindered robust identification of gene-level risk factors for malignant 

progression. Regularised logistic and Cox proportional hazards regression approaches were 

applied as described in Chapter 3 (see Methods section 4). Excluding infrequently mutated 

genes from model training eliminated a significant proportion of CH-PD mutations from 

analysis and yielded fairly homogenous gene-level hazard ratios with wide confidence 

intervals for most genes (Figure 4.11). Notable exceptions were DNMT3A and TET2, which 

were the most recurrently mutated genes across both cohorts and were thus amenable to 

more accurate analysis of the mutation contribution to LN progression risk (Figure 4.11a). 

Quantitatively, driver mutations in DNMT3A and TET2 conferred a 1.5 to twofold increased 

10-year risk of LN per 5% increase in clone size (Figure 4.11a and Appendix 15). Remarkably, 

these hazard ratios are virtually identical to the effect sizes observed for these genes in the 

AML prediction model (Figure 3.5). In order to achieve more accurate estimates of HRs for 

clinical variables and the subset of genes sequenced across both gene panels, the model was 

retrained using an additional set of 189 controls sequenced with the myeloid panel used in 

Chapter 3 for a case:control ratio of 1:2. The genes analysed were restricted to those 

overlapping between both panels and mutated at least twice in either discovery or validation 

cohort. Hazard ratios for overlapping variables were concordant, albeit with narrower 

confidence intervals (Figure 4.11b).  

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4.11  

a  

 

Figure 4.11 | Forest plots of 
hazard ratios for risk progression 
to lymphoid malignancy.  a, Forest 
plot for Cox proportional hazards 
model using a 1:1 case control 
ratio and including all myeloid and 
lymphoid cancer genes. b, Model 
restricted to myeloid panel genes 
and incorporating an additional 
189 age-and sex-matched controls 
for a 1:2 case:control ratio and 
hence more accurate estimates of 
risk associated with clinical factors 
and genes sequenced across both 
panels. Purple, orange and green 
circles indicate hazard ratios (HR) 
for the discovery (DC), validation 
(VC) and combined cohort, 
respectively. Horizontal lines 
denote 95% confidence intervals 
for the combined cohort. For each 
gene, the indicated HR applies to 
the 10-year risk of lymphoid blood 
cancer conferred by each 5% 
increase in mutation VAF. The 
green vertical line indicates the 
mean HR across all genes. Blue 
(controls) and red (pre-LN) circles 
to the right of the forest plot 
indicate the proportion of 
individuals with mutations in each 
gene and the average mutation 
VAF, which aids in the 
interpretation of hazard ratios. For 
example, ATM, a recurrent driver 
gene in several lymphoid 
malignancies, is almost exclusively 
mutated in pre-LN cases but at 
relatively high VAF, which 
translates into a modest HR for 
each 5% increase in clone size.  

b 
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Overall, genetic and clinical parameters explained approximately 45% and 12% of the 

absolute variance in LN-free survival between individuals, respectively. Notably, clinical 

factors explained a comparable proportion of the variance. The coefficients for clinical 

variables were consistent between models trained on the discovery and validation cohorts 

(Figure 4.11a,b). Interestingly, lower HDL was associated with a modest but significant 

increase in risk of LN progression (Figure 4.11a,b). Consistent with this finding, lower total 

cholesterol was also associated with a smaller but still significantly increase in risk.    

Unsurprisingly, models did not achieve anywhere near the predictive power observed 

for AML, with concordance and AUC both ≤0.7 for models trained on either cohort (Table 4.2). 

Nevertheless, this analysis yielded robust estimates of the risk conferred by lower HDL levels 

and mutations in DNMT3A and TET2, findings with compelling biological implications that 

warrant further investigation.  

Table 4.2 Cox proportional hazard model performance 

Cox proportional 
hazards model 

Concordance Standard error Time-dependent AUC 

VC data and fit  0.60 0.035 0.67 

DC data and fit 0.70 0.029 0.64 

VC fit DC data 0.58 0.035 0.60 

DC fit VC data 0.60 0.027 0.67 

Combined cohorts 0.67 0.022 0.67 

*Derived from 100 bootstraps out-of-bag validation 

DC, discovery cohort; VC, validation cohort 

 

3. Discussion 

 The main aim of this experiment was to characterise the prevalence and genetic 

landscape of CH-PD in individuals who go on to develop a lymphoid neoplasm. To this end, I 

have deep sequenced peripheral blood specimens from 189 pre-LN cases and 189 age- and 

sex-matched controls using a much broader gene panel than has been applied in previous 

similarly sensitive assays for CH. To investigate potential enrichment for LN-associated 

mutations in older age, this study was extended to include samples from a further 234 healthy 
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older individuals. Serial samples, including peri- and post diagnosis blood samples, provided 

insight into clonal dynamics and the relationship between CH-PD and future malignancy. 

Clinical metadata, including full blood count parameters and lipid profile, were analysed for 

any association with CH-PD or future LN risk. Genetic and clinical variables were then 

incorporated into predictive models to seek any significant risk factors for LN progression and 

assess their collective power to identify individuals at high risk of future LN development.   

3.1 CH-PD frequently precedes LN diagnosis and is characterised by a diverse 

mutational spectrum 

 This work demonstrates that CH-PD becomes more prevalent among individuals who 

develop a lymphoid malignancy years before diagnosis and is characterised by a more diverse 

genetic landscape than that observed in pre-AML cases or in the general population. The 

experiment described in Chapter 3 demonstrated that pre-AML exhibits a mutational 

spectrum that closely overlaps with that seen in the general population but is enriched for 

mutations in particular genes. By contrast, the pre-LN cohort harboured rare events in a 

number of genes highly associated with LN pathogenesis and rarely if ever reported in the 

current CH literature, including ATM, CCND3, POT1, HIST1H1E, XPO1, NOTCH1 and NOTCH2 

(Arber et al., 2016; Kandoth et al., 2013; Martincorena et al., 2017; Sabarinathan et al., 2017; 

Swerdlow et al., 2016). Among these, ATM was the most recurrently mutated in pre-LN cases, 

ranking third after DNMT3A and TET2. The genetic heterogeneity observed in the pre-LN 

cohort is reminiscent of the genomic landscapes of the most common lymphoid blood cancers 

in adults, which tend to be characterised by a large number of infrequently mutated putative 

cancer genes (Landau and Wu, 2013; Reddy et al., 2017; Sabarinathan et al., 2017; Swerdlow 

et al., 2016).  

3.2 CH-PD as a biomarker for lymphoid blood cancer risk 

Despite an overall more varied mutational spectrum in pre-LN CH-PD, the two top 

genes remained DNMT3A and TET2. Mutations in both of these genes, and in particular TET2, 

are implicated in both B- and T-cell lymphoid malignancies (Couronne et al., 2012; Dominguez 

et al., 2018; Haney et al., 2016a; Haney et al., 2016b; Mouly et al., 2018; Quivoron et al., 

2011). TET2 deficiency in particular has been shown to increase HSC mutation rate and 

predispose to lymphoid and myeloid malignancies (Pan et al., 2017). However, the high 
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frequency of TET2/DNMT3A mutations in in pre-LN CH-PD relative to lymphoid cancers, in 

conjunction with the results of the time series experiment, suggests that DNMT3A-mutated 

clones in particular often do not represent ancestors of the future cancer. Nevertheless, 

mutations in DNMT3A and TET2 confer a significantly increased risk for progression to LN, 

with hazard ratios comparable to those observed in the AML prediction model (Figure 3.5 and 

Figure 4.11). Although speculative, there are several possible explanations for this 

observation. As alluded to in Chapters 1 and 3, it is possible that clones that are not 

phylogenetically related to the future malignancy are surrogate markers of selective 

pressures that impart a strong growth advantage on pre-malignant HSCs. There is increasing 

precedent for this hypothesis in the haematopoietic system and other tissues. For example, 

as discussed in depth in Chapter 5, activating mutations in PPM1D, a negative regulator of 

TP53, confer a selective advantage on HSCs in the context of cytotoxic therapy (Gibson et al., 

2017; Hsu et al., 2018; Takahashi et al., 2017). PPM1D-mutated CH-PD is a biomarker of 

therapy-related AML risk, despite that the PPM1D-mutations often persist at low VAF 

alongside the evolving AML (Gibson et al., 2017; Gillis et al., 2017). Remarkably, a similar 

scenario has recently been described in oesophageal epithelium, which is increasingly 

populated by PPM1D-mutated clonal expansions with age (Yokoyama et al., 2019). Exposure 

to alcohol and smoking, strong risk factors for oesophageal cancer, were associated with 

expansion of PPM1D-mutated epithelial clones, though PPM1D is not a recurrent driver in 

oesophageal malignancies (Yokoyama et al., 2019). 

Current understanding of the selective pressures influencing somatic evolution in the 

haematopoietic system remains limited. However, age-related increases in endogenous 

genotoxic stress and reduced HSC self-renewal capacity may be important factors (Pang et 

al., 2017; Yahata et al., 2011). It is plausible that inter-individual variation in the pace and 

nature of age-related processes may influence the spectrum of mutations that confer 

selective advantage on HSCs. In this context it is noteworthy that TP53 and ATM, both critical 

mediators of DNA damage response and cell cycle checkpoint control (Roos et al., 2016), 

constituted the third and fourth most frequently mutated genes in this pre-LN cohort. Whilst 

this result warrants confirmation in larger studies, it is conceivable that some individuals 

experience more severe/earlier DNA-damage associated HSC senescence and that this 

favours expansion of clones with mutations that repress DNA-damage-induced apoptosis and 

cell cycle arrest. By extension, such individuals would likely be at higher risk of stochastic 
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driver mutation acquisition and clonal evolution of any one of numerous pre-malignant 

clones. As mentioned in Chapter 3, Wong et al. recently reported a high prevalence of 

‘bystander’ pre-leukaemic clones in AML patients at diagnosis, suggesting that their 

leukaemia arose from one of many candidate pre-malignant HSCs (Wong et al., 2015a).    

3.3 RDW and lymphoid neoplasm risk 

Notably, RDW was not significantly increased among pre-LN cases, in contrast to the 

scenario observed for pre-AML. As discussed in Chapter 3, higher RDW has previously been 

associated with CH in the general population (Jaiswal et al., 2014). However, we have shown 

that comparing pre-AML cases and controls with CH-PD revealed that RDW could help 

distinguish pre-AML (including cases without detectable CH-PD) from CH in individuals who 

did not develop a blood cancer during follow-up.  The association between higher RDW and 

risk of developing AML was validated in a large electronic medical records dataset. It is 

possible that a weaker correlation does exists between pre-LN and RDW that this study was 

underpowered to detect, as hinted by the subtle trend discernible on KM analysis (Figure 4.8). 

However, this result nevertheless suggests that RDW is not a universally strong discriminator 

between indolent and pre-malignant CH-PD. This experiment may mask lymphoid cancer 

subtype-specific associations between RDW and warrants further investigation.    

3.4 Lower high-density lipoprotein levels and lymphoid cancer risk 

 Among all clinical variables analysed, only HDL levels differed significantly between 

pre-LN cases and controls. The association between lower HDL and future LN was 

corroborated by Cox proportional hazards modelling, which identified a modestly increased 

risk of LN with lower HDL and total cholesterol (Figure 4.11a,b). Hypocholesterolaemia is a 

common finding in lymphoma and leukaemia patients, and has also been reported in 

association with some solid tumour types (Lim et al., 2007; Pirro et al., 2018). Lower HDL in 

particular has been previously identified as a preclinical feature of non-Hodgkin lymphoma 

discernible years before diagnosis (Lim et al., 2007). Low HDL at lymphoma diagnosis has also 

been correlated with poorer prognosis (Matsuo et al., 2017). The mechanisms underlying 

these observations are unclear with no compelling evidence of a causative link between low 

cholesterol and haematological malignancies (Pirro et al., 2018). However, numerous studies 
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report that lymphoma cells and leukaemia blasts have higher HDL and/or LDL uptake receptor 

activity (Goncalves et al., 2005; Vitols et al., 1990; Vitols et al., 1985)  and that cholesterol 

metabolism may represent a viable therapeutic target for several mature B-cell malignancies 

(McMahon et al., 2017). It is therefore possible that pre-malignant CH displays similar 

behaviour, leading to reductions in circulating levels of HDL even years prior to overt 

malignant transformation. This is a particularly intriguing hypothesis in view of the emerging 

causal role of CH-PD in atherosclerosis (Fuster et al., 2017; Jaiswal et al., 2017; Sano et al., 

2018a). It is even conceivable that plaque-resident clonal haematopoietic cells may accelerate 

atheroma progression in part by increasing lipid accumulation at sites of inflamed 

endothelium.  

3.5 Experiment limitations and future directions 

 This experiment has several important limitations. Firstly, the pre-LN cohort 

encompasses diverse diseases presenting over a long period during which histopathological 

classification schemes and diagnostic guidelines evolved considerably (Campo et al., 2011; 

Swerdlow et al., 2016). This limited the scope to investigate the natural history of or distinct 

genetic/clinical risk factors for individual cancer types. Furthermore, structural events, 

particularly translocations involving the immunoglobulin heavy chain (IGH) genes and 

numerical chromosomal aberrations, are frequent initiating events of lymphoid malignancies 

and their detection requires a much broader and more costly sequencing approach (Bolli et 

al., 2014; Landau et al., 2015). While the main aim of this experiment was to characterise the 

point mutation spectrum of CH-PD in pre-LN and investigate the predictive value of both 

putative ancestral and ‘bystander’ clones in assessing risk of progression, the power of 

predictive models would likely be increased by screening for subclonal large copy number 

changes and recurrent translocations.   

Moreover, these results provide further evidence that malignant and cardiovascular 

adverse outcomes associated with CH might be linked. The association of lower HDL with LN 

progression risk, in conjunction with the clinical AML prediction model described in Chapter 

3, hint that there may be unifying features of ‘high risk’ CH that could eventually help define 

a useful biomarker and/or therapeutic target.  Hence this experiment reinforces the need for 

future studies of CH to correlate genetics with detailed clinical and phenotypic metadata and 
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to try to move beyond investigating malignant and cardiometabolic disease associations in 

isolation. 

CHAPTER 5 
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Chapter 5 

Clonal haematopoiesis after childhood 

cancer treatment 

 

 

 

1. Introduction 

The findings of the preceding chapters demonstrate that pre-malignant CH is 

associated with clinical and genetic features that can help distinguish individuals at highest 

risk of developing certain blood cancers, particularly de novo AML. These experiments studied 

individuals from the general population without a known history of cancer or haematological 

disorder. Further work will be necessary to adapt AML predictive models to patient groups 

prone to CH with distinct genetic features. As discussed in the general introduction, CH is 

particularly common in certain clinical contexts, notably aplastic anaemia and following 

cytotoxic treatment for an unrelated malignancy (Bowman et al., 2018). CH in adult cancer 

patients has recently become an active area of research due to the increasing numbers of 

cancer survivors at elevated risk of CH-associated pathology, including therapy-related 

myeloid neoplasms (t-MN) and earlier onset of common non-malignant conditions, 

particularly cardiovascular disease (Bowman et al., 2018; Carver et al., 2007; Morton et al., 

2018). CH has emerged as a potentially promising biomarker for the risk of t-MN and other 

late effects of cancer treatment (Bolton et al., 2019; Coombs et al., 2017; Gibson et al., 2017; 

Gillis et al., 2017; Takahashi et al., 2017).  

Childhood cancer survivors display an earlier onset of ageing-associated 

cardiometabolic conditions (Armstrong et al., 2016; Bhakta et al., 2017; Rowland and Bellizzi, 

2014) and an elevated risk of t-MN and other secondary malignancies (Bhatia et al., 2007; Pui 

et al., 1991; Turcotte et al., 2018). Predicting and mitigating long-term complications of 

treatment is emerging as a dominant challenge in an era where a large proportion of children 

with cancer can be cured of their primary malignancy (Oeffinger et al., 2006). However, the 
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prevalence, genetic landscape and clinical significance of CH in this population is largely 

unknown. 

 

The aims of the experiments described in this chapter were the following: 

 

1) Evaluate whether CH is prevalent in childhood cancer survivors who have received 

intensive cytotoxic treatment and/or radiotherapy. 

2) Investigate the natural history of a case of paediatric t-MN lacking an MLL 

rearrangement.  

 

The following introduction provides an overview of existing literature on cytotoxic therapy 

related CH and the pathogenesis of t-MN.  

 

1.1 Therapy-related myeloid neoplasms 

Epidemiology and risk factors 

Therapy-related myeloid neoplasms comprise any AML or MDS arising after chemo 

and/or radiotherapy for a primary cancer, organ transplant or auto-immune condition (Arber 

et al., 2016). It constitutes one of the most challenging long-term complications of cancer 

treatment, with survival measured in months for most patients (Bhatia, 2013). Cytotoxic 

agents associated with the highest risk of t-MN are alkylating agents, topoisomerase II 

inhibitors and platinum-based drugs (Morton et al., 2018). The incidence and risk factors for 

t-MN have fluctuated as chemotherapy regimens for the commonest solid cancers have 

evolved (Bhatia, 2013; Morton et al., 2018). Over the past several decades, t-MN has 

accounted for a rising proportion of all newly diagnosed AML/MDS cases (Morton et al., 2018; 

Morton et al., 2014). Currently, t-MN constitutes around 10-20% of AML and MDS diagnoses, 

with an annual incidence of approximately 0.62/100,000 (De Roos et al., 2010; Hulegardh et 

al., 2015; Morton et al., 2018). A recent survey of all t-MN cases entered in the US SEER cancer 

registry between 2000 and 2014 found that nearly all solid tumour types were associated with 

t-MN, with the highest risk seen in patients treated for malignant bone tumours, followed by 

soft tissue sarcoma, testicular cancer, ovarian carcinoma and CNS malignancies (Morton et 
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al., 2018). These findings represent a modest departure from previous epidemiological trends 

showing highest t-MN risk among breast cancer and lymphoma patients (Morton et al., 2010; 

Morton et al., 2018). Several solid tumour types were newly associated with t-MN risk, most 

likely reflecting recent introduction or increase in use of platinum agents to treatment 

protocols (Morton et al., 2018). Younger age at chemo/radiotherapy exposure correlated 

with higher t-MN risk, with high cumulative incidence of t-MN observed in children treated 

for solid tumours (5% to 11%) (Bhatia et al., 2007; Kushner et al., 1998; Le Deley et al., 2003; 

Morton et al., 2018).  

Around 16-20% of t-MN patients harbour penetrant germline variants implicated in 

cancer susceptibility (Churpek et al., 2016; Felix et al., 1996; Schulz et al., 2012; Voso et al., 

2015), compared with 9.5-12.6% of cancer patients overall and 1-2.7% of individuals without 

cancer (Pritchard et al., 2016; Schrader et al., 2016; Zhang et al., 2015). Cancer-predisposing 

germline mutations in t-MN patients are frequently reported in genes involved in mediating 

cellular responses to DNA damage, such as BRCA1, BRCA2, BARD1 and TP53 (Felix et al., 1996; 

Felix et al., 1998; Schulz et al., 2012). This observation may help explain the notorious chemo-

resistance of t-MNs (Bhatia, 2013; McNerney et al., 2017). Germline factors may constitute a 

particularly powerful risk factor in children at highest risk of t-MN. For example, children with 

soft tissue or bone malignancies have an 11% cumulative 5-year risk of t-MN (Bhatia et al., 

2007). This patient group appears to have an exceptionally high burden of germline variants 

predisposing to cancer, identified in nearly 50% of individuals in the most recent survey 

(Ballinger et al., 2016).  

Genomic landscape and classification 

The somatic genomic features of t-MN are similar overall to those seen in non-therapy 

related myeloid neoplasms, but with dramatic enrichment for high-risk changes, notably 

rearrangements involving KMT2A (MLL) and RUNX1, TP53 mutations and chromosome 5 

and/or 7 losses (Bhatia, 2013; Smith et al., 2003). In adults, two subtypes of t-MN are 

delineated based on chemotherapy exposure, genomic features and clinical behaviour 

(McNerney et al., 2017). The alkylating agent-related class of t-MN constitutes around 70% of 

cases and is characterised by the high-risk cytogenetic changes del(5q) and -7/del(7q) and 

TP53 mutations (in around 33%) (Heuser, 2016), a relatively long latency (5-7 years from 
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cytotoxic exposure) and a tendency to initially present as MDS progressing towards AML 

(McNerney et al., 2017). In addition to alkylating agents (e.g., cyclophosphamide, melphalan), 

this class of t-MN is associated with exposure to platinum-based agents (e.g., cisplatin, 

carboplatin) and purine analogues (e.g., azathioprine, fludarabine) (McNerney et al., 2017; 

Offman et al., 2004; Waterman et al., 2012). The second broad category of t-MN is associated 

with topoisomerase II inhibitor exposure (e.g., anthracyclines and etoposide)(McNerney et 

al., 2017). The topoisomerase II (TOP2) inhibitor class of t-MN typically presents as frank AML 

and has a shorter latency (median 2-3 years) (Heuser, 2016; Smith et al., 2003). This may in 

part be driven by translocations that are common in these t-MN involving KMT2A (MLL), 

RUNX1 or PML-RARA, powerful oncogenic rearrangements that tend to require few 

cooperating events to trigger leukaemic transformation (Andersson et al., 2015; McNerney et 

al., 2017; Papaemmanuil et al., 2016; TCGA et al., 2013).  

t-MN pathogenesis: chemotherapy-induced DNA damage or clonal selection? 

 Until recently, the conventional model of t-MN pathogenesis proposed that most 

cases were attributable to somatic driver events directly induced by cytotoxic agents (Bhatia, 

2013). Many chemotherapy drugs associated with t-MN are mutagenic, and some are 

associated with particular patterns of genomic damage. For example, TOP2 inhibitors may 

increase the likelihood of reciprocal translocations by delaying ligation of double-strand 

breaks, thus prolonging the opportunity for recombination with DNA from another 

chromosome (Cowell and Austin, 2012). In keeping with this model, fusion oncogenes in t-

MN arising post TOP2 inhibitor treatment tend to have breakpoints consistent with 

processing of 4-base staggered double-strand breaks from TOP2-mediated cleavage (Felix, 

2001; Hasan et al., 2008; Mistry et al., 2005).  

The alkylating agent class of t-MN is characterised by complex karyotypes, high 

numbers of copy number aberrations and TP53 mutations in over a third of cases (Itzhar et 

al., 2011; Smith et al., 2003). Alkylating agents covalently modify DNA and promote DNA 

cross-linking double-strand breaks (Fu et al., 2012). It was thought that this genotoxicity 

induced structural changes and occasionally TP53 mutations, with the latter contributing to 

genomic instability (Bhatia, 2013).   
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However, this model of t-MN pathogenesis was refuted by the work of Wong et al, 

who investigated the natural history of TP53-mutated t-MN (Wong et al., 2015b). Ultra-

sensitive duplex sequencing demonstrated that the TP53 driver mutation present (at clonal 

VAF) in the t-MN was usually detectable at very low levels (VAF 0.003-0.7%) in bone marrow 

samples taken prior to commencing cytotoxic treatment for the primary malignancy (Wong 

et al., 2015b). Furthermore, the point mutation burden and patterns did not differ between 

t-MN and de novo AML (Wong et al., 2015b). These findings suggested that cytotoxic 

treatment selected for pre-existing TP53-mutated HSCs, and that the cytogenetic complexity 

observed in the t-MNs reflected abrogation of the TP53-mediated DNA damage response and 

survival of cells that would otherwise have undergone apoptosis (Wong et al., 2015b). The 

clonal selection model was corroborated by a follow-up experiment in which TP53-mutated 

clones transplanted into mice only expanded if the animals were exposed to cytotoxic therapy 

(Wong et al., 2015b).  Moreover, screening peripheral blood samples from a cohort of 

otherwise healthy elderly individuals (n=20) identified TP53 mutations at very low VAF 

(<0.1%) in 37% (Wong et al., 2015b). These mutations persisted over time with little or no 

clonal expansion, suggesting that they conferred minimal selective advantage in the absence 

of unusual levels of genotoxic stress (Wong et al., 2015b). A contemporaneous study by Ok et 

al. compared TP53 mutations in t-AML and de novo AML and found no evidence suggesting 

that TP53 drivers in the former were induced by distinct chemotherapy-related mutational 

processes: there were no differences in mutation distribution, sequence context or 

proportion of transitions versus transversions (Ok et al., 2015).  The finding that t-MN TP53 

drivers predate chemotherapy exposure has since been reproduced by other experiments 

(Schulz et al., 2015; Takahashi et al., 2017). 

Clonal haematopoiesis as a biomarker for t-MN risk 

An important role for clonal selection in t-MN pathogenesis was corroborated by 

recent studies investigating CH in cancer patients. CH is dramatically more prevalent in cancer 

survivors compared to individuals of the same age who have not been exposed to cytotoxic 

agents/radiotherapy and is enriched for mutations in TP53 and its negative regulator PPM1D 

(Coombs et al., 2017; Gibson et al., 2017; Gillis et al., 2017; Takahashi et al., 2017). Numerous 

elegant studies in both mouse and human have demonstrated that cytotoxic agents and 
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radiotherapy promote expansion of HSCs harbouring TP53 or PPM1D mutations (Bondar and 

Medzhitov, 2010; Hsu et al., 2018; Kahn et al., 2018; Wong et al., 2015b). In keeping with the 

clinical significance of CH in the general population, CH in cancer survivors is associated with 

higher risk of t-MN as well as with non-malignant adverse outcomes (Coombs et al., 2017; 

Gibson et al., 2017; Gillis et al., 2017; Takahashi et al., 2017).  

Childhood t-MN 

 Although t-MN is a leading cause of death in paediatric cancer patients surviving their 

primary cancers, relatively little is known about its pathogenesis in children (Bhatia et al., 

2007; Heuser, 2016; Kushner et al., 1998; Le Deley et al., 2003; Pui et al., 1991). The relative 

contributions of germline risk factors, chemotherapy-induced driver mutations and clonal 

selection are unclear. The genomic landscape of paediatric t-MNs has not been well 

characterised, complicating efforts to trace their clonal evolution. However, it is conceivable 

that the genetic basis overlaps with that of paediatric AML/MDS/MPN arising in the absence 

of cytotoxic therapy, possibly with enrichment for high-risk features as seen in adults. 

Compared to adult MDS, paediatric myeloid neoplasms are enriched for mutations in the RAS 

oncogenes as well as RUNX1, SETBP1 and ASXL1 (Locatelli and Strahm, 2018; Pastor et al., 

2017). Furthermore, more than 30% of paediatric MDS patients have an inherited cancer 

predisposition or bone marrow failure syndrome compared to <5% of adults (Hasle, 2016). 

Deletions affecting chromosome 7 (-7/7q-) or chromosome 5 (-5/-5q) are present in around 

25% and 1% of paediatric MDS cases, respectively (Hasle, 2016).  

Allogeneic HSCT remains the only potential cure for paediatric t-MN (Locatelli and 

Strahm, 2018) and unlike their adult counterparts, most children with t-MN are HSCT 

candidates (Hasle, 2016; Locatelli and Strahm, 2018). Importantly, the only factor associated 

with improved overall survival in paediatric t-MN patients is shorter delay between t-MN 

diagnosis and transplant (Locatelli and Strahm, 2018; Maher et al., 2017). It is therefore 

conceivable that early detection and monitoring of patients at highest risk of progressing to 

t-MN could improve outcomes by minimising the interval between t-MN manifestations and 

allogeneic HSCT.  

Current knowledge of paediatric t-MN natural history is limited to four case reports of 

children with MLL-rearranged (MLLr) t-MN after TOP2 inhibitor treatment (Blanco et al., 



 119 

2001; Megonigal et al., 2000; Ng et al., 2004; Robinson et al., 2008). As discussed above, there 

is some evidence that reciprocal fusions involving MLL may be directly induced by TOP2 

inhibitors (McNerney et al., 2017). Consistent with this view, in each of these four cases, 

sensitive methods failed to detect the MLL fusion in blood or bone marrow samples taken 

before chemotherapy exposure (Blanco et al., 2001; Megonigal et al., 2000; Ng et al., 2004; 

Robinson et al., 2008). However, in three of the four case reports, the MLL fusion was 

detectable in blood and/or bone marrow over a year before t-MN presented clinically (17, 

15.5, and 37 months latency in Blanco et al, Megonigal et al, and Robinson et al, respectively) 

(Blanco et al., 2001; Megonigal et al., 2000; Robinson et al., 2008). The shortest interval 

between MLLr detection and t-MN diagnosis (3 months) was reported by Ng et al in a child 

who developed t-MN only six months after diagnosis with hemophagocytic 

lymphohistiocytosis (Ng et al., 2004). These case reports offer some hope that even 

chemotherapy-induced fusion oncogenes generally associated with shorter latency to t-MN 

may be detectable early enough in disease evolution to enable monitoring and expedite 

definitive treatment. However, I could not identify any studies investigating the natural 

history of paediatric t-MN lacking an oncogenic fusion.  

2. Results 

2.1 Prevalence of CH-PD in childhood cancer survivors 

To determine whether CH prevalence is elevated in children who have undergone 

intensive chemo/radiotherapy, we performed targeted deep sequencing of peripheral blood 

DNA from 84 paediatric cancer survivors to search for candidate driver mutations. The median 

age at cancer diagnosis was 4.5 years, and the commonest malignancies were acute 

lymphoblastic leukaemia (n=21), neuroblastoma (n=17) and non-Hodgkin lymphoma (n=10). 

Nineteen children had received a hematopoietic stem cell transplant (8 allogeneic and 11 

autologous). The median interval between completion of cancer treatment and blood 

sampling was 6 years (range 2 – 25). Patient characteristics are summarised in Table 5.1 with 

details for each individual shown in Appendix 3. 
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TABLE 5.1 

Table 5.1 | Cohort summary 
 

Diagnosis 
Number of 
individuals 

Mean age at 
diagnosis 

(years) 

Mean time since last 
chemo/radiotherapy 

(years) 

Neuroblastoma 17 3.0 11.4 

Rhabdomyosarcoma 7 5.5 6.7 

Acute lymphoblastic leukaemia 21 4.2 6.8 

Non-Hodgkin lymphoma 10 6.9 8.3 

Germ cell tumour 4 10.0 5.1 

Lymphoblastic lymphoma 3 6.1 7.8 

Hodgkin lymphoma 6 14.6 5.6 

Nephroblastoma 5 3.5 7.6 

Hepatoblastoma 1 0.3 9.4 

Ewing sarcoma 4 8.0 8.0 

Non-rhabdomyosarcoma soft 

tissue sarcoma 
2 7.7 6.0 

Choriocarcinoma 1 12.8 3.5 

Nasopharyngeal carcinoma 1 15.9 3.0 

Langerhans cell histiocytosis 2 3.4 6.6 

 

 

Multiplex PCR was used to amplify 32 selected regions of 14 genes frequently mutated in CH 

and t-MN, including hotspots in the RAS oncogenes NRAS and KRAS (recurrently mutated in 

paediatric MDS/MPN) and all exons of TP53 and PPM1D (Table 5.2; Methods section 

2.3)(Coombs et al., 2017; Gibson et al., 2017; Locatelli and Strahm, 2018).  
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Table 5.2 | Genomic regions sequenced by multiplex PCR 
 

Gene Chromosome Target codon/exon 

NRAS 1 p.G12D 

SF3B1 2 p.K666N; p.K700E 

DNMT3A 2 p.R882/p.R693C 

IDH1 2 p.R132H 

KIT 4 exon 17 

NPM1 5 p.L287fs*13 

JAK2 9 p.V617F 

KRAS 12 p.G12R 

IDH2 15 p.R140Q; p.R172K 

PPM1D 17 exons 1 - 6 

TP53 17 exons 1 - 12 

SRSF2 17 p.P95L 

ASXL1 20 exon 12 

U2AF1 21 p.S34F; p.Q157R 

 

 

The median sequencing depth achieved across all regions of interest was 5,295X. No 

somatic mutations above the assay sensitivity threshold (VAF ≥ 0.008) were observed in any 

of the 84 long-term paediatric oncology follow-up patients nor in 3 children with no history 

of cancer (Methods section 3.2).  

2.2 Tracing the evolution of a paediatric t-MN with driver mutations in PTPN11 

and SETBP1 to emergence in early neuroblastoma treatment 

As discussed in the introduction, studies of paediatric t-MN evolution have thus far 

been limited to case reports of children presenting with MLLr t-MN (Blanco et al., 2001; 

Megonigal et al., 2000; Ng et al., 2004; Robinson et al., 2008). The aim of this experiment was 

to retrace the emergence of a paediatric t-MN with genetic features akin to the alkylating 

agent class of adult t-MN described earlier.  
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Case Report 

A 4-year old girl presented with high-risk, metastatic (stage 4) neuroblastoma with 

bone marrow involvement. Apart from focal neuroblastoma involvement, the initial bilateral 

staging trephines and aspirates showed normal trilineage haematopoiesis. Pre-treatment 

blood counts were normal. She was enrolled on the high-risk neuroblastoma SIOPEN trial 

protocol (HR-NBL-1.7/SIOPEN, NCT01704716) and underwent Rapid COJEC induction 

chemotherapy consisting of ten weeks of treatment with a total of five chemotherapy 

agents: carboplatin, etoposide, vincristine, cisplatin and cyclophosphamide at cumulative 

doses of 1.5g/m2, 1.4g/m2, 12g/m2, 320mg/m2, 4.2g/m2, respectively. Bilateral restaging 

bone marrow biopsies performed following completion of induction chemotherapy and 

count recovery (day 120 of treatment) remained positive for neuroblastoma infiltration. She 

therefore received additional induction chemotherapy to achieve metastatic remission, i.e., 

two cycles of TVD: Topotecan, Vincristine, Doxorubicin at cumulative doses of 15mg/m2, 

4mg/m2 and 90mg/m2, respectively. Platelet and neutrophil count recovery were unusually 

slow (3 months), though the child remained well with no infectious complications. Bone 

marrow examination following count recovery was normal, with cytomorphological 

examination negative for metastatic disease. Peripheral blood CD34+ stem cells (PBSC) were 

therefore harvested and she completed treatment, which included surgery, myeloablative 

therapy with busulfan and melphalan (BuMel), autologous PBSC rescue, irradiation of the 

site of primary disease (21 Gy), differentiation therapy (isotretinoin) and anti-GD2 

immunotherapy. She remained well throughout, despite slow platelet and neutrophil count 

recovery after high-dose BuMel. Eight months after finishing treatment (32 months after 

diagnosis), she was incidentally noted on routine follow-up to have developed moderate 

peripheral cytopenia with Hb 102 g/dL, white cell count 2.3 x 109/L, neutrophils 1.29 x 109/L 

and platelets 91 x 109/L. Bone marrow examination revealed <5% blasts and no evidence of 

neuroblastoma recurrence. G-banded bone marrow karyotyping revealed monosomy 7 in 

keeping with a developing t-MN.  Two months later the patient suffered local 

neuroblastoma relapse and succumbed to disease progression soon thereafter.  
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Retracing molecular emergence of t-MN  

We applied whole genome and deep targeted sequencing to identify driver events in 

the peripheral blood at the time of t-MN diagnosis (32 months after first chemotherapy). 

Sequences were analysed against the reference genome in order to call deleterious germline 

variants and to achieve maximum sensitivity for somatic changes (Methods section 3.5). In 

parallel, a matched analysis was performed using whole genome sequencing of parental 

blood samples. Median coverage of t-MN, maternal and paternal blood samples was 74X, 

111X and 100X, respectively. Whole genome sequencing identified somatic complex changes 

in chromosome 7 (a major clone with 7q- and a subclone with complete monosomy 7) and 

canonical hotspot mutations in PTPN11 and SETBP1 (Figure 5.1 and Table 5.3). Both copy 

number and point mutation drivers variants were validated by deep targeted sequencing 

(Methods 3.3-3.6, Figure 5.1). Moreover, unmatched analysis identified a deleterious 

germline BARD1 p.E652fs*69 mutation strongly associated with hereditary cancer 

predisposition (ClinVar accession numbers RCV000115621.5, RCV000200198.2) (De Brakeleer 

et al., 2010; Ramus et al., 2015; Schrader et al., 2016; Smith et al., 2016). Although this variant 

had not been detected by routine clinical genetics targeted screening for cancer 

predisposition during neuroblastoma work-up, it was also present at SNP VAF in the maternal 

blood sample.  

In order to retrace the emergence of the t-MN clone, we performed ultradeep 

targeted sequencing (median coverage 25,000X) of bilateral bone marrow biopsies taken at 

the end of Rapid COJEC induction, 4.5 months into treatment and 29 months prior to t-MN 

presentation. Unfortunately, these were the earliest samples able to be sequenced, with no 

pre-treatment specimens available. The PTPN11 p.G503E mutation was present in both left 

and right bone marrow biopsies at VAF of 0.12% and 0.09%, respectively. The SETBP1 

p.D868G mutation was detected in the left bone marrow biopsy at a lower VAF of 0.074%. 

These variants were detected by two algorithms, including shearwater, which accounts for 

the local error rate when calling subclonal mutations (Methods section 3.3) (Gerstung et al., 

2012; Gerstung et al., 2014). Although sequencing of PBSC harvest is underway to further 

validate this finding, the depth of the sequencing and presence of the PTPN11 in both marrow 

samples gives a reasonable degree of confidence in its validity. Furthermore, several reads 

supporting the bone marrow PTPN11 mutation was subsequently identified by the clinical 
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diagnostic service using targeted sequencing on an orthogonal platform (Ion Torrent)(data 

not shown; personal communication from Dr Sam Behjati).  The SETBP1 mutation may be 

genuine in the left bone marrow and have escaped detection in the contralateral specimen 

due to rarity and stochastic molecule sampling, but nonetheless warrants additional 

validation. Copy number analysis of the targeted bone marrow sequencing revealed 

concordant changes consistent with recurrent copy number aberrations (CNAs) observed in 

neuroblastoma (Figure 5.1d,e) (Matthay et al., 2016), though lacked sensitivity to confidently 

call any chromosome 7 losses. TABLE 5.3 

 

Table 5.3 | Summary of samples and genetic abnormalities 

Sample ID 
Month since 

NBL diagnosis 
Clinical 
context 

Sample type 
Somatic driver events 

Mutation VAF (%) 

PD31013c 32 
t-MN 

diagnosis 
Peripheral blood 

PTPN11 G503E 51.0 

SETBP1 D868G 50.0 

-7/7q- - 

PD31013d 4.5 
Staging post 

rapid COJEC 

induction 

Bone marrow 

(right iliac crest) 

PTPN11 G503E 0.09 

SETBP1 D868G - 

PD31013e 4.5 
Bone marrow 

(left iliac crest) 

PTPN11 G503E 0.12 

SETBP1 D868G 0.074 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5.1 
a 

 
b 

 
c 

 
d 

 
e 

 

Figure 5.1 | Copy number profiles. a,b, Copy number changes and rearrangements 

detected from whole genome sequences of PD31013c (t-MN peripheral blood sample) (a) 

and PD31013d (right post-induction bone marrow biopsy) (b). The x axis shows 

chromosomal position and the y axis shows absolute copy number. Each dot in the plot 

represents the copy number of a particular genomic position (10 mega base bins). 

Coloured lines indicate breakpoints with rearrangements: brown, tandem duplication; 

blue, deletion; green and turquoise, inversion; grey, interchromosomal rearrangement. 

c-e, Copy number profiles derived from deep (>20,000x) targeted sequencing of t-MN (c) 

and bilateral bone marrow biopsies taken after induction chemotherapy, 15 months 

before t-MN emergence: PD31013d (right bone marrow) and PD31013e (left bone 

marrow) represented in panels (d) and (e), respectively. X-axis represents chromosome 

position. Y-axes represents allele-specific log-odds-ratio data with chromosomes 

alternating in blue and gray.  
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3. Discussion 

The absence of any CH in the 84 heavily treated childhood cancer survivors screened 

stands in stark contrast to the situation recently observed in adults, where CH with candidate 

driver mutations is dramatically more common post chemo/radiotherapy than in the general 

population (Bowman et al., 2018; Gibson et al., 2017). Gibson et al. identified CH in over 25% 

of lymphoma survivors aged 30-39 and in over 40% of those aged 60-69 years (Gibson et al., 

2017). Only 10 patients aged 20-29 were included in this study, none of whom had detectable 

CH, albeit using a less sensitive assay (detection threshold >2%)(Gibson et al., 2017). The most 

commonly mutated gene was PPM1D, which was captured in its entirety in our assay, 

followed by DNMT3A (most recurrent hotspot captured), TET2 (not captured) and TP53 (all 

exons captured) (Table 5.2)(Gibson et al., 2017). These findings have three plausible 

explanations. Firstly, somatic driver mutations may be extremely uncommon in the young 

even after exposure to chemotherapy, and hence the substrates for clonal selection are 

lacking. Secondly, it is possible that accrual of recognized ‘driver’ mutations is usually 

insufficient to trigger clonal expansion in the context of a very young haematopoietic niche. 

This hypothesis is supported by the fact that HSC mutations do begin accumulating early in 

life (Welch et al., 2012) and that the selective advantage of some CH drivers (most notably 

spliceosome gene mutations) appears to be age-dependent, implicating age-related changes 

in HSCs and/or their environment as key determinants of relative fitness (Link and Walter, 

2016; McKerrell et al., 2015). This potential explanation is further supported by evidence that 

cancer-associated mutations are less able to drive clonal expansion in young compared to old 

stem cells (Zhu et al., 2016). Moreover, a recent study using ultra-sensitive sequencing of 

serially collected peripheral blood samples demonstrated that bona-fide driver mutations do 

not always lead to clonal expansion, even after several years (Young et al., 2016). Similar 

findings have been reported in other tissues, notably oesophagus and kidney, where 

oncogenic mutation acquisition has been timed to early childhood and adolescence, 

respectively (Mitchell et al., 2018; Yokoyama et al., 2019). The third potential explanation for 

our results is that the mutations under positive selection in paediatric cancer patients are so 

distinct from those observed in adult counterparts that this assay simply does not capture 

them. Our assay did include targets that are preferentially mutated in paediatric myeloid 

neoplasms – namely hotspots two RAS oncogenes and ASXL1 exon 12 – but lacked other 
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genes and hotspots that are likely to be enriched in paediatric t-MN or CH, notably SETBP1, 

PTPN11 and RUNX1 (Hasle, 2016; Tartaglia et al., 2003). In summary, these results should not 

necessarily be taken to reflect absence of potentially oncogenic HSC mutations in young 

cancer survivors. Rather, it is possible that even canonical CH driver mutations may not 

commonly drive clonal outgrowth in children and young adults despite exposure to cytotoxic 

drugs. More sensitive DNA sequencing methods may enable detection of very rare mutated 

cells in this patient group, which would lend support to this hypothesis. Equally, future 

sequencing studies assessing larger cohorts with a broader gene panel are warranted to 

explore the genetic landscape of paediatric CH. Ideally such work would be informed by a 

comprehensive understanding of the genomic features of paediatric t-MN, which is currently 

lacking. 

 

The second experiment described in this chapter traced the emergence of t-MN during 

treatment for high-risk neuroblastoma. We applied deep targeted sequencing to track 

missense driver mutations in PTPN11 to bone marrow samples taken at the end of induction 

chemotherapy. This case adds to the limited existing knowledge of paediatric t-MN evolution 

in several ways. Firstly, these findings contribute a fifth case to the literature suggesting that 

paediatric t-MN evolution typically becomes detectable very early in the treatment for the 

primary malignancy (Blanco et al., 2001; Megonigal et al., 2000; Ng et al., 2004; Robinson et 

al., 2008). In particular, this appears to be the first case reporting early molecular emergence 

of a non-MLLr case of paediatric t-MN. Although this patient was exposed to high doses of 

TOP2 inhibitors as well as platinum and alkylating agents, the clinical presentation and 

genomic features of this t-MN are reminiscent of the so-called alkylating agent class of adult 

t-MN with chromosome 7 loss, no fusion oncogene and an indolent clinical presentation with 

MDS rather than overt AML. In retrospect, the slow platelet and neutrophil count recovery 

following high-dose chemotherapy suggests early clinical manifestations of t-MN. This is in 

keeping with the tendency for paediatric MDS and MPN/MDS to present with neutropenia 

and/or thrombocytopaenia (Hasle, 2016; Kardos et al., 2003; Niemeyer and Baumann, 2011), 

whereas adult MDS most frequently manifests with isolated anaemia (Locatelli and Strahm, 

2018; Raza and Galili, 2012). As mentioned earlier, the most frequent cooperating point 

mutation drivers in adult t-MN occur in TP53, whereas drivers in PTPN11 and SETBP1 are 

relatively rare (observed in 3-9% and 3% of adult t-MN cases, respectively) (McNerney et al., 
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2017).  However, mutations in these genes are enriched in paediatric MPN/MDS (Hasle, 2016; 

Locatelli and Strahm, 2018). Somatic PTPN11 mutations in particular are a feature of high-risk 

paediatric MDS warranting prompt allogeneic HSCT (Locatelli and Strahm, 2018).  

Moreover, the incidental discovery of a deleterious germline BARD1 mutation by 

whole genome sequencing provides further evidence that the contribution of germline 

predisposition to t-MN (and childhood cancer in general) may be underestimated. BARD1 is a 

tumour suppressor involved in regulating the DNA damage response and TP53-mediated 

apoptosis (Irminger-Finger and Jefford, 2006). Loss-of-function germline mutations have been 

implicated in susceptibility to a variety of cancers, including t-MN (Irminger-Finger and 

Jefford, 2006; Schulz et al., 2012). 

All discussion of clinical ramifications of these findings remains highly speculative at 

this point. However, current evidence indicates that the only factor clearly associated with 

improved childhood t-MN survival is shorter interval between t-MN diagnosis and allogeneic 

HSCT (Locatelli and Strahm, 2018; Maher et al., 2017). Hence it is possible that earlier 

detection of early t-MN clones could help address a major cause of mortality in children with 

cancer (Bhatia et al., 2007; Heuser, 2016; Kushner et al., 1998; Le Deley et al., 2003; Pui et al., 

1991). With specific regard to neuroblastoma patients, it is conceivable that early 

identification of patients who may later require an allogeneic HSCT for t-MN could alter the 

risk/benefit analysis vis a vis proceeding with myeloablative treatment and autologous PBSC 

rescue (Fish and Grupp, 2008; Yalcin et al., 2015).   

 

Collectively these findings propose several follow-up experiments. Firstly, scant 

knowledge of the genomic landscape of paediatric t-MN warrants collaborative efforts to 

whole genome sequence a sizeable cohort exposed to a range of treatment protocols. This in 

turn will inform future studies of the prevalence and prognostic significance of CH in 

childhood cancer patients. In the first instance, targeted sequencing assays should include 

genes preferentially mutated in paediatric myeloid neoplasms, enough heterozygous SNPs to 

call subclonal chromosomal arm-level copy number changes and sufficient intron tiling to 

detect recurrent AML-associated rearrangements. These are tractable goals even with panels 

small enough for routine clinical use (McKerrell et al., 2016). In the first instance, a 

retrospective case-control study could help assess the utility of CH-PD as a biomarker of t-MN 

risk. However, given the high cumulative incidence of paediatric t-MN (Bhatia et al., 2007; 
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Heuser, 2016; Kushner et al., 1998; Le Deley et al., 2003; Pui et al., 1991), a prospective 

approach in the context of clinical trial also warrants consideration, particularly for 

neuroblastoma and sarcoma protocols associated with the highest risk (Bhatia, 2013; Bhatia 

et al., 2007; Kushner et al., 1998; Morton et al., 2018).  
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CHAPTER 6  

Chapter 6 

Discussion 

 

 

 

 

Collectively, this work has shed light on the landscape of clonal haematopoiesis in 

three distinct settings: in the years preceding a diagnosis of either AML (Chapter 3) or a 

lymphoid malignancy (Chapter 4) and following intensive cytotoxic therapy for a childhood 

cancer (Chapter 5). In this discussion I will highlight common themes emerging from the 

results of the preceding chapters and provide an overview of further questions and areas for 

methods development.  

1. Overview of emerging concepts 

1.1 Key points: 

• CH in individuals who years later develop a haematological malignancy is 

characterised by a different genetic landscape compared to CH in the general 

population, not merely by a higher mutation burden. 

• Predictive models incorporating genetic and demographic variables identify most 

individuals with CH at high risk of progression to AML. Mutations in TP53 and U2AF1 

are associated with a higher risk of AML progression than somatic events in the most 

frequently mutated CH genes.  

• Clones harbouring DNMT3A or TET2 mutations confer similar risks of progressing to 

AML versus a lymphoid neoplasm.  

• Readily available clinical information improves CH risk-stratification. Higher RDW 

helps discriminate indolent CH from pre-AML. Lower cholesterol is reaffirmed as a 

likely biomarker of both lymphoid and myeloid malignancy risk.  
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• This work adds to the preliminary evidence suggesting that evolution of childhood t-

MN may frequently be detectable early in treatment for the primary malignancy. For 

childhood cancer patients, the relative rarity of CH, heavy burden of t-MN and survival 

advantage of prompt HSCT highlight this patient group as a top priority for further 

study of the clinical utility of CH screening.  

1.2 The mutational spectrum of premalignant CH 

The prevalence, number of driver mutations and clone sizes all tended, unsurprisingly 

(Genovese et al., 2014; Jaiswal et al., 2014), to be markedly higher among individuals who 

later developed a blood cancer. However, there were also significant differences in the 

genetic landscape of CH in these different contexts. Within the pre-AML cohort, the spectrum 

of CH drivers overlapped with that seen in the general population, but was enriched for 

spliceosome mutations in younger individuals. By contrast, the mutational landscape 

preceding lymphoid cancer diagnosis was remarkably diverse, with a long ‘tail’ of driver 

mutations in genes seldom if ever implicated in CH in the general population but highly 

associated with lymphoid neoplasms.  

1.3 CH as a biomarker of blood cancer risk irrespective of phylogenetic 

relationship with future malignancy 

Several findings reported here add to the growing evidence that CH is a risk factor for 

haematological malignancy even when not related to the future neoplastic clone. Models 

estimating future AML or LN risk demonstrated that the number, clone size and specific genes 

mutated all carried predictive value. Although the power to discern gene-level risk for the 

pre-LN cohort was limited by the large number of infrequently mutated genes, a key finding 

from the LN predictive models was that DNMT3A and TET2 mutations were robustly 

predictive of future LN risk, and that hazard ratios were equivalent to those observed for AML 

progression. Given that DNMT3A and TET2 are much less frequently implicated as drivers in 

lymphoid compared to myeloid cancers, this finding suggests that CH can be a biomarker of 

blood cancer risk independent of the relationship between the CH clone and future 

malignancy. This is in keeping with observations that CH is a biomarker for t-MN risk in adult 

cancer patients, despite that the antecedent CH and future t-MN are often phylogenetically 

unrelated (Gibson et al., 2017; Gillis et al., 2017; Takahashi et al., 2017). Equally, a recent 
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study suggests that de novo AML frequently arises from one out of many co-existing 

independent CH clones detectable pre-treatment (Wong et al., 2015a).   

The time-course experiment data in both Chapters 3 and 4 provide further insight into 

the relationship between CH and future malignancy risk. Variable clonal growth trajectories 

were observed in premalignant cases and controls. Many clones regressed over time, 

including some harbouring high VAF canonical hotspot mutations, e.g., DNMT3A p.R882H. 

Hence the cell-intrinsic self-renewal advantage conferred by such mutations (Brunetti et al., 

2017) does not necessarily induce inexorable clonal expansion over time, despite that they 

collectively confer higher leukaemia risk. Among the few pre-AML for whom diagnostic or 

peri-diagnostic specimens were available, most clones, though not all, expanded and 

appeared likely to contribute to the AML. The pre-LN serial sampling data offers even more 

compelling evidence that mutations unrelated to the future cancer are bona fide biomarkers 

of malignant transformation risk. Comparing pre-LN cases to controls revealed that DNMT3A 

mutations were present at significantly higher VAF in pre-LN cases. Nevertheless, even large 

(VAF>5%) DNMT3A-mutated clones often declined in size leading up to cancer diagnosis, 

frequently coinciding with the appearance of new, LN-associated drivers. Hence it is likely 

that most of the predictive power of DNMT3A mutations does not stem from their direct 

contribution to LN evolution.  

Collectively, these experiments, in conjunction with the aforementioned t-MN 

studies, strongly suggests that CH unrelated to the future malignant clones is nevertheless a 

biomarker of malignant transformation risk. There are several non-mutually exclusive 

potential explanations for this observation. It is possible that the HSC mutation rate, and 

hence the likelihood of serial acquisition of drivers in any given clone, tends to be higher 

among individuals who develop a cancer, and the presence of multiple detectable clones is a 

surrogate marker of the higher mutation rate. However, the mutation burden and signatures 

in AML compared to normal HSCs of the same age argue against this as a universally active 

mechanism (Alexandrov et al., 2013; Welch et al., 2012). Alternatively, CH may be a surrogate 

marker of the presence/intensity of selection pressures that influence the fitness advantage 

conferred by particular driver mutations. Studies of CH in the context of aplastic anaemia 

(Yoshizato et al., 2015) and cytotoxic therapies (Gibson et al., 2017; Hsu et al., 2018; Kahn et 

al., 2018) provide strong evidence that extrinsic selective pressures can dramatically increase 

the prevalence of CH, shape the genetic landscape, and increase the malignant 



 133 

transformation risk. By extension, it is conceivable that the same may be true for diverse 

subtler extrinsic selection pressures, e.g., arising from variable ageing processes, 

environmental exposures, or inter-individual genetic variation. For example, physiological 

ageing processes occur at different rates in different individuals (Andersen et al., 2012; Finkel 

et al., 2007; Lopez-Otin et al., 2013). It is conceivable that age-associated increases in 

endogenous genotoxic stress (Rossi et al., 2007) and declines in HSC self-renewal capacity 

(Flach et al., 2014; Geiger et al., 2013) occur earlier or more severely in some individuals. This 

in turn could confer selective advantage on many mutated HSCs, increasing the number of 

detectable clones in younger age groups and the probability of any one of the clones acquiring 

additional oncogenic hits. These questions warrant further investigation, as discussed below. 

2. Further questions and methodological challenges 

2.1 To what extent is mutation acquisition a rate-limiting step in CH evolution? 

 Understanding the relative importance of mutation acquisition and extrinsic selective 

pressures in CH pathogenesis is an important gap in knowledge, not least for informing any 

future intervention strategies. For certain genes, e.g., TP53, very sensitive sequencing assays 

have demonstrated that driver mutations are common in older individuals at extremely low 

VAF and tend to be stable over time in the absence of any environmental selective pressures 

which increase mutated HSC fitness advantage (Wong et al., 2015b). By contrast, the 

exponential increase in the prevalence of CH harbouring spliceosome gene mutations 

observed in individuals aged >70 years (McKerrell et al., 2015) is poorly understood.  It is 

possible that this phenomenon reflects ageing-associated changes in the haematopoietic 

niche (McKerrell and Vassiliou, 2015). For instance, spliceosome mutations may generate 

neoantigens that elicit a stronger immune response in younger individuals (McKerrell and 

Vassiliou, 2015). However, this speculation has yet to be supported by experiments 

demonstrating low-level persistence of rare HSCs carrying spliceosome mutations in younger 

individuals. The sensitivity of error-corrected sequencing assays has been a major obstacle to 

this type of experiment (Kennedy et al., 2014; Schmitt et al., 2012). In particular, sensitivity is 

hindered by target pulldown efficiency and stochastic molecular sampling, issues which can 
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be partially circumvented by multiple target enrichment steps and using a limited number of 

cells as starting material (Schmitt et al., 2015). However, novel methods of increasing 

sensitive, accurate detection of specific mutations (Nachmanson et al., 2018; Newman et al., 

2016) could be applied to the detection of canonical spliceosome gene hotspot driver variants 

in younger cohorts.  

2.2 Haematopoiesis and ageing in health and disease 

 To what extent do the number, mutation rate, and clonal dynamics of haematopoietic 

stem and progenitor cells vary between individuals? These are pertinent questions for 

understanding the increased CH burden seen in individuals who later develop a 

haematological malignancy, as discussed above. Two recent studies have used somatic 

mutations to study clonal dynamics in native human haematopoiesis (Lee-Six et al., 2018; 

Osorio et al., 2018). Based on this work, it is likely that there are circa 50,000-200,000 HSCs 

contributing to haematopoiesis, dividing roughly every 2-20 months with around 14 

mutations introduced per cell division (Lee-Six et al., 2018; Osorio et al., 2018). Applying 

similar approaches, potentially with superimposed phenotypic information, to many 

individuals across the age range and in disease/cancer-predisposition states will likely give 

valuable insights into haematopoietic ageing and CH pathogenesis.   

2.3 Refining CH detection methods 

The definition and terminology used to describe CH has evolved rapidly and 

sometimes included VAF cut-offs (Bejar, 2017). However, the latter have been decided based 

on technical limitations rather than mature understanding of what constitutes clinically 

significant CH (Bejar, 2017; Steensma et al., 2015). In future, cheaper sequencing should 

enable comprehensive assays to detect subclonal cancer-associated structural events in 

addition to point mutations. Novel sequencing methods for detecting rare somatic mutations, 

notably bottleneck sequencing (BotSeq), may enable broader screens for genes under 

positive selection in CH (Hoang et al., 2016). Briefly, BotSeq combines molecular barcoding 

with a subsequent dilution step, permitting highly accurate detection of rare mutations across 

the entire genome without the need to achieve prohibitively expensive sequencing depth. It 

is conceivable, though currently entirely speculative, that transcriptional or methylation-
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based signal may also be amenable to identifying and characterising CH and may warrant 

exploration in tandem with future studies of genomically-defined CH.  

 

2.4 Prospective longitudinal studies of CH and potential intervention strategies 

An important next step will be to establish large prospective longitudinal studies 

enabling validation and refinement of combined genomic-clinical CH risk prediction models. 

Ideally such studies will examine multiple clinically relevant sequelae of CH and permit 

identification of high-risk groups that might benefit from intervention. The nature of 

potential interventions is speculative at present. An increasing arsenal of targeted therapies 

active against recurrent cancer-associated CH mutations, including those in splicing genes 

(Lee et al., 2016), JAK2 (Van den Neste et al., 2018; Vannucchi and Harrison, 2016) and 

IDH1/2 (Döhner et al., 2015), may warrant investigation in high-risk CH. Moreover, two 

recent studies suggest that a much less costly option, ascorbic acid (vitamin C), helps restore 

TET2 function in HSCs and stall leukaemia progression (Agathocleous et al., 2017; Cimmino 

et al., 2017). Lastly, this work further corroborates a long-recognised connection between 

hypocholesterolaemia and haematological malignancies. Lower HDL and LDL were both risk 

factors for AML in the clinical risk prediction model discussed in Chapter 3. Lower HDL was 

associated with a higher risk of developing a lymphoid neoplasm (Chapter 4). The latter result 

corroborates previous work identifying low HDL as a biomarker of future lymphoma risk 

years prior to diagnosis (Matsuo et al., 2017). Hypocholesterolaemia is common among 

blood and solid cancer patients and is inversely correlated with cancer cell LDL-/HLD-receptor 

activity (Ho et al., 1978; Vitols et al., 1985; Vitols et al., 1984; Vitols et al., 1992). A mendelian 

randomisation study by Benn et al. found that the correlation between low LDL and cancer 

was absent in individuals with genetic predisposition to hypocholesterolaemia, suggesting a 

causal link (Benn et al., 2011), though this remains contentious (Pirro et al., 2018). 

Pharmacologic agents targeting HDL uptake receptors and other targets involved in 

cholesterol metabolism have shown early evidence of therapeutic potential in several 

haematological malignancies (Crusz and Balkwill, 2015; McMahon et al., 2017; Pandyra et al., 

2014). Interestingly, statin treatment is associated with a significant relative risk reduction 

for several solid tumours as well as cardiovascular disease (Demierre et al., 2005; Poynter et 

al., 2005). The molecular mechanisms underpinning these observations are poorly 
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understood and may involve pleiotropic effects on multiple processes relevant to 

oncogenesis, including angiogenesis and inflammation (Crusz and Balkwill, 2015; Demierre 

et al., 2005; Hanahan and Weinberg, 2011). Collectively, these observations suggest that 

existing agents targeting cholesterol metabolism (Pandyra et al., 2014) warrant investigation 

as potential strategies for mitigating cardiovascular disease and cancer risks associated with 

CH.  

 

In summary, the degree to which clones at high risk of malignant transformation - in 

blood and other tissues - can be reliably distinguished from their indolent counterparts is an 

important biological question with compelling clinical ramifications. This dissertation has 

explored the ability of genetic and clinical factors to identify individuals at high risk of AML 

and other haematological malignancies. Understanding the selective pressures and cell-

intrinsic mechanisms governing clonal fate is the next important step in developing strategies 

to predict and prevent progression to overt malignancy. 
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Appendix 1: Discovery cohort pre-AML and control sample information

Sample Group Age at sampling (years) Follow-up (years) Gender

EPIC_0001 Control 58.6 14.9 male
EPIC_0002 Control 55.2 14.7 male
EPIC_0003 Control 60.8 14.1 female
EPIC_0004 Control 62.2 14.1 female
EPIC_0005 pre-AML 62.9 0.6 female
EPIC_0006 pre-AML 60.8 10.9 female
EPIC_0007 Control 62.6 14.1 female
EPIC_0008 Control 62.4 14 female
EPIC_0009 Control 62.4 14 female
EPIC_0010 Control 55.3 14.5 female
EPIC_0011 Control 55 14.4 female
EPIC_0012 Control 51.4 13 male
EPIC_0013 Control 52 13 male
EPIC_0014 pre-AML 55.8 12.4 female
EPIC_0015 pre-AML 46.5 12.1 female
EPIC_0016 Control 49.1 13.8 female
EPIC_0017 Control 46 13.7 female
EPIC_0018 Control 46.8 13.7 female
EPIC_0020 Control 46.2 13.7 female
EPIC_0021 Control 56.1 14.7 male
EPIC_0022 Control 57.1 13.6 female
EPIC_0023 Control 41.1 13.1 female
EPIC_0024 Control 41.6 9.1 female
EPIC_0025 Control 41.7 12.9 female
EPIC_0026 Control 41.6 12.9 female
EPIC_0027 Control 63.7 8.2 female
EPIC_0028 Control 63.7 12.7 female
EPIC_0029 Control 50 13.5 female
EPIC_0030 Control 49.8 13.3 female
EPIC_0031 Control 57.3 12 male
EPIC_0032 Control 57.9 12 male
EPIC_0033 Control 62.3 11.8 female
EPIC_0034 Control 55 14.7 male
EPIC_0035 Control 55.4 14.7 male
EPIC_0036 Control 55.7 14.7 male
EPIC_0037 pre-AML 55.8 3.2 male
EPIC_0038 Control 49.5 13.7 female
EPIC_0039 Control 58.2 14.2 female
EPIC_0040 pre-AML 58.5 10 female
EPIC_0041 Control 58.7 14.1 female
EPIC_0042 Control 59.3 14.1 male
EPIC_0043 Control 58.1 14.1 female
EPIC_0044 pre-AML 58.3 8.3 male
EPIC_0045 Control 58.7 12.8 male
EPIC_0046 Control 54.3 14 male
EPIC_0047 pre-AML 54 2.8 male
EPIC_0048 Control 55 13.9 male
EPIC_0049 Control 50.4 13.8 male
EPIC_0050 Control 50.2 13.7 male
EPIC_0051 pre-AML 50.2 6 male
EPIC_0052 Control 50.6 13.5 male
EPIC_0053 Control 63.8 7.6 female
EPIC_0054 Control 51.1 12.6 male
EPIC_0055 Control 48.1 12.5 male
EPIC_0056 Control 55.6 14.2 female
EPIC_0057 Control 55.5 14.2 female
EPIC_0058 Control 58.6 14 male
EPIC_0059 Control 64.2 9.3 male
EPIC_0060 Control 64.3 8.6 male
EPIC_0061 Control 64.8 9.9 male
EPIC_0062 pre-AML 64.9 1.8 male
EPIC_0063 Control 49.1 13.7 female
EPIC_0064 pre-AML 57.2 3.9 female
EPIC_0065 Control 57.8 13.4 female
EPIC_0066 Control 57.7 10.4 female
EPIC_0067 pre-AML 66.5 10.7 female
EPIC_0068 Control 60.8 13.8 female
EPIC_0069 Control 73.8 13.7 female
EPIC_0070 Control 60.4 13.6 female
EPIC_0071 Control 49.5 13.2 male
EPIC_0072 Control 48.8 12.5 male
EPIC_0073 Control 55.9 12.1 female
EPIC_0074 Control 55.1 12.1 female
EPIC_0075 pre-AML 56 5.8 female
EPIC_0076 Control 63.4 12.5 female
EPIC_0077 Control 56.9 14.3 male
EPIC_0078 Control 56.5 14.3 male
EPIC_0079 Control 56.6 14.2 male
EPIC_0080 Control 52.6 14.2 male
EPIC_0081 pre-AML 52.6 8.8 male
EPIC_0082 Control 52.2 14.1 male
EPIC_0083 Control 52.8 14.1 male
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EPIC_0084 Control 55.7 12 female
EPIC_0085 Control 48.5 11.9 female
EPIC_0086 Control 59.6 11.8 female
EPIC_0087 pre-AML 48.9 8.4 female
EPIC_0088 Control 59.3 11.8 female
EPIC_0089 Control 59.4 11.7 female
EPIC_0090 Control 48.6 11.7 female
EPIC_0091 Control 48.9 11.7 female
EPIC_0092 Control 64.6 11.8 male
EPIC_0093 Control 57 12.9 male
EPIC_0094 Control 56.3 12.9 male
EPIC_0095 Control 52.9 12.9 female
EPIC_0096 pre-AML 56.7 12 male
EPIC_0097 Control 56.9 12.6 male
EPIC_0098 Control 55.4 12.6 male
EPIC_0099 pre-AML 56.2 7.7 female
EPIC_0100 Control 56.2 12.8 female
EPIC_0101 Control 52.7 12.8 female
EPIC_0102 Control 52.7 12.7 female
EPIC_0103 Control 53 12.4 female
EPIC_0104 Control 52.2 12.4 female
EPIC_0105 Control 56 12.5 male
EPIC_0106 Control 55.4 12.4 male
EPIC_0107 Control 73.9 10.7 female
EPIC_0108 Control 66.1 13.6 female
EPIC_0109 Control 66 13.6 female
EPIC_0110 Control 66.2 11.4 female
EPIC_0111 Control 70.1 13.5 male
EPIC_0112 Control 60.5 13.4 female
EPIC_0113 Control 49.9 12.6 male
EPIC_0114 Control 67.1 13.3 female
EPIC_0115 Control 67.1 13.2 female
EPIC_0116 Control 55.4 12.5 female
EPIC_0117 Control 67.5 13.1 female
EPIC_0118 Control 68 13 female
EPIC_0119 Control 68.7 12.8 female
EPIC_0120 Control 44.9 10 male
EPIC_0121 Control 44.5 9.8 male
EPIC_0122 Control 44.2 9.8 male
EPIC_0123 Control 63.2 9.8 male
EPIC_0124 Control 63.7 9.7 male
EPIC_0125 Control 55.8 12.9 female
EPIC_0126 Control 55.3 12.8 female
EPIC_0127 Control 55.5 12.5 female
EPIC_0128 Control 43.5 10.7 male
EPIC_0129 Control 56 11 male
EPIC_0130 Control 56.5 11.1 male
EPIC_0131 Control 56.3 11.5 male
EPIC_0132 pre-AML 56.1 9.6 male
EPIC_0133 Control 56.5 10.9 male
EPIC_0134 Control 43.2 11.3 male
EPIC_0135 Control 43.2 11.1 male
EPIC_0136 Control 61.1 8.1 male
EPIC_0137 Control 56.2 8.1 female
EPIC_0138 Control 56.8 8.1 female
EPIC_0139 Control 61.5 8.1 male
EPIC_0140 Control 61.6 8.1 male
EPIC_0141 pre-AML 60.5 4.5 male
EPIC_0142 Control 60.5 8 male
EPIC_0143 Control 56.5 8.2 female
EPIC_0144 Control 60 7.9 male
EPIC_0145 Control 60.2 8 male
EPIC_0146 Control 53.8 8.2 male
EPIC_0147 pre-AML 53 8.1 male
EPIC_0148 Control 43.3 10.9 male
EPIC_0149 Control 61.6 10.8 male
EPIC_0150 Control 50.6 12.7 female
EPIC_0151 Control 54.4 12.8 female
EPIC_0152 Control 54.9 12.7 female
EPIC_0153 Control 50.3 12.3 female
EPIC_0154 Control 46.4 12.3 male
EPIC_0155 Control 46.4 12.3 male
EPIC_0156 Control 50.6 12.3 female
EPIC_0157 Control 50.6 12.2 female
EPIC_0158 Control 62.6 12.1 male
EPIC_0159 Control 62.4 11.8 male
EPIC_0160 Control 36.7 11.7 female
EPIC_0161 Control 36.6 11.6 female
EPIC_0162 pre-AML 36.8 2.9 female
EPIC_0163 Control 36.1 11.4 female
EPIC_0164 Control 36.2 11.4 female
EPIC_0165 pre-AML 58.9 11.1 male
EPIC_0166 Control 58.4 12.7 male
EPIC_0167 Control 58.2 12.6 male
EPIC_0168 Control 60.6 7.9 female
EPIC_0169 Control 60.5 11.6 female
EPIC_0170 Control 58.4 11.9 female
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EPIC_0171 pre-AML 54 8.7 male
EPIC_0172 Control 54.9 12.5 male
EPIC_0174 Control 54.1 12.4 male
EPIC_0175 Control 58.6 12.6 male
EPIC_0176 pre-AML 64.5 4.1 male
EPIC_0177 Control 64.2 13.6 male
EPIC_0178 Control 64.5 13.4 male
EPIC_0179 Control 59 13.2 female
EPIC_0180 Control 59.6 13.1 female
EPIC_0181 Control 40 13 female
EPIC_0182 Control 39.2 12.9 female
EPIC_0183 Control 50.7 12.9 female
EPIC_0184 Control 59.4 12.8 female
EPIC_0185 Control 56.3 10.7 female
EPIC_0186 Control 56.4 10.6 female
EPIC_0187 Control 56.3 10.6 female
EPIC_0188 Control 56.3 10.6 female
EPIC_0189 Control 50.7 12.8 female
EPIC_0190 Control 50.1 12.8 female
EPIC_0191 Control 39.2 12.7 female
EPIC_0192 Control 50.2 12.6 female
EPIC_0193 Control 56.4 12.7 female
EPIC_0194 pre-AML 56.1 8 female
EPIC_0195 Control 52.2 12.7 female
EPIC_0196 Control 55.4 12.3 female
EPIC_0197 Control 55.8 12.1 female
EPIC_0198 Control 48.2 12.1 female
EPIC_0199 Control 68.6 12.6 female
EPIC_0200 Control 57 12.6 female
EPIC_0201 Control 69 12.6 female
EPIC_0202 Control 52.8 12.6 female
EPIC_0203 Control 56.2 12.5 female
EPIC_0204 Control 52.8 12.5 female
EPIC_0205 Control 55.4 12.1 female
EPIC_0206 Control 48.4 12.1 female
EPIC_0207 Control 69.5 11.9 female
EPIC_0208 Control 67.7 11.8 female
EPIC_0209 Control 48.9 11.8 female
EPIC_0210 Control 58.5 12.1 female
EPIC_0211 Control 58.8 11.8 female
EPIC_0212 pre-AML 64.2 11 male
EPIC_0213 Control 64.8 11.8 male
EPIC_0214 Control 46.9 12.1 male
EPIC_0215 Control 46.7 12 male
EPIC_0216 Control 46.9 12 male
EPIC_0217 Control 46.6 13.6 male
EPIC_0218 Control 55.3 11.7 male
EPIC_0219 pre-AML 67.8 9.5 female
EPIC_0220 Control 67.3 11.5 female
EPIC_0221 Control 69.1 11.5 female
EPIC_0222 Control 58.4 12.3 male
EPIC_0223 pre-AML 74.3 1.8 female
EPIC_0224 Control 69.6 11.5 female
EPIC_0225 Control 69.6 9.7 female
EPIC_0226 Control 64.4 12.6 female
EPIC_0227 Control 74.4 10.3 female
EPIC_0228 Control 55.1 11.7 male
EPIC_0229 Control 37 10.9 female
EPIC_0230 Control 69.8 13.3 female
EPIC_0231 Control 70 11.7 female
EPIC_0232 Control 70.8 11.8 female
EPIC_0233 Control 64.3 11.9 female
EPIC_0234 pre-AML 69.9 9.2 female
EPIC_0235 Control 74.2 8 female
EPIC_0236 Control 58.2 12.4 male
EPIC_0237 Control 58.6 12.1 male
EPIC_0238 Control 52.1 12.1 female
EPIC_0239 Control 67.4 12.1 female
EPIC_0240 Control 52.8 12.1 female
EPIC_0241 Control 67.1 12 female
EPIC_0242 Control 68.9 11.6 female
EPIC_0243 Control 38.4 11.4 female
EPIC_0244 Control 38.9 11.2 female
EPIC_0245 Control 38.6 11.2 female
EPIC_0246 pre-AML 39 4.9 female
EPIC_0247 Control 68.2 11.4 female
EPIC_0248 Control 68.4 11.4 female
EPIC_0249 pre-AML 69 4.7 female
EPIC_0250 Control 43.6 8.8 female
EPIC_0251 Control 70.5 13.3 female
EPIC_0252 Control 36.5 12.1 female
EPIC_0253 Control 46 11.8 male
EPIC_0254 Control 70.6 12 female
EPIC_0255 pre-AML 36.2 8.1 female
EPIC_0256 Control 43.3 11.8 female
EPIC_0258 Control 36.2 13.5 female
EPIC_0259 Control 43.2 11.3 female
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EPIC_0260 Control 36.7 8.1 female
EPIC_0261 pre-AML 58.3 7 male
EPIC_0262 Control 66.1 11.2 female
EPIC_0263 Control 66.4 11.2 female
EPIC_0264 Control 55.8 11.2 female
EPIC_0265 Control 71.1 11 male
EPIC_0266 Control 55.6 11 female
EPIC_0267 Control 54.3 10.3 female
EPIC_0268 Control 54.1 10.3 female
EPIC_0269 pre-AML 54.5 9.4 female
EPIC_0270 Control 54.7 10.1 female
EPIC_0271 pre-AML 56.4 8.5 female
EPIC_0272 Control 54.7 10 female
EPIC_0273 Control 56.2 9.9 female
EPIC_0274 Control 56.1 9.9 female
EPIC_0275 Control 56.2 9.9 female
EPIC_0276 Control 43.5 10.3 female
EPIC_0277 Control 42.6 12.2 female
EPIC_0278 Control 42.8 12 female
EPIC_0279 pre-AML 42.4 9.8 female
EPIC_0280 Control 42.2 11.9 female
EPIC_0281 Control 57.9 12.3 female
EPIC_0282 Control 57.2 12.1 female
EPIC_0283 Control 36.9 10.9 female
EPIC_0284 Control 36.5 10.9 female
EPIC_0285 Control 68.6 4 female
EPIC_0286 Control 51 10.2 male
EPIC_0287 Control 51.1 10.1 male
EPIC_0288 Control 51.1 9.9 male
EPIC_0289 Control 72.6 12.7 male
EPIC_0290 Control 72.6 11.9 male
EPIC_0291 Control 72.8 8.5 male
EPIC_0292 Control 68.4 10.9 female
EPIC_0293 Control 68.7 10.8 female
EPIC_0294 Control 63.4 10.8 female
EPIC_0295 Control 63.2 10.8 female
EPIC_0296 Control 55.2 10.9 female
EPIC_0297 Control 71.8 10.9 male
EPIC_0298 Control 71.8 10.8 male
EPIC_0299 Control 55.6 10.7 female
EPIC_0300 pre-AML 64.9 6 male
EPIC_0301 Control 71.4 10.6 female
EPIC_0302 Control 43.4 10.6 female
EPIC_0303 Control 64 10.6 male
EPIC_0304 Control 66.7 6.8 female
EPIC_0305 Control 66 10.5 female
EPIC_0306 Control 58.9 11.5 male
EPIC_0307 Control 58.4 11.4 male
EPIC_0308 Control 67.3 11.3 male
EPIC_0309 pre-AML 69.9 4.8 male
EPIC_0310 Control 56.6 11.2 male
EPIC_0311 pre-AML 56.1 4.4 male
EPIC_0312 Control 56.5 11.1 male
EPIC_0313 Control 56.4 11.9 male
EPIC_0314 Control 64.2 9.6 female
EPIC_0315 Control 64.3 9.5 female
EPIC_0316 Control 64.3 9.5 female
EPIC_0317 pre-AML 64.3 7.9 female
EPIC_0318 Control 64.7 9.5 female
EPIC_0319 Control 42.1 11.7 female
EPIC_0320 Control 56 11.7 male
EPIC_0321 Control 60.8 8.1 male
EPIC_0322 Control 56.7 3.4 female
EPIC_0323 pre-AML 36.3 9.3 female
EPIC_0324 Control 36.8 10.6 female
EPIC_0325 Control 68.5 10.5 female
EPIC_0326 Control 48.3 10.9 female
EPIC_0327 pre-AML 43.6 5.3 female
EPIC_0328 Control 71.5 10.4 female
EPIC_0329 Control 43.6 10.4 female
EPIC_0330 Control 43.9 10.4 female
EPIC_0331 Control 43.9 10.3 female
EPIC_0332 Control 71.9 10.3 female
EPIC_0333 Control 66.9 8 female
EPIC_0334 Control 66.5 7.9 female
EPIC_0336 pre-AML 50.9 3.2 female
EPIC_0337 pre-AML 63.1 5.6 female
EPIC_0338 pre-AML 59.1 4.6 female
EPIC_0339 pre-AML 60.2 5.5 female
EPIC_0340 pre-AML 43.5 2.9 female
EPIC_0341 pre-AML 66.6 1.9 female
EPIC_0342 pre-AML 51.4 6.4 male
EPIC_0343 pre-AML 50.3 4.7 female
EPIC_0344 pre-AML 55.8 4.7 female
EPIC_0346 pre-AML 58.9 0.8 male
EPIC_0347 pre-AML 64.1 3.9 female
EPIC_0348 pre-AML 70.3 0.9 female
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EPIC_0349 pre-AML 61.5 7.6 male
EPIC_0350 Control 61.9 12.2 male
EPIC_0351 Control 63.3 10.4 female
EPIC_0352 Control 51.5 10.9 male
EPIC_0353 Control 51.5 8.1 male
EPIC_0354 Control 56.6 9.3 female
EPIC_0355 Control 56.4 9.2 female
EPIC_0356 Control 50.5 9.1 female
EPIC_0357 Control 50.4 8.9 female
EPIC_0358 Control 50.9 9.3 female
EPIC_0359 pre-AML 48.2 7.9 male
EPIC_0360 Control 51.8 11.5 male
EPIC_0361 Control 51.6 11 male
EPIC_0362 Control 61.4 10.9 male
EPIC_0363 Control 71.3 7.8 male
EPIC_0364 Control 49.5 7.4 female
EPIC_0365 Control 49.9 7.5 female
EPIC_0366 Control 49.4 8.2 female
EPIC_0367 Control 71.6 11.2 male
EPIC_0368 Control 71.5 10.8 male
EPIC_0369 Control 61.8 11.1 male
EPIC_0370 Control 61.3 10.6 male
EPIC_0371 Control 61.9 10.7 male
EPIC_0372 Control 71.6 10.3 male
EPIC_0373 pre-AML 55.6 4.4 male
EPIC_0374 pre-AML 49.9 3.4 female
EPIC_0375 Control 56.2 11.6 male
EPIC_0376 Control 56.8 10.6 male
EPIC_0377 pre-AML 66.4 0.7 female
EPIC_0378 pre-AML 56.6 6.5 male
EPIC_0379 Control 56.5 6.7 male
EPIC_0380 Control 57 10.5 male
EPIC_0381 pre-AML 49.4 4 female
EPIC_0382 Control 56.7 9.1 female
EPIC_0383 Control 49.8 7.5 female
EPIC_0384 Control 51.5 12.9 female
EPIC_0385 Control 51.7 13.1 female
EPIC_0386 Control 51.4 12.9 female
EPIC_0388 Control 61.6 10.9 male
EPIC_0389 Control 51.6 12.8 female
EPIC_0390 Control 61.1 8 male
EPIC_0391 pre-AML 67 9.1 female
EPIC_0392 pre-AML 56.3 7.4 female
EPIC_0393 Control 73.8 7.2 male
EPIC_0394 Control 73.9 10.9 male
EPIC_0395 Control 66.5 11.1 female
EPIC_0396 Control 71.4 10.9 male
EPIC_0397 pre-AML 69.2 9.7 female
EPIC_0398 Control 48.9 12.5 male
EPIC_0399 Control 64.5 13.8 male
EPIC_0400 Control 56.3 12.9 female
EPIC_0401 pre-AML 55.8 10 male
EPIC_0402 Control 56.6 9.9 female
EPIC_0403 Control 73.6 13.7 female
EPIC_0404 Control 73.7 13.7 female
EPIC_0405 Control 66.7 13.6 female
EPIC_0406 pre-AML 70.3 7.2 male
EPIC_0407 Control 70.3 13.4 male
EPIC_0408 Control 70.8 13.4 male
EPIC_0409 Control 73.9 12.7 male
EPIC_0410 Control 73.2 5.9 male
EPIC_0411 Control 58.1 11.6 male
EPIC_0412 Control 70 11 male
EPIC_0413 Control 70 13.2 female
EPIC_0414 Control 59.2 14.1 male
EPIC_0415 Control 66.9 11.9 female
EPIC_0416 Control 60.4 14.1 female
EPIC_0417 Control 60.6 12.9 female
EPIC_0418 Control 57.6 13.5 female
EPIC_0419 Control 54.1 12.7 male
EPIC_0420 Control 56.7 12.9 female
EPIC_0421 Control 55.8 12.9 male
EPIC_0422 Control 68.8 10.9 female
EPIC_0423 Control 69.2 11.5 male
EPIC_0424 pre-AML 63.8 7.3 female
EPIC_0425 Control 63.3 10.4 female
EPIC_0426 Control 58.1 12.3 male
EPIC_0427 Control 64.5 11.9 male
EPIC_0428 Control 64.2 11.8 male
EPIC_0429 Control 57.9 4.6 female
EPIC_0430 Control 57.3 11.5 female
EPIC_0431 Control 61.1 10.8 male
EPIC_0432 Control 53.4 10.4 male
EPIC_0433 Control 51.4 12.7 male
EPIC_0434 Control 52.9 14.2 male
EPIC_0435 Control 59.5 11.8 female
EPIC_0436 Control 59.7 13.2 female
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EPIC_0437 Control 39.2 13 female
EPIC_0438 Control 49.2 13.5 female
EPIC_0439 pre-AML 64.8 9.1 female
EPIC_0440 Control 64.9 11.5 female
EPIC_0441 Control 55.9 14.7 male
EPIC_0442 Control 59.4 14.1 male
EPIC_0443 Control 54.7 14 male
EPIC_0444 Control 50.7 13.6 male
EPIC_0445 Control 46.9 12.8 male
EPIC_0446 pre-AML 47 7.6 male
EPIC_0447 Control 69.6 11.7 female
EPIC_0448 pre-AML 71 8.8 male
EPIC_0449 Control 64.9 10.5 male
EPIC_0450 pre-AML 51.5 2.6 female
EPIC_0451 Control 55.1 12.7 female
EPIC_0452 Control 62.5 11.7 male
EPIC_0453 Control 67.9 11.4 male
EPIC_0454 pre-AML 41.4 6.2 female
EPIC_0455 pre-AML 49.6 9.2 male
EPIC_0456 Control 67.4 11.8 female
EPIC_0457 Control 64.9 11.6 female
EPIC_0458 pre-AML 52.7 0.4 female
EPIC_0459 Control 67.9 12.1 female
EPIC_0460 Control 68.4 10.7 female
EPIC_0461 pre-AML 73.6 2.4 female
EPIC_0462 Control 52.4 13 female
EPIC_0463 Control 63.5 7.9 male
EPIC_0464 pre-AML 61.7 6 male
EPIC_0465 Control 58.1 11.6 female
EPIC_0466 Control 55 11.8 male
EPIC_0467 Control 58.9 8.9 male
EPIC_0468 Control 64.4 12.1 male
EPIC_0469 pre-AML 68 6.4 female
EPIC_0470 pre-AML 71.9 5.6 male
EPIC_0471 Control 58.8 12 male
EPIC_0472 pre-AML 39.5 11.1 female
EPIC_0473 pre-AML 59 11.8 female
EPIC_0474 Control 60.8 11.8 female
EPIC_0475 Control 67.8 11.2 male
EPIC_0476 Control 70.3 13.7 male
EPIC_0477 pre-AML 59.4 8.3 male
EPIC_0478 Control 53.8 10.1 male
EPIC_0479 pre-AML 56.6 0.2 female
EPIC_0480 Control 58.9 14.8 male
EPIC_0481 Control 49.1 13.3 female
EPIC_0482 pre-AML 57.8 11.2 male
EPIC_0483 Control 58.5 12.9 male
EPIC_0484 Control 58 12.8 male
EPIC_0485 Control 54.5 12.9 female
EPIC_0486 Control 48.7 12.6 male
EPIC_0487 Control 61 13.8 female
EPIC_0488 Control 46.3 13.7 female
EPIC_0490 pre-AML 52.8 0.3 female
EPIC_0491 Control 49.1 13 male
EPIC_0492 Control 67.2 13 female
EPIC_0493 pre-AML 44.9 0 male
EPIC_0494 Control 64.9 11.6 female
EPIC_0495 Control 62.3 12.1 male
EPIC_0496 pre-AML 62.6 1.4 male
EPIC_0497 Control 55.4 13.5 male
EPIC_0498 pre-AML 55.2 8 male
EPIC_0499 Control 67.8 11.5 female
EPIC_0500 Control 66.7 11.4 female
EPIC_0501 Control 72.8 9 male
EPIC_0502 Control 64.3 9.9 female
EPIC_0503 Control 56.2 12.6 male
EPIC_0504 pre-AML 68.5 7 female
EPIC_0505 Control 68.4 10.5 female
EPIC_0506 Control 71.2 10.5 female
EPIC_0507 pre-AML 46.6 1.8 male
EPIC_0508 pre-AML 68.4 6.2 female
EPIC_0509 pre-AML 66.8 4.1 female
EPIC_0510 pre-AML 58.2 9.1 male
EPIC_0511 Control 56.9 9.3 female
EPIC_0512 pre-AML 58.8 3.7 female
EPIC_0513 Control 48.2 10.8 female
EPIC_0514 pre-AML 48.4 4.7 female
EPIC_0516 pre-AML 72.9 7.8 male
EPIC_0517 Control 48.2 10.9 female
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Appendix 2: Validation cohort pre-AML and control sample information

Sample ID Group Gender
Systolic 

BP 
(mmHg)

Diastolic 
BP 

(mmHg)
BMI

Total 
cholester

ol 
(mmol/L)

HDL 
(mmol/L

)

LDL 
(mmol/L)

Triglyceride
s (mmol/L)

Lymphocyte
s (10^9/L)

MCV 
(fL) RDW

WBC 
(10^9/L

)

RBC 
(10^9/L)

Haematocri
t (%)

Platelets 
(10^9/L)

Haemoglobi
n (g/dL)

Age at 
sample

Follow-
up 

(years)

PD35595b Control Male 181 108 25.8 6.8 1.5 4.3 2.1 2.2 86.5 14 7 4.9 42.6 239 14.8 68.2 21.3
PD35724b Control Male 124 74 26.8 4.3 0.7 3.1 1 - - - - - - - - 63.8 21.5
PD35520b Control Female 109 72 26.7 5.5 1.3 3.5 1.6 1.6 87.2 12.5 4.5 5 43.5 222 14.5 47.4 18
PD35651b Control Female 154 96 32 7.8 1.1 5.9 1.9 2.9 88.7 12.5 7 4 35.8 287 12.5 54.7 19.1
PD35622b Control Female 124 78 23.6 5.9 1.7 3.5 1.6 2 81.1 15.5 5.1 5 40.3 270 13.3 51.8 21.4
PD35518b Control Male 131 76 25 6.8 1.4 4.8 1.2 2.2 90.2 12.7 5.1 4.2 38 232 12.8 62 19.8
PD35626b Control Female 171 108 28.9 6.4 1.8 4 1.2 1.8 91 12.7 5.9 4.2 37.8 193 13.2 72 19.9
PD35711b Control Female 138 76 28.5 5.7 1.4 3.6 1.6 3.5 88.3 13.6 9.4 4.7 41.4 209 13.9 75 19.8
PD35786b Control Male 142 90 27.9 6.8 0.8 5 2.2 - - - - - - - - 55.9 21.5
PD30073b pre-AML Female 143 82 33.3 7.2 1.2 5.3 1.7 3.3 87.2 12.9 9.2 5 43.8 149 14.6 71.8 1.2
PD35526b Control Male 149 78 25.9 6.6 1.2 4.5 1.9 2.1 87.1 13.2 8.1 4.9 42.5 224 14.6 68.6 20.7
PD35716b Control Male 123 83 23.8 6.2 1.7 3.6 2 2.4 89 12.8 6.3 4.3 38.8 267 13.2 49.8 19.2
PD35685b Control Male 134 87 26.2 5.3 0.9 3.2 2.5 2.1 88.5 13.4 7.4 5.2 45.6 318 16.2 56.8 20.1
PD35758b Control Male 156 99 33.9 7.3 1.6 5 1.6 1.6 84.7 14 6.2 5.3 45 158 15.7 65.1 21
PD35605b Control Female 127 85 23.5 6.4 1.5 4.3 1.2 - - - - - - - - 61.2 21.7
PD35708b Control Male 160 84 25.7 5.9 - - 6.3 1.9 88.2 12.5 6.2 4.4 39.1 225 13.7 67.2 19.8
PD35705b Control Male 163 92 24.3 5.9 1 3.7 2.7 1.3 95 12.4 6 4.6 43.7 191 14.8 69 20.7
PD35528b Control Female 158 95 31.1 8.3 1.9 5.4 2.2 2.3 78.3 14.2 7.1 4.9 38 231 12.5 53.3 18.8
PD35615b Control Female 128 68 23.2 8.3 - - 6.3 2.1 91.5 12.1 5.5 4.2 38.2 161 13.6 68.8 19
PD35678b Control Male 135 78 25.4 6.1 1.2 4.1 1.8 - - - - - - - - 68.2 21.9
PD35586b Control Male 147 91 19.4 5.6 2.2 2.9 1 - - - - - - - - 67.1 17.3
PD35673b Control Male 110 67 26.4 6.2 1.6 4 1.4 1.9 89.7 12.3 7 4.9 43.8 268 14.8 48.2 19.8
PD35659b Control Male 153 94 25.2 5.8 1.2 3.6 2.1 2 91 13.4 7.6 5.7 51.5 278 17.3 68.6 20.3
PD35536b Control Female 106 66 23.9 5 1.8 2.7 1.1 2.2 91.6 11.4 6.2 3.7 33.6 272 11.6 49.7 20.4
PD35543b Control Male 154 86 20.9 5.8 1.5 3.7 1.3 - - - - - - - - 65.1 18.8
PD29856c pre-AML Male 116 77 26.4 4.2 1 2.7 1.1 - - - - - - - - 57.2 17.8
PD35572b Control Male 140 94 30.6 9.4 1.7 6.5 2.7 2.1 92.7 12.2 5.9 5.3 48.9 269 16.1 48.9 20.2
PD35631b Control Female 170 104 38.4 6.1 2.1 3 2.1 - - - - - - - - 57.6 18.7
PD35599b Control Female 150 100 27.1 6.1 1 4.5 1.3 - - - - - - - - 54.5 22
PD29810c Control Male 114 72 21.5 4.9 0.6 3.1 2.8 1.5 88.6 15.3 8 4.1 36.6 136 12 45.9 18.6
PD35522b Control Female 142 90 27.3 7.3 1.2 4.6 3.2 2 85.1 14 7.1 4.4 37.9 422 13.3 67.3 20.5
PD29804c Control Female 146 95 26.1 6.2 1.7 4.3 0.6 2 89.9 13.3 4.5 5.2 46.9 218 14.8 45.7 5.1
PD35625b Control Male 162 106 27.5 6 0.7 3.8 3.2 - - - - - - - - 48.8 22.1
PD35589b Control Female 116 79 25.9 5.5 1.2 3.8 1 1.2 84.8 14.9 6.1 4.6 39.2 305 13.7 62.8 20.9
PD29792b pre-AML Female 142 89 30.2 6 1.5 4.2 0.6 - - - - - - - - 64.9 14.1
PD30060c pre-AML Female 148 85 22.4 7.1 1.7 4.9 1.2 1.7 90.1 14.2 4.8 4.2 37.7 252 12.1 75.8 15.2
PD35519b Control Female 134 85 29.5 6.5 1.4 4.4 1.5 2.2 90.5 13 12 4.5 40.4 384 14 65.7 20.2
PD35763b Control Male 151 90 22.9 3.8 1.3 2 1.2 2.3 85.2 14.4 7.6 4.8 40.7 268 14.2 64 20.5
PD35725b Control Female 148 84 31 8.4 1.8 5.7 1.9 1.2 86.1 14.5 3.7 4.3 37.2 234 12.9 70 20.9
PD35507b Control Male 174 104 23.6 6.3 1.8 4.1 0.9 - - - - - - - - 55.4 21.9
PD29836c pre-AML Female 152 92 28.5 6.4 1.4 4.1 2.1 1.7 88.4 13 5.4 4.2 37.2 175 12.6 70 10
PD35556b Control Female 138 77 25.9 5.6 1.5 3.4 1.5 2.2 89.9 12.6 6.7 4.8 42.7 223 14.5 64.5 20.8
PD35616b Control Male 138 87 31 6.5 1.1 4.4 2.2 1.9 94.1 13.3 6 4.7 44.6 203 15.5 68.4 21
PD35787b Control Male 107 61 25.7 5.8 1.1 4.2 1.2 2.2 91.2 13.7 6 4.5 41.2 144 14.1 68.2 20.7
PD35775b Control Female 122 80 29.3 6.4 2.1 4 0.7 1.5 86.9 13.8 5.3 4.2 36.6 227 12.2 64 20
PD35665b Control Male 115 78 25.3 5.9 1.4 3.8 1.5 - - - - - - - - 65.5 22
PD35760b Control Male 128 74 30.5 6 1 4.3 1.5 2.2 85.2 14.9 6.3 5.4 46.3 145 15.6 67.5 19.8
PD35764b Control Male 118 72 26.5 4.3 0.8 2.8 1.5 1.6 86.6 13.2 8 4.9 42.7 304 14.8 61.7 21.4
PD35660b Control Female 136 82 27.6 6 1.2 4.1 1.6 2.3 88 12.4 6.1 4.4 38.8 272 13.2 59.2 21.1
PD30010c pre-AML Male 168 108 27.2 6.3 1.1 3.4 3.9 2.4 100 15.6 3.7 3.9 38.7 91 13.3 66.3 12.7
PD35777b Control Male 143 92 27.9 5.8 - - 5.3 2.8 82.3 14 7.7 5.4 44.8 274 15 61.4 19.6
PD35694b Control Male 168 99 33.7 5.8 1.9 3.2 1.7 2 95.4 14.1 4.8 4.7 44.7 235 14.6 72.7 18.7
PD35781b Control Male 128 83 28.2 4.1 0.9 2.6 1.3 2.2 90.1 12.8 7.1 4.5 40.4 219 14.1 59 21.6
PD35552b Control Male 120 76 26.3 6.3 1.4 4.1 1.9 2.1 93.3 13.2 7 4.8 45.1 280 14.8 61.7 18.9
PD35757b Control Female 122 74 24.2 6.9 1.3 4.7 2 2 93.8 12.7 6.4 4.2 38.9 255 12.3 65.2 18.5
PD35587b Control Female 134 82 27.5 6.7 1.8 4.4 1.1 2.3 89.3 13 6.5 3.8 33.7 198 11.4 69.3 21.3
PD30116c pre-AML Male 143 82 26.2 5.5 1.1 3.8 1.4 1.7 80 17.3 5.2 3.9 31.2 207 9.8 69.9 5.1
PD29858b pre-AML Female 150 90 25.2 7.6 1.6 5.2 1.8 1 88.9 12.7 5.5 4.5 39.9 243 13.7 73.6 2.4
PD35676b Control Female 150 82 25.8 8.3 1.6 6 1.6 - - - - - - - - 64.9 22
PD30008c Control Male 122 78 26.2 4.9 1.1 3.2 1.4 1.3 87.2 14.1 5.6 5.2 45 275 14.7 56.6 20
PD35684b Control Female 113 74 22.9 4.7 2 2.3 0.8 2.6 96.6 11.8 9 4.3 41.5 284 14.4 46.4 19.7
PD30111c pre-AML Female 116 76 21.1 9 1.9 6.1 2.3 1.6 89.1 13.2 6 4.3 38.7 201 12.9 48.4 4.6
PD30159c Control Female 108 66 22.4 8.2 1.4 5.5 3 3 92.5 13.3 6.5 4.3 39.5 229 13.4 69 18.7
PD29948b pre-AML Female 156 82 28 7.9 1.2 5.5 2.5 2.4 84.6 13.2 6.3 4.7 39.6 374 14.1 72.2 17.8
PD30086b pre-AML Male 150 87 31 4.2 0.7 2.3 2.7 1.3 95.9 13.7 5.1 4.1 39.5 185 13.7 66.4 13.6
PD35702b Control Male 112 68 29.1 7 0.8 5.6 1.4 - - - - - - - - 67.7 22
PD35768b Control Female 157 91 34.3 5.3 1.1 3.2 2.2 3.5 94.3 12.8 8.7 4.8 45.2 209 15.5 68.9 21.1
PD35573b Control Female 128 62 23.9 6.2 0.8 4.6 1.8 2.2 87 12.9 5.8 3.8 33.4 245 11.5 71.5 19.3
PD35525b Control Male 122 72 26.1 5.1 1 3.1 2.2 2.6 88.7 13.3 7.9 5 44.5 268 15 66.7 18.8
PD30154c pre-AML Female 124 82 25.3 7.3 1.5 4.4 3.1 2.1 84.7 13.1 5.5 4.9 41.9 225 13.9 61.3 15.7
PD35569b Control Male 124 84 23.1 6.4 1.6 4.2 1.5 2.7 86 12.2 7.6 4.8 41 283 14.8 53.5 19.1
PD35640b Control Female 140 80 33 6.2 1.7 3.5 2.1 2.3 89.9 13.7 8.3 4.2 38 203 13 68.4 19.4
PD35612b Control Female 138 80 36.6 6.1 1.5 4.1 1.1 - - - - - - - - 56.7 21.9
PD35667b Control Female 110 68 20.5 7.6 1.6 5.6 0.9 - - - - - - - - 68.9 21.7
PD29935c pre-AML Male 137 94 27.7 8.4 1.7 5.7 2.1 1.9 87 14.1 6.6 5.2 45.4 268 15.5 61.3 17.7
PD35740b Control Male 126 74 24 7.5 1.6 5.2 1.5 - - - - - - - - 69.8 21.8
PD29933c pre-AML Male 176 97 25.1 5.6 1.4 3.6 1.4 1.6 92.2 12.7 5.4 4.6 42.6 191 14.8 73.2 5.8
PD35545b Control Male 145 88 34.2 5 1.5 2.9 1.4 1.5 91.6 13.3 5.8 4.8 44.4 258 15.7 70.1 20.4
PD29951b pre-AML Female 110 74 27.6 5.8 1.6 3.3 1.9 1.6 89.4 14.7 5.4 4.2 37.9 312 12.4 58.6 18.4
PD35782b Control Male 118 70 20.7 5.4 2.2 2.7 1 1.4 85.7 13.2 5.9 4.7 40.4 220 14.3 48.1 20.5
PD35549b Control Female 116 78 29.4 5.6 1.9 2.9 1.7 1.9 88 13.5 7.2 4 35.5 293 12 49.5 20.2
PD35637b Control Male 121 80 25.8 6 1.2 3.9 2.1 2.6 93.2 13.3 8.3 4.7 43.5 190 14.8 60.2 15.6
PD29762b pre-AML Female 180 96 25.4 6.7 1.7 3.4 3.6 3.1 98 12.9 8.2 4 39.4 235 14 60.2 9.8
PD35733b Control Female 140 84 26.1 5.9 2.1 3.3 1 1.7 85.9 13.5 4.2 4.7 40.4 243 14.1 61.3 20.4
PD30089b pre-AML Female 112 70 27.3 7.6 1 6.1 1.1 1.9 94.8 12.9 4 4 38.2 336 12.4 63.4 13.5
PD30058c Control Female 148 95 25.5 7.2 1.3 4.8 2.5 2.8 85.1 12.7 7.5 4.7 39.9 302 13.6 56.2 19.3
PD35650b Control Female 120 76 24.8 7.2 2 4.8 0.9 2 85.6 14.2 6.3 4.8 40.7 306 13 50.5 20.7
PD29851c pre-AML Female 126 76 27.7 7.3 1.3 4.8 2.5 - - - - - - - - 55.8 12.2
PD35691b Control Male 158 102 21.7 7.5 1.6 5.3 1.4 2.9 88.5 13.6 8.2 5.2 46 288 16.5 64.8 19.6
PD35722b Control Male 143 98 27.9 7.1 1.3 4.7 2.5 - - - - - - - - 57.1 21.5
PD35610b Control Female 110 70 22.5 7.2 1.6 4.9 1.5 2.8 93.8 12.4 7.1 4.3 40.7 313 14.1 47.7 20.9
PD35580b Control Female 146 88 21.2 6.9 1.3 5.1 1.1 1.9 90.4 12.7 6 5.4 48.8 250 16.7 68.5 21.3
PD29929c pre-AML Female 155 92 26.2 8.5 1.8 5.8 2 2.2 92.8 12.4 6.2 4.4 40.9 332 14.2 68.4 6.6
PD35613b Control Female 123 70 28 6.2 1.6 4.3 0.7 2 88 13.1 5 4.4 39 220 13.6 63.5 21
PD35509b Control Male 172 104 28 9 1.1 6.2 3.7 - - - - - - - - 69.4 21.8
PD35609b Control Female 138 82 22.2 8.2 1.8 5.9 1.1 - - - - - - - - 75 21.5
PD35550b Control Female 178 102 31.4 7.1 1.6 4.5 2.1 1.8 85.6 13.7 5.8 4.8 41.2 301 14.1 67.5 21.2
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PD29946c pre-AML Female 158 97 30.6 6.9 1.3 4.4 2.6 2.3 85.1 12.6 7.9 4.7 40.1 332 13.6 70.1 14.9
PD30031b pre-AML Male 158 96 28.8 5 1 3.4 1.4 2 85.9 13.5 7.4 5.3 46 300 15.3 71.7 14.3
PD35647b Control Female 150 83 30 7.3 1.1 5.4 1.7 - - - - - - - - 73.3 21.8
PD35624b Control Female 133 84 26.8 7.1 1 5.3 1.7 2.3 91.8 15 5.4 4.9 45 212 15 70.3 21.7
PD35601b Control Female 136 85 23 5.3 1.1 3.9 0.6 - - - - - - - - 57.4 21.7
PD35564b Control Male 156 100 31.8 7.8 - - 4.6 2.9 92.7 13.3 8.5 5.3 49.5 397 17.1 71.7 13.7
PD35508b Control Female 157 79 25.4 6.8 1.2 4.6 2.1 1.3 82.7 13.9 5.9 4.4 36.4 315 12.6 66.9 21.4
PD30120c pre-AML Male 135 84 29.9 5.7 1.3 3.8 1.4 1.8 90.2 14.2 6.1 4.8 43.6 210 14.4 69.7 12.3
PD35664b Control Male 107 64 25.2 7.7 1.1 5.3 2.9 3.6 89.7 14.2 10 5.1 45.8 226 15.3 44.4 19.5
PD29993b pre-AML Female 142 83 28.3 7.1 2.3 4.1 1.6 2 82.6 14.2 7 4.6 37.9 337 13.7 71.6 2.4
PD35652b Control Female 134 80 32.8 5.1 1.4 3.1 1.4 - - - - - - - - 57.8 19.6
PD29989c Control Male 132 84 26.1 7.1 1.3 5.2 1.3 1.5 92 12 4.2 4.9 44.7 240 15.1 47.8 20.3
PD29962b pre-AML Male 140 86 26.6 5.1 1 3.7 0.9 2.5 90.3 13.2 7.4 4.8 43.1 238 14.8 72 14
PD35688b Control Female 138 76 25.4 7.8 1.2 5.5 2.3 - - - - - - - - 68.8 21.5
PD35780b Control Male 158 90 25.3 6.4 1.2 4.4 1.8 1.4 94.4 12.5 5.2 4.3 40.4 202 13.6 65.3 19.5
PD35514b Control Female 127 71 21.8 6.2 1.6 4.4 0.4 - - - - - - - - 72 20.7
PD35636b Control Female 146 91 30.8 7 1.3 4.9 1.8 - - - - - - - - 64.9 21.9
PD29978c pre-AML Male 171 103 26.7 5.6 1.2 3.2 2.6 3.3 86.2 14.8 7.2 5.1 43.6 122 14.9 61.7 12.3
PD35707b Control Male 163 98 25.6 7.3 1.1 4.9 2.8 - - - - - - - - 70.3 21.7
PD35596b Control Male 104 64 17.6 5 1.5 3.1 0.8 0.8 90.8 12.7 2.3 4.3 38.9 182 13.7 48.3 19.8
PD35720b Control Female 128 83 22.3 6.7 2.1 4.3 0.8 2.8 89.4 11.9 6.8 3.5 30.9 218 11.3 60.1 19.4
PD35579b Control Female 169 98 31.2 7.4 1.2 4.8 3 2.9 93.8 12.4 8.2 4.3 40.4 276 13.3 63.4 20.6
PD35565b Control Male 137 88 30.1 5.4 1.1 3.1 2.5 2.2 90.3 12.6 5.8 4.6 41.8 132 14.6 57.3 21.2
PD35723b Control Male 122 78 30.9 5.8 1.1 2.9 3.9 2 88.6 12.8 7.9 4.7 42 216 15.3 58.6 20.5
PD29918c pre-AML Male 158 92 27.3 5.5 0.9 3.1 3.2 1.8 93.2 12.7 5.7 4.4 41.2 173 14.2 76.6 13.4
PD35645b Control Male 124 68 24.8 5.3 1.2 3.4 1.6 - - - - - - - - 73.3 21.6
PD29960c pre-AML Female 124 81 21.5 6.8 1.5 4.8 1.1 1.9 91 12.5 12.6 4.6 41.8 306 15 56.1 7.9
PD35515b Control Female 156 90 30.8 5.9 1.3 3.6 2.1 1.9 86.1 12.7 5.7 4.2 36.6 376 12.5 70.4 20.1
PD35717b Control Female 116 76 17.3 6.3 2.4 3.3 1.3 1.5 87.6 13.2 9.4 4.3 37.9 279 13.3 65.7 20.6
PD35690b Control Male 115 72 26.1 6.2 1.7 3.9 1.3 2.1 92.3 12.8 5.3 4.6 42.6 243 14.3 74.8 20
PD35623b Control Female 166 110 24.1 7.8 1.7 5.3 1.8 2.5 90.1 13.8 8 4.8 43.6 351 15.1 65.4 21.1
PD29897b pre-AML Female 123 82 27 4.8 2 2.2 1.4 1.8 91.7 12.9 4.8 4.3 39.5 278 13.8 60.2 5.8
PD35738b Control Female 124 78 24.8 6 1.1 4.6 0.6 - - - - - - - - 60.3 22.1
PD35553b Control Male 144 94 24.9 4.9 1 3.1 1.8 - - - - - - - - 67 21.5
PD35697b Control Female 120 66 25.5 6.3 1.4 3.7 2.6 2.4 89.5 13.3 7.7 4 36 247 12.3 63.7 20.7
PD35608b Control Male 142 80 23.6 6 2.6 3 0.8 1.7 93.1 13.1 8.1 4.4 40.9 349 14.2 64.8 20.5
PD35773b Control Female 118 79 30 7 1.6 4.5 1.9 1.4 92.5 12.4 7 3.9 36.5 210 12.8 72.3 19.3
PD29867b pre-AML Male 144 92 26.7 6.7 1 4.2 3.3 - - - - - - - - 68 15
PD29996b pre-AML Female 109 66 34.4 5.9 1.1 4 1.7 1.6 97.5 12.5 5.2 4.3 41.9 255 14.6 52.4 4.6
PD35721b Control Male 126 78 29.4 4.9 1.4 2.7 1.8 1.5 87 12.9 7.4 5 43.9 300 15.1 53 20.1
PD29907c pre-AML Female 118 70 32.1 7.5 0.8 6.2 1.1 3.7 80.7 16.7 11.2 5.1 41.2 380 14 68 6
PD35512b Control Female 112 68 26.1 5.9 1.9 3.4 1.5 1.7 93.3 12.5 4.9 4.2 39.6 238 14.1 49.4 16.6
PD35646b Control Female 104 65 23.8 6.9 1.9 4.8 0.6 2 99.7 12.1 5 4.3 43.3 261 14.3 47.9 15.6
PD35686b Control Male 128 72 27.4 5.7 1.2 2.8 3.8 2.6 96.5 12.4 6.1 4.6 44.6 172 14.2 70.6 17.6
PD35642b Control Female 114 66 22.8 4.7 1.4 3 0.7 1 87.8 12.8 4.6 4.6 40 298 13.2 50 17.4
PD35710b Control Female 112 65 27.1 4.6 1.1 3 1.3 1.6 82.5 14.5 8.5 3.9 32.3 339 11.5 69.9 17.2
PD35620b Control Female 152 96 19.9 4.6 2.6 1.7 0.7 1.4 92.6 12.9 5.6 4.3 40.2 138 12.9 56.4 17.6
PD35670b Control Male 122 79 27.8 5.5 1.1 3.6 1.8 1.2 91.7 13.8 6.3 5.2 47.8 174 17.2 62.6 16.4
PD35540b Control Male 106 74 26.6 6.2 1.2 4.4 1.4 1.7 88.5 13.3 5.6 4.3 38.2 178 14.2 65.8 11.3
PD35627b Control Male 154 87 29.1 7.4 1 4.3 4.8 2 92 13 5.8 4.9 45.2 197 16.4 69.3 16.9
PD35661b Control Male 146 99 29.1 8.3 1.2 6 2.5 1.8 98.2 12.2 8.1 4.6 45 231 14.7 71.4 17.9
PD35641b Control Male 146 76 26.6 5.1 1 3.7 0.9 2.3 90.3 13.2 6.2 4.8 43.3 119 14.7 72.9 18.1
PD35731b Control Male 134 92 28.4 6.7 1.1 4.3 3 2.5 93 12.4 6.4 4.4 41.3 284 13.2 68.9 17.8
PD35638b Control Female 118 66 21.2 5.9 1.8 3.8 0.7 2.4 93.8 12.4 7.7 4.6 43.5 193 14.2 63.2 17.5
PD35712b Control Male 115 68 22.7 4.4 2.1 1.9 1 2 94 13.7 6 4.4 41.2 222 15 59.9 16.2
PD35558b Control Male 106 62 22.8 5.2 1.5 3.3 0.9 1.5 92.6 13.4 9.7 4.8 44.1 272 15.3 74.5 15.9
PD35598b Control Male 139 87 29.4 7.7 1.3 5.3 2.6 1.6 94.4 12.9 4.9 5 47.4 125 15.6 56.2 17.7
PD35769b Control Female 145 84 25.3 6.7 2.2 4.2 0.7 2.5 93.6 12.9 6.5 5.2 48.7 228 14.9 65.2 15.7
PD35511b Control Female 144 78 26.4 8.7 1.1 5.5 4.8 2.6 95.1 14.6 5.5 4.3 41.3 331 14.1 73.5 13.9
PD35693b Control Male 144 75 24.7 9.3 1.6 6.5 2.8 1.9 88.3 14.6 6.3 4.6 40.3 400 14 73.5 16.4
PD35700b Control Female 134 80 24.9 6.1 1.4 3.3 3.1 1.8 91.5 14 7.1 4.3 39.2 261 14.1 77.4 16.9
PD35674b Control Female 158 93 23.8 6.3 1.5 4.3 1.1 1.8 87.1 13 6.1 4.2 36.8 271 12.4 66 17.5
PD35632b Control Female 164 89 29.2 7 1.4 4.3 2.9 1.7 95.9 11.8 6.9 4.3 41.8 310 13.5 76.2 13.3
PD35657b Control Male 160 114 31.1 6.1 0.8 4.1 2.8 2.5 89.4 12.9 8.7 4.8 42.5 224 14.8 61 16.4
PD35706b Control Male 128 85 25.4 8.1 1.4 5.8 2 1.5 90.1 12.3 5.8 4.7 42.3 392 14.7 52.3 16.6
PD35524b Control Female 104 61 19.6 4.4 1.4 2.7 0.7 1.6 85 14 9.1 4.2 36 185 12.4 52.6 16.3
PD35756b Control Male 130 78 22.8 5.1 0.7 3.1 2.9 1.3 87.9 13.3 5.5 4.3 37.8 244 13.8 76.5 16.8
PD29931b pre-AML Female 160 94 32.4 6 1.1 3.6 3 2.7 86.8 13.7 9.5 4.6 40 276 14.2 71.1 13.9
PD35633b Control Male 150 86 26.4 5.7 1.1 4 1.4 2.1 93 13 6.2 4.2 39 275 14.2 76.3 12.4
PD35715b Control Male 140 96 27.1 6.3 1.3 4.5 1.3 3.4 96.1 15.3 8.4 4.6 43.8 268 15.4 67.7 15.9
PD35529b Control Female 128 82 27.5 5.2 1.8 3 1.2 1.9 83 14.1 6.9 4.4 36.6 325 13 70 15.8
PD35732b Control Female 125 78 27.6 5.5 1.7 3.5 0.7 2.7 87.3 12.9 7.8 4.6 40.1 223 14.7 56.4 17.1
PD35571b Control Female 142 74 23.9 5.2 1.3 2.5 3.1 1.9 89.2 13.6 6.9 4.3 38.6 269 12.7 52.7 17.3
PD35611b Control Female 148 98 26.2 7 2.1 4.6 0.8 1.8 94.6 14.5 6.5 4.3 40.5 293 14.9 73.7 17.2
PD35703b Control Male 142 86 28.2 5.7 1.2 3.7 1.8 1.9 88.5 14.7 7 4.9 43.6 276 15.2 77.1 16.4
PD35654b Control Male 144 88 22.4 5.3 1.2 3.1 2.3 3 91 14.4 7.5 5.3 48.4 153 15.9 71.3 13.1
PD35639b Control Female 132 78 25.1 5.4 1.2 3.6 1.5 2.6 90.2 13.1 5.2 4.6 41.7 351 13.2 67.4 17.3
PD35534b Control Female 105 66 21.9 7 2.4 3.7 2.1 1.7 92.8 12.5 4.8 4.1 37.6 233 13.1 66.3 16.8
PD35581b Control Male 126 74 22.8 5.2 1.2 3.7 0.8 2.5 90.5 13.4 7.5 4.3 39.2 192 13.6 68.6 17.3
PD35542b Control Female 146 88 30.2 5.2 1.2 3.5 1.3 2.1 87.4 14.6 6.4 4.8 41.9 434 14.5 65.7 16.3
PD35594b Control Female 126 82 28.1 6.1 1.5 4.1 1.2 2.6 94.8 13 7.4 4.5 42.9 266 13.6 68.2 17.6
PD29907b pre-AML Female 141 76 32.2 7.9 0.8 6.5 1.5 2.4 85 17 8.6 5.1 43 400 14.8 71.9 6
PD35591b Control Female 128 80 21.2 5.8 1.9 3.7 0.5 1.6 85 13.9 4.9 4.4 37.3 245 13.2 56.9 17.2
PD30023b pre-AML Male 190 116 27.3 4.3 1.6 2.2 1.3 2 92.4 13.3 5.3 5 45.9 176 16.4 61.8 3.2
PD35762b Control Female 118 66 25.9 5.5 1.6 3.5 0.9 2.6 89.9 14 6.5 4.7 42.2 274 14.1 76.1 16.4
PD35582b Control Female 163 83 26.5 7.7 1.8 5 2.1 - - - - - - - - 76.4 16.3
PD35583b Control Male 127 58 24.9 4.2 1.2 2.6 1 1.2 89.3 13.7 5.7 4.6 41.2 125 14.6 76.3 11.5
PD35619b Control Female 150 87 31 7.3 1.2 5.4 1.6 1.5 96.2 12.2 4.8 4.3 41.7 215 13.6 66.4 17.8
PD35541b Control Male 132 70 30.1 5.7 1.5 3.7 1.2 1.7 90.2 14.3 5.4 4.6 41.4 222 14.4 72.4 16
PD35662b Control Female 114 70 23.7 8.4 1.3 6.6 1.1 1.4 90 14.7 4.9 4.7 42.1 243 13.3 72.9 17.7
PD35672b Control Male 132 80 26.1 5.4 1.1 2.8 3.3 1.3 92.3 12.8 6.5 5.1 47 177 15.5 66.3 12.4
PD35682b Control Male 134 88 27.3 6.6 1.3 4.5 1.9 2.2 91.2 13.7 6.3 4.8 43.3 349 14 61.8 15.5
PD35704b Control Male 131 86 29.6 9.6 1.1 6.4 4.7 2.8 84.1 14.4 9.7 5.7 47.6 317 16.5 56.8 16.2
PD35671b Control Female 152 84 22.8 6.5 1.7 4.2 1.4 0.9 88.1 13.1 5 4.8 42.2 220 13.9 71.6 18.1
PD30054b pre-AML Male 128 74 24.4 6.7 1.2 4.6 2 0.9 95.2 13.1 3.1 4.3 41 134 14.4 75.2 13.8
PD35759b Control Female 122 74 23.7 5.3 1.5 3.1 1.7 2.4 89.6 12.7 7.2 4 35.7 251 12.8 52.3 16.3
PD35523b Control Male 132 73 28.6 5.7 0.9 3.5 3 2.7 91.1 13.7 5.6 4.2 38.4 268 13.5 63.9 16.5
PD35547b Control Male 140 73 24.4 5.2 0.9 3.2 2.5 1.6 88.8 14.4 7.5 5.7 50.8 296 16.5 69.1 12.6
PD35699b Control Male 130 74 26.7 4.8 1.4 3 0.9 1.7 97.7 12.1 6.2 3.9 38.3 194 14.3 57 17.1
PD30111b pre-AML Female 112 64 20.1 8 1.7 5.6 1.7 1.3 88.9 12.4 5 4.4 39.1 392 14.6 51 4.6
PD35709b Control Female 126 72 21.2 4.5 1.5 2.6 0.9 3.1 95.8 13.9 11.1 4.5 43.4 249 14 73.3 17.4
PD29836b pre-AML Female 146 82 29.6 7.1 1.3 5.2 1.5 1.6 85.7 14.1 5.2 4.6 39.3 229 13.2 72.4 10
PD35635b Control Female 148 87 30.7 6.5 1.6 3.9 2.4 3.2 87.7 12.2 7.5 4.5 39.2 256 13 62.5 17.8
PD29978b pre-AML Male 146 86 27.4 6.7 1.2 4.5 2.3 - - - - - - - - 65.4 12.3
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PD35677b Control Female 158 86 24 6.6 1.3 4.6 1.6 1.5 88.7 13.5 6 4 35.7 234 12.3 71.9 16.5
PD35784b Control Female 156 92 27.1 7.4 2 4.5 2 2.4 94.4 13.2 5.6 3.8 35.6 285 12.5 68.5 16.4
PD35544b Control Male 144 82 27.9 6.5 0.8 4.1 3.7 2 87.7 12.7 5.2 5.1 44.9 363 15.4 52.9 17.2
PD35771b Control Male 140 88 27.3 6.6 2.1 3.9 1.5 2.3 94.4 13.1 6.1 4.9 46.5 216 14.8 63.6 17.7
PD35726b Control Male 152 90 26.2 6.5 2 4.2 0.8 1.7 97.7 12.9 5.3 4.3 41.9 234 14 79.3 15.9
PD35785b Control Male 142 90 27.6 5.3 1.9 3 1.3 1.2 91 13.5 5.8 5 45.5 331 15.2 56 15.8
PD35701b Control Male 118 76 25.8 6.8 1.5 4.6 1.7 1.2 93.3 12.7 5.3 5.2 48.6 274 15.7 73.4 17.5
PD35776b Control Male 122 66 27.2 6.6 1.3 4.3 2.4 2.2 90.4 13.4 7.8 4.5 40.7 196 14.1 71.6 8.2
PD29764b pre-AML Female 132 70 27.1 6.1 2.1 3.4 1.4 2.8 80.7 22 7.9 4.5 36.2 280 12.1 78.6 10.4
PD35683b Control Female 116 71 26.5 5.4 2 2.8 1.4 1.3 91 12.9 5.8 3.9 35.5 193 12.6 69.6 16.1
PD35607b Control Male 153 90 25.9 5.6 1.1 3.5 2.3 1.3 90.5 13.6 6.2 4.2 37.8 255 13.9 77.6 17.2
PD35533b Control Male 135 88 26.2 5.2 1.7 3 1.2 2 89 13.5 6.3 4.8 43.2 293 14.1 58.3 16.2
PD30154b pre-AML Female 132 88 25.4 8.4 1.2 4.8 5.4 2.3 84.9 14.4 8.4 4.9 42 296 14.1 63.9 15.7
PD35555b Control Female 132 77 20.7 6.9 2.7 3.8 1 1.2 87 13.5 5.2 4.6 40.2 258 13.9 72.8 16.1
PD35614b Control Male 122 76 27.6 4.1 1.1 2.6 0.9 1.8 90.4 14.3 6.4 5.4 49 268 15.9 71.1 18
PD35517b Control Female 122 74 27.7 6.2 2.7 3.1 1.3 2.1 89.2 13.4 7.7 4.5 40 406 13.7 53.9 16.2
PD29896b pre-AML Female 148 98 27.8 8.2 1.2 5.4 3.6 3 93.9 15.4 8.4 4.3 40.7 325 13.7 70.6 6.4
PD29946b pre-AML Female 141 86 29.9 5.6 1.2 3.8 1.5 2.2 85.9 13.1 6.9 4.4 37.9 287 13.5 74 14.9
PD35597b Control Female 130 72 19.5 6.2 2.3 3.5 0.9 1.4 88.4 12.5 5.3 4.3 38.1 264 14.2 45.6 16.6
PD35789b Control Male 111 78 24.6 6.1 1.3 3.7 2.6 1.9 92.2 13.5 5.3 4.8 43.8 315 14.8 51.6 17.1
PD35539b Control Female 120 74 23.6 7.4 1.7 5.3 1 1.9 94 11.9 5.3 4.3 40.6 255 13.6 63.8 16.4
PD35679b Control Female 148 88 22 5.3 1.9 2.5 2 1.4 89.5 12.6 7 3.9 35.2 332 12 69.7 17.4
PD30060b pre-AML Female 160 92 24.1 5.3 1.7 3 1.5 2.4 87.3 14.7 7.1 4.3 37.2 401 12.4 78.5 15.2
PD35681b Control Male 131 72 21.2 7.1 2 4.7 1 1.6 84.2 14 5 5 42.3 209 14.8 57.7 17.2
PD29933b pre-AML Male 148 92 24.9 5.5 1.7 3.3 1.1 1.1 95.2 13.2 3.7 4.2 40 161 14.5 77 5.8
PD35590b Control Female 124 70 26.7 7.1 1.6 4.7 1.8 1.5 86.6 12.5 5 4.6 39.5 278 13.8 70.2 17
PD35546b Control Female 112 68 21.3 7.5 1.3 5.7 1.3 0.8 91.2 14.3 3.7 4 36.5 243 11.9 52.5 15.6
PD35521b Control Female 182 106 28.7 6.4 2 3.8 1.5 1.3 87 14 6.6 4.3 37 180 13.3 79.5 16
PD35570b Control Male 146 86 32.6 6.6 1.3 4.3 2.2 2.2 89.3 13.7 5.4 5 45 223 16.2 60.2 16.9
PD35696b Control Male 146 78 25.8 7.2 2 4.9 0.8 1.5 90.7 12.9 4.7 4.5 40.5 208 14.5 65.7 16.3
PD35551b Control Female 148 79 29.2 3.5 1.2 1 2.9 3.1 76.9 18 9.8 5.2 40.1 312 11.8 53.5 15.7
PD35554b Control Male 152 88 29.2 6.1 0.9 3.7 3.4 2 92.3 13.5 6.9 5.2 47.6 264 15.5 73.6 18
PD35527b Control Male 110 76 26 5.2 1.8 2.9 1.1 2.2 91.1 13.7 5.9 4.6 42 321 14.8 50.1 16.2
PD30120b pre-AML Male 120 74 27.9 6.2 1.7 4.1 1 1.3 90 13.1 4.9 4.6 41.6 205 14.6 72.2 12.3
PD35560b Control Female 152 97 31.7 5.7 2 3.2 1.1 2.7 89 13 7.4 4.1 36.3 39 12.8 69.6 17
PD35566b Control Female 120 84 18.6 5.8 2.9 2.4 1.1 2.2 88.3 13.3 5.6 4.3 38.3 253 12.7 57 17.7
PD35663b Control Male 128 86 28.7 5.5 0.9 3.8 1.9 2.2 90.8 12.6 6.2 4.5 40.7 220 13 54 17.8
PD35617b Control Male 174 100 26.6 4.4 2 1.8 1.4 2.2 94.8 13.8 7.2 4.2 39.8 263 13.5 79.6 17.3
PD35698b Control Female 148 90 28 5.1 1.1 3.5 1.2 2 82 14.4 5.4 4 33.1 289 11.1 71.3 17.4
PD35510b Control Male 144 82 23.1 5.2 0.8 3.8 1.5 1.8 92.9 14.3 7.9 3.7 34.6 715 11.4 74.4 13.6
PD35746b Control Male 147 88 23.8 7.5 1.5 4.8 2.8 1.4 86.3 14.3 4.8 4.4 38.3 220 14.2 65.3 17.2
PD35561b Control Male 154 94 31.2 5.3 1 3.2 2.6 1.5 88.6 13.4 7.7 4.9 43.3 262 15.2 77.5 15.5
PD35538b Control Female 118 74 26.2 5.7 2.3 3 0.9 2.8 91.6 14.7 7.6 4.2 38.7 215 12.7 62.9 17.6
PD35718b Control Male 132 75 24.8 5.5 1.1 3.4 2.3 1.2 93 12.6 4 4.6 43.2 186 15.6 63.7 16.5
PD35767b Control Male 139 90 29.3 6.7 1.2 4.7 1.8 - - - - - - - - 51.7 12.3
PD35761b Control Male 146 80 29.9 4.4 0.9 2.5 2.2 2.4 97.9 13.8 10.6 4.3 42.6 210 14.5 71 12.8
PD35562b Control Male 113 66 26.5 6 1.1 3.5 3.1 1.5 90 13 4.7 4.8 42.8 201 13.8 69.2 10.4
PD35714b Control Male 129 84 24.5 6.5 1 3.8 3.8 1.2 87.6 14 4.9 5 43.5 186 14.9 59.3 16.4
PD35648b Control Female 130 79 27.4 6 2 3.5 1.2 1.8 89.3 12.8 4.4 4.2 38 213 13.1 76 14.2
PD35516b Control Female 125 70 22.9 6.1 2.1 3.6 0.9 2.5 88.5 12.6 8.2 4.7 41.4 261 14.2 66.4 16.5
PD35778b Control Male 171 100 29.8 5.8 1.6 3.9 0.8 2 88.5 13.3 6.3 5.2 45.7 185 15.8 66.4 17
PD35621b Control Male 138 84 23.5 5.7 2.4 2.5 1.9 2 98.1 12.4 4.3 4.5 44.6 176 14.6 61.1 17.7
PD35530b Control Female 123 74 23.3 5.9 2.8 2.8 0.8 1.5 82.8 13 5.5 3.7 30.9 267 11 50.3 16.1
PD29851b pre-AML Female 130 80 27.7 6.8 1.2 4.2 3.1 3 91.8 12.9 8.7 4.7 43 238 15.1 60.4 12.2
PD29874b pre-AML Male 110 68 25.4 5.5 1.6 3.4 1.1 1.6 86.7 14 6.7 5.4 47.2 228 16.1 74.2 3.8
PD35788b Control Female 147 80 20.9 10 2.3 6.9 1.8 2.6 95.9 12.3 8.5 4.1 38.9 282 14.1 72.6 17
PD35675b Control Female 139 84 29.7 6.1 1.6 3.4 2.5 2.5 83.4 14.1 7.3 4.5 37.9 319 13 58.3 17
PD30116b pre-AML Male 152 88 26.7 5.5 1.1 3.6 1.8 1.7 90.2 14.8 6.3 4.2 38 183 13.7 72.8 5.1
PD35719b Control Male 136 98 29 7.6 1 6.1 1.2 1.8 91.7 12.2 6 5.2 47.4 206 16 56 17.9
PD35531b Control Female 144 93 28.3 5.7 1.4 3.5 1.8 1.9 88.4 13.3 6.6 4.8 42.5 229 13.8 62.1 17.6
PD35774b Control Female 110 70 28.1 4.9 2.1 2.4 0.9 1.1 102 13.6 3.2 3.6 37 227 11.9 65.9 15.5
PD35644b Control Female 137 79 32.8 8 1.4 5.7 2 1.9 90.4 14.9 6.4 4.4 39.4 157 12.7 62.8 17.7
PD35765b Control Female 132 82 19.2 5.5 2.1 2.5 2 2.5 90.1 13.4 9.8 4.8 42.8 322 15.5 73.8 14.6
PD35783b Control Female 146 88 27.7 5.2 1.6 2.9 1.7 1.7 87.2 12.3 4.3 4.1 35.7 253 12.6 52.3 16.7
PD35628b Control Male 124 86 30.1 7.3 1.3 5.2 1.9 1.9 90.4 15.2 5.3 4.6 42 225 14.7 79 16.7
PD35766b Control Female 155 88 27.2 6.6 1.7 3.5 3.1 2 92.2 11.8 5.2 4.7 43.1 148 15.2 76.3 13.9
PD35629b Control Female 152 86 27.6 5.7 1.3 4 1 1.8 89.2 13.3 6.2 4.1 36.5 275 12.8 78.8 16.6
PD35585b Control Female 104 64 20.9 6.9 1.6 4.9 1 1.6 88.3 12.8 4.3 4.8 42.4 217 14.2 71.8 17
PD35592b Control Male 117 76 24.8 6 1.5 3.3 2.7 2.5 84.9 14.4 7.3 4.9 41.9 178 15 58.3 16.9
PD35588b Control Female 134 80 27.7 5.1 1.5 2.7 2.1 2.1 88.4 13.6 5.4 5 44.5 207 14.3 57.7 17.7
PD35713b Control Male 102 64 21 5.3 1.4 3.7 0.6 1.2 93.1 14.3 4.3 4.7 43.3 159 14.2 59.6 15.6
PD35568b Control Male 145 88 25.4 5.5 1.2 3.3 2.3 1.7 91.9 13.5 5.4 4.8 44.2 321 15.4 71.8 16.3
PD29856b pre-AML Male 130 82 30.3 4 0.9 2.1 2.3 2.6 83.4 13.6 7 6.4 53.1 238 17.9 61.5 17.8
PD35557b Control Male 162 82 25.8 5.7 1.6 3.6 1.2 1 95.2 13.5 6.3 4.7 44.8 229 14.6 78 15.3
PD35603b Control Male 123 76 33.9 5.4 1.2 3.4 1.8 2.3 89.1 13.5 8.2 6.3 56 379 16.6 43.9 15.6
PD35669b Control Male 176 94 23.9 5.7 1.3 3.4 2.3 1.6 90 13.3 4.2 4.1 37.1 174 14.3 73.1 16.8
PD29935b pre-AML Male 140 92 28 6 1.2 4.3 1.2 2.1 81.5 14.6 6.7 4.4 36 304 12.4 65 17.7
PD29960b pre-AML Female 106 64 20.8 3.9 1.6 1.6 1.6 1.8 97 14.4 7.1 3.8 37.3 120 13.2 59.6 7.9
PD35602b Control Male 139 82 28.4 7.9 1.6 5.3 2.4 2.3 78.8 12.6 8.1 5.6 44.4 141 15.3 66.7 17.5
PD35535b Control Male 150 90 28.8 5.6 1.6 3.6 0.9 2.1 88.8 13.5 7.1 5.6 49.5 272 16.5 61.8 15.9
PD35584b Control Male 126 76 29.5 4.8 0.9 3.4 1.3 2.4 95.2 12.6 7.7 4.5 43 254 14.1 59 17.9
PD35532b Control Female 142 82 26.9 5.4 1.2 3.3 2 2.3 89.1 13 7.4 4.5 40.3 255 14.4 65.8 16.2
PD30010b pre-AML Male 138 78 28.5 6.6 1 3.1 5.6 1.9 105 15.1 3.9 3.3 34.2 106 12.4 70 12.7
PD35513b Control Male 152 88 26.8 3.6 1.8 1.1 1.6 1.2 91.8 12.5 5 4.5 41.1 217 15 70.5 16.2
PD35772b Control Male 156 90 35.9 6.5 1.3 4.3 2.1 2.5 87.2 12.7 8.7 4.7 40.5 269 14.8 60.5 16.8
PD35604b Control Male 129 72 27.4 3.6 1.4 1.9 0.8 2.2 88.1 12.7 6.3 5.2 45.7 229 15.9 58.4 17.4
PD35606b Control Male 130 86 28.4 7.3 1.7 5.1 1.3 2.5 100 13.2 5.8 4.6 46.3 213 15 66.1 17.7
PD35618b Control Male 158 92 27.7 5.2 1.6 3.1 1.1 2 89.4 13.2 5.1 4.8 42.8 241 15.4 77.9 13.2
PD35755b Control Female 100 60 23.9 6.9 1.5 4.5 2 1.9 91.4 13.6 5.3 4.1 37.4 265 12.9 71.4 16
PD35575b Control Female 134 81 24.2 5.9 3 2.2 1.6 1.3 86.9 13.3 5.1 4.6 39.6 243 13.4 79.3 14
PD35655b Control Male 158 91 25.2 6.2 1 4.1 2.6 1.8 90.2 14.1 6.5 4.2 38.2 347 13.1 66.2 16.4
PD35630b Control Female 156 90 24.7 6.4 2.8 3.4 0.6 2.1 88.8 13.3 6.5 4.2 36.8 236 13.2 70.3 17.4
PD35680b Control Female 149 88 22.3 6.4 1.5 4.2 1.7 2.4 93.7 12.6 6.6 4.1 38.6 222 12.2 76.4 17.5
PD29929b pre-AML Female 154 84 26.8 9.1 1.9 5.7 3.3 3.1 94.7 12.7 8.4 4.6 43.4 226 15.4 72 6.6
PD35559b Control Male 133 93 34.7 6 0.9 4.4 1.7 1.8 91 13.8 5.8 5.2 47.7 214 16 71.5 16.7
PD35649b Control Female 127 74 25.8 8.7 2 5.6 2.5 1.2 89.5 14.1 6.3 4.2 37.8 170 13.3 69.6 17.1
PD35537b Control Female 157 96 31.7 6.5 1.7 3.3 3.5 2.1 87.2 12.1 6 4.8 41.5 324 14.2 71.6 16.5
PD35563b Control Male 170 99 28.5 6.7 1.2 4.5 2.3 1.8 94 13.2 6.3 4.6 43.1 255 15.7 71.6 17
PD35666b Control Female 152 90 24.7 6.1 1.5 3.2 3.2 2.3 87.7 12.6 8 4.6 40.1 178 14.2 76.8 17.4
PD35577b Control Female 148 98 24.8 5.1 1.7 2.8 1.4 2 92 12.8 8.5 4.6 42.6 245 15.7 55.7 16.9
PD35687b Control Male 128 94 22.5 5.5 1.6 3.4 1.1 2.1 86.7 12.3 6.5 4.6 39.8 338 14 57.2 16.4
PD35695b Control Male 165 91 24.2 7.3 1.3 5 2.3 1.7 91.9 12.8 6 4.8 44.1 216 15.7 77.2 15.9
PD29918b pre-AML Male 135 82 28.7 5.3 0.9 3.7 1.7 2.1 97.5 13.9 6.3 5.4 53.2 189 16.1 82 13.4
PD35653b Control Male 140 83 25.2 4.3 1 2.9 0.9 2.5 81.2 14.3 7.8 5.2 42.5 136 13.8 74.1 13.1
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PD35574b Control Male 130 72 27.8 6.1 1.4 3.7 2.4 2.2 86.1 12.7 8 4.8 41.2 267 13.3 59.3 17.5
PD35597c Control Female 130 78 22.9 6.3 1.8 4.2 0.8 - - - 5.8 - - - - 54.6 16.6
PD35510c Control Male 114 70 24.1 4.7 1.1 2.8 1.8 1.9 - - 7.2 - - - - 82.5 13.6
PD35540c Control Male 102 70 - 4.2 1.4 2.3 1.3 1.5 - - 6.8 - - - - 74.9 11.3
PD35731c Control Male 141 93 29 8.2 1.2 5 4.5 2.4 - - 6.9 - - - - 79.3 17.8
PD35762c Control Female 152 73 25.5 5.2 1.7 3.2 0.7 1.7 - - 7.3 - - - - 84.4 16.4
PD35553c Control Male 122 56 25.4 4.9 1.1 2.3 3.5 1.8 - - 5.2 - - - - 79.7 21.5
PD35660c Control Female 144 84 26.7 4.9 1.1 3.1 1.5 1.8 - - 4.4 - - - - 74.2 21.1
PD35533c Control Male 149 88 27.5 4.3 1.6 2.2 1.3 2.2 - - 7.8 - - - - 66.4 16.2
PD35558c Control Male 140 71 23.1 3.4 1.5 1.5 0.9 1.2 - - 6.5 - - - - 82.4 15.9
PD35733c Control Female 154 85 29.2 5.7 1.7 3.3 1.6 2.2 - - 5 - - - - 72.2 20.4
PD35585c Control Female 121 68 21.6 6.5 1.6 4.4 1.1 1.5 - - 4.6 - - - - 79.8 17
PD35768c Control Female 142 70 31.8 4.8 1.8 2.6 0.9 1.7 - - 5.2 - - - - 83.3 21.1
PD35777c Control Male 146 84 28.1 3.3 1 0.8 3.4 2.9 - - 8.4 - - - - 75.4 19.6
PD35787c Control Male 132 82 28.5 2.8 1.3 1.3 0.5 1.2 - - 7.2 - - - - 80.5 20.7
PD35606c Control Male 142 89 29.9 5.4 1.7 3.3 1 2 - - 5.3 - - - - 76.4 17.7
PD35548c Control Male 150 82 26.8 5.3 1.4 2.9 2.4 0.8 - - 5.7 - - - - 88.1 8.7
PD35759c Control Female 112 82 23.7 6.5 1.5 3.6 3.1 2.5 - - 7.6 - - - - 63 16.3
PD35633c Control Male 86 40 23.2 4.4 1.2 2.9 0.7 1.1 - - 7.2 - - - - 84.8 12.4
PD35771c Control Male 156 98 25.9 4.9 2 2.5 0.9 1.9 - - 6 - - - - 73.4 17.7
PD35677c Control Female 137 74 25.5 4.2 1.8 2.1 0.8 1.3 - - 5.7 - - - - 82.4 16.5
PD35584c Control Male 108 74 28.3 3.8 1 2.4 1.2 1.7 - - 6.8 - - - - 68 17.9
PD35582c Control Female 146 81 25.8 6.8 1.5 4.3 2.4 2.7 - - 8.2 - - - - 83.2 16.3
PD35595c Control Male 130 68 25.6 5.9 1.7 3.7 1.3 2.1 - - 6.5 - - - - 80.6 21.3
PD35613c Control Female 148 88 31.8 5.8 1.9 2.9 2.3 1.8 - - 4.3 - - - - 76.2 21
PD35552c Control Male 112 74 24.2 4.9 1.4 3.1 1 1.5 - - 9.1 - - - - 71.9 18.9
PD35652c Control Female 120 70 34.4 3.9 1 2.6 0.7 1.2 - - 3.7 - - - - 72.8 19.6
PD35586c Control Male 142 88 19.8 5.4 1.9 3.2 0.7 1.8 - - 7.4 - - - - 79.5 17.3
PD35516c Control Female 147 83 23.6 4.3 1.9 2 1 1.7 - - 6.7 - - - - 74.6 16.5
PD35575c Control Female 151 82 23.2 6.5 2.8 3 1.8 1.4 - - 5.7 - - - - 87 14
PD35644c Control Female 130 70 31.8 5.1 1.5 3.1 1.3 1.6 - - 6.7 - - - - 73 17.7
PD35756c Control Male 142 80 23.4 4.6 0.8 2.9 2.1 1.2 - - 6.3 - - - - 87.6 16.8
PD35579c Control Female 138 66 30.9 4.2 1.6 1.9 1.6 2.2 - - 7.1 - - - - 78.2 20.6
PD35732c Control Female 116 72 25.7 4.7 1.8 2.6 0.8 - - - 3.6 - - - - 65.9 17.1
PD35719c Control Male 139 94 28.6 6.9 1.1 5.3 1.2 1.3 - - 5.1 - - - - 66.2 17.9
PD35564c Control Male 127 58 33.1 3.7 1.1 1.8 2 1.9 - - 9.2 - - - - 84.2 13.7
PD35779c Control Male 142 80 28.2 5.1 0.9 2.6 3.6 2.7 - - 7.4 - - - - 69 10
PD35600c Control Female 154 67 31.4 8.8 1.9 5.6 3 1 - - 6.1 - - - - 86.7 7.6
PD35778c Control Male 138 83 29.8 5.2 1.1 2.7 3.1 2.3 - - 5.9 - - - - 76.6 17
PD35758c Control Male 142 90 35.2 4.4 1.5 1.9 2.2 1.6 - - 7.3 - - - - 75.8 21
PD35630c Control Female 138 73 23 5.5 2.2 3.1 0.6 1.4 - - 7.7 - - - - 80.3 17.4
PD35592c Control Male 149 84 23.7 5.8 1.6 3.6 1.3 2.3 - - 7 - - - - 66.7 16.9
PD35738c Control Female 152 90 23.9 4 1.6 2 0.9 1.6 - - 6.6 - - - - 74.6 22.1
PD35545c Control Male 106 72 31.7 3.8 1.3 1.8 1.6 1.1 - - 5.1 - - - - 82 20.4
PD35568c Control Male 136 82 25.4 5.4 1.4 3 2.4 1.6 - - 6.6 - - - - 79.9 16.3
PD35684c Control Female 126 76 22.8 5.9 2.1 3.1 1.6 2.4 - - 9.4 - - - - 56.5 19.7
PD35574c Control Male 126 70 29 5.7 1.3 3.9 1.1 2.8 - - 7 - - - - 68.2 17.5
PD35559c Control Male 110 70 31.4 4.2 1.6 2.2 0.9 - - - 6.8 - - - - 80.5 16.7
PD35561c Control Male 160 80 32.2 4.5 1.2 2.3 2.4 1.4 - - 7 - - - - 85.9 15.5
PD35665c Control Male 128 73 25.4 4.5 1.6 2.3 1.4 1.7 - - 6.4 - - - - 80.2 22
PD35724c Control Male 137 71 26.3 4.8 0.9 - 4.7 2.3 - - 9.2 - - - - 77.9 21.5
PD35534c Control Female 111 66 22.2 7.2 2.2 4.5 1.1 1.6 - - 4.5 - - - - 74.5 16.8
PD35669c Control Male 139 69 23.9 4.4 1.2 2.4 1.8 1.4 - - 5.9 - - - - 81.5 16.8
PD35624c Control Female 160 91 27.3 6.5 0.7 - 4.6 1.1 - - 4.7 - - - - 84.7 21.7
PD35647c Control Female 138 70 29.1 4.3 1.5 2.3 1.2 1.8 - - 6.9 - - - - 87.3 21.8
PD35544c Control Male 165 92 26.4 6.3 1.3 3.5 3.3 1.6 - - 4.2 - - - - 61.2 17.2
PD35616c Control Male 129 72 33.8 5.1 1 3.5 1.5 1.9 - - 7 - - - - 79.6 21
PD35520c Control Female 114 68 29.3 4.7 1.4 1.5 4.1 2.4 - - 7.4 - - - - 55.6 18
PD35634c Control Female 133 63 24.7 7.7 2.7 4.4 1.4 2.1 - - 5.6 - - - - 61.4 7.9
PD29914c Control Male 121 60 33.3 3 0.9 1.6 1.2 1 - - 5.6 - - - - 66.8 1.1
PD35538c Control Female 130 84 26.8 4.9 1.9 2.8 0.5 2 - - 6.4 - - - - 72.9 17.6
PD35709c Control Female 135 70 22.1 5.1 2.8 1.9 1 1.8 - - 7.9 - - - - 83.7 17.4
PD35620c Control Female 156 93 19.3 6 2.8 2.8 0.9 - - - 4.6 - - - - 66.9 17.6
PD35560c Control Female 137 72 31.8 3.7 1.7 1.3 1.6 0 - - 6.6 - - - - 77.7 17
PD35770c Control Male 140 85 24.6 5.5 1.6 3.5 0.9 1 - - 4.4 - - - - 81 8
PD35556c Control Female 129 76 24.3 4.9 1.8 2.5 1.4 2.8 - - 8.6 - - - - 76.4 20.8
PD35635c Control Female 144 92 33.8 6.4 1.3 4 2.6 2.7 - - 6.1 - - - - 72.9 17.8
PD35661c Control Male 122 72 29.3 4.4 1.3 2.5 1.4 1.2 - - 7.2 - - - - 81.9 17.9
PD35773c Control Female 111 70 32.3 4 1.8 1.7 1.1 1.4 - - 6.8 - - - - 85.5 19.3
PD35508c Control Female 144 74 27.2 4.5 1.9 2.1 1.3 1.1 - - 5.3 - - - - 79.4 21.4
PD35578c Control Female 208 102 22.8 6.7 1.8 4.2 1.7 2.1 - - 7.2 - - - - 86.1 7.7
PD35761c Control Male 144 76 31.7 3.1 1.1 1.5 1.1 1 - - 10.4 - - - - 81.2 12.8
PD35594c Control Female 163 94 27.6 6.4 1.4 4.5 1.3 2.4 - - 5.2 - - - - 76.7 17.6
PD35637c Control Male 123 80 25.8 5.7 1.7 3.7 0.7 1.5 - - 5.8 - - - - 69.5 15.6
PD29935d pre-AML Male 102 72 27.9 3.4 1 1.7 1.6 1.6 - - 7.6 - - - - 73.1 17.7
PD35612c Control Female 140 72 39.1 4.2 1.8 1.8 1.4 1.6 - - 7.6 - - - - 71.2 21.9
PD35699c Control Male 142 90 27.7 5.3 1.6 3.2 1.1 2 - - 5.7 - - - - 66.7 17.1
PD35570c Control Male 150 88 33.6 5.9 1.3 3.7 2.1 1.4 - - 5.9 - - - - 68.6 16.9
PD35656c Control Female 150 82 27.6 5.9 1.2 3.3 3.1 2.6 - - 3.6 - - - - 75.4 10.2
PD35526c Control Male 139 69 27 4.1 1.4 2.2 1.3 1.8 - - 7.2 - - - - 80.4 20.7
PD35581c Control Male 136 77 22.5 5.1 1.1 3.5 1.2 2.1 - - 10.2 - - - - 77.2 17.3
PD35788c Control Female 146 70 22.8 4 1.9 1.8 0.8 1.7 - - 6.3 - - - - 82.4 17
PD35722c Control Male 136 84 28.3 4.6 1.2 2.4 2.3 1.5 - - 5.1 - - - - 70.9 21.5
PD35590c Control Female 142 62 26.8 4.4 1.7 2.1 1.4 1.8 - - 6.9 - - - - 78.3 17
PD35532c Control Female 124 66 27.4 4.6 1.4 2.6 1.4 1.7 - - 6.4 - - - - 73.9 16.2
PD35760c Control Male 126 62 34.9 3.9 1 2.4 1.1 1.5 - - 7.6 - - - - 80.5 19.8
PD35748c Control Female 146 72 26.5 3.4 1.4 1.5 1.1 1.6 - - 8.1 - - - - 76.4 8.3
PD35740c Control Male 128 66 25.2 4.4 2.1 1.8 1.1 1.2 - - 4.9 - - - - 84.1 21.8
PD35563c Control Male 151 82 30.2 4.4 2 2 1 0.8 - - 10.5 - - - - 80 17
PD30058d Control Female 147 77 26.5 5.9 1.5 3.6 1.8 - - - - - - - - 67.4 19.3
PD35785c Control Male 139 90 28 6.3 1.7 4.1 1.2 1.1 - - 7.6 - - - - 64.6 15.8
PD35695c Control Male 138 72 25.3 6.8 1.2 4.2 3.2 1.4 - - 7.1 - - - - 85 15.9
PD35659c Control Male 126 68 23.6 5.2 1 2.9 2.9 2.1 - - 13.4 - - - - 80.4 20.3
PD35576c Control Male 141 77 32.7 4.7 1.4 2.4 2.1 2.1 - - 8.8 - - - - 68.4 8.7
PD35583c Control Male 112 61 24.9 2.7 1.1 1.2 0.8 1.4 - - 9.3 - - - - 83.9 11.5
PD35702c Control Male 124 76 27.7 3.7 1 1.4 2.9 1.3 - - 4.7 - - - - 81.2 22
PD35772c Control Male 161 88 39.4 5.9 1.2 3.5 2.7 2.8 - - 10.6 - - - - 68.8 16.8
PD35765c Control Female 151 82 18.6 6.2 3.2 2.5 1.3 0.5 - - 10 - - - - 81.9 14.6
PD35673c Control Male 116 71 27.6 6.6 1.8 4.3 1.2 1.1 - - 5.3 - - - - 61.9 19.8
PD35573c Control Female 196 86 20.3 5 1.1 3.5 1 2.3 - - 6.6 - - - - 84.1 19.3
PD35618c Control Male 130 70 27.8 3.7 1.2 2 1.2 1.2 - - 5.4 - - - - 86.5 13.2
PD35591c Control Female 152 70 23.1 6 1.6 3.8 1.4 2.3 - - 8.1 - - - - 66.5 17.2
PD35519c Control Female 137 74 32.6 7.7 1.9 4.6 2.7 3.1 - - 8.2 - - - - 77.7 20.2
PD35782c Control Male 144 86 20.1 5.5 2.7 2.5 0.7 - - - 4.7 - - - - 61.5 20.5
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PD35580c Control Female 110 70 22.7 3.7 1.4 1.8 1.2 2 - - 6.4 - - - - 81 21.3
PD35639c Control Female 143 84 25.5 6 1.4 3.8 2 2.1 - - 5.1 - - - - 74.4 17.3
PD35767c Control Male 148 82 29.5 6 1.6 3.9 1.2 2.2 - - 8.1 - - - - 60.4 12.3
PD35514c Control Female 131 70 24.2 7.7 2 5 1.7 1 - - 8.7 - - - - 84.7 20.7
PD35555c Control Female 140 76 19.2 5.3 2.6 2.2 1.2 0.8 - - 6.6 - - - - 80.8 16.1
PD35607c Control Male 160 88 26.4 4.9 1.3 3.1 1.1 1.2 - - 6.6 - - - - 87.3 17.2
PD35755c Control Female 118 74 23.3 5.5 1.3 3.4 1.8 1.6 - - 4.7 - - - - 77.8 16
PD35698c Control Female 152 76 27.4 5.2 1 3.6 1.4 1.8 - - 5.9 - - - - 81.1 17.4
PD35648c Control Female 121 74 27.1 5.7 1.7 3.4 1.4 1.7 - - 4.2 - - - - 85.8 14.2
PD35746c Control Male 166 87 23.6 5.2 1.8 2.3 2.6 1.9 - - 6.1 - - - - 74.9 17.2
PD35596c Control Male 106 62 18.2 4.1 1.4 2.4 0.7 0.6 - - 2.4 - - - - 58.6 19.8
PD35577c Control Female 142 94 27.9 5 1.8 2.6 1.4 2.1 - - 6.2 - - - - 63.8 16.9
PD35571c Control Female 131 61 23.8 4.5 1.6 2.3 1.4 1.7 - - 5.4 - - - - 61.1 17.3
PD35710c Control Female 128 66 29.1 5.2 1.6 3.1 1.2 - - - 4.2 - - - - 80 17.2
PD35554c Control Male 129 64 29.9 5 0.9 2.6 3.3 1.9 - - 7.5 - - - - 82.3 18
PD29918d pre-AML Male 146 79 28.7 4.3 0.9 2.5 2 1.5 - - 3.5 - - - - 89.9 13.4
PD35766c Control Female 148 68 30.5 5.3 1.8 2.5 2.3 1.9 - - 7.4 - - - - 85.9 13.9
PD35565c Control Male 132 72 32.9 3.7 0.8 - 5 2 - - 5.9 - - - - 69.7 21.2
PD35562c Control Male 127 69 24.6 4.1 1.4 2 1.7 1.3 - - 6.6 - - - - 77.4 10.4
PD35623c Control Female 148 72 25.3 4.6 2.1 2 1.1 1.8 - - 7.5 - - - - 78.9 21.1
PD35569c Control Male 134 83 22.9 6 1.7 3.8 1.2 2.1 - - 6.1 - - - - 64.6 19.1
PD35789c Control Male 124 76 25.2 6.7 1.1 4.3 3 2.3 - - 5.4 - - - - 60.9 17.1
PD35786c Control Male 140 94 27.1 6.7 1 4.2 3.3 1.5 - - 6.3 - - - - 70.2 21.5
PD35550c Control Female 136 60 33 4.7 1.6 2.4 1.6 1.8 - - 7.2 - - - - 79.8 21.2
PD35622c Control Female 141 78 25.4 5.7 1.9 3.2 1.5 2.3 - - 5.5 - - - - 65.8 21.4
PD35780c Control Male 143 86 26 4 1.5 2.3 0.6 - - - - - - - - 76.4 19.5
PD35546c Control Female 120 71 22.3 4.3 1.4 2.6 0.8 1.2 - - 7 - - - - 61.3 15.6
PD35763c Control Male 138 82 27.8 3.5 1 1.8 1.6 1.9 - - 5.9 - - - - 77.4 20.5
PD35783c Control Female 180 92 27.6 5.4 1.7 3.1 1.5 1.7 - - 5.9 - - - - 60.5 16.7
PD35566c Control Female 109 72 19.9 5.3 2.2 2.8 0.7 2 - - 6.4 - - - - 66 17.7
PD35757c Control Female 132 80 28.6 7.3 1.4 - 4.8 1.5 - - 6.2 - - - - 75.2 18.5
PD35542c Control Female 150 86 30.4 5.6 1.4 3.3 2.1 2.2 - - 7.2 - - - - 74.3 16.3
PD35605c Control Female 153 88 24.1 4 1.4 2.2 1 - - - 3.3 - - - - 75.8 21.7
PD35528c Control Female 156 83 31.4 7.8 1.8 5.3 1.6 2 - - 6.5 - - - - 64.2 18.8
PD35589c Control Female 121 68 21.9 4.8 1.5 2.8 1.3 0.9 - - 5.7 - - - - 76.1 20.9
PD35557c Control Male 148 74 26.4 4.5 1.7 2.7 0.4 0.7 - - 5.2 - - - - 86.9 15.3
PD35531c Control Female 158 95 26.1 4.6 1.5 2.4 1.6 1.6 - - 7.4 - - - - 70.5 17.6
PD35507c Control Male 178 117 24.8 6.5 2 4.3 0.6 1.8 - - 5.6 - - - - 68.4 21.9
PD35704c Control Male 130 84 27.3 3.7 1.2 1.7 1.8 3 - - 7.2 - - - - 64.6 16.2
PD35764c Control Male 133 76 27.1 4 1.1 2.4 1.1 1.7 - - 8.9 - - - - 76.1 21.4
PD35628c Control Male 139 86 28.5 4.1 1.4 2.3 1 1.4 - - 6.1 - - - - 89.9 16.7
PD35781c Control Male 140 78 30 4.1 1 2.6 1.3 1.6 - - 7.4 - - - - 73.3 21.6
PD35588c Control Female 110 71 29 4.8 1.4 2 2.9 2.1 - - 6.7 - - - - 67.6 17.7
PD35662c Control Female 140 82 22.5 6.9 1.6 5 0.8 1.2 - - 6.2 - - - - 83.4 17.7
PD35587c Control Female 106 64 30 5.2 1.8 2.9 1.3 3.1 - - 9.6 - - - - 82 21.3
PD35726c Control Male 152 80 25.4 6 1.6 4.1 0.8 1 - - 6.2 - - - - 85.6 15.9
PD35539c Control Female 123 72 24.5 4.9 1.6 2.5 1.8 2.1 - - 7.5 - - - - 72.2 16.4
PD35572c Control Male 134 90 31.6 5.3 1.4 2.8 2.5 2.7 - - 7.9 - - - - 60.5 20.2
PD30089c pre-AML Female 142 60 28.5 4.6 1.4 2.9 0.7 1.4 - - 4 - - - - 75.6 13.5
PD35697c Control Female 138 68 23.2 5.7 1.5 3.6 1.5 2.3 - - 6.9 - - - - 78.6 20.7
PD35769c Control Female 162 89 24.6 6.3 2.4 3.4 1.3 1.6 - - 5.7 - - - - 74.2 15.7
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Appendix 3: Childhood cancer survivor cohort details 

Study ID Sex Diagnosis Age at 
diagnosis

Months since cytotoxic 
treatment

1 female NB 15.4 64.3
2 male RMS 11.1 21.7
3 female ALL 5.7 132.4
4 NA ALL NA NA

5* female ALL 1.1 106.4
6 female ALL 6.1 80.3
7 male NB 6.3 231.9

8§ male NHL 4.7 176.2
9 female ALL 1.7 52.6

10§ male ALL 6.9 298.2
11 female GCT 9.3 25.9
12 male RMS 6 102.9
13 female NHL 7.1 103.9
14 male ALL 6.9 177.4
15 female NHL 9.4 80.1
16 male NB 0.6 94

17* male LL 5.8 55.4
18 male HL 14.8 136.6
19 male WT 0.8 57.3
20 male RMS 3.1 47.6
21 female ALL 9.1 35.7
22 male HL 10.9 43.5
23 male ALL 4 49.5
24 male HL 14.2 42.5
25 male HB 0.3 112.9

26* male ALL 0.6 81.1
27 male HL 7.1 86.2
28 male GCT 15.4 26.7
29 male RMS 5.8 76.2

30§ male NHL 15.5 46.6
31 male HL 25.4 48.5

32§ male ES 4.6 141.5
33 male LL 9.3 112.9
34 female ES 3.3 74.3

35* male NB 2.3 102.9
36 male NHL 2 46.4
37 male NB 3.4 166.4
38 female NB 1.7 124.8

39* male LL 3.2 112.9
40§ male NB 0.5 289.3
41 female WT 3.1 105.9
42 male NB 0.9 268.4
43 female NB 0.6 238.8
44 male NHL 5.8 183.2
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45 male RMS 8.4 192.2
46 male NRSTS 4.3 105.9
47 male ALL 3 58.3
48 male ALL 3.9 35.7
49 male NB 5.5 NA
50 female ES 13.4 69.2

51* male ALL 4.7 89.1
52 female CCA 12.8 41.5
53 male NB 4 73.3
54 female WT 4.8 63.4
55 male HL 15.3 46.4

56* male ALL 1.5 44.5
57 male NPC 15.9 35.4
58 female NHL 8.7 25.7
59 male ALL 4.5 59.4
60 male ALL 3.6 35.9
61 male NB 5.8 34.5
62 male NHL 2.6 59.3
63 male NHL 9.1 62.4
64 female RMS 3 80.1
65 female NB 0.3 138.6
66 female RMS 1.1 45.4
67 female ALL 2.4 54.4
68 male NHL 3.7 212.9
69 female NRSTS 11 38.1
70 male NB 0.4 45.4
71 female LCH 3.7 88.1

72* female LCH 3.1 69.2
73 female WT 3.8 142.7
74 female GCT 0 131.8
75 male GCT 15.4 NA

76§ female WT 4.9 96.1
77 female ALL 8.2 45.4

78§ female NB 1.1 39.6
79 male ALL 4.5 77.2

80§ male NB 1.3 194.1
81 male ALL 3.3 48.5
82 female NB 0.3 75.2
83 male ALL 3 75.2
84 male ES 10.7 100

RMS, rhabdomyosarcoma; ALL, acute lympoblastic leukaemia; NB, neuroblastoma; NHL, 
non-Hodgkin lymphoma; GCT, germ cell tumour; LL, lymphoblastic lymphoma; HL, 
Hodgkin lymphoma; WT, Wilms tumour; ES, Ewing sarcoma; NRSTS, non-
rhabdomyosarcoma soft tissue sarcoma; NPC, nasopharyngeal sarcoma; CCA, 
choriocarcinoma; LCH, Langerhans cell histiocytosis; NA, no data. Patients who received a 
haematopoietic stem cell transplant (HSCT) are indicated with the symbols * (allogeneic 
HSCT) or § (autologous HSCT).
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Appendix 4: Custom myeloid cancer gene panel 

ABL1 CSF2RB FBXW7 MLL2 PPFIA2 SMG1

ASXL1 CSF3R FLT3 MLL3 PRPF40B SMPD3

ASXL2 CTCF FNDC1 MLL5 PRPF8 SRSF2

ASXL3 CUL1 GATA1 MPL PTEN STAG1

ATRX CUL2 GATA2 MYB PTPN11 STAG2

BCOR CUL3 GNAS MYC PTPRT STAT5B

BRAF CUX1 GNB1 MYH11 RAD21 SUZ12

CACNA1E DAXX HRAS NF1 RAD51 TERT

CBFB DCAF7 IDH1 NOTCH1 RARA TET2

CBL DCLK1 IDH2 NOTCH2 RB1 TP53

CBLB DIAPH2 IRF1 NPM1 RIT1 U2AF1

CBLC DNMT1 JAK2 NRAS RPS6KA6 U2AF2

CBX7 DNMT3A JAK3 PDS5B RUNX1 UGT2A3

CDH23 EED KDM6A PHACTR1 SETBP1 WT1

CDKN2A EP300 KIT PHF6 SF1 ZFP36

CEBPA EPOR KRAS PHF8 SF3B1 ZRSR2

CNTN5 ETV6 LUC7L2 PHIP SH2B3

CREBBP EZH2 MED12 PIK3CA SMC1A

CSF1R FAM5C MLL PML SMC3
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Appendix 5: Multiplex PCR primer sequences 

PLEX PRIMER NAME GENE
TARGETED 

EXON/CODON
PRIMER SEQUENCE3

1 ASXL1_exon12_a_F ASXL1 exon12 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGACCCTCGCAGACATTAmAA
1 ASXL1_exon12_a_R ASXL1 exon12 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGCTGTAGATCTGACGTACACmUT
1 ASXL1_exon12_b_F ASXL1 exon12 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAGTGGTGATGGTGGTGmAG
1 ASXL1_exon12_b_R ASXL1 exon12 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGGCATCTCCTAGCCCATmCT
1 ASXL1_exon12_c_F ASXL1 exon12 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTACTACAGAGGGCTACAGTmUG
1 ASXL1_exon12_c_R ASXL1 exon12 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTCTTGCTCCTCATCATCACTTmUC
1 DNMT3A_p.R693C_F DNMT3A p.R693C ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCTCATGTTCTTGGTGTTTTAT
1 DNMT3A_p.R693C_R DNMT3A p.R693C TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTTTTCTCCCCCAGGGTATTTG
1 IDH1_p.R132H_F IDH1 p.R132H ACACTCTTTCCCTACACGACGCTCTTCCGATCTTAAATGTGTGTAAATATACAGTTAT
1 IDH1_p.R132H_R IDH1 p.R132H TCGGCATTCCTGCTGAACCGCTCTTCCGATCTATTATCTGCAAAAATATCCCCC
1 IDH2_p.R172K_IDH2_p.R140Q_F IDH2 p.R172K, p.R140Q ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGAGGATGGCTAGGCGAGGA
1 IDH2_p.R172K_IDH2_p.R140Q_R IDH2 p.R172K, p.R140Q TCGGCATTCCTGCTGAACCGCTCTTCCGATCTCTCACAGAGTTCAAGCTGAAG
1 JAK2_p.V617F_F JAK2 p.V617F ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTCTTTCTTTGAAGCAGCAAG
1 JAK2_p.V617F_R JAK2 p.V617F TCGGCATTCCTGCTGAACCGCTCTTCCGATCTAGTTTACACTGACACCTAGCTG
1 KIT_exon17_F KIT exon17 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGGTTTTCTTTTCTCCTCCAAC
1 KIT_exon17_R KIT exon17 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTCCTTTGCAGGACTGTCAAG
1 KRAS_p.G12R_F KRAS p.G12R ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTTGGATCATATTCGTCCACA
1 KRAS_p.G12R_R KRAS p.G12R TCGGCATTCCTGCTGAACCGCTCTTCCGATCTAAGGTACTGGTGGAGTATTTGA
1 NPM1_p.L287fs*13_F NPM1 p.L287fs*13 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTTTGGAATTAAATTACATCTGA
1 NPM1_p.L287fs*13_R NPM1 p.L287fs*13 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTAAAATTTTTTAACAAATTGTTTAAACT
1 NRAS_p.G12D_F NRAS p.G12D ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGGTAAAGATGATCCGACAA
1 NRAS_p.G12D_R NRAS p.G12D TCGGCATTCCTGCTGAACCGCTCTTCCGATCTCGCCAATTAACCCTGATTACTG
1 SF3B1_p.K666N_F SF3B1 p.K666N ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCCTGTCTCCTAAAGAAAAAA
1 SF3B1_p.K666N_R SF3B1 p.K666N TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTAGAGCTTTTGCTGTTGTAGC
1 SF3B1_p.K700E_F SF3B1 p.K700E ACACTCTTTCCCTACACGACGCTCTTCCGATCTTAGTAATTTAGATTTATGTCGCC
1 SF3B1_p.K700E_R SF3B1 p.K700E TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGGCATAGTTAAAACCTGTGTTT
1 SRSF2_p.P95L_F SRSF2 p.P95L ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCTTCGCCGCGGACCTTTGT
1 SRSF2_p.P95L_R SRSF2 p.P95L TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGAGGACGCTATGGATGCCATG
1 U2AF1_p.Q157R_F U2AF1 p.Q157R ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGGTTGGAAGGAGACATTTAmCT
1 U2AF1_p.Q157R_R U2AF1 p.Q157R TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGAAAAGGCTGTGATTGACTTmGA
1 U2AF1_p.S34F_F U2AF1 p.S34F ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGATCACCTGCCTCACTATTmAT
1 U2AF1_p.S34F_R U2AF1 p.S34F TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTTTCAAAATTGGAGCATGTCmGT
2 PPM1D_exon1_a_F PPM1D exon1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGCGCCTAGTGTGTCmUC
2 PPM1D_exon1_a_R PPM1D exon1 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGCCTTTCCCCGAGACTmUC
2 PPM1D_exon1_c_F PPM1D exon1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTTCCTCCGTGGCCTTmUT
2 PPM1D_exon1_c_R PPM1D exon1 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTCAAACAAGCCAGGGAACTTmAC
2 PPM1D_exon3_F PPM1D exon3 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGAGCTATCTTAGTTGTTmGT
2 PPM1D_exon3_R PPM1D exon3 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTGCCAAGTAAGGGTTTAGTTmCT
2 PPM1D_exon5_a_F PPM1D exon5 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACAGATGTAGTGGCAGCTAAmAT
2 PPM1D_exon5_a_R PPM1D exon5 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGTCATCACACAGGTTTCTTGmAC
2 PPM1D_exon6_a_F PPM1D exon6 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCATAGATTTGTTGAGTTCTmGG
2 PPM1D_exon6_a_R PPM1D exon6 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTGGAAGGCTATTATTCAAAGAATmCA
2 PPM1D_exon6_c_F PPM1D exon6 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTAGAAGAGTCCAATTCTGGmCC
2 PPM1D_exon6_c_R PPM1D exon6 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTCAACATCGGCACCAAATTTmAA
2 TP53_exon1_F TP53 exon1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTCAAAGACCCAAAACCCAAmAA
2 TP53_exon1_R TP53 exon1 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTTGATTTGAATTCCCGTTGTmCC
2 TP53_exon10_a_F TP53 exon10 ACACTCTTTCCCTACACGACGCTCTTCCGATCTATTGAAGTCTCATGGAAGCCmAG
2 TP53_exon10_a_R TP53 exon10 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTCGGACGATATTGAACAATGGmUT
2 TP53_exon10_b_F TP53 exon10 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAAGGGACAGAAGATGACAmGG
2 TP53_exon10_b_R TP53 exon10 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGACTGCTCTTTTCACCCATCmUA
2 TP53_exon11_F TP53 exon11 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGACTGTAGATGGGTGAAAAmGA
2 TP53_exon11_R TP53 exon11 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTAGACCTATGGAAACTGTGAGmUG
2 TP53_exon12_F TP53 exon12 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACGTTGTTTTCAGGAAGTCmUG
2 TP53_exon2_F TP53 exon2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGAGAATGGAATCCTATGGCmUT
2 TP53_exon2_R TP53 exon2 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTCATGTTGCTTTTGTACCGTCmAT
2 TP53_exon3_F TP53 exon3 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGCTAGGCTAAGCTATGATGmUT
2 TP53_exon3_R TP53 exon3 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGCTCCTGGTTGTAGCTAACTmAA
2 TP53_exon5_F TP53 exon5 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTTCCACTTGATAAGAGGTCmCC
2 TP53_exon5_R TP53 exon5 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGAAGAGAATCTCCGCAAGAAmAG
2 TP53_exon7_F TP53 exon7 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGAGGTGGATGGGTAGTAGmUA
2 TP53_exon7_R TP53 exon7 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTATCTTGGGCCTGTGTTATCmUC
2 TP53_exon9_F TP53 exon9 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATCAGTGAGGAATCAGAGmGC
2 TP53_exon9_R TP53 exon9 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTTTCAACTCTGTCTCCTTCCmUC
3 PPM1D_exon1_b_F PPM1D exon1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACCGACGGCTGAAGAAmAA
3 PPM1D_exon1_b_R PPM1D exon1 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTCTTCTTGATGAAACCCCACAmAG
3 PPM1D_exon2_F PPM1D exon2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTTGCAAGAGTGAAATATTmUT
3 PPM1D_exon2_R PPM1D exon2 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGAAAGAGAAAACGACAGAATmGT
3 PPM1D_exon4_F PPM1D exon4 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTCCAACTAATACTTCTTGmCT
3 PPM1D_exon4_R PPM1D exon4 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTACCAAAACAATGTTTAGACAmAC
3 PPM1D_exon5_b_F PPM1D exon5 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGCCATAGTAATCTGCATmCT
3 PPM1D_exon5_b_R PPM1D exon5 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTCGAGTTCAAATCCAAAATCCmUG
3 PPM1D_exon6_b_F PPM1D exon6 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTACCCTCAAAAGATCCAGAAmCC
3 PPM1D_exon6_b_R PPM1D exon6 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTCGACTTAAGCCATTTCGTCmUA
3 TP53_exon12_R TP53 exon12 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTGGATCCCCACTTTTCCTCTmUG
3 TP53_exon4_F TP53 exon4 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCAGGCAAAGTCATAGAACCmAT
3 TP53_exon4_R TP53 exon4 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTGACTGTTTTACCTGCAATTmGG
3 TP53_exon6_F TP53 exon6 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGAGGCAAGGAAAGGTGATAmAA
3 TP53_exon6_R TP53 exon6 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTAGGACCTGATTTCCTTACTmGC
3 TP53_exon8_F TP53 exon8 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGCACATCTCATGGGGTTAmUA
3 TP53_exon8_R TP53 exon8 TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTGATTCCTCACTGATTGCTCmUT

Nucleotide sequences for multiplexed primers used in plexes 1 - 3. 
* Consecutive primers constitute forward (F) and reverse (R) primer pairs for the indicated loci
† Forward primers format: 5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCT-[gene-specific forward] 3’, 
   Reverse primerformat:5’ TCGGCATTCCTGCTGAACCGCTCTTCCGATCT-[gene-specific reverse] 3’
‡ "m" denotes a single 2'-O-Methyl base in place of the DNA base, used in order to minimise potential primer dimers
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Appendix 6: Custom pan-haematological cancer gene panel

ARID1A CREBBP HIST1H1D NOTCH2 SOCS1

ASXL1 CSF1R HIST1H1E NPM1 SRSF2

ATM CSF3R IDH1 NRAS STAG2

ATP6AP1 CUX1 IDH2 PAX5 STAT3

ATP6V1B2 DNMT3A IKZF3 PDGFRA STAT6

B2M EBF1 IL7R PHF6 TCF3

BCL10 EP300 IRF8 PIM1 TET2

BCL2 ETNK1 JAK2 POT1 TNFAIP3

BCL6 ETV6 KDM6A POU2F2 TNFRSF14

BCOR EZH2 KIT PPM1D TP53

BCORL1 FBXW7 KMT2C PRDM1 U2AF1

BRAF FLT3 KMT2D PTEN WT1

CALR FOXO1 KRAS PTPN11 XPO1

CARD11 GATA2 MBD1 RAD21 ZEB1

CBL GNA13 MEF2B RRAGC ZRSR2

CCND3 GNAS MPL RUNX1

CD58 GNB1 MYC SETBP1

CD79B H3F3A MYD88 SETD2

CDKN2A HIST1H1B NF1 SF3B1

CEBPA HIST1H1C NOTCH1 SMC3
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Appendix 7 

Code for the derivation of the genetic AML 
prediction model 

 
 
 
 

 

A 17



Discriminating evolution of acute
myeloid leukaemia from age-related
clonal haematopoiesis
Grace Collord & Moritz Gerstung
Tue Jul 24 16:38:48 2018
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1.1 Libraries

2 AML incidence data
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3.1 Data
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4.1 Data
5 Expected AML incidence

5.1 Validation cohort
5.2 Discovery cohort

6 Combined data
7 Coxph model fits

7.1 Discovery cohort
7.1.1 Non-adjusted
7.1.2 Adjusted

7.2 Validation cohort
7.2.1 Non-adjusted
7.2.2 Adjusted

7.3 Cross-validation
7.3.1 Non-adjusted
7.3.2 Adjusted

7.4 Combined
7.4.1 Non-adjusted
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7.4.4 Forest plot
7.4.5 Dichotomous variables
7.4.6 Bootstrap adjustment
7.4.7 LOOCV

7.4.7.1 Individual Predictions (non-adjusted)
7.4.7.2 Jackknife variance
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7.4.11.2 Number of mutations + vaf
7.4.11.3 Number of mutations + cumulative vaf

8 Logistic regression
8.1 Combined
8.2 Discovery cohort
8.3 Validation cohort
8.4 Bootstrap CIs
8.5 Forest plot
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9 Tabulate results
10 Clinical/Demographic model

10.1 Validation cohort
10.2 Expected AML incidence
10.3 Combined data
10.4 Coxph model fits

10.4.1 Discovery cohort
10.4.1.1 Raw

10.4.2 Validation cohort
10.4.2.1 Raw
10.4.2.2 Adjusted

11 Model excluding controls without mutations
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11.2 Expected AML incidence
11.3 Combined data
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11.4.1.2 Adjusted

11.4.2 Validation cohort
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11.4.2 Validation cohort
11.4.2.1 Raw
11.4.2.2 Adjusted

12 CoxPH model excluding all samples without ARCH-PD
12.1 Discovery cohort
12.2 Validation cohort
12.3 Expected AML incidence
12.4 Combined data
12.5 Coxph model fits

12.5.1 Toronto
12.5.1.1 Raw
12.5.1.2 Adjusted

12.5.2 Validation cohort
12.5.2.1 Raw
12.5.2.2 Adjusted

13 Session

1 Preliminaries
1.1 Libraries

library(CoxHD)
library(survAUC)
library(survivalROC)
library(glmnet)
library(RColorBrewer)
library(stringr)
library(dplyr)
library(readr)

set1 <- RColorBrewer::brewer.pal(8, "Set1")

Helper functions

superSet <- function(x, s, fill=NA){
    i <- intersect(colnames(x), s)
    n <- setdiff(s, colnames(x))
    y <- x[,i]
    if(length(n) > 0)
        y <- cbind(y,  matrix(fill, ncol=length(n), dimnames=list(NULL, n)) )[,s]
    return(y)
}

2 AML incidence data
Use known AML incidence to correct bias using weighted controls. The expected incidence of AML was
calculated from the UK office of national statistics, available at http://www.cancerresearchuk.org/health-
professional/cancer-statistics/statistics-by-cancer-type/leukaemia-aml/incidence
(http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-
type/leukaemia-aml/incidence). Spline function to interpolate Male denoted by 1 and female by 0

age_incidence <- read.table("data/aml_age_incidence.txt", header=TRUE, sep="\t")
head(age_incidence)

 
 

Age.Range
<fctr>

Male.Cases
<int>

Female.Cases
<int>

Male.Rates
<dbl>

Female.Rates
<dbl>

1 0 to 04 18 12 0.9 0.6

2 05 to 09 10 10 0.5 0.5

3 10 to 14 8 10 0.4 0.6

4 15 to 19 15 14 0.7 0.8

5 20 to 24 21 18 1.0 0.8

6 25 to 29 22 20 1.0 0.9

6 rows

tail(age_incidence)

 
 

Age.Range
<fctr>

Male.Cases
<int>

Female.Cases
<int>

Male.Rates
<dbl>

Female.Rates
<dbl>

14 65 to 69 205 140 12.2 7.9
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14 65 to 69 205 140 12.2 7.9

15 70 to 74 256 162 21.2 12.0

16 75 to 79 270 179 28.3 15.7

17 80 to 84 235 165 36.1 18.4

18 85 to 89 139 122 40.4 20.7

19 90+ 53 85 35.6 22.2

6 rows

str(age_incidence)

## 'data.frame':    19 obs. of  5 variables:
##  $ Age.Range   : Factor w/ 19 levels "0 to 04","05 to 09",..: 1 2 3 4 5 6 7 8 9 
10 ...
##  $ Male.Cases  : int  18 10 8 15 21 22 21 34 39 51 ...
##  $ Female.Cases: int  12 10 10 14 18 20 20 23 39 53 ...
##  $ Male.Rates  : num  0.9 0.5 0.4 0.7 1 1 1 1.7 1.8 2.2 ...
##  $ Female.Rates: num  0.6 0.5 0.6 0.8 0.8 0.9 0.9 1.2 1.7 2.2 ...

aml_inc <- function(gender, x){
    if(gender==1)
        splinefun(x=c(seq(0,90,5)), y=c(cumsum(age_incidence$Male.Rates/100000)*5)
, method="mono")(x)
    else
        splinefun(x=c(seq(0,90,5)), y=c(cumsum(age_incidence$Female.Rates/100000)*
5), method="mono")(x)
}

All cause mortality from the office of national statistics (https://www.ons.gov.uk/
(https://www.ons.gov.uk/)).

all_cause_mortality <- read.table("data/all_cause_mortality.txt", sep="\t", skip=1
, header=TRUE)
head(all_cause_mortality)

 
 

x
<int>

mx
<dbl>

qx
<dbl>

lx
<dbl>

dx
<dbl>

ex
<dbl>

X
<lgl>

mx.1
<dbl>

qx.1
<dbl>

1 0 0.004234 0.004225 100000.0 422.5 79.17 0.003521 0.003515

2 1 0.000306 0.000306 99577.5 30.5 78.51 0.000246 0.000246

3 2 0.000163 0.000163 99547.1 16.2 77.53 0.000137 0.000137

4 3 0.000127 0.000127 99530.8 12.6 76.54 0.000105 0.000105

5 4 0.000090 0.000090 99518.2 8.9 75.55 0.000081 0.000081

6 5 0.000092 0.000092 99509.3 9.2 74.56 0.000067 0.000067

6 rows | 1-10 of 13 columns

all_surv <- function(gender, age1, age2){
    if(gender==1)
        s <- all_cause_mortality$lx
    else 
        s <- all_cause_mortality$lx.1
    f <- function(x) exp(splinefun(all_cause_mortality$x, log(s), method="mono")(x
))
    f(age2) / f(age1)
}

Function combining both

aml_inc_cr <- Vectorize(function(gender, age1, age2) sum(diff(aml_inc(gender, seq(
age1,age2,1) ))*all_surv(gender, age1, seq(age1,age2-1,1)) ), c("gender","age1","a
ge2"))

3 Discovery cohort
3.1 Data
4 (of 95) cases that were sampled within 6 months of AML diagnosis are excluded to avoid skewing model
towards significance

f = "data/DC_vaf_matrix_414ctrl_91aml.csv"
torontoData <- read.csv(f)

NA

NA

NA

NA

NA

NA
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torontoData <- read.csv(f)
torontoData$gender <- ifelse(torontoData$Sex == "male", 1, 0)  
torontoData$gender <- as.numeric(torontoData$gender)
colnames(torontoData)

##  [1] "Sample"     "ASXL1"      "BCOR"       "CALR"       "CBL"        "DNMT3A"     
"IDH1"       "IDH2"      
##  [9] "JAK2"       "KDM6A"      "KIT"        "KMT2C"      "KRAS"       "NF1"        
"NRAS"       "PHF6"      
## [17] "PTPN11"     "RUNX1"      "SF3B1"      "SRSF2"      "TET2"       "TP53"       
"U2AF1"      "Diagnosis" 
## [25] "fu_years"   "age"        "Sex"        "no_drivers" "gender"

Manually standardize

torontoData <- torontoData[!duplicated(torontoData),]

gene_vars <- c("CALR", "NRAS", "DNMT3A", "SF3B1", "IDH1", "KIT", "TET2", "RAD21", 
"JAK2", "CBL", "KRAS", "PTPN11", "IDH2", "TP53", "NF1", "SRSF2", "CEBPA", "ASXL1", 
"RUNX1", "U2AF1", "BCOR", "KDM6A", "PHF6", "KMT2C", "KMT2D")

torontoX <- torontoData[, colnames(torontoData) %in% c(gene_vars, "age", "gender")
]

torontoX <- as.data.frame(torontoX)

Only include genes in model if mutated in >2 samples

thr <- 2
torontoX <- torontoX[,colSums(torontoX != 0)>=thr]

torontoGroups <- factor(names(torontoX) %in% c("age","gender")+1, level=1:2, label
s=c("Genes","Demographics"))

torontoX$age <- torontoX$age/10 
names(torontoX)[which(names(torontoX)=="age")] <- "age_10"
g <- torontoGroups == "Genes"
torontoX[,g] <- torontoX[,g]*10
names(torontoX)[g] <- paste(names(torontoX)[g], "0.1",sep="_")

torontoSurv <- Surv(time = torontoData$fu_years, event = torontoData$Diagnosis=="A
ML")
plot(survfit(torontoSurv~ 1))

4 Validation cohort
4.1 Data

f = "data/VC_vaf_matrix_no_duplicates_262ctrl_29aml_nodates.csv"
sangerData <- read.csv(f)
colnames(sangerData)

##  [1] "X"          "Sample"     "ASXL1"      "BCOR"       "CBL"        "CEBPA"      
"DNMT3A"     "IDH1"      
##  [9] "IDH2"       "JAK2"       "KMT2C"      "KMT2D"      "KRAS"       "NF1"        
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"NRAS"       "PTPN11"    
## [17] "RAD21"      "SF3B1"      "SRSF2"      "TET2"       "TP53"       "U2AF1"      
"Individual" "hcdate"    
## [25] "Diagnosis"  "age"        "gender"     "systol"     "diastol"    "bmi"        
"cholestl"   "triglyc"   
## [33] "hdl"        "ldl"        "lym"        "mcv"        "rdw"        "wbc"        
"rbc"        "hct"       
## [41] "plt"        "hgb"        "dodx"

head(sangerData[, c("Sample", "gender")]) #male=1, female=0

 
 

Sample
<fctr>

gender
<int>

1 PD29762b 0

2 PD29764b 0

3 PD29792b 0

4 PD29804c 0

5 PD29810c 1

6 PD29836c 0

6 rows

NB all dates are jittered

sangerData$hcdate <- as.Date(sangerData$hcdate)
sangerData$dodx <- as.Date(sangerData$dodx)

sangerPatients <- sub("[a-z]+$","", sangerData$Sample)
o <- order(sangerPatients, as.numeric(sangerData$hcdate))

sangerData <- sangerData[o,]
sangerPatients <- sangerPatients[o]

clinical_vars <- c("systol", "diastol", "bmi", "cholestl", "triglyc", "hdl", "ldl"
, "lym", "mcv", "rdw", "wbc", "plt", "hgb")
sangerX <- sangerData[, colnames(sangerData) %in% c(gene_vars, "age","gender",clin
ical_vars)] 
sangerX <- as.data.frame(sangerX)

sangerX <- sangerX[,colSums(sangerX != 0,na.rm=TRUE)>=thr]
sangerGroups <- factor(grepl("^[a-z]", colnames(sangerX))*2, levels=0:2, labels=c(
"Genes", "Demographics", "Blood"))
sangerGroups[names(sangerX) %in% c("age","gender")] <- "Demographics"
table(sangerGroups)  

## sangerGroups
##        Genes Demographics        Blood 
##           15            2           13

g <- sangerGroups=="Genes"
sangerX[g] <- sangerX[g] * 10
names(sangerX)[g] <- paste(names(sangerX[g]),"0.1", sep="_")
y <- StandardizeMagnitude(sangerX[!g])  
sangerX <- cbind(sangerX[g],y)

poorMansImpute <- function(x) {x[is.na(x)] <- mean(x, na.rm=TRUE); return(x)}
sangerX <- as.data.frame(sapply(sangerX, poorMansImpute))

foo <- split(sangerData[,c("Diagnosis","hcdate","dodx")], sangerPatients)
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bar <- do.call("rbind",lapply(foo, function(x){
                    y <- x
                    n <- nrow(y)
                    y[-n,"Diagnosis"] <- "Control"
                    start <- as.numeric(y$hcdate - y$hcdate[1])/365.25
                    end <- c(as.numeric(y$hcdate - y$hcdate[1])[-1]/365.25, as.num
eric(y$dodx[n] - y$hcdate[1])/365.25)
                    return(data.frame(Diagnosis=y[,"Diagnosis"], start=start, end=
end))
                }))

bar[1:6, ]

 
 

Diagnosis
<fctr>

start
<dbl>

end
<dbl>

PD29762 AML 0 9.754962

PD29764 AML 0 10.360027

PD29792 AML 0 14.108145

PD29804 Control 0 5.138946

PD29810 Control 0 18.573580

PD29836.1 Control 0 2.414784

6 rows

sangerPatientsSplit <- unlist(sapply(names(foo), function(n) rep(n, nrow(foo[[n]])
)))

sangerSurv <- Surv(time = bar$start, time2 = bar$end, event = bar$Diagnosis!="Cont
rol", origin = 0)
plot(survfit(sangerSurv ~ 1), ylab="AML-free fraction", xlab="Time [yr]")

5 Expected AML incidence
5.1 Validation cohort
w <- c(which(sangerSurv[,1]==0)[-1]-1, nrow(sangerSurv))
head(sangerSurv[w,])

## [1] (0.000000, 9.754962]  (0.000000,10.360027]  (0.000000,14.108145]  (0.000000
, 5.138946+] (0.000000,18.573580+]
## [6] (2.414784,10.023272]

sangerSurv2 <- Surv(sangerSurv[w,2], sangerSurv[w,3]) 

expected_rate_sanger_cr <- mean(aml_inc_cr(sangerX[w,"gender"],sangerX[w,"age_10"]
*10, sangerX[w,"age_10"]*10+ pmax(1,sangerSurv2[,1]))[!sangerSurv2[,2]])

n_total_sanger <- sum(sangerSurv2[,2])/expected_rate_sanger_cr
n_total_sanger

## [1] 10406.64

5.2 Discovery cohort
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5.2 Discovery cohort
expected_rate_toronto_cr <- mean(aml_inc_cr(torontoX[,"gender"],torontoX[,"age_10"
]*10, torontoX[,"age_10"]*10+ pmax(1,torontoSurv[,1]))[!torontoSurv[,2]])

n_total_toronto <- sum(torontoSurv[,2])/expected_rate_toronto_cr
n_total_toronto

## [1] 72377.73

6 Combined data
Survival

allSurv <- rbind(sangerSurv, Surv(rep(0, nrow(torontoSurv)), torontoSurv[,1], toro
ntoSurv[,2]))
allSurv <- Surv(allSurv[,1], allSurv[,2], allSurv[,3])

Data matrix

cohort <- c(rep("Sanger", nrow(sangerX)), rep("Toronto", nrow(torontoX)))
i <- c(sort(setdiff(gene_vars,"CALR")),"age","gender")
allX <- rbind(superSet(sangerData,i,fill=0), superSet(torontoData,i,fill=0))
colnames(allX)

##  [1] "ASXL1"  "BCOR"   "CBL"    "CEBPA"  "DNMT3A" "IDH1"   "IDH2"   "JAK2"   "K
DM6A"  "KIT"    "KMT2C"  "KMT2D" 
## [13] "KRAS"   "NF1"    "NRAS"   "PHF6"   "PTPN11" "RAD21"  "RUNX1"  "SF3B1"  "S
RSF2"  "TET2"   "TP53"   "U2AF1" 
## [25] "age"    "gender"

allX <- allX[,colSums(allX>0)>=thr]
allX <- cbind(allX, cohort=cohort=="Sanger") + 0
allGroups <- factor(grepl("^[A-Z]",colnames(allX))+0, levels=1:0, labels=c("Genes"
,"Demographics"))

g <- allGroups=="Genes"
allX <- cbind(10*allX[,g], StandardizeMagnitude(allX[,!g]))
colnames(allX)[g] <- paste(colnames(allX)[g],"0.1",sep="_")
control <- c(sangerData$Diagnosis=="Control", torontoData$Diagnosis=="Control")

Weights

weights <- rep(1, nrow(allX))
weights[cohort=="Sanger" & control] <- n_total_sanger/sum(cohort=="Sanger" & contr
ol & allSurv[,1]==0)
weights[cohort=="Toronto" & control] <- n_total_toronto/sum(cohort=="Toronto" & co
ntrol)

n_total <- n_total_sanger + n_total_toronto
n_total

## [1] 82784.38

Kaplan-Meier analysis

X = allX 
surv = allSurv
pal1 <- c("#C32B4A", "#3F76B4", "#57B2AB", "#5E4FA2", "#EB6046")

colnames(X)

##  [1] "ASXL1_0.1"  "BCOR_0.1"   "CBL_0.1"    "DNMT3A_0.1" "IDH1_0.1"   "IDH2_0.1
"   "JAK2_0.1"   "KDM6A_0.1" 
##  [9] "KMT2C_0.1"  "KMT2D_0.1"  "KRAS_0.1"   "NF1_0.1"    "NRAS_0.1"   "PHF6_0.1
"   "PTPN11_0.1" "RAD21_0.1" 
## [17] "RUNX1_0.1"  "SF3B1_0.1"  "SRSF2_0.1"  "TET2_0.1"   "TP53_0.1"   "U2AF1_0.
1"  "age_10"     "gender"    
## [25] "cohort"
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names(X) <- str_replace(names(X), "[_]{1}[0-9]{1,}[\\.]{0,1}[0-9]{0,2}", "")
X$no_drivers <- rowSums((X[, colnames(X) %in% gene_vars]>0))
summary(X$no_drivers)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.5263  1.0000  5.0000

X$max_vaf <- apply(X[, intersect(gene_vars, colnames(X))], 1, max, na.rm = TRUE)

genes <- c("DNMT3A", "TET2", "TP53", "U2AF1")

n_drivers <- cut(X$no_drivers, c( -1, 0, 1,  max(X$no_drivers)))
levels(n_drivers) <- c(0,1,"2+")

mvaf <- cut(X$max_vaf*10, c( -1, 0, 4, 8, max(X$max_vaf*10)))  #multiply by 10 to 
reverse VAF standardisation
levels(mvaf) <- c("0", "0 - 4", "4 - 8", "8+")

par(mfrow=c(2,4), mar = c(1.8, 1.9, 1.7, 0.1) + 0.1, mgp=c(2.2,0.4,0), bty="L", xp
d=TRUE, las=1, tcl=-0.15, cex.axis=1, cex.lab = 1)
for (i in 1:length(genes)) {
  #i <- 1
  gene <- genes[i]
  plot(survfit(surv ~ X[[gene]] == 0), col= pal1, bty='L', yaxs='i', ylim=c(0,1.01
), mark.time = T, conf.int = F)
  mtext(gene, font=3, side = 3, line = 0.1, cex = 0.7)
  legend("bottomleft", col=pal1[1:2], lty=1, c("MT","WT"), lwd = 1.1, bty="n", nco
l = 1, cex = 0.9)
}
plot(survfit(surv ~ n_drivers), col=rev(pal1[1:3]), conf.int = F, mark.time = T, b
ty='L', yaxs='i', ylim=c(0,1.01))
mtext("Number of drivers", font=1, side = 3, line = 0.4, cex = 0.7)
legend("bottomleft", legend = levels(n_drivers), col= rev(pal1[1:3]), lty=1, lwd = 
1.1, bty='n', title="", cex = 0.9)
plot(survfit(surv ~ mvaf), col= rev(pal1[1:4]), conf.int = F, mark.time = T, bty='
L', yaxs='i', ylim=c(0,1.01))
mtext("Maximum VAF (%)", font=1, side = 3, line = 0.4, cex = 0.7)
legend("bottomleft", levels(mvaf), col=rev(pal1[1:4]), lty=1, lwd = 1.1, bty='n', 
title="", cex = 0.9)

genes <- intersect(colnames(X), gene_vars)
length(genes)

## [1] 22

png("./figures/CombinedCohorts.KM.curves.png", width = 35, height = 20, units = "c
m", res = 300)
par(mfrow=c(4,7), mar = c(3.7, 3.5, 1.6, 1) + 0.1, mgp=c(1.9,0.4,0), bty="L", xpd=
TRUE, las=1, tcl=-0.2, cex.axis=1, cex.lab = 1.2)
for (i in 1:length(genes)) {
  #i <- 1
  gene <- genes[i]
  plot(survfit(surv ~ X[[gene]] == 0), col= pal1, xlab='Time (years)', ylab = 'AML
-free fraction', bty='L', yaxs='i', ylim=c(0,1.01), mark.time = T, conf.int = F)
  mtext(gene, font=4, side = 3, cex = 0.9, line = 0.35)
}
plot.new(); par(xpd=NA)
legend(x = -0.5, y = 0.5, col=pal1[1:2], lty=1, c("Mutated","Wildtype"), cex=1.4, 
lwd = 2, bty="n", ncol = 1)
dev.off()
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## pdf 
##   2

7 Coxph model fits
sigma0 <- 0.1
nu <- 1
which.mu <- "Genes"

7.1 Discovery cohort
7.1.1 Non-adjusted
fitToronto <- CoxRFX(torontoX, torontoSurv, groups=torontoGroups, which.mu=which.m
u, nu=nu, sigma0=sigma0)
waldToronto <- WaldTest(fitToronto)

##                   group    coef   coef-mu     sd      z df  p.value sig
## ASXL1_0.1         Genes  0.6715  3.40e-02 0.1169  5.745  1 9.19e-09 ***
## CALR_0.1          Genes  0.6168 -2.07e-02 0.0717  8.603  1 7.76e-18 ***
## CBL_0.1           Genes  0.5158 -1.22e-01 0.1311  3.935  1 8.30e-05 ***
## DNMT3A_0.1        Genes  0.5860 -5.15e-02 0.1017  5.761  1 8.36e-09 ***
## IDH1_0.1          Genes  0.6818  4.43e-02 0.1269  5.373  1 7.74e-08 ***
## IDH2_0.1          Genes  0.5153 -1.22e-01 0.1159  4.446  1 8.74e-06 ***
## JAK2_0.1          Genes  0.6967  5.92e-02 0.1249  5.580  1 2.40e-08 ***
## KDM6A_0.1         Genes  0.6375  2.36e-05 0.0581 10.982  1 4.67e-28 ***
## KMT2C_0.1         Genes  0.6602  2.27e-02 0.0618 10.689  1 1.14e-26 ***
## KRAS_0.1          Genes  0.6350 -2.46e-03 0.0581 10.932  1 8.12e-28 ***
## NF1_0.1           Genes  0.6359 -1.61e-03 0.0581 10.947  1 6.86e-28 ***
## PHF6_0.1          Genes  0.6429  5.40e-03 0.0586 10.978  1 4.87e-28 ***
## PTPN11_0.1        Genes  0.6546  1.71e-02 0.0583 11.224  1 3.11e-29 ***
## RUNX1_0.1         Genes  0.3926 -2.45e-01 0.0927  4.236  1 2.27e-05 ***
## SF3B1_0.1         Genes  0.7605  1.23e-01 0.1045  7.274  1 3.49e-13 ***
## SRSF2_0.1         Genes  0.4847 -1.53e-01 0.0944  5.134  1 2.83e-07 ***
## TET2_0.1          Genes  0.6127 -2.48e-02 0.1300  4.712  1 2.46e-06 ***
## TP53_0.1          Genes  0.8595  2.22e-01 0.0875  9.823  1 8.99e-23 ***
## U2AF1_0.1         Genes  0.8524  2.15e-01 0.0785 10.860  1 1.79e-27 ***
## age_10     Demographics -0.0387 -3.87e-02 0.0943 -0.410  1 6.82e-01    
## gender     Demographics -0.0434 -4.34e-02 0.1069 -0.406  1 6.85e-01

survConcordance(fitToronto$surv ~ fitToronto$linear.predictors)

## Call:
## survConcordance(formula = fitToronto$surv ~ fitToronto$linear.predictors)
## 
##   n= 505 
## Concordance= 0.7426378 se= 0.03079247
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  28925.000  10024.000      0.000      1.000   2398.672

7.1.2 Adjusted
fitWeightedToronto <- CoxRFX(torontoX, torontoSurv, torontoGroups, which.mu=which.
mu, sigma0=sigma0, nu=nu, weights=weights[cohort=="Toronto"])
waldWeightedToronto <- WaldTest(fitWeightedToronto)
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##                   group    coef coef-mu     sd      z df  p.value sig
## ASXL1_0.1         Genes  1.9481  0.0184 0.1452 13.415  1 4.92e-41 ***
## CALR_0.1          Genes  0.8664 -1.0633 0.7205  1.202  1 2.29e-01    
## CBL_0.1           Genes  0.3846 -1.5451 0.3618  1.063  1 2.88e-01    
## DNMT3A_0.1        Genes  0.7091 -1.2206 0.1236  5.736  1 9.70e-09 ***
## IDH1_0.1          Genes  2.3976  0.4679 0.3353  7.151  1 8.63e-13 ***
## IDH2_0.1          Genes  0.8112 -1.1185 0.2286  3.548  1 3.88e-04 ***
## JAK2_0.1          Genes  1.9253 -0.0044 0.1819 10.586  1 3.45e-26 ***
## KDM6A_0.1         Genes  1.9404  0.0107 0.1355 14.323  1 1.56e-46 ***
## KMT2C_0.1         Genes  2.4139  0.4841 0.6457  3.739  1 1.85e-04 ***
## KRAS_0.1          Genes  1.8253 -0.1044 0.1565 11.665  1 1.93e-31 ***
## NF1_0.1           Genes  1.8627 -0.0670 0.1522 12.238  1 1.94e-34 ***
## PHF6_0.1          Genes  2.1738  0.2441 0.1301 16.706  1 1.19e-62 ***
## PTPN11_0.1        Genes  2.5509  0.6212 0.2150 11.867  1 1.76e-32 ***
## RUNX1_0.1         Genes  0.7839 -1.1458 0.1361  5.761  1 8.38e-09 ***
## SF3B1_0.1         Genes  3.1354  1.2057 0.3087 10.156  1 3.11e-24 ***
## SRSF2_0.1         Genes  1.3985 -0.5312 0.1706  8.196  1 2.49e-16 ***
## TET2_0.1          Genes  0.6793 -1.2504 0.2014  3.373  1 7.43e-04 ***
## TP53_0.1          Genes  4.8882  2.9585 0.4224 11.572  1 5.69e-31 ***
## U2AF1_0.1         Genes  3.9699  2.0402 0.3601 11.024  1 2.94e-28 ***
## age_10     Demographics -0.0869 -0.0869 0.0996 -0.872  1 3.83e-01    
## gender     Demographics -0.0443 -0.0443 0.1112 -0.399  1 6.90e-01

survConcordance(fitWeightedToronto$surv ~ fitWeightedToronto$linear.predictors, we
ights=weights[cohort=="Toronto"])

## Call:
## survConcordance(formula = fitWeightedToronto$surv ~ fitWeightedToronto$linear.p
redictors, 
##     weights = weights[cohort == "Toronto"])
## 
##   n= 505 
## Concordance= 0.7739557 se= 0.03055735
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  4719299.0  1378335.7        0.0        1.0   372655.1

Uno’s estimator of cumulative/dynamic AUC

a <- AUC.uno(torontoSurv, torontoSurv, fitWeightedToronto$linear.predictors, times
= seq(0,12, 0.1)) 
round(a$iauc, digits = 3)

## [1] 0.761

png("./figures/DC.adj.coxph.auc.uno.png", width = 9, height = 10, units = "cm", re
s = 800)
par(mar = c(3.2, 3.2, 4, 2) + 0.1, mgp=c(2,0.5,0), bty="L",  tcl =-0.2, las = 1, c
ex=1)
plot(a$times, a$auc, xlab="Time (years)", ylab="AUC", pch=16, col="grey80", ylim = 
c(0,1.0))
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc, lty = 3, lwd = 1)
legend("bottomright", bty = "n", cex = 1.2, legend = paste("AUC = ",round(a$iauc,2
)))
dev.off()

## pdf 
##   2

Time-dependent ROC AUC

r <- survivalROC(Stime = torontoSurv[,1], status=torontoSurv[,2], marker=fitWeight
edToronto$linear.predictors-colMeans(fitWeightedToronto$Z) %*% fitWeightedToronto$
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edToronto$linear.predictors-colMeans(fitWeightedToronto$Z) %*% fitWeightedToronto$
coefficients, predict.time = 10, method="NNE", span=0.001)  
round(r$AUC, digits = 3)

## [1] 0.783

png("./figures/DC.adj.coxph.roct.png", width = 9, height = 10, units = "cm", res = 
500)
par(mar = c(3.2, 3.2, 4, 2) + 0.1, mgp=c(2,0.5,0), bty="L",  tcl =-0.2, las = 1, c
ex = 1)
plot(r$FP, r$TP, type='s', 
     xlab="False Positive Rate", ylab="True Positive Rate", 
     col = "black")
abline(a = 0, b = 1, col = "grey70", lty = 1, lwd = 1)
legend("bottomright", bty = "n", legend = paste("AUC = ",round(r$AUC,2)))
dev.off()

## pdf 
##   2

7.2 Validation cohort
7.2.1 Non-adjusted
fitSanger <- CoxRFX(sangerX, sangerSurv, groups=sangerGroups, which.mu=which.mu, n
u=nu, sigma0=sigma0)
waldSanger <- WaldTest(fitSanger)

##                    group     coef   coef-mu      sd       z df  p.value sig
## ASXL1_0.1          Genes  0.76929  0.138331 0.11468  6.7084  1 1.97e-11 ***
## CBL_0.1            Genes  0.62044 -0.010519 0.09149  6.7814  1 1.19e-11 ***
## DNMT3A_0.1         Genes  0.51590 -0.115058 0.11678  4.4176  1 9.98e-06 ***
## JAK2_0.1           Genes  0.58502 -0.045941 0.10315  5.6716  1 1.42e-08 ***
## KMT2C_0.1          Genes  0.64589  0.014930 0.08616  7.4961  1 6.57e-14 ***
## KMT2D_0.1          Genes  0.50507 -0.125896 0.15209  3.3209  1 8.97e-04 ***
## KRAS_0.1           Genes  0.63604  0.005083 0.08495  7.4876  1 7.02e-14 ***
## NF1_0.1            Genes  0.62556 -0.005397 0.08610  7.2657  1 3.71e-13 ***
## NRAS_0.1           Genes  0.63025 -0.000712 0.08492  7.4214  1 1.16e-13 ***
## RAD21_0.1          Genes  0.62875 -0.002212 0.08524  7.3763  1 1.63e-13 ***
## SF3B1_0.1          Genes  0.62728 -0.003678 0.08572  7.3181  1 2.52e-13 ***
## SRSF2_0.1          Genes  0.58180 -0.049163 0.12680  4.5883  1 4.47e-06 ***
## TET2_0.1           Genes  0.69969  0.068723 0.11185  6.2555  1 3.96e-10 ***
## TP53_0.1           Genes  0.69326  0.062294 0.08559  8.0998  1 5.51e-16 ***
## U2AF1_0.1          Genes  0.70018  0.069214 0.08556  8.1832  1 2.76e-16 ***
## age_10      Demographics  0.10777  0.107774 0.12063  0.8934  1 3.72e-01    
## gender      Demographics  0.00589  0.005894 0.10667  0.0553  1 9.56e-01    
## systol_100         Blood  0.03002  0.030016 0.04429  0.6777  1 4.98e-01    
## diastol_100        Blood  0.04718  0.047181 0.02863  1.6478  1 9.94e-02   .
## bmi_10             Blood  0.14183  0.141832 0.07973  1.7790  1 7.52e-02   .
## cholestl_10        Blood  0.00525  0.005246 0.01501  0.3496  1 7.27e-01    
## triglyc            Blood  0.00450  0.004496 0.10599  0.0424  1 9.66e-01    
## hdl                Blood -0.09452 -0.094522 0.08059 -1.1729  1 2.41e-01    
## ldl                Blood  0.11424  0.114236 0.11019  1.0367  1 3.00e-01    
## lym                Blood  0.10961  0.109610 0.10081  1.0872  1 2.77e-01    
## mcv_100            Blood -0.01645 -0.016447 0.00817 -2.0136  1 4.41e-02   *
## rdw_10             Blood  0.06116  0.061157 0.01972  3.1015  1 1.93e-03  **
## wbc_10             Blood  0.01499  0.014994 0.04138  0.3623  1 7.17e-01    
## plt_100            Blood  0.06837  0.068369 0.09739  0.7020  1 4.83e-01    
## hgb_10             Blood  0.04890  0.048900 0.02466  1.9826  1 4.74e-02   *

survConcordance(sangerSurv ~ fitSanger$linear.predictors)

## Call:
## survConcordance(formula = sangerSurv ~ fitSanger$linear.predictors)
## 
##   n= 445 
## Concordance= 0.793915 se= 0.05514512
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  5532.0000  1436.0000     0.0000     0.0000   768.5024

7.2.2 Adjusted
fitWeightedSanger <- CoxRFX(sangerX, sangerSurv, sangerGroups, which.mu=which.mu, 
sigma0=sigma0, nu=nu, weights=weights[cohort=="Sanger"])
waldWeightedSanger <- WaldTest(fitWeightedSanger)
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waldWeightedSanger <- WaldTest(fitWeightedSanger)

##                    group     coef  coef-mu      sd       z df  p.value sig
## ASXL1_0.1          Genes  2.93589  0.95179 0.45155  6.5018  1 7.93e-11 ***
## CBL_0.1            Genes  0.89451 -1.08959 1.25454  0.7130  1 4.76e-01    
## DNMT3A_0.1         Genes  0.80635 -1.17775 0.22686  3.5544  1 3.79e-04 ***
## JAK2_0.1           Genes -0.33650 -2.32060 0.95076 -0.3539  1 7.23e-01    
## KMT2C_0.1          Genes  2.07422  0.09012 1.10633  1.8749  1 6.08e-02   .
## KMT2D_0.1          Genes  0.05067 -1.93343 0.81191  0.0624  1 9.50e-01    
## KRAS_0.1           Genes  2.45194  0.46784 0.41069  5.9702  1 2.37e-09 ***
## NF1_0.1            Genes  1.54402 -0.44008 0.90581  1.7046  1 8.83e-02   .
## NRAS_0.1           Genes  1.92976 -0.05434 0.37569  5.1366  1 2.80e-07 ***
## RAD21_0.1          Genes  1.75445 -0.22966 0.66215  2.6496  1 8.06e-03  **
## SF3B1_0.1          Genes  1.56640 -0.41770 0.99531  1.5738  1 1.16e-01    
## SRSF2_0.1          Genes  1.51230 -0.47181 0.27893  5.4217  1 5.90e-08 ***
## TET2_0.1           Genes  1.31638 -0.66772 0.13659  9.6374  1 5.56e-22 ***
## TP53_0.1           Genes  4.92658  2.94248 0.92037  5.3528  1 8.66e-08 ***
## U2AF1_0.1          Genes  6.33456  4.35046 0.76145  8.3191  1 8.86e-17 ***
## age_10      Demographics  0.03788  0.03788 0.11866  0.3193  1 7.50e-01    
## gender      Demographics -0.01411 -0.01411 0.10079 -0.1400  1 8.89e-01    
## systol_100         Blood  0.01712  0.01712 0.04486  0.3816  1 7.03e-01    
## diastol_100        Blood  0.03900  0.03900 0.02964  1.3156  1 1.88e-01    
## bmi_10             Blood  0.15297  0.15297 0.08406  1.8198  1 6.88e-02   .
## cholestl_10        Blood  0.00238  0.00238 0.01544  0.1542  1 8.77e-01    
## triglyc            Blood -0.03451 -0.03451 0.11758 -0.2935  1 7.69e-01    
## hdl                Blood -0.12128 -0.12128 0.08447 -1.4357  1 1.51e-01    
## ldl                Blood  0.13215  0.13215 0.11436  1.1555  1 2.48e-01    
## lym                Blood  0.07976  0.07976 0.10326  0.7724  1 4.40e-01    
## mcv_100            Blood -0.02401 -0.02401 0.00786 -3.0529  1 2.27e-03  **
## rdw_10             Blood  0.06721  0.06721 0.01666  4.0355  1 5.45e-05 ***
## wbc_10             Blood  0.00757  0.00757 0.04834  0.1567  1 8.76e-01    
## plt_100            Blood  0.08415  0.08415 0.09986  0.8427  1 3.99e-01    
## hgb_10             Blood  0.03718  0.03718 0.02437  1.5255  1 1.27e-01

waldWeightedSanger$p.adj <- p.adjust(p=waldWeightedSanger$p.value, method = "bonfe
rroni")
#View(waldWeightedSanger)

survConcordance(sangerSurv ~ fitWeightedSanger$linear.predictors, weights=weights[
cohort=="Sanger"])

## Call:
## survConcordance(formula = sangerSurv ~ fitWeightedSanger$linear.predictors, 
##     weights = weights[cohort == "Sanger"])
## 
##   n= 445 
## Concordance= 0.8351691 se= 0.05475847
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  218019.86   43028.90       0.00       0.00   28589.26

Uno’s estimator of cumulative/dynamic AUC

## [1] 0.82

png("./figures/VC.ajd.coxph.auc.uno.png", width = 9, height = 10, units = "cm", re
s = 500)
par(mar = c(3.2, 3.2, 4, 2) + 0.1, mgp=c(2,0.5,0), bty="L",  tcl =-0.2, las = 1, c
ex=1)
plot(a$times, a$auc, xlab="Time (years)", ylab="AUC", pch=16, col="grey80", ylim = 
c(0,1.0))
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc, lty = 3, lwd = 1)
legend("bottomright", bty = "n", legend = paste("AUC = ",round(a$iauc,2)))
dev.off()

## pdf 
##   2

w <- c(which(sangerSurv[,1]==0)[-1]-1, nrow(sangerSurv))  #get right censored surv
ival data for each individual
s <- Surv(sangerSurv[w,2], sangerSurv[w,3])  ##Adjust according to dimensions of s
urvival object
a <- AUC.uno(s, s, fitWeightedSanger$linear.predictors[w], times= seq(0, 22, 0.1))    
round(a$iauc, digits = 3)
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Time-dependent ROC AUC

r <- survivalROC(Stime = s[,1], status=s[,2], marker=fitWeightedSanger$linear.pred
ictors[w]-colMeans(fitWeightedSanger$Z[w,]) %*% fitWeightedSanger$coefficients, pr
edict.time = 10, method="NNE", span=0.001)  
round(r$AUC, digits = 3)

## [1] 0.737

png("./figures/VC.ajd.coxph.roct.png", width = 9, height = 10, units = "cm", res = 
500)
par(mar = c(3.2, 3.2, 4, 2) + 0.1, mgp=c(2,0.5,0), bty="L",  tcl =-0.2, las = 1, c
ex = 1)
plot(r$FP, r$TP, type='s', 
     xlab="False Positive Rate", ylab="True Positive Rate", 
     col = "black")
abline(a = 0, b = 1, col = "grey70", lty = 1, lwd = 1)
legend("bottomright", bty = "n", legend = paste("AUC = ",round(r$AUC,2)))
dev.off()

## pdf 
##   2

i <- intersect(rownames(waldWeightedSanger), rownames(waldWeightedToronto))
plot( waldWeightedToronto[i,"coef"], waldWeightedSanger[i, "coef"], xlab="Coef Dis
covery (adjusted)", ylab="Coef Validation (adjusted)", pch=19, cex=1)
segments(waldWeightedToronto[i,"coef"]  - 2*waldWeightedToronto[i,"sd"], waldWeigh
tedSanger[i, "coef"], waldWeightedToronto[i,"coef"]  + 2*waldWeightedToronto[i,"sd
"], waldWeightedSanger[i, "coef"], col="grey" )
segments(waldWeightedToronto[i,"coef"]  , waldWeightedSanger[i, "coef"]-  2*waldWe
ightedSanger[i,"sd"], waldWeightedToronto[i,"coef"] , waldWeightedSanger[i, "coef"
] +2*waldWeightedSanger[i,"sd"], col="grey")
text(labels=sub("_.+","", i), waldWeightedToronto[i,"coef"], waldWeightedSanger[i, 
"coef"], pos=2, adj=c(0,1))
abline(0,1)

plot( waldToronto[i,"coef"], waldSanger[i, "coef"], xlab="Coef Discovery (raw)", y
lab="Coef Validation (raw)", pch=19, cex=1, ylim=c(0,5),xlim=c(0,5))
segments(waldToronto[i,"coef"]  - 2*waldToronto[i,"sd"], waldSanger[i, "coef"], wa
ldToronto[i,"coef"]  + 2*waldToronto[i,"sd"], waldSanger[i, "coef"], col="grey" )
segments(waldToronto[i,"coef"]  , waldSanger[i, "coef"]-  2*waldSanger[i,"sd"], wa
ldToronto[i,"coef"] , waldSanger[i, "coef"] +2*waldSanger[i,"sd"], col="grey")
text(labels=sub("_.+","", i), waldToronto[i,"coef"], waldSanger[i, "coef"], pos=2, 
adj=c(0,1))
abline(0,1)
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7.3 Cross-validation
7.3.1 Non-adjusted
sangerImp <- torontoX[1:nrow(sangerX),]
sangerImp[,] <- NA
i <- intersect(names(sangerX),colnames(torontoX))
sangerImp[,i] <- sangerX[,i]
j <- setdiff(names(torontoX)[torontoGroups=="Genes"], names(sangerX))
sangerImp[,j] <- 0

DC fit, VC data

pS <- PredictRiskMissing(fitToronto, sangerImp)
survConcordance(sangerSurv ~ pS[,1])

## Call:
## survConcordance(formula = sangerSurv ~ pS[, 1])
## 
##   n= 445 
## Concordance= 0.7963548 se= 0.05514445
## concordant discordant  tied.risk  tied.time   std(c-d) 
##   5545.000   1415.000      8.000      0.000    768.493

w <- c(which(sangerSurv[,1]==0)[-1]-1, nrow(sangerSurv))
s <- Surv(sangerSurv[w,2], sangerSurv[w,3])
t <- seq(0,10,0.1)
a <- AUC.uno(torontoSurv, s, pS[w,1], times=t)
plot(a$times, a$auc, xlab="Time [yr]", ylab="AUC", pch=16, col='grey')
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc)

torontoImp <- sangerX[1:nrow(torontoX),]
torontoImp[,] <- NA
i <- intersect(names(sangerX),colnames(torontoX))
torontoImp[,i] <- torontoX[,i]
j <- setdiff(names(sangerX)[sangerGroups=="Genes"], names(torontoX))
torontoImp[,j] <- 0

VC fit, DC data

pT <- PredictRiskMissing(fitSanger, torontoImp)
survConcordance(torontoSurv ~ pT[,1])

A 31



## Call:
## survConcordance(formula = torontoSurv ~ pT[, 1])
## 
##   n= 505 
## Concordance= 0.6992477 se= 0.03079247
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  27235.000  11714.000      0.000      1.000   2398.672

t <- seq(0,22,0.1)
a <- AUC.uno(s, torontoSurv, pT[,1], times=t)
plot(a$times, a$auc, xlab="Time [yr]", ylab="AUC", pch=16, col='grey')
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc)

sangerM <- sangerX
sangerM[,sangerGroups=="Blood"] <- NA
p <- PredictRiskMissing(fitSanger, sangerM)
survConcordance(sangerSurv ~ p[,1])

## Call:
## survConcordance(formula = sangerSurv ~ p[, 1])
## 
##   n= 445 
## Concordance= 0.8069747 se= 0.05514449
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  5619.0000  1341.0000     8.0000     0.0000   768.4936

plot(waldToronto[i,"coef"], waldSanger[i,"coef"], xlab="Coef Toronto", ylab="Coef 
Sanger", xlim=c(-0.5,2), ylim=c(-0.5,2))
text(labels=i,waldToronto[i,"coef"], waldSanger[i,"coef"], pos=3)
segments(x0=waldToronto[i,"coef"], x1=waldToronto[i,"coef"], y0= waldSanger[i,"coe
f"]-1.96*waldSanger[i,"sd"], y1=waldSanger[i,"coef"]+1.96*waldSanger[i,"sd"])
segments(x0=waldToronto[i,"coef"]-1.96*waldToronto[i,"sd"], x1=waldToronto[i,"coef
"]+1.96*waldToronto[i,"sd"], y0= waldSanger[i,"coef"], y1=waldSanger[i,"coef"])
abline(0,1)
abline(h=0, lty=3)
abline(v=0, lty=3)
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7.3.2 Adjusted
DC fit, VC data

pS <- PredictRiskMissing(fitWeightedToronto, sangerImp)
survConcordance(sangerSurv ~ pS[,1], weights=weights[cohort=="Sanger"])

## Call:
## survConcordance(formula = sangerSurv ~ pS[, 1], weights = weights[cohort == 
##     "Sanger"])
## 
##   n= 445 
## Concordance= 0.821456 se= 0.05475772
##  concordant  discordant   tied.risk   tied.time    std(c-d) 
## 214281.1753  46449.8206    317.7601      0.0000  28588.8682

m <- as.numeric(colSums(fitWeightedToronto$Z * weights[cohort=="Toronto"])/sum(wei
ghts[cohort=="Toronto"])) %*% coef(fitWeightedToronto)
plot(survfit(sangerSurv ~ exp(pS[,1]-as.numeric(m))>50, weights=weights[cohort=="S
anger"]), col=set1[2:1], ylab="AML-free survival", xlab='Years after 1st sample')
legend("bottomleft", c("HR < 50", "HR > 50"), lty=1, col=set1[2:1])

w <- c(which(sangerSurv[,1]==0)[-1]-1, nrow(sangerSurv))
s <- Surv(sangerSurv[w,2], sangerSurv[w,3])
t <- seq(0,10,0.1)
a <- AUC.uno(torontoSurv, s, pS[w,1], times=t)
plot(a$times, a$auc, xlab="Time [yr]", ylab="AUC", pch=16, col='grey')
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc)
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png("./figures/DCfit.VCdata.adj.coxph.auc.uno.png", width = 14, height = 14, units 
= "cm", res = 500)
par(mar = c(4, 4, 4, 2) + 0.1, mgp=c(2.7,0.7,0), bty="L",  tcl =-0.2, las = 1, cex
.lab = 1.1)
plot(a$times, a$auc, xlab="Time (years)", ylab="AUC", pch=16, col="grey80", ylim = 
c(0,1.0))
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc, lty = 3, lwd = 1)
mtext("DC fit, VC data", font= 2, side = 3, cex = 1, line = 0.5)
legend("bottomright", bty = "n", cex = 1.2, legend = paste("AUC = ",round(a$iauc,2
)))
dev.off()

## pdf 
##   2

VC fit, DC data

pT <- PredictRiskMissing(fitWeightedSanger, torontoImp)
survConcordance(torontoSurv ~ pT[,1], weights=weights[cohort=="Toronto"])

## Call:
## survConcordance(formula = torontoSurv ~ pT[, 1], weights = weights[cohort == 
##     "Toronto"])
## 
##   n= 505 
## Concordance= 0.7202544 se= 0.03055735
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  4391848.0  1705786.7        0.0        1.0   372655.1

m <- as.numeric(colSums(fitWeightedSanger$Z * weights[cohort=="Sanger"])/sum(weigh
ts[cohort=="Sanger"])) %*% coef(fitWeightedSanger)
plot(survfit(torontoSurv ~ exp(pT[,1]-as.numeric(m))>200, weights=weights[cohort==
"Toronto"]), col=set1[2:1], ylab="AML-free survival", xlab='Years after 1st sample
')
legend("bottomleft", c("HR < 200", "HR > 200"), lty=1, col=set1[2:1])
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t <- seq(0,22,0.1)
a <- AUC.uno(s, torontoSurv, pT[,1], times=t)
plot(a$times, a$auc, xlab="Time [yr]", ylab="AUC", pch=16, col='grey')
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc)

png("./figures/VCfit.DCdata.adj.coxph.auc.uno.png", width = 14, height = 14, units 
= "cm", res = 500)
par(mar = c(4, 4, 4, 2) + 0.1, mgp=c(2.7,0.7,0), bty="L",  tcl =-0.2, las = 1, cex
.lab = 1.1)
plot(a$times, a$auc, xlab="Time (years)", ylab="AUC", pch=16, col="grey80", ylim = 
c(0,1.0))
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc, lty = 3, lwd = 1)
mtext("VC fit, DC data", font= 2, side = 3, cex = 1, line = 0.5)
legend("bottomright", bty = "n", cex = 1.2, legend = paste("AUC = ",round(a$iauc,2
)))#dev.off()
dev.off()

## pdf 
##   2

7.4 Combined
7.4.1 Non-adjusted
fitAll <- CoxRFX(allX, allSurv, allGroups, which.mu=which.mu, sigma0=sigma0, nu=nu
)
fitAll

## Means:
##              mean    sd  z   p.val sig
## Genes        0.79 0.068 12 3.9e-31 ***
## Demographics 0.00 0.000  0      NA    
## 
## Variances - p-values only indicative:
##              sigma2 chisq  df   p.val sig
## Genes          0.19    25 9.2 2.7e-03  **
## Demographics   0.48    25 2.7 1.2e-05 ***
## 
## Partial log hazard:
##              Cov[g,g] Sum(Cov[,g])   MSE
## Genes            0.40         0.41 0.012
## Demographics     0.45         0.46 0.032
## TOTAL             NaN         0.88 0.044

WaldTest(fitAll, uncentered=FALSE)
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##                        group      coef coef-mu      sd       z df  p.value sig
## ASXL1_0.1              Genes -0.042129 -0.8326 0.12580 -0.3349  1 7.38e-01    
## BCOR_0.1               Genes  0.018602 -0.7719 0.00792  2.3484  1 1.89e-02   *
## CBL_0.1                Genes -0.313214 -1.1037 0.20346 -1.5394  1 1.24e-01    
## DNMT3A_0.1             Genes -0.233727 -1.0242 0.10840 -2.1561  1 3.11e-02   *
## IDH1_0.1               Genes  0.021937 -0.7685 0.20020  0.1096  1 9.13e-01    
## IDH2_0.1               Genes -0.278283 -1.0687 0.15309 -1.8177  1 6.91e-02   .
## JAK2_0.1               Genes -0.030573 -0.8210 0.14841 -0.2060  1 8.37e-01    
## KDM6A_0.1              Genes  0.000538 -0.7899 0.00638  0.0843  1 9.33e-01    
## KMT2C_0.1              Genes  0.068877 -0.7216 0.08598  0.8011  1 4.23e-01    
## KMT2D_0.1              Genes -0.391241 -1.1817 0.20457 -1.9125  1 5.58e-02   .
## KRAS_0.1               Genes  0.006235 -0.7842 0.01271  0.4907  1 6.24e-01    
## NF1_0.1                Genes -0.020208 -0.8107 0.03223 -0.6270  1 5.31e-01    
## NRAS_0.1               Genes  0.034555 -0.7559 0.01285  2.6887  1 7.17e-03  **
## PHF6_0.1               Genes  0.016466 -0.7740 0.01532  1.0749  1 2.82e-01    
## PTPN11_0.1             Genes  0.360022 -0.4304 0.20817  1.7295  1 8.37e-02   .
## RAD21_0.1              Genes -0.006662 -0.7971 0.01823 -0.3654  1 7.15e-01    
## RUNX1_0.1              Genes -0.399568 -1.1900 0.11410 -3.5019  1 4.62e-04 ***
## SF3B1_0.1              Genes  0.239576 -0.5509 0.20922  1.1451  1 2.52e-01    
## SRSF2_0.1              Genes -0.290822 -1.0813 0.13577 -2.1420  1 3.22e-02   *
## TET2_0.1               Genes -0.158347 -0.9488 0.10442 -1.5165  1 1.29e-01    
## TP53_0.1               Genes  0.686128 -0.1043 0.19933  3.4423  1 5.77e-04 ***
## U2AF1_0.1              Genes  0.711837 -0.0786 0.19998  3.5595  1 3.72e-04 ***
## age_10          Demographics -0.034319 -0.0343 0.10560 -0.3250  1 7.45e-01    
## gender          Demographics -0.096757 -0.0968 0.18251 -0.5302  1 5.96e-01    
## cohort          Demographics -1.297202 -1.2972 0.24120 -5.3781  1 7.53e-08 ***
## mu.Genes                  NA  0.790457      NA      NA      NA  1       NA    
## mu.Demographics           NA  0.000000      NA      NA      NA  1       NA

survConcordance(allSurv ~ fitAll$linear.predictors)

## Call:
## survConcordance(formula = allSurv ~ fitAll$linear.predictors)
## 
##   n= 950 
## Concordance= 0.8059859 se= 0.02746324
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  61799.000  14873.000      8.000      1.000   4211.763

w <- c(which(allSurv[,1]==0)[-1]-1, nrow(allSurv))
s <- Surv(allSurv[w,2], allSurv[w,3])
t <- seq(0,22,0.1)
a <- AUC.uno(s, s, fitAll$linear.predictors[w], times=t)
plot(a$times, a$auc, xlab="Time [yr]", ylab="AUC", pch=16, col='grey')
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc)
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r <- survivalROC(Stime = s[,1], status=s[,2], marker=fitAll$linear.predictors[w]-c
olMeans(fitAll$Z[w,]) %*% fitAll$coefficients, predict.time = 10, method="NNE", sp
an=0.001)
plot(r$FP, r$TP, type='s', xlab="FPR", ylab="TPR")

round(r$AUC, 3)

## [1] 0.84

7.4.2 Adjusted
fitWeighted <- CoxRFX(allX, allSurv, allGroups, which.mu=which.mu, sigma0=sigma0, 
nu=nu, weights=weights)
waldWeighted <- WaldTest(fitWeighted)

##                   group    coef coef-mu     sd      z df  p.value sig
## ASXL1_0.1         Genes  1.9907  0.0666 0.1328 14.985  1 9.18e-51 ***
## BCOR_0.1          Genes  2.1375  0.2134 0.1144 18.677  1 7.57e-78 ***
## CBL_0.1           Genes  0.3984 -1.5256 0.3634  1.096  1 2.73e-01    
## DNMT3A_0.1        Genes  0.6589 -1.2652 0.1112  5.926  1 3.10e-09 ***
## IDH1_0.1          Genes  2.4306  0.5065 0.3313  7.337  1 2.18e-13 ***
## IDH2_0.1          Genes  0.8422 -1.0818 0.2181  3.862  1 1.13e-04 ***
## JAK2_0.1          Genes  1.8770 -0.0471 0.1954  9.607  1 7.44e-22 ***
## KDM6A_0.1         Genes  1.9370  0.0129 0.1241 15.607  1 6.51e-55 ***
## KMT2C_0.1         Genes  2.3674  0.4434 0.7114  3.328  1 8.75e-04 ***
## KMT2D_0.1         Genes  0.1632 -1.7609 0.4835  0.338  1 7.36e-01    
## KRAS_0.1          Genes  1.9831  0.0590 0.1706 11.622  1 3.20e-31 ***
## NF1_0.1           Genes  1.5839 -0.3402 0.4410  3.592  1 3.29e-04 ***
## NRAS_0.1          Genes  2.3167  0.3926 0.1248 18.569  1 5.76e-77 ***
## PHF6_0.1          Genes  2.2266  0.3025 0.1241 17.937  1 6.04e-72 ***
## PTPN11_0.1        Genes  2.1631  0.2390 0.3107  6.962  1 3.35e-12 ***
## RAD21_0.1         Genes  1.8365 -0.0876 0.2512  7.311  1 2.65e-13 ***
## RUNX1_0.1         Genes  0.8106 -1.1134 0.1329  6.098  1 1.08e-09 ***
## SF3B1_0.1         Genes  3.1070  1.1829 0.3114  9.977  1 1.92e-23 ***
## SRSF2_0.1         Genes  1.3684 -0.5557 0.1491  9.176  1 4.47e-20 ***
## TET2_0.1          Genes  0.9527 -0.9714 0.1172  8.126  1 4.45e-16 ***
## TP53_0.1          Genes  5.0534  3.1293 0.3907 12.934  1 2.88e-38 ***
## U2AF1_0.1         Genes  4.1247  2.2006 0.3300 12.498  1 7.67e-36 ***
## age_10     Demographics -0.0962 -0.0962 0.0863 -1.114  1 2.65e-01    
## gender     Demographics -0.0522 -0.0522 0.1044 -0.499  1 6.17e-01    
## cohort     Demographics  0.0499  0.0499 0.0973  0.512  1 6.08e-01

survConcordance(fitWeighted$surv ~ fitWeighted$linear.predictor, weights=weights)

## Call:
## survConcordance(formula = fitWeighted$surv ~ fitWeighted$linear.predictor, 
##     weights = weights)
## 
##   n= 950 
## Concordance= 0.7778849 se= 0.02802535
##   concordant   discordant    tied.risk    tied.time     std(c-d) 
## 6313552.2348 1802641.1313     317.7601       1.0000  454936.0746

Dynamic/cumulative AUC
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Dynamic/cumulative AUC

w <- c(which(allSurv[,1]==0)[-1]-1, nrow(allSurv))
survAll2 <- Surv(allSurv[w,2], allSurv[w,3])
t <- seq(0,22,0.1)
a <- AUC.uno(survAll2, survAll2, fitWeighted$linear.predictor[w], times=t)
plot(a$times, a$auc, xlab="Time [yr]", ylab="AUC", pch=16, col='grey')
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc)

round(a$iauc, 3)

## [1] 0.789

png("./figures/combined.ajd.coxph.auc.uno.png", width = 9, height = 10, units = "c
m", res = 500)
par(mar = c(3.2, 3.2, 4, 2) + 0.1, mgp=c(2,0.5,0), bty="L",  tcl =-0.2, las = 1, c
ex=1)
plot(a$times, a$auc, xlab="Time (years)", ylab="AUC", pch=16, col="grey80", ylim = 
c(0,1.0))
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc, lty = 3, lwd = 1)
#mtext("Combined adjusted Cox PH", font= 2, side = 3, line = 0.5)
legend("bottomright", bty = "n", legend = paste("AUC = ",round(a$iauc,2)))
dev.off()

## pdf 
##   2

Time-depenent ROC

r <- survivalROC(Stime = survAll2[,1], status=survAll2[,2], marker=fitWeighted$lin
ear.predictors[w]-colMeans(fitWeighted$Z[w,]) %*% fitWeighted$coefficients, predic
t.time = 10, method="NNE", span=0.001) 
round(r$AUC, 3)

## [1] 0.791

png("./figures/Combined.adj.coxph.roct.png", width = 9, height = 10, units = "cm", 
res = 500)
par(mar = c(3.2, 3.2, 4, 2) + 0.1, mgp=c(2,0.5,0), bty="L",  tcl =-0.2, las = 1, c
ex = 1)
plot(r$FP, r$TP, type='s', 
     xlab="False Positive Rate", ylab="True Positive Rate", 
     col = "black")
abline(a = 0, b = 1, col = "grey70", lty = 1, lwd = 1)
legend("bottomright", bty = "n", legend = paste("AUC = ",round(r$AUC,2)))
dev.off()

## pdf 
##   2

7.4.3 Bootstrap
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7.4.3 Bootstrap
coefWeightedBoot <- sapply(1:100, function(foo){
            set.seed(foo)
            b <- unique(sample(1:nrow(allX), replace=TRUE))
            fitWeighted <- CoxRFX(allX[b,], allSurv[b,], allGroups, which.mu=which
.mu, sigma0=sigma0, nu=5, weights=weights[b])
            c(coef(fitWeighted), 'mu.Genes'=fitWeighted$mu["Genes"])
        })

concBoots <- sapply(1:100, function(foo){
            set.seed(foo)
            b <- unique(sample(1:nrow(allX), replace=TRUE))
            oob <- !1:nrow(allX) %in% b
            c(inb=as.numeric(survConcordance(allSurv[b,]~ as.matrix(allX)[b,] %*% 
coefWeightedBoot[-26,foo], weights=weights[b])$concordance),
                    oob=as.numeric(survConcordance(allSurv[oob,]~ as.matrix(allX)[
oob,] %*% coefWeightedBoot[-26,foo],weights=weights[oob])$concordance),
                    auc = AUC.uno(survAll2[oob[w],], survAll2[oob[w],], as.matrix(
allX)[w,][oob[w],] %*% coefWeightedBoot[-26,foo], times=t)$iauc
            )
        })

apply(concBoots,1,quantile)

##            inb       oob       auc
## 0%   0.7127155 0.6414249 0.6163769
## 25%  0.7623231 0.7268340 0.7333587
## 50%  0.7757864 0.7643297 0.7833229
## 75%  0.7985773 0.7875492 0.8223659
## 100% 0.8519811 0.8713292 0.8805585

7.4.4 Forest plot
Figure 3

pal1 <- c("#C32B4A", "#3F76B4", "#57B2AB", "#5E4FA2", "#EB6046")
rownames(waldWeighted)

##  [1] "ASXL1_0.1"  "BCOR_0.1"   "CBL_0.1"    "DNMT3A_0.1" "IDH1_0.1"   "IDH2_0.1
"   "JAK2_0.1"   "KDM6A_0.1" 
##  [9] "KMT2C_0.1"  "KMT2D_0.1"  "KRAS_0.1"   "NF1_0.1"    "NRAS_0.1"   "PHF6_0.1
"   "PTPN11_0.1" "RAD21_0.1" 
## [17] "RUNX1_0.1"  "SF3B1_0.1"  "SRSF2_0.1"  "TET2_0.1"   "TP53_0.1"   "U2AF1_0.
1"  "age_10"     "gender"    
## [25] "cohort"
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png("./figures/Combined.adj.coxph.boostrapped.forest.png", width = 15.5, height = 
17, units = "cm", res = 800)
par(bty="n", mar=c(3,6,3,15)+.5, mgp=c(2,0.5,0), xpd=FALSE, tcl=-.25, cex = 0.9)
c <- c(waldWeighted[-25,"coef"], "mu"=fitWeighted$mu["Genes"]); names(c)[1:24] <- 
rownames(waldWeighted)[-25] #-25 removes 'cohort' variable
o <- c(23:24,1:22,25)
s <- c(rep(1,2), rep(.5, 23))
c <- exp(c*c(rep(0.5,22), c(1,1),0.5))
ci <- apply(coefWeightedBoot,1,quantile, c(0.025,0.975))[,-25] * rep(c(rep(0.5,22)
, c(1,1),0.5), each=2)
y <- rev(seq_along(c))
plot(c[o], y, xlab="Hazard ratio", log='x', ylab='', xaxt = "n", yaxt="n", pch=NA, 
xlim=c(0.5,50)) 
atx <- axTicks(1)
axis(1,at=atx,labels=atx)
segments(x0=0.5, x1 = 50, y0=y, y1=y, col="#EEEEEE", lty=1)
abline(v=1, lty=1, col="grey")
abline(v=c["mu.Genes"], col=mg14::colTrans("#57B2AB"), lty=1)
segments(exp(ci[1,o]), y, exp(ci[2,o]),y)
points(c[o], y, xlab="",  bg=pal1[3], cex=2, pch=c(rep(21,24), 23)) 
m1 <- match(names(c)[o],rownames(waldWeightedToronto))[-25]
points(exp(c(waldWeightedToronto$coef[m1], fitWeightedToronto$mu["Genes"])*s), y,b
g=pal1[4], pch=c(rep(21,24), 23), cex=1) 
m2 <- match(names(c)[o],rownames(waldWeightedSanger))[-25]
points(exp(c(waldWeightedSanger$coef[m2], fitWeightedSanger$mu["Genes"])*s), y,bg=
pal1[5], pch=c(rep(21,24), 23), cex=1) 
mtext(side=2, sub("mu.Genes","Av. gene", sub("_.+","", sub("age", "Age", sub("gend
er", "Gender", names(c)[o])))), at=y, las=2, cex=0.85, font=c(1,1,rep(3,22),1))
r <- sapply(split(as.data.frame(allX>0), control), colMeans)
f <- sapply(split(allX, control), apply, 2, function(x) mean(x[x>0]))
par(xpd=NA)
points(rep(100,22),y[3:24], cex=sqrt(r[o[3:24],2]*10), pch=21, bg=pal1[2]) 
points(rep(100*1.5,22), y[3:24], cex=sqrt(r[o[3:24],1]*10), pch=21, bg=pal1[1]) 
points(rep(360,22),y[3:24], cex=sqrt(f[o[3:24],2]), pch=21, bg=set1[2])
points(rep(360*1.5,22), y[3:24], cex=sqrt(f[o[3:24],1]), pch=21, bg=pal1[1])
legend(x=0.8, y=27.8, pch=21, pt.bg=pal1[c(4,5,3)], c("DC","VC","Combined"), bty="
n", ncol=3, text.width=0.25)
text(y=24, x=100, "     Frequency", cex = 0.92)
text(y=24, x=360*1.5, "VAF    ", cex = 0.92)
axis(1, at=c(100,100*1.5), c("Control ","Pre-AML "), las=2, line=-1, cex = 0.89)
axis(1, at=c(360,360*1.5), c("Control ","Pre-AML "), las=2, line=-1, cex = 0.89)
dev.off()

## pdf 
##   2

Fig3Data1 <- data.frame(Parameter = sapply(strsplit(names(c[o]), "_"), "[", 1), 
                        CombinedModel.HR = round(c[o], 1),
                        CombinedModel.HR.CI2.5 = round(exp(ci[1,o]), 1), 
                        CombinedModel.HR.CI97.5 = round(exp(ci[2,o]),1),
                        DC.HR = round(exp(c(waldWeightedToronto$coef[m1], fitWeigh
tedToronto$mu["Genes"])*s),1),
                        VC.HR = round(exp(c(waldWeightedSanger$coef[m2], fitWeight
edSanger$mu["Genes"])*s),1)
                        )
rownames(Fig3Data1) <- NULL
head(Fig3Data1)

 
Parameter
<fctr>

CombinedModel.…
<dbl>

CombinedModel.HR.CI2.5
<dbl>

CombinedModel.HR.CI97.5
<dbl>

DC…
<dbl>

1 age 0.9 0.8 1.0

2 gender 0.9 0.8 1.2

3 ASXL1 2.7 2.5 6.6
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table(rownames(r)==rownames(f))

## 
## TRUE 
##   25

Fig3Data2 <- data.frame(Parameter = sapply(strsplit(rownames(r), "_"), "[", 1)[1:2
2],
                        Frequency_PreAML = round(r[1:22, 1],3),
                        Frequency_Controls = round(r[1:22, 2],3),
                        MeanVAF_PreAML = round(f[1:22, 1],3),
                        MeanVAF_Control = round(f[1:22, 2],3))
head(Fig3Data2)

rownames(Fig3Data2) <- NULL
Fig3Data <- left_join(x = Fig3Data1, y = Fig3Data2, by = 'Parameter')

## Warning: Column `Parameter` joining factors with different levels, coercing to 
character vector

Fig3Data$Parameter <- ifelse(Fig3Data$Parameter == "mu.Genes", "Av.gene", Fig3Data
$Parameter)
#View(Fig3Data)
write_csv(Fig3Data, "./figures/Figure3_Data.csv")

7.4.5 Dichotomous variables
allXDich <- allX
allXDich[allGroups=="Genes"] <- (allXDich[allGroups=="Genes"] > 0) + 0
fitWeightedDich <- CoxRFX(allXDich, allSurv, allGroups, which.mu=which.mu, sigma0=
sigma0, nu=nu, weights=weights)

WaldTest(fitWeightedDich)

3 ASXL1 2.7 2.5 6.6

4 BCOR 2.9 2.5 11.1

5 CBL 1.2 1.0 5.1

6 DNMT3A 1.4 1.2 1.8

6 rows

 
 

Parameter
<fctr>

Frequency_PreAML
<dbl>

Frequency_Controls
<dbl>

MeanVAF_Pre…
<dbl>

MeanVAF_Control

ASXL1_0.1 ASXL1 0.090 0.021 1.262

BCOR_0.1 BCOR 0.008 0.001 0.117

CBL_0.1 CBL 0.030 0.011 0.414

DNMT3A_0.1 DNMT3A 0.391 0.212 0.950

IDH1_0.1 IDH1 0.023 0.001 1.156

IDH2_0.1 IDH2 0.038 0.001 1.848

6 rows
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##                   group    coef coef-mu     sd       z df  p.value sig
## ASXL1_0.1         Genes  1.3797 -0.3942 0.3175  4.3456  1 1.39e-05 ***
## BCOR_0.1          Genes  2.5308  0.7570 0.8406  3.0106  1 2.61e-03  **
## CBL_0.1           Genes  0.3932 -1.3806 0.4991  0.7879  1 4.31e-01    
## DNMT3A_0.1        Genes  0.7794 -0.9944 0.2049  3.8048  1 1.42e-04 ***
## IDH1_0.1          Genes  2.0403  0.2665 0.5817  3.5073  1 4.53e-04 ***
## IDH2_0.1          Genes  3.9907  2.2169 0.5363  7.4414  1 9.96e-14 ***
## JAK2_0.1          Genes  3.2315  1.4577 0.3911  8.2629  1 1.42e-16 ***
## KDM6A_0.1         Genes  0.7396 -1.0343 0.7822  0.9456  1 3.44e-01    
## KMT2C_0.1         Genes -0.4630 -2.2368 0.5910 -0.7834  1 4.33e-01    
## KMT2D_0.1         Genes  0.8142 -0.9597 0.9409  0.8653  1 3.87e-01    
## KRAS_0.1          Genes -0.0209 -1.7948 0.7030 -0.0298  1 9.76e-01    
## NF1_0.1           Genes -1.1385 -2.9124 0.8236 -1.3824  1 1.67e-01    
## NRAS_0.1          Genes  1.6320 -0.1419 0.7812  2.0891  1 3.67e-02   *
## PHF6_0.1          Genes  4.0915  2.3176 0.7069  5.7883  1 7.11e-09 ***
## PTPN11_0.1        Genes  2.2597  0.4859 0.6548  3.4510  1 5.59e-04 ***
## RAD21_0.1         Genes  1.0923 -0.6816 0.9283  1.1767  1 2.39e-01    
## RUNX1_0.1         Genes  2.6557  0.8818 0.5738  4.6284  1 3.69e-06 ***
## SF3B1_0.1         Genes  0.0815 -1.6924 0.6027  0.1352  1 8.92e-01    
## SRSF2_0.1         Genes  4.2431  2.4693 0.3084 13.7566  1 4.65e-43 ***
## TET2_0.1          Genes  0.9715 -0.8023 0.2351  4.1328  1 3.58e-05 ***
## TP53_0.1          Genes  2.0033  0.2295 0.4168  4.8067  1 1.53e-06 ***
## U2AF1_0.1         Genes  5.7172  3.9433 0.4178 13.6831  1 1.28e-42 ***
## age_10     Demographics -0.3024 -0.3024 0.0958 -3.1571  1 1.59e-03  **
## gender     Demographics -0.0512 -0.0512 0.1362 -0.3759  1 7.07e-01    
## cohort     Demographics  0.2569  0.2569 0.1435  1.7896  1 7.35e-02   .

survConcordance(allSurv ~ fitWeightedDich$linear.predictors, weights=weights)

## Call:
## survConcordance(formula = allSurv ~ fitWeightedDich$linear.predictors, 
##     weights = weights)
## 
##   n= 950 
## Concordance= 0.764251 se= 0.02802535
##   concordant   discordant    tied.risk    tied.time     std(c-d) 
## 6202805.3608 1913213.1798     492.5856       1.0000  454936.0734

7.4.6 Bootstrap adjustment
To compare to the weighted CoxRFX models

set.seed(42)

p <- c(rep(n_total_sanger, sum(cohort=="Sanger" & control)), rep(n_total_toronto, 
sum(cohort=="Toronto" & control)))
b42 <- c(sample(which(control), size=round(n_total) - sum(!control), prob=p, repla
ce=TRUE), which(!control))

fitBoot <- CoxRFX(allX[b42,], allSurv[b42,], allGroups, which.mu=which.mu, sigma0=
sigma0, nu=nu)

set.seed(42)
b <- c(sample(which( sangerData$Diagnosis=="Control"), size=round(n_total_sanger) 
- sum(sangerData$Diagnosis!="Control"), replace=TRUE), which(sangerData$Diagnosis!
="Control"))

fitBootSanger <- CoxRFX(sangerX[b,], sangerSurv[b,], sangerGroups, which.mu=which.
mu, sigma0=sigma0, nu=nu)

survConcordance(fitBootSanger$surv ~ fitBootSanger$linear.predictors)

## Call:
## survConcordance(formula = fitBootSanger$surv ~ fitBootSanger$linear.predictors)
## 
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##   n= 10407 
## Concordance= 0.8334695 se= 0.05475909
## concordant discordant  tied.risk  tied.time   std(c-d) 
##   140833.0    28139.0        0.0        0.0    18505.5

waldBootSanger <- WaldTest(fitBootSanger)

##                    group     coef  coef-mu      sd       z df  p.value sig
## ASXL1_0.1          Genes  2.75130  0.85036 0.44987  6.1157  1 9.61e-10 ***
## CBL_0.1            Genes  0.90179 -0.99914 1.17452  0.7678  1 4.43e-01    
## DNMT3A_0.1         Genes  0.75840 -1.14254 0.22408  3.3845  1 7.13e-04 ***
## JAK2_0.1           Genes -0.20568 -2.10662 0.92220 -0.2230  1 8.24e-01    
## KMT2C_0.1          Genes  2.16912  0.26819 0.96833  2.2401  1 2.51e-02   *
## KMT2D_0.1          Genes  0.06618 -1.83475 0.76576  0.0864  1 9.31e-01    
## KRAS_0.1           Genes  2.31066  0.40972 0.38106  6.0638  1 1.33e-09 ***
## NF1_0.1            Genes  1.57512 -0.32581 0.77819  2.0241  1 4.30e-02   *
## NRAS_0.1           Genes  1.84937 -0.05157 0.35761  5.1715  1 2.32e-07 ***
## RAD21_0.1          Genes  1.70593 -0.19501 0.58727  2.9049  1 3.67e-03  **
## SF3B1_0.1          Genes  1.54550 -0.35544 0.87032  1.7758  1 7.58e-02   .
## SRSF2_0.1          Genes  1.40565 -0.49529 0.27962  5.0271  1 4.98e-07 ***
## TET2_0.1           Genes  1.25279 -0.64815 0.13571  9.2317  1 2.66e-20 ***
## TP53_0.1           Genes  4.63845  2.73751 0.89272  5.1959  1 2.04e-07 ***
## U2AF1_0.1          Genes  5.78946  3.88853 0.73724  7.8528  1 4.07e-15 ***
## age_10      Demographics  0.04278  0.04278 0.11873  0.3603  1 7.19e-01    
## gender      Demographics -0.01852 -0.01852 0.10088 -0.1836  1 8.54e-01    
## systol_100         Blood  0.02344  0.02344 0.04556  0.5145  1 6.07e-01    
## diastol_100        Blood  0.04133  0.04133 0.03020  1.3686  1 1.71e-01    
## bmi_10             Blood  0.14916  0.14916 0.08426  1.7702  1 7.67e-02   .
## cholestl_10        Blood  0.00303  0.00303 0.01547  0.1958  1 8.45e-01    
## triglyc            Blood -0.02770 -0.02770 0.11803 -0.2347  1 8.14e-01    
## hdl                Blood -0.12117 -0.12117 0.08479 -1.4291  1 1.53e-01    
## ldl                Blood  0.13479  0.13479 0.11448  1.1775  1 2.39e-01    
## lym                Blood  0.08408  0.08408 0.10435  0.8057  1 4.20e-01    
## mcv_100            Blood -0.02485 -0.02485 0.00798 -3.1160  1 1.83e-03  **
## rdw_10             Blood  0.06629  0.06629 0.01703  3.8934  1 9.88e-05 ***
## wbc_10             Blood  0.01199  0.01199 0.04735  0.2532  1 8.00e-01    
## plt_100            Blood  0.09163  0.09163 0.10006  0.9158  1 3.60e-01    
## hgb_10             Blood  0.03986  0.03986 0.02497  1.5960  1 1.10e-01

set.seed(42)
b <- c(sample(which( torontoData$Diagnosis=="Control"), size=round(n_total_toronto
) - sum(torontoData$Diagnosis!="Control"), replace=TRUE), which(torontoData$Diagno
sis!="Control"))

fitBootToronto <- CoxRFX(torontoX[b,], torontoSurv[b,], torontoGroups, which.mu=wh
ich.mu, sigma0=sigma0, nu=nu)
survConcordance(fitBootToronto$surv ~ fitBootToronto$linear.predictors)

## Call:
## survConcordance(formula = fitBootToronto$surv ~ fitBootToronto$linear.predictor
s)
## 
##   n= 72378 
## Concordance= 0.7750173 se= 0.03055346
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  4722585.0  1370937.0        0.0        1.0   372356.4
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waldWeightedToronto <- WaldTest(fitBootToronto)

##                   group    coef  coef-mu     sd      z df  p.value sig
## ASXL1_0.1         Genes  1.9494  0.01801 0.1451 13.430  1 4.03e-41 ***
## CALR_0.1          Genes  0.9415 -0.98990 0.7233  1.302  1 1.93e-01    
## CBL_0.1           Genes  0.3663 -1.56509 0.3604  1.016  1 3.09e-01    
## DNMT3A_0.1        Genes  0.7358 -1.19559 0.1243  5.921  1 3.20e-09 ***
## IDH1_0.1          Genes  2.3973  0.46594 0.3355  7.145  1 8.98e-13 ***
## IDH2_0.1          Genes  0.8078 -1.12360 0.2283  3.538  1 4.03e-04 ***
## JAK2_0.1          Genes  1.9240 -0.00738 0.1822 10.562  1 4.49e-26 ***
## KDM6A_0.1         Genes  1.9436  0.01219 0.1340 14.506  1 1.12e-47 ***
## KMT2C_0.1         Genes  2.4194  0.48806 0.6410  3.774  1 1.60e-04 ***
## KRAS_0.1          Genes  1.8282 -0.10316 0.1559 11.725  1 9.46e-32 ***
## NF1_0.1           Genes  1.8677 -0.06366 0.1512 12.353  1 4.69e-35 ***
## PHF6_0.1          Genes  2.1755  0.24415 0.1302 16.711  1 1.08e-62 ***
## PTPN11_0.1        Genes  2.5369  0.60555 0.2217 11.445  1 2.49e-30 ***
## RUNX1_0.1         Genes  0.7795 -1.15181 0.1359  5.738  1 9.57e-09 ***
## SF3B1_0.1         Genes  3.1337  1.20231 0.3091 10.138  1 3.76e-24 ***
## SRSF2_0.1         Genes  1.4023 -0.52910 0.1703  8.235  1 1.80e-16 ***
## TET2_0.1          Genes  0.6503 -1.28104 0.2012  3.232  1 1.23e-03  **
## TP53_0.1          Genes  4.8664  2.93502 0.4220 11.532  1 9.14e-31 ***
## U2AF1_0.1         Genes  3.9705  2.03910 0.3601 11.025  1 2.89e-28 ***
## age_10     Demographics -0.0891 -0.08907 0.0998 -0.892  1 3.72e-01    
## gender     Demographics -0.0449 -0.04493 0.1114 -0.403  1 6.87e-01

Compare results

i <- intersect(rownames(waldBootSanger), rownames(waldWeightedToronto))
plot( waldWeightedToronto[i,"coef"], waldBootSanger[i, "coef"], xlab="Coef Discove
ry (adjusted)", ylab="Coef Validation (adjusted)", pch=19, cex=1)#sqrt(colMeans(rb
ind(sangerX[,i], torontoX[,i])>0)*100))
segments(waldWeightedToronto[i,"coef"]  - 2*waldWeightedToronto[i,"sd"], waldBootS
anger[i, "coef"], waldWeightedToronto[i,"coef"]  + 2*waldWeightedToronto[i,"sd"], 
waldBootSanger[i, "coef"], col="grey" )
segments(waldWeightedToronto[i,"coef"]  , waldBootSanger[i, "coef"]-  2*waldBootSa
nger[i,"sd"], waldWeightedToronto[i,"coef"] , waldBootSanger[i, "coef"] +2*waldBoo
tSanger[i,"sd"], col="grey")
text(labels=sub("_.+","", i), waldWeightedToronto[i,"coef"], waldBootSanger[i, "co
ef"], pos=2, adj=c(0,1))
abline(0,1)

plot( waldToronto[i,"coef"], waldSanger[i, "coef"], xlab="Coef Discovery (raw)", y
lab="Coef Validation (raw)", pch=19, cex=1, ylim=c(0,5),xlim=c(0,5))#sqrt(colMeans
(rbind(sangerX[,i], torontoX[,i])>0)*100))
segments(waldToronto[i,"coef"]  - 2*waldToronto[i,"sd"], waldSanger[i, "coef"], wa
ldToronto[i,"coef"]  + 2*waldToronto[i,"sd"], waldSanger[i, "coef"], col="grey" )
segments(waldToronto[i,"coef"]  , waldSanger[i, "coef"]-  2*waldSanger[i,"sd"], wa
ldToronto[i,"coef"] , waldSanger[i, "coef"] +2*waldSanger[i,"sd"], col="grey")
text(labels=sub("_.+","", i), waldToronto[i,"coef"], waldSanger[i, "coef"], pos=2, 
adj=c(0,1))
abline(0,1)
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7.4.7 LOOCV
samples <- factor(c(as.character(sangerData$Individual), as.character(torontoData$
Sample)))

looAll <- do.call("rbind",mclapply(levels(samples), function(l){
                    i <- samples!=l
                    f <<- CoxRFX(allX[i,], allSurv[i,], allGroups, which.mu=which.
mu, sigma0=sigma0, nu=nu)
                    p <- as.matrix(allX[!i,,drop=FALSE]) %*% f$coefficients
                    r <- cbind(matrix(f$coefficients, nrow=length(p), ncol=length(
f$coefficients), byrow=TRUE), linear.predictor=p)
                    colnames(r) <- c(names(f$coefficients), "linear.predictor")
                    as.data.frame(r)
                }, mc.cores=4))
looAll <- looAll[order(order(samples)),]
pp <- looAll$linear.predictor

c <- rbind(
        `Toronto (fit)`=as.data.frame(survConcordance(torontoSurv ~ fitToronto$lin
ear.predictors)[c("concordance","std.err")]),
        `Toronto (val)`=as.data.frame(survConcordance(sangerSurv ~ pS[,1])[c("conc
ordance","std.err")]),
        `Sanger (fit)`=as.data.frame(survConcordance(sangerSurv ~ fitSanger$linear
.predictors)[c("concordance","std.err")]),
        `Sanger (val)`=as.data.frame(survConcordance(torontoSurv ~ pT[,1])[c("conc
ordance","std.err")]),
        `Combined (fit)`=as.data.frame(survConcordance(allSurv ~ fitAll$linear.pre
dictors)[c("concordance","std.err")]),
        `Combined (val)`=as.data.frame(survConcordance(allSurv ~ pp)[c("concordanc
e","std.err")]))

c

 
 

concordance
<dbl>

std.err
<dbl>

Toronto (fit) 0.7426378 0.03079247

Toronto (val) 0.8069747 0.05514445

Sanger (fit) 0.7939150 0.05514512

Sanger (val) 0.7000180 0.03079247

Combined (fit) 0.8059859 0.02746324

Combined (val) 0.7847548 0.02746328

6 rows

par(mar=c(5,3,1,1), mgp=c(2,.5,0))
b <- barplot(c$concordance-0.5, ylab="Concordance", col=rev(RColorBrewer::brewer.p
al(6,"Paired")), ylim=c(0.5,0.88), offset=0.5)
mg14::rotatedLabel(x=b, labels=rownames(c))
segments(b,c$concordance+c$std.err,b,c$concordance-c$std.err)
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w <- c(which(allSurv[,1]==0)[-1]-1, nrow(allSurv))
survAll2 <- Surv(allSurv[w,2], allSurv[w,3])
t <- seq(0,22,0.1)
a <- AUC.uno(survAll2, survAll2, looAll$linear.predictor[w], times=t)
plot(a$times, a$auc, xlab="Time [yr]", ylab="AUC", pch=16, col='grey')
lines(a$times, predict(loess(a$auc ~ a$times, span=0.25)))
abline(h=a$iauc)

round(a$iauc, 3)

## [1] 0.832

r <- survivalROC(Stime = survAll2[,1], status=survAll2[,2], marker=looAll$linear.p
redictor[w], predict.time = 10, method="NNE", span=0.001)#0.25*nrow(s)^(-0.20))
plot(r$FP, r$TP, type='s', xlab="FPR", ylab="TPR")

round(r$AUC, 3)

## [1] 0.825

7.4.7.1 Individual Predictions (non-adjusted)
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plot(survfit(allSurv~1), conf.int=FALSE, xlab='Time after first sample [yr]', ylab
='Predicted AML-free fraction', col='white', bty='L', yaxs='i', ylim=c(0,1.01))
d <- data.frame(t=NULL, s=NULL, pch=NULL, col=character())
for(i in unique(samples)){
    km <- exp(predict(smooth.spline(log(summary(survfit(allSurv[samples!=i,]~1), t
imes=t)$surv), df=10))$y)
    l0 <- colMeans(fitAll$Z[samples!=i,,drop=FALSE]) %*% as.numeric(looAll[samples
==i,][1,colnames(fitAll$Z)])
    kmi <- function(km, s, lp, l0){
        .kmi <- function(km, sj, lpj, l0) km[t >= sj[,1] & t <= sj[,2]]^exp(lpj-l0
)
        k0 <- 1
        for(j in 1:nrow(s)) {
            k <- .kmi(km, s[j,], lp[j], l0)
            k <- k * k0/k[1]
            w <- t >= s[j,1] & t <= s[j,2]
            k0 <- k[length(k)]
            c <- if(s[nrow(s),3]==1) set1[1] else set1[2]
            #if(c==set1[1]) next
            lines(t[w], k, col=mg14:::colTrans(c), type='l')
            p <- if(s[j,3]==1) 19 else 1
            #points(t[w][length(k)], k[length(k)], col=c, pch=p)
            d <<- rbind(d, data.frame(t=t[w][length(k)], s=k[length(k)], pch=p, co
l=c))     
        }       
    }
    kmi(km, allSurv[samples==i,], looAll$linear.predictor[samples==i], l0)
}
points(d$t, d$s, pch=d$pch, col=as.character(d$col))
legend("bottomright", pch=c(1,1,19), col=c(set1[2], set1[1], set1[1]), legend=c("C
ontrol", "Progressor (pre-AML)", "Progressor (AML)"), bty='n')

7.4.7.2 Jackknife variance

i <- !duplicated(samples)
coef.jack <- colMeans(looAll[i,-ncol(looAll)])
var.jack <- rowSums((t(looAll[i,-ncol(looAll)]) - coef.jack)^2) * (sum(i)-1)/sum(i
)

p.jack <- pchisq(coef.jack^2/var.jack,1, lower.tail=FALSE)
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Next1 2 3Previous

data.frame(coef.jack, p.jack, sig=mg14::sig2star(p.jack), n=colSums(allX[i,]>0))

 
 

coef.jack
<dbl>

p.jack
<dbl>

sig
<fctr>

n
<dbl>

ASXL1_0.1 0.74835623 1.277998e-05 *** 26

BCOR_0.1 0.80859507 2.311062e-04 *** 1

CBL_0.1 0.47795378 3.123703e-01 12

DNMT3A_0.1 0.55685260 7.358773e-06 *** 194

IDH1_0.1 0.81211760 5.586147e-10 *** 3

IDH2_0.1 0.51251777 1.351015e-01 6

JAK2_0.1 0.75979214 3.181470e-08 *** 10

KDM6A_0.1 0.79059980 7.666406e-05 *** 3

KMT2C_0.1 0.85878619 5.304616e-04 *** 6

KMT2D_0.1 0.40005469 3.584861e-01 1

1-10 of 25 rows

7.4.8 Multiple bootstraps
save(file="boot.RData", control, allX, allSurv, sigma0, nu, which.mu, allGroups, n
_total, cohort, p)

fitBoots <- simplify2array(mclapply(1:100, function(foo){
                    set.seed(foo)
                    w <- which(control)
                    s <- sample(seq_along(which(control)), replace=TRUE)
                    b <- c(sample(which(control)[s], size=round(n_total) - sum(!co
ntrol), prob=p[s], replace=TRUE), sample(which(!control), replace=TRUE))
                    fitBoot <- CoxRFX(allX[b,], allSurv[b,], allGroups, which.mu=w
hich.mu, sigma0=sigma0, nu=nu)
                    fitBoot$coefficients
                }, mc.cores=4))
save(fitBoots, file="fitBoots.RData")

load('fitBoots.RData')

WaldTest(fitBoot)

##                   group    coef coef-mu     sd      z df  p.value sig
## ASXL1_0.1         Genes  1.9782  0.0682 0.1330 14.873  1 4.90e-50 ***
## BCOR_0.1          Genes  2.1204  0.2104 0.1157 18.319  1 5.81e-75 ***
## CBL_0.1           Genes  0.3747 -1.5352 0.3614  1.037  1 3.00e-01    
## DNMT3A_0.1        Genes  0.6499 -1.2600 0.1133  5.735  1 9.77e-09 ***
## IDH1_0.1          Genes  2.4215  0.5116 0.3299  7.341  1 2.12e-13 ***
## IDH2_0.1          Genes  0.8614 -1.0486 0.2191  3.931  1 8.47e-05 ***
## JAK2_0.1          Genes  1.8708 -0.0391 0.1956  9.562  1 1.15e-21 ***
## KDM6A_0.1         Genes  1.9211  0.0112 0.1251 15.363  1 2.92e-53 ***
## KMT2C_0.1         Genes  2.3935  0.4836 0.7067  3.387  1 7.07e-04 ***
## KMT2D_0.1         Genes  0.1309 -1.7790 0.4810  0.272  1 7.86e-01    
## KRAS_0.1          Genes  1.9602  0.0503 0.1717 11.415  1 3.53e-30 ***
## NF1_0.1           Genes  1.5704 -0.3396 0.4386  3.580  1 3.43e-04 ***
## NRAS_0.1          Genes  2.3060  0.3960 0.1213 19.014  1 1.31e-80 ***
## PHF6_0.1          Genes  2.2127  0.3028 0.1241 17.835  1 3.80e-71 ***
## PTPN11_0.1        Genes  2.1333  0.2233 0.3110  6.860  1 6.86e-12 ***
## RAD21_0.1         Genes  1.8285 -0.0815 0.2524  7.244  1 4.36e-13 ***
## RUNX1_0.1         Genes  0.8075 -1.1025 0.1325  6.095  1 1.10e-09 ***
## SF3B1_0.1         Genes  3.0963  1.1863 0.3107  9.967  1 2.13e-23 ***
## SRSF2_0.1         Genes  1.3408 -0.5692 0.1503  8.923  1 4.55e-19 ***
## TET2_0.1          Genes  0.9202 -0.9897 0.1179  7.807  1 5.85e-15 ***
## TP53_0.1          Genes  5.0203  3.1104 0.3921 12.803  1 1.57e-37 ***
## U2AF1_0.1         Genes  4.0999  2.1900 0.3306 12.402  1 2.54e-35 ***
## age_10     Demographics -0.0761 -0.0761 0.0912 -0.835  1 4.04e-01    
## gender     Demographics -0.0530 -0.0530 0.1157 -0.458  1 6.47e-01    
## cohort     Demographics  0.1992  0.1992 0.1103  1.806  1 7.09e-02   .

boxplot(t(fitBoots), ylim=c(-1,20))
points(fitBoot$coefficiencts, pch="*", col='red')
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Concordance on out of bag samples

concBoots <- sapply(1:100, function(foo){
            set.seed(foo)
            w <- which(control)
            s <- sample(seq_along(which(control)), replace=TRUE)
            b <- c(sample(which(control)[s], size=round(n_total) - sum(!control), 
prob=p[s], replace=TRUE), sample(which(!control), replace=TRUE))
            oob <- !1:nrow(allX) %in% b
            oos <- c(sample(which(oob & control), size=round(n_total) - sum(!contr
ol), replace=TRUE), sample(which(oob&!control), size=sum(!control), replace=TRUE))
            c(inb=as.numeric(survConcordance(allSurv[b,]~ as.matrix(allX)[b,] %*% 
fitBoots[,foo])$concordance),
                    oob=as.numeric(survConcordance(allSurv[oob,]~ as.matrix(allX)[
oob,] %*% fitBoots[,foo])$concordance),
                    oos=as.numeric(survConcordance(allSurv[oos,]~ as.matrix(allX)[
oos,] %*% fitBoots[,foo])$concordance)
            )
        })

looAllWeighted <- do.call("rbind",mclapply(levels(samples), function(l){
                    i <- samples!=l
                    f <<- CoxRFX(allX[i,], allSurv[i,], allGroups, which.mu=which.
mu, sigma0=sigma0, nu=nu, weights=weights[i])
                    p <- as.matrix(allX[!i,,drop=FALSE]) %*% f$coefficients
                    r <- cbind(matrix(f$coefficients, nrow=length(p), ncol=length(
f$coefficients), byrow=TRUE), linear.predictor=p)
                    colnames(r) <- c(names(f$coefficients), "linear.predictor")
                    as.data.frame(r)
                }, mc.cores=4))
looAllWeighted <- looAllWeighted[order(order(samples)),]
pp <- looAllWeighted$linear.predictor
survConcordance(allSurv ~ pp, weights=weights)

## Call:
## survConcordance(formula = allSurv ~ pp, weights = weights)
## 
##   n= 950 
## Concordance= 0.7561883 se= 0.02802535
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  6137610.4  1978900.7        0.0        1.0   454936.2

h <- exp(looAllWeighted$linear.predictor) > 100
plot(survfit(allSurv ~ h, weights=weights), col=set1[2:1], ylab="AML-free survival
", xlab="Time after first sample")
f <- sum(h*weights)/sum(weights) *100
legend("bottomleft", lty=1, col=set1[2:1], paste(c("low risk", "high risk"), "n ~"
, round(c( 100-f,f), 2),"%"))
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7.4.9 Individual Predictions with corrected baseline
plot(survfit(allSurv~1), conf.int=FALSE, xlab='Time after first sample [yr]', ylab
='Predicted AML-free fraction', col='white', bty='L', yaxs='i', ylim=c(0,1.01))
d <- data.frame(t=NULL, s=NULL, pch=NULL, col=character())
for(i in unique(samples)){
    km <- exp(predict(smooth.spline(log(summary(survfit(allSurv[samples!=i,]~1, we
ights=weights[samples!=i]), times=t)$surv), df=10))$y)
    l0 <- colSums(fitAll$Z[samples!=i,,drop=FALSE] * weights[samples!=i]) %*% as.n
umeric(looAllWeighted[samples==i,][1,colnames(fitAll$Z)]) / sum(weights[samples!=i
])
    kmi <- function(km, s, lp, l0){
        .kmi <- function(km, sj, lpj, l0) km[t >= sj[,1] & t <= sj[,2]]^exp(lpj-l0
)
        k0 <- 1
        for(j in 1:nrow(s)) {
            k <- .kmi(km, s[j,], lp[j], l0)
            k <- k * k0/k[1]
            w <- t >= s[j,1] & t <= s[j,2]
            k0 <- k[length(k)]
            c <- if(s[nrow(s),3]==1) set1[1] else set1[2]
            lines(t[w], k, col=mg14:::colTrans(c), type='l')
            p <- if(s[j,3]==1) 19 else 1
            d <<- rbind(d, data.frame(t=t[w][length(k)], s=k[length(k)], pch=p, co
l=c))     
        }       
    }
    kmi(km, allSurv[samples==i,], looAllWeighted$linear.predictor[samples==i], l0)
}
points(d$t, d$s, pch=d$pch, col=as.character(d$col))
legend("bottomright", pch=c(1,1,19), col=c(set1[2], set1[1], set1[1]), legend=c("C
ontrol", "Progressor (pre-AML)", "Progressor (AML)"), bty='n')

Callibration

p10 <- km[t==10]^exp(looAllWeighted$linear.predictor)
c <- cut(p10, c(0,0.4,0.95,0.99,1))
table(c)

## c
##     (0,0.4]  (0.4,0.95] (0.95,0.99]    (0.99,1] 
##          11          16          12         908

s <- summary(survfit(allSurv~c, weights=weights), times=10)
m <- sapply(split(p10,c), mean)
plot(m, s$surv, xlab="AML-free (predicted)", ylab="AML-free (observed)", xlim=c(0,
1), ylim=c(0,1))
segments(m,s$lower,m,s$upper)
abline(0,1)
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Hazard

boxplot(exp(fitBoot$linear.predictors) ~ factor(1-control[b42], labels=c("Control"
,"AML")), log='y', ylab="Hazard ratio", pch=19, staplewex=0, lty=1, boxwex=0.5)

7.4.10 Some simulations
bX <- sapply(1:50, function(foo){
            set.seed(foo)
            X <- rbind(apply(allX[control,], 2, sample, n_total-sum(!control), rep
lace=TRUE), apply(allX[!control,], 2, sample) )
            lambda0 <- 5e-4
            r <- X%*%coef(fitBoot)
            t <- rexp(n_total, lambda0 * exp(r))
            tmax <- 13 + runif(n_total, 0,1)
            s <- Surv(pmin(t,tmax), t < tmax)
            cases <- which(s[,2]==1)
            controls1 <- sample(which(s[,2]==0), size=1*length(cases))
            controls4 <- sample(which(s[,2]==0), size=sum(control))
            cbind(controls_inc=colMeans(X[controls4,allGroups=="Genes"]>0), AML_in
c=colMeans(X[cases,allGroups=="Genes"]>0), controls_vaf=apply(X[controls4,allGroup
s=="Genes"], 2, function(x) mean(x[x>0])),AML_vaf=apply(X[cases,allGroups=="Genes"
], 2, function(x) mean(x[x>0])))
        }, simplify='array')

Expected vs observed driver frequency

graphics.off()
png("./figures/driver.freq.simulation.png", width = 15, height = 14, units = "cm", 
res = 500)
par(mar = c(5, 4, 1.5, 0.5) + 0.1, mgp=c(2,0.4,0), las=1, tcl=-0.2, cex = 1)
plot(-rowMeans(bX[,'controls_inc',]), type='h', lend = 2, ylim=c(-.5,1)/2.5, lwd=8
, xaxt='n', yaxt = 'n',  ylab="Driver frequency (%)", xlab="", col=pal1[2])
atx <- axTicks(2)
axis(2,at=atx,labels= c(20, 10, 0, 10, 20, 30, 40))
points(x=1:22+.5,-colMeans(allX[control,allGroups=="Genes"]>0), type='h', lend = 2
, lwd=8, col=pal1[1])
points(rowMeans(bX[,"AML_inc",]), type='h', lend = 2, lwd=8, col=pal1[2])
points(x=1:22+.5,colMeans(allX[!control,allGroups=="Genes"]>0), type='h', lend = 2
, lwd=8, col=pal1[1])
mtext(side=1, at=1:22,sub("_.+","",colnames(allX)[allGroups=="Genes"]), las=2, fon
t=3, line=0.7)
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mtext(text = "Pre-AML", side=3, at = 12, las=1, font=1, line=-1.5, cex = 1.1)
mtext(text = "Controls", side=1, at = 12, las=1, font=1, line=-1.5, cex = 1.1)
legend("bottomright", fill=pal1[2:1], c("Expected","Observed"), cex = 0.8)
abline(h=0)
dev.off()

## null device 
##           1

Expected vs observed driver VAF

avgVaf <- function(x) mean(x[x>0])

png("./figures/driver.vaf.simulation.png", width = 15, height = 14, units = "cm", 
res = 500)
par(mar = c(5, 4, 1.5, 0.5) + 0.1, mgp=c(2,0.4,0), las=1, tcl=-0.2, cex=1)
plot(-apply(bX[,'controls_vaf',],1,avgVaf)*10, type='h', lend = 2, ylim=c(-40,50), 
lwd=8, xaxt='n', yaxt = 'n', ylab="Driver VAF (%)", xlab="", col=pal1[2])
atx <- axTicks(2)
axis(2,at=atx,labels= c(40, 20,0, 20, 40))
points(x=1:22+.5,-apply(allX[control,allGroups=="Genes"],2,avgVaf)*10, type='h', l
end = 2, lwd=8, col=pal1[1])
points(apply(bX[,"AML_vaf",],1,avgVaf)*10, type='h', lend = 2, lwd=8, col=pal1[2])
points(x=1:22+.5,apply(allX[!control,allGroups=="Genes"],2,avgVaf)*10, type='h', l
end = 2, lwd=8, col=pal1[1])
mtext(side=1, at=1:22,sub("_.+","",colnames(allX)[allGroups=="Genes"]), las=2, fon
t=3, line = 0.7)
mtext(text = "Pre-AML", side=3, at = 12, las=1, font=1, line=-1.5, cex = 1.1)
mtext(text = "Controls", side=1, at = 12, las=1, font=1, line=-1.5, cex = 1.1)
legend("bottomright", fill=pal1[2:1], c("Expected","Observed"), cex = 0.8)
abline(h=0)
dev.off()

## pdf 
##   2

7.4.11 Simple models
samples <- factor(c(as.character(sangerData$Individual), as.character(torontoData$
Sample)))

max vaf:

v <- apply(allX[,allGroups=="Genes"], 1, max)*10

cumulative vaf

c <- apply(allX[,allGroups=="Genes"], 1, sum)*10

number of mutations

m <- rowSums(allX[,allGroups=="Genes"]>0)

any mutation

a <- as.integer(m>0)

7.4.11.1 Presence of any mutation

d <- data.frame(a) 
summary(f <- coxph(allSurv ~ ., data=d ))

## Call:
## coxph(formula = allSurv ~ ., data = d)
## 
##   n= 950, number of events= 120 
## 
##     coef exp(coef) se(coef)     z Pr(>|z|)    
## a 1.5144    4.5468   0.2046 7.402 1.35e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   exp(coef) exp(-coef) lower .95 upper .95
## a     4.547     0.2199     3.045      6.79
## 
## Concordance= 0.672  (se = 0.023 )
## Rsquare= 0.064   (max possible= 0.801 )
## Likelihood ratio test= 63.31  on 1 df,   p=2e-15
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## Likelihood ratio test= 63.31  on 1 df,   p=2e-15
## Wald test            = 54.78  on 1 df,   p=1e-13
## Score (logrank) test = 66.02  on 1 df,   p=4e-16

los <- do.call("rbind",mclapply(levels(samples), function(l){
  i <- samples!=l
  f <<- coxph(allSurv ~ ., data=d, subset=i)                    
  p <- as.matrix(d[!i,]) %*% f$coefficients
  r <- cbind(matrix(f$coefficients, nrow=length(p), ncol=length(f$coefficients), b
yrow=TRUE), linear.predictor=p)
  colnames(r) <- c(names(f$coefficients), "linear.predictor")
  as.data.frame(r)
}, mc.cores=4))
psAnyMt <- los[order(order(samples)),]

survConcordance(allSurv ~ psAnyMt$linear.predictor)

## Call:
## survConcordance(formula = allSurv ~ psAnyMt$linear.predictor)
## 
##   n= 950 
## Concordance= 0.5431925 se= 0.02388586
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  34829.000  28205.000  13646.000      1.000   3663.136

Dynamic/cumulative AUC

w <- c(which(allSurv[,1]==0)[-1]-1, nrow(allSurv))
survAll2 <- Surv(allSurv[w,2], allSurv[w,3])
t <- seq(0,22,0.1)
allX2 <- allX[w, ]

auc.uno <- AUC.uno(survAll2, survAll2, psAnyMt$linear.predictor[w], times=t)

plot(auc.uno$times, auc.uno$auc, xlab="Time (years)", ylab="AUC", pch=16, col="gre
y80", ylim = c(0,1.0))
lines(auc.uno$times, predict(loess(auc.uno$auc ~ auc.uno$times, span=0.25)))
abline(h=auc.uno$iauc, lty = 3, lwd = 1)
legend("bottomright", bty = "n", cex = 1.2, legend = paste("AUC = ",round(auc.uno$
iauc,2)))

AnyMt.a <- auc.uno

Presence of any mutation + vaf
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Presence of any mutation + vaf

d <- data.frame(a,v) 
summary(f <- coxph(allSurv ~ ., data=d ))

## Call:
## coxph(formula = allSurv ~ ., data = d)
## 
##   n= 950, number of events= 120 
## 
##       coef exp(coef) se(coef)     z Pr(>|z|)    
## a 1.025548  2.788622 0.223677 4.585 4.54e-06 ***
## v 0.050613  1.051915 0.005605 9.030  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   exp(coef) exp(-coef) lower .95 upper .95
## a     2.789     0.3586     1.799     4.323
## v     1.052     0.9506     1.040     1.064
## 
## Concordance= 0.737  (se = 0.024 )
## Rsquare= 0.119   (max possible= 0.801 )
## Likelihood ratio test= 120.5  on 2 df,   p=<2e-16
## Wald test            = 161.8  on 2 df,   p=<2e-16
## Score (logrank) test = 263.9  on 2 df,   p=<2e-16

los <- do.call("rbind",mclapply(levels(samples), function(l){
  i <- samples!=l
  f <<- coxph(allSurv ~ ., data=d, subset=i)                    
  p <- as.matrix(d[!i,]) %*% f$coefficients
  r <- cbind(matrix(f$coefficients, nrow=length(p), ncol=length(f$coefficients), b
yrow=TRUE), linear.predictor=p)
  colnames(r) <- c(names(f$coefficients), "linear.predictor")
  as.data.frame(r)
}, mc.cores=4))
psAnyMtVaf <- los[order(order(samples)),]

survConcordance(allSurv ~ psAnyMtVaf$linear.predictor)

## Call:
## survConcordance(formula = allSurv ~ psAnyMtVaf$linear.predictor)
## 
##   n= 950 
## Concordance= 0.7287559 se= 0.0238873
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  49091.000  14009.000  13580.000      1.000   3663.356

Dynamic/cumulative AUC

auc.uno <- AUC.uno(survAll2, survAll2, psAnyMtVaf$linear.predictor[w], times=t)

plot(auc.uno$times, auc.uno$auc, xlab="Time (years)", ylab="AUC", pch=16, col="gre
y80", ylim = c(0,1.0))
lines(auc.uno$times, predict(loess(auc.uno$auc ~ auc.uno$times, span=0.25)))
abline(h=auc.uno$iauc, lty = 3, lwd = 1)
legend("bottomright", bty = "n", cex = 1.2, legend = paste("AUC = ",round(auc.uno$
iauc,2)))
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AnyMtVaf.a <- auc.uno

7.4.11.2 Number of mutations + vaf
d <- data.frame(m,v) 
summary(f <- coxph(allSurv ~ ., data=d ))

## Call:
## coxph(formula = allSurv ~ ., data = d)
## 
##   n= 950, number of events= 120 
## 
##       coef exp(coef) se(coef)     z Pr(>|z|)    
## m 0.653487  1.922231 0.088287 7.402 1.34e-13 ***
## v 0.040976  1.041827 0.006562 6.245 4.25e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   exp(coef) exp(-coef) lower .95 upper .95
## m     1.922     0.5202     1.617     2.285
## v     1.042     0.9599     1.029     1.055
## 
## Concordance= 0.744  (se = 0.024 )
## Rsquare= 0.142   (max possible= 0.801 )
## Likelihood ratio test= 145.3  on 2 df,   p=<2e-16
## Wald test            = 213.3  on 2 df,   p=<2e-16
## Score (logrank) test = 302.9  on 2 df,   p=<2e-16

los <- do.call("rbind",mclapply(levels(samples), function(l){
  i <- samples!=l
  f <<- coxph(allSurv ~ ., data=d, subset=i)                    
  p <- as.matrix(d[!i,]) %*% f$coefficients
  r <- cbind(matrix(f$coefficients, nrow=length(p), ncol=length(f$coefficients), b
yrow=TRUE), linear.predictor=p)
  colnames(r) <- c(names(f$coefficients), "linear.predictor")
  as.data.frame(r)
}, mc.cores=4))
psNMtVaf <- los[order(order(samples)),]

survConcordance(allSurv ~ psNMtVaf$linear.predictor)

## Call:
## survConcordance(formula = allSurv ~ psNMtVaf$linear.predictor)
## 
##   n= 950 
## Concordance= 0.7431403 se= 0.0238873
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  50194.000  12906.000  13580.000      1.000   3663.356

Dynamic/cumulative AUC

auc.uno <- AUC.uno(survAll2, survAll2, psNMtVaf$linear.predictor[w], times=t)

plot(auc.uno$times, auc.uno$auc, xlab="Time (years)", ylab="AUC", pch=16, col="gre
y80", ylim = c(0,1.0))
lines(auc.uno$times, predict(loess(auc.uno$auc ~ auc.uno$times, span=0.25)))
abline(h=auc.uno$iauc, lty = 3, lwd = 1)
legend("bottomright", bty = "n", cex = 1.2, legend = paste("AUC = ",round(auc.uno$
iauc,2)))
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NMtVaf.a <- auc.uno

7.4.11.3 Number of mutations + cumulative vaf

d <- data.frame(m,c) 
summary(f <- coxph(allSurv ~ ., data=d ))

## Call:
## coxph(formula = allSurv ~ ., data = d)
## 
##   n= 950, number of events= 120 
## 
##       coef exp(coef) se(coef)     z Pr(>|z|)    
## m 0.613264  1.846449 0.090393 6.784 1.17e-11 ***
## c 0.033648  1.034220 0.005036 6.681 2.38e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   exp(coef) exp(-coef) lower .95 upper .95
## m     1.846     0.5416     1.547     2.204
## c     1.034     0.9669     1.024     1.044
## 
## Concordance= 0.744  (se = 0.024 )
## Rsquare= 0.144   (max possible= 0.801 )
## Likelihood ratio test= 148.2  on 2 df,   p=<2e-16
## Wald test            = 223.3  on 2 df,   p=<2e-16
## Score (logrank) test = 350.7  on 2 df,   p=<2e-16

los <- do.call("rbind",mclapply(levels(samples), function(l){
  i <- samples!=l
  f <<- coxph(allSurv ~ ., data=d, subset=i)                    
  p <- as.matrix(d[!i,]) %*% f$coefficients
  r <- cbind(matrix(f$coefficients, nrow=length(p), ncol=length(f$coefficients), b
yrow=TRUE), linear.predictor=p)
  colnames(r) <- c(names(f$coefficients), "linear.predictor")
  as.data.frame(r)
}, mc.cores=4))
psNMtCumVaf <- los[order(order(samples)),]

survConcordance(allSurv ~ psNMtCumVaf$linear.predictor)

## Call:
## survConcordance(formula = allSurv ~ psNMtCumVaf$linear.predictor)
## 
##   n= 950 
## Concordance= 0.743362 se= 0.0238873
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  50211.000  12889.000  13580.000      1.000   3663.356

Dynamic/cumulative AUC
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auc.uno <- AUC.uno(survAll2, survAll2, psNMtCumVaf$linear.predictor[w], times=t)

plot(auc.uno$times, auc.uno$auc, xlab="Time (years)", ylab="AUC", pch=16, col="gre
y80", ylim = c(0,1.0))
lines(auc.uno$times, predict(loess(auc.uno$auc ~ auc.uno$times, span=0.25)))
abline(h=auc.uno$iauc, lty = 3, lwd = 1)
legend("bottomright", bty = "n", cex = 1.2, legend = paste("AUC = ",round(auc.uno$
iauc,2)))

NMtCumVaf.a <- auc.uno

Gene-level risks

d <- allX
summary(f <- coxph(allSurv ~ ., data=d))

## Call:
## coxph(formula = allSurv ~ ., data = d)
## 
##   n= 950, number of events= 120 
## 
##                  coef  exp(coef)   se(coef)      z Pr(>|z|)    
## ASXL1_0.1     0.45410    1.57475    0.25483  1.782   0.0748 .  
## BCOR_0.1      4.53517   93.23942   15.29850  0.296   0.7669    
## CBL_0.1       0.02418    1.02448    0.74288  0.033   0.9740    
## DNMT3A_0.1    0.13468    1.14417    0.18286  0.737   0.4614    
## IDH1_0.1      0.39412    1.48307    0.63231  0.623   0.5331    
## IDH2_0.1      0.51163    1.66800    0.29079  1.759   0.0785 .  
## JAK2_0.1      0.59064    1.80514    0.39331  1.502   0.1332    
## KDM6A_0.1     0.15988    1.17337   32.12704  0.005   0.9960    
## KMT2C_0.1    -0.50258    0.60497    1.77003 -0.284   0.7765    
## KMT2D_0.1    -0.01333    0.98676    0.58364 -0.023   0.9818    
## KRAS_0.1      0.54336    1.72178   12.36468  0.044   0.9649    
## NF1_0.1      -0.76668    0.46455    5.94275 -0.129   0.8973    
## NRAS_0.1      7.40428 1643.00852    6.01855  1.230   0.2186    

## PHF6_0.1      4.31340   74.69375   15.42773  0.280   0.7798    
## PTPN11_0.1    4.49429   89.50474    6.18432  0.727   0.4674    
## RAD21_0.1     0.07319    1.07594    6.89358  0.011   0.9915    
## RUNX1_0.1     0.17980    1.19698    0.24611  0.731   0.4650    
## SF3B1_0.1     1.10331    3.01414    0.52063  2.119   0.0341 *  
## SRSF2_0.1     0.34535    1.41248    0.21771  1.586   0.1127    
## TET2_0.1      0.17179    1.18743    0.20206  0.850   0.3952    
## TP53_0.1      2.17381    8.79176    0.55321  3.929 8.51e-05 ***
## U2AF1_0.1     2.74012   15.48884    0.35246  7.774 7.58e-15 ***
## age_10       -0.01189    0.98818    0.10907 -0.109   0.9132    
## gender       -0.01138    0.98868    0.19862 -0.057   0.9543    
## cohort       -0.13561    0.87318    0.23791 -0.570   0.5687    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##            exp(coef) exp(-coef) lower .95 upper .95
## ASXL1_0.1     1.5747  0.6350222 9.557e-01 2.595e+00
## BCOR_0.1     93.2394  0.0107251 8.861e-12 9.811e+14
## CBL_0.1       1.0245  0.9761095 2.389e-01 4.394e+00
## DNMT3A_0.1    1.1442  0.8739972 7.995e-01 1.637e+00
## IDH1_0.1      1.4831  0.6742750 4.295e-01 5.121e+00
## IDH2_0.1      1.6680  0.5995195 9.434e-01 2.949e+00
## JAK2_0.1      1.8051  0.5539734 8.351e-01 3.902e+00
## KDM6A_0.1     1.1734  0.8522477 5.283e-28 2.606e+27
## KMT2C_0.1     0.6050  1.6529815 1.884e-02 1.943e+01
## KMT2D_0.1     0.9868  1.0134221 3.144e-01 3.097e+00
## KRAS_0.1      1.7218  0.5807959 5.142e-11 5.765e+10
## NF1_0.1       0.4646  2.1526020 4.060e-06 5.315e+04
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## NRAS_0.1   1643.0085  0.0006086 1.238e-02 2.181e+08
## PHF6_0.1     74.6937  0.0133880 5.510e-12 1.012e+15
## PTPN11_0.1   89.5047  0.0111726 4.872e-04 1.644e+07
## RAD21_0.1     1.0759  0.9294227 1.459e-06 7.936e+05
## RUNX1_0.1     1.1970  0.8354364 7.389e-01 1.939e+00
## SF3B1_0.1     3.0141  0.3317696 1.086e+00 8.362e+00
## SRSF2_0.1     1.4125  0.7079756 9.219e-01 2.164e+00
## TET2_0.1      1.1874  0.8421566 7.991e-01 1.764e+00
## TP53_0.1      8.7918  0.1137429 2.973e+00 2.600e+01
## U2AF1_0.1    15.4888  0.0645626 7.763e+00 3.091e+01
## age_10        0.9882  1.0119578 7.980e-01 1.224e+00
## gender        0.9887  1.0114489 6.699e-01 1.459e+00
## cohort        0.8732  1.1452345 5.478e-01 1.392e+00
## 
## Concordance= 0.81  (se = 0.027 )
## Rsquare= 0.069   (max possible= 0.801 )
## Likelihood ratio test= 67.53  on 25 df,   p=9e-06
## Wald test            = 110.8  on 25 df,   p=9e-13
## Score (logrank) test = 782.6  on 25 df,   p=<2e-16

los <- do.call("rbind",mclapply(levels(samples), function(l){
  i <- samples!=l
  f <<- coxph(allSurv ~ ., data=d, subset=i)                    
  p <- as.matrix(d[!i,]) %*% f$coefficients
  r <- cbind(matrix(f$coefficients, nrow=length(p), ncol=length(f$coefficients), b
yrow=TRUE), linear.predictor=p)
  colnames(r) <- c(names(f$coefficients), "linear.predictor")
  as.data.frame(r)
}, mc.cores=4))
psGenes <- los[order(order(samples)),]

survConcordance(allSurv ~ psGenes$linear.predictor)

## Call:
## survConcordance(formula = allSurv ~ psGenes$linear.predictor)
## 
##   n= 950 
## Concordance= 0.7799296 se= 0.02746327
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  59805.000  16875.000      0.000      1.000   4211.768

Dynamic/cumulative AUC

auc.uno <- AUC.uno(survAll2, survAll2, psGenes$linear.predictor[w], times=t)

plot(auc.uno$times, auc.uno$auc, xlab="Time (years)", ylab="AUC", pch=16, col="gre
y80", ylim = c(0,1.0))
lines(auc.uno$times, predict(loess(auc.uno$auc ~ auc.uno$times, span=0.25)))
abline(h=auc.uno$iauc, lty = 3, lwd = 1)
legend("bottomright", bty = "n", cex = 1.2, legend = paste("AUC = ",round(auc.uno$
iauc,2)))

Genes.a <- auc.uno

# Concordance summary
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# Concordance summary
c <- rbind(
  `(1) Any mutations`=as.data.frame(survConcordance(allSurv ~ psAnyMt$linear.predi
ctor)[c("concordance","std.err")]),
  `(2) Any mt + VAF`=as.data.frame(survConcordance(allSurv ~ psAnyMtVaf$linear.pre
dictor)[c("concordance","std.err")]),
  `(3) No. mt + cumulative VAF`=as.data.frame(survConcordance(allSurv ~ psNMtCumVa
f$linear.predictor)[c("concordance","std.err")]),
  `(4) Gene model`=as.data.frame(survConcordance(allSurv ~ psGenes$linear.predicto
r)[c("concordance","std.err")]))

c 

 
 

concordance
<dbl>

std.err
<dbl>

(1) Any mutations 0.5431925 0.02388586

(2) Any mt + VAF 0.7287559 0.02388730

(3) No. mt + cumulative VAF 0.7433620 0.02388730

(4) Gene model 0.7799296 0.02746327

4 rows

set1 <- RColorBrewer::brewer.pal(6,"Set1")

par(mar = c(9, 4, 1.5, 0.5) + 0.1, mgp=c(2.7,0.4,0), las=1, tcl=-0.2)
b <- barplot(c$concordance-0.5, ylab="Concordance", col=set1, ylim=c(0.5,0.88), of
fset=0.5)
mg14::rotatedLabel(x=b, labels=rownames(c))
segments(b,c$concordance+c$std.err,b,c$concordance-c$std.err)

Dynamic/cumulative AUC summary

d.auc <- data.frame(iauc = c(AnyMt.a$iauc, AnyMtVaf.a$iauc, NMtCumVaf.a$iauc, 0.79
))
rownames(d.auc) <- c("(1) Any mutations", "(2) Any mt + VAF", "(3) No. mt + cumula
tive VAF", "(4) Gene model")

d.auc

 
 

iauc
<dbl>

(1) Any mutations 0.5528776

(2) Any mt + VAF 0.7420613

(3) No. mt + cumulative VAF 0.7618961

(4) Gene model 0.7900000

4 rows

par(mar = c(9, 4, 1.5, 0.5) + 0.1, mgp=c(2.7,0.4,0), las=1, tcl=-0.2)
b <- barplot(d.auc$iauc-0.5, ylab="Dynamic AUC", col=set1, ylim=c(0.5,0.80), offse
t=0.5)
mg14::rotatedLabel(x=b, labels=rownames(d.auc))
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AML-free survival by number of drivers

nonc <- rowSums(allX[,allGroups=="Genes"]>0)
nonc <- cut(nonc, c(-1,0,1,2,max(nonc)))
plot(survfit(allSurv~nonc), col=set1, xlab='Time after first sample [yr]', ylab='A
ML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01))
legend("bottomleft", c(0,1,2,"3+"), col=set1, lty=1, bty='n', title="no. drivers")

AML-free survival by max VAF

mvaf <- apply(allX[,allGroups=="Genes"], 1, max)*10
mvaf <- cut(mvaf, c(-1,0,4,8,max(mvaf)))
plot(survfit(allSurv~mvaf), col=set1, xlab='Time after first sample [yr]', ylab='A
ML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01))
levels(mvaf)[1] <- "None"
legend("bottomleft", levels(mvaf), col=set1, lty=1, bty='n', title="Max. VAF%")

8 Logistic regression
library(glmnet)
library(ROCR)

8.1 Combined

set.seed(42)
y <- allSurv[,3]
x <- allX
x <- as.matrix(cbind(x, mu.Genes=rowSums(x[,allGroups=="Genes"])))
fitLogRidge <- cv.glmnet(x, y, alpha=0, standardize=FALSE, penalty.factor=c(allGro
ups=="Genes",FALSE), family="binomial", lambda=10^seq(-5,5,0.1)/nrow(x))
fitLog <- glm(y ~ x[,-ncol(x)], family="binomial")
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fitLog <- glm(y ~ x[,-ncol(x)], family="binomial")
coefLogRidge <- coef(fitLogRidge, s=fitLogRidge$lambda.min)[-1,1]
w <- names(coefLogRidge) %in% colnames(allX)[allGroups=="Genes"]
coefLogRidge[w] <- coefLogRidge[w] + coefLogRidge["mu.Genes"]
names(coefLogRidge) <- colnames(x)
s <- summary(survfit(allSurv ~1))

plot(predict(fitLogRidge, newx=x, s=fitLogRidge$lambda.min),fitAll$linear.predicto
rs)

cor(predict(fitLogRidge, newx=x, s=fitLogRidge$lambda.min),fitAll$linear.predictor
s)

##        [,1]
## 1 0.9325608

8.2 Discovery cohort

set.seed(42)
x <- cbind(as.matrix(torontoX), mu.Genes=rowSums(torontoX[torontoGroups=="Genes"])
)
fitLogRidgeToronto <- cv.glmnet(x, torontoSurv[,2], alpha=0, standardize=FALSE, pe
nalty.factor=c(torontoGroups=="Genes",FALSE), family="binomial", lambda=10^seq(-5,
5,0.1)/nrow(x))
l <- max(which(abs(fitLogRidgeToronto$cvm- min(fitLogRidgeToronto$cvm)) < 0.01))
coefFitLogRidgeToronto <- coef(fitLogRidgeToronto, s=fitLogRidge$lambda.min *nrow(
allX)/nrow(torontoX))[-1,1]
w <- names(coefFitLogRidgeToronto) %in% colnames(torontoX)[torontoGroups=="Genes"]
coefFitLogRidgeToronto[w] <- coefFitLogRidgeToronto[w] + coefFitLogRidgeToronto["m
u.Genes"]

8.3 Validation cohort
set.seed(42)
x <- cbind(as.matrix(sangerX), mu.Genes=rowSums(sangerX[sangerGroups=="Genes"]))
y <- sangerSurv[,3]
fitLogRidgeSanger <- glmnet(x, y, alpha=0, standardize=FALSE, penalty.factor=c(san
gerGroups%in%c("Genes","Blood"),1e-2) , family="binomial",lambda=10^seq(-5,5,0.1)/
nrow(x))
coefFitLogRidgeSanger <- coef(fitLogRidgeSanger, s=fitLogRidge$lambda.min*nrow(all
X)/nrow(sangerX)/4)[-1,1]
w <- names(coefFitLogRidgeSanger) %in% colnames(sangerX)[sangerGroups=="Genes"]
coefFitLogRidgeSanger[w] <- coefFitLogRidgeSanger[w] + coefFitLogRidgeSanger["mu.G
enes"]
coefFitLogRidgeSanger

##   ASXL1_0.1     CBL_0.1  DNMT3A_0.1    JAK2_0.1   KMT2C_0.1   KMT2D_0.1    KRAS
_0.1     NF1_0.1    NRAS_0.1   RAD21_0.1 
##  1.61735484  0.62402794  0.60690505  1.21223108  1.28664688  0.38990853  1.3057
9768  1.05008349  1.12131863  1.08384807 
##   SF3B1_0.1   SRSF2_0.1    TET2_0.1    TP53_0.1   U2AF1_0.1      age_10      ge
nder  systol_100 diastol_100      bmi_10 
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nder  systol_100 diastol_100      bmi_10 
##  0.95795153  0.76775960  0.87432787  2.09849607  2.46513749  0.15915519 -0.1710
4884 -0.26674155  0.40623412  0.78151214 
## cholestl_10     triglyc         hdl         ldl         lym     mcv_100      rd
w_10      wbc_10     plt_100      hgb_10 
##  0.02221735 -0.02231645 -0.60655423  0.08051073  0.02388812 -0.48424380  1.4392
5261 -0.13343432  0.28531137  0.80105113 
##    mu.Genes 
##  1.16143798

8.4 Bootstrap CIs

coefLogRidgeBoot <- sapply(1:100, function(foo){
            set.seed(foo)
            y <- allSurv[,3]
            x <- allX
            x <- as.matrix(cbind(x, mu.Genes=rowSums(x[,allGroups=="Genes"])))
            b <- sample(1:nrow(x), replace=TRUE)
            fitLogRidgeBoot <- glmnet(x[b,], y[b], alpha=0, standardize=FALSE, pen
alty.factor=c(allGroups=="Genes",FALSE, FALSE), family="binomial", lambda=10^seq(-
5,5,0.1)/nrow(x))
            coefLogRidgeBoot <- coef(fitLogRidgeBoot, s=fitLogRidge$lambda.min)[-1
,1]
            w <- names(coefLogRidgeBoot) %in% colnames(allX)[allGroups=="Genes"]
            coefLogRidgeBoot[w] <- coefLogRidgeBoot[w] + coefLogRidgeBoot["mu.Gene
s"]
            names(coefLogRidgeBoot) <- colnames(x)
            coefLogRidgeBoot
        })

8.5 Forest plot

par(bty="n", mar=c(3,6,3,10)+.5, mgp=c(2,0.5,0), xpd=FALSE)
c <- exp(coefLogRidge[-25])
o <- c(23:24,1:22,25)
ci <- apply(coefLogRidgeBoot,1,quantile, c(0.025,0.975))[,-25]
y <- rev(seq_along(c))
plot(c[o], y, xlab="relative risk", log='x', ylab='', yaxt="n", pch=NA, xlim=c(0.5
,10))
abline(h=y, col="#EEEEEE", lty=1)
abline(v=1, lty=1, col="grey")
abline(v=c["mu.Genes"], col=mg14::colTrans(set1[3]), lty=1)
segments(exp(ci[1,o]), y, exp(ci[2,o]),y)
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segments(exp(ci[1,o]), y, exp(ci[2,o]),y)
points(c[o], y, xlab="relative risk",  bg=set1[3], cex=2, pch=c(rep(21,24), 23))
m <- match(names(c)[o],names(coefFitLogRidgeToronto))
points(exp(coefFitLogRidgeToronto[m]), y,bg=set1[4], pch=c(rep(21,24), 23), cex=1)
m <- match(names(c)[o],names(coefFitLogRidgeSanger))
points(exp(coefFitLogRidgeSanger[m]), y,bg=set1[5], pch=c(rep(21,24), 23), cex=1)
mtext(side=2, sub("mu.Genes","avg. genes",sub("_.+","",names(c)[o])), at=y, las=2, 
font=c(1,1,rep(3,22),1))

r <- sapply(split(as.data.frame(allX>0), control), colMeans)
f <- sapply(split(allX, control), apply, 2, function(x) mean(x[x>0]))
par(xpd=NA)
points(rep(18,22),y[3:24], cex=sqrt(r[o[3:24],2]*10), pch=21, bg=set1[2])
points(rep(18*1.2,22), y[3:24], cex=sqrt(r[o[3:24],1]*10), pch=21, bg=set1[1])
points(rep(36,22),y[3:24], cex=sqrt(f[o[3:24],2]), pch=21, bg=set1[2])
points(rep(36*1.2,22), y[3:24], cex=sqrt(f[o[3:24],1]), pch=21, bg=set1[1])
legend(x=0.5, y=28, pch=21, pt.bg=set1[c(4,5,3)], c("DC","VC","combined"), bty="n"
, ncol=3, text.width=0.1)

text(y=24, x=18, "recurrence")
text(y=24, x=38, "VAF")

axis(1, at=c(18,18*1.2), c("control","AML"), las=2, line=-1)
axis(1, at=c(36,36*1.2), c("control","AML"), las=2, line=-1)

8.6 AUC
aucLogRidgeBoot <- t(sapply(1:100, function(foo){
                    set.seed(foo)
                    y <- allSurv[,3]
                    x <- allX
                    x <- as.matrix(cbind(x, mu.Genes=rowSums(x[,allGroups=="Genes"
])))
                    b <- sample(1:nrow(x), replace=TRUE)
                    oob <- setdiff(1:nrow(x),b)
                    c(inb=performance(prediction(x[b,] %*% coefLogRidgeBoot[,foo], 
y[b]),"auc")@y.values[[1]],
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y[b]),"auc")@y.values[[1]],
                            oob=performance(prediction(x[oob,] %*% coefLogRidgeBoo
t[,foo], y[oob]),"auc")@y.values[[1]])            
                }))

apply(aucLogRidgeBoot, 2, quantile)

##            inb       oob
## 0%   0.7600825 0.7331746
## 25%  0.7981192 0.7814137
## 50%  0.8107881 0.8058353
## 75%  0.8228798 0.8254089
## 100% 0.8616209 0.8650056

performance(prediction(as.matrix(torontoX) %*% coefFitLogRidgeToronto[-22], toront
oSurv[,2]),"auc")@y.values[[1]]

## [1] 0.7649573

performance(prediction(as.matrix(sangerImp) %*% coefFitLogRidgeToronto[-22], sange
rSurv[,3]),"auc")@y.values[[1]]

## [1] 0.806366

performance(prediction(as.matrix(sangerX) %*% coefFitLogRidgeSanger[-31], sangerSu
rv[,3]),"auc")@y.values[[1]]

## [1] 0.8479775

performance(prediction(ImputeMissing(sangerX, as.matrix(torontoImp)) %*% coefFitLo
gRidgeSanger[-31], torontoSurv[,2]),"auc")@y.values[[1]]

## [1] 0.6885916

9 Tabulate results

# library(xlsx)
# wb <- createWorkbook("xlsx")
# sheet  <- createSheet(wb, sheetName="Cox PH adjusted (combined)")
# addDataFrame(waldWeighted, 
#       sheet,
#       colnamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE) + Border(),
#       rownamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE)
# )
# sheet  <- createSheet(wb, sheetName="Cox PH adjusted (DC)")
# addDataFrame(waldWeightedToronto, 
#       sheet,
#       colnamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE) + Border(),
#       rownamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE)
# )
# 
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# 
# sheet  <- createSheet(wb, sheetName="Cox PH adjusted (VC)")
# addDataFrame(waldWeightedSanger, 
#       sheet,
#       colnamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE) + Border(),
#       rownamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE)
# )
# 
# sheet  <- createSheet(wb, sheetName="Logistic regression (combined)")
# addDataFrame(data.frame(`Coef combined`=coefLogRidge, CI=t(apply(coefLogRidgeBoo
t, 1, quantile, c(0.025,0.975))),
#               check.names=FALSE),
#       sheet,
#       colnamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE) + Border(),
#       rownamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE)
# )
# 
# sheet  <- createSheet(wb, sheetName="Logistic regression (DC)")
# addDataFrame(data.frame(`Coef combined`=coefFitLogRidgeToronto,
#               check.names=FALSE),
#       sheet,
#       colnamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE) + Border(),
#       rownamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE)
# )
# sheet  <- createSheet(wb, sheetName="Logistic regression (Sanger)")
# addDataFrame(data.frame(`Coef combined`=coefFitLogRidgeSanger,
#               check.names=FALSE),
#       sheet,
#       colnamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE) + Border(),
#       rownamesStyle = CellStyle(wb) + Font(wb, isBold=TRUE)
# )
# saveWorkbook(wb, file="SupplementaryTables.xlsx") 

10 Clinical/Demographic model
Necessary to reconstruct matrices and survival objects to use data from VC for all 8 samples sequenced in
both cohorts ## Discovery cohort Data 83 pre-AML (keeping duplicates with validation cohort)

f = "data/DC_vaf_matrix_no_duplicates_414ctrl_83aml.csv"  
torontoData <- read.csv(f)

torontoData$gender <- ifelse(torontoData$Sex == "male", 1, 
                             ifelse(torontoData$Sex == "female", 0, torontoData$Se
x))
table(torontoData$gender)

## 
##   0   1 
## 293 204

torontoData$gender <- as.numeric(torontoData$gender)
colnames(torontoData)

##  [1] "Sample"     "ASXL1"      "BCOR"       "CALR"       "CBL"        "DNMT3A"     
"IDH1"       "IDH2"      
##  [9] "JAK2"       "KDM6A"      "KIT"        "KMT2C"      "KRAS"       "NF1"        
"NRAS"       "PHF6"      
## [17] "PTPN11"     "RUNX1"      "SF3B1"      "SRSF2"      "TET2"       "TP53"       
"U2AF1"      "Diagnosis" 
## [25] "fu_years"   "age"        "Sex"        "no_drivers" "gender"

Manually standardize magnitudes

torontoData <- torontoData[!duplicated(torontoData),]

gene_vars <- c("CALR", "NRAS", "DNMT3A", "SF3B1", "IDH1", "KIT", "TET2", "RAD21", 
"JAK2", "CBL", "KRAS", "PTPN11", "IDH2", "TP53", "NF1", "SRSF2", "CEBPA", "ASXL1", 
"RUNX1", "U2AF1", "BCOR", "KDM6A", "PHF6", "KMT2C", "KMT2D")

torontoX <- torontoData[, colnames(torontoData) %in% c(gene_vars, "age", "gender")
]

torontoX <- as.data.frame(torontoX)

Only include genes in model if mutated in >2 samples

thr <- 2
torontoX <- torontoX[,colSums(torontoX != 0)>=thr]
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torontoGroups <- factor(names(torontoX) %in% c("age","gender")+1, level=1:2, label
s=c("Genes","Demographics"))
colnames(torontoX)

##  [1] "ASXL1"  "CALR"   "CBL"    "DNMT3A" "IDH1"   "IDH2"   "JAK2"   "KDM6A"  "K
MT2C"  "KRAS"   "NF1"    "PHF6"  
## [13] "PTPN11" "RUNX1"  "SF3B1"  "SRSF2"  "TET2"   "TP53"   "U2AF1"  "age"    "g
ender"

torontoGroups

##  [1] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Genes       
##  [9] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Genes       
## [17] Genes        Genes        Genes        Demographics Demographics
## Levels: Genes Demographics

Manually standardize age and mutation VAFs

torontoX$age <- torontoX$age/10 
names(torontoX)[which(names(torontoX)=="age")] <- "age_10"
g <- torontoGroups == "Genes"
torontoX[,g] <- torontoX[,g]*10
names(torontoX)[g] <- paste(names(torontoX)[g], "0.1",sep="_")
colnames(torontoX)

##  [1] "ASXL1_0.1"  "CALR_0.1"   "CBL_0.1"    "DNMT3A_0.1" "IDH1_0.1"   "IDH2_0.1
"   "JAK2_0.1"   "KDM6A_0.1" 
##  [9] "KMT2C_0.1"  "KRAS_0.1"   "NF1_0.1"    "PHF6_0.1"   "PTPN11_0.1" "RUNX1_0.
1"  "SF3B1_0.1"  "SRSF2_0.1" 
## [17] "TET2_0.1"   "TP53_0.1"   "U2AF1_0.1"  "age_10"     "gender"

torontoSurv <- Surv(torontoData$fu_years, torontoData$Diagnosis=="AML")
plot(survfit(torontoSurv~ 1), col= "black", main = "DC", xlab='Time after first sa
mple (years)', ylab='AML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01), mark.t
ime = T) 

plot(survfit(torontoSurv ~ torontoData$Diagnosis), xlab='Time after first sample (
years)', main = "DC", ylab='AML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01), 
mark.time = T, col = set1[1:2])

10.1 Validation cohort
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all 37 pre-AML samples including overlap with DC

f = "data/VC_vaf_matrix_262ctrl_37aml_nodates.csv"
sangerData <- read.csv(f)

sangerData$hcdate <- as.Date(sangerData$hcdate)
sangerData$dodx <- as.Date(sangerData$dodx)

sangerPatients <- sub("[a-z]+$","", sangerData$Sample)
o <- order(sangerPatients, as.numeric(sangerData$hcdate))

sangerData <- sangerData[o,]
sangerPatients <- sangerPatients[o]

clinical_vars <- c("systol", "diastol", "bmi", "cholestl", "triglyc", "hdl", "ldl"
, "lym", "mcv", "rdw", "wbc", "plt", "hgb")
sangerX <- sangerData[, colnames(sangerData) %in% c(gene_vars, "age","gender",clin
ical_vars)] 
sangerX <- as.data.frame(sangerX)

sangerX <- sangerX[,colSums(sangerX != 0,na.rm=TRUE)>=thr]
sangerGroups <- factor(grepl("^[a-z]", colnames(sangerX))*2, levels=0:2, labels=c(
"Genes", "Demographics", "Blood"))
sangerGroups[names(sangerX) %in% c("age","gender")] <- "Demographics"
table(sangerGroups)  

## sangerGroups
##        Genes Demographics        Blood 
##           15            2           13

colnames(sangerX)

##  [1] "ASXL1"    "CBL"      "DNMT3A"   "JAK2"     "KMT2C"    "KMT2D"    "KRAS"     
"NF1"      "NRAS"     "RAD21"   
## [11] "SF3B1"    "SRSF2"    "TET2"     "TP53"     "U2AF1"    "age"      "gender"   
"systol"   "diastol"  "bmi"     
## [21] "cholestl" "triglyc"  "hdl"      "ldl"      "lym"      "mcv"      "rdw"      
"wbc"      "plt"      "hgb"

sangerGroups

poorMansImpute <- function(x) {x[is.na(x)] <- mean(x, na.rm=TRUE); return(x)}
sangerX <- as.data.frame(sapply(sangerX, poorMansImpute))

foo <- split(sangerData[,c("Diagnosis","hcdate","dodx")], sangerPatients)

bar <- do.call("rbind",lapply(foo, function(x){
  y <- x
  n <- nrow(y)
  y[-n,"Diagnosis"] <- "Control"
  start <- as.numeric(y$hcdate - y$hcdate[1])/365.25
  end <- c(as.numeric(y$hcdate - y$hcdate[1])[-1]/365.25, as.numeric(y$dodx[n] - y
$hcdate[1])/365.25)
  return(data.frame(Diagnosis=y[,"Diagnosis"], start=start, end=end))
}))

bar[1:10, ]

 
 

Diagnosis
<fctr>

start
<dbl>

end
<dbl>

PD29762 AML 0.000000 9.754962

PD29764 AML 0.000000 10.360027

PD29792 AML 0.000000 14.108145

PD29804 Control 0.000000 5.138946

PD29810 Control 0.000000 18.573580

##  [1] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Genes       
##  [9] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Demographics
## [17] Demographics Blood        Blood        Blood        Blood        Blood        
Blood        Blood       
## [25] Blood        Blood        Blood        Blood        Blood        Blood        
## Levels: Genes Demographics Blood
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PD29810 Control 0.000000 18.573580

PD29836.1 Control 0.000000 2.414784

PD29836.2 AML 2.414784 10.023272

PD29851.1 Control 0.000000 4.599589

PD29851.2 AML 4.599589 12.205339

PD29856.1 Control 0.000000 4.331280

1-10 of 10 rows

sangerPatientsSplit <- unlist(sapply(names(foo), function(n) rep(n, nrow(foo[[n]])
)))

sangerSurv <- Surv(time = bar$start, time2 = bar$end, event = bar$Diagnosis!="Cont
rol", origin = 0)

plot(survfit(sangerSurv~ 1), col= "black", main = "VC", xlab='Time after first sam
ple (years)', ylab='AML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01), mark.ti
me = T) #mark = 1

Figure 3 c-e

summary(sangerX$rdw)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   11.40   13.10   13.42   13.42   13.42   22.00

rdw <- cut(sangerX$rdw, c(11, 14, max(sangerX$rdw)))
levels(rdw) <- c("11-14", "14+")
table(rdw)

## rdw
## 11-14   14+ 
##   400    59

selected_genes <- c("DNMT3A", "TET2", "TP53", "U2AF1")

png("./figures/CombinedCohorts.KM.selected.genes.png", width = 8.5, height = 17.5, 
units = "cm", res = 800)
par(mfrow=c(4,2), mar = c(1.9, 1.9, 1.7, 0.7) + 0.1, mgp=c(2.2,0.4,0), bty="L", xp
d=TRUE, las=1, tcl=-0.15, cex.axis=1.15, cex.lab = 1)
for (i in 1:length(selected_genes)) {
  #i <- 1
  gene <- selected_genes[i]
  plot(survfit(surv ~ X[[gene]] == 0), col= pal1, bty='L', yaxs='i', ylim=c(0,1.01
), mark.time = T, conf.int = F)
  mtext(gene, font=3, side = 3, line = 0.2, cex = 0.83)
  legend("bottomleft", col=pal1[1:2], lty=1, c("MT","WT"), lwd = 1.5, bty="n", nco
l = 1, cex = 0.9, seg.len=0.7)
}
plot(survfit(surv ~ n_drivers), col=rev(pal1[1:3]), conf.int = F, mark.time = T, b
ty='L', yaxs='i', ylim=c(0,1.01))
mtext("Number of drivers", font=1, side = 3, line = 0.7, cex = 0.83)
legend("bottomleft", legend = levels(n_drivers), col= rev(pal1[1:3]), lty=1, lwd = 
1.5, bty='n', title="", cex = 1, seg.len=0.7)
plot(survfit(surv ~ mvaf), col= rev(pal1[1:4]), conf.int = F, mark.time = T, bty='
L', yaxs='i', ylim=c(0,1.01))
mtext("Maximum VAF (%)", font=1, side = 3, line = 0.7, cex = 0.83)
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legend("bottomleft", levels(mvaf), col=rev(pal1[1:4]), lty=1, lwd = 1.5, bty='n', 
title="", cex = 1, seg.len=0.7)
plot(survfit(sangerSurv ~ rdw), col= rev(pal1[1:2]), conf.int = F, mark.time = T, 
bty='L', yaxs='i', ylim=c(0,1.01))
mtext("RDW", font=1, side = 3, line = 0.2, cex = 0.83)
legend("bottomleft", levels(rdw), col=rev(pal1[1:2]), lty=1, lwd = 1.5, bty='n', t
itle="", cex = 1, seg.len=0.7)
dev.off()

## pdf 
##   2

Standardise magnitudes

g <- sangerGroups=="Genes"
sangerX[g] <- sangerX[g] * 10
names(sangerX)[g] <- paste(names(sangerX[g]),"0.1", sep="_")
y <- StandardizeMagnitude(sangerX[!g])  
sangerX <- cbind(sangerX[g],y)

10.2 Expected AML incidence
Validation cohort

w <- c(which(sangerSurv[,1]==0)[-1]-1, nrow(sangerSurv))
sangerSurv2 <- Surv(sangerSurv[w,2], sangerSurv[w,3]) 

expected_rate_sanger_cr <- mean(aml_inc_cr(sangerX[w,"gender"],sangerX[w,"age_10"]
*10, sangerX[w,"age_10"]*10+ pmax(1,sangerSurv2[,1]))[!sangerSurv2[,2]])

n_total_sanger <- sum(sangerSurv2[,2])/expected_rate_sanger_cr
n_total_sanger

## [1] 13277.44

Discovery cohort only

expected_rate_toronto_cr <- mean(aml_inc_cr(torontoX[,"gender"],torontoX[,"age_10"
]*10, torontoX[,"age_10"]*10+ pmax(1,torontoSurv[,1]))[!torontoSurv[,2]])

n_total_toronto <- sum(torontoSurv[,2])/expected_rate_toronto_cr
n_total_toronto

## [1] 66014.85

10.3 Combined data
Survival

allSurv <- rbind(sangerSurv, Surv(rep(0, nrow(torontoSurv)), torontoSurv[,1], toro
ntoSurv[,2]))
allSurv <- Surv(allSurv[,1], allSurv[,2], allSurv[,3])

Data matrix

cohort <- c(rep("Sanger", nrow(sangerX)), rep("Toronto", nrow(torontoX)))
i <- c(sort(setdiff(gene_vars,"CALR")),"age","gender")
allX <- rbind(superSet(sangerData,i,fill=0), superSet(torontoData,i,fill=0))
allX <- allX[,colSums(allX>0)>=thr]
allX <- cbind(allX, cohort=cohort=="Sanger") + 0
allGroups <- factor(grepl("^[A-Z]",colnames(allX))+0, levels=1:0, labels=c("Genes"
,"Demographics"))

g <- allGroups=="Genes"
allX <- cbind(10*allX[,g], StandardizeMagnitude(allX[,!g]))
colnames(allX)[g] <- paste(colnames(allX)[g],"0.1",sep="_")
control <- c(sangerData$Diagnosis=="Control", torontoData$Diagnosis=="Control")

Weights

A 69



weights <- rep(1, nrow(allX))
weights[cohort=="Sanger" & control] <- n_total_sanger/sum(cohort=="Sanger" & contr
ol & allSurv[,1]==0)
weights[cohort=="Toronto" & control] <- n_total_toronto/sum(cohort=="Toronto" & co
ntrol)

n_total <- n_total_sanger + n_total_toronto
n_total

## [1] 79292.3

10.4 Coxph model fits
sigma0 <- 0.1
nu <- 1
which.mu <- "Genes"

10.4.1 Discovery cohort
10.4.1.1 Raw

fitToronto <- CoxRFX(torontoX, torontoSurv, groups=torontoGroups, which.mu=which.m
u, nu=nu, sigma0=sigma0)
waldToronto <- WaldTest(fitToronto)

##                   group    coef   coef-mu     sd      z df  p.value sig
## ASXL1_0.1         Genes  0.6922  0.049613 0.1172  5.908  1 3.47e-09 ***
## CALR_0.1          Genes  0.6239 -0.018696 0.0710  8.784  1 1.58e-18 ***
## CBL_0.1           Genes  0.5335 -0.109028 0.1293  4.126  1 3.70e-05 ***
## DNMT3A_0.1        Genes  0.5843 -0.058207 0.1059  5.517  1 3.44e-08 ***
## IDH1_0.1          Genes  0.6912  0.048657 0.1245  5.550  1 2.86e-08 ***
## IDH2_0.1          Genes  0.5136 -0.128999 0.1151  4.460  1 8.19e-06 ***
## JAK2_0.1          Genes  0.7120  0.069470 0.1243  5.730  1 1.00e-08 ***
## KDM6A_0.1         Genes  0.6419 -0.000647 0.0590 10.887  1 1.32e-27 ***
## KMT2C_0.1         Genes  0.6658  0.023265 0.0621 10.725  1 7.79e-27 ***
## KRAS_0.1          Genes  0.6403 -0.002210 0.0590 10.855  1 1.89e-27 ***
## NF1_0.1           Genes  0.6412 -0.001393 0.0590 10.870  1 1.61e-27 ***
## PHF6_0.1          Genes  0.6475  0.004993 0.0595 10.891  1 1.27e-27 ***
## PTPN11_0.1        Genes  0.6595  0.016950 0.0592 11.145  1 7.57e-29 ***
## RUNX1_0.1         Genes  0.4100 -0.232587 0.0923  4.443  1 8.89e-06 ***
## SF3B1_0.1         Genes  0.7728  0.130235 0.1019  7.585  1 3.33e-14 ***
## SRSF2_0.1         Genes  0.4783 -0.164235 0.0945  5.062  1 4.16e-07 ***
## TET2_0.1          Genes  0.6389 -0.003667 0.1295  4.932  1 8.13e-07 ***
## TP53_0.1          Genes  0.8079  0.165351 0.0673 12.009  1 3.19e-33 ***
## U2AF1_0.1         Genes  0.8537  0.211135 0.0773 11.048  1 2.23e-28 ***
## age_10     Demographics -0.0836 -0.083628 0.0975 -0.858  1 3.91e-01    
## gender     Demographics  0.0113  0.011327 0.1091  0.104  1 9.17e-01

survConcordance(fitToronto$surv ~ fitToronto$linear.predictors)

## Call:
## survConcordance(formula = fitToronto$surv ~ fitToronto$linear.predictors)
## 
##   n= 497 
## Concordance= 0.7538671 se= 0.03218546
## concordant discordant  tied.risk  tied.time   std(c-d) 
##   26561.00    8672.00       0.00       1.00    2267.98

10.4.2 Validation cohort
10.4.2.1 Raw

fitSanger <- CoxRFX(sangerX, sangerSurv, groups=sangerGroups, which.mu=which.mu, n
u=nu, sigma0=sigma0)
waldSanger <- WaldTest(fitSanger)

##                    group     coef   coef-mu      sd      z df  p.value sig
## ASXL1_0.1          Genes  0.64051  0.105357 0.11285  5.676  1 1.38e-08 ***
## CBL_0.1            Genes  0.52291 -0.012246 0.08720  5.997  1 2.01e-09 ***
## DNMT3A_0.1         Genes  0.43301 -0.102144 0.11026  3.927  1 8.60e-05 ***
## JAK2_0.1           Genes  0.52046 -0.014699 0.09655  5.391  1 7.02e-08 ***
## KMT2C_0.1          Genes  0.54634  0.011184 0.08151  6.703  1 2.05e-11 ***
## KMT2D_0.1          Genes  0.42573 -0.109421 0.14122  3.015  1 2.57e-03  **
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## KMT2D_0.1          Genes  0.42573 -0.109421 0.14122  3.015  1 2.57e-03  **
## KRAS_0.1           Genes  0.53897  0.003816 0.08013  6.726  1 1.74e-11 ***
## NF1_0.1            Genes  0.52911 -0.006044 0.08135  6.504  1 7.80e-11 ***
## NRAS_0.1           Genes  0.53431 -0.000849 0.08011  6.670  1 2.56e-11 ***
## RAD21_0.1          Genes  0.53226 -0.002897 0.08049  6.613  1 3.77e-11 ***
## SF3B1_0.1          Genes  0.53076 -0.004391 0.08104  6.550  1 5.76e-11 ***
## SRSF2_0.1          Genes  0.50357 -0.031583 0.11851  4.249  1 2.14e-05 ***
## TET2_0.1           Genes  0.58716  0.052000 0.10482  5.602  1 2.12e-08 ***
## TP53_0.1           Genes  0.58827  0.053119 0.08077  7.283  1 3.25e-13 ***
## U2AF1_0.1          Genes  0.59395  0.058796 0.08084  7.347  1 2.03e-13 ***
## age_10      Demographics  0.08031  0.080306 0.11847  0.678  1 4.98e-01    
## gender      Demographics -0.11803 -0.118029 0.11360 -1.039  1 2.99e-01    
## systol_100         Blood  0.01074  0.010736 0.04230  0.254  1 8.00e-01    
## diastol_100        Blood  0.02297  0.022974 0.02697  0.852  1 3.94e-01    
## bmi_10             Blood  0.09128  0.091285 0.07510  1.215  1 2.24e-01    
## cholestl_10        Blood  0.00934  0.009343 0.01381  0.676  1 4.99e-01    
## triglyc            Blood  0.02435  0.024354 0.09637  0.253  1 8.00e-01    
## hdl                Blood -0.07521 -0.075205 0.07691 -0.978  1 3.28e-01    
## ldl                Blood  0.12764  0.127641 0.09931  1.285  1 1.99e-01    
## lym                Blood  0.07714  0.077135 0.09427  0.818  1 4.13e-01    
## mcv_100            Blood -0.00987 -0.009867 0.00826 -1.195  1 2.32e-01    
## rdw_10             Blood  0.06196  0.061956 0.02072  2.990  1 2.79e-03  **
## wbc_10             Blood  0.01894  0.018939 0.03734  0.507  1 6.12e-01    
## plt_100            Blood  0.05344  0.053435 0.09405  0.568  1 5.70e-01    
## hgb_10             Blood  0.05198  0.051979 0.02446  2.125  1 3.36e-02   *

survConcordance(sangerSurv ~ fitSanger$linear.predictors)

## Call:
## survConcordance(formula = sangerSurv ~ fitSanger$linear.predictors)
## 
##   n= 459 
## Concordance= 0.7224015 se= 0.04865039
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  6714.0000  2580.0000     0.0000     0.0000   904.3134

10.4.2.2 Adjusted

fitWeightedSanger <- CoxRFX(sangerX, sangerSurv, sangerGroups, which.mu=which.mu, 
sigma0=sigma0, nu=nu, weights=weights[cohort=="Sanger"])
waldWeightedSanger <- WaldTest(fitWeightedSanger)

##                    group      coef   coef-mu      sd        z df  p.value sig
## ASXL1_0.1          Genes  2.634306  0.838861 0.43502  6.05558  1 1.40e-09 ***
## CBL_0.1            Genes  0.630557 -1.164888 1.13502  0.55555  1 5.79e-01    
## DNMT3A_0.1         Genes  0.698827 -1.096619 0.22597  3.09251  1 1.98e-03  **
## JAK2_0.1           Genes  0.049363 -1.746082 0.90486  0.05455  1 9.56e-01    
## KMT2C_0.1          Genes  1.829655  0.034210 1.05055  1.74162  1 8.16e-02   .
## KMT2D_0.1          Genes -0.004783 -1.800228 0.75790 -0.00631  1 9.95e-01    
## KRAS_0.1           Genes  2.139544  0.344099 0.40749  5.25049  1 1.52e-07 ***
## NF1_0.1            Genes  1.252510 -0.542935 0.89204  1.40410  1 1.60e-01    
## NRAS_0.1           Genes  1.730987 -0.064459 0.36379  4.75820  1 1.95e-06 ***
## RAD21_0.1          Genes  1.487062 -0.308383 0.68933  2.15726  1 3.10e-02   *
## SF3B1_0.1          Genes  1.309652 -0.485793 0.96376  1.35890  1 1.74e-01    
## SRSF2_0.1          Genes  1.451418 -0.344027 0.27015  5.37269  1 7.76e-08 ***
## TET2_0.1           Genes  1.222954 -0.572491 0.12864  9.50695  1 1.96e-21 ***
## TP53_0.1           Genes  4.699561  2.904116 0.91319  5.14632  1 2.66e-07 ***
## U2AF1_0.1          Genes  5.800067  4.004622 0.74776  7.75664  1 8.72e-15 ***
## age_10      Demographics  0.024711  0.024711 0.12062  0.20487  1 8.38e-01    
## gender      Demographics -0.140352 -0.140352 0.11358 -1.23575  1 2.17e-01    
## systol_100         Blood -0.000324 -0.000324 0.04456 -0.00726  1 9.94e-01    
## diastol_100        Blood  0.019654  0.019654 0.02894  0.67907  1 4.97e-01    
## bmi_10             Blood  0.101555  0.101555 0.08137  1.24811  1 2.12e-01    
## cholestl_10        Blood  0.007469  0.007469 0.01457  0.51275  1 6.08e-01    
## triglyc            Blood  0.007316  0.007316 0.10707  0.06832  1 9.46e-01    
## hdl                Blood -0.108973 -0.108973 0.08295 -1.31365  1 1.89e-01    
## ldl                Blood  0.149658  0.149658 0.10397  1.43938  1 1.50e-01    
## lym                Blood  0.066987  0.066987 0.09901  0.67660  1 4.99e-01    
## mcv_100            Blood -0.015964 -0.015964 0.00832 -1.91787  1 5.51e-02   .
## rdw_10             Blood  0.073201  0.073201 0.01789  4.09058  1 4.30e-05 ***
## wbc_10             Blood  0.020190  0.020190 0.04345  0.46465  1 6.42e-01    
## plt_100            Blood  0.077199  0.077199 0.10027  0.76987  1 4.41e-01    
## hgb_10             Blood  0.044376  0.044376 0.02513  1.76558  1 7.75e-02   .

survConcordance(sangerSurv ~ fitWeightedSanger$linear.predictors, weights=weights[
cohort=="Sanger"])

## Call:
## survConcordance(formula = sangerSurv ~ fitWeightedSanger$linear.predictors, 
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##     weights = weights[cohort == "Sanger"])
## 
##   n= 459 
## Concordance= 0.7639423 se= 0.04828991
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  334537.56  103371.88       0.00       0.00   42293.22

Uno’s estimator of cumulative/dynamic AUC

## [1] 0.761

11 Model excluding controls without
mutations
Include only controls with ARCH & all pre-AML (regardless of mutation status) ## Discovery cohort
(Toronto) Data

f = "data/DC_vaf_matrix_no_duplicates_414ctrl_83aml.csv"  
torontoData <- read.csv(f)

gene_vars <- c("CALR", "NRAS", "DNMT3A", "SF3B1", "IDH1", "KIT", "TET2", "RAD21", 
"JAK2", "CBL", "KRAS", "PTPN11", "IDH2", "TP53", "NF1", "SRSF2", "CEBPA", "ASXL1", 
"RUNX1", "U2AF1", "BCOR", "KDM6A", "PHF6", "KMT2C", "KMT2D")

table(torontoData$Diagnosis)

## 
##     AML Control 
##      83     414

torontoData$gender <- ifelse(torontoData$Sex == "male", 1, 
                             ifelse(torontoData$Sex == "female", 0, torontoData$Se
x))
dim(torontoData)

## [1] 497  29

torontoData <- torontoData[rowSums(torontoData[, colnames(torontoData) %in% gene_v
ars])>0 | torontoData$Diagnosis == "AML", ]
dim(torontoData)

## [1] 240  29

table(torontoData$gender)

## 
##   0   1 
## 135 105

torontoData$gender <- as.numeric(torontoData$gender)
colnames(torontoData)

##  [1] "Sample"     "ASXL1"      "BCOR"       "CALR"       "CBL"        "DNMT3A"     
"IDH1"       "IDH2"      
##  [9] "JAK2"       "KDM6A"      "KIT"        "KMT2C"      "KRAS"       "NF1"        
"NRAS"       "PHF6"      
## [17] "PTPN11"     "RUNX1"      "SF3B1"      "SRSF2"      "TET2"       "TP53"       
"U2AF1"      "Diagnosis" 
## [25] "fu_years"   "age"        "Sex"        "no_drivers" "gender"

Manually standardize magnitudes

torontoData <- torontoData[!duplicated(torontoData),]

torontoX <- torontoData[, colnames(torontoData) %in% c(gene_vars, "age", "gender")

w <- c(which(sangerSurv[,1]==0)[-1]-1, nrow(sangerSurv))  
s <- Surv(sangerSurv[w,2], sangerSurv[w,3]) 
a <- AUC.uno(s, s, fitWeightedSanger$linear.predictors[w], times= c(0, 22, 0.1))    
round(a$iauc, digits = 3)
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torontoX <- torontoData[, colnames(torontoData) %in% c(gene_vars, "age", "gender")
]

torontoX <- as.data.frame(torontoX)
thr <- 2
torontoX <- torontoX[,colSums(torontoX != 0)>=thr]

torontoGroups <- factor(names(torontoX) %in% c("age","gender")+1, level=1:2, label
s=c("Genes","Demographics"))
colnames(torontoX)

##  [1] "ASXL1"  "CALR"   "CBL"    "DNMT3A" "IDH1"   "IDH2"   "JAK2"   "KDM6A"  "K
MT2C"  "KRAS"   "NF1"    "PHF6"  
## [13] "PTPN11" "RUNX1"  "SF3B1"  "SRSF2"  "TET2"   "TP53"   "U2AF1"  "age"    "g
ender"

torontoGroups

##  [1] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Genes       
##  [9] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Genes       
## [17] Genes        Genes        Genes        Demographics Demographics
## Levels: Genes Demographics

# Manually standardize age and mutation VAFs
torontoX$age <- torontoX$age/10 
names(torontoX)[which(names(torontoX)=="age")] <- "age_10"
g <- torontoGroups == "Genes"
torontoX[,g] <- torontoX[,g]*10
names(torontoX)[g] <- paste(names(torontoX)[g], "0.1",sep="_")
colnames(torontoX)

##  [1] "ASXL1_0.1"  "CALR_0.1"   "CBL_0.1"    "DNMT3A_0.1" "IDH1_0.1"   "IDH2_0.1
"   "JAK2_0.1"   "KDM6A_0.1" 
##  [9] "KMT2C_0.1"  "KRAS_0.1"   "NF1_0.1"    "PHF6_0.1"   "PTPN11_0.1" "RUNX1_0.
1"  "SF3B1_0.1"  "SRSF2_0.1" 
## [17] "TET2_0.1"   "TP53_0.1"   "U2AF1_0.1"  "age_10"     "gender"

torontoSurv <- Surv(torontoData$fu_years, torontoData$Diagnosis=="AML")
plot(survfit(torontoSurv~ 1), col= "black", main = "DC", xlab='Time after first sa
mple (years)', ylab='AML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01), mark.t
ime = T) 

plot(survfit(torontoSurv ~ torontoData$Diagnosis), xlab='Time after first sample (
years)', main = "DC", ylab='AML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01), 
mark.time = T, col = set1[1:2])
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11.1 Validation cohort
f = "data/VC_vaf_matrix_262ctrl_37aml_nodates.csv"
sangerData <- read.csv(f)
dim(sangerData)

## [1] 459  43

sangerData <- sangerData[rowSums(sangerData[, colnames(sangerData) %in% gene_vars]
)>0 | sangerData$Diagnosis == "AML", ]
dim(sangerData)

## [1] 173  43

length(unique(sangerData$Individual))

## [1] 128

sangerData$hcdate <- as.Date(sangerData$hcdate)
sangerData$dodx <- as.Date(sangerData$dodx)

sangerPatients <- sub("[a-z]+$","", sangerData$Sample)
o <- order(sangerPatients, as.numeric(sangerData$hcdate))

sangerData <- sangerData[o,]
sangerPatients <- sangerPatients[o]

clinical_vars <- c("systol", "diastol", "bmi", "cholestl", "triglyc", "hdl", "ldl"
, "lym", "mcv", "rdw", "wbc", "plt", "hgb")
sangerX <- sangerData[, colnames(sangerData) %in% c(gene_vars, "age","gender",clin
ical_vars)] 
sangerX <- as.data.frame(sangerX)

sangerX <- sangerX[,colSums(sangerX != 0,na.rm=TRUE)>=thr]
sangerGroups <- factor(grepl("^[a-z]", colnames(sangerX))*2, levels=0:2, labels=c(
"Genes", "Demographics", "Blood"))
sangerGroups[names(sangerX) %in% c("age","gender")] <- "Demographics"
table(sangerGroups)  

## sangerGroups
##        Genes Demographics        Blood 
##           15            2           13

colnames(sangerX)

##  [1] "ASXL1"    "CBL"      "DNMT3A"   "JAK2"     "KMT2C"    "KMT2D"    "KRAS"     
"NF1"      "NRAS"     "RAD21"   
## [11] "SF3B1"    "SRSF2"    "TET2"     "TP53"     "U2AF1"    "age"      "gender"   
"systol"   "diastol"  "bmi"     
## [21] "cholestl" "triglyc"  "hdl"      "ldl"      "lym"      "mcv"      "rdw"      
"wbc"      "plt"      "hgb"
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sangerGroups

g <- sangerGroups=="Genes"
sangerX[g] <- sangerX[g] * 10
names(sangerX)[g] <- paste(names(sangerX[g]),"0.1", sep="_")
y <- StandardizeMagnitude(sangerX[!g])  
sangerX <- cbind(sangerX[g],y)

poorMansImpute <- function(x) {x[is.na(x)] <- mean(x, na.rm=TRUE); return(x)}
sangerX <- as.data.frame(sapply(sangerX, poorMansImpute))

foo <- split(sangerData[,c("Diagnosis","hcdate","dodx")], sangerPatients)

bar <- do.call("rbind",lapply(foo, function(x){
  y <- x
  n <- nrow(y)
  y[-n,"Diagnosis"] <- "Control"
  start <- as.numeric(y$hcdate - y$hcdate[1])/365.25
  end <- c(as.numeric(y$hcdate - y$hcdate[1])[-1]/365.25, as.numeric(y$dodx[n] - y
$hcdate[1])/365.25)
  return(data.frame(Diagnosis=y[,"Diagnosis"], start=start, end=end))
}))

bar[1:10, ]

 
 

Diagnosis
<fctr>

start
<dbl>

end
<dbl>

PD29762 AML 0.000000 9.754962

PD29764 AML 0.000000 10.360027

PD29792 AML 0.000000 14.108145

PD29810 Control 0.000000 18.573580

PD29836.1 Control 0.000000 2.414784

PD29836.2 AML 2.414784 10.023272

PD29851.1 Control 0.000000 4.599589

PD29851.2 AML 4.599589 12.205339

PD29856.1 Control 0.000000 4.331280

PD29856.2 AML 4.331280 17.828884

1-10 of 10 rows

sangerPatientsSplit <- unlist(sapply(names(foo), function(n) rep(n, nrow(foo[[n]])
)))

sangerSurv <- Surv(time = bar$start, time2 = bar$end, event = bar$Diagnosis!="Cont
rol", origin = 0)

plot(survfit(sangerSurv~ 1), col= "black", main = "VC", xlab='Time after first sam
ple (years)', ylab='AML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01), mark.ti
me = T) #mark = 1

##  [1] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Genes       
##  [9] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Demographics
## [17] Demographics Blood        Blood        Blood        Blood        Blood        
Blood        Blood       
## [25] Blood        Blood        Blood        Blood        Blood        Blood        
## Levels: Genes Demographics Blood
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11.2 Expected AML incidence
Validation cohort

w <- c(which(sangerSurv[,1]==0)[-1]-1, nrow(sangerSurv))
sangerSurv2 <- Surv(sangerSurv[w,2], sangerSurv[w,3]) ## Unique individuals

expected_rate_sanger_cr <- mean(aml_inc_cr(sangerX[w,"gender"],sangerX[w,"age_10"]
*10, sangerX[w,"age_10"]*10+ pmax(1,sangerSurv2[,1]))[!sangerSurv2[,2]])

n_total_sanger <- sum(sangerSurv2[,2])/expected_rate_sanger_cr
n_total_sanger

## [1] 14208.3

Discovery cohort

expected_rate_toronto_cr <- mean(aml_inc_cr(torontoX[,"gender"],torontoX[,"age_10"
]*10, torontoX[,"age_10"]*10+ pmax(1,torontoSurv[,1]))[!torontoSurv[,2]])

n_total_toronto <- sum(torontoSurv[,2])/expected_rate_toronto_cr
n_total_toronto

## [1] 55688.66

11.3 Combined data
Survival

allSurv <- rbind(sangerSurv, Surv(rep(0, nrow(torontoSurv)), torontoSurv[,1], toro
ntoSurv[,2]))
allSurv <- Surv(allSurv[,1], allSurv[,2], allSurv[,3])

Data matrix

cohort <- c(rep("Sanger", nrow(sangerX)), rep("Toronto", nrow(torontoX)))
i <- c(sort(setdiff(gene_vars,"CALR")),"age","gender")
allX <- rbind(superSet(sangerData,i,fill=0), superSet(torontoData,i,fill=0))
allX <- allX[,colSums(allX>0)>=thr]
allX <- cbind(allX, cohort=cohort=="Sanger") + 0
allGroups <- factor(grepl("^[A-Z]",colnames(allX))+0, levels=1:0, labels=c("Genes"
,"Demographics"))

g <- allGroups=="Genes"
allX <- cbind(10*allX[,g], StandardizeMagnitude(allX[,!g]))
colnames(allX)[g] <- paste(colnames(allX)[g],"0.1",sep="_")
control <- c(sangerData$Diagnosis=="Control", torontoData$Diagnosis=="Control")

Weights

weights <- rep(1, nrow(allX))
weights[cohort=="Sanger" & control] <- n_total_sanger/sum(cohort=="Sanger" & contr
ol & allSurv[,1]==0)
weights[cohort=="Toronto" & control] <- n_total_toronto/sum(cohort=="Toronto" & co
ntrol)

n_total <- n_total_sanger + n_total_toronto
n_total

## [1] 69896.97
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## [1] 69896.97

11.4 Coxph model fits
sigma0 <- 0.1
nu <- 1
which.mu <- "Genes"

11.4.1 DC
11.4.1.1 Raw

fitToronto <- CoxRFX(torontoX, torontoSurv, groups=torontoGroups, which.mu=which.m
u, nu=nu, sigma0=sigma0)
waldToronto <- WaldTest(fitToronto)

##                   group    coef   coef-mu     sd      z df  p.value sig
## ASXL1_0.1         Genes  0.4801  0.050389 0.1108  4.335  1 1.46e-05 ***
## CALR_0.1          Genes  0.4076 -0.022055 0.0700  5.824  1 5.76e-09 ***
## CBL_0.1           Genes  0.3119 -0.117817 0.1151  2.710  1 6.72e-03  **
## DNMT3A_0.1        Genes  0.3010 -0.128687 0.1054  2.857  1 4.28e-03  **
## IDH1_0.1          Genes  0.4535  0.023828 0.1092  4.152  1 3.29e-05 ***
## IDH2_0.1          Genes  0.3789 -0.050806 0.1052  3.602  1 3.15e-04 ***
## JAK2_0.1          Genes  0.4956  0.065922 0.1136  4.364  1 1.28e-05 ***
## KDM6A_0.1         Genes  0.4288 -0.000932 0.0594  7.214  1 5.45e-13 ***
## KMT2C_0.1         Genes  0.4450  0.015284 0.0619  7.194  1 6.28e-13 ***
## KRAS_0.1          Genes  0.4257 -0.004039 0.0595  7.156  1 8.31e-13 ***
## NF1_0.1           Genes  0.4272 -0.002451 0.0595  7.183  1 6.80e-13 ***
## PHF6_0.1          Genes  0.4321  0.002404 0.0598  7.230  1 4.83e-13 ***
## PTPN11_0.1        Genes  0.4414  0.011735 0.0596  7.407  1 1.29e-13 ***
## RUNX1_0.1         Genes  0.2761 -0.153642 0.0890  3.102  1 1.92e-03  **
## SF3B1_0.1         Genes  0.5346  0.104912 0.0892  5.993  1 2.06e-09 ***
## SRSF2_0.1         Genes  0.3772 -0.052539 0.0883  4.274  1 1.92e-05 ***
## TET2_0.1          Genes  0.4247 -0.005040 0.1174  3.617  1 2.98e-04 ***
## TP53_0.1          Genes  0.5441  0.114421 0.0665  8.181  1 2.81e-16 ***
## U2AF1_0.1         Genes  0.5788  0.149112 0.0722  8.015  1 1.10e-15 ***
## age_10     Demographics -0.3093 -0.309301 0.1116 -2.771  1 5.59e-03  **
## gender     Demographics -0.0253 -0.025329 0.1385 -0.183  1 8.55e-01

survConcordance(fitToronto$surv ~ fitToronto$linear.predictors, weights = weights[
cohort=="Toronto"])

## Call:
## survConcordance(formula = fitToronto$surv ~ fitToronto$linear.predictors, 
##     weights = weights[cohort == "Toronto"])
## 
##   n= 240 
## Concordance= 0.7539084 se= 0.03193557
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  3255935.4  1062805.9        0.0        1.0   275842.9

11.4.1.2 Adjusted

fitWeightedToronto <- CoxRFX(torontoX, torontoSurv, torontoGroups, which.mu=which.
mu, sigma0=sigma0, nu=nu, weights=weights[cohort=="Toronto"])
waldWeightedToronto <- WaldTest(fitWeightedToronto)

##                   group    coef coef-mu    sd       z df  p.value sig
## ASXL1_0.1         Genes  1.9719  0.1365 0.150 13.1816  1 1.12e-39 ***
## CALR_0.1          Genes -0.0794 -1.9147 1.174 -0.0676  1 9.46e-01    
## CBL_0.1           Genes  0.0165 -1.8188 0.426  0.0388  1 9.69e-01    
## DNMT3A_0.1        Genes  0.3722 -1.4631 0.153  2.4301  1 1.51e-02   *
## IDH1_0.1          Genes  2.3375  0.5022 0.350  6.6815  1 2.36e-11 ***
## IDH2_0.1          Genes  0.5915 -1.2438 0.240  2.4621  1 1.38e-02   *
## JAK2_0.1          Genes  1.7762 -0.0592 0.193  9.2213  1 2.94e-20 ***
## KDM6A_0.1         Genes  1.6689 -0.1664 0.362  4.6081  1 4.06e-06 ***
## KMT2C_0.1         Genes -1.2330 -3.0683 1.191 -1.0356  1 3.00e-01    
## KRAS_0.1          Genes  0.9875 -0.8478 0.555  1.7785  1 7.53e-02   .
## NF1_0.1           Genes  1.3623 -0.4730 0.501  2.7193  1 6.54e-03  **
## PHF6_0.1          Genes  2.6990  0.8636 0.255 10.5887  1 3.36e-26 ***
## PTPN11_0.1        Genes  3.6339  1.7986 0.723  5.0228  1 5.09e-07 ***
## RUNX1_0.1         Genes  0.6233 -1.2120 0.136  4.5906  1 4.42e-06 ***
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## RUNX1_0.1         Genes  0.6233 -1.2120 0.136  4.5906  1 4.42e-06 ***
## SF3B1_0.1         Genes  3.1088  1.2735 0.305 10.1981  1 2.02e-24 ***
## SRSF2_0.1         Genes  1.4956 -0.3397 0.172  8.6791  1 3.99e-18 ***
## TET2_0.1          Genes  0.5772 -1.2581 0.232  2.4920  1 1.27e-02   *
## TP53_0.1          Genes  8.9422  7.1069 0.823 10.8665  1 1.66e-27 ***
## U2AF1_0.1         Genes  4.0190  2.1836 0.384 10.4738  1 1.14e-25 ***
## age_10     Demographics -0.5274 -0.5274 0.135 -3.9171  1 8.96e-05 ***
## gender     Demographics  0.0323  0.0323 0.175  0.1842  1 8.54e-01

survConcordance(fitWeightedToronto$surv ~ fitWeightedToronto$linear.predictors, we
ights=weights[cohort=="Toronto"])

## Call:
## survConcordance(formula = fitWeightedToronto$surv ~ fitWeightedToronto$linear.p
redictors, 
##     weights = weights[cohort == "Toronto"])
## 
##   n= 240 
## Concordance= 0.7701663 se= 0.03193557
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  3326148.9   992592.4        0.0        1.0   275842.9

#Uno's estimator of cumulative/dynamic AUC
a <- AUC.uno(torontoSurv, torontoSurv, fitWeightedToronto$linear.predictors, times
= seq(0,12, 0.1)) 
round(a$iauc, digits = 3)

## [1] 0.756

11.4.2 Validation cohort
11.4.2.1 Raw

fitSanger <- CoxRFX(sangerX, sangerSurv, groups=sangerGroups, which.mu=which.mu, n
u=nu, sigma0=sigma0)
waldSanger <- WaldTest(fitSanger)

##                    group     coef   coef-mu      sd       z df  p.value sig
## ASXL1_0.1          Genes  0.41389  1.04e-01 0.13253  3.1229  1 1.79e-03  **
## CBL_0.1            Genes  0.27978 -3.01e-02 0.10678  2.6202  1 8.79e-03  **
## DNMT3A_0.1         Genes  0.15476 -1.55e-01 0.12703  1.2183  1 2.23e-01    
## JAK2_0.1           Genes  0.33012  2.02e-02 0.10874  3.0359  1 2.40e-03  **
## KMT2C_0.1          Genes  0.30175 -8.17e-03 0.09722  3.1037  1 1.91e-03  **
## KMT2D_0.1          Genes  0.14350 -1.66e-01 0.15722  0.9127  1 3.61e-01    
## KRAS_0.1           Genes  0.30998  5.67e-05 0.09168  3.3811  1 7.22e-04 ***
## NF1_0.1            Genes  0.29225 -1.77e-02 0.09499  3.0768  1 2.09e-03  **
## NRAS_0.1           Genes  0.30685 -3.07e-03 0.09158  3.3507  1 8.06e-04 ***
## RAD21_0.1          Genes  0.29301 -1.69e-02 0.09373  3.1261  1 1.77e-03  **
## SF3B1_0.1          Genes  0.29894 -1.10e-02 0.09393  3.1825  1 1.46e-03  **
## SRSF2_0.1          Genes  0.40493  9.50e-02 0.13441  3.0125  1 2.59e-03  **
## TET2_0.1           Genes  0.37910  6.92e-02 0.11275  3.3624  1 7.73e-04 ***
## TP53_0.1           Genes  0.36746  5.75e-02 0.09308  3.9479  1 7.88e-05 ***
## U2AF1_0.1          Genes  0.37254  6.26e-02 0.09357  3.9813  1 6.85e-05 ***
## age_10      Demographics -0.01773 -1.77e-02 0.11451 -0.1548  1 8.77e-01    
## gender      Demographics -0.03369 -3.37e-02 0.10501 -0.3208  1 7.48e-01    
## systol_100         Blood  0.00145  1.45e-03 0.03839  0.0377  1 9.70e-01    
## diastol_100        Blood  0.00773  7.73e-03 0.02329  0.3321  1 7.40e-01    
## bmi_10             Blood  0.06828  6.83e-02 0.07091  0.9628  1 3.36e-01    
## cholestl_10        Blood  0.01797  1.80e-02 0.01274  1.4109  1 1.58e-01    
## triglyc            Blood  0.00471  4.71e-03 0.09569  0.0492  1 9.61e-01    
## hdl                Blood -0.00891 -8.91e-03 0.07257 -0.1227  1 9.02e-01    
## ldl                Blood  0.16056  1.61e-01 0.09725  1.6510  1 9.87e-02   .
## lym                Blood -0.02015 -2.01e-02 0.08835 -0.2280  1 8.20e-01    
## mcv_100            Blood -0.00369 -3.69e-03 0.00786 -0.4694  1 6.39e-01    
## rdw_10             Blood  0.05420  5.42e-02 0.02080  2.6056  1 9.17e-03  **
## wbc_10             Blood  0.00379  3.79e-03 0.03521  0.1077  1 9.14e-01    
## plt_100            Blood  0.03410  3.41e-02 0.09166  0.3720  1 7.10e-01    
## hgb_10             Blood  0.03314  3.31e-02 0.02245  1.4763  1 1.40e-01

survConcordance(sangerSurv ~ fitSanger$linear.predictors)

## Call:
## survConcordance(formula = sangerSurv ~ fitSanger$linear.predictors)
## 
##   n= 173 
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##   n= 173 
## Concordance= 0.6611972 se= 0.05025086
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  2176.0000  1115.0000     0.0000     0.0000   330.7512

11.4.2.2 Adjusted

fitWeightedSanger <- CoxRFX(sangerX, sangerSurv, sangerGroups, which.mu=which.mu, 
sigma0=sigma0, nu=nu, weights=weights[cohort=="Sanger"])
waldWeightedSanger <- WaldTest(fitWeightedSanger)

##                    group      coef   coef-mu      sd        z df  p.value sig
## ASXL1_0.1          Genes  2.580959  1.414558 0.47618  5.42008  1 5.96e-08 ***
## CBL_0.1            Genes -0.660213 -1.826614 1.39628 -0.47284  1 6.36e-01    
## DNMT3A_0.1         Genes  0.223151 -0.943251 0.24504  0.91066  1 3.62e-01    
## JAK2_0.1           Genes  0.705927 -0.460474 1.04486  0.67562  1 4.99e-01    
## KMT2C_0.1          Genes -0.385529 -1.551931 1.44435 -0.26692  1 7.90e-01    
## KMT2D_0.1          Genes -0.627231 -1.793633 1.03607 -0.60539  1 5.45e-01    
## KRAS_0.1           Genes  1.299133  0.132731 0.78999  1.64450  1 1.00e-01    
## NF1_0.1            Genes -0.815764 -1.982166 1.46470 -0.55695  1 5.78e-01    
## NRAS_0.1           Genes  0.728314 -0.438088 0.64251  1.13355  1 2.57e-01    
## RAD21_0.1          Genes -0.678392 -1.844793 1.44210 -0.47042  1 6.38e-01    
## SF3B1_0.1          Genes  0.072745 -1.093657 1.47708  0.04925  1 9.61e-01    
## SRSF2_0.1          Genes  1.726024  0.559622 0.23912  7.21826  1 5.27e-13 ***
## TET2_0.1           Genes  1.101278 -0.065124 0.15079  7.30320  1 2.81e-13 ***
## TP53_0.1           Genes  4.694801  3.528400 1.13074  4.15198  1 3.30e-05 ***
## U2AF1_0.1          Genes  7.530821  6.364419 1.06931  7.04270  1 1.89e-12 ***
## age_10      Demographics -0.190256 -0.190256 0.13151 -1.44666  1 1.48e-01    
## gender      Demographics -0.029742 -0.029742 0.12174 -0.24430  1 8.07e-01    
## systol_100         Blood -0.032537 -0.032537 0.04764 -0.68293  1 4.95e-01    
## diastol_100        Blood  0.000105  0.000105 0.02958  0.00356  1 9.97e-01    
## bmi_10             Blood  0.098774  0.098774 0.08970  1.10111  1 2.71e-01    
## cholestl_10        Blood  0.024226  0.024226 0.01553  1.55989  1 1.19e-01    
## triglyc            Blood  0.051097  0.051097 0.11392  0.44854  1 6.54e-01    
## hdl                Blood -0.082426 -0.082426 0.09326 -0.88380  1 3.77e-01    
## ldl                Blood  0.248075  0.248075 0.11127  2.22950  1 2.58e-02   *
## lym                Blood -0.054414 -0.054414 0.10621 -0.51234  1 6.08e-01    
## mcv_100            Blood -0.010783 -0.010783 0.00915 -1.17903  1 2.38e-01    
## rdw_10             Blood  0.095279  0.095279 0.01797  5.30078  1 1.15e-07 ***
## wbc_10             Blood  0.011314  0.011314 0.04898  0.23099  1 8.17e-01    
## plt_100            Blood  0.057755  0.057755 0.11248  0.51347  1 6.08e-01    
## hgb_10             Blood  0.016212  0.016212 0.02615  0.62004  1 5.35e-01

waldWeightedSanger$p.adj <- p.adjust(p = waldWeightedSanger$p.value, method = "bon
ferroni")
#View(waldWeightedSanger)

survConcordance(sangerSurv ~ fitWeightedSanger$linear.predictors, weights=weights[
cohort=="Sanger"])

## Call:
## survConcordance(formula = sangerSurv ~ fitWeightedSanger$linear.predictors, 
##     weights = weights[cohort == "Sanger"])
## 
##   n= 173 
## Concordance= 0.7231124 se= 0.0489519
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  296852.77  113668.16       0.00       0.00   40191.56

## [1] 0.403

#Uno's estimator of cumulative/dynamic AUC
w <- c(which(sangerSurv[,1]==0)[-1]-1, nrow(sangerSurv))  
s <- Surv(sangerSurv[w,2], sangerSurv[w,3])  
a <- AUC.uno(s, s, fitWeightedSanger$linear.predictors[w], times= c(0, 22, 0.1))    
round(a$iauc, digits = 3)
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12 CoxPH model excluding all samples
without ARCH-PD
12.1 Discovery cohort
Data

f = "data/DC_vaf_matrix_414ctrl_91aml.csv"  
torontoData <- read.csv(f)

gene_vars <- c("CALR", "NRAS", "DNMT3A", "SF3B1", "IDH1", "KIT", "TET2", "RAD21", 
"JAK2", "CBL", "KRAS", "PTPN11", "IDH2", "TP53", "NF1", "SRSF2", "CEBPA", "ASXL1", 
"RUNX1", "U2AF1", "BCOR", "KDM6A", "PHF6", "KMT2C", "KMT2D")

table(torontoData$Diagnosis)

## 
##     AML Control 
##      91     414

torontoData$gender <- ifelse(torontoData$Sex == "male", 1, 
                             ifelse(torontoData$Sex == "female", 0, torontoData$Se
x))
dim(torontoData)

## [1] 505  29

torontoData <- torontoData[rowSums(torontoData[, colnames(torontoData) %in% gene_v
ars])>0, ]
dim(torontoData)

## [1] 221  29

table(torontoData$gender)

## 
##   0   1 
## 126  95

torontoData$gender <- as.numeric(torontoData$gender)
colnames(torontoData)

##  [1] "Sample"     "ASXL1"      "BCOR"       "CALR"       "CBL"        "DNMT3A"     
"IDH1"       "IDH2"      
##  [9] "JAK2"       "KDM6A"      "KIT"        "KMT2C"      "KRAS"       "NF1"        
"NRAS"       "PHF6"      
## [17] "PTPN11"     "RUNX1"      "SF3B1"      "SRSF2"      "TET2"       "TP53"       
"U2AF1"      "Diagnosis" 
## [25] "fu_years"   "age"        "Sex"        "no_drivers" "gender"

Manually standardize magnitudes

torontoData <- torontoData[!duplicated(torontoData),]

torontoX <- torontoData[, colnames(torontoData) %in% c(gene_vars, "age", "gender")
]

torontoX <- as.data.frame(torontoX)
thr <- 2
torontoX <- torontoX[,colSums(torontoX != 0)>=thr]

torontoGroups <- factor(names(torontoX) %in% c("age","gender")+1, level=1:2, label
s=c("Genes","Demographics"))
colnames(torontoX)

##  [1] "ASXL1"  "CALR"   "CBL"    "DNMT3A" "IDH1"   "IDH2"   "JAK2"   "KDM6A"  "K
MT2C"  "KRAS"   "NF1"    "PHF6"  
## [13] "PTPN11" "RUNX1"  "SF3B1"  "SRSF2"  "TET2"   "TP53"   "U2AF1"  "age"    "g
ender"
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torontoGroups

##  [1] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Genes       
##  [9] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Genes       
## [17] Genes        Genes        Genes        Demographics Demographics
## Levels: Genes Demographics

Manually standardize age and mutation VAFs

torontoX$age <- torontoX$age/10 
names(torontoX)[which(names(torontoX)=="age")] <- "age_10"
g <- torontoGroups == "Genes"
torontoX[,g] <- torontoX[,g]*10
names(torontoX)[g] <- paste(names(torontoX)[g], "0.1",sep="_")
colnames(torontoX)

##  [1] "ASXL1_0.1"  "CALR_0.1"   "CBL_0.1"    "DNMT3A_0.1" "IDH1_0.1"   "IDH2_0.1
"   "JAK2_0.1"   "KDM6A_0.1" 
##  [9] "KMT2C_0.1"  "KRAS_0.1"   "NF1_0.1"    "PHF6_0.1"   "PTPN11_0.1" "RUNX1_0.
1"  "SF3B1_0.1"  "SRSF2_0.1" 
## [17] "TET2_0.1"   "TP53_0.1"   "U2AF1_0.1"  "age_10"     "gender"

torontoSurv <- Surv(torontoData$fu_years, torontoData$Diagnosis=="AML")
plot(survfit(torontoSurv~ 1), col= "black", main = "DC", xlab='Time after first sa
mple (years)', ylab='AML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01), mark.t
ime = T) 

plot(survfit(torontoSurv ~ torontoData$Diagnosis), xlab='Time after first sample (
years)', main = "DC", ylab='AML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01), 
mark.time = T, col = set1[1:2])

12.2 Validation cohort
f = "data/VC_vaf_matrix_no_duplicates_262ctrl_29aml_nodates.csv"
sangerData <- read.csv(f)
dim(sangerData)
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## [1] 445  43

sangerData <- sangerData[rowSums(sangerData[, colnames(sangerData) %in% gene_vars]
)>0, ]
dim(sangerData)

## [1] 149  43

sangerData$hcdate <- as.Date(sangerData$hcdate)
sangerData$dodx <- as.Date(sangerData$dodx)

sangerPatients <- sub("[a-z]+$","", sangerData$Sample)
o <- order(sangerPatients, as.numeric(sangerData$hcdate))

sangerData <- sangerData[o,]
sangerPatients <- sangerPatients[o]

clinical_vars <- c("systol", "diastol", "bmi", "cholestl", "triglyc", "hdl", "ldl"
, "lym", "mcv", "rdw", "wbc", "plt", "hgb")
sangerX <- sangerData[, colnames(sangerData) %in% c(gene_vars, "age","gender",clin
ical_vars)] 
sangerX <- as.data.frame(sangerX)

sangerX <- sangerX[,colSums(sangerX != 0,na.rm=TRUE)>=thr]
sangerGroups <- factor(grepl("^[a-z]", colnames(sangerX))*2, levels=0:2, labels=c(
"Genes", "Demographics", "Blood"))
sangerGroups[names(sangerX) %in% c("age","gender")] <- "Demographics"
table(sangerGroups)  

## sangerGroups
##        Genes Demographics        Blood 
##           15            2           13

colnames(sangerX)

##  [1] "ASXL1"    "CBL"      "DNMT3A"   "JAK2"     "KMT2C"    "KMT2D"    "KRAS"     
"NF1"      "NRAS"     "RAD21"   
## [11] "SF3B1"    "SRSF2"    "TET2"     "TP53"     "U2AF1"    "age"      "gender"   
"systol"   "diastol"  "bmi"     
## [21] "cholestl" "triglyc"  "hdl"      "ldl"      "lym"      "mcv"      "rdw"      
"wbc"      "plt"      "hgb"

sangerGroups

##  [1] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Genes       
##  [9] Genes        Genes        Genes        Genes        Genes        Genes        
Genes        Demographics
## [17] Demographics Blood        Blood        Blood        Blood        Blood        
Blood        Blood       
## [25] Blood        Blood        Blood        Blood        Blood        Blood        
## Levels: Genes Demographics Blood
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g <- sangerGroups=="Genes"
sangerX[g] <- sangerX[g] * 10
names(sangerX)[g] <- paste(names(sangerX[g]),"0.1", sep="_")
y <- StandardizeMagnitude(sangerX[!g])  
sangerX <- cbind(sangerX[g],y)

poorMansImpute <- function(x) {x[is.na(x)] <- mean(x, na.rm=TRUE); return(x)}
sangerX <- as.data.frame(sapply(sangerX, poorMansImpute))

foo <- split(sangerData[,c("Diagnosis","hcdate","dodx")], sangerPatients)

bar <- do.call("rbind",lapply(foo, function(x){
  y <- x
  n <- nrow(y)
  y[-n,"Diagnosis"] <- "Control"
  start <- as.numeric(y$hcdate - y$hcdate[1])/365.25
  end <- c(as.numeric(y$hcdate - y$hcdate[1])[-1]/365.25, as.numeric(y$dodx[n] - y
$hcdate[1])/365.25)
  return(data.frame(Diagnosis=y[,"Diagnosis"], start=start, end=end))
}))

bar[1:10, ]

 
 

Diagnosis
<fctr>

start
<dbl>

end
<dbl>

PD29762 AML 0.000000 9.754962

PD29764 AML 0.000000 10.360027

PD29792 AML 0.000000 14.108145

PD29810 Control 0.000000 18.573580

PD29836.1 Control 0.000000 2.414784

PD29836.2 AML 2.414784 10.023272

PD29856 AML 0.000000 17.828884

PD29896 AML 0.000000 6.387406

PD29918.1 Control 0.000000 5.442847

PD29918.2 AML 5.442847 13.396304

1-10 of 10 rows

sangerPatientsSplit <- unlist(sapply(names(foo), function(n) rep(n, nrow(foo[[n]])
)))

sangerSurv <- Surv(time = bar$start, time2 = bar$end, event = bar$Diagnosis!="Cont
rol", origin = 0)

plot(survfit(sangerSurv~ 1), col= "black", main = "VC", xlab='Time after first sam
ple (years)', ylab='AML-free fraction', bty='L', yaxs='i', ylim=c(0,1.01), mark.ti
me = T) #mark = 1
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12.3 Expected AML incidence
Validation cohort

w <- c(which(sangerSurv[,1]==0)[-1]-1, nrow(sangerSurv))
sangerSurv2 <- Surv(sangerSurv[w,2], sangerSurv[w,3]) 

expected_rate_sanger_cr <- mean(aml_inc_cr(sangerX[w,"gender"],sangerX[w,"age_10"]
*10, sangerX[w,"age_10"]*10+ pmax(1,sangerSurv2[,1]))[!sangerSurv2[,2]])

n_total_sanger <- sum(sangerSurv2[,2])/expected_rate_sanger_cr
n_total_sanger

## [1] 9216.197

Discovery cohort

expected_rate_toronto_cr <- mean(aml_inc_cr(torontoX[,"gender"],torontoX[,"age_10"
]*10, torontoX[,"age_10"]*10+ pmax(1,torontoSurv[,1]))[!torontoSurv[,2]])

n_total_toronto <- sum(torontoSurv[,2])/expected_rate_toronto_cr
n_total_toronto

## [1] 42940.66

12.4 Combined data
Survival

allSurv <- rbind(sangerSurv, Surv(rep(0, nrow(torontoSurv)), torontoSurv[,1], toro
ntoSurv[,2]))
allSurv <- Surv(allSurv[,1], allSurv[,2], allSurv[,3])

Data matrix

cohort <- c(rep("Sanger", nrow(sangerX)), rep("Toronto", nrow(torontoX)))
i <- c(sort(setdiff(gene_vars,"CALR")),"age","gender")
allX <- rbind(superSet(sangerData,i,fill=0), superSet(torontoData,i,fill=0))
allX <- allX[,colSums(allX>0)>=thr]
allX <- cbind(allX, cohort=cohort=="Sanger") + 0
allGroups <- factor(grepl("^[A-Z]",colnames(allX))+0, levels=1:0, labels=c("Genes"
,"Demographics"))

g <- allGroups=="Genes"
allX <- cbind(10*allX[,g], StandardizeMagnitude(allX[,!g]))
colnames(allX)[g] <- paste(colnames(allX)[g],"0.1",sep="_")
control <- c(sangerData$Diagnosis=="Control", torontoData$Diagnosis=="Control")

Weights

weights <- rep(1, nrow(allX))
weights[cohort=="Sanger" & control] <- n_total_sanger/sum(cohort=="Sanger" & contr
ol & allSurv[,1]==0)
weights[cohort=="Toronto" & control] <- n_total_toronto/sum(cohort=="Toronto" & co
ntrol)

n_total <- n_total_sanger + n_total_toronto
n_total

## [1] 52156.85

12.5 Coxph model fits
sigma0 <- 0.1
nu <- 1
which.mu <- "Genes"

12.5.1 Toronto
12.5.1.1 Raw

fitToronto <- CoxRFX(torontoX, torontoSurv, groups=torontoGroups, which.mu=which.m
u, nu=nu, sigma0=sigma0)
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u, nu=nu, sigma0=sigma0)
waldToronto <- WaldTest(fitToronto)

##                   group    coef   coef-mu     sd      z df  p.value sig
## ASXL1_0.1         Genes  0.5750  0.032700 0.1158  4.964  1 6.91e-07 ***
## CALR_0.1          Genes  0.5200 -0.022339 0.0744  6.990  1 2.74e-12 ***
## CBL_0.1           Genes  0.4268 -0.115522 0.1231  3.469  1 5.23e-04 ***
## DNMT3A_0.1        Genes  0.4724 -0.069936 0.1062  4.448  1 8.66e-06 ***
## IDH1_0.1          Genes  0.5730  0.030722 0.1188  4.822  1 1.42e-06 ***
## IDH2_0.1          Genes  0.4711 -0.071177 0.1126  4.184  1 2.86e-05 ***
## JAK2_0.1          Genes  0.6084  0.066072 0.1214  5.011  1 5.43e-07 ***
## KDM6A_0.1         Genes  0.5420 -0.000284 0.0628  8.629  1 6.17e-18 ***
## KMT2C_0.1         Genes  0.5603  0.017953 0.0656  8.545  1 1.29e-17 ***
## KRAS_0.1          Genes  0.5394 -0.002952 0.0628  8.583  1 9.20e-18 ***
## NF1_0.1           Genes  0.5404 -0.001954 0.0628  8.599  1 8.07e-18 ***
## PHF6_0.1          Genes  0.5469  0.004542 0.0632  8.655  1 4.91e-18 ***
## PTPN11_0.1        Genes  0.5556  0.013243 0.0631  8.810  1 1.25e-18 ***
## RUNX1_0.1         Genes  0.3347 -0.207621 0.0917  3.650  1 2.62e-04 ***
## SF3B1_0.1         Genes  0.6532  0.110858 0.0963  6.781  1 1.19e-11 ***
## SRSF2_0.1         Genes  0.4370 -0.105330 0.0920  4.750  1 2.03e-06 ***
## TET2_0.1          Genes  0.5053 -0.037059 0.1248  4.050  1 5.12e-05 ***
## TP53_0.1          Genes  0.7280  0.185639 0.0825  8.828  1 1.07e-18 ***
## U2AF1_0.1         Genes  0.7148  0.172443 0.0805  8.879  1 6.76e-19 ***
## age_10     Demographics -0.0236 -0.023625 0.1092 -0.216  1 8.29e-01    
## gender     Demographics -0.0832 -0.083228 0.1113 -0.748  1 4.55e-01

survConcordance(fitToronto$surv ~ fitToronto$linear.predictors)

## Call:
## survConcordance(formula = fitToronto$surv ~ fitToronto$linear.predictors)
## 
##   n= 221 
## Concordance= 0.7806171 se= 0.03687602
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  8981.0000  2524.0000     0.0000     1.0000   848.5173

12.5.1.2 Adjusted

fitWeightedToronto <- CoxRFX(torontoX, torontoSurv, torontoGroups, which.mu=which.
mu, sigma0=sigma0, nu=nu, weights=weights[cohort=="Toronto"])
waldWeightedToronto <- WaldTest(fitWeightedToronto)

##                   group    coef  coef-mu    sd      z df  p.value sig
## ASXL1_0.1         Genes  1.9878  0.06756 0.150 13.267  1 3.60e-40 ***
## CALR_0.1          Genes  0.6189 -1.30126 0.758  0.817  1 4.14e-01    
## CBL_0.1           Genes  0.2531 -1.66705 0.379  0.668  1 5.04e-01    
## DNMT3A_0.1        Genes  0.5859 -1.33434 0.136  4.313  1 1.61e-05 ***
## IDH1_0.1          Genes  2.4124  0.49218 0.341  7.083  1 1.41e-12 ***
## IDH2_0.1          Genes  0.8067 -1.11352 0.231  3.498  1 4.70e-04 ***
## JAK2_0.1          Genes  1.9535  0.03333 0.193 10.131  1 4.01e-24 ***
## KDM6A_0.1         Genes  1.9181 -0.00209 0.163 11.792  1 4.31e-32 ***
## KMT2C_0.1         Genes  2.3735  0.45328 0.730  3.250  1 1.16e-03  **
## KRAS_0.1          Genes  1.7434 -0.17684 0.195  8.955  1 3.38e-19 ***
## NF1_0.1           Genes  1.8059 -0.11434 0.190  9.518  1 1.77e-21 ***
## PHF6_0.1          Genes  2.2276  0.30741 0.144 15.462  1 6.24e-54 ***
## PTPN11_0.1        Genes  2.5970  0.67679 0.277  9.366  1 7.52e-21 ***
## RUNX1_0.1         Genes  0.7172 -1.20303 0.137  5.235  1 1.65e-07 ***
## SF3B1_0.1         Genes  3.2528  1.33260 0.321 10.149  1 3.36e-24 ***
## SRSF2_0.1         Genes  1.4698 -0.45035 0.170  8.656  1 4.91e-18 ***
## TET2_0.1          Genes  0.5707 -1.34952 0.211  2.699  1 6.96e-03  **
## TP53_0.1          Genes  5.2413  3.32111 0.440 11.916  1 9.82e-33 ***
## U2AF1_0.1         Genes  3.9483  2.02809 0.365 10.817  1 2.87e-27 ***
## age_10     Demographics -0.0820 -0.08201 0.117 -0.700  1 4.84e-01    
## gender     Demographics -0.0899 -0.08989 0.117 -0.771  1 4.41e-01

survConcordance(fitWeightedToronto$surv ~ fitWeightedToronto$linear.predictors, we
ights=weights[cohort=="Toronto"])

## Call:
## survConcordance(formula = fitWeightedToronto$surv ~ fitWeightedToronto$linear.p
redictors, 
##     weights = weights[cohort == "Toronto"])
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##     weights = weights[cohort == "Toronto"])
## 
##   n= 221 
## Concordance= 0.8454794 se= 0.03633541
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  2196217.1   401382.8        0.0        1.0   188769.7

Uno’s estimator of cumulative/dynamic AUC

a <- AUC.uno(torontoSurv, torontoSurv, fitWeightedToronto$linear.predictors, times
= seq(0,12, 0.1)) 
round(a$iauc, digits = 3)

## [1] 0.791

12.5.2 Validation cohort
12.5.2.1 Raw

fitSanger <- CoxRFX(sangerX, sangerSurv, groups=sangerGroups, which.mu=which.mu, n
u=nu, sigma0=sigma0)
waldSanger <- WaldTest(fitSanger)

##                    group      coef   coef-mu      sd        z df  p.value sig
## ASXL1_0.1          Genes  0.673478  0.158950 0.12882  5.22794  1 1.71e-07 ***
## CBL_0.1            Genes  0.495353 -0.019175 0.10735  4.61426  1 3.94e-06 ***
## DNMT3A_0.1         Genes  0.328415 -0.186113 0.13178  2.49210  1 1.27e-02   *
## JAK2_0.1           Genes  0.493355 -0.021173 0.11739  4.20278  1 2.64e-05 ***
## KMT2C_0.1          Genes  0.519077  0.004549 0.10042  5.16888  1 2.36e-07 ***
## KMT2D_0.1          Genes  0.341708 -0.172820 0.16670  2.04989  1 4.04e-02   *
## KRAS_0.1           Genes  0.517799  0.003272 0.09650  5.36592  1 8.05e-08 ***
## NF1_0.1            Genes  0.501902 -0.012625 0.09919  5.06022  1 4.19e-07 ***
## NRAS_0.1           Genes  0.534425  0.019897 0.09703  5.50790  1 3.63e-08 ***
## RAD21_0.1          Genes  0.503868 -0.010660 0.09793  5.14544  1 2.67e-07 ***
## SF3B1_0.1          Genes  0.507855 -0.006673 0.09801  5.18184  1 2.20e-07 ***
## SRSF2_0.1          Genes  0.529928  0.015400 0.14168  3.74021  1 1.84e-04 ***
## TET2_0.1           Genes  0.593720  0.079192 0.12273  4.83743  1 1.32e-06 ***
## TP53_0.1           Genes  0.584538  0.070010 0.09773  5.98121  1 2.21e-09 ***
## U2AF1_0.1          Genes  0.592496  0.077968 0.09770  6.06442  1 1.32e-09 ***
## age_10      Demographics  0.084731  0.084731 0.12166  0.69645  1 4.86e-01    
## gender      Demographics -0.007960 -0.007960 0.10340 -0.07698  1 9.39e-01    
## systol_100         Blood  0.033564  0.033564 0.03644  0.92111  1 3.57e-01    
## diastol_100        Blood  0.032432  0.032432 0.02299  1.41095  1 1.58e-01    
## bmi_10             Blood  0.081752  0.081752 0.06892  1.18610  1 2.36e-01    
## cholestl_10        Blood  0.014082  0.014082 0.01344  1.04742  1 2.95e-01    
## triglyc            Blood -0.000827 -0.000827 0.10813 -0.00765  1 9.94e-01    
## hdl                Blood -0.007587 -0.007587 0.06927 -0.10952  1 9.13e-01    
## ldl                Blood  0.134372  0.134372 0.11043  1.21684  1 2.24e-01    
## lym                Blood  0.076500  0.076500 0.08867  0.86278  1 3.88e-01    
## mcv_100            Blood -0.012801 -0.012801 0.00713 -1.79436  1 7.28e-02   .
## rdw_10             Blood  0.058557  0.058557 0.01828  3.20254  1 1.36e-03  **
## wbc_10             Blood  0.016691  0.016691 0.03908  0.42707  1 6.69e-01    
## plt_100            Blood  0.095820  0.095820 0.09229  1.03821  1 2.99e-01    
## hgb_10             Blood  0.006904  0.006904 0.01981  0.34856  1 7.27e-01

survConcordance(sangerSurv ~ fitSanger$linear.predictors)

## Call:
## survConcordance(formula = sangerSurv ~ fitSanger$linear.predictors)
## 
##   n= 149 
## Concordance= 0.7918502 se= 0.06247796
## concordant discordant  tied.risk  tied.time   std(c-d) 
##    1438.00     378.00       0.00       0.00     226.92

12.5.2.2 Adjusted

fitWeightedSanger <- CoxRFX(sangerX, sangerSurv, sangerGroups, which.mu=which.mu, 
sigma0=sigma0, nu=nu, weights=weights[cohort=="Sanger"])
waldWeightedSanger <- WaldTest(fitWeightedSanger)

##                    group    coef coef-mu     sd       z df  p.value sig
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## ASXL1_0.1          Genes  3.2736  1.1639 0.5035  6.5016  1 7.95e-11 ***
## CBL_0.1            Genes  0.4415 -1.6682 1.4885  0.2966  1 7.67e-01    
## DNMT3A_0.1         Genes  0.5963 -1.5134 0.2434  2.4497  1 1.43e-02   *
## JAK2_0.1           Genes -0.0225 -2.1322 1.0506 -0.0214  1 9.83e-01    
## KMT2C_0.1          Genes  0.8233 -1.2864 1.4975  0.5498  1 5.82e-01    
## KMT2D_0.1          Genes -0.1936 -2.3033 0.9186 -0.2108  1 8.33e-01    
## KRAS_0.1           Genes  2.6546  0.5449 0.6402  4.1468  1 3.37e-05 ***
## NF1_0.1            Genes  0.8839 -1.2258 1.4275  0.6192  1 5.36e-01    
## NRAS_0.1           Genes  4.8796  2.7699 0.6294  7.7532  1 8.96e-15 ***
## RAD21_0.1          Genes  0.8665 -1.2432 1.4103  0.6144  1 5.39e-01    
## SF3B1_0.1          Genes  1.2701 -0.8396 1.4768  0.8601  1 3.90e-01    
## SRSF2_0.1          Genes  1.6909 -0.4188 0.2626  6.4399  1 1.20e-10 ***
## TET2_0.1           Genes  1.3640 -0.7457 0.1595  8.5534  1 1.19e-17 ***
## TP53_0.1           Genes  5.1102  3.0005 1.0728  4.7634  1 1.90e-06 ***
## U2AF1_0.1          Genes  8.0069  5.8972 0.9739  8.2214  1 2.01e-16 ***
## age_10      Demographics -0.0522 -0.0522 0.1212 -0.4306  1 6.67e-01    
## gender      Demographics -0.0216 -0.0216 0.0988 -0.2185  1 8.27e-01    
## systol_100         Blood  0.0064  0.0064 0.0409  0.1566  1 8.76e-01    
## diastol_100        Blood  0.0251  0.0251 0.0269  0.9320  1 3.51e-01    
## bmi_10             Blood  0.0956  0.0956 0.0826  1.1574  1 2.47e-01    
## cholestl_10        Blood  0.0143  0.0143 0.0155  0.9246  1 3.55e-01    
## triglyc            Blood -0.0533 -0.0533 0.1279 -0.4169  1 6.77e-01    
## hdl                Blood -0.0505 -0.0505 0.0839 -0.6015  1 5.48e-01    
## ldl                Blood  0.2011  0.2011 0.1239  1.6229  1 1.05e-01    
## lym                Blood  0.0499  0.0499 0.0996  0.5009  1 6.16e-01    
## mcv_100            Blood -0.0238 -0.0238 0.0075 -3.1777  1 1.48e-03  **
## rdw_10             Blood  0.0832  0.0832 0.0142  5.8698  1 4.36e-09 ***
## wbc_10             Blood  0.0108  0.0108 0.0544  0.1988  1 8.42e-01    
## plt_100            Blood  0.1509  0.1509 0.1056  1.4297  1 1.53e-01    
## hgb_10             Blood -0.0224 -0.0224 0.0217 -1.0308  1 3.03e-01

survConcordance(sangerSurv ~ fitWeightedSanger$linear.predictors, weights=weights[
cohort=="Sanger"])

## Call:
## survConcordance(formula = sangerSurv ~ fitWeightedSanger$linear.predictors, 
##     weights = weights[cohort == "Sanger"])
## 
##   n= 149 
## Concordance= 0.8671072 se= 0.06105924
## concordant discordant  tied.risk  tied.time   std(c-d) 
##  135478.93   20763.49       0.00       0.00   19080.09

Uno’s estimator of cumulative/dynamic AUC

## [1] 0.587

13 Session
devtools::session_info()

## Session info ------------------------------------------------------------------
----------------------------------------

##  setting  value                       
##  version  R version 3.5.1 (2018-07-02)
##  system   x86_64, darwin17.6.0        
##  ui       X11                         
##  language (EN)                        
##  collate  C                           
##  tz       Europe/London               
##  date     2018-07-24

## Packages ----------------------------------------------------------------------
----------------------------------------

##  package      * version  date       source                             
##  abind          1.4-5    2016-07-21 CRAN (R 3.5.1)                     
##  assertthat     0.2.0    2017-04-11 CRAN (R 3.5.1)                     
##  backports      1.1.2    2017-12-13 cran (@1.1.2)                      

w <- c(which(sangerSurv[,1]==0)[-1]-1, nrow(sangerSurv))  
s <- Surv(sangerSurv[w,2], sangerSurv[w,3])  
a <- AUC.uno(s, s, fitWeightedSanger$linear.predictors[w], times= c(0, 22, 0.1))    
round(a$iauc, digits = 3)
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##  backports      1.1.2    2017-12-13 cran (@1.1.2)                      
##  base         * 3.5.1    2018-07-09 local                              
##  bindr          0.1.1    2018-03-13 CRAN (R 3.5.1)                     
##  bindrcpp       0.2.2    2018-03-29 CRAN (R 3.5.1)                     
##  bitops         1.0-6    2013-08-17 CRAN (R 3.5.1)                     
##  broom          0.5.0    2018-07-17 cran (@0.5.0)                      
##  car            3.0-0    2018-04-02 CRAN (R 3.5.1)                     
##  carData        3.0-1    2018-03-28 CRAN (R 3.5.1)                     
##  caTools        1.17.1.1 2018-07-20 CRAN (R 3.5.1)                     
##  cellranger     1.1.0    2016-07-27 CRAN (R 3.5.1)                     
##  codetools      0.2-15   2016-10-05 CRAN (R 3.5.1)                     
##  compiler       3.5.1    2018-07-09 local                              
##  CoxHD        * 0.0.73   2018-07-23 Github (gerstung-lab/CoxHD@bc60c16)
##  crayon         1.3.4    2017-09-16 CRAN (R 3.5.1)                     
##  curl           3.2      2018-03-28 CRAN (R 3.5.1)                     
##  data.table     1.11.4   2018-05-27 CRAN (R 3.5.1)                     
##  datasets     * 3.5.1    2018-07-09 local                              
##  devtools       1.13.6   2018-06-27 CRAN (R 3.5.1)                     
##  digest         0.6.15   2018-01-28 CRAN (R 3.5.1)                     

##  dplyr        * 0.7.6    2018-06-29 CRAN (R 3.5.1)                     
##  evaluate       0.11     2018-07-17 CRAN (R 3.5.1)                     
##  forcats        0.3.0    2018-02-19 cran (@0.3.0)                      
##  foreach      * 1.4.4    2017-12-12 CRAN (R 3.5.1)                     
##  foreign        0.8-71   2018-07-20 CRAN (R 3.5.1)                     
##  gdata          2.18.0   2017-06-06 CRAN (R 3.5.1)                     
##  glmnet       * 2.0-16   2018-04-02 CRAN (R 3.5.1)                     
##  glue           1.3.0    2018-07-17 CRAN (R 3.5.1)                     
##  gplots       * 3.0.1    2016-03-30 CRAN (R 3.5.1)                     
##  graphics     * 3.5.1    2018-07-09 local                              
##  grDevices    * 3.5.1    2018-07-09 local                              
##  grid           3.5.1    2018-07-09 local                              
##  gtools         3.8.1    2018-06-26 CRAN (R 3.5.1)                     
##  haven          1.1.2    2018-06-27 cran (@1.1.2)                      
##  hms            0.4.2    2018-03-10 CRAN (R 3.5.1)                     
##  htmltools      0.3.6    2017-04-28 CRAN (R 3.5.1)                     
##  iterators      1.0.10   2018-07-13 CRAN (R 3.5.1)                     
##  jomo           2.6-2    2018-04-26 cran (@2.6-2)                      
##  jsonlite       1.5      2017-06-01 CRAN (R 3.5.1)                     
##  KernSmooth     2.23-15  2015-06-29 CRAN (R 3.5.1)                     
##  knitr        * 1.20     2018-02-20 CRAN (R 3.5.1)                     
##  lattice        0.20-35  2017-03-25 CRAN (R 3.5.1)                     
##  lme4           1.1-17   2018-04-03 cran (@1.1-17)                     
##  magrittr       1.5      2014-11-22 CRAN (R 3.5.1)                     
##  MASS           7.3-50   2018-04-30 cran (@7.3-50)                     
##  Matrix       * 1.2-14   2018-04-09 CRAN (R 3.5.1)                     
##  memoise        1.1.0    2017-04-21 CRAN (R 3.5.1)                     
##  methods      * 3.5.1    2018-07-09 local                              
##  mg14           0.0.5    2018-07-23 Github (mg14/mg14@6a63283)         
##  mice           3.1.0    2018-06-20 cran (@3.1.0)                      
##  minqa          1.2.4    2014-10-09 cran (@1.2.4)                      
##  mitml          0.3-6    2018-07-10 cran (@0.3-6)                      
##  mvtnorm        1.0-8    2018-05-31 cran (@1.0-8)                      
##  nlme           3.1-137  2018-04-07 cran (@3.1-137)                    
##  nloptr         1.0.4    2017-08-22 cran (@1.0.4)                      
##  nnet           7.3-12   2016-02-02 cran (@7.3-12)                     
##  openxlsx       4.1.0    2018-05-26 CRAN (R 3.5.1)                     
##  pan            1.6      2018-06-29 cran (@1.6)                        
##  parallel     * 3.5.1    2018-07-09 local                              
##  pillar         1.3.0    2018-07-14 CRAN (R 3.5.1)                     
##  pkgconfig      2.0.1    2017-03-21 CRAN (R 3.5.1)                     
##  purrr          0.2.5    2018-05-29 CRAN (R 3.5.1)                     
##  R6             2.2.2    2017-06-17 CRAN (R 3.5.1)                     
##  RColorBrewer * 1.1-2    2014-12-07 CRAN (R 3.5.1)                     
##  Rcpp           0.12.18  2018-07-23 CRAN (R 3.5.1)                     
##  readr        * 1.1.1    2017-05-16 CRAN (R 3.5.1)                     
##  readxl         1.1.0    2018-04-20 CRAN (R 3.5.1)                     
##  rio            0.5.10   2018-03-29 CRAN (R 3.5.1)                     
##  rj           * 2.0.5-2  2018-07-23 local                              
##  rj.gd          2.0.0-1  2018-07-23 local                              
##  rlang          0.2.1    2018-05-30 CRAN (R 3.5.1)                     
##  rmarkdown      1.10     2018-06-11 CRAN (R 3.5.1)                     
##  ROCR         * 1.0-7    2015-03-26 CRAN (R 3.5.1)                     
##  rpart          4.1-13   2018-02-23 cran (@4.1-13)                     

##  rprojroot      1.3-2    2018-01-03 CRAN (R 3.5.1)                     
##  splines        3.5.1    2018-07-09 local                              
##  stats        * 3.5.1    2018-07-09 local                              
##  stringi        1.2.4    2018-07-20 CRAN (R 3.5.1)                     
##  stringr      * 1.3.1    2018-05-10 CRAN (R 3.5.1)                     
##  survAUC      * 1.0-5    2012-09-04 CRAN (R 3.5.1)                     
##  survival     * 2.42-6   2018-07-13 CRAN (R 3.5.1)                     
##  survivalROC  * 1.0.3    2013-01-13 CRAN (R 3.5.1)                     
##  tibble         1.4.2    2018-01-22 CRAN (R 3.5.1)                     
##  tidyr          0.8.1    2018-05-18 cran (@0.8.1)                      
##  tidyselect     0.2.4    2018-02-26 CRAN (R 3.5.1)                     
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##  tidyselect     0.2.4    2018-02-26 CRAN (R 3.5.1)                     
##  tools          3.5.1    2018-07-09 local                              
##  utils        * 3.5.1    2018-07-09 local                              
##  withr          2.1.2    2018-03-15 CRAN (R 3.5.1)                     
##  yaml           2.1.19   2018-05-01 CRAN (R 3.5.1)                     
##  zip            1.0.0    2017-04-25 CRAN (R 3.5.1)

This code and all data necessary to execute it is available from http://www.github.com/gerstung-lab/
(http://www.github.com/gerstung-lab/)
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Appendix 8: Mutations in discovery cohort pre-AML and control samples

Sample ID Type Chromosome Position WT MT VAF Gene Protein Effect Group
EPIC_0001 indel 2 25463314 TGCCCTC - 0.0119 DNMT3A p.? Essential splice Control
EPIC_0001 sub 2 25463541 G C 0.0058 DNMT3A p.S714C Missense Control
EPIC_0003 sub 2 25469038 G C 0.0091 DNMT3A p.R474G Missense Control
EPIC_0003 sub 2 25470581 C T 0.0048 DNMT3A p.G298E Missense Control
EPIC_0005 sub 17 7578394 T C 0.1298 TP53 p.H179R Missense Pre-AML
EPIC_0005 sub 2 25469542 C T 0.0105 DNMT3A p.W409* Nonsense Pre-AML
EPIC_0007 sub 2 25467408 C T 0.0139 DNMT3A p.? Essential splice Control
EPIC_0007 sub 4 106197285 T C 0.0076 TET2 p.I1873T Missense Control
EPIC_0014 sub 2 25467408 C T 0.0479 DNMT3A p.? Essential splice Pre-AML
EPIC_0020 sub 2 25469632 C T 0.0043 DNMT3A p.R379H Missense Control
EPIC_0022 sub 2 25467448 C A 0.0177 DNMT3A p.G543V Missense Control
EPIC_0024 sub 2 25466797 C A 0.0271 DNMT3A p.V636L Missense Control
EPIC_0027 sub 2 25459806 T G 0.0039 DNMT3A p.K826T Missense Control
EPIC_0028 sub 4 106190775 T A 0.0123 TET2 p.Y1351* Nonsense Control
EPIC_0032 sub 2 25457231 G A 0.0955 DNMT3A p.Q886* Nonsense Control
EPIC_0034 sub 20 31024116 C T 0.0032 ASXL1 p.Q1201* Nonsense Control
EPIC_0034 indel 4 106196981 ATGTTCA - 0.0100 TET2 p.M1772_F1773delMF Inframe Control
EPIC_0039 sub 2 25464433 G A 0.0049 DNMT3A p.H694Y Missense Control
EPIC_0039 sub 20 31022592 C T 0.0039 ASXL1 p.R693* Nonsense Control
EPIC_0040 sub 11 119148930 T C 0.0035 CBL p.C384R Missense Pre-AML
EPIC_0040 sub 2 25463286 C T 0.0144 DNMT3A p.R736H Missense Pre-AML
EPIC_0043 sub 2 25469539 G A 0.0092 DNMT3A p.A410V Missense Control
EPIC_0044 indel 17 7578390CTCATGGTGGGGGCAGCGCCTCACAACCTCCGT - 0.0099 TP53 p.T170fs*5 Frameshift Pre-AML
EPIC_0044 sub 21 44524456 G A 0.0056 U2AF1 p.S34F Missense Pre-AML
EPIC_0049 sub 2 25457176 G A 0.0096 DNMT3A p.P904L Missense Control
EPIC_0051 sub 9 5073770 G T 0.4345 JAK2 p.V617F Missense Pre-AML
EPIC_0051 sub X 133551305 T C 0.0101 PHF6 p.I314T Missense Pre-AML
EPIC_0053 sub 2 25467023 C T 0.0410 DNMT3A p.? Essential splice Control
EPIC_0054 sub 12 25398281 C T 0.0062 KRAS p.G13D Missense Control
EPIC_0056 sub 2 25464576 C T 0.0087 DNMT3A p.G646E Missense Control
EPIC_0056 sub 2 25470011 A T 0.0047 DNMT3A p.L344Q Missense Control
EPIC_0058 sub 11 119149287 A G 0.0102 CBL p.D432G Missense Control
EPIC_0059 sub 2 25463596 G A 0.0030 DNMT3A p.Q696* Nonsense Control
EPIC_0059 sub X 44918491 G A 0.0097 KDM6A p.? Essential splice Control
EPIC_0062 indel 20 31022403 CACCACTGCCATAGAGAGGCGGC - 0.1784 ASXL1 p.H630fs*66 Frameshift Pre-AML
EPIC_0062 sub 21 36164601 G A 0.5874 RUNX1 p.P425L Missense Pre-AML
EPIC_0062 indel 21 36252852 - CCT 0.0198 RUNX1 p.? Essential splice Pre-AML
EPIC_0064 sub 2 198266834 T C 0.2949 SF3B1 p.K700E Missense Pre-AML
EPIC_0065 sub 2 25463563 C G 0.0113 DNMT3A p.G707R Missense Control
EPIC_0065 sub 4 106190882 A T 0.0322 TET2 p.N1387I Missense Control
EPIC_0066 sub 2 25463239 A G 0.0099 DNMT3A p.F752L Missense Control
EPIC_0067 indel 20 31022403 CACCACTGCCATAGAGAGGCGGC - 0.0048 ASXL1 p.H630fs*66 Frameshift Pre-AML
EPIC_0067 sub 20 31022838 T A 0.0054 ASXL1 p.L775I Missense Pre-AML
EPIC_0067 sub 20 31022839 T A 0.0021 ASXL1 p.L775* Nonsense Pre-AML
EPIC_0069 sub 4 106162529 A C 0.0967 TET2 p.Y1148S Missense Control
EPIC_0071 sub 4 106193748 C T 0.0063 TET2 p.R1404* Nonsense Control
EPIC_0073 sub 2 25462025 G C 0.0048 DNMT3A p.F794L Missense Control
EPIC_0074 indel 11 119149355 - ATG 0.3287 CBL p.Y455fs*16 Frameshift Control
EPIC_0074 sub 2 25467442 T C 0.0071 DNMT3A p.E545G Missense Control
EPIC_0074 sub 2 25469647 T C 0.0039 DNMT3A p.? Essential splice Control
EPIC_0075 sub 2 25466799 C T 0.0579 DNMT3A p.R635Q Missense Pre-AML
EPIC_0075 sub 2 25470947 T A 0.0398 DNMT3A p.K272* Nonsense Pre-AML
EPIC_0075 sub 4 106180899 T G 0.0055 TET2 p.F1309L Missense Pre-AML
EPIC_0076 sub 2 25462068 A C 0.0023 DNMT3A p.I780S Missense Control
EPIC_0076 sub 2 25463182 G A 0.0131 DNMT3A p.R771* Nonsense Control
EPIC_0076 sub 2 25470549 G C 0.0048 DNMT3A p.R309G Missense Control
EPIC_0081 sub 2 25469965 G T 0.0570 DNMT3A p.Y359* Nonsense Pre-AML
EPIC_0081 sub 20 31023395 G A 0.0026 ASXL1 p.W960* Nonsense Pre-AML
EPIC_0082 indel 2 25463316 CC - 0.1900 DNMT3A p.G726fs*53 Frameshift Control
EPIC_0084 sub 12 25398255 G T 0.0059 KRAS p.Q22K Missense Control
EPIC_0084 indel 19 13054605 GAG - 0.0025 CALR p.E378fs*10 Frameshift Control
EPIC_0084 sub 4 106196306 C T 0.0076 TET2 p.Q1547* Nonsense Control
EPIC_0090 sub 2 25463562 C G 0.0042 DNMT3A p.G707A Missense Control
EPIC_0090 sub 2 25467198 G T 0.0028 DNMT3A p.C559* Nonsense Control
EPIC_0090 sub 2 25470533 C T 0.0277 DNMT3A p.W314* Nonsense Control
EPIC_0095 sub 20 31023504 G T 0.0031 ASXL1 p.E997* Nonsense Control
EPIC_0098 sub 2 25462086 T G 0.0095 DNMT3A p.? Essential splice Control
EPIC_0099 sub 17 7577580 T C 0.0078 TP53 p.Y234C Missense Pre-AML
EPIC_0099 sub 17 7578555 C T 0.0739 TP53 p.? Essential splice Pre-AML
EPIC_0100 sub 11 119148912 T G 0.0069 CBL p.F378V Missense Control
EPIC_0106 sub 20 31022853 C T 0.0037 ASXL1 p.Q780* Nonsense Control
EPIC_0106 sub 4 106155612 C A 0.0028 TET2 p.C171* Nonsense Control
EPIC_0111 sub 2 25467204 G T 0.0145 DNMT3A p.C557* Nonsense Control
EPIC_0112 sub 11 119148930 T C 0.0022 CBL p.C384R Missense Control
EPIC_0116 sub 4 106180849 A T 0.0040 TET2 p.M1293L Missense Control
EPIC_0119 sub 17 29683508 C G 0.0029 NF1 p.S2549* Nonsense Control
EPIC_0119 sub 4 106190798 G C 0.0109 TET2 p.R1359P Missense Control
EPIC_0120 sub 4 106162529 A G 0.0150 TET2 p.Y1148C Missense Control
EPIC_0123 indel 19 13054627 - TTGTC 0.1380 CALR p.K385fs*5 Frameshift Control
EPIC_0125 sub 2 25466834 G T 0.0110 DNMT3A p.Y623* Nonsense Control
EPIC_0126 sub 2 25462021 C A 0.0061 DNMT3A p.G796C Missense Control
EPIC_0127 sub 2 25459829 A T 0.0055 DNMT3A p.C818* Nonsense Control
EPIC_0127 sub 2 25467504 A T 0.0026 DNMT3A p.C524* Nonsense Control
EPIC_0129 sub 2 25464531 A T 0.0102 DNMT3A p.I661N Missense Control
EPIC_0132 sub 2 25463179 A G 0.0051 DNMT3A p.F772L Missense Pre-AML
EPIC_0132 sub 21 36206716 G A 0.4918 RUNX1 p.Q266* Nonsense Pre-AML
EPIC_0132 sub 4 106197287 G C 0.0224 TET2 p.E1874Q Missense Pre-AML
EPIC_0132 sub X 133551203 G A 0.0063 PHF6 p.C280Y Missense Pre-AML
EPIC_0135 sub 4 106197296 A G 0.0050 TET2 p.K1877E Missense Control
EPIC_0137 sub 4 106197296 A G 0.0103 TET2 p.K1877E Missense Control
EPIC_0138 sub 4 106190827 T C 0.0541 TET2 p.S1369P Missense Control
EPIC_0141 sub 17 74732959 G C 0.3732 SRSF2 p.P95R Missense Pre-AML
EPIC_0141 sub 2 209113113 G A 0.0318 IDH1 p.R132C Missense Pre-AML
EPIC_0141 sub 9 5073770 G T 0.1759 JAK2 p.V617F Missense Pre-AML
EPIC_0142 sub 2 198267342 G A 0.0023 SF3B1 p.A672V Missense Control
EPIC_0147 sub 17 74732959 G C 0.2108 SRSF2 p.P95R Missense Pre-AML
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EPIC_0147 indel 20 31022536 ACCCTGAG - 0.0622 ASXL1 p.E676fs*25 Frameshift Pre-AML
EPIC_0149 sub 4 106156747 C T 0.0088 TET2 p.R550* Nonsense Control
EPIC_0152 sub 2 25463169 A G 0.0020 DNMT3A p.? Essential splice Control
EPIC_0152 sub 2 25466797 C T 0.0131 DNMT3A p.V636M Missense Control
EPIC_0156 sub 2 25463568 A G 0.0113 DNMT3A p.I705T Missense Control
EPIC_0158 sub 4 106156975 C T 0.0019 TET2 p.Q626* Nonsense Control
EPIC_0165 indel 2 25458595 AT - 0.0110 DNMT3A p.L859fs*22 Frameshift Pre-AML
EPIC_0165 sub 2 198267484 G A 0.0377 SF3B1 p.R625C Missense Pre-AML
EPIC_0165 sub 4 106164020 T G 0.0144 TET2 p.I1177S Missense Pre-AML
EPIC_0166 sub 4 106164084 G T 0.0225 TET2 p.W1198C Missense Control
EPIC_0166 sub 4 106193801 C G 0.0058 TET2 p.Y1421* Nonsense Control
EPIC_0169 sub 11 119148958 T A 0.0018 CBL p.I393N Missense Control
EPIC_0169 sub 2 25458579 T A 0.1495 DNMT3A p.E865V Missense Control
EPIC_0170 sub 2 25463298 A C 0.0040 DNMT3A p.F732C Missense Control
EPIC_0171 sub 21 44524456 G A 0.0078 U2AF1 p.S34F Missense Pre-AML
EPIC_0174 sub 4 106164752 A G 0.0029 TET2 p.E1207G Missense Control
EPIC_0175 sub 2 25467411 G T 0.0059 DNMT3A p.C555* Nonsense Control
EPIC_0176 sub 2 25463307 C T 0.0039 DNMT3A p.R729Q Missense Pre-AML
EPIC_0176 sub 2 25470516 G A 0.0581 DNMT3A p.R320* Nonsense Pre-AML
EPIC_0176 sub 20 31021187 C T 0.0043 ASXL1 p.Q396* Nonsense Pre-AML
EPIC_0176 sub 21 44514777 T C 0.0540 U2AF1 p.Q157R Missense Pre-AML
EPIC_0177 sub 20 31022839 T G 0.0094 ASXL1 p.L775* Nonsense Control
EPIC_0177 sub 4 106193850 A T 0.0033 TET2 p.K1438* Nonsense Control
EPIC_0181 sub 2 25470498 G A 0.0048 DNMT3A p.R326C Missense Control
EPIC_0184 sub 4 106180870 T G 0.0061 TET2 p.F1300V Missense Control
EPIC_0184 sub 4 106190855 G A 0.0237 TET2 p.C1378Y Missense Control
EPIC_0184 sub 4 106193751 G T 0.0071 TET2 p.E1405* Nonsense Control
EPIC_0185 sub 4 106196627 C T 0.0341 TET2 p.Q1654* Nonsense Control
EPIC_0186 sub 2 25459806 T C 0.0037 DNMT3A p.K826R Missense Control
EPIC_0186 sub 2 25463247 C T 0.0199 DNMT3A p.R749H Missense Control
EPIC_0186 sub 2 25464433 G A 0.0044 DNMT3A p.H694Y Missense Control
EPIC_0186 sub 2 25466812 T C 0.0148 DNMT3A p.R631G Missense Control
EPIC_0186 sub 2 25467059 G A 0.0100 DNMT3A p.Q606* Nonsense Control
EPIC_0191 sub 2 25459804 C T 0.0999 DNMT3A p.? Essential splice Control
EPIC_0194 indel 17 74732959 G GGGC 0.2175 SRSF2 p.R94_P95insR Inframe Pre-AML
EPIC_0194 sub 4 106156747 C T 0.0027 TET2 p.R550* Nonsense Pre-AML
EPIC_0194 sub 4 106164914 G A 0.0051 TET2 p.R1261H Missense Pre-AML
EPIC_0194 sub 4 106193995 C G 0.0039 TET2 p.S1486* Nonsense Pre-AML
EPIC_0195 sub 2 25469028 C T 0.0184 DNMT3A p.? Essential splice Control
EPIC_0196 indel 2 25457160 AA - 0.0174 DNMT3A p.F909fs*13 Frameshift Control
EPIC_0196 sub 2 25464498 A C 0.0080 DNMT3A p.V672G Missense Control
EPIC_0196 sub 2 25468888 C T 0.0078 DNMT3A p.? Essential splice Control
EPIC_0197 sub 2 25470005 G A 0.0087 DNMT3A p.P346L Missense Control
EPIC_0202 sub 17 29663350 G T 0.0050 NF1 p.? Essential splice Control
EPIC_0203 sub 2 25457243 G A 0.0221 DNMT3A p.R882C Missense Control
EPIC_0203 sub 2 25463284 G A 0.0021 DNMT3A p.L737F Missense Control
EPIC_0203 sub 2 25463579 G C 0.0038 DNMT3A p.F701L Missense Control
EPIC_0203 sub 2 25467523 T C 0.0034 DNMT3A p.? Essential splice Control
EPIC_0205 sub 4 106164824 T C 0.0022 TET2 p.L1231P Missense Control
EPIC_0205 sub 4 106196213 C T 0.0072 TET2 p.R1516* Nonsense Control
EPIC_0208 sub 11 119149238 T A 0.0057 CBL p.C416S Missense Control
EPIC_0208 sub 2 25470583 C G 0.0025 DNMT3A p.W297C Missense Control
EPIC_0208 sub 4 106180817 G C 0.0040 TET2 p.G1282A Missense Control
EPIC_0209 sub 2 25462086 T C 0.0084 DNMT3A p.? Essential splice Control
EPIC_0212 sub X 133559301 C T 0.0119 PHF6 p.R347* Nonsense Pre-AML
EPIC_0213 indel 2 25463298 AAG - 0.0041 DNMT3A p.F732fs*1 Frameshift Control
EPIC_0213 sub 2 25464463 C A 0.0053 DNMT3A p.V684F Missense Control
EPIC_0213 sub 20 31022592 C T 0.0032 ASXL1 p.R693* Nonsense Control
EPIC_0215 sub 2 25466787 A C 0.0050 DNMT3A p.L639R Missense Control
EPIC_0218 sub 2 25469032 T A 0.0018 DNMT3A p.R476* Nonsense Control
EPIC_0219 sub 2 25459804 C T 0.0037 DNMT3A p.? Essential splice Pre-AML
EPIC_0220 sub 20 31024242 C T 0.0022 ASXL1 p.Q1243* Nonsense Control
EPIC_0221 sub 2 25464483 T C 0.0049 DNMT3A p.H677R Missense Control
EPIC_0223 sub 1 115256535 G T 0.0209 NRAS p.A59D Missense Pre-AML
EPIC_0223 sub 12 112888148 A G 0.0360 PTPN11 p.K55R Missense Pre-AML
EPIC_0223 sub 17 74732959 G T 0.3172 SRSF2 p.P95H Missense Pre-AML
EPIC_0223 sub 4 106156725 G C 0.0124 TET2 p.K542N Missense Pre-AML
EPIC_0224 sub 2 25467432 C T 0.2043 DNMT3A p.M548I Missense Control
EPIC_0225 sub 2 25468192 A T 0.0030 DNMT3A p.I495N Missense Control
EPIC_0226 sub 12 112924336 G A 0.0143 PTPN11 p.V428M Missense Control
EPIC_0226 sub 2 25458574 A T 0.0486 DNMT3A p.? Essential splice Control
EPIC_0230 indel 2 25459845 AGCT - 0.1946 DNMT3Ap.K812_L813delinsM Inframe Control
EPIC_0230 indel 2 25469513 GGCCAGAAGGCTGGAA - 0.0063 DNMT3Ap.F414_G418delFQPSG Inframe Control
EPIC_0234 sub 15 90631934 C T 0.0375 IDH2 p.R140Q Missense Pre-AML
EPIC_0234 sub 2 25463287 G A 0.1087 DNMT3A p.R736C Missense Pre-AML
EPIC_0236 sub 4 106155530 T A 0.0021 TET2 p.L144* Nonsense Control
EPIC_0241 sub 20 31021472 C T 0.0234 ASXL1 p.Q491* Nonsense Control
EPIC_0246 sub 2 25469161 T A 0.0058 DNMT3A p.K433* Nonsense Pre-AML
EPIC_0248 sub 4 106156057 G T 0.0034 TET2 p.E320* Nonsense Control
EPIC_0249 sub 20 31022418 G T 0.4608 ASXL1 p.E635* Nonsense Pre-AML
EPIC_0249 sub 4 106156852 T G 0.0036 TET2 p.S585A Missense Pre-AML
EPIC_0254 sub 2 25467477 G C 0.0038 DNMT3A p.Y533* Nonsense Control
EPIC_0261 sub 17 7576852 C T 0.0740 TP53 p.? Essential splice Pre-AML
EPIC_0261 sub 2 25470015 T A 0.0144 DNMT3A p.K343* Nonsense Pre-AML
EPIC_0261 sub 21 44514777 T G 0.0607 U2AF1 p.Q157P Missense Pre-AML
EPIC_0261 sub 4 106180784 G C 0.0029 TET2 p.C1271S Missense Pre-AML
EPIC_0261 sub 7 151875055 G A 0.0543 KMT2C p.Q2495* Nonsense Pre-AML
EPIC_0261 sub 7 151878286 T C 0.0024 KMT2C p.Q2220R Missense Pre-AML
EPIC_0263 sub 17 7579358 C G 0.0044 TP53 p.R110P Missense Control
EPIC_0263 sub 2 25464568 C T 0.0037 DNMT3A p.V649M Missense Control
EPIC_0269 sub 2 25458649 G A 0.0081 DNMT3A p.Q842* Nonsense Pre-AML
EPIC_0269 sub 20 31023717 C T 0.0038 ASXL1 p.R1068* Nonsense Pre-AML
EPIC_0269 sub 21 44514777 T G 0.0658 U2AF1 p.Q157P Missense Pre-AML
EPIC_0270 sub 2 25463170 C T 0.0473 DNMT3A p.? Essential splice Control
EPIC_0270 sub 2 25463235 C T 0.0030 DNMT3A p.W753* Nonsense Control
EPIC_0271 sub 4 106156875 T A 0.1784 TET2 p.Y592* Nonsense Pre-AML
EPIC_0271 sub 4 106180795 G T 0.2218 TET2 p.G1275W Missense Pre-AML
EPIC_0272 sub 2 25458625 C T 0.0032 DNMT3A p.V850I Missense Control
EPIC_0272 sub 4 106197149 C T 0.0051 TET2 p.Q1828* Nonsense Control
EPIC_0274 indel 21 36164771 - ATGCCG 0.3451 RUNX1 p.M368fs*228 Frameshift Control
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EPIC_0275 sub 2 25464451 G T 0.0082 DNMT3A p.R688S Missense Control
EPIC_0279 sub 2 25468919 C A 0.2569 DNMT3A p.E482* Nonsense Pre-AML
EPIC_0280 sub 2 25457173 A C 0.0066 DNMT3A p.L905R Missense Control
EPIC_0281 sub 2 25463568 A G 0.0043 DNMT3A p.I705T Missense Control
EPIC_0281 sub 4 106180795 G C 0.0081 TET2 p.G1275R Missense Control
EPIC_0285 sub 2 25469548 A C 0.0030 DNMT3A p.I407S Missense Control
EPIC_0289 sub 2 25462011 G C 0.0047 DNMT3A p.P799R Missense Control
EPIC_0289 sub 2 25464456 T A 0.0054 DNMT3A p.D686V Missense Control
EPIC_0290 sub 2 25466770 T C 0.0139 DNMT3A p.T645A Missense Control
EPIC_0290 sub 4 106156255 G C 0.0022 TET2 p.V386L Missense Control
EPIC_0291 sub 11 119148976 T A 0.0491 CBL p.L399H Missense Control
EPIC_0291 sub 17 7578478 G C 0.0030 TP53 p.P151R Missense Control
EPIC_0291 sub 2 25466791 A T 0.0032 DNMT3A p.S638T Missense Control
EPIC_0292 sub 12 25398284 C A 0.0030 KRAS p.G12V Missense Control
EPIC_0292 sub 17 7577149 A C 0.0040 TP53 p.N263K Missense Control
EPIC_0292 sub 17 7578413 C A 0.0055 TP53 p.V173L Missense Control
EPIC_0295 sub 4 106196621 C T 0.0041 TET2 p.Q1652* Nonsense Control
EPIC_0297 sub 2 25463297 A C 0.0152 DNMT3A p.F732L Missense Control
EPIC_0300 sub 2 25458696 T C 0.0181 DNMT3A p.? Essential splice Pre-AML
EPIC_0300 sub 4 106155430 A T 0.0112 TET2 p.K111* Nonsense Pre-AML
EPIC_0300 sub 4 106156069 C T 0.0343 TET2 p.Q324* Nonsense Pre-AML
EPIC_0303 sub 2 25464451 G A 0.0055 DNMT3A p.R688C Missense Control
EPIC_0303 sub 2 25467190 C T 0.0031 DNMT3A p.C562Y Missense Control
EPIC_0305 sub 2 25457243 G T 0.0069 DNMT3A p.R882S Missense Control
EPIC_0305 sub 4 55599321 A T 0.0081 KIT p.D816V Missense Control
EPIC_0306 sub 2 25459805 C G 0.0033 DNMT3A p.K826N Missense Control
EPIC_0307 sub 2 25468163 C A 0.1741 DNMT3A p.E505* Nonsense Control
EPIC_0308 sub 2 25467482 C T 0.0152 DNMT3A p.G532S Missense Control
EPIC_0309 sub 17 7577121 G A 0.1051 TP53 p.R273C Missense Pre-AML
EPIC_0309 sub 17 7578524 G C 0.1643 TP53 p.Q136E Missense Pre-AML
EPIC_0309 sub 2 25463229 A C 0.1641 DNMT3A p.F755C Missense Pre-AML
EPIC_0309 sub 2 25463532 T A 0.0034 DNMT3A p.N717I Missense Pre-AML
EPIC_0309 sub 2 25467023 C A 0.0523 DNMT3A p.? Essential splice Pre-AML
EPIC_0309 sub 4 106156741 C T 0.0050 TET2 p.Q548* Nonsense Pre-AML
EPIC_0311 sub 15 90631934 C T 0.4299 IDH2 p.R140Q Missense Pre-AML
EPIC_0311 sub 17 74732959 G T 0.4382 SRSF2 p.P95H Missense Pre-AML
EPIC_0312 sub 4 106190867 A G 0.0056 TET2 p.H1382R Missense Control
EPIC_0315 sub 2 25466823 G C 0.0130 DNMT3A p.P627R Missense Control
EPIC_0315 indel 4 106180830 TT - 0.0146 TET2 p.F1287fs*76 Frameshift Control
EPIC_0315 indel 4 106196766 AT - 0.0049 TET2 p.N1700fs*19 Frameshift Control
EPIC_0317 sub 17 7577539 G C 0.0030 TP53 p.R248G Missense Pre-AML
EPIC_0317 sub 2 25464534 T C 0.0570 DNMT3A p.Y660C Missense Pre-AML
EPIC_0317 sub 9 5073770 G T 0.0149 JAK2 p.V617F Missense Pre-AML
EPIC_0318 sub 2 25463287 G A 0.0271 DNMT3A p.R736C Missense Control
EPIC_0325 sub 4 106164769 G A 0.0030 TET2 p.W1182* Nonsense Control
EPIC_0327 sub 2 25457176 G A 0.0242 DNMT3A p.P904L Missense Pre-AML
EPIC_0327 indel 4 106156316 TT - 0.0117 TET2 p.S407fs*20 Frameshift Pre-AML
EPIC_0329 sub 2 25466790 G T 0.0068 DNMT3A p.S638Y Missense Control
EPIC_0332 sub 2 25467023 C T 0.0051 DNMT3A p.? Essential splice Control
EPIC_0336 sub 2 25463289 T G 0.0110 DNMT3A p.Y735S Missense Pre-AML
EPIC_0337 sub 2 25463170 C T 0.0131 DNMT3A p.? Essential splice Pre-AML
EPIC_0337 sub 2 25469150 G T 0.0075 DNMT3A p.Y436* Nonsense Pre-AML
EPIC_0339 sub 2 25467436 A T 0.0131 DNMT3A p.L547H Missense Pre-AML
EPIC_0341 sub 21 44524456 G T 0.2561 U2AF1 p.S34Y Missense Pre-AML
EPIC_0346 sub 2 25464429 A G 0.0477 DNMT3A p.? Essential splice Pre-AML
EPIC_0346 sub 9 5073784 G C 0.1247 JAK2 p.E621D Missense Pre-AML
EPIC_0347 sub 4 106155781 A T 0.0015 TET2 p.K228* Nonsense Pre-AML
EPIC_0348 sub 17 7579538 A G 0.0019 TP53 p.I50T Missense Pre-AML
EPIC_0348 sub 2 25467496 T G 0.0020 DNMT3A p.Q527P Missense Pre-AML
EPIC_0349 sub 11 119148891 T C 0.1271 CBL p.Y371H Missense Pre-AML
EPIC_0350 sub 4 106164793 T G 0.0034 TET2 p.C1221G Missense Control
EPIC_0354 sub 2 25467190 C A 0.0095 DNMT3A p.C562F Missense Control
EPIC_0362 sub 2 25469641 G T 0.1486 DNMT3A p.A376D Missense Control
EPIC_0367 sub 2 25470545 A G 0.0048 DNMT3A p.I310T Missense Control
EPIC_0367 sub 4 106155439 C T 0.0037 TET2 p.Q114* Nonsense Control
EPIC_0367 sub 4 106197248 G A 0.0052 TET2 p.G1861R Missense Control
EPIC_0368 sub 12 25398281 C T 0.0064 KRAS p.G13D Missense Control
EPIC_0368 sub 17 7577124 C T 0.0064 TP53 p.V272M Missense Control
EPIC_0371 indel 4 106196282 CAG - 0.0067 TET2 p.Q1539fs*38 Frameshift Control
EPIC_0372 sub 4 106163989 A T 0.0034 TET2 p.? Essential splice Control
EPIC_0377 sub 4 106190860 C G 0.3476 TET2 p.H1380D Missense Pre-AML
EPIC_0377 indel 4 106196430 - CTATGGAAGCACCAGCC 0.1272 TET2 p.Y1589fs*30 Frameshift Pre-AML
EPIC_0378 sub 2 25457242 C T 0.1671 DNMT3A p.R882H Missense Pre-AML
EPIC_0379 sub 2 25464578 T C 0.0047 DNMT3A p.? Essential splice Control
EPIC_0381 sub 2 25466800 G A 0.0278 DNMT3A p.R635W Missense Pre-AML
EPIC_0382 sub 4 106156348 C T 0.0044 TET2 p.Q417* Nonsense Control
EPIC_0389 sub 2 25467073 C A 0.0189 DNMT3A p.W601L Missense Control
EPIC_0389 sub 2 25468122 C A 0.0054 DNMT3A p.K518N Missense Control
EPIC_0392 sub 11 119148892 A G 0.0034 CBL p.Y371C Missense Pre-AML
EPIC_0392 sub 2 25457242 C T 0.3685 DNMT3A p.R882H Missense Pre-AML
EPIC_0392 sub 2 198267371 G C 0.1042 SF3B1 p.H662Q Missense Pre-AML
EPIC_0392 sub 20 31021319 A C 0.0031 ASXL1 p.K440Q Missense Pre-AML
EPIC_0395 indel 4 106180798 CTGGATCC - 0.0046 TET2 p.L1276fs*85 Frameshift Control
EPIC_0396 sub 4 106164020 T G 0.0050 TET2 p.I1177S Missense Control
EPIC_0397 sub 11 119148537 C T 0.0317 CBL p.H360Y Missense Pre-AML
EPIC_0397 sub 17 74732959 G T 0.2987 SRSF2 p.P95H Missense Pre-AML
EPIC_0397 sub 4 106155354 T G 0.0067 TET2 p.Y85* Nonsense Pre-AML
EPIC_0397 sub 4 106197248 G T 0.0049 TET2 p.G1861* Nonsense Pre-AML
EPIC_0397 sub 9 5073770 G T 0.1488 JAK2 p.V617F Missense Pre-AML
EPIC_0399 indel 2 25462073 - ACAGGGTTGGACTACAAA 0.0040 DNMT3A p.M779fs*2 Frameshift Control
EPIC_0400 sub 2 25463247 C T 0.4181 DNMT3A p.R749H Missense Control
EPIC_0402 sub 17 29527461 C T 0.0094 NF1 p.R304* Nonsense Control
EPIC_0402 sub 2 25466793 A T 0.0369 DNMT3A p.L637Q Missense Control
EPIC_0404 sub 4 106164778 C T 0.0049 TET2 p.R1216* Nonsense Control
EPIC_0408 sub 9 5073770 G T 0.0126 JAK2 p.V617F Missense Control
EPIC_0409 sub 2 25459851 T A 0.0174 DNMT3A p.D811V Missense Control
EPIC_0409 sub 4 106193892 C T 0.3680 TET2 p.R1452* Nonsense Control
EPIC_0410 sub 2 25463227 C T 0.0036 DNMT3A p.E756K Missense Control
EPIC_0410 sub X 44969323 G A 0.0054 KDM6A p.? Essential splice Control
EPIC_0411 sub 2 25467099 G C 0.0024 DNMT3A p.Y592* Nonsense Control
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EPIC_0412 indel 4 106155605 AT - 0.0345 TET2 p.H169fs*14 Frameshift Control
EPIC_0413 sub 17 7577545 T C 0.0056 TP53 p.M246V Missense Control
EPIC_0413 sub 2 25463286 C T 0.0163 DNMT3A p.R736H Missense Control
EPIC_0413 sub 2 25467428 C T 0.0044 DNMT3A p.G550R Missense Control
EPIC_0415 sub 17 7578404 A T 0.0033 TP53 p.C176S Missense Control
EPIC_0415 sub 2 25458595 A G 0.0341 DNMT3A p.W860R Missense Control
EPIC_0415 sub 2 25463182 G A 0.0171 DNMT3A p.R771* Nonsense Control
EPIC_0415 sub 2 198267370 T G 0.0190 SF3B1 p.T663P Missense Control
EPIC_0415 sub 4 106190905 G A 0.0131 TET2 p.? Essential splice Control
EPIC_0421 sub 2 25462014 A G 0.0180 DNMT3A p.L798P Missense Control
EPIC_0422 sub 2 25457242 C T 0.0432 DNMT3A p.R882H Missense Control
EPIC_0422 sub 2 25463316 C T 0.0106 DNMT3A p.G726D Missense Control
EPIC_0422 sub 2 25464456 T A 0.0223 DNMT3A p.D686V Missense Control
EPIC_0423 sub 2 25463170 C T 0.0215 DNMT3A p.? Essential splice Control
EPIC_0424 sub 4 106156211 T A 0.0468 TET2 p.L371* Nonsense Pre-AML
EPIC_0426 sub 2 25466802 A C 0.0063 DNMT3A p.I634S Missense Control
EPIC_0427 indel 2 25463243 GGGGCG - 0.0040 DNMT3A p.R749fs*6 Frameshift Control
EPIC_0428 sub 2 25464490 C G 0.0040 DNMT3A p.V675L Missense Control
EPIC_0431 sub 2 25463568 A G 0.0501 DNMT3A p.I705T Missense Control
EPIC_0431 sub 4 106156468 G A 0.0036 TET2 p.A457T Missense Control
EPIC_0433 sub 4 106182926 T A 0.0045 TET2 p.L1322Q Missense Control
EPIC_0435 sub 12 25380276 T C 0.0030 KRAS p.Q61R Missense Control
EPIC_0436 sub 2 25466799 C T 0.0140 DNMT3A p.R635Q Missense Control
EPIC_0436 sub 2 25467485 C T 0.0040 DNMT3A p.D531N Missense Control
EPIC_0436 sub 20 31022382 C T 0.0075 ASXL1 p.Q623* Nonsense Control
EPIC_0445 sub 4 106162559 C T 0.0088 TET2 p.A1158V Missense Control
EPIC_0447 sub X 39933843 G T 0.0069 BCOR p.Y252* Nonsense Control
EPIC_0448 sub 17 7578259 A T 0.0579 TP53 p.V197E Missense Pre-AML
EPIC_0448 indel 20 31022403 CACCACTGCCATAGAGAGGCGGC - 0.0483 ASXL1 p.H630fs*66 Frameshift Pre-AML
EPIC_0448 sub 7 151884437 C A 0.0039 KMT2C p.E1640* Nonsense Pre-AML
EPIC_0449 sub 4 106197437 A G 0.0041 TET2 p.K1924E Missense Control
EPIC_0450 sub 2 25463169 A C 0.0943 DNMT3A p.? Essential splice Pre-AML
EPIC_0452 sub 17 74732960 G C 0.0042 SRSF2 p.P95A Missense Control
EPIC_0453 sub 4 106164772 C T 0.0130 TET2 p.R1214W Missense Control
EPIC_0454 sub 2 25457282 C A 0.0103 DNMT3A p.G869C Missense Pre-AML
EPIC_0459 sub 2 25463566 C T 0.0038 DNMT3A p.G706R Missense Control
EPIC_0459 sub 2 25464451 G A 0.0044 DNMT3A p.R688C Missense Control
EPIC_0459 indel 4 106196515 CCCTTACC - 0.0049 TET2 p.P1617fs*4 Frameshift Control
EPIC_0460 indel 2 25467145 TTAATGGCTGCCTGGGCAG - 0.0054 DNMT3Ap.A571_K577delinsE Inframe Control
EPIC_0462 sub 2 25464460 C T 0.0197 DNMT3A p.G685R Missense Control
EPIC_0462 indel 20 31017747 CAG - 0.0049 ASXL1 p.S204fs*49 Frameshift Control
EPIC_0464 sub 2 25458696 T G 0.0041 DNMT3A p.? Essential splice Pre-AML
EPIC_0464 sub 2 25463184 G A 0.1909 DNMT3A p.S770L Missense Pre-AML
EPIC_0464 sub 9 5073770 G T 0.2352 JAK2 p.V617F Missense Pre-AML
EPIC_0466 sub 2 25463290 A G 0.0061 DNMT3A p.Y735H Missense Control
EPIC_0468 sub 4 106164788 A T 0.0347 TET2 p.H1219L Missense Control
EPIC_0469 sub 15 90631934 C T 0.1137 IDH2 p.R140Q Missense Pre-AML
EPIC_0469 sub 2 25463184 G A 0.1850 DNMT3A p.S770L Missense Pre-AML
EPIC_0469 sub 2 25463536 C T 0.0516 DNMT3A p.V716I Missense Pre-AML
EPIC_0469 sub 2 25470584 C T 0.0025 DNMT3A p.W297* Nonsense Pre-AML
EPIC_0469 sub 9 5073770 G T 0.0151 JAK2 p.V617F Missense Pre-AML
EPIC_0469 sub X 44929280 A T 0.0020 KDM6A p.T794S Missense Pre-AML
EPIC_0470 sub 17 74732959 G T 0.1429 SRSF2 p.P95H Missense Pre-AML
EPIC_0470 sub 20 31022288 C A 0.1162 ASXL1 p.Y591* Nonsense Pre-AML
EPIC_0470 sub 21 36164601 G A 0.0042 RUNX1 p.P425L Missense Pre-AML
EPIC_0470 sub 21 36252882 G T 0.0795 RUNX1 p.D160E Missense Pre-AML
EPIC_0470 sub 21 36259171 C T 0.0076 RUNX1 p.R107H Missense Pre-AML
EPIC_0473 sub 20 31022902 G A 0.3710 ASXL1 p.W796* Nonsense Pre-AML
EPIC_0473 sub 21 44514777 T G 0.0049 U2AF1 p.Q157P Missense Pre-AML
EPIC_0473 indel 4 106196992 CT - 0.0093 TET2 p.S1776fs*44 Frameshift Pre-AML
EPIC_0474 sub 2 25464462 A T 0.0034 DNMT3A p.V684D Missense Control
EPIC_0474 indel 2 25471033 CTGGCCTCCT - 0.0130 DNMT3Ap.E240_S243delinsG Inframe Control
EPIC_0476 indel 4 106196958 ATAACTACAG - 0.0080 TET2 p.N1765_S1767delNYS Inframe Control
EPIC_0477 indel 17 74732962 - GAG 0.3155 SRSF2 p.R94fs*151 Frameshift Pre-AML
EPIC_0477 sub 21 36171607 G A 0.4910 RUNX1 p.R320* Nonsense Pre-AML
EPIC_0479 sub 21 36252940 G A 0.0073 RUNX1 p.S141L Missense Pre-AML
EPIC_0479 sub 3 128200730 A C 0.0678 GATA2 p.L359V Missense Pre-AML
EPIC_0486 sub 12 25398248 A T 0.0040 KRAS p.I24N Missense Control
EPIC_0490 indel 4 106164025 AG - 0.0560 TET2 p.R1179fs*47 Frameshift Pre-AML
EPIC_0493 sub 13 28592642 C G 0.0778 FLT3 p.D835H Missense Pre-AML
EPIC_0496 sub 15 90631839 T A 0.0036 IDH2 p.R172W Missense Pre-AML
EPIC_0497 sub 2 25463508 C T 0.0046 DNMT3A p.? Essential splice Control
EPIC_0498 sub 17 74732959 G T 0.2079 SRSF2 p.P95H Missense Pre-AML
EPIC_0498 sub 2 209113112 C A 0.0109 IDH1 p.R132L Missense Pre-AML
EPIC_0498 sub 4 106190843 G A 0.0126 TET2 p.C1374Y Missense Pre-AML
EPIC_0501 sub 2 25463563 C T 0.0105 DNMT3A p.G707S Missense Control
EPIC_0501 sub 2 25469548 A C 0.0030 DNMT3A p.I407S Missense Control
EPIC_0503 sub 2 25458669 G T 0.0027 DNMT3A p.T835K Missense Control
EPIC_0504 sub 15 90631934 C T 0.3390 IDH2 p.R140Q Missense Pre-AML
EPIC_0504 sub 17 74732959 G A 0.0097 SRSF2 p.P95L Missense Pre-AML
EPIC_0504 sub 2 25467467 A T 0.0603 DNMT3A p.C537S Missense Pre-AML
EPIC_0504 sub 2 25469085 C G 0.0067 DNMT3A p.R458P Missense Pre-AML
EPIC_0507 sub 2 25457242 C T 0.0635 DNMT3A p.R882H Missense Pre-AML
EPIC_0507 sub 4 106182914 A G 0.0084 TET2 p.? Essential splice Pre-AML
EPIC_0508 sub 2 25468120 A G 0.0035 DNMT3A p.? Essential splice Pre-AML
EPIC_0509 sub 2 25457171 T C 0.0052 DNMT3A p.K906E Missense Pre-AML
EPIC_0509 sub 2 25466800 G A 0.3882 DNMT3A p.R635W Missense Pre-AML
EPIC_0510 sub 2 209113112 C T 0.3042 IDH1 p.R132H Missense Pre-AML
EPIC_0511 sub 2 25462012 G T 0.0352 DNMT3A p.P799T Missense Control
EPIC_0512 sub 2 25463289 T G 0.0031 DNMT3A p.Y735S Missense Pre-AML
EPIC_0512 sub 2 25467132 C T 0.0053 DNMT3A p.W581* Nonsense Pre-AML
EPIC_0512 sub 2 25467408 C T 0.0154 DNMT3A p.? Essential splice Pre-AML
EPIC_0512 sub 2 25469946 G T 0.0076 DNMT3A p.R366S Missense Pre-AML
EPIC_0512 sub 4 106155652 C T 0.0111 TET2 p.Q185* Nonsense Pre-AML
EPIC_0512 sub 4 106164726 G A 0.0112 TET2 p.? Essential splice Pre-AML
EPIC_0516 sub 4 106164764 G A 0.0121 TET2 p.C1211Y Missense Pre-AML
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Appendix 9: Mutations in validation cohort pre-AML, control  and AML diagnostic samples

Sample ID Type Chromosome Position WT MT VAF Gene Protein Effect Group
PD29762b sub 17 74732959 G T 0.1500 SRSF2 p.P95H Missense Pre-AML
PD29762b sub 4 106164913 C A 0.0840 TET2 p.R1261S Missense Pre-AML
PD29762b indel 4 106193849 G GA 0.2857 TET2 p.R1440fs*38 Frameshift Pre-AML
PD29762b indel 4 106197311 GC G 0.1362 TET2 p.T1883fs*4 Frameshift Pre-AML
PD29764b sub 4 106157827 C T 0.0980 TET2 p.Q910* Nonsense Pre-AML
PD29792b indel 4 106157182 AT A 0.3197 TET2 p.M695fs*5 Frameshift Pre-AML
PD29792b sub 4 106158509 G C 0.3500 TET2 p.? Essential splice Pre-AML
PD29810c indel 12 49418417 C CA 0.3988 KMT2D p.M5332fs*13 Frameshift Control
PD29836b sub 17 74732959 G T 0.0077 SRSF2 p.P95H Missense Pre-AML
PD29836b sub 4 106190900 C T 0.0440 TET2 p.T1393I Missense Pre-AML
PD29836c sub 17 74732959 G T 0.0083 SRSF2 p.P95H Missense Pre-AML
PD29836c sub 4 106190900 C T 0.0440 TET2 p.T1393I Missense Pre-AML
PD29856c sub 1 115256521 A C 0.0340 NRAS p.Y64D Missense Pre-AML
PD29896b indel 20 31022837 AT A 0.2587 ASXL1 p.L775fs*1 Frameshift Pre-AML
PD29918b sub 17 74732959 G C 0.3400 SRSF2 p.P95R Missense Pre-AML
PD29918b sub 19 33792753 A G 0.0868 CEBPA p.S190P Missense Pre-AML
PD29918b sub 4 106156160 C G 0.1900 TET2 p.S354* Nonsense Pre-AML
PD29918c sub 17 74732959 G C 0.0950 SRSF2 p.P95R Missense Pre-AML
PD29918d sub 17 74732959 G C 0.3700 SRSF2 p.P95R Missense Pre-AML
PD29918d sub 21 36259178 G A 0.0680 RUNX1 p.H105Y Missense Pre-AML
PD29918d sub 4 106156160 C G 0.0220 TET2 p.S354* Nonsense Pre-AML
PD29931b sub 17 74732959 G C 0.1100 SRSF2 p.P95R Missense Pre-AML
PD29931b sub 2 25457242 C T 0.3700 DNMT3A p.R882H Missense Pre-AML
PD29935b sub 2 25463248 G A 0.1300 DNMT3A p.R749C Missense Pre-AML
PD29935c sub 2 25463248 G A 0.1200 DNMT3A p.R749C Missense Pre-AML
PD29935d sub 2 25463248 G A 0.1500 DNMT3A p.R749C Missense Pre-AML
PD29946b sub 2 25457243 G T 0.0159 DNMT3A p.R882S Missense Pre-AML
PD29946b sub 2 25463247 C T 0.1300 DNMT3A p.R749H Missense Pre-AML
PD29946b sub 2 25470497 C T 0.1500 DNMT3A p.R326H Missense Pre-AML
PD29946c sub 2 25457243 G T 0.0074 DNMT3A p.R882S Missense Pre-AML
PD29946c sub 2 25463247 C T 0.0510 DNMT3A p.R749H Missense Pre-AML
PD29946c sub 2 25470497 C T 0.0690 DNMT3A p.R326H Missense Pre-AML
PD29948b indel 2 25469083 TC T 0.0181 DNMT3A p.K459fs*192 Frameshift Pre-AML
PD29951b sub 2 25467479 A T 0.0340 DNMT3A p.Y533N Missense Pre-AML
PD29962b sub 12 25398284 C T 0.0102 KRAS p.G12D Missense Pre-AML
PD29962b sub 4 106157653 G T 0.0570 TET2 p.E852* Nonsense Pre-AML
PD29993b sub 2 25463286 C T 0.0217 DNMT3A p.R736H Missense Pre-AML
PD29993b sub 2 25469139 C T 0.0140 DNMT3A p.W440* Nonsense Pre-AML
PD29993b sub 9 5073770 G T 0.0051 JAK2 p.V617F Missense Pre-AML
PD30010b sub 4 106156699 A T 0.6400 TET2 p.R534* Nonsense Pre-AML
PD30010c sub 4 106156699 A T 0.6400 TET2 p.R534* Nonsense Pre-AML
PD30023b sub 17 7576852 C T 0.0830 TP53 p.? Essential splice Pre-AML
PD30023b sub 2 25470015 T A 0.0140 DNMT3A p.K343* Nonsense Pre-AML
PD30023b sub 21 44514777 T G 0.0600 U2AF1 p.Q157P Missense Pre-AML
PD30023b sub 7 151875055 G A 0.0297 KMT2C p.Q2495* Nonsense Pre-AML
PD30031b sub 2 25467139 T C 0.0420 DNMT3A p.D579G Missense Pre-AML
PD30054b sub 21 44514777 T G 0.0470 U2AF1 p.Q157P Missense Pre-AML
PD30060b sub 2 25464460 C T 0.2100 DNMT3A p.G685R Missense Pre-AML
PD30060b sub 4 106190812 G T 0.0099 TET2 p.E1364* Nonsense Pre-AML
PD30060c sub 2 25464460 C T 0.2100 DNMT3A p.G685R Missense Pre-AML
PD30060c sub 4 106190812 G T 0.0077 TET2 p.E1364* Nonsense Pre-AML
PD30073b sub 12 112924336 G A 0.3600 PTPN11 p.V428M Missense Pre-AML
PD30073b sub 4 106182914 A G 0.3400 TET2 p.? Essential splice Pre-AML
PD30073b sub 4 106196213 C T 0.3400 TET2 p.R1516* Nonsense Pre-AML
PD30086b sub 17 74732959 G A 0.0220 SRSF2 p.P95L Missense Pre-AML
PD30089b sub 17 74732959 G T 0.2600 SRSF2 p.P95H Missense Pre-AML
PD30089b sub 2 25466799 C A 0.3600 DNMT3A p.R635L Missense Pre-AML
PD30089c sub 17 74732959 G T 0.3700 SRSF2 p.P95H Missense Pre-AML
PD30089c sub 2 25466799 C A 0.4400 DNMT3A p.R635L Missense Pre-AML
PD30089c sub 9 5073770 G T 0.1300 JAK2 p.V617F Missense Pre-AML
PD30120b sub 17 7577099 C T 0.0135 TP53 p.R280K Missense Pre-AML
PD30120b sub 2 25464573 A C 0.0078 DNMT3A p.L647R Missense Pre-AML
PD30154b sub 2 25470551 C T 0.0082 DNMT3A p.G308D Missense Pre-AML
PD30154b sub X 39922984 G A 0.0117 BCOR p.Q1242* Nonsense Pre-AML
PD35511b sub 2 25457242 C T 0.0056 DNMT3A p.R882H Missense Control
PD35515b indel 4 106193849 G GA 0.0443 TET2 p.R1440fs*38 Frameshift Control
PD35518b sub 2 25457209 C T 0.0110 DNMT3A p.W893* Nonsense Control
PD35519c sub 17 74732959 G A 0.0178 SRSF2 p.P95L Missense Control
PD35520b sub 12 25398284 C G 0.0109 KRAS p.G12A Missense Control
PD35520b sub 2 25468935 T A 0.0330 DNMT3A p.? Essential splice Control
PD35520c sub 12 25398284 C G 0.0048 KRAS p.G12A Missense Control
PD35520c sub 2 25468935 T A 0.1100 DNMT3A p.? Essential splice Control
PD35525b sub 20 31021295 C T 0.0326 ASXL1 p.Q432* Nonsense Control
PD35529b sub 17 7576865 A T 0.0216 TP53 p.Y327* Nonsense Control
PD35531b sub 4 106164079 A T 0.0064 TET2 p.K1197* Nonsense Control
PD35531c sub 4 106164079 A T 0.0075 TET2 p.K1197* Nonsense Control
PD35534b sub 12 25380275 T G 0.0070 KRAS p.Q61H Missense Control
PD35537b sub 2 25467158 G A 0.0074 DNMT3A p.Q573* Nonsense Control
PD35538b sub 2 25467407 A G 0.0085 DNMT3A p.? Essential splice Control
PD35538c sub 2 25467407 A G 0.0112 DNMT3A p.? Essential splice Control
PD35539b sub 2 25463308 G A 0.0165 DNMT3A p.R729W Missense Control
PD35539c sub 2 25463308 G A 0.0100 DNMT3A p.R729W Missense Control
PD35539c sub 2 25470535 C T 0.0420 DNMT3A p.W313* Nonsense Control
PD35542b sub 4 106180868 A G 0.0354 TET2 p.K1299R Missense Control
PD35542c sub 4 106180868 A G 0.1500 TET2 p.K1299R Missense Control
PD35545b sub 2 25457242 C T 0.0066 DNMT3A p.R882H Missense Control
PD35545c sub 2 25457242 C T 0.0105 DNMT3A p.R882H Missense Control
PD35548c sub 21 44514780 C T 0.0054 U2AF1 p.R156H Missense Control
PD35553c indel 4 106164861 ACT A 0.0444 TET2 p.Y1245fs*22 Frameshift Control
PD35553c sub 4 106182983 C G 0.0165 TET2 p.A1341G Missense Control
PD35554b sub 2 2.55E+07 T C 0.0059 DNMT3A p.R803G Missense Control
PD35554c sub 2 2.55E+07 T C 0.0106 DNMT3A p.R803G Missense Control
PD35556b sub 2 25459806 T C 0.0233 DNMT3A p.K826R Missense Control
PD35558b sub 20 31021176 C G 0.0184 ASXL1 p.S392* Nonsense Control
PD35558c sub 2 198267369 G A 0.0116 SF3B1 p.T663I Missense Control
PD35559b sub 2 25466800 G A 0.0178 DNMT3A p.R635W Missense Control
PD35560b sub 4 106180852 T A 0.0102 TET2 p.Y1294N Missense Control
PD35563b sub 2 25458688 T A 0.0184 DNMT3A p.K829* Nonsense Control
PD35563b indel 2 25464450 CG C 0.0100 DNMT3A p.R688fs*17 Frameshift Control
PD35563c sub 2 25458688 T A 0.0490 DNMT3A p.K829* Nonsense Control
PD35568c sub 20 31022903 G A 0.0168 ASXL1 p.W796* Nonsense Control
PD35569b sub 2 25467073 C T 0.0070 DNMT3A p.W601* Nonsense Control
PD35569c sub 2 25467073 C T 0.0044 DNMT3A p.W601* Nonsense Control
PD35576c indel 2 25467447 G GC 0.1172 DNMT3A p.R544fs*2 Frameshift Control
PD35578c sub 2 25462075 C T 0.0186 DNMT3A p.V778M Missense Control
PD35579b sub 2 25470583 C A 0.1800 DNMT3A p.W297C Missense Control
PD35579c sub 2 25470583 C A 0.3200 DNMT3A p.W297C Missense Control

A 94



PD35580b sub 2 25463181 C A 0.0470 DNMT3A p.R771L Missense Control
PD35580c sub 2 25463181 C A 0.1000 DNMT3A p.R771L Missense Control
PD35580c sub 2 25470569 C T 0.0127 DNMT3A p.G302D Missense Control
PD35582b sub 2 25464538 G C 0.0069 DNMT3A p.R659G Missense Control
PD35587c sub 2 198267484 G A 0.0121 SF3B1 p.R625C Missense Control
PD35588b sub 2 25467466 C G 0.0054 DNMT3A p.C537S Missense Control
PD35592c sub 4 106190898 C G 0.0430 TET2 p.S1392R Missense Control
PD35594c indel 4 106158496 T TG 0.0720 TET2 p.C1133fs*9 Frameshift Control
PD35599b sub 1 115256530 G T 0.0077 NRAS p.Q61K Missense Control
PD35599b sub 2 25470545 A C 0.0147 DNMT3A p.I310S Missense Control
PD35600c sub 2 25462018 T C 0.1800 DNMT3A p.N797D Missense Control
PD35600c sub 2 25463287 G A 0.0125 DNMT3A p.R736C Missense Control
PD35600c sub 2 25466796 A C 0.0167 DNMT3A p.V636G Missense Control
PD35601b sub 2 25469646 C T 0.0180 DNMT3A p.? Essential splice Control
PD35606b sub 2 25470583 C T 0.0480 DNMT3A p.W297* Nonsense Control
PD35606c sub 2 25470583 C T 0.0490 DNMT3A p.W297* Nonsense Control
PD35612b sub 15 90631934 C T 0.0109 IDH2 p.R140Q Missense Control
PD35612b sub 7 151970884 A C 0.0499 KMT2C p.Y306* Nonsense Control
PD35613b sub 2 25470535 C T 0.0052 DNMT3A p.W313* Nonsense Control
PD35613c sub 2 25470535 C T 0.0063 DNMT3A p.W313* Nonsense Control
PD35613c sub 2 209113112 C T 0.0115 IDH1 p.R132H Missense Control
PD35613c sub 4 106156975 C T 0.1100 TET2 p.Q626* Nonsense Control
PD35616c sub 2 25467134 A T 0.0073 DNMT3A p.W581R Missense Control
PD35617b sub 2 198266834 T C 0.0084 SF3B1 p.K700E Missense Control
PD35618b sub 2 198266834 T C 0.0091 SF3B1 p.K700E Missense Control
PD35618c sub 17 29576135 C T 0.0070 NF1 p.Q1370* Nonsense Control
PD35618c sub 17 74732959 G A 0.0138 SRSF2 p.P95L Missense Control
PD35618c sub 2 198266834 T C 0.0590 SF3B1 p.K700E Missense Control
PD35618c sub 4 106164778 C T 0.0133 TET2 p.R1216* Nonsense Control
PD35620b sub 2 25457242 C T 0.0450 DNMT3A p.R882H Missense Control
PD35620c sub 2 25457242 C T 0.0410 DNMT3A p.R882H Missense Control
PD35621b sub 7 151970855 G T 0.0475 KMT2C p.T316N Missense Control
PD35629b sub 2 25457243 G A 0.0052 DNMT3A p.R882C Missense Control
PD35636b sub 2 25467497 G A 0.0450 DNMT3A p.Q527* Nonsense Control
PD35637c indel 12 49441815 GC G 0.0262 KMT2D p.A1390fs*27 Frameshift Control
PD35638b sub 2 25464451 G T 0.0086 DNMT3A p.R688S Missense Control
PD35639b indel 2 25464469 TG T 0.0105 DNMT3A p.M682fs*23 Frameshift Control
PD35647c indel 20 31021175 TC T 0.0053 ASXL1 p.S392fs*1 Frameshift Control
PD35652c sub 2 25462005 A G 0.0095 DNMT3A p.M801T Missense Control
PD35652c sub 2 25467478 T C 0.0076 DNMT3A p.Y533C Missense Control
PD35653b sub 2 25467099 G C 0.0055 DNMT3A p.Y592* Nonsense Control
PD35654b sub 2 198266834 T C 0.0600 SF3B1 p.K700E Missense Control
PD35659b sub 4 106190849 A T 0.0175 TET2 p.D1376V Missense Control
PD35659c indel 2 25468168 G GT 0.1286 DNMT3A p.T503fs*43 Frameshift Control
PD35659c sub 4 106190849 A T 0.1300 TET2 p.D1376V Missense Control
PD35660c sub 17 74732959 G T 0.0063 SRSF2 p.P95H Missense Control
PD35665c indel 12 49434957 TA T 0.1224 KMT2D p.Y2199fs*65 Frameshift Control
PD35666b sub 2 25463290 A T 0.0179 DNMT3A p.Y735N Missense Control
PD35667b sub 2 25458696 T G 0.0077 DNMT3A p.? Essential splice Control
PD35671b sub 20 31024492 C T 0.0110 ASXL1 p.P1326L Missense Control
PD35675b sub 2 25457285 A G 0.0154 DNMT3A p.F868L Missense Control
PD35677b sub 2 25457242 C T 0.0051 DNMT3A p.R882H Missense Control
PD35677c sub 2 25457242 C T 0.0057 DNMT3A p.R882H Missense Control
PD35677c indel 2 25467039 G GT 0.0539 DNMT3A p.N612fs*7 Frameshift Control
PD35678b sub 2 25463248 G T 0.0145 DNMT3A p.R749S Missense Control
PD35683b sub 2 25470579 T A 0.0082 DNMT3A p.K299* Nonsense Control
PD35685b sub 2 25463584 G C 0.0102 DNMT3A p.P700A Missense Control
PD35686b sub 2 25469528 A C 0.0330 DNMT3A p.F414V Missense Control
PD35687b sub 2 25457242 C T 0.0079 DNMT3A p.R882H Missense Control
PD35688b sub 17 29562934 A G 0.0383 NF1 p.? Essential splice Control
PD35688b sub 9 5073770 G T 0.0352 JAK2 p.V617F Missense Control
PD35693b sub 8 117875485 A T 0.0158 RAD21 p.L53* Nonsense Control
PD35700b sub 2 25466852 C T 0.0253 DNMT3A p.? Essential splice Control
PD35704b sub 11 119149280 G A 0.1300 CBL p.V430M Missense Control
PD35704c sub 11 119149280 G A 0.1100 CBL p.V430M Missense Control
PD35705b sub 2 25458580 C T 0.0203 DNMT3A p.E865K Missense Control
PD35709c sub 2 25469632 C T 0.0570 DNMT3A p.R379H Missense Control
PD35711b sub 12 25378562 C T 0.0093 KRAS p.A146T Missense Control
PD35719c sub 4 106182972 T A 0.0078 TET2 p.Y1337* Nonsense Control
PD35723b sub 2 25467467 A G 0.0156 DNMT3A p.C537R Missense Control
PD35724b sub 7 151873585 G A 0.0054 KMT2C p.Q2985* Nonsense Control
PD35724b sub 8 117859932 T A 0.0127 RAD21 p.? Essential splice Control
PD35732c sub 2 25463283 A T 0.0272 DNMT3A p.L737H Missense Control
PD35733b sub 2 25467449 C A 0.0230 DNMT3A p.G543C Missense Control
PD35733b sub 4 106180931 G A 0.1200 TET2 p.? Essential splice Control
PD35733c sub 4 106180931 G A 0.2000 TET2 p.? Essential splice Control
PD35755b sub 2 25461994 C T 0.0093 DNMT3A p.? Essential splice Control
PD35755b sub 2 25466800 G A 0.0144 DNMT3A p.R635W Missense Control
PD35755c sub 2 25461994 C T 0.0132 DNMT3A p.? Essential splice Control
PD35755c sub 2 25466800 G A 0.0265 DNMT3A p.R635W Missense Control
PD35756b sub 2 25470498 G A 0.0144 DNMT3A p.R326C Missense Control
PD35756b sub 4 106197285 T C 0.0490 TET2 p.I1873T Missense Control
PD35756c sub 4 106197285 T C 0.0630 TET2 p.I1873T Missense Control
PD35760c sub 17 29562957 C T 0.0144 NF1 p.Q1298* Nonsense Control
PD35762c sub 2 25467059 G A 0.0085 DNMT3A p.Q606* Nonsense Control
PD35763c indel 20 31022951 TC T 0.0324 ASXL1 p.I814fs*4 Frameshift Control
PD35768b sub 2 25457243 G A 0.0065 DNMT3A p.R882C Missense Control
PD35768c sub 2 25457243 G A 0.0870 DNMT3A p.R882C Missense Control
PD35769c indel 4 106190781 CA C 0.0147 TET2 p.R1354fs*9 Frameshift Control
PD35769c sub 4 106197255 C A 0.1300 TET2 p.A1863D Missense Control
PD35777b sub 2 25464531 A G 0.0114 DNMT3A p.I661T Missense Control
PD35778b sub 8 117874079 C T 0.0411 RAD21 p.? Essential splice Control
PD35780b sub 2 25463248 G A 0.0258 DNMT3A p.R749C Missense Control
PD35780c sub 2 25457155 C A 0.0133 DNMT3A p.C911F Missense Control
PD35780c sub 2 25463248 G A 0.0620 DNMT3A p.R749C Missense Control
PD35780c sub 9 5073770 G T 0.0082 JAK2 p.V617F Missense Control
PD35786b sub 2 25457243 G A 0.0093 DNMT3A p.R882C Missense Control
PD35786b sub 2 25463586 C T 0.2100 DNMT3A p.G699D Missense Control
PD35786c sub 2 25463586 C T 0.3100 DNMT3A p.G699D Missense Control
PD35788b sub 2 25458695 C T 0.0373 DNMT3A p.? Essential splice Control
PD35788b sub 2 25466790 G A 0.0550 DNMT3A p.S638F Missense Control
PD35788b sub 20 31023963 G T 0.0353 ASXL1 p.G1150* Nonsense Control
PD35788c sub 2 25458695 C T 0.0381 DNMT3A p.? Essential splice Control

PD29962a2 sub 4 106157653 G T 0.022 TET2 p.E852* Missense AML diagnosis
PD29962a2 sub 11 119158556TTCCAGAGTATGAATAGCAGCCCATTAGTAGGT 0.076923 CBL p.? Missense AML diagnosis
PD30054a2 sub 12 112888163 G T 0.059 PTPN11 p.G60V Missense AML diagnosis
PD30054a2 sub 21 44514777 T G 0.2 U2AF1 p.Q157P Missense AML diagnosis
PD30089d2 sub 9 5073770 G T 0.034 JAK2 p.V617F Missense AML diagnosis
PD30089d2 sub 11 119167619ATCTTCCAGACCTCTTCCTGTGCCAAAACTGCCACCTGGGGAGCAATGTGAGGGTGAAGAGGACACAGAGTACATGACTCCCA 0.101695 CBL p.? Missense AML diagnosis
PD30089d2 sub X 129147566 A AC 0.113208 BCORL1 p.L275fs*145 Missense AML diagnosis
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Appendix 10: AML risk prediction model coefficients

Variable Coefficient* P- value Variable Coefficient* P- value Variable Coefficient* P- value
ASXL1 0.964 2.97E-40 ASXL1 0.735 7.54E-11 ASXL1 0.986 7.20E-50

CALR 0.465 1.94E-01 CBL 0.224 4.77E-01 BCOR 1.058 8.00E-78

CBL 0.178 3.21E-01 DNMT3A 0.202 3.75E-04 CBL 0.200 2.69E-01

DNMT3A 0.370 2.64E-09 JAK2 -0.085 7.22E-01 DNMT3A 0.331 2.31E-09

IDH1 1.185 1.41E-12 KMT2C 0.519 6.13E-02 IDH1 1.203 3.60E-13

IDH2 0.403 4.22E-04 KMT2D 0.013 9.51E-01 IDH2 0.418 1.24E-04

JAK2 0.953 8.25E-26 KRAS 0.614 2.37E-09 JAK2 0.930 1.24E-21

KDM6A 0.962 1.98E-48 NF1 0.386 8.88E-02 KDM6A 0.960 2.67E-55

KMT2C 1.193 1.54E-04 NRAS 0.483 2.81E-07 KMT2C 1.166 9.17E-04

KRAS 0.905 3.75E-32 RAD21 0.439 8.16E-03 KMT2D 0.079 7.41E-01

NF1 0.924 6.25E-35 SF3B1 0.392 1.16E-01 KRAS 0.982 2.13E-31

PHF6 1.073 4.50E-62 SRSF2 0.379 5.58E-08 NF1 0.785 3.10E-04

PTPN11 1.251 1.10E-30 TET2 0.329 5.11E-22 NRAS 1.145 5.03E-76

RUNX1 0.389 1.09E-08 TP53 1.233 8.49E-08 PHF6 1.101 2.07E-71

SF3B1 1.550 1.21E-23 U2AF1 1.587 8.08E-17 PTPN11 1.074 4.45E-12

SRSF2 0.692 5.53E-16 age 0.019 7.50E-01 RAD21 0.909 4.59E-13

TET2 0.323 1.33E-03 gender -0.014 8.88E-01 RUNX1 0.403 1.36E-09

TP53 2.403 4.42E-30 systolic_BP_100 0.017 7.04E-01 SF3B1 1.539 5.35E-23

U2AF1 1.966 9.67E-28 diastolic_BP_100 0.039 1.89E-01 SRSF2 0.678 8.33E-20

age -0.090 3.68E-01 BMI_10 0.153 6.88E-02 TET2 0.477 3.08E-16

gender -0.046 6.78E-01 Total_cholesterol_10 0.002 8.77E-01 TP53 2.502 1.35E-37

Triglycerides -0.034 7.69E-01 U2AF1 2.047 2.60E-35

HDL -0.121 1.51E-01 age -0.101 2.40E-01

LDL 0.132 2.48E-01 gender -0.053 6.07E-01

Lymphocytes 0.080 4.40E-01 cohort 0.020 8.35E-01

MCV_100 -0.024 2.27E-03

RDW_10 0.067 5.41E-05

WBC_10 0.008 8.76E-01

PLT_100 0.084 3.99E-01

HGB_10 0.037 1.28E-01

Variable Coefficient Variable Coefficient* Variable Coefficient* CI.2.5% CI.97.5%
ASXL1 0.846 ASXL1 0.809 ASXL1 0.876 0.657 1.087

CALR 0.626 CBL 0.312 BCOR 0.690 0.577 0.939

CBL 0.428 DNMT3A 0.303 CBL 0.370 0.123 0.988

DNMT3A 0.479 JAK2 0.606 DNMT3A 0.406 0.222 0.652

IDH1 0.786 KMT2C 0.643 IDH1 0.725 0.617 0.935

IDH2 0.849 KMT2D 0.195 IDH2 0.786 0.616 1.021

JAK2 0.882 KRAS 0.653 JAK2 0.826 0.662 1.115

KDM6A 0.738 NF1 0.525 KDM6A 0.665 0.556 0.927

KMT2C 0.764 NRAS 0.561 KMT2C 0.698 0.566 0.944

KRAS 0.733 RAD21 0.542 KMT2D 0.321 0.171 0.856

NF1 0.735 SF3B1 0.479 KRAS 0.676 0.559 0.951

PHF6 0.765 SRSF2 0.384 NF1 0.651 0.539 0.908

PTPN11 0.736 TET2 0.437 NRAS 0.664 0.558 0.925

RUNX1 0.384 TP53 1.049 PHF6 0.691 0.588 0.943

SF3B1 0.836 U2AF1 1.233 PTPN11 0.676 0.576 0.926

SRSF2 0.906 age_10 0.080 RAD21 0.660 0.554 0.923

TET2 0.523 gender -0.086 RUNX1 0.364 0.168 0.914

TP53 1.068 systol_100 -0.133 SF3B1 0.758 0.606 0.979

U2AF1 0.983 diastol_100 0.203 SRSF2 0.684 0.385 1.080

age_10 -0.116 bmi_10 0.391 TET2 0.407 0.223 0.917

gender -0.026 cholestl_10 0.011 TP53 1.070 0.818 1.314

Av. Genes 0.740 triglyc -0.011 U2AF1 1.032 0.786 1.321

hdl -0.303 age_10 -0.058 -0.183 0.039

ldl 0.040 gender -0.013 -0.241 0.196

lym 0.012 cohort -0.573 -0.853 -0.293

mcv_100 -0.242 Av. Genes 0.668 0.558 0.929

rdw_10 0.720

wbc_10 -0.067 * Gene coefficients indicate risk per 10% increase in VAF

plt_100 0.143

hgb_10 0.401

Av. Genes 0.581

Cox proportional hazards model 
trained on the discovery cohort

Cox proportional hazards model trained on 
validation cohort

Cox proportional hazards model 
trained on combined cohort

* Gene coefficients indicate risk per 10% increase in VAF; P-values for the coefficients are calculated by Wald test 

Ridge regularised logistic regression 
model trained on discovery cohort

Ridge regularised logistic regression model 
trained on validation cohort

Ridge regularised logistic regression model 
trained on combined cohort
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Appendix 11: AML prediction model based on electronic health record data

AML case ascertainment from Clalit database

Cases included with diagnosis 205.0* 1696

Exclusion criteria Number of retained cases

Prior diagnosis among the following:
•ESSENTIAL THROMBOCYTHEMIA
•HIGH/LOW GRADE MYELODYSPLASTIC SYNDROME LESIONS
•MYELODYSPLASTIC SYNDROME WITH 5Q DELETION
•MYELODYSPLASTIC SYNDROME, UNSPECIDIED
•POLYCYTHEMIA VERA
•MYELOFIBROSIS
•OPERATIONS ON BONE MARROW AND SPLEEN
•CHRONIC MYELOMONOCYTIC LEUKEMIA
•CHRONIC MYELOID LEUKEMIA

Received medications suggesting alternative diagnosis:
•IMATINIB
•DASATINIB
•METHOTREXATE
•TRETINOIN
•DASATINIB
•ANAGRELIDE
•HYDROXYCARBAMIDE
•ASPARAGINASE
•PEGASPARGASE
•ARSENIC TRIOXIDE

No record of hospitalisation near time of diagnosis 1042
Age < 18 960
Received 6-mercaptopurine post diagnosis 

•Multiple doses
•Combined with ALL diagnosis

Filter on onset year >=2003 875

Total number of AML cases retained 875

Laboratory test result variables Diagnostic code variables

Diagnoses included in clinical model
Haematocrit (HCT) SPECIFIC GRAVITY ACUTE BRONCHITIS
Mean corpuscular volume (MCV) CK-CREAT.KINASE(CPK) ACUTE NASOPHARYNGITIS (COMMON COLD)
Red blood cell count (RBC) PT-INR ANEMIA OTHER/UNSPECIFIED
Haemoglobin (HGB) MICRO%/HYPO% ANEMIA, UNSPECIFIED
mean corpuscular hemoglobin (MCH) VITAMIN B12 BACK SYMPTOMS/COMPLAINTS
mean corpuscular hemoglobin concentration (MCHC) IRON CELLULITIS AND ABSCESS OF UNSPECIFIED SITES
White blood cell count (WBC) PT % CHRONIC RENAL FAILURE
Platelet count (PLT) Prothrombine time (PT- SEC) COLITIS,ENTERITIS,GASTROENTERITIS PRESUMED INFECTIOUS ORIGIN
Lymphocyte percentage (LYM%) Chloride (Cl) CONGESTIVE HEART FAILURE
Neutrophil percentage (NEUT%) LIPEMIC CONTACT DERMATITIS AND OTHER ECZEMA, UNSPECIFIED CAUSE
Eosinophil percentage (EOS %) ICTERIC DEBILITY, UNSPECIFIED
Monocyte percentage (MON%) HEMOLYTIC DERMATOPHYTOSIS OF FOOT
Basophil percentage (BASO %) HEMOGLOBIN A1C CALCULATED DISEASES AND CONDITIONS OF THE TEETH AND SUPPORT.STRUCTURES
Absolute lymphocyte count (LYMP.abs) CH DISTURBANCE OF SKIN SENSATION
Absolute neutrophil count (NEUT.abs) GLOBULIN ESSENTIAL HYPERTENSION
Absolute eosinophil count (EOS.abs) FERRITIN FEVER
Absolute monocyte count (MONO.abs) T4- FREE INFERTILITY, FEMALE
BASOPHILES (abs) APTT-sec IRON DEFICIENCY ANEMIA, UNSPECIFIED
Mean platelet volume (MPV) FOLIC ACID MIXED DISORDERS OF CONDUCT EMOTIONS
Red cell distribution width (RDW) PDW OSTEOARTHROSIS AND ALLIED DISORDERS
CREATININE- BLOOD Myeloperoxidase index  (MPXI) PAIN IN LIMB
GLUCOSE- BLOOD TRANSFERRIN PNEUMONIA, ORGANISM UNSPECIFIED
UREA- BLOOD PCT VARICOSE VEINS OF LOWER EXTREMITIES
SODIUM CHOLESTEROL HDL RATIO
POTASSIUM BILIRUBIN INDIRECT
GLUTAMIC OXALOACETIC TRANSAMINASE HCT/HGB RATIO
GLUTAMIC PYRUVIC TRANSAMINASE CREATININE URINE SAMPLE
MICR % SEDIMENTATION RATE
HYPO % ERYTHROCYTES
MACRO% LEUCOCYTES
PHOSPHATASE- ALKALINE C-REACTIVE PROTEIN (CRP)
CHOLESTEROL RDW-CV
TRIGLYCERIDES M.ALBUM/CREAT RATIO
LUC% AMYLASE- BLOOD
LUC MICROALBU U SAMP
CHOLESTEROL- HDL PROTEIN
CALCIUM- BLOOD MAGNESIUM- BLOOD
HYPER% Hemoglobin distribution width 
URIC ACID- BLOOD FIBRINOGEN
CHOLESTEROL- LDL SODIUM- BLOOD
BILIRUBIN TOTAL VITAMIN D3- 25-0H- RIA
ALBUMIN POTASSIUM- BLOOD
PROTEIN-TOTAL-BLOOD RDW-SD
PHOSPHORUS- BLOOD Prostate specific antigen (PSA) 
TSH (THYROID STIMULATING HORMONE) T3- FREE
LACTIC DEHYDROGENASE (LDH) -BLOOD Activated partial thromboplastin time 
GAMMA-GLUTAMYL TRANSPEPTIDASE NORMOBLAST.%
BILIRUBIN- DIRECT ESTRADIOL (E-2)
NON-HDL_CHOLESTEROL Absolute normoblast count
PH-u Leutinising hormone (LH) 

1431

1210

929

Parameters included in clinical model
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Appendix 12: Discovery cohort pre-lymphoid neoplasm cases and controls metadata

Individual 
ID Sample ID Group Gender

Systolic BP 
(mmHg)

Diastolic BP 
(mmHg) BMI

Total 
cholesterol 
(mmol/L)

HDL 
(mmol/L)

LDL 
(mmol/L)

Triglycerides 
(mmol/L)

Lymphocytes 
(10^9/L)

MCV 
(fL) RDW

WBC 
(10^9/L)

RBC 
(10^9/L)

Haematocrit 
(%)

Platelets 
(10^9/L)

Haemoglobin 
(g/dL) HbA1c (%)

Age at first 
sample

Age at 
sample

Follow-up 
(years)

PD00001 PD00001a Control Female 138 80 36.6 6.1 1.5 4.1 1.1 NA NA NA NA NA NA NA NA NA 56.7 56.7 23.9
PD00001 PD00001c Control Female 140 72 39.1 4.2 1.8 1.8 1.4 1.6 95.8 14.3 7.6 4.4 0.4 243 14.3 5.5 56.7 71.2 23.9
PD00003 PD00003b Pre-LN Female 147 92 27.1 5.2 1.7 2.7 1.9 2 89.1 12 6.6 4.1 0.4 246 13.3 5.2 62.4 62.4 15.7
PD00003 PD00003c Pre-LN Female 150 76 26.6 4.9 1.6 2.7 1.5 2.6 90 NA 11 4.5 0.4 250 13.7 5.5 62.4 70.9 15.7
PD00004 PD00004a Pre-LN Female 125 76 23.1 6.2 1.8 4.1 0.7 1.6 96.1 13 4.4 4.1 0.4 260 12.7 4.4 62 62 16
PD00004 PD00004b Pre-LN Female 122 70 23.5 7.1 2.2 4.7 0.5 1.8 98.7 13.2 4.6 4.5 0.4 192 15.5 4.9 62 65.3 16
PD00005 PD00005b Control Male 130 72 27.8 6.1 1.4 3.7 2.4 2.2 86.1 12.7 8 4.8 0.4 267 13.3 5.6 59.3 59.3 19.5
PD00005 PD00005c Control Male 126 70 29 5.7 1.3 3.9 1.1 2.8 87 NA 7 4.8 0.4 262 14.3 5.4 59.3 68.2 19.5
PD00011 PD00011b Control Female 158 93 23.8 6.3 1.5 4.3 1.1 1.8 87.1 13 6.1 4.2 0.4 271 12.4 5.7 66 66 19.5
PD00017 PD00017b Pre-LN Female 139 87 31.4 7.4 1.1 4.8 3.4 2 92.6 13.8 6.7 4.7 0.4 189 14 6.2 66.6 66.6 6.8
PD00021 PD00021a Control Male 129 84 28 7.6 1.6 5.5 1.1 1.5 88.8 13 5.7 4.7 0.4 311 14.6 4.9 57.8 57.8 13.7
PD00022 PD00022a Control Male 134 78 22.6 5.6 1.1 4 1 1.2 76.2 16.4 5 4.6 0.3 441 11.7 NA 71.8 71.8 8.7
PD00023 PD00023b Control Male 126 76 29.5 4.8 0.9 3.4 1.3 2.4 95.2 12.6 7.7 4.5 0.4 254 14.1 5.6 59 59 19.9
PD00023 PD00023c Control Male 108 74 28.3 3.8 1 2.4 1.2 1.7 92 NA 6.8 4.3 0.4 256 13.5 6 59 68 19.9
PD00026 PD00026b Pre-LN Male 149 91 23.7 5.9 0.9 4 2.2 1.6 92.7 12.6 5.2 4.4 0.4 206 14.4 5.4 64.7 64.7 12.8
PD00026 PD00026c Pre-LN Male 164 86 25.6 6.2 1 4.5 1.7 1.1 97.7 13.8 5.8 4.4 0.4 231 14 6 64.7 75 12.8
PD00031 PD00031a Control Male 107 61 25.7 5.8 1.1 4.2 1.2 2.2 91.2 13.7 6 4.5 0.4 144 14.1 NA 68.2 68.2 22.7
PD00031 PD00031c Control Male 132 82 28.5 2.8 1.3 1.3 0.5 1.2 95.9 14.7 7.2 4.1 0.4 118 13.3 5.8 68.2 80.5 22.7
PD00034 PD00034b Control Female 146 88 27.7 5.2 1.6 2.9 1.7 1.7 87.2 12.3 4.3 4.1 0.4 253 12.6 5.1 52.3 52.3 18.7
PD00034 PD00034c Control Female 180 92 27.6 5.4 1.7 3.1 1.5 1.7 88.9 13.2 5.9 4.4 0.4 291 13.2 5.3 52.3 60.5 18.7
PD00035 PD00035a Pre-LN Male 129 78 26.2 6.1 1.7 3.9 1 1.3 95.7 13.6 3.7 4.1 0.4 166 13.5 4.4 70.8 70.8 17.7
PD00035 PD00035b Pre-LN Male 132 82 27.8 6.6 1.5 4.2 2 1.2 95.3 13.2 5.3 4.1 0.4 185 14 5.2 70.8 74.5 17.7
PD00036 PD00036a Control Male 128 88 27 4.1 0.8 2.3 2.1 2.5 93.1 13 6.7 4.9 0.5 258 16.1 5.9 58.9 58.9 8.2
PD00038 PD00038a Pre-LN Female 122 78 23.6 5.5 0.9 3.8 1.8 2.3 89.8 12.5 6.7 4.1 0.4 377 12.1 5.3 49.4 49.4 18.4
PD00038 PD00038b Pre-LN Female 108 70 23.2 3.7 1.5 1.6 1.4 2 92.9 13.4 5.1 4.1 0.4 298 12.8 5.1 49.4 53 18.4
PD00038 PD00038c Pre-LN Female 115 68 22.1 6 1.6 3.4 2.2 1.6 95.5 13.8 3.7 4 0.4 294 13 5.8 49.4 63.8 18.4
PD00041 PD00041b Control Male 112 70 24.5 3.7 1.3 2.1 0.8 1.5 86.5 13.9 5.9 4.9 0.4 213 14.8 5.4 51.5 51.5 18.4
PD00042 PD00042a Control Female 146 84 19.9 6.6 1.6 4.5 1.1 1 90.5 13.4 3.5 4.6 0.4 332 14.3 NA 62.6 62.6 23.2
PD00043 PD00043b Pre-LN Male 142 81 26.6 6.1 1.1 4.1 2.1 1.7 92.2 13 5 4.8 0.4 214 14.2 6 68.9 68.9 11.4
PD00049 PD00049a Pre-LN Female 132 85 28.5 5.1 1.1 3.3 1.5 3.5 88.1 12.9 8.3 4.3 0.4 255 12.9 NA 61.5 61.5 16.7
PD00049 PD00049b Pre-LN Female 153 84 31.5 4.5 1.3 2.4 1.9 4 87.6 14.7 8.5 4.6 0.4 217 14.2 5.8 61.5 65.2 16.7
PD00051 PD00051b Control Female 142 82 26.9 5.4 1.2 3.3 2 2.3 89.1 13 7.4 4.5 0.4 255 14.4 5.6 65.8 65.8 18.2
PD00051 PD00051c Control Female 124 66 27.4 4.6 1.4 2.6 1.4 1.7 91.6 13.3 6.4 4.3 0.4 434 13.5 5.9 65.8 73.9 18.2
PD00063 PD00063a Pre-LN Female 136 74 24.8 5.8 2.9 2.5 0.8 4.3 95.4 12.7 8.8 3.9 0.4 360 12.7 NA 62.8 62.8 7.2
PD00065 PD00065b Pre-LN Female 128 76 31 6.5 1.9 4.2 0.9 2.2 85.8 13.4 7.4 4.1 0.3 287 12.2 5.7 54.2 54.2 2.5
PD00068 PD00068a Control Female 109 72 26.7 5.5 1.3 3.5 1.6 1.6 87.2 12.5 4.5 5 0.4 222 14.5 NA 47.4 47.4 20
PD00068 PD00068c Control Female 114 68 29.3 4.7 1.4 1.5 4.1 2.4 83 NA 7.4 4.3 0.4 212 12.3 5.4 47.4 55.6 20
PD00069 PD00069b Pre-LN Male 163 117 26.9 5.8 1.8 3.5 1.1 NA 93.7 13.3 NA 4.2 0.4 177 12.9 5.7 72.8 72.8 2.9
PD00070 PD00070b Control Female 156 90 24.7 6.4 2.8 3.4 0.6 2.1 88.8 13.3 6.5 4.2 0.4 236 13.2 5.2 70.3 70.3 19.4
PD00070 PD00070c Control Female 138 73 23 5.5 2.2 3.1 0.6 1.4 94.9 15.2 7.7 4 0.4 262 12.8 5.5 70.3 80.3 19.4
PD00071 PD00071b Control Female 157 84 27.5 5.7 2.7 1.6 3.2 2.1 90 12.4 6.2 3.7 0.3 162 12.2 5.7 71.5 71.5 17
PD00073 PD00073b Control Female 129 80 26 4.6 1.5 2.6 1.2 1.8 92.5 14 7 4 0.4 301 13 5.6 70.8 70.8 17.8
PD00074 PD00074b Control Male 129 84 24.5 6.5 1 3.8 3.8 1.2 87.6 14 4.9 5 0.4 186 14.9 5.2 59.3 59.3 18.4
PD00075 PD00075b Control Male 122 66 27.2 6.6 1.3 4.3 2.4 2.2 90.4 13.4 7.8 4.5 0.4 196 14.1 5.5 71.6 71.6 8.2
PD00076 PD00076b Pre-LN Male 153 92 27.4 4.3 0.7 2.9 1.6 2.5 94.6 12.8 5.4 3.6 0.3 147 12.6 5.3 52.6 52.6 12.6
PD00077 PD00077b Control Female 140 82 27.1 5.3 2.1 2.8 1 1.8 86.1 14.2 4.8 4.5 0.4 167 13.7 5.1 65.2 65.2 18.4
PD00079 PD00079b Pre-LN Male 178 106 25.9 6 0.9 3.5 3.6 4 92.9 12.6 10.2 4.8 0.4 135 14.4 5.5 69.5 69.5 5.3
PD00080 PD00080a Control Male 138 79 24.6 7.1 1.3 4.2 3.6 2.5 97 13.3 6.8 4.8 0.5 251 15 4.6 61 61 21
PD00084 PD00084b Control Female 150 92 24.9 7.2 1.6 5 1.5 3 93.8 13.3 7.3 3.5 0.3 282 11.8 5.5 57.7 57.7 19
PD00089 PD00089a Pre-LN Male 168 95 25 5.9 1.5 3.9 1.2 2 91.6 13.3 5 5.1 0.5 251 16.1 9.1 69 69 4.5
PD00089 PD00089b Pre-LN Male 154 83 26.2 5 1.5 3.1 0.9 2.9 92.1 14.5 7 6.2 0.6 196 20.7 9.9 69 72 4.5
PD00094 PD00094b Control Male 132 74 27.4 6.3 2.1 3.8 0.9 1.9 93.5 13 5.8 4.5 0.4 247 14.7 4.9 73.8 73.8 18.6
PD00095 PD00095b Pre-LN Male 145 100 28.9 7.6 1 4.3 5.1 2.4 92.2 16.1 5.4 5.1 0.5 251 15.1 5.2 58 58 9.4
PD00097 PD00097a Pre-LN Female 121 75 29 6.8 1.4 4.8 1.4 1.6 89.4 15.2 4.9 4.2 0.4 273 12 5.3 64.5 64.5 13.7
PD00097 PD00097b Pre-LN Female 141 79 32.5 6.7 1.5 4.7 1.1 1.5 86.5 15.1 6.7 4 0.3 252 12.2 5.7 64.5 67 13.7
PD00099 PD00099b Control Male 155 98 24.9 5.2 1.5 3 1.7 2.3 92.1 14.2 8.1 5.1 0.5 323 16.2 5.3 63.3 63.3 18.6
PD00100 PD00100a Control Female 122 80 29.3 6.4 2.1 4 0.7 1.5 86.9 13.8 5.3 4.2 0.4 227 12.2 NA 64 64 21.9
PD00100 PD00100c Control Female 103 58 30.9 5.7 1.6 3.4 1.6 1.9 91.1 14.2 7.3 4 0.4 230 12.4 5.9 64 75.4 21.9
PD00103 PD00103a Control Male 104 64 17.6 5 1.5 3.1 0.8 0.8 90.8 12.7 2.3 4.3 0.4 182 13.7 5.2 48.3 48.3 21.8
PD00103 PD00103c Control Male 106 62 18.2 4.1 1.4 2.4 0.7 0.6 92 NA 2.4 3.8 0.3 185 12.2 5.4 48.3 58.6 21.8
PD00106 PD00106a Pre-LN Female 124 79 23 5.2 1.7 3.1 0.8 1.3 88.6 13.9 5.4 4.2 0.4 303 12.7 NA 52.2 52.2 13.7
PD00106 PD00106b Pre-LN Female 140 89 24.9 4.7 2.1 2.3 0.8 1.5 91.3 13.1 4.1 4 0.4 274 12.7 4.5 52.2 56.2 13.7
PD00107 PD00107b Pre-LN Male 120 76 24.2 4.7 1.2 3.1 0.9 1.6 95.8 14 4.3 4.2 0.4 250 14.1 7.6 61.9 61.9 11.7
PD00107 PD00107c Pre-LN Male 136 70 23.7 3.8 1.6 1.8 1.1 1.4 96.5 14.5 4.7 4.2 0.4 260 13.8 10.2 61.9 70.7 11.7
PD00110 PD00110a Pre-LN Female 150 90 26.6 6.1 1.6 3.9 1.3 1.9 92 12.9 9.7 4.3 0.4 228 14 NA 59.6 59.6 10.4
PD00110 PD00110b Pre-LN Female 152 94 29.3 7.1 1.3 4.6 2.8 2.1 94.7 13.6 6.1 3.7 0.4 224 12.2 5.1 59.6 63.5 10.4
PD00111 PD00111b Pre-LN Female 148 93 27.8 6.5 1.7 3.9 2.1 3.5 92.4 12.2 8.3 4.5 0.4 212 13.3 5.8 55.9 55.9 7.9
PD00112 PD00112a Control Female 122 74 24.2 6.9 1.3 4.7 2 2 93.8 12.7 6.4 4.2 0.4 255 12.3 4.8 65.2 65.2 20.1
PD00112 PD00112c Control Female 132 80 28.6 7.3 1.4 NA 4.8 1.5 95.5 13.6 6.2 4.3 0.4 241 13.8 5.8 65.2 75.2 20.1
PD00113 PD00113b Pre-LN Female 131 78 25.6 6.8 1.8 4 2.3 NA NA NA NA NA NA NA NA 5.3 52 52 7.2
PD00115 PD00115a Control Male 144 92 25.6 6.1 1.3 4 1.9 2 92.3 12.3 7.7 4.1 0.4 273 13 5.8 69.4 69.4 15.6
PD00116 PD00116b Control Female 152 86 27.6 5.7 1.3 4 1 1.8 89.2 13.3 6.2 4.1 0.4 275 12.8 5.8 78.8 78.8 18.6
PD00117 PD00117b Control Female 125 70 22.9 6.1 2.1 3.6 0.9 2.5 88.5 12.6 8.2 4.7 0.4 261 14.2 5.2 66.4 66.4 18.5
PD00117 PD00117c Control Female 147 83 23.6 4.3 1.9 2 1 1.7 92.2 13.4 6.7 4.6 0.4 197 13.9 5.5 66.4 74.6 18.5
PD00121 PD00121b Control Female 173 101 50 5.5 0.7 3.1 3.9 3.4 87.7 13.8 9.1 4.2 0.4 191 12.7 8.8 54.9 54.9 19.1
PD00125 PD00125a Pre-LN Female 113 72 22.7 5.1 2 2.8 0.6 1.7 97.4 13 4 3.8 0.4 127 12.5 NA 49.4 49.4 16.5
PD00127 PD00127b Control Male 156 95 26.6 9.2 1.4 6.8 2.3 1.4 93.9 15.2 4.6 5.2 0.5 290 16.3 5.1 67.5 67.5 17.8
PD00129 PD00129b Control Male 132 77 25.8 4.6 1.3 2.2 2.6 1.8 93.1 13.7 9.1 4.8 0.4 285 14.2 5.7 72 72 10.4
PD00130 PD00130a Control Female 116 76 23 5.6 1.6 3.5 1.1 1 88 14 4 4.1 0.4 238 12.1 5 50.9 50.9 20.9
PD00132 PD00132a Pre-LN Female 142 76 23.7 6.8 1.8 4.5 1.2 3.2 92 14.3 7.6 4.3 0.4 172 13.4 5.6 72.1 72.1 13.3
PD00132 PD00132b Pre-LN Female 142 78 24.3 7.1 1.8 4.8 1.3 3.7 96 13.8 8.4 4.2 0.4 164 13.2 5.1 72.1 75.3 13.3
PD00135 PD00135b Pre-LN Female 156 84 23.6 6.1 1.5 3.9 1.6 1.6 87.1 15.2 8.2 4.7 0.4 324 13.7 5.1 67.9 67.9 6.1
PD00140 PD00140b Control Male 130 79 26.5 5.7 1.6 3.6 1.3 1.7 96.8 13.1 5.8 4.7 0.4 279 14.6 5.3 72.8 72.8 11.4
PD00142 PD00142b Control Female 137 79 32.8 8 1.4 5.7 2 1.9 90.4 14.9 6.4 4.4 0.4 157 12.7 5.9 62.8 62.8 19.7
PD00142 PD00142c Control Female 130 70 31.8 5.1 1.5 3.1 1.3 1.6 94.4 14.8 6.7 4.2 0.4 152 13.3 6.2 62.8 73 19.7
PD00148 PD00148b Control Male 152 88 29.2 6.1 0.9 3.7 3.4 2 92.3 13.5 6.9 5.2 0.5 264 15.5 5.5 73.6 73.6 20
PD00148 PD00148c Control Male 129 64 29.9 5 0.9 2.6 3.3 1.9 86 NA 7.5 5.1 0.4 241 15.4 5.4 73.6 82.3 20
PD00152 PD00152b Control Female 126 72 30 4.9 1.4 2.7 1.9 2.1 92.1 14.8 5.1 4.3 0.4 214 13.2 5.3 71.3 71.3 17.8
PD00153 PD00153a Pre-LN Male 120 76 25.6 7.9 2 5.6 0.7 NA NA NA NA NA NA NA NA NA 50.3 50.3 15.1
PD00153 PD00153b Pre-LN Male 133 86 26.5 5.8 1.9 3.6 0.8 1 92.1 13.1 3.5 4.9 0.4 215 14.3 4.9 50.3 54.5 15.1
PD00159 PD00159b Control Female 164 89 29.2 7 1.4 4.3 2.9 1.7 95.9 11.8 6.9 4.3 0.4 310 13.5 5.7 76.2 76.2 13.3
PD00160 PD00160b Control Male 140 84 29.6 7.2 0.9 3.8 5.6 2.9 89.1 12.3 6.9 4.5 0.4 257 14.6 5.5 68.3 68.3 18.8
PD00163 PD00163b Control Female 114 66 22.8 4.7 1.4 3 0.7 1 87.8 12.8 4.6 4.6 0.4 298 13.2 5.6 50 50 19.4
PD00164 PD00164b Control Male 130 82 24.3 5.4 0.9 3.4 2.6 4.2 102.1 13.6 9.5 4.5 0.5 216 15.5 5.4 55.6 55.6 18.6
PD00166 PD00166b Control Female 126 72 21.2 4.5 1.5 2.6 0.9 3.1 95.8 13.9 11.1 4.5 0.4 249 14 5.5 73.3 73.3 19.4
PD00166 PD00166c Control Female 135 70 22.1 5.1 2.8 1.9 1 1.8 92.7 14.5 7.9 3.9 0.4 265 11.9 5.8 73.3 83.7 19.4
PD00170 PD00170b Control Female 152 96 19.9 4.6 2.6 1.7 0.7 1.4 92.6 12.9 5.6 4.3 0.4 138 12.9 5.2 56.4 56.4 19.6
PD00170 PD00170c Control Female 156 93 19.3 6 2.8 2.8 0.9 NA 92.5 13.8 4.6 4.3 0.4 186 13.1 5.4 56.4 66.9 19.6
PD00171 PD00171b Control Female 145 84 25.3 6.7 2.2 4.2 0.7 2.5 93.6 12.9 6.5 5.2 0.5 228 14.9 5.2 65.2 65.2 17.7
PD00171 PD00171c Control Female 162 89 24.6 6.3 2.4 3.4 1.3 1.6 92.7 13.9 5.7 4.6 0.4 183 14.5 5.8 65.2 74.2 17.7
PD00172 PD00172b Control Female 114 70 23.7 8.4 1.3 6.6 1.1 1.4 90 14.7 4.9 4.7 0.4 243 13.3 5.7 72.9 72.9 19.8
PD00172 PD00172c Control Female 140 82 22.5 6.9 1.6 5 0.8 1.2 89.1 13.9 6.2 4.5 0.4 242 13.5 6 72.9 83.4 19.8
PD00176 PD00176a Control Female 140 83 21 6 1.5 3.5 2.2 1.8 88.3 12.6 8.6 4.3 0.4 241 12.9 5.9 57.5 57.5 15.6
PD00176 PD00176c Control Female 116 68 20.9 5.3 1.4 3 2.1 1 93.9 14.6 4.9 3.8 0.4 212 11.8 5.4 57.5 71.7 15.6
PD00177 PD00177a Control Female 165 90 31 5.4 1.5 3.4 1.2 1.7 89.2 12.8 5.6 3.9 0.3 246 12.1 NA 67.5 67.5 10.9
PD00179 PD00179b Pre-LN Male 174 104 33.4 4.6 0.9 3.2 1.1 2.1 94.9 12.9 6.2 4.9 0.5 185 15.5 5 71.7 71.7 4.3
PD00185 PD00185b Pre-LN Male 154 98 25.8 5.9 0.7 2.7 5.6 2 85.2 16.2 5.4 4.9 0.4 195 15.2 4.9 71.8 71.8 14.5
PD00186 PD00186a Pre-LN Female 131 76 27.5 7.4 1.2 4.5 3.7 1.2 89.8 11.9 7.5 4.5 0.4 333 14.2 NA 56.2 56.2 13.2
PD00186 PD00186b Pre-LN Female 146 84 31.2 8.8 1.4 5.5 4.2 1.3 91.7 12.7 6.4 5.4 0.5 320 17.1 5.6 56.2 60.6 13.2
PD00192 PD00192a Control Female 106 66 23.9 5 1.8 2.7 1.1 2.2 91.6 11.4 6.2 3.7 0.3 272 11.6 NA 49.7 49.7 22.4
PD00195 PD00195a Pre-LN Female 157 87 26.6 6.9 1.7 4.7 1.2 2.2 85 14.1 6.4 4.5 0.4 257 13.2 5 68.7 68.7 14.7
PD00195 PD00195b Pre-LN Female 128 71 26.4 5.9 1.8 3.8 0.7 1.6 87.7 14.8 6.1 4.3 0.4 259 13 5.4 68.7 71.5 14.7
PD00197 PD00197b Pre-LN Female 126 70 24.2 7.2 1.5 5 1.7 1.7 88.5 13.5 4.6 4.7 0.4 258 13.8 5.4 75.8 75.8 12
PD00198 PD00198a Control Female 142 90 27.3 7.3 1.2 4.6 3.2 2 85.1 14 7.1 4.5 0.4 422 13.3 NA 67.3 67.3 22.5
PD00199 PD00199a Pre-LN Female 160 98 28.2 6 1.4 4 1.2 NA NA NA NA NA NA NA NA NA 71.8 71.8 8.8
PD00199 PD00199b Pre-LN Female 130 76 27.2 5.8 1.8 3.4 1.5 2.2 92.8 13.6 6.3 4.1 0.4 187 12.8 5.9 71.8 76 8.8
PD00200 PD00200a Pre-LN Female 149 88 25.9 5.4 1.5 3.4 1.1 2.1 93.3 13.8 5.7 4.1 0.4 176 13.2 NA 77 77 4.8
PD00200 PD00200b Pre-LN Female 174 94 26.2 7.2 1.9 5 0.8 1.7 97.2 14.4 5 3.9 0.4 212 13.5 5.9 77 80.7 4.8
PD00203 PD00203a Control Female 152 92 25.4 7.4 0.8 5 3.4 1.5 86.2 12.2 3.9 4.8 0.4 259 14.4 NA 67.4 67.4 22.3
PD00205 PD00205b Control Male 142 90 27.6 5.3 1.9 3 1.3 1.2 91 13.5 5.8 5 0.5 331 15.2 5.2 56 56 17.8
PD00205 PD00205c Control Male 139 90 28 6.3 1.7 4.1 1.2 1.1 89.9 13.1 7.6 5.2 0.5 293 16.4 5.7 56 64.6 17.8
PD00206 PD00206b Control Female 126 72 26.4 5.6 2.5 2.6 1.2 1.2 95.8 14.3 5 4.1 0.4 200 13.5 5.7 70.7 70.7 18.4
PD00213 PD00213b Control Male 132 73 28.6 5.7 0.9 3.5 3 2.7 91.1 13.7 5.6 4.2 0.4 268 13.5 5.5 63.9 63.9 18.5
PD00214 PD00214b Control Female 118 66 21.2 5.9 1.8 3.8 0.7 2.4 93.8 12.4 7.7 4.6 0.4 193 14.2 5.3 63.2 63.2 19.5
PD00214 PD00214c Control Female 118 76 20 5.5 2.3 3 0.5 1.1 84.5 18 5.6 4.2 0.4 258 11.6 5.9 63.2 73.2 19.5
PD00217 PD00217a Control Male 127 69 21.3 9.4 1.9 6.8 1.5 1.5 84.9 13.7 4.8 4.4 0.4 224 13.1 NA 71.8 71.8 20.6
PD00218 PD00218b Control Female 139 84 29.7 6.1 1.6 3.4 2.5 2.5 83.4 14.1 7.3 4.5 0.4 319 13 5.5 58.3 58.3 19
PD00222 PD00222b Control Female 130 72 19.5 6.2 2.3 3.5 0.9 1.4 88.4 12.5 5.3 4.3 0.4 264 14.2 4.7 45.6 45.6 18.6
PD00222 PD00222c Control Female 130 78 22.9 6.3 1.8 4.2 0.8 NA 89.3 13.8 5.8 5.1 0.5 296 15.5 5.4 45.6 54.6 18.6
PD00225 PD00225b Pre-LN Female 127 68 22.3 5.5 1.5 3.2 1.9 2.3 91.5 11.7 6.1 4.3 0.4 187 14 4.9 66.6 66.6 5.9
PD00226 PD00226a Pre-LN Male 148 78 25.8 6.5 1 4.5 2.2 2.2 90.8 12.6 5.7 4.6 0.4 243 14.4 NA 68 68 5.4
PD00226 PD00226b Pre-LN Male 132 78 26.7 5.2 0.9 3.6 1.7 2 92.2 12.4 6.3 4.2 0.4 172 14.2 5.3 68 71.9 5.4
PD00227 PD00227b Control Female 136 76 29.2 8.3 1.4 5.8 2.6 2.5 83.5 13.8 6.5 4.4 0.4 311 13.1 6 62.4 62.4 19.1
PD00230 PD00230b Control Female 124 70 26.7 7.1 1.6 4.7 1.8 1.5 86.6 12.5 5 4.6 0.4 278 13.8 6 70.2 70.2 19
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PD00230 PD00230c Control Female 142 62 26.8 4.4 1.7 2.1 1.4 1.8 88 NA 6.9 4.8 0.4 308 14.1 6 70.2 78.3 19
PD00239 PD00239b Control Female 132 77 20.7 6.9 2.7 3.8 1 1.2 87 13.5 5.2 4.6 0.4 258 13.9 5.3 72.8 72.8 17.9
PD00239 PD00239c Control Female 140 76 19.2 5.3 2.6 2.2 1.2 0.8 87.3 14.5 6.6 4.4 0.4 221 13.3 5.4 72.8 80.8 17.9
PD00241 PD00241b Pre-LN Female 140 78 25 6.3 1.4 4.3 1.4 1.5 89.5 13.2 5.2 4.2 0.4 259 12.7 4.7 60.4 60.4 1.5
PD00241 PD00241c Pre-LN Female 135 72 26.3 5.3 1.6 3.2 1.1 1.9 93 NA 5.6 4.3 0.4 219 13.6 5.6 60.4 69 1.5
PD00243 PD00243a Control Female 124 78 23.6 5.9 1.7 3.5 1.6 2 81.1 15.5 5.1 5 0.4 270 13.3 NA 51.8 51.8 23.4
PD00243 PD00243c Control Female 141 78 25.4 5.7 1.9 3.2 1.5 2.3 91.7 14.4 5.5 4.6 0.4 224 14 5.7 51.8 65.8 23.4
PD00247 PD00247a Control Female 156 90 30.8 5.9 1.3 3.6 2.1 1.9 86.1 12.7 5.7 4.2 0.4 376 12.5 6.1 70.4 70.4 21.2
PD00251 PD00251b Pre-LN Male 139 90 25.7 6.7 1.1 4.5 2.6 2.9 88.8 13.4 7.7 4.8 0.4 302 14.7 6 68.4 68.4 4.6
PD00253 PD00253a Control Male 134 87 26.2 5.3 0.9 3.2 2.5 2.1 88.5 13.4 7.4 5.2 0.5 318 16.2 5.6 56.8 56.8 22.1
PD00254 PD00254a Pre-LN Male 140 84 26.7 5.6 1.2 3.7 1.6 1.5 90.4 13.2 5 4.6 0.4 247 13.4 4.8 67 67 12.8
PD00254 PD00254b Pre-LN Male 130 80 29 6 1.3 3.6 2.5 1.8 92.5 12.6 5.4 4.2 0.4 176 14 5.1 67 70.4 12.8
PD00257 PD00257a Control Male 138 72 24.6 6.7 1.7 4.6 1 1.7 89.2 12.9 4.8 4.5 0.4 177 13.6 5 74.8 74.8 20.8
PD00259 PD00259b Control Female 125 78 27.6 5.5 1.7 3.5 0.7 2.7 87.3 12.9 7.8 4.6 0.4 223 14.7 5.1 56.4 56.4 19.1
PD00259 PD00259c Control Female 116 72 25.7 4.7 1.8 2.6 0.8 NA 87.2 15.9 3.6 4.8 0.4 188 14 6 56.4 65.9 19.1
PD00263 PD00263a Pre-LN Male 146 88 31.5 4.8 1 3.2 1.2 3 87 12.9 8.8 5.3 0.5 305 16.5 NA 48.7 48.7 15
PD00266 PD00266a Control Male 138 87 31 6.5 1.1 4.4 2.2 1.9 94.1 13.3 6 4.7 0.4 203 15.5 NA 68.4 68.4 23
PD00266 PD00266c Control Male 129 72 33.8 5.1 1 3.5 1.5 1.9 94 NA 7 4.1 0.4 179 13 NA 68.4 79.6 23
PD00270 PD00270a Control Male 124 84 23.1 6.4 1.6 4.2 1.5 2.7 86 12.2 7.6 4.8 0.4 283 14.8 5.5 53.5 53.5 21.1
PD00270 PD00270c Control Male 134 83 22.9 6 1.7 3.8 1.2 2.1 91.2 13.6 6.1 4.4 0.4 287 13.5 5.3 53.5 64.6 21.1
PD00272 PD00272b Control Male 128 86 28.7 5.5 0.9 3.8 1.9 2.2 90.8 12.6 6.2 4.5 0.4 220 13 5.9 54 54 19.8
PD00273 PD00273b Pre-LN Female 132 86 25.3 5.3 2 2.6 1.6 3 93 13.1 8.4 4.7 0.4 305 14.7 5.3 50 50 14.8
PD00275 PD00275b Control Male 136 98 29 7.6 1 6.1 1.2 1.8 91.7 12.2 6 5.2 0.5 206 16 5 56 56 19.9
PD00275 PD00275c Control Male 139 94 28.6 6.9 1.1 5.3 1.2 1.3 86.5 15.7 5.1 5.2 0.4 240 15.2 5.5 56 66.2 19.9
PD00276 PD00276a Pre-LN Female 170 103 25.8 6.5 1.4 3.8 2.8 1.7 90.1 13.6 6.8 4.6 0.4 327 14.1 6.3 75 75 8.6
PD00276 PD00276b Pre-LN Female 188 106 27.3 6.8 1.2 4.7 2.1 1.8 89.4 13.7 6.8 4.6 0.4 266 14.5 5.7 75 78.8 8.6
PD00277 PD00277b Control Male 111 78 24.6 6.1 1.3 3.7 2.6 1.9 92.2 13.5 5.3 4.8 0.4 315 14.8 5.4 51.6 51.6 19.1
PD00277 PD00277c Control Male 124 76 25.2 6.7 1.1 4.3 3 2.3 98.4 14.5 5.4 4.2 0.4 210 13.8 5.6 51.6 60.9 19.1
PD00281 PD00281b Pre-LN Female 116 69 29.2 5.7 1.5 3.4 1.9 1.5 93 12.8 4.4 4 0.4 315 12.5 5.4 65.8 65.8 13
PD00282 PD00282b Pre-LN Male 123 70 30.8 5 0.8 2.9 2.9 2.3 94.8 12.2 7 4.5 0.4 278 14.6 5.1 58.1 58.1 15.3
PD00282 PD00282c Pre-LN Male 131 71 33.6 5.4 0.8 3.1 3.3 2.7 97.3 13.6 6.5 4.3 0.4 269 14.3 5.6 58.1 68.3 15.3
PD00285 PD00285a Pre-LN Male 150 86 29.6 6.6 1 4.8 1.7 NA NA NA NA NA NA NA NA NA 68 68 15.2
PD00287 PD00287a Control Female 110 70 22.5 7.2 1.6 4.9 1.5 2.8 93.8 12.4 7.1 4.3 0.4 313 14.1 NA 47.7 47.7 22.9
PD00289 PD00289b Control Male 147 88 23.8 7.5 1.5 4.8 2.8 1.4 86.3 14.3 4.8 4.4 0.4 220 14.2 5.6 65.3 65.3 19.2
PD00289 PD00289c Control Male 166 87 23.6 5.2 1.8 2.3 2.6 1.9 84.8 15.9 6.1 4.5 0.4 240 12.8 6.5 65.3 74.9 19.2
PD00292 PD00292b Control Female 147 80 20.9 10 2.3 6.9 1.8 2.6 95.9 12.3 8.5 4.1 0.4 282 14.1 5.9 72.6 72.6 19
PD00292 PD00292c Control Female 146 70 22.8 4 1.9 1.8 0.8 1.7 93.8 13 6.3 4.1 0.4 216 13.3 6.3 72.6 82.4 19
PD00294 PD00294b Control Male 153 90 25.9 5.6 1.1 3.5 2.3 1.3 90.5 13.6 6.2 4.2 0.4 255 13.9 5.8 77.5 77.5 18.4
PD00294 PD00294c Control Male 160 88 26.4 4.9 1.3 3.1 1.1 1.2 89.6 15.7 6.6 4.3 0.4 305 13.3 5.9 77.5 87.3 18.4
PD00297 PD00297b Pre-LN Female 136 82 21.9 6.7 1.9 4.1 1.7 2 92.3 13.9 5.9 4.4 0.4 240 13.3 6 55.9 55.9 10.4
PD00299 PD00299b Pre-LN Male 120 72 30.2 6.4 1.6 4.2 1.5 2.3 90.3 14.8 5.1 5.1 0.5 263 14.9 5.7 54.4 54.4 6.7
PD00301 PD00301b Pre-LN Male 144 92 29.4 5.2 1.5 2.7 2.3 1.6 90.8 13 6.5 5 0.5 171 15.3 5.8 66.9 66.9 2.2
PD00302 PD00302b Control Female 157 96 31.7 6.5 1.7 3.3 3.5 2.1 87.2 12.1 6 4.8 0.4 324 14.2 7.7 71.6 71.6 18.5
PD00304 PD00304a Pre-LN Female 160 95 28.5 5.4 1.2 2.5 3.6 2.3 85.9 12.6 7 4.3 0.4 294 13.3 5.7 62.6 62.6 8.2
PD00304 PD00304b Pre-LN Female 162 94 27 5 1.2 2.5 3 3.9 88 12.6 6.6 5.5 0.5 315 16.6 6.1 62.6 66.5 8.2
PD00304 PD00304c Pre-LN Female 142 79 26.5 4.3 1.2 1.9 2.7 1.7 90.2 13.9 8 3.8 0.3 309 11.8 6.7 62.6 75.5 8.2
PD00310 PD00310a Pre-LN Male 148 93 26 5.9 1 3.6 3 2.5 85.8 14.2 7.1 5.5 0.5 182 15.2 5.4 65.4 65.4 17.4
PD00310 PD00310b Pre-LN Male 174 102 26.6 6.8 1.1 3.5 5 2.2 82.2 14.6 8.3 5.6 0.5 192 16.3 5.5 65.4 67.9 17.4
PD00310 PD00310c Pre-LN Male 146 72 27.9 4 1.1 1.9 2.2 2.6 89.3 13.7 7.4 4.8 0.4 136 14.6 6.1 65.4 79.1 17.4
PD00312 PD00312b Control Male 130 74 26.7 4.8 1.4 3 0.9 1.7 97.7 12.1 6.2 3.9 0.4 194 14.3 5.2 57 57 19.1
PD00312 PD00312c Control Male 142 90 27.7 5.3 1.6 3.2 1.1 2 101.6 14.2 5.7 4 0.4 162 14.1 5.6 57 66.7 19.1
PD00318 PD00318a Pre-LN Female 120 76 23.3 6.8 1.3 4.7 1.7 NA NA NA NA NA NA NA NA NA 53 53 20.2
PD00322 PD00322a Pre-LN Male 139 82 22 4.9 1.2 3 1.6 2 87.8 13.4 7.4 4.9 0.4 284 14.8 6 60 60 8.5
PD00322 PD00322b Pre-LN Male 146 88 22.9 5.1 1.2 3.2 1.6 1.9 89.2 13.2 8.5 4.9 0.4 264 15.1 5.7 60 63.8 8.5
PD00330 PD00330b Pre-LN Male 134 84 21.5 4.9 1 3.1 1.8 1.8 88.7 12.7 6.3 4.2 0.4 260 13.8 5.3 53.3 53.3 15.2
PD00330 PD00330c Pre-LN Male 116 61 22.3 4 0.8 2.8 1.3 2.1 89.7 14.5 4.9 3.7 0.3 142 11.1 5.3 53.3 62.7 15.2
PD00332 PD00332a Pre-LN Male 118 70 20.1 6.6 2 4 1.4 3.8 93.4 13 12.6 4.2 0.4 279 12.9 5.7 68 68 9.2
PD00332 PD00332b Pre-LN Male 92 60 19.5 6.6 1.9 4.2 1.1 2.4 94.7 13.6 8.3 4.1 0.4 341 13.1 6.3 68 71.9 9.2
PD00334 PD00334b Control Female 104 65 23.8 6.9 1.9 4.8 0.6 2 99.7 12.1 5 4.3 0.4 261 14.3 5 47.9 47.9 17.6
PD00336 PD00336b Control Male 106 74 26.6 6.2 1.2 4.4 1.4 1.7 88.5 13.3 5.6 4.3 0.4 178 14.2 5.7 65.8 65.8 11.3
PD00336 PD00336c Control Male 102 70 NA 4.2 1.4 2.3 1.3 1.5 90.4 14.2 6.8 4.1 0.4 218 12.8 5.9 65.8 74.9 11.3
PD00337 PD00337a Control Female 116 78 29.4 5.6 1.9 2.9 1.7 1.9 88 13.5 7.2 4 0.4 293 12 NA 49.5 49.5 22.2
PD00338 PD00338b Pre-LN Female 131 75 24.9 6.5 1.6 4.3 1.4 2.1 89.7 13.5 6.4 4.3 0.4 251 12.7 5.6 72 72 9.5
PD00341 PD00341b Control Female 148 98 24.8 5.1 1.7 2.8 1.4 2 92 12.8 8.5 4.6 0.4 245 15.7 4.8 55.7 55.7 18.2
PD00341 PD00341c Control Female 142 94 27.9 5 1.8 2.6 1.4 2.1 90 NA 6.2 5.1 0.5 306 15.2 5.3 55.7 63.8 18.2
PD00345 PD00345a Pre-LN Male 145 80 28.3 5.2 1.3 3.1 1.9 2.6 101 13 9.2 4.6 0.5 227 14.8 5.2 61.6 61.6 12.8
PD00345 PD00345c Pre-LN Male 145 89 25.4 4.5 1.7 2.6 0.6 1.9 104 14.7 6.9 4.2 0.4 191 14.5 5.6 61.6 73.7 12.8
PD00350 PD00350b Control Male 150 90 28.8 5.6 1.6 3.6 0.9 2.1 88.8 13.5 7.1 5.6 0.5 272 16.5 5.9 61.8 61.8 16.2
PD00351 PD00351a Pre-LN Female 120 76 28.4 6.6 1.8 4.4 0.9 2.5 86.5 13.5 6 4.4 0.4 336 13.5 NA 54.7 54.7 13.9
PD00353 PD00353b Control Male 133 93 34.7 6 0.9 4.4 1.7 1.8 91 13.8 5.8 5.2 0.5 214 16 5.4 71.5 71.5 18.7
PD00353 PD00353c Control Male 110 70 31.4 4.2 1.6 2.2 0.9 NA 95 16.9 6.8 5 0.5 184 15.8 6 71.5 80.5 18.7
PD00355 PD00355a Control Male 140 94 30.6 9.4 1.7 6.5 2.7 2.1 92.7 12.2 5.9 5.3 0.5 269 16.1 5.4 48.9 48.9 22.2
PD00355 PD00355c Control Male 134 90 31.6 5.3 1.4 2.8 2.5 2.7 93 NA 7.9 4.7 0.4 253 14.7 6 48.9 60.5 22.2
PD00356 PD00356b Control Female 155 88 27.2 6.6 1.7 3.5 3.1 2 92.2 11.8 5.2 4.7 0.4 148 15.2 9.7 76.3 76.3 13.9
PD00356 PD00356c Control Female 148 68 30.5 5.3 1.8 2.5 2.3 1.9 92.7 14 7.4 4.3 0.4 194 13.8 7.5 76.3 85.9 13.9
PD00360 PD00360b Control Female 122 73 26.6 6.1 1.4 4.2 1.1 1.7 88.2 12 5.7 4.5 0.4 190 13.8 5.2 56.6 56.6 18.1
PD00360 PD00360c Control Female 132 66 28.2 6.1 1.3 4.4 0.9 NA 93.7 12.7 3.7 4.2 0.4 182 13.2 5.5 56.6 66.6 18.1
PD00361 PD00361b Control Male 110 76 26 5.2 1.8 2.9 1.1 2.2 91.1 13.7 5.9 4.6 0.4 321 14.8 5.1 50.1 50.1 18.2
PD00363 PD00363b Control Male 154 92 31.4 5.8 1.1 3 3.9 2.6 91.8 13 7.8 4.5 0.4 340 14.1 6.5 74.5 74.5 18.5
PD00365 PD00365b Control Female 122 74 23.7 5.3 1.5 3.1 1.7 2.4 89.6 12.7 7.2 4 0.4 251 12.8 5.4 52.3 52.3 18.3
PD00365 PD00365c Control Female 112 82 23.7 6.5 1.5 3.6 3.1 2.5 93 14.4 7.6 4 0.4 246 12.9 5.9 52.3 63 18.3
PD00367 PD00367a Control Female 128 83 22.3 6.7 2.1 4.3 0.8 2.8 89.4 11.9 6.8 3.5 0.3 218 11.3 5 60.1 60.1 21.4
PD00369 PD00369b Pre-LN Female 125 74 22.7 6.3 1.6 3.9 1.8 1.4 88.9 15.1 3.8 5 0.4 214 14.4 5.6 68.8 68.8 12.1
PD00369 PD00369c Pre-LN Female 122 62 24.9 4 1.5 0.6 4.3 1.2 94.3 14.1 4.8 4.4 0.4 196 13.5 6 68.8 76.8 12.1
PD00371 PD00371b Pre-LN Male 142 67 21.6 4.6 0.8 3 1.9 1.6 93.4 14.3 5.5 3.6 0.3 259 11.4 5.9 66.7 66.7 2.2
PD00377 PD00377a Pre-LN Male 144 94 22.9 4.5 1.5 2.5 1.1 1.7 82.1 12.8 4.9 4.8 0.4 229 13.9 4.8 53.4 53.4 6.8
PD00377 PD00377b Pre-LN Male 132 79 22 4.4 1.7 2.3 1 1.5 86 13.3 7.5 4.9 0.4 228 14.5 5.2 53.4 56 6.8
PD00377 PD00377c Pre-LN Male 136 78 23.6 4.1 1.4 2.1 1.3 1.5 88.8 13 5.8 4.7 0.4 191 14.1 5.4 53.4 66.1 6.8
PD00379 PD00379b Control Male 140 83 25.2 4.3 1 2.9 0.9 2.5 81.2 14.3 7.8 5.2 0.4 136 13.8 6 74.1 74.1 13.1
PD00380 PD00380c Control Female 133 63 24.7 7.7 2.7 4.4 1.4 2.1 87.8 13.7 5.6 4.7 0.4 234 13.9 5.2 61.4 61.4 9.9
PD00385 PD00385b Control Male 117 76 24.8 6 1.5 3.3 2.7 2.5 84.9 14.4 7.3 4.9 0.4 178 15 5.6 58.3 58.3 18.9
PD00385 PD00385c Control Male 149 84 23.7 5.8 1.6 3.6 1.3 2.3 86.5 15.2 7 5.1 0.4 170 14.9 5.4 58.3 66.7 18.9
PD00386 PD00386a Pre-LN Female 110 62 22.4 3.4 1 1.9 1.1 NA NA NA NA NA NA NA NA NA 47.3 47.3 8
PD00388 PD00388b Control Male 118 76 25.8 6.8 1.5 4.6 1.7 1.2 93.3 12.7 5.3 5.2 0.5 274 15.7 5.5 73.4 73.4 19.5
PD00389 PD00389b Control Female 150 87 31 7.3 1.2 5.4 1.6 1.5 96.2 12.2 4.8 4.3 0.4 215 13.6 5.4 66.4 66.4 19.8
PD00390 PD00390b Control Female 137 80 23.6 7.7 1.6 5.7 1 3.1 89.2 13 6.5 4.4 0.4 202 13.5 5.8 60 60 18.5
PD00394 PD00394b Pre-LN Male 142 82 21.1 4.2 1.3 2.5 0.9 2 90.8 12.5 8.7 4.4 0.4 453 12.9 5.9 80.1 80.1 8.6
PD00399 PD00399a Pre-LN Male 130 86 25.2 6.4 1.5 4.3 1.3 NA NA NA NA NA NA NA NA NA 56.7 56.7 6
PD00399 PD00399b Pre-LN Male 136 90 26.2 6.2 1 4.7 1.2 1.2 89.5 13.5 3.4 4.5 0.4 241 13.1 6 56.7 61.5 6
PD00403 PD00403b Control Male 140 73 24.4 5.2 0.9 3.2 2.5 1.6 88.8 14.4 7.5 5.7 0.5 296 16.5 5.8 69.1 69.1 12.6
PD00410 PD00410b Control Female 142 86 24.4 8.6 1.2 6.4 2.2 2 90.1 14.5 6.2 4.5 0.4 352 13.6 5.2 61.2 61.2 18.7
PD00414 PD00414b Control Female 100 58 19.8 6.9 2.7 4 0.6 2 87.5 12.3 5.5 4.3 0.4 197 13.3 5.3 63.5 63.5 18.8
PD00415 PD00415a Control Female 172 108 27.7 7.6 1.4 5.1 2.4 2.1 83.4 13.1 6.6 4.4 0.4 158 12.4 5.7 58 58 21.6
PD00417 PD00417a Pre-LN Male 134 84 20.7 6.1 1.4 4.2 1.1 0.9 84.5 13.8 3.5 4.5 0.4 138 12.5 5.1 65.3 65.3 12.3
PD00417 PD00417b Pre-LN Male 143 84 21.8 7 1.3 4.3 3.1 1.3 85.1 14.1 4.9 5.3 0.5 207 15.5 5.3 65.3 67.7 12.3
PD00421 PD00421c Control Female 100 58 24.6 3.5 1 1.9 1.4 1.3 88.2 13.5 4.8 4.2 0.4 194 12.8 7 59.4 59.4 4.7
PD00425 PD00425a Pre-LN Female 149 75 23.4 8.7 1.4 6.2 2.6 2.5 89.4 12.4 6.2 4.3 0.4 160 13.2 5 72.5 72.5 17.7
PD00426 PD00426b Control Female 150 80 25.7 5.5 1.9 2.8 1.9 2.3 87.8 14.2 8.7 4.4 0.4 295 13.5 6.1 70.2 70.2 19
PD00427 PD00427b Pre-LN Female 117 72 28.9 6.6 1.5 4.3 1.9 2.1 94.5 13.9 6.4 4.5 0.4 269 13.7 5.1 48 48 13.3
PD00429 PD00429a Control Male 170 92 28.4 7 1.4 4.8 1.8 2 66.7 14.4 5.9 6.3 0.4 293 13.1 5.2 64.1 64.1 20.5
PD00431 PD00431b Control Female 164 84 28.3 7.2 1.9 3.9 3.2 1.8 87.8 13.4 5.5 4.8 0.4 227 14.6 5.5 77.3 77.3 18.6
PD00448 PD00448a Pre-LN Female 134 76 23.3 5.3 1.5 3.4 0.8 1.4 90.4 13.4 6.4 4.5 0.4 299 14 NA 65.7 65.7 14.2
PD00448 PD00448b Pre-LN Female 127 67 23.9 4.9 1.1 2.9 2 1.4 94.1 13.6 5.3 4.4 0.4 232 14.4 6.2 65.7 69.8 14.2
PD00449 PD00449a Pre-LN Female 122 86 30.4 4.6 1 2.7 2 1.7 90.6 12.9 6.3 4.7 0.4 162 14.2 5.9 45.9 45.9 15.9
PD00449 PD00449b Pre-LN Female 124 82 30.9 4.7 1 3 1.7 1.9 88.8 12.9 6.8 4.8 0.4 220 13.6 5.4 45.9 48.3 15.9
PD00451 PD00451a Control Female 120 78 24.2 5.3 2.3 2.6 0.8 1.8 90.2 12 6.8 3.9 0.4 169 12.5 NA 51.5 51.5 22.5
PD00452 PD00452b Control Male 114 86 25.9 6 1 3.6 3.2 1.8 95.8 12.1 5.3 4.4 0.4 165 14.4 5.6 68.8 68.8 17.9
PD00454 PD00454b Control Female 126 60 25.3 8.5 0.9 5 5.8 2 92.7 12.8 5.5 3.7 0.3 200 12 5.4 75.8 75.8 18.5
PD00455 PD00455a Pre-LN Female 168 94 24.7 7.9 1.9 5.5 1.1 2.6 98.3 14.3 6.9 3.9 0.4 344 13.3 NA 68.3 68.3 6.9
PD00455 PD00455b Pre-LN Female 179 102 25.4 6.3 1.7 4.2 0.9 2 99.3 15.3 6.6 3.6 0.4 327 12.8 5.9 68.3 71.9 6.9
PD00462 PD00462a Control Male 145 88 34.2 5 1.5 2.9 1.4 1.5 91.6 13.3 5.8 4.8 0.4 258 15.7 NA 70.2 70.2 20.7
PD00462 PD00462c Control Male 106 72 31.7 3.8 1.3 1.8 1.6 1.1 99 15.9 5.1 4.3 0.4 267 13.9 8.3 70.2 82 20.7
PD00464 PD00464b Pre-LN Female 159 98 23.8 4.7 1.6 2.8 0.8 2.1 97.3 13.3 6 4.4 0.4 198 13.1 5.4 64.3 64.3 5.4
PD00465 PD00465b Control Female 155 96 28.3 7.6 2 5.2 0.9 1.5 89.1 12.9 4.8 5 0.4 330 15.8 5.1 70 70 19.1
PD00478 PD00478a Control Female 138 76 28.5 5.7 1.4 3.6 1.6 3.5 88.3 13.6 9.4 4.7 0.4 209 13.9 5.3 75 75 20.9
PD00482 PD00482a Control Female 132 82 31.5 6.4 1.6 3.5 2.8 2.4 90 13.3 6 4.3 0.4 209 12.9 5.7 61.6 61.6 21.8
PD00483 PD00483a Pre-LN Female 134 90 27.6 6.2 1.6 3.7 1.9 NA NA NA NA NA NA NA NA NA 59.7 59.7 16
PD00484 PD00484b Control Male 138 84 25.4 4.3 1.5 2.2 1.4 1.5 94.1 12.6 5 4.3 0.4 152 14.2 5.5 68.9 68.9 18.6
PD00485 PD00485b Pre-LN Male 144 88 25.4 5.2 0.8 3.6 1.9 1.8 87.2 13.5 5.5 4.7 0.4 227 14.5 5.1 69.9 69.9 14.2
PD00491 PD00491b Control Male 123 72 27.5 4.6 1.2 2.5 2 2.6 87.7 14 5.2 5.4 0.5 320 15.9 4.7 68.6 68.6 18.5
PD00494 PD00494a Control Female 178 102 31.4 7.1 1.6 4.5 2.1 1.8 85.6 13.7 5.8 4.8 0.4 301 14.1 NA 67.5 67.5 23.2
PD00494 PD00494c Control Female 136 60 33 4.7 1.6 2.4 1.6 1.8 88 NA 7.2 4.6 0.4 303 13.3 6.8 67.5 79.8 23.2
PD00496 PD00496b Control Male 128 85 25.4 8.1 1.4 5.8 2 1.5 90.1 12.3 5.8 4.7 0.4 392 14.7 5.4 52.3 52.3 18.6
PD00497 PD00497b Pre-LN Female 138 79 24.8 6.8 1.3 4.5 2.3 3.8 90.4 13.2 8.6 4.4 0.4 341 12.5 5.8 58.3 58.3 3.2
PD00506 PD00506a Pre-LN Female 146 88 25.8 6.4 2.1 4 0.8 2.1 93.4 13.1 6.6 4.1 0.4 304 13.6 4.7 67.5 67.5 14.8
PD00506 PD00506b Pre-LN Female 150 88 24.1 4.9 1.5 2.8 1.4 NA NA NA NA NA NA NA NA NA 67.5 70.2 14.8
PD00510 PD00510a Pre-LN Male 131 78 26.9 6.3 1.4 4.1 1.7 1.8 92.2 12.4 6 4.6 0.4 218 14.8 NA 53.7 53.7 13.9
PD00510 PD00510b Pre-LN Male 130 77 25.8 6.3 1.7 3.9 1.6 1.6 91.6 12.5 4.9 4.8 0.4 188 15.3 5.4 53.7 57 13.9
PD00510 PD00510c Pre-LN Male 154 76 24.2 5.4 1.2 3.3 2 1.1 93 14 4.8 4.4 0.4 185 13.9 5.3 53.7 65.5 13.9
PD00512 PD00512b Pre-LN Female 132 80 22.2 5.1 1.8 2.8 1.2 2.3 85.7 13.3 6.9 4.3 0.4 208 12.6 5.6 69.4 69.4 14.8
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PD00512 PD00512c Pre-LN Female 132 76 20.3 5.7 1.8 3.4 1.3 2.3 91 NA 9.2 4.2 0.4 264 12.4 5.6 69.4 77.8 14.8
PD00514 PD00514b Control Male 122 79 27.8 5.5 1.1 3.6 1.8 1.2 91.7 13.8 6.3 5.2 0.5 174 17.2 5.4 62.6 62.6 18.4
PD00515 PD00515a Control Male 118 72 26.5 4.3 0.8 2.8 1.5 1.6 86.6 13.2 8 4.9 0.4 304 14.8 NA 61.7 61.7 23.4
PD00515 PD00515c Control Male 133 76 27.1 4 1.1 2.4 1.1 1.7 89.3 14.6 8.9 4.9 0.4 291 14.3 5.7 61.7 76.1 23.4
PD00516 PD00516a Pre-LN Female 110 66 23 4.6 2 2.3 0.6 1.4 94.5 12.2 5.1 3.8 0.4 224 12.3 NA 49.6 49.6 10.4
PD00516 PD00516b Pre-LN Female 90 56 22.4 4 1.8 1.9 0.7 2.1 93.3 11.2 6.6 3.7 0.3 206 12.6 4.8 49.6 53.2 10.4
PD00516 PD00516c Pre-LN Female 108 64 21.3 4.1 1.9 2 0.5 0.9 99.9 13.3 3.3 3.7 0.4 176 12.4 5 49.6 63.5 10.4
PD00517 PD00517a Pre-LN Female 116 80 24.8 4.5 1.1 2.4 2.3 1.8 86.4 12.5 4.9 3.7 0.3 237 11.4 4.7 54.8 54.8 4.1
PD00517 PD00517b Pre-LN Female 128 76 25.5 5.2 1.3 3.3 1.5 2 89 13.1 5.5 4.1 0.4 328 12.4 5.3 54.8 57.8 4.1
PD00517 PD00517c Pre-LN Female 136 82 25.9 5.2 1.2 3.4 1.5 1.8 91.7 13.5 5.3 3.8 0.3 252 12.1 5.4 54.8 67.4 4.1
PD00518 PD00518a Control Female 128 68 20.8 5.5 1.4 3.3 1.7 1.7 84 13.2 5.6 4.4 0.4 277 12.4 NA 56.9 56.9 22.9
PD00519 PD00519a Control Male 121 80 25.8 6 1.2 3.9 2.1 2.6 93.2 13.3 8.3 4.7 0.4 190 14.8 4.1 60.2 60.2 15.6
PD00519 PD00519c Control Male 123 80 25.8 5.7 1.7 3.7 0.7 1.5 98 NA 5.8 4.6 0.4 NA 15.6 6.1 60.2 69.5 15.6
PD00521 PD00521a Pre-LN Female 120 81 25.9 4.5 1.1 2.7 1.5 NA NA NA NA NA NA NA NA NA 59.8 59.8 16.6
PD00525 PD00525a Control Male 142 80 23.6 6 2.6 3 0.8 1.7 93.1 13.1 8.1 4.4 0.4 349 14.2 NA 64.8 64.8 22.1
PD00528 PD00528a Pre-LN Female 140 79 24.5 6.1 2 3.7 0.9 2.6 91.8 12.8 8.3 4.2 0.4 369 12.4 4.6 62 62 11
PD00528 PD00528b Pre-LN Female 149 92 25.6 5.6 1.9 3.3 1 2.8 88.2 12.5 12.4 4.4 0.4 404 13.6 5.4 62 64.3 11
PD00530 PD00530b Pre-LN Male 130 86 27.4 4.1 1 2.6 1.2 2.4 84.7 13.6 5.6 5.4 0.5 180 15.7 5.6 57.9 57.9 15.9
PD00532 PD00532a Pre-LN Female 174 110 27.9 7.3 1.6 4.7 2.4 2.2 92.5 13.4 7.9 4.9 0.4 315 14 5.8 72 72 9.1
PD00539 PD00539a Pre-LN Female 124 74 22.5 6.8 1.8 4.3 1.6 1.9 88 13.7 7.8 4.2 0.4 315 13.1 5.5 51.2 51.2 16.4
PD00543 PD00543b Control Female 112 68 21.3 7.5 1.3 5.7 1.3 0.8 91.2 14.3 3.7 4 0.4 243 11.9 5.3 52.5 52.5 17.6
PD00543 PD00543c Control Female 120 71 22.3 4.3 1.4 2.6 0.8 1.2 91.8 15 7 3.8 0.3 221 11.8 5.8 52.5 61.3 17.6
PD00551 PD00551b Pre-LN Female 128 76 25.4 6.7 1.5 4.3 2 2 91.8 14.8 6.2 4 0.4 230 12.8 5.3 61.6 61.6 11.4
PD00551 PD00551c Pre-LN Female 122 72 24.1 4.8 1.4 2.8 1.4 2.2 96 NA 6.1 3.9 0.4 255 12.4 5.5 61.6 69.9 11.4
PD00553 PD00553b Control Male 115 68 22.7 4.4 2.1 1.9 1 2 94 13.7 6 4.4 0.4 222 15 5.3 59.9 59.9 18.2
PD00559 PD00559a Control Male 104 68 22.5 5.2 2 2.7 1.1 1.4 91.9 13.9 5.4 5 0.5 272 15.4 5 52.6 52.6 16.9
PD00561 PD00561b Pre-LN Female 134 90 20.4 6.4 2.7 3.2 1.1 1.8 90.4 14.7 6.1 3.9 0.3 245 12.1 4.8 51.4 51.4 5
PD00561 PD00561c Pre-LN Female 140 98 18.7 7.7 1.5 5.7 1.3 1.1 95.7 15.6 4.6 3.8 0.4 277 12.7 5.3 51.4 59.5 5
PD00565 PD00565b Pre-LN Female 128 74 27.9 7.1 1.4 4.6 2.6 1.4 85.5 14.2 5.2 4.4 0.4 343 12.9 5.7 73.3 73.3 11
PD00569 PD00569a Pre-LN Male 141 88 29.7 5.2 1 3.7 1.1 2.3 89.8 13.2 6.4 5.1 0.5 240 15.8 4.8 64.3 64.3 11.8
PD00569 PD00569b Pre-LN Male 148 92 30.4 4.7 0.9 3.2 1.5 2.5 91.8 13.6 7 5.1 0.5 219 16 5 64.3 67.5 11.8
PD00571 PD00571a Control Female 134 80 32.8 5.1 1.4 3.1 1.4 NA NA NA NA NA NA NA NA NA 57.8 57.8 19.6
PD00571 PD00571c Control Female 120 70 34.4 3.9 1 2.6 0.7 1.2 109.3 17 3.7 3.4 0.4 112 12.7 4.9 57.8 72.8 19.6
PD00576 PD00576b Control Male 144 82 23.1 5.2 0.8 3.8 1.5 1.8 92.9 14.3 7.9 3.7 0.3 715 11.4 5.5 74.3 74.3 13.6
PD00576 PD00576c Control Male 114 70 24.1 4.7 1.1 2.8 1.8 1.9 92 13.6 7.2 3.7 0.3 232 11.5 5.8 74.3 82.5 13.6
PD00578 PD00578a Pre-LN Female 114 72 31.2 5.1 1 3.4 1.5 NA NA NA NA NA NA NA NA NA 58.6 58.6 11.8
PD00578 PD00578b Pre-LN Female 110 62 30.3 5.7 0.9 4.1 1.7 2.3 92 12.8 6.1 4.5 0.4 205 13.6 5.7 58.6 62.5 11.8
PD00581 PD00581a Control Male 118 70 20.7 5.4 2.2 2.7 1 1.4 85.7 13.2 5.9 4.7 0.4 220 14.3 NA 48.1 48.1 22.5
PD00581 PD00581c Control Male 144 86 20.1 5.5 2.7 2.5 0.7 NA 90 14.2 4.7 4.7 0.4 228 14.2 5.6 48.1 61.5 22.5
PD00584 PD00584b Control Male 102 64 21 5.3 1.4 3.7 0.6 1.2 93.1 14.3 4.3 4.7 0.4 159 14.2 4.8 59.6 59.6 17.6
PD00585 PD00585b Pre-LN Female 148 90 25.4 8.9 1.8 6.6 1.2 1.2 84.5 13.1 3.6 4.4 0.4 136 13 5.4 75 75 10.6
PD00588 PD00588b Pre-LN Female 120 83 25.4 5.6 1.5 3.6 1.3 1.8 93.2 13.4 5.7 3.8 0.4 204 13 5.6 58.9 58.9 6.6
PD00590 PD00590b Control Female 122 72 24.3 7.1 1.4 4.7 2.2 2.2 90.8 12.9 5.9 3.9 0.4 205 12.5 5.2 58.9 58.9 18.4
PD00591 PD00591b Control Male 106 62 22.8 5.2 1.5 3.3 0.9 1.5 92.6 13.4 9.7 4.8 0.4 272 15.3 6 74.5 74.5 18
PD00591 PD00591c Control Male 140 71 23.1 3.4 1.5 1.5 0.9 1.2 94.5 13.9 6.5 4.8 0.5 187 15.3 7 74.5 82.5 18
PD00604 PD00604a Pre-LN Female 119 70 23.9 6.4 1.4 4.5 1.2 2.1 96.7 13 4.8 4.4 0.4 191 13.7 5.2 73.7 73.7 4.6
PD00604 PD00604b Pre-LN Female 126 73 24 6.1 1.5 3.8 1.9 2.2 95.7 13.7 5.9 4.3 0.4 304 13.7 5.8 73.7 76.2 4.6
PD00605 PD00605a Control Male 137 88 30.1 5.4 1.1 3.1 2.5 2.2 90.3 12.6 5.8 4.6 0.4 132 14.6 NA 57.3 57.3 23.2
PD00605 PD00605c Control Male 132 72 32.9 3.7 0.8 NA 5 2 95 NA 5.9 4.4 0.4 131 15.1 5.6 57.3 69.7 23.2
PD00606 PD00606a Pre-LN Male 132 82 26.3 8.9 1.2 5.6 4.8 2.5 95.2 12 7.4 4.3 0.4 149 13.9 5.2 54.3 54.3 8.2
PD00606 PD00606b Pre-LN Male 118 82 26.6 8 1.4 5.3 3 2.6 93.6 13.1 7.2 4.4 0.4 156 14.4 5.6 54.3 56.8 8.2
PD00606 PD00606c Pre-LN Male 106 64 28.7 4.1 2.1 1.6 1 1 95.1 14 9.1 4.2 0.4 116 13.4 NA 54.3 67.7 8.2
PD00607 PD00607b Pre-LN Male 132 94 24.7 7.4 1.4 5.3 1.7 1.5 91 13.3 5.4 4.9 0.4 196 15.9 5.7 55.9 55.9 2.9
PD00610 PD00610b Control Male 154 83 26.3 6.6 1.9 4.1 1.4 1.3 86.3 13.7 6.4 4.9 0.4 295 15.1 5.3 72.5 72.5 16
PD00611 PD00611b Control Male 139 90 29.3 6.7 1.2 4.7 1.8 NA NA NA NA NA NA NA NA 5.4 51.8 51.8 12.3
PD00611 PD00611c Control Male 148 82 29.5 6 1.6 3.9 1.2 2.2 100.3 12.9 8.1 4 0.4 221 13.6 5.8 51.8 60.4 12.3
PD00613 PD00613b Pre-LN Female 120 74 22.1 5.6 1.6 3.5 1.1 3.5 91.9 14.4 6.9 4.1 0.4 210 12.5 5.5 54.6 54.6 15.1
PD00618 PD00618a Control Female 127 85 23.5 6.4 1.5 4.3 1.2 NA NA NA NA NA NA NA NA NA 61.2 61.2 23.7
PD00618 PD00618c Control Female 153 88 24.1 4 1.4 2.2 1 NA 97.6 16 3.3 3.7 0.4 189 12.3 5.2 61.2 75.8 23.7
PD00623 PD00623a Control Female 176 108 30.9 6.2 2.1 3.4 1.6 2.2 84.6 14.4 6.1 4.9 0.4 198 13.9 5.3 67 67 21
PD00627 PD00627b Pre-LN Male 144 94 24.6 5.7 1.7 3.5 1.1 1.4 93.4 12.7 5 4.7 0.4 281 14 5.1 50.7 50.7 9
PD00627 PD00627c Pre-LN Male 146 90 23.4 6.1 2.1 3.4 1.4 1.2 97.6 15.8 4.7 4.5 0.4 212 14 5.6 50.7 59.4 9
PD00628 PD00628b Control Male 156 90 35.9 6.5 1.3 4.3 2.1 2.5 87.2 12.7 8.7 4.7 0.4 269 14.8 5.4 60.5 60.5 18.8
PD00628 PD00628c Control Male 161 88 39.4 5.9 1.2 3.5 2.7 2.8 89.8 14.1 10.6 5.1 0.5 308 14.8 5.9 60.5 68.8 18.8
PD00631 PD00631b Control Female 144 81 32.5 5.9 1.1 3.9 2.1 2.2 89.5 13.1 7 5 0.4 201 14.6 6 65.3 65.3 19.7
PD00632 PD00632a Pre-LN Female 121 79 24 6.7 2.4 4 0.7 1.9 91.9 13 6.2 4.2 0.4 280 12.5 5.3 56.6 56.6 18.9
PD00632 PD00632b Pre-LN Female 119 71 22.6 5.7 1.9 3.4 0.9 1.7 96.2 13.9 4.2 4 0.4 237 12.9 5 56.6 60.3 18.9
PD00632 PD00632c Pre-LN Female 122 73 22.9 6.6 2.5 3.8 0.8 1.8 96.6 14 6.6 4 0.4 240 12.8 5.4 56.6 70.7 18.9
PD00636 PD00636b Control Male 146 76 26.6 5.1 1 3.7 0.9 2.3 90.3 13.2 6.2 4.8 0.4 119 14.7 6.1 72.9 72.9 20.1
PD00638 PD00638a Control Female NA NA 26.4 5.4 2 2.8 1.4 2.4 90.5 12.3 6.8 4.2 0.4 248 13.5 NA 71.1 71.1 22.6
PD00639 PD00639b Control Male 136 74 23.5 6.2 1.3 3.1 4.1 2.3 91.8 13.2 6.7 4.5 0.4 166 13.3 5.4 64.7 64.7 19.5
PD00640 PD00640a Control Female 146 88 21.2 6.9 1.3 5.1 1.1 1.9 90.4 12.7 6 5.4 0.5 250 16.7 NA 68.5 68.5 22.5
PD00640 PD00640c Control Female 110 70 22.7 3.7 1.4 1.8 1.2 2 92 NA 6.4 5 0.5 262 15.5 6 68.5 81 22.5
PD00642 PD00642a Pre-LN Female 116 73 24.9 5.7 0.8 4.4 1.2 1.8 85.8 15 8.4 4.3 0.4 297 12 4.7 48.5 48.5 13.5
PD00642 PD00642b Pre-LN Female 118 73 27.1 6.3 1 4.9 0.9 2 89.9 15.3 5.6 4.6 0.4 310 13.1 5.4 48.5 50.9 13.5
PD00644 PD00644a Pre-LN Male 130 82 29.1 6.8 1.1 5 1.5 2.5 91.3 12.3 7.1 4.7 0.4 248 15.8 NA 60 60 7
PD00644 PD00644b Pre-LN Male 122 70 28.8 7.2 1.4 5.5 0.8 3 94.2 12.8 7.6 4.6 0.4 211 14.1 5.3 60 63.7 7
PD00645 PD00645b Control Male 140 96 27.1 6.3 1.3 4.5 1.3 3.4 96.1 15.3 8.4 4.6 0.4 268 15.4 5.4 67.7 67.7 17.9
PD00647 PD00647b Control Male 154 87 29.1 7.4 1 4.3 4.8 2 92 13 5.8 4.9 0.5 197 16.4 8.5 69.3 69.3 18.9
PD00651 PD00651b Control Female 152 84 22.8 6.5 1.7 4.2 1.4 0.9 88.1 13.1 5 4.8 0.4 220 13.9 5.4 71.6 71.6 20.1
PD00654 PD00654b Control Female 128 80 21.2 5.8 1.9 3.7 0.5 1.6 85 13.9 4.9 4.4 0.4 245 13.2 5.8 56.9 56.9 19.2
PD00654 PD00654c Control Female 152 70 23.1 6 1.6 3.8 1.4 2.3 89.6 14.1 8.1 4.5 0.4 274 13.6 5.8 56.9 66.5 19.2
PD00657 PD00657b Control Female 114 67 24.9 5.5 1.4 3.4 1.7 1.3 85.4 13.7 4.7 4.3 0.4 257 12.9 4.9 64.5 64.5 18.5
PD00662 PD00662b Control Male 145 88 25.4 5.5 1.2 3.3 2.3 1.7 91.9 13.5 5.4 4.8 0.4 321 15.4 5.7 71.8 71.8 18.3
PD00662 PD00662c Control Male 136 82 25.4 5.4 1.4 3 2.4 1.6 93.8 15.2 6.6 5 0.5 321 16.1 5.9 71.8 79.9 18.3
PD00666 PD00666a Pre-LN Male 134 80 21 6.3 1.6 4 1.6 NA NA NA NA NA NA NA NA NA 65.2 65.2 18.3
PD00666 PD00666b Pre-LN Male 147 76 21.6 5.5 1.3 3.7 1.1 1.4 91.4 12.3 8.6 4.1 0.4 211 12.9 5.2 65.2 69.8 18.3
PD00666 PD00666c Pre-LN Male 142 70 20.1 5.1 1.5 3.2 0.9 17.5 90.8 15.8 23.3 3.8 0.3 112 11.2 6.2 65.2 83 18.3
PD00668 PD00668a Control Male 130 82 24.1 6.2 1.7 3.8 1.7 2.8 90.7 14.7 6.2 4.3 0.4 219 13.4 5.8 67.6 67.6 9.8
PD00672 PD00672b Control Male 156 85 26.1 6.4 1.5 4.3 1.5 1 95.3 12.8 4.1 4.3 0.4 183 14.5 5.3 71.5 71.5 18.9
PD00676 PD00676a Control Female 128 62 23.9 6.2 0.8 4.6 1.8 2.2 87 12.9 5.8 3.8 0.3 245 11.5 NA 71.5 71.5 19.3
PD00676 PD00676c Control Female 196 86 20.3 5 1.1 3.5 1 2.3 90.6 15.7 6.6 3.9 0.4 283 11.6 6.1 71.5 84.1 19.3
PD00677 PD00677a Control Female 166 110 24.1 7.8 1.7 5.3 1.8 2.5 90.1 13.8 8 4.8 0.4 351 15.1 NA 65.4 65.4 23.1
PD00677 PD00677c Control Female 148 72 25.3 4.6 2.1 2 1.1 1.8 91 15.6 7.5 4.9 0.4 253 14.8 6 65.4 78.9 23.1
PD00678 PD00678a Control Female 110 70 26.7 10.2 1.7 7.4 2.5 1.7 91.4 13 6 4.5 0.4 359 13.4 5.4 58.3 58.3 20.8
PD00682 PD00682b Control Male 126 76 29.9 5.6 1 3 3.7 1.8 84 14.9 6 5.5 0.5 234 15.8 5.5 61.4 61.4 18.5
PD00683 PD00683a Control Male 128 72 24.8 4 0.8 2.7 1 2.2 87.9 18.7 6.3 3.9 0.3 341 11.5 NA 63.8 63.8 23.2
PD00684 PD00684b Pre-LN Female 155 92 40.1 4.7 1.4 2.3 2.4 2.4 90.8 13.5 6.5 4.2 0.4 147 13.4 5.6 76.8 76.8 3.2
PD00687 PD00687b Control Male 132 70 30.1 5.7 1.5 3.7 1.2 1.7 90.2 14.3 5.4 4.6 0.4 222 14.4 4.6 72.5 72.5 18
PD00688 PD00688a Control Female 118 72 19.2 5.4 2.5 2.5 0.8 1.8 93.5 13 6.5 4.3 0.4 240 14.3 5 50.7 50.7 21.5
PD00691 PD00691a Control Female 120 76 24.8 7.2 2 4.8 0.9 2 85.6 14.2 6.3 4.8 0.4 306 13 NA 50.5 50.5 22.7
PD00693 PD00693a Control Female 146 90 NA 6.1 1.2 4 1.9 2.6 84.6 14.2 7.8 5.1 0.4 310 14.7 NA 59 59 18
PD00698 PD00698a Control Male 154 100 27.4 4.7 0.9 2.6 2.7 2.4 87.6 12.8 6.4 4.8 0.4 200 14.5 5.5 66.8 66.8 19.2
PD00698 PD00698c Control Male 144 70 29.6 3.9 1.1 2.3 1.3 2 93.3 15.2 5.9 4 0.4 147 12.5 5.7 66.8 81.2 19.2
PD00705 PD00705b Pre-LN Female 146 82 22.1 8.7 1.3 6.4 2.2 1.4 92.8 13.7 3.5 4.1 0.4 245 13.3 5.7 78.6 78.6 9.9
PD00706 PD00706a Pre-LN Female 128 80 19.9 6.9 1.6 4.8 1.2 1.7 92 13.4 7.9 4.4 0.4 347 13.5 5.4 47.8 47.8 5
PD00706 PD00706b Pre-LN Female 140 82 18.5 7.2 1.6 5.1 1.3 1.8 91.9 12.6 11.7 4.4 0.4 341 14.4 7 47.8 50.7 5
PD00711 PD00711b Pre-LN Male 129 81 22.8 6.5 1.4 4.5 1.4 2.4 85.7 13.9 8 4.9 0.4 177 14.7 5.5 75.6 75.6 13.9
PD00713 PD00713b Pre-LN Male 133 87 24.1 4.3 1.7 2.3 0.7 2.8 87.2 13.1 7.4 4.6 0.4 147 13.6 5.8 65.4 65.4 4.8
PD00714 PD00714b Pre-LN Male 123 75 29.8 6.5 0.9 4.9 1.7 3.1 89.2 13.6 10.3 5.1 0.5 253 15.1 7.4 53.7 53.7 6.3
PD00715 PD00715c Pre-LN Female 134 81 29.2 6.2 1.1 3.3 4 2.4 90 NA 8.3 4 0.4 282 12.6 6.5 77.3 77.3 4.6
PD00719 PD00719a Pre-LN Female 120 70 24.2 5.9 1 4.5 0.9 NA NA NA NA NA NA NA NA NA 58 58 19.6
PD00719 PD00719c Pre-LN Female 134 79 25.8 6.7 1.4 4.7 1.5 1.9 91.7 14.7 5.1 4.7 0.4 211 14.1 5.5 58 72.5 19.6
PD00720 PD00720a Control Male 168 99 33.7 5.8 1.9 3.2 1.7 2 95.4 14.1 4.8 4.7 0.4 235 14.6 5.1 72.7 72.7 20.7
PD00723 PD00723a Pre-LN Female 106 66 22.2 4.2 2.4 1.4 0.9 1.8 92 13.1 10.4 3.8 0.3 341 11.8 5.3 50.2 50.2 17.8
PD00723 PD00723b Pre-LN Female 96 58 22.1 4.6 2.4 1.8 1 1.8 94.8 13.6 7.1 3.8 0.4 297 12.1 5 50.2 54.2 17.8
PD00724 PD00724a Control Male 126 78 29.4 4.9 1.4 2.7 1.8 1.5 87 12.9 7.4 5 0.4 300 15.1 4.7 53 53 22.1
PD00727 PD00727a Control Female 157 79 25.4 6.8 1.2 4.6 2.1 1.3 82.7 13.9 5.9 4.4 0.4 315 12.6 NA 66.9 66.9 23.2
PD00727 PD00727c Control Female 144 74 27.2 4.5 1.9 2.1 1.3 1.1 87 NA 5.3 4.4 0.4 280 12.9 6.5 66.9 79.4 23.2
PD00728 PD00728a Pre-LN Male 145 90 26.5 6.1 1.1 3.7 2.9 2.3 93.2 11.7 5.5 4.4 0.4 302 14.2 5.5 57 57 10.4
PD00728 PD00728b Pre-LN Male 137 88 28 4.4 1.1 2.5 1.9 1.9 91.7 11.7 5.1 4.4 0.4 283 14.8 5.2 57 61 10.4
PD00730 PD00730a Pre-LN Male 114 78 27.5 7.8 0.9 5 4.2 1.9 92.1 13.8 5.3 5 0.5 202 15.4 5.6 68.6 68.6 12.6
PD00730 PD00730b Pre-LN Male 112 74 27.8 6.8 1.1 3.4 5.1 1.5 93.2 12.9 4.6 5.2 0.5 259 15.2 5.6 68.6 71.6 12.6
PD00731 PD00731a Pre-LN Male 122 82 30.2 5.9 1.6 3.8 1 1.9 88.1 13.2 5.8 5 0.4 241 15.7 NA 50 50 7
PD00731 PD00731b Pre-LN Male 123 72 28.2 4.7 1.8 2.7 0.5 1.7 90.1 12.7 5.7 5 0.5 222 15.7 4.9 50 53.6 7
PD00732 PD00732b Control Female 144 78 26.4 8.7 1.1 5.5 4.8 2.6 95.1 14.6 5.5 4.3 0.4 331 14.1 5.4 73.5 73.5 13.9
PD00734 PD00734b Control Male 131 86 29.6 9.6 1.1 6.4 4.7 2.8 84.1 14.4 9.7 5.7 0.5 317 16.5 4.8 56.8 56.8 18.2
PD00734 PD00734c Control Male 130 84 27.3 3.7 1.2 1.7 1.8 3 91.4 14.6 7.2 4.9 0.4 359 14.6 5.2 56.8 64.6 18.2
PD00737 PD00737b Control Male 170 99 28.5 6.7 1.2 4.5 2.3 1.8 94 13.2 6.3 4.6 0.4 255 15.7 5.1 71.6 71.6 19
PD00737 PD00737c Control Male 151 82 30.2 4.4 2 2 1 0.8 95.3 14 10.5 3.9 0.4 320 12.4 6 71.6 80 19
PD00738 PD00738b Control Female 142 82 23.7 8 2.2 5.2 1.4 2.6 88 12.7 8.4 5.4 0.5 355 14.9 5.3 52.6 52.6 18.1
PD00739 PD00739a Pre-LN Female 150 94 29.7 7 1.1 4.9 2.4 2.1 92.2 12.6 6.8 4.6 0.4 359 13.7 5.2 60.1 60.1 14.3
PD00740 PD00740b Control Female 146 88 30.2 5.2 1.2 3.5 1.3 2.1 87.4 14.6 6.4 4.8 0.4 434 14.5 5.5 65.7 65.7 18.3
PD00740 PD00740c Control Female 150 86 30.4 5.6 1.4 3.3 2.1 2.2 89.4 15.2 7.2 4.6 0.4 379 13.8 5.9 65.7 74.3 18.3
PD00744 PD00744b Pre-LN Male 135 84 26.8 4.9 1.4 3.2 0.8 2.1 86.6 14.2 4.7 4.2 0.4 334 12.8 5.3 61.1 61.1 10.7
PD00745 PD00745a Control Male 127 82 27 5.7 1.9 3.3 1 1.7 95.1 11.8 5.6 4.4 0.4 181 14.6 5.6 63.6 63.6 22.2
PD00746 PD00746b Control Female 154 89 23.3 8.8 1.8 6.7 0.8 1.6 91.2 13.5 4.3 4.6 0.4 264 14.1 5.2 55.8 55.8 18.5
PD00748 PD00748b Control Female 158 86 24 6.6 1.3 4.6 1.6 1.5 88.7 13.5 6 4 0.4 234 12.3 5.6 71.9 71.9 16.5
PD00748 PD00748c Control Female 137 74 25.5 4.2 1.8 2.1 0.8 1.3 89.2 14.3 5.7 4 0.4 284 11.8 6.1 71.9 82.4 16.5
PD00749 PD00749a Control Female 133 84 26.8 7.1 1 5.3 1.7 2.3 91.8 15 5.4 4.9 0.4 212 15 NA 70.3 70.3 23.7
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PD00749 PD00749c Control Female 160 91 27.3 6.5 0.7 NA 4.6 1.1 82.4 15.4 4.7 4.3 0.4 241 11.3 6.7 70.3 84.7 23.7
PD00751 PD00751a Control Male 122 78 30.9 5.8 1.1 2.9 3.9 2 88.6 12.8 7.9 4.7 0.4 216 15.3 NA 58.6 58.6 22.5
PD00754 PD00754b Control Female 182 106 28.7 6.4 2 3.8 1.5 1.3 87 14 6.6 4.3 0.4 180 13.3 5.2 79.5 79.5 16.1
PD00756 PD00756a Control Male 128 74 30.5 6 1 4.3 1.5 2.2 85.2 14.9 6.3 5.4 0.5 145 15.6 5.7 67.5 67.5 21.6
PD00756 PD00756c Control Male 126 62 34.9 3.9 1 2.4 1.1 1.5 91.7 16 7.6 4.9 0.4 118 14.6 6.6 67.5 80.5 21.6
PD00761 PD00761a Control Female 146 86 23.9 6.7 2 4.3 0.9 1.6 90.1 13 5.8 4.1 0.4 269 13.2 NA 49.6 49.6 22.5
PD00763 PD00763b Control Female 116 72 30 7.2 1.5 4.9 1.9 2.4 95 15.3 7.3 4.6 0.4 243 14.1 5.1 50 50 17.8
PD00764 PD00764b Pre-LN Female 137 84 25.4 7.7 1.7 5.2 1.8 2 87.1 13 5.7 4.1 0.4 284 12.7 5.4 56.7 56.7 9.8
PD00765 PD00765a Control Male 124 76 29.9 5.4 1 3.6 1.7 1.1 91 14 3.9 4.5 0.4 198 14.3 NA 75 75 23
PD00772 PD00772b Control Female 134 80 24.9 6.1 1.4 3.3 3.1 1.8 91.5 14 7.1 4.3 0.4 261 14.1 5.1 77.4 77.4 18.9
PD00772 PD00772c Control Female 129 68 22.9 3.6 1 2 1.4 1.9 90.6 14.9 14.9 3.5 0.3 541 10.5 6.1 77.4 85.9 18.9
PD00773 PD00773a Pre-LN Female 100 60 21.8 5.7 2.2 3 1.1 1.7 95.2 12.2 5.6 4.3 0.4 190 13.7 NA 60.7 60.7 10.4
PD00774 PD00774b Control Male 129 72 27.4 3.6 1.4 1.9 0.8 2.2 88.1 12.7 6.3 5.2 0.5 229 15.9 5.3 58.4 58.4 19.4
PD00775 PD00775a Control Male 153 88 25.2 4.7 1.3 3 0.8 1.8 93.7 12.9 6.5 4.8 0.5 205 15.6 NA 47.8 47.8 22.9
PD00776 PD00776b Control Female 156 92 27.1 7.4 2 4.5 2 2.4 94.4 13.2 5.6 3.8 0.4 285 12.5 6 68.5 68.5 18.4
PD00776 PD00776c Control Female 148 84 22 8.1 1.8 5.5 2.1 NA 100.6 13.8 5.2 3.9 0.4 311 12.8 6.2 68.5 77.8 18.4
PD00780 PD00780b Control Male 134 92 28.4 6.7 1.1 4.3 3 2.5 93 12.4 6.4 4.4 0.4 284 13.2 6.1 68.9 68.9 19.8
PD00780 PD00780c Control Male 141 93 29 8.2 1.2 5 4.5 2.4 90.6 14.8 6.9 4.4 0.4 317 13.4 6.3 68.9 79.3 19.8
PD00781 PD00781b Control Male 134 88 27.3 6.6 1.3 4.5 1.9 2.2 91.2 13.7 6.3 4.8 0.4 349 14 5.4 61.8 61.8 17.5
PD00783 PD00783a Control Female 158 95 31.1 8.3 1.9 5.4 2.2 2.3 78.3 14.2 7.1 4.9 0.4 231 12.5 5.7 53.3 53.3 20.8
PD00783 PD00783c Control Female 156 83 31.4 7.8 1.8 5.3 1.6 2 87.8 13.2 6.5 4.4 0.4 240 13.3 5.6 53.3 64.2 20.8
PD00786 PD00786b Control Male 118 72 25.4 5.6 1.2 3.9 1.3 2.3 88.5 14 6.6 5.3 0.5 236 16 4.8 60.5 60.5 19.3
PD00787 PD00787b Pre-LN Female 118 77 28.1 6.5 1.2 4.6 1.7 2 89.2 14.1 5.4 4.7 0.4 309 13.8 5.1 63.4 63.4 4.2
PD00790 PD00790a Control Male 128 88 23.8 5.8 1.2 3.7 2.1 2 89.3 13.5 6.4 4.9 0.4 262 14.3 5.5 50.6 50.6 20.9
PD00791 PD00791a Control Male 128 83 28.2 4.1 0.9 2.6 1.3 2.2 90.1 12.8 7.1 4.5 0.4 219 14.1 NA 59 59 23.6
PD00791 PD00791c Control Male 140 78 30 4.1 1 2.6 1.3 1.6 94.1 14 7.4 4.5 0.4 202 14.2 6.7 59 73.3 23.6
PD00792 PD00792a Control Male 122 72 26.1 5.1 1 3.1 2.2 2.6 88.7 13.3 7.9 5 0.4 268 15 5.3 66.7 66.7 20.8
PD00793 PD00793b Pre-LN Female 116 78 27.2 6.9 1.7 3.9 2.9 2.6 87.1 12.9 6.8 3.7 0.3 304 11.1 5.1 66 66 6.6
PD00793 PD00793c Pre-LN Female 111 72 25.5 7 1.2 4.8 2.2 1.7 88.5 14.3 5.8 4.3 0.4 228 12.9 5.7 66 76.1 6.6
PD00794 PD00794a Control Male 110 67 26.4 6.2 1.6 4 1.4 1.9 89.7 12.3 7 4.9 0.4 268 14.8 5.1 48.2 48.2 21.8
PD00794 PD00794c Control Male 116 71 27.6 6.6 1.8 4.3 1.2 1.1 92.3 12.8 5.3 4.9 0.5 217 15.1 5.7 48.2 61.9 21.8
PD00795 PD00795b Pre-LN Male 128 76 23.8 6.4 0.8 4.2 3.2 1.2 92.5 12.5 5.1 4.5 0.4 195 14.2 5.4 68.2 68.2 1.7
PD00795 PD00795c Pre-LN Male 135 81 24.2 3.2 0.9 1.5 1.9 1.6 97 NA 5.6 3.6 0.3 300 11.8 5.8 68.2 76.5 1.7
PD00799 PD00799a Control Male 120 76 26.3 6.3 1.4 4.1 1.9 2.1 93.3 13.2 7 4.8 0.5 280 14.8 7.6 61.7 61.7 19.8
PD00799 PD00799c Control Male 112 74 24.2 4.9 1.4 3.1 1 1.5 92 NA 9.1 4.1 0.4 241 12.7 7.7 61.7 71.9 19.8
PD00800 PD00800a Control Male 140 81 23.2 5.1 1.6 2.8 1.5 2.2 89.3 12.8 6.3 4.9 0.4 232 15.2 5.3 65.6 65.6 21.8
PD00802 PD00802a Control Male 107 64 25.2 7.7 1.1 5.3 2.9 3.6 89.7 14.2 10 5.1 0.5 226 15.3 5 44.4 44.4 21.5
PD00804 PD00804b Control Female 124 72 23.9 5.3 2.1 2.7 1.2 1.9 93 13 5.5 4 0.4 154 13.6 5.3 58.1 58.1 19.1
PD00806 PD00806b Control Male 135 88 26.2 5.2 1.7 3 1.2 2 89 13.5 6.3 4.8 0.4 293 14.1 5.3 58.3 58.3 18.2
PD00806 PD00806c Control Male 149 88 27.5 4.3 1.6 2.2 1.3 2.2 90.3 13.9 7.8 4.6 0.4 273 14.5 5.4 58.3 66.4 18.2
PD00807 PD00807b Control Male 121 68 32.3 4.7 1 2.2 3.5 2 92.8 12.9 6.6 4.7 0.4 114 15.4 5.4 70.9 70.9 17.2
PD00812 PD00812b Control Female 122 74 27.7 6.2 2.7 3.1 1.3 2.1 89.2 13.4 7.7 4.5 0.4 406 13.7 5.1 53.9 53.9 18.2
PD00813 PD00813b Control Female 152 90 24.7 6.1 1.5 3.2 3.2 2.3 87.7 12.6 8 4.6 0.4 178 14.2 5.4 76.8 76.8 19.4
PD00814 PD00814a Control Female 171 108 28.9 6.4 1.8 4 1.2 1.8 91 12.7 5.9 4.2 0.4 193 13.2 NA 72 72 19.9
PD00819 PD00819b Pre-LN Male 144 88 27.8 4.8 0.8 3 2.2 2.7 85.2 15.3 7.9 4.6 0.4 337 12.9 5.2 61.7 61.7 3.7
PD00820 PD00820a Pre-LN Male 134 84 27.2 4.4 1.3 2.8 0.8 3.8 96.2 13.4 9.8 4.7 0.5 273 15.3 4.4 70.5 70.5 10
PD00820 PD00820b Pre-LN Male 125 74 26.4 4.2 1.4 2.7 0.5 2 97.9 14 7 4 0.4 285 12.6 4.8 70.5 73.7 10
PD00821 PD00821a Control Female 154 96 32 7.8 1.1 5.9 1.9 2.9 88.7 12.5 7 4 0.4 287 12.5 5.2 54.7 54.7 21.1
PD00827 PD00827c Control Male 126 80 26.3 5.4 1.1 3.3 2.2 1.2 96.9 14.2 4.2 4.6 0.4 179 15.1 5.8 75 75 7.2
PD00831 PD00831c Control Male 159 84 31.6 3.5 0.8 1.8 2.1 2.3 93.1 14.3 8.1 4.5 0.4 151 14.4 5.7 72.9 72.9 6.5
PD00833 PD00833c Control Male 138 74 24.2 3.5 1.5 1.5 1.1 1.4 93.3 13.7 6.6 4.4 0.4 172 13.6 6 75.2 75.2 8.9
PD00835 PD00835c Control Female 125 74 30.3 5.6 1.9 2.9 1.8 NA 106.6 17.8 6.1 4.1 0.4 203 13.2 6.4 61.8 61.8 8.9
PD00836 PD00836c Control Male 139 94 28.6 6.9 1.1 5.3 1.2 1.3 86.5 15.7 5.1 5.2 0.4 240 15.2 5.5 66.2 66.2 9.7
PD00844 PD00844c Control Female 129 80 24.9 5.1 1.8 2.8 1.1 1.5 93.7 15.3 4.5 3.9 0.4 216 12.7 4.9 58.1 58.1 9.9
PD00849 PD00849c Control Female 108 68 20.5 5 1.7 2.8 1.1 2.3 95.5 13.1 6.4 3.9 0.4 190 12.8 5.6 55.1 55.1 7.4
PD00852 PD00852c Control Female 142 78 22.8 5.9 2.9 2.8 0.5 2.6 101.2 15 5.2 4.2 0.4 182 13.2 5.9 75 75 9.1
PD00856 PD00856c Control Female 123 72 24.5 4.9 1.6 2.5 1.8 2.1 92.3 13.6 7.5 4.2 0.4 258 13.1 5.5 72.2 72.2 10
PD00860 PD00860c Control Male 126 76 26.8 5.2 1.2 3 2.2 1.9 89.5 13.8 9.1 4.9 0.4 200 14.6 NA 61.2 61.2 8.7
PD00861 PD00861c Control Female 158 77 54.2 3 1 1.3 1.7 1.8 86.7 14.9 8 4 0.4 238 11.7 7.4 67 67 7
PD00864 PD00864c Control Male 164 88 24 3.8 2.1 1.6 0.4 2 94.1 13.3 7.9 4.6 0.4 176 14.6 5.8 75.5 75.5 6.5
PD00865 PD00865c Control Male 128 77 30.1 6.9 1.3 4.6 2.2 1.6 83.6 13.1 8.6 5.7 0.5 135 16.1 6 78.5 78.5 7.7
PD00866 PD00866c Control Male 149 84 23.7 5.8 1.6 3.6 1.3 2.3 86.5 15.2 7 5.1 0.4 170 14.9 5.4 66.7 66.7 10.5
PD00870 PD00870c Control Female 108 68 32.3 7 1 5 2.2 1.5 90.2 14.1 5.2 4.8 0.4 221 14.5 5.8 60.7 60.7 7.1
PD00889 PD00889c Control Female 136 70 24.1 5.2 2.3 2.6 0.7 2.4 96 14.4 5.6 4.3 0.4 161 14.1 5.9 70.1 70.1 7.1
PD00890 PD00890c Control Male 151 82 30.2 4.4 2 2 1 0.8 95.3 14 10.5 3.9 0.4 320 12.4 6 80 80 10.6
PD00893 PD00893c Control Male 124 61 25.8 3.8 1.5 2.1 0.6 1.1 91.4 14.5 5.3 4.2 0.4 216 13.1 7.9 75.9 75.9 3.5
PD00894 PD00894c Control Female 103 78 28.1 7.2 2.5 4.3 1 2.2 97.9 13.9 4.1 3.9 0.4 239 12.9 5.4 55 55 10.5
PD00895 PD00895c Control Male 147 86 31 3.2 1.1 1.1 2.3 1.1 91 15.6 6.2 4.8 0.4 200 14.3 6.2 72.3 72.3 7.6
PD00899 PD00899c Control Male 129 70 22.8 5 1.9 2.8 0.7 2.3 99.8 13.8 5.4 4.4 0.4 174 14.8 5.7 70.6 70.6 7.4
PD00901 PD00901c Control Female 120 71 22.3 4.3 1.4 2.6 0.8 1.2 91.8 15 7 3.8 0.3 221 11.8 5.8 61.3 61.3 8.8
PD00904 PD00904c Control Female 147 83 23.6 4.3 1.9 2 1 1.7 92.2 13.4 6.7 4.6 0.4 197 13.9 5.5 74.6 74.6 10.3
PD00909 PD00909c Control Male 157 89 27.6 4.5 1.4 2.4 1.6 1 94.7 14.9 4.5 4.6 0.4 214 14.5 5.5 76.5 76.5 8.9
PD00927 PD00927c Control Female 140 82 28.8 4.6 1.4 2.4 1.9 4.2 92.2 13.7 10.6 4.6 0.4 245 14 5.9 77.1 77.1 8.9
PD00928 PD00928c Control Female 125 72 21.2 6.7 1.6 4.6 1.1 0.9 89.9 13.7 3.9 4.4 0.4 187 13.2 5.4 72.2 72.2 10.4
PD00929 PD00929c Control Male 149 88 27.5 4.3 1.6 2.2 1.3 2.2 90.3 13.9 7.8 4.6 0.4 273 14.5 5.4 66.4 66.4 10
PD00930 PD00930c Control Male 144 87 34.5 4.7 1.2 2.5 2.2 1.9 95.6 13.9 7.3 5 0.5 184 16 5.6 72.2 72.2 8.9
PD00944 PD00944c Control Female 119 71 29 5.4 1.6 3 1.9 1.8 91.8 14.4 6.1 4.2 0.4 262 13 5.9 70.3 70.3 8.8
PD00945 PD00945c Control Male 157 89 27.6 4.5 1.4 2.4 1.6 1 94.7 14.9 4.5 4.6 0.4 214 14.5 5.5 76.5 76.5 8.9
PD00946 PD00946c Control Female 158 100 23.4 5 1.8 2.4 1.8 1.6 91.6 14.9 6.4 4.5 0.4 254 13.5 6.1 71 71 8.9
PD00950 PD00950c Control Male 160 87 28.9 5.4 1.4 3.5 1.3 2.2 94.1 14.3 7.2 4.8 0.4 206 15.2 5.8 72.8 72.8 8.1
PD00952 PD00952c Control Female 112 70 20.3 5.1 1.3 3.3 1.3 1.6 89.9 15.7 4.7 4.2 0.4 131 12.4 5.8 63 63 8.4
PD00955 PD00955c Control Female 150 86 32.4 7.7 1.6 5.5 1.5 2.2 91.7 15.2 6.2 4.1 0.4 252 12.4 6.3 67 67 8.7
PD00958 PD00958c Control Female 152 86 28.6 6.9 1.9 4.6 0.9 1.2 92.5 14.4 4.7 4.6 0.4 356 14.2 5.5 82.3 82.3 6.8
PD00960 PD00960c Control Female 130 70 31.8 5.1 1.5 3.1 1.3 1.6 94.4 14.8 6.7 4.2 0.4 152 13.3 6.2 73 73 9.4
PD00961 PD00961c Control Male 158 96 33.8 4.7 1.1 2.7 2.1 1.5 98.7 14.2 6.4 4.5 0.4 193 14.8 5.7 69.7 69.7 8
PD00962 PD00962c Control Male 126 78 25.8 6.1 1 3.1 4.4 4.1 91.2 13.9 8.8 5.2 0.5 181 16.2 5.9 66.7 66.7 7.8
PD00970 PD00970c Control Male 178 84 28.1 4 1.1 2.4 1.3 1.2 103.2 14.7 5.5 3.8 0.4 166 13.6 6.1 75.6 75.6 8.2
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Appendix 13: Validation cohort pre-lymphoid neoplasm cases and controls metadata

Individual 
ID Sample ID Group Gender

Systolic BP 
(mmHg)

Diastolic BP 
(mmHg) BMI

Total 
cholesterol 
(mmol/L)

HDL 
(mmol/L)

LDL 
(mmol/L)

Triglycerides 
(mmol/L)

Lymphocytes 
(10^9/L)

MCV 
(fL) RDW

WBC 
(10^9/L)

RBC 
(10^9/L)

Haematocrit 
(%)

Platelets 
(10^9/L)

Haemoglobin 
(g/dL)

HbA1c 
(%)

Age at first 
sample

Age at 
sample

Follow-up 
(years)

PD00006 PD00006b Control Female 110 66 33.2 4.9 1 3.2 1.7 2.1 90.9 13.8 8.9 4.1 0.4 207 12.7 5.5 44.6 44.6 17.8
PD00007 PD00007b Control Male 116 74 27.3 5.9 1 3.7 2.8 2.7 91.7 13 13.4 5.1 0.5 278 16.1 5.3 51.9 51.9 19.3
PD00008 PD00008a Pre-LN Female 162 96 20.6 6.8 1.8 4.5 1 1.6 84.5 14.3 6.4 4.9 0.4 232 14.3 NA 71.7 71.7 9.7
PD00012 PD00012a Pre-LN Male 182 106 26 5.5 1.3 3.7 1 3.1 82.9 14.6 7.1 4.9 0.4 187 14.7 NA 72.7 72.7 6.1
PD00012 PD00012b Pre-LN Male 170 98 25.9 5.9 1 4.4 1.3 16.7 83 14.6 22.8 5 0.4 193 14.7 5.6 72.7 76.2 6.1
PD00013 PD00013b Control Female 120 84 18.6 5.8 2.9 2.4 1.1 2.2 88.3 13.3 5.6 4.3 0.4 253 12.7 5.9 57 57 19.7
PD00013 PD00013c Control Female 109 72 19.9 5.3 2.2 2.8 0.7 2 92 NA 6.4 4.3 0.4 313 13.2 6 57 66 19.7
PD00018 PD00018a Control Female 148 84 31 8.4 1.8 5.7 1.9 1.2 86.1 14.5 3.7 4.3 0.4 234 12.9 NA 70 70 21.5
PD00020 PD00020b Control Male 126 82 25.3 6.7 0.8 4.4 3.5 3.5 88.5 12.6 7.4 5.3 0.5 225 16.8 5.3 55.8 55.8 18.7
PD00028 PD00028a Pre-LN Female 144 84 27.7 NA NA NA NA NA NA NA NA NA NA NA NA NA 66.6 66.6 16
PD00030 PD00030b Control Male 140 88 27.3 6.6 2.1 3.9 1.5 2.3 94.4 13.1 6.1 4.9 0.5 216 14.8 5.7 63.6 63.6 19.7
PD00030 PD00030c Control Male 156 98 25.9 4.9 2 2.5 0.9 1.9 94.1 14.5 6 4.4 0.4 202 14 5.5 63.6 73.4 19.7
PD00033 PD00033a Pre-LN Male 149 89 22.9 6.4 1 4.5 2 2.3 83.2 12.9 7.5 5.4 0.5 333 15.5 NA 51.4 51.4 3.8
PD00033 PD00033b Pre-LN Male 128 74 19.1 4.5 0.9 3.2 0.9 1.1 68.9 15.6 7.7 5.1 0.4 737 10.5 6.4 51.4 55.2 3.8
PD00033 PD00033c Pre-LN Male 120 82 23.6 3.5 0.8 2 1.6 1.1 87 NA 5.1 4.7 0.4 189 13.4 6.1 51.4 64 3.8
PD00045 PD00045b Control Female 130 79 27.4 6 2 3.5 1.2 1.8 89.3 12.8 4.4 4.2 0.4 213 13.1 5 76 76 14.2
PD00045 PD00045c Control Female 121 74 27.1 5.7 1.7 3.4 1.4 1.7 91.2 14.1 4.2 4.5 0.4 213 13.5 5.6 76 85.8 14.2
PD00046 PD00046a Pre-LN Female 139 88 31.3 6.7 1.4 4.5 1.7 NA NA NA NA NA NA NA NA NA 64.3 64.3 7.5
PD00050 PD00050b Control Female 146 74 22.5 7.2 2.3 4.6 0.8 1.8 86.8 13.9 5.5 3.6 0.3 254 11.7 5.8 78.2 78.2 19.1
PD00052 PD00052a Pre-LN Female 152 98 30.7 7.1 1.6 4.7 1.8 2.8 96.3 13.6 9.8 4.2 0.4 402 13.1 6.3 62.6 62.6 4.5
PD00053 PD00053a Pre-LN Female 106 70 28.4 6.2 1.2 3.2 4 3.6 92.2 12.5 7.9 4 0.4 322 13 NA 63.7 63.7 10.6
PD00059 PD00059b Control Female 151 90 30.7 6.9 1.6 3.1 4.9 2 93.3 12.4 8 3.9 0.4 267 13 5.7 76.2 76.2 18.1
PD00061 PD00061a Control Female 110 67 26.2 6 1 4.3 1.6 2.2 85.7 14.9 6.1 4.2 0.4 293 11.8 NA 47.6 47.6 22.7
PD00064 PD00064b Control Male 146 99 29.1 8.3 1.2 6 2.5 1.8 98.2 12.2 8.1 4.6 0.4 231 14.7 5.8 71.4 71.4 19.9
PD00064 PD00064c Control Male 122 72 29.3 4.4 1.3 2.5 1.4 1.2 101.5 13.9 7.2 4.3 0.4 196 14.6 6.4 71.4 81.9 19.9
PD00072 PD00072a Control Male 158 102 21.7 7.5 1.6 5.3 1.4 2.9 88.5 13.6 8.2 5.2 0.5 288 16.5 5.3 64.8 64.8 21.6
PD00081 PD00081a Control Female 116 76 17.3 6.3 2.4 3.3 1.3 1.5 87.6 13.2 9.4 4.3 0.4 279 13.3 NA 65.7 65.7 22.6
PD00082 PD00082b Control Female 139 85 25 6.9 1.9 4.5 1.3 2.5 87.2 14.2 6.4 4.7 0.4 288 13.8 4.7 59.3 59.3 18.4
PD00083 PD00083a Pre-LN Female 148 93 22.7 5.9 1 4.1 1.8 2.6 86 13.5 10.6 4.1 0.4 233 12.7 4.9 68.3 68.3 0.9
PD00085 PD00085b Control Male 146 78 25.8 7.2 2 4.9 0.8 1.5 90.7 12.9 4.7 4.5 0.4 208 14.5 5.2 65.7 65.7 18.3
PD00087 PD00087a Control Female 136 83 26.1 8 1.5 4.9 3.7 1.7 88.7 12.9 5.4 4.3 0.4 341 12.4 5.6 63.3 63.3 20.7
PD00090 PD00090b Control Female 148 90 28 5.1 1.1 3.5 1.2 2 82 14.4 5.4 4 0.3 289 11.1 5.8 71.3 71.3 19.4
PD00090 PD00090c Control Female 152 76 27.4 5.2 1 3.6 1.4 1.8 90.9 16.3 5.9 4 0.4 234 12.4 6.1 71.3 81.1 19.4
PD00096 PD00096a Control Female 110 70 28.1 5 1.2 3.4 0.9 2.4 94.4 13.4 7.9 4.1 0.4 222 12.6 4.8 59.7 59.7 20.9
PD00104 PD00104b Control Male 123 76 33.9 5.4 1.2 3.4 1.8 2.3 89.1 13.5 8.2 6.3 0.6 379 16.6 5.1 44 44 17.6
PD00104 PD00104c Control Male 126 79 34.2 5 1.1 3 2.1 2.3 88 NA 7.8 4.8 0.4 260 14.7 5.5 44 49.5 17.6
PD00105 PD00105a Pre-LN Female 132 78 23.2 5.3 2 3 0.7 2.4 92 12.9 8.6 4.3 0.4 339 13.5 NA 66.3 66.3 15
PD00119 PD00119a Pre-LN Female 150 88 27.3 7.5 0.8 5.9 1.9 1.6 88.1 13.5 5.9 4.4 0.4 181 12.3 4.6 65.1 65.1 7
PD00128 PD00128b Control Female 128 82 27.5 5.2 1.8 3 1.2 1.9 83 14.1 6.9 4.4 0.4 325 13 8.2 70 70 17.8
PD00133 PD00133a Pre-LN Female 144 93 35 7.6 1.3 5.5 1.7 NA NA NA NA NA NA NA NA NA 69.7 69.7 7
PD00137 PD00137a Pre-LN Male 146 93 29.7 7.3 0.9 4.8 3.7 3.4 87.1 13.1 9.7 5.1 0.4 268 14.5 5.3 76.1 76.1 3.9
PD00137 PD00137b Pre-LN Male 126 82 31.7 7.7 0.7 4.1 6.4 5.6 86.3 13.6 11.4 4.9 0.4 269 14.5 5.8 76.1 78.3 3.9
PD00138 PD00138a Control Female 140 80 33 6.2 1.7 3.5 2.1 2.3 89.9 13.7 8.3 4.2 0.4 203 13 NA 68.4 68.4 19.5
PD00139 PD00139a Pre-LN Female 155 90 28.6 7.2 1.6 5 1.2 2.1 94.2 13 6 4.5 0.4 313 14.1 NA 62.5 62.5 19
PD00144 PD00144b Control Female 148 88 22 5.3 1.9 2.5 2 1.4 89.5 12.6 7 3.9 0.4 332 12 7.9 69.7 69.7 19.4
PD00145 PD00145a Pre-LN Male 180 102 31.3 4.5 1.1 2.2 2.8 2.8 90.1 13.7 9.7 5.6 0.5 176 17.4 4.5 71.4 71.4 4.5
PD00146 PD00146b Control Male 127 68 24.9 6.3 1 3 5.2 2.9 85.5 14.2 8.6 4.7 0.4 199 14 5.4 74.1 74.1 15.9
PD00149 PD00149b Control Female 105 66 21.9 7 2.4 3.7 2.1 1.7 92.8 12.5 4.8 4.1 0.4 233 13.1 5.3 66.3 66.3 18.8
PD00149 PD00149c Control Female 111 66 22.2 7.2 2.2 4.5 1.1 1.6 95 NA 4.5 4.4 0.4 247 13.7 5.5 66.3 74.5 18.8
PD00151 PD00151a Control Male 148 90 28.6 5.9 1 3.9 2.2 2.5 87.6 12.9 7.7 4.8 0.4 259 15.3 NA 63.5 63.5 22.5
PD00155 PD00155a Control Female 113 72 24.2 4.9 1.4 3 1.3 2 91.9 12.2 6.5 4.7 0.4 333 13.9 4.6 66.1 66.1 21.5
PD00158 PD00158c Control Female 146 72 26.5 3.4 1.4 1.5 1.1 1.6 98.7 16.3 8.1 4 0.4 71 13 5.5 76.4 76.4 8.5
PD00167 PD00167a Control Male 156 99 33.9 7.3 1.6 5 1.6 1.6 84.7 14 6.2 5.3 0.4 158 15.7 NA 65.1 65.1 21.9
PD00167 PD00167c Control Male 142 90 35.2 4.4 1.5 1.9 2.2 1.6 86 NA 7.3 5.6 0.5 157 16.2 8.1 65.1 75.8 21.9
PD00169 PD00169a Pre-LN Female 113 69 24.5 4.6 1.4 2.2 2.1 0.9 93.7 13.1 4.6 4.5 0.4 285 13.2 NA 62.9 62.9 11.8
PD00173 PD00173a Control Female 116 79 25.9 5.5 1.2 3.8 1 1.2 84.8 14.9 6.1 4.6 0.4 305 13.7 NA 62.8 62.8 22.9
PD00173 PD00173c Control Female 121 68 21.9 4.8 1.5 2.8 1.3 0.9 88.1 17.8 5.7 4.3 0.4 272 12.2 5.9 62.8 76.1 22.9
PD00180 PD00180a Control Female 157 91 34.3 5.3 1.1 3.2 2.2 3.5 94.3 12.8 8.7 4.8 0.5 209 15.5 NA 68.9 68.9 21.2
PD00180 PD00180c Control Female 142 70 31.8 4.8 1.8 2.6 0.9 1.7 100.4 13.6 5.2 3.8 0.4 127 13 6 68.9 83.3 21.2
PD00181 PD00181a Pre-LN Male 120 72 27.3 6.8 1.3 4.8 1.7 1.3 97.6 13.1 5.4 4.3 0.4 174 14.2 5.8 69.2 69.2 3.5
PD00181 PD00181b Pre-LN Male 126 68 25.4 7 1.5 5 1.1 1.7 102.5 15 5.6 3.9 0.4 188 13 5.5 69.2 72.5 3.5
PD00187 PD00187b Control Female 110 70 28.1 4.9 2.1 2.4 0.9 1.1 102.3 13.6 3.2 3.6 0.4 227 11.9 5.2 65.9 65.9 17.5
PD00188 PD00188a Control Female 118 79 30 7 1.6 4.5 1.9 1.4 92.5 12.4 7 3.9 0.4 210 12.8 NA 72.3 72.3 19.2
PD00188 PD00188c Control Female 111 70 32.3 4 1.8 1.7 1.1 1.4 95.3 13.6 6.8 4 0.4 211 13.1 6.4 72.3 85.5 19.2
PD00189 PD00189b Control Male 118 79 33.2 8.5 1 5.6 4.3 2.3 94.6 13.5 7.7 4.9 0.5 323 16 6 67.9 67.9 17.5
PD00191 PD00191a Pre-LN Female 132 83 19.8 4.7 1.8 2.5 0.9 1.1 88 13.7 5.6 4.2 0.4 161 12.2 NA 64.9 64.9 6.5
PD00193 PD00193a Pre-LN Female 124 82 30.3 6.1 1.2 3.9 2.2 2.6 87.6 13 10.1 4.5 0.4 335 14.2 5.4 48.6 48.6 7.3
PD00196 PD00196a Control Male 153 94 25.2 5.8 1.2 3.6 2.1 2 91 13.4 7.6 5.7 0.5 278 17.3 4.3 68.6 68.6 22.3
PD00196 PD00196c Control Male 126 68 23.6 5.2 1 2.9 2.9 2.1 91.5 13.2 13.4 5.4 0.5 324 16.7 5.3 68.6 80.4 22.3
PD00201 PD00201a Pre-LN Male 114 69 23.6 5.5 1.1 3.3 2.4 1.5 90.4 11.8 6.5 4.1 0.4 288 12.2 5.9 62.5 62.5 0.9
PD00212 PD00212a Pre-LN Male 107 69 27.5 5 1.1 3.5 1 2.1 90.4 13 9.3 4.6 0.4 182 14.6 5 59.4 59.4 14.3
PD00215 PD00215b Control Male 139 87 29.4 7.7 1.3 5.3 2.6 1.6 94.4 12.9 4.9 5 0.5 125 15.6 5.7 56.2 56.2 19.7
PD00219 PD00219a Control Female 113 72 23 5.8 2.1 3.2 1.2 1.9 93.9 13 7.1 3.9 0.4 238 11.9 4.5 47.4 47.4 20.7
PD00223 PD00223a Pre-LN Male 149 84 28.8 6.1 NA NA 4.8 NA NA NA NA NA NA NA NA NA 64.2 64.2 7.4
PD00224 PD00224a Control Male 123 80 25.7 6.7 1.2 4.9 1.3 2 87.5 14.2 7.4 5 0.4 316 14.6 6.3 48.4 48.4 22.2
PD00231 PD00231b Control Female 123 74 23.3 5.9 2.8 2.8 0.8 1.5 82.8 13 5.5 3.7 0.3 267 11 5 50.3 50.3 18.1
PD00232 PD00232a Pre-LN Female 132 78 28.7 6.8 1.6 4.2 2.4 2.3 91.6 16.2 6.1 4.6 0.4 201 13.2 5.6 68.4 68.4 9.6
PD00237 PD00237b Control Female 134 81 24.2 5.9 3 2.2 1.6 1.3 86.9 13.3 5.1 4.6 0.4 243 13.4 5.6 79.3 79.3 14
PD00237 PD00237c Control Female 151 82 23.2 6.5 2.8 3 1.8 1.4 91 NA 5.7 4.4 0.4 229 13 5.6 79.3 87 14
PD00238 PD00238a Pre-LN Male 130 74 23.6 5.3 1.5 3 1.7 3.7 88.7 12.6 9 4.4 0.4 184 13.5 NA 65.4 65.4 6
PD00242 PD00242b Control Female 126 82 28.1 6.1 1.5 4.1 1.2 2.6 94.8 13 7.4 4.5 0.4 266 13.6 5.6 68.2 68.2 19.5
PD00242 PD00242c Control Female 163 94 27.6 6.4 1.4 4.5 1.3 2.4 91 NA 5.2 4.2 0.4 291 13.1 5.5 68.2 76.7 19.5
PD00245 PD00245b Control Male 138 84 23.5 5.7 2.4 2.5 1.9 2 98.1 12.4 4.3 4.5 0.4 176 14.6 5.2 61.1 61.1 19.7
PD00248 PD00248b Control Male 160 114 31.1 6.1 0.8 4.1 2.8 2.5 89.4 12.9 8.7 4.8 0.4 224 14.8 5.1 61 61 18.4
PD00252 PD00252b Control Female 158 97 27.2 6.1 1.8 3.9 1 3.5 89.4 11.9 7.9 4.3 0.4 312 13.8 5 62.8 62.8 18.5
PD00255 PD00255b Control Male 146 86 32.6 6.6 1.3 4.3 2.2 2.2 89.3 13.7 5.4 5 0.4 223 16.2 5.1 60.2 60.2 18.9
PD00255 PD00255c Control Male 150 88 33.6 5.9 1.3 3.7 2.1 1.4 92.4 14.5 5.9 5 0.5 273 15.7 5.3 60.2 68.6 18.9
PD00256 PD00256a Control Male 145 90 24.4 5.4 1 3.4 2.3 3 92.3 12.8 7.7 4.5 0.4 314 13.9 5.9 61.4 61.4 21.5
PD00260 PD00260a Pre-LN Female 123 72 28.8 5.8 NA NA 1.2 NA NA NA NA NA NA NA NA NA 47.1 47.1 10.1
PD00261 PD00261b Control Male 166 110 38.4 6.7 0.9 3.9 4.2 3.3 87.8 13.3 11.9 4.9 0.4 207 14.8 6.1 58.7 58.7 19.5
PD00265 PD00265a Pre-LN Female 137 69 23.5 5.6 1.3 3.8 1 NA NA NA NA NA NA NA NA NA 62.6 62.6 1
PD00278 PD00278a Control Female 134 85 29.5 6.5 1.4 4.4 1.5 2.2 90.5 13 12 4.5 0.4 384 14 5.9 65.7 65.7 22.2
PD00278 PD00278c Control Female 137 74 32.6 7.7 1.9 4.6 2.7 3.1 90 14.9 8.2 4.8 0.4 315 15 5.6 65.7 77.7 22.2
PD00279 PD00279a Pre-LN Male 151 86 30.2 6.5 1 4 3.4 2.3 89.7 12.5 7.5 4.5 0.4 219 14.1 4.9 53.6 53.6 4.3
PD00286 PD00286a Control Male 129 80 24.2 6.5 1.1 4.6 1.8 1.6 90.8 13.1 5.5 5.2 0.5 250 15.9 NA 61.8 61.8 22.5
PD00290 PD00290a Pre-LN Male 154 92 27.2 5.2 1.6 2.9 1.7 1.1 92.9 12.6 4.5 5 0.5 278 16.6 4.5 65.5 65.5 6.7
PD00295 PD00295b Control Male 128 94 22.5 5.5 1.6 3.4 1.1 2.1 86.7 12.3 6.5 4.6 0.4 338 14 5.3 57.2 57.2 18.4
PD00296 PD00296a Pre-LN Female 114 78 31.3 5.9 1.6 3.3 2.2 2.2 91.9 13.5 6.9 4.5 0.4 314 13.3 NA 63.4 63.4 10.1
PD00300 PD00300b Control Male 132 70 24.7 6.9 1.2 5.1 1.5 1.1 87.6 14.1 4.1 4.9 0.4 172 14.9 5 73.2 73.2 17.6
PD00303 PD00303a Control Male 116 74 26.4 5 1.3 3.4 0.7 2.2 88.4 13.3 6.8 4.8 0.4 247 14.2 5.5 64.9 64.9 21.2
PD00307 PD00307b Control Male 127 58 24.9 4.2 1.2 2.6 1 1.2 89.3 13.7 5.7 4.6 0.4 125 14.6 5.1 76.3 76.3 11.5
PD00307 PD00307c Control Male 112 61 24.9 2.7 1.1 1.2 0.8 1.4 91 NA 9.3 4 0.4 150 12.3 5.6 76.3 83.9 11.5
PD00308 PD00308a Pre-LN Female 176 92 29.7 6.4 1.8 4.1 1.2 2.3 80.9 13.2 5.9 4.6 0.4 196 13.4 5.8 70 70 1.9
PD00315 PD00315a Pre-LN Male 134 86 26.3 6.4 0.9 4.4 2.4 NA NA NA NA NA NA NA NA NA 54.2 54.2 8.1
PD00315 PD00315b Pre-LN Male 130 80 24.9 6.3 1 4.2 2.6 9.1 93.5 12.8 14.3 4.6 0.4 233 14.5 5.6 54.2 58.7 8.1
PD00316 PD00316a Control Male 158 90 25.3 6.4 1.2 4.4 1.8 1.4 94.4 12.5 5.2 4.3 0.4 202 13.6 6 65.3 65.3 21.5
PD00316 PD00316c Control Male 143 86 26 4 1.5 2.3 0.6 NA NA NA NA NA NA NA NA 5.6 65.3 76.4 21.5
PD00324 PD00324a Pre-LN Male 178 104 29.5 6.3 NA NA 4.9 1.8 88.2 12.8 6.3 5.5 0.5 252 16.1 5.2 65.9 65.9 3.9
PD00325 PD00325a Pre-LN Female 117 73 27.5 5.8 1.1 4.1 1.4 NA NA NA NA NA NA NA NA NA 46.4 46.4 11.5
PD00325 PD00325c Pre-LN Female 138 86 26.2 6.8 1.4 4.6 1.9 3.5 93.3 14.2 6.8 4.4 0.4 126 13.7 5.8 46.4 63.7 11.5
PD00327 PD00327b Control Female 104 61 19.6 4.4 1.4 2.7 0.7 1.6 85 14 9.1 4.2 0.4 185 12.4 5.1 52.6 52.6 18.3
PD00333 PD00333c Control Female 144 76 33.9 3.2 1 1.4 1.8 1.1 95.7 14.2 3.9 4 0.4 195 12.6 8.6 67.6 67.6 8.7
PD00342 PD00342a Pre-LN Male 146 92 30.3 5.5 1.5 3.2 1.9 2.5 91.1 12.9 9.6 4.3 0.4 254 13.6 6.5 58.3 58.3 10.8
PD00344 PD00344a Control Female 138 77 25.9 5.6 1.5 3.4 1.5 2.2 89.9 12.6 6.7 4.8 0.4 223 14.5 NA 64.5 64.5 22.8
PD00344 PD00344c Control Female 129 76 24.3 4.9 1.8 2.5 1.4 2.8 96 NA 8.6 4.7 0.4 241 14.5 5.9 64.5 76.4 22.8
PD00347 PD00347b Control Male 132 75 24.8 5.5 1.1 3.4 2.3 1.2 93 12.6 4 4.6 0.4 186 15.6 5.1 63.7 63.7 18.5
PD00349 PD00349a Pre-LN Female 162 112 26 6.4 1.3 3.9 2.6 1.5 81.8 13.1 5.6 4.9 0.4 207 13.9 5.5 64.9 64.9 9.2
PD00352 PD00352a Control Male 166 98 23.2 6.1 2.4 3.4 0.8 1.7 92.5 13.1 5.9 4.7 0.4 128 15.1 5.7 61.4 61.4 21.3
PD00364 PD00364a Control Male 134 84 25.2 6.5 1.8 4.2 1.1 1.7 89.6 13.6 5.7 5.1 0.5 280 15.9 5.3 53.4 53.4 22
PD00366 PD00366a Pre-LN Male 141 92 32.1 5.8 1 3.3 3.3 3.1 85.9 13.7 8.8 5.2 0.4 247 15.6 NA 57.8 57.8 16.8
PD00372 PD00372b Control Male 140 82 31.6 6.3 1.8 4 1.3 1.9 91.6 12.4 6.7 5.1 0.5 342 16.1 5 61.1 61.1 17.8
PD00375 PD00375a Pre-LN Female 131 73 23.5 6.2 2.3 3.4 1.1 2 91.3 13.6 4.4 4 0.4 212 11.8 5.2 61.3 61.3 13
PD00376 PD00376b Control Female 112 68 26.1 5.9 1.9 3.4 1.5 1.7 93.3 12.5 4.9 4.2 0.4 238 14.1 4.7 49.4 49.4 18.6
PD00387 PD00387a Control Male 142 105 28.1 8.1 0.9 5.9 3 2.6 92.6 14 5.9 6.1 0.6 268 17 4.9 59.7 59.7 20.7
PD00397 PD00397b Control Female 132 82 19.2 5.5 2.1 2.5 2 2.5 90.1 13.4 9.8 4.8 0.4 322 15.5 5.5 73.8 73.8 14.6
PD00397 PD00397c Control Female 151 82 18.6 6.2 3.2 2.5 1.3 0.5 105 15.6 10 4.4 0.5 260 14 NA 73.8 81.9 14.6
PD00404 PD00404a Pre-LN Female 117 72 22.8 4.9 1.4 2.8 1.5 2.2 90.3 13.3 5.7 4.6 0.4 202 14.8 NA 66.3 66.3 2.1
PD00406 PD00406a Pre-LN Male 150 90 28 7.7 1.4 4.6 3.8 1 81.6 14.2 3.6 5 0.4 263 13.1 5.4 61.1 61.1 2.6
PD00408 PD00408b Control Male 163 106 27.8 5.5 1.4 3.6 1.3 1.6 102.6 12.6 7.4 4.2 0.4 277 15 5.5 65.9 65.9 18.4
PD00416 PD00416b Control Female 120 74 23.6 7.4 1.7 5.3 1 1.9 94 11.9 5.3 4.3 0.4 255 13.6 5.2 63.8 63.8 18.4
PD00416 PD00416c Control Female 123 72 24.5 4.9 1.6 2.5 1.8 2.1 92.3 13.6 7.5 4.2 0.4 258 13.1 5.5 63.8 72.2 18.4
PD00430 PD00430a Pre-LN Male 118 79 21 7 1.3 4.5 2.5 2.3 94.1 13.3 6.3 4.9 0.5 297 15.3 5.7 51.8 51.8 18.8
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PD00434 PD00434b Pre-LN Female 137 81 23.1 6.1 2 3.8 0.8 2 93.6 12.8 7.5 3.8 0.4 255 12.4 4.9 53.1 53.1 10.1
PD00435 PD00435a Pre-LN Female 172 84 23.2 5.5 1.8 3.2 1.1 1.1 64 17.3 4 4.4 0.3 526 8.7 5.6 57.6 57.6 14.6
PD00437 PD00437a Control Female 123 70 28 6.2 1.6 4.3 0.7 2 88 13.1 5 4.4 0.4 220 13.6 NA 63.5 63.5 23
PD00437 PD00437c Control Female 148 88 31.8 5.8 1.9 2.9 2.3 1.8 91.7 13.7 4.3 4.2 0.4 214 12.7 5.7 63.5 76.2 23
PD00440 PD00440a Control Female 132 74 28.1 8.2 1.6 5.9 1.6 1.7 92.9 12.1 5 4.8 0.4 239 14.5 6.1 65.6 65.6 20.9
PD00441 PD00441a Control Male 148 90 24.1 4.8 0.8 3.3 1.6 2.9 91.5 12.6 6.4 4.3 0.4 164 13.4 NA 68.5 68.5 23.4
PD00442 PD00442a Control Female 136 82 27.6 6 1.2 4.1 1.6 2.3 88 12.4 6.1 4.4 0.4 272 13.2 NA 59.2 59.2 23.1
PD00442 PD00442c Control Female 144 84 26.7 4.9 1.1 3.1 1.5 1.8 88 13.7 4.4 4.6 0.4 195 13.4 5.7 59.2 74.2 23.1
PD00457 PD00457a Control Female 127 86 19 6.6 2.3 4 0.8 1.3 89.8 16 3.5 4.6 0.4 127 13 5 61.2 61.2 20.6
PD00460 PD00460b Control Female 156 88 25.1 5.8 2.4 2.7 1.7 1.8 95 12.7 6.2 3.5 0.3 287 12.1 5.5 72.7 72.7 17.8
PD00461 PD00461a Pre-LN Male 141 77 22.9 6 1.5 4.2 0.6 NA NA NA NA NA NA NA NA NA 73.8 73.8 11.7
PD00470 PD00470a Control Male 151 90 22.9 3.8 1.3 2 1.2 2.3 85.2 14.4 7.6 4.8 0.4 268 14.2 NA 64 64 22.5
PD00470 PD00470c Control Male 138 82 27.8 3.5 1 1.8 1.6 1.9 90.4 15.5 5.9 4.6 0.4 203 13.4 5.7 64 77.4 22.5
PD00471 PD00471a Control Female 140 84 26.1 5.9 2.1 3.3 1 1.7 85.9 13.5 4.2 4.7 0.4 243 14.1 NA 61.3 61.3 22.4
PD00471 PD00471c Control Female 154 85 29.2 5.7 1.7 3.3 1.6 2.2 84 NA 5 4.5 0.4 187 13.1 NA 61.3 72.2 22.4
PD00476 PD00476a Control Male 114 68 30.4 6.7 1.1 4.5 2.3 2.2 89 12.9 6.3 4.7 0.4 225 13.6 4.8 65.5 65.5 20.3
PD00476 PD00476c Control Male 110 67 30.3 3.2 0.8 2 1 8.6 87.9 14.4 12.8 4.3 0.4 124 12.8 6.3 65.5 80.6 20.3
PD00493 PD00493b Pre-LN Female 174 103 26.4 7 1.9 4.4 1.7 2.7 81.4 13.7 6.8 5.2 0.4 340 14.7 5.6 68 68 4.2
PD00499 PD00499a Pre-LN Male 126 81 28.4 7.4 1 5.3 2.3 3.1 91.5 12.6 9.1 4.8 0.4 292 15.3 NA 50.8 50.8 9.1
PD00501 PD00501b Control Female 158 96 26.8 6.6 1.5 4.5 1.5 2.3 81 13.3 6 4.5 0.4 256 12.7 5.5 60.7 60.7 19.4
PD00502 PD00502a Pre-LN Male 165 91 27.6 3 0.9 1.6 1.1 1.3 94.8 14 4.5 3.9 0.4 253 11.8 5.4 75 75 0.8
PD00529 PD00529a Control Female 108 68 23 4.4 2 2.1 0.7 2 88.5 13 5.6 4.4 0.4 167 13.4 NA 65.3 65.3 22.8
PD00537 PD00537a Control Female 169 98 31.2 7.4 1.2 4.8 3 2.9 93.8 12.4 8.2 4.3 0.4 276 13.3 NA 63.4 63.4 22.6
PD00537 PD00537c Control Female 138 66 30.9 4.2 1.6 1.9 1.6 2.2 94.9 13.8 7.1 4 0.4 210 12.4 5.9 63.4 78.2 22.6
PD00540 PD00540b Control Female 148 79 29.2 3.5 1.2 1 2.9 3.1 76.9 18 9.8 5.2 0.4 312 11.8 5.4 53.5 53.5 17.7
PD00540 PD00540c Control Female 152 90 27.1 3.9 1 2 2.4 2.5 87 NA 6.9 5.3 0.5 197 15.7 5.1 53.5 59.4 17.7
PD00541 PD00541a Pre-LN Male 122 76 25.4 5.6 1.1 3.2 2.8 NA NA NA NA NA NA NA NA NA 73.2 73.2 15.3
PD00546 PD00546a Pre-LN Female 129 78 23.4 6.1 1.7 3.8 1.2 NA NA NA NA NA NA NA NA NA 59.3 59.3 4.1
PD00547 PD00547a Pre-LN Female 144 84 26.1 6.5 1.1 4.5 2 NA NA NA NA NA NA NA NA NA 70.8 70.8 0.7
PD00548 PD00548a Control Female 111 70 19.2 4.2 1.3 2.5 1 1.9 87.6 13 6.5 4.1 0.4 225 12.2 5.4 46.4 46.4 5.4
PD00550 PD00550a Pre-LN Male 150 90 25.8 5.6 0.8 4.2 1.4 1.5 92.4 13.5 7.2 5 0.5 397 16.3 NA 73.3 73.3 10
PD00552 PD00552a Pre-LN Female 144 76 22.3 4.8 0.7 3.2 2.1 1 93.5 13.9 5.3 3.5 0.3 329 11.5 5 67.6 67.6 3.8
PD00554 PD00554a Control Female 142 88 27.2 5.1 1 2.9 2.7 1.6 85.6 14.6 5.5 4.6 0.4 284 12.1 5.4 58.5 58.5 20.5
PD00556 PD00556a Control Male 145 84 25.3 4.8 1.6 2.9 0.7 2.6 83.4 14.5 6.8 4.7 0.4 238 13 5.4 64.8 64.8 20
PD00562 PD00562b Control Male 144 82 27.9 6.5 0.8 4.1 3.7 2 87.7 12.7 5.2 5.1 0.4 363 15.4 4.9 52.9 52.9 19.2
PD00562 PD00562c Control Male 165 92 26.4 6.3 1.3 3.5 3.3 1.6 91 NA 4.2 5.2 0.5 262 15.4 5 52.9 61.2 19.2
PD00566 PD00566b Control Female 134 80 27.7 5.1 1.5 2.7 2.1 2.1 88.4 13.6 5.4 5 0.4 207 14.3 5.7 57.7 57.7 19.7
PD00566 PD00566c Control Female 110 71 29 4.8 1.4 2 2.9 2.1 86.9 13.9 6.7 5 0.4 200 14.8 6 57.7 67.6 19.7
PD00580 PD00580b Control Female 132 78 25.1 5.4 1.2 3.6 1.5 2.6 90.2 13.1 5.2 4.6 0.4 351 13.2 5.3 67.4 67.4 19.3
PD00580 PD00580c Control Female 143 84 25.5 6 1.4 3.8 2 2.1 92 NA 5.1 3.9 0.4 317 11.8 5.4 67.4 74.4 19.3
PD00583 PD00583b Control Male 131 72 21.2 7.1 2 4.7 1 1.6 84.2 14 5 5 0.4 209 14.8 5 57.7 57.7 19.2
PD00593 PD00593b Control Female 128 77 29.1 7.7 2.3 4.9 1.3 1.2 85.7 13.5 3.6 4.6 0.4 166 14 5.1 66.4 66.4 18.9
PD00595 PD00595b Control Male 144 75 24.7 9.3 1.6 6.5 2.8 1.9 88.3 14.6 6.3 4.6 0.4 400 14 6 73.5 73.5 18.4
PD00597 PD00597a Control Female 130 89 26.6 5.4 1.4 2.8 2.6 3 85.4 13 8.3 4.7 0.4 232 14.2 NA 63.2 63.2 22.8
PD00599 PD00599a Control Male 163 92 24.3 5.9 1 3.7 2.7 1.3 95 12.4 6 4.6 0.4 191 14.8 NA 69 69 22.7
PD00600 PD00600a Pre-LN Male 156 108 27.4 7.7 1 5.5 2.7 2.4 88.2 13.4 7.7 4.6 0.4 244 14.3 NA 68.2 68.2 12.7
PD00620 PD00620a Pre-LN Female 134 68 19.3 5.1 1.4 3.1 1.3 NA NA NA NA NA NA NA NA NA 73.9 73.9 5.2
PD00621 PD00621b Control Male 113 66 26.5 6 1.1 3.5 3.1 1.5 90 13 4.7 4.8 0.4 201 13.8 5.7 69.2 69.2 10.4
PD00621 PD00621c Control Male 127 69 24.6 4.1 1.4 2 1.7 1.3 87 NA 6.6 4.4 0.4 201 13.1 5.7 69.2 77.4 10.4
PD00622 PD00622b Control Female 102 64 19.7 4.4 1.6 2.4 1 1.4 92.3 15.2 4.8 4.1 0.4 187 13.2 5 52.7 52.7 18.7
PD00624 PD00624a Pre-LN Male 122 76 20.8 6.3 1.4 4.6 0.7 2.2 88.2 12.4 5.5 4.5 0.4 420 13.1 4.8 44.5 44.5 14.3
PD00624 PD00624c Pre-LN Male 118 72 26.8 4.8 1.4 3 0.9 1.5 92.8 13.9 4.8 4.4 0.4 246 13.9 5.6 44.5 58.4 14.3
PD00626 PD00626a Pre-LN Female 124 76 35.1 4.6 1.1 3.1 1 2 80.1 12.9 8.6 4.5 0.4 310 12 5.8 50.2 50.2 13.3
PD00646 PD00646b Control Female 116 65 23 4.6 2.1 2.3 0.6 1.5 93.9 13.3 5.3 4.5 0.4 160 14.4 5.7 64.6 64.6 19.4
PD00652 PD00652b Control Male 148 92 21 4.5 0.8 3.2 1.3 1.7 89.6 13.4 7.4 4.8 0.4 255 15.1 4.6 64.3 64.3 19.2
PD00656 PD00656b Control Female 104 58 22.4 6.3 0.8 5 1.2 1.9 99.1 15.4 5.2 4.2 0.4 194 12.9 4.8 62.8 62.8 17.6
PD00659 PD00659a Pre-LN Male 155 86 26.2 8.2 1.6 5.6 2.1 NA NA NA NA NA NA NA NA NA 69 69 4.5
PD00659 PD00659b Pre-LN Male 169 89 26.3 5 0.9 3 2.5 26.6 86.9 15.6 33.4 4.6 0.4 104 13 7.2 69 73.4 4.5
PD00663 PD00663a Pre-LN Female 106 70 24.3 7.4 1.8 5.1 1 NA NA NA NA NA NA NA NA NA 67.6 67.6 14.1
PD00664 PD00664a Pre-LN Male 155 80 27.4 4.6 1.1 2.5 2.2 2.1 89 13.3 6.4 4.1 0.4 153 13.1 8.6 75.9 75.9 3.1
PD00665 PD00665b Control Male 116 65 27.9 6.3 1.6 3.7 2.2 3 89.7 15.6 8.4 5.1 0.5 224 13.9 5.2 74.9 74.9 17.3
PD00673 PD00673a Pre-LN Male 128 76 27.6 6 1 4.5 1 2.5 89.4 13.4 6.3 5 0.4 208 15.4 NA 65.3 65.3 19.4
PD00690 PD00690a Control Male 130 80 30.3 5.7 0.8 3.6 2.9 1.9 90.8 12.7 6.1 4.7 0.4 246 14.6 5.7 54.9 54.9 21.6
PD00692 PD00692b Control Female 142 88 20.9 6.7 2.6 3.7 0.9 1.7 85.8 14.3 5.1 4.5 0.4 322 12.6 5.8 66.3 66.3 19.6
PD00695 PD00695a Pre-LN Male 154 90 28.3 4.2 1.4 2 1.8 NA NA NA NA NA NA NA NA NA 73.5 73.5 2.8
PD00703 PD00703b Control Female 118 74 26.2 5.7 2.3 3 0.9 2.8 91.6 14.7 7.6 4.2 0.4 215 12.7 5.8 62.9 62.9 19.6
PD00703 PD00703c Control Female 130 84 26.8 4.9 1.9 2.8 0.5 2 93.4 16.7 6.4 4 0.4 268 12.3 6.2 62.9 72.9 19.6
PD00708 PD00708a Pre-LN Male 132 82 31 6.2 1 3.6 3.4 1.7 83 15.2 5.6 4.7 0.4 294 14.5 NA 68.5 68.5 9.9
PD00712 PD00712b Control Female 144 93 28.3 5.7 1.4 3.5 1.8 1.9 88.4 13.3 6.6 4.8 0.4 229 13.8 5.3 62.1 62.1 19.5
PD00712 PD00712c Control Female 158 95 26.1 4.6 1.5 2.4 1.6 1.6 85 NA 7.4 4.7 0.4 215 13.9 5.2 62.1 70.5 19.5
PD00717 PD00717a Control Female 113 74 22.9 4.7 2 2.3 0.8 2.6 96.6 11.8 9 4.3 0.4 284 14.4 4.9 46.4 46.4 21.7
PD00717 PD00717c Control Female 126 76 22.8 5.9 2.1 3.1 1.6 2.4 95 NA 9.4 4 0.4 322 13.6 5.2 46.4 56.5 21.7
PD00721 PD00721a Control Male 123 83 23.8 6.2 1.7 3.6 2 2.4 89 12.8 6.3 4.3 0.4 267 13.2 5.5 49.8 49.8 21.2
PD00722 PD00722a Pre-LN Male 130 86 31 6.7 1.3 4.4 2.1 2 88.8 14 5 4.8 0.4 205 14.8 NA 54.4 54.4 7
PD00725 PD00725b Control Female 149 88 22.3 6.4 1.5 4.2 1.7 2.4 93.7 12.6 6.6 4.1 0.4 222 12.2 5.8 76.4 76.4 17.5
PD00726 PD00726b Control Male 124 62 23.1 6.1 1.9 3.8 1 1.9 89.1 12.9 7.2 4.9 0.4 279 15.2 7.1 64.8 64.8 14.7
PD00729 PD00729a Pre-LN Male 126 73 25.3 4.9 1.3 3 1.3 1.7 84.7 15.1 5.5 4.6 0.4 170 13.3 NA 74.9 74.9 5.1
PD00735 PD00735a Pre-LN Male 155 85 25.7 5.5 NA NA 5.6 2 89.9 13.4 6.3 4.6 0.4 178 15.1 NA 62.7 62.7 16.4
PD00741 PD00741a Pre-LN Male 127 90 35 6.2 1 4.6 1.4 2.1 86.4 13.4 7.2 5.3 0.5 336 15.1 NA 49.8 49.8 15.9
PD00742 PD00742a Pre-LN Male 152 85 26.1 3.3 0.8 2.3 0.5 NA NA NA NA NA NA NA NA NA 62 62 2.8
PD00747 PD00747b Control Male 176 94 23.9 5.7 1.3 3.4 2.3 1.6 90 13.3 4.2 4.1 0.4 174 14.3 5.7 73.2 73.2 18.8
PD00747 PD00747c Control Male 139 69 23.9 4.4 1.2 2.4 1.8 1.4 92.1 13.4 5.9 3.9 0.4 206 12.2 6.1 73.2 81.5 18.8
PD00755 PD00755a Control Male 115 72 26.1 6.2 1.7 3.9 1.3 2.1 92.3 12.8 5.3 4.6 0.4 243 14.3 NA 74.8 74.8 22
PD00757 PD00757a Pre-LN Male 123 74 25.1 4.9 1.1 3.2 1.4 NA NA NA NA NA NA NA NA NA 58.8 58.8 14.7
PD00758 PD00758a Control Female 131 79 21.6 5.5 1.9 3.1 1.2 2.1 89.5 12.4 6.8 4 0.4 215 12.8 5 49.7 49.7 21.1
PD00759 PD00759b Control Male 143 76 25 5.5 1 4 1.2 1.8 90.5 13.8 5.7 4.5 0.4 147 14.4 4.8 76 76 17.9
PD00762 PD00762b Control Female 142 74 23.9 5.2 1.3 2.5 3.1 1.9 89.2 13.6 6.9 4.3 0.4 269 12.7 5.4 52.6 52.6 19.4
PD00762 PD00762c Control Female 131 61 23.8 4.5 1.6 2.3 1.4 1.7 92 NA 5.4 4.6 0.4 217 14 5.6 52.6 61.1 19.4
PD00767 PD00767b Control Male 142 89 22.7 5.8 1.4 3.9 1.2 2.7 89.7 12.8 6.4 4.2 0.4 201 13.2 5.8 50.8 50.8 19.5
PD00769 PD00769a Pre-LN Female 149 84 23.4 7.7 1.5 5.3 1.9 NA NA NA NA NA NA NA NA NA 75 75 4.6
PD00770 PD00770a Control Female 120 66 25.5 6.3 1.4 3.7 2.6 2.4 89.5 13.3 7.7 4 0.4 247 12.3 NA 63.7 63.7 22.7
PD00770 PD00770c Control Female 138 68 23.2 5.7 1.5 3.6 1.5 2.3 93.1 14.8 6.9 4.1 0.4 224 12.6 5.8 63.7 78.6 22.7
PD00779 PD00779b Control Female 148 87 30.7 6.5 1.6 3.9 2.4 3.2 87.7 12.2 7.5 4.5 0.4 256 13 6.2 62.5 62.5 19.8
PD00779 PD00779c Control Female 144 92 33.8 6.4 1.3 4 2.6 2.7 90.3 14.6 6.1 4 0.4 262 12 6.5 62.5 72.9 19.8
PD00789 PD00789a Pre-LN Male 126 72 24.1 4.9 1.4 2.8 1.5 2 82.5 13.4 9.6 5.2 0.4 113 14.1 5.6 76.2 76.2 2.4
PD00798 PD00798a Pre-LN Male 130 77 29.3 7.5 NA NA 5 4.5 90.9 13.3 9.7 5.2 0.5 232 15.9 5.9 60 60 18.5
PD00805 PD00805b Control Female 128 76 26.1 5.8 1.3 3.6 2.1 2.3 89 12.3 6.4 3.9 0.3 239 12.2 5.3 69.1 69.1 18.4
PD00809 PD00809a Control Male 131 76 25 6.8 1.4 4.8 1.2 2.2 90.2 12.7 5.1 4.2 0.4 232 12.8 6 62 62 21.8
PD00810 PD00810c Control Male 120 62 23.9 3.8 1.2 2.3 0.8 3.1 89 15.6 11.5 4.7 0.4 209 14 7.4 69.6 69.6 3.3
PD00815 PD00815a Pre-LN Male 148 94 21.8 5.8 0.9 4.3 1.3 NA NA NA NA NA NA NA NA NA 72 72 4.8
PD00816 PD00816b Control Male 148 98 27.6 6.1 1.1 4.2 1.8 2.7 89.5 13.5 6.7 5 0.4 331 15.9 5 63 63 18
PD00818 PD00818a Pre-LN Female 134 72 27.9 6.3 1.4 4.3 1.4 2.8 86 14.3 8.9 4.3 0.4 255 12.5 NA 69.9 69.9 7.6
PD00830 PD00830c Control Female 92 58 27.6 6 1.4 4.1 1.3 2 93.9 13 7 4 0.4 331 12.5 6 64.9 64.9 7.2
PD00839 PD00839c Control Male 126 80 26.3 5.4 1.1 3.3 2.2 1.2 96.9 14.2 4.2 4.6 0.4 179 15.1 5.8 75 75 7.2
PD00840 PD00840c Control Male 153 76 21.1 5.9 1.7 3.6 1.4 1.4 91.7 15 4.9 4.5 0.4 246 13.6 5.9 69.2 69.2 6.5
PD00843 PD00843c Control Female 138 78 24.7 6.9 1.6 4.8 1.2 1.8 92.7 13.6 5 4.1 0.4 170 13.3 5.2 67.3 67.3 10.1
PD00845 PD00845c Control Female 142 78 54.4 4 1 2.5 1.3 2 88.1 16.2 8.1 4.5 0.4 115 13.1 7.4 72.9 72.9 4.1
PD00853 PD00853c Control Female 158 100 23.4 5 1.8 2.4 1.8 1.6 91.6 14.9 6.4 4.5 0.4 254 13.5 6.1 71 71 8.9
PD00855 PD00855c Control Female 137 74 22.6 5.3 1.2 3.8 0.7 1.9 89.6 13.2 5.6 4.2 0.4 188 12.9 5.5 71.6 71.6 8.8
PD00867 PD00867c Control Female 130 68 31.8 4.7 0.9 2.7 2.6 2.1 88.4 14.9 8.7 4.8 0.4 235 14.1 6 75.6 75.6 9.4
PD00868 PD00868c Control Male 128 78 26.2 4.1 1.4 2.2 1.3 1.4 95.5 14.3 6.2 4.8 0.5 274 15 6.1 63 63 7.9
PD00871 PD00871c Control Female 148 81 31.8 4.7 2 2.2 1.2 1.3 86.1 16.3 4.1 4.7 0.4 159 13.3 5.5 76.3 76.3 8.9
PD00879 PD00879c Control Male 161 88 39.4 5.9 1.2 3.5 2.7 2.8 89.8 14.1 10.6 5.1 0.5 308 14.8 5.9 68.8 68.8 10.5
PD00882 PD00882c Control Male 156 90 25.9 3.5 1.1 1.8 1.1 1.8 101.5 13.5 9.5 4.5 0.5 175 15.3 5.6 71.5 71.5 8.1
PD00888 PD00888c Control Male 127 70 26.2 5.5 2 3.1 0.9 1.4 95.7 14.2 5 4.7 0.5 280 15.1 5.8 61.5 61.5 6.8
PD00891 PD00891c Control Male 140 88 30.5 5.7 1.4 3.9 1 1.4 93.5 14.3 5.6 5 0.5 167 15.4 5.9 73.5 73.5 7.6
PD00905 PD00905c Control Male 126 78 25.8 6.1 1 3.1 4.4 4.1 91.2 13.9 8.8 5.2 0.5 181 16.2 5.9 66.7 66.7 7.8
PD00908 PD00908c Control Male 139 90 28 6.3 1.7 4.1 1.2 1.1 89.9 13.1 7.6 5.2 0.5 293 16.4 5.7 64.6 64.6 9.2
PD00911 PD00911c Control Female 124 66 27.4 4.6 1.4 2.6 1.4 1.7 91.6 13.3 6.4 4.3 0.4 434 13.5 5.9 73.9 73.9 10.1
PD00915 PD00915c Control Male 128 80 21.5 4.8 1.4 3.1 0.7 1 94.6 14.6 3.9 4.1 0.4 170 13.4 5.2 68.4 68.4 8.8
PD00918 PD00918c Control Female 166 94 24.8 7 2.2 4.3 1.3 2 90.4 15.4 8.2 5 0.4 242 14.7 5.1 70.1 70.1 7.6
PD00919 PD00919c Control Female 134 74 24.6 4.1 1.6 2.1 1 2.4 83.9 16 6.3 4.2 0.4 222 11.9 7.2 73.5 73.5 8
PD00923 PD00923c Control Male 124 69 26.9 3.6 1.6 1.7 0.8 3.2 92.7 14.9 7.1 4.5 0.4 241 13.4 6.2 70.6 70.6 8.8
PD00934 PD00934c Control Female 142 78 22.8 5.9 2.9 2.8 0.5 2.6 101.2 15 5.2 4.2 0.4 182 13.2 5.9 75 75 9.1
PD00935 PD00935c Control Male 138 74 24.2 3.5 1.5 1.5 1.1 1.4 93.3 13.7 6.6 4.4 0.4 172 13.6 6 75.2 75.2 8.9
PD00949 PD00949c Control Female 130 78 22.9 6.3 1.8 4.2 0.8 NA 89.3 13.8 5.8 5.1 0.5 296 15.5 5.4 54.6 54.6 9.6
PD00959 PD00959c Control Male 150 88 33.6 5.9 1.3 3.7 2.1 1.4 92.4 14.5 5.9 5 0.5 273 15.7 5.3 68.6 68.6 10.6
PD00967 PD00967c Control Female 137 74 22.6 5.3 1.2 3.8 0.7 1.9 89.6 13.2 5.6 4.2 0.4 188 12.9 5.5 71.6 71.6 8.8
PD00973 PD00973c Control Female 132 66 28.2 6.1 1.3 4.4 0.9 NA 93.7 12.7 3.7 4.2 0.4 182 13.2 5.5 66.6 66.6 8.1
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Appendix 14: Driver mutations in pre-lymphoid neoplasm cases and controls 

Cohort Individual ID Sample ID Group Type Chromosome Position WT MT VAF Gene Protein Effect

Discovery PD00004 PD00004b Case sub 17 7577082 C T 0.0231 TP53 p.E286K Missense
Discovery PD00017 PD00017b Case sub 2 25457242 C T 0.0167 DNMT3A p.R882H Missense
Discovery PD00035 PD00035b Case sub 4 106196794 T A 0.16 TET2 p.C1709* Nonsense
Discovery PD00063 PD00063a Case sub 12 25378561 G A 0.099 KRAS p.A146V Missense
Discovery PD00089 PD00089b Case sub 11 108216546 G T 0.12 ATM p.R2832L Missense
Discovery PD00107 PD00107c Case sub 2 25457242 C T 0.0069 DNMT3A p.R882H Missense
Discovery PD00110 PD00110b Case indel 2 25459847 C CATAA 0.0682 DNMT3A p.K812fs*44 Frameshift
Discovery PD00110 PD00110b Case sub 2 25467091 A G 0.042 DNMT3A p.L595P Missense
Discovery PD00179 PD00179b Case sub 1 115258747 C G 0.0108 NRAS p.G12A Missense
Discovery PD00179 PD00179b Case sub 4 106196551 T G 0.22 TET2 p.Y1628* Nonsense
Discovery PD00179 PD00179b Case sub 7 140453136 A T 0.0071 BRAF p.V600E Missense
Discovery PD00185 PD00185b Case sub 2 25463289 T C 0.0282 DNMT3A p.Y735C Missense
Discovery PD00186 PD00186b Case indel 12 49434894 GC G 0.0855 KMT2D p.A2220fs*44 Frameshift
Discovery PD00197 PD00197b Case sub 2 25457242 C T 0.22 DNMT3A p.R882H Missense
Discovery PD00197 PD00197b Case indel 4 106156452 AG A 0.0213 TET2 p.E452fs*34 Frameshift
Discovery PD00197 PD00197b Case indel 4 106197132 C CA 0.132 TET2 p.N1823fs*1 Frameshift
Discovery PD00199 PD00199b Case sub 21 44514780 C T 0.0027 U2AF1 p.R156H Missense
Discovery PD00199 PD00199b Case indel 6 26156839 AG A 0.0147 HIST1H1E p.K75fs*14 Frameshift
Discovery PD00200 PD00200b Case sub 2 25463286 C T 0.0412 DNMT3A p.R736H Missense
Discovery PD00226 PD00226b Case sub 2 25466790 G C 0.097 DNMT3A p.S638C Missense
Discovery PD00241 PD00241b Case sub 2 25458661 T C 0.086 DNMT3A p.N838D Missense
Discovery PD00241 PD00241b Case sub 2 25466800 G A 0.0247 DNMT3A p.R635W Missense
Discovery PD00254 PD00254b Case indel 11 108121593 CA C 0.428 ATM p.K468fs*5 Frameshift
Discovery PD00273 PD00273b Case indel 2 25463206 C CGTTA 0.04 DNMT3A p.V763fs*1 Frameshift
Discovery PD00282 PD00282c Case indel 11 108202611 CTCTAGAATT C 0.3761 ATM p.R2547_S2549delRIS Inframe
Discovery PD00285 PD00285a Case indel 17 58740541 GACTTT G 0.0815 PPM1D p.T483fs*4 Frameshift
Discovery PD00297 PD00297b Case sub 2 61719472 C T 0.0105 XPO1 p.E571K Missense
Discovery PD00301 PD00301b Case indel 4 106193849 G GA 0.1179 TET2 p.R1440fs*38 Frameshift
Discovery PD00310 PD00310c Case sub 7 140481417 C A 0.0123 BRAF p.G464V Missense
Discovery PD00330 PD00330c Case sub 2 25457209 C G 0.0196 DNMT3A p.W893S Missense
Discovery PD00330 PD00330c Case sub 7 124503682 T C 0.11 POT1 p.K90E Missense
Discovery PD00330 PD00330c Case sub 9 139391843 G C 0.076 NOTCH1 p.Y2116* Nonsense
Discovery PD00332 PD00332b Case sub 2 25463289 T C 0.016 DNMT3A p.Y735C Missense
Discovery PD00338 PD00338b Case sub 2 25457242 C T 0.0136 DNMT3A p.R882H Missense
Discovery PD00351 PD00351a Case sub 2 25467134 A T 0.22 DNMT3A p.W581R Missense
Discovery PD00455 PD00455b Case sub 4 106164829 T G 0.0204 TET2 p.W1233G Missense
Discovery PD00561 PD00561b Case sub 2 25457242 C T 0.0045 DNMT3A p.R882H Missense
Discovery PD00588 PD00588b Case sub 17 7577120 C T 0.0138 TP53 p.R273H Missense
Discovery PD00607 PD00607b Case sub 2 25466799 C T 0.0121 DNMT3A p.R635Q Missense
Discovery PD00666 PD00666b Case indel 2 25469976 GGT G 0.1547 DNMT3A p.H355fs*37 Frameshift
Discovery PD00666 PD00666b Case indel 4 106193849 G GA 0.0642 TET2 p.R1440fs*38 Frameshift
Discovery PD00684 PD00684b Case sub 17 7578394 T C 0.018 TP53 p.H179R Missense
Discovery PD00711 PD00711b Case sub 2 25467073 C T 0.12 DNMT3A p.W601* Nonsense
Discovery PD00711 PD00711b Case indel 2 25468894 ATGTTCCGG A 0.0609 DNMT3A p.R488fs*1 Frameshift
Discovery PD00711 PD00711b Case indel 4 106194058 AG A 0.0417 TET2 p.A1508fs*63 Frameshift
Discovery PD00715 PD00715c Case indel 7 151882659 TC T 0.041 KMT2C p.E1689fs*28 Frameshift
Discovery PD00719 PD00719c Case sub 11 108196083 A T 0.047 ATM p.K2207* Nonsense
Discovery PD00723 PD00723b Case sub 4 106196546 C T 0.0215 TET2 p.Q1627* Nonsense
Discovery PD00764 PD00764b Case sub 2 25463289 T C 0.0089 DNMT3A p.Y735C Missense
Discovery PD00793 PD00793b Case sub 11 119149251 G A 0.0137 CBL p.R420Q Missense
Discovery PD00793 PD00793b Case sub 2 25470546 T A 0.0304 DNMT3A p.I310F Missense
Discovery PD00795 PD00795b Case sub 2 25468202 C G 0.14 DNMT3A p.? Essential splice
Discovery PD00820 PD00820b Case sub 17 74732959 G A 0.0127 SRSF2 p.P95L Missense
Discovery PD00820 PD00820b Case sub 2 25463289 T C 0.0037 DNMT3A p.Y735C Missense
Discovery PD00021 PD00021a Control sub 2 25457243 G A 0.0078 DNMT3A p.R882C Missense
Discovery PD00068 PD00068a Control sub 12 25398284 C G 0.0051 KRAS p.G12A Missense
Discovery PD00068 PD00068a Control sub 2 25468935 T A 0.045 DNMT3A p.? Essential splice
Discovery PD00070 PD00070c Control sub 2 25457176 G A 0.0125 DNMT3A p.P904L Missense
Discovery PD00071 PD00071b Control sub 11 108186841 G A 0.028 ATM p.? Essential splice
Discovery PD00159 PD00159b Control sub 11 119148991 G A 0.0181 CBL p.C404Y Missense
Discovery PD00259 PD00259c Control sub 2 25463283 A T 0.0304 DNMT3A p.L737H Missense
Discovery PD00259 PD00259c Control indel 4 106156403 AC A 0.0188 TET2 p.H436fs*11 Frameshift
Discovery PD00385 PD00385c Control sub 4 106190898 C G 0.038 TET2 p.S1392R Missense
Discovery PD00421 PD00421c Control sub 2 25463182 G A 0.0077 DNMT3A p.R771* Nonsense
Discovery PD00431 PD00431b Control sub 2 25463234 C T 0.049 DNMT3A p.W753* Nonsense
Discovery PD00465 PD00465b Control sub 2 25463566 C T 0.0689 DNMT3A p.G706R Missense
Discovery PD00571 PD00571c Control sub 2 25467478 T C 0.0095 DNMT3A p.Y533C Missense
Discovery PD00651 PD00651b Control sub 2 25457176 G A 0.0169 DNMT3A p.P904L Missense
Discovery PD00683 PD00683a Control sub 2 25463289 T C 0.0736 DNMT3A p.Y735C Missense
Discovery PD00688 PD00688a Control sub 2 25463289 T C 0.0149 DNMT3A p.Y735C Missense
Discovery PD00745 PD00745a Control sub 2 25457242 C T 0.0108 DNMT3A p.R882H Missense
Discovery PD00751 PD00751a Control sub 2 25467467 A G 0.0109 DNMT3A p.C537R Missense
Discovery PD00776 PD00776c Control sub 2 25463601 T C 0.0378 DNMT3A p.? Essential splice
Discovery PD00895 PD00895c Control sub 11 119148919 T C 0.0057 CBL p.L380P Missense
Discovery PD00928 PD00928c Control indel 2 25469539 GC G 0.033 DNMT3A p.A410fs*241 Frameshift
Discovery PD00930 PD00930c Control sub 2 25470575 A C 0.0547 DNMT3A p.L300R Missense
Discovery PD00930 PD00930c Control sub 4 106158563 T C 0.031 TET2 p.L1155S Missense
Extension PD00027 PD00027a NA sub 2 25463586 C T 0.21 DNMT3A p.G699D Missense
Extension PD00039 PD00039b NA sub 2 25457243 G T 0.011 DNMT3A p.R882S Missense
Extension PD00050 PD00050b NA sub 2 25467448 C G 0.11 DNMT3A p.G543A Missense
Extension PD00117 PD00117c NA sub 20 31024770 A T 0.0168 ASXL1 p.K1419* Nonsense
Extension PD00122 PD00122b NA indel 4 106180853 AC A 0.0138 TET2 p.Y1295fs*68 Frameshift
Extension PD00161 PD00161c NA sub 4 106196491 T A 0.0312 TET2 p.Y1608* Nonsense
Extension PD00165 PD00165c NA sub 2 25462018 T C 0.18 DNMT3A p.N797D Missense
Extension PD00165 PD00165c NA sub 2 25466796 A C 0.0139 DNMT3A p.V636G Missense
Extension PD00170 PD00170c NA sub 2 25457242 C T 0.0301 DNMT3A p.R882H Missense
Extension PD00180 PD00180c NA sub 2 25457243 G A 0.0876 DNMT3A p.R882C Missense
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Extension PD00307 PD00307c NA indel 17 58740653 CA C 0.3164 PPM1D p.M521fs*1 Frameshift
Extension PD00398 PD00398c NA sub 17 74732959 G A 0.0354 SRSF2 p.P95L Missense
Extension PD00398 PD00398c NA sub 2 25467448 C T 0.0061 DNMT3A p.G543D Missense
Extension PD00418 PD00418c NA sub 2 25462075 C T 0.0272 DNMT3A p.V778M Missense
Extension PD00462 PD00462a NA sub 2 25457242 C T 0.0064 DNMT3A p.R882H Missense
Extension PD00470 PD00470c NA indel 20 31022951 TC T 0.0306 ASXL1 p.I814fs*4 Frameshift
Extension PD00537 PD00537c NA sub 2 25470583 C A 0.3 DNMT3A p.W297C Missense
Extension PD00540 PD00540c NA sub 4 106196823 G A 0.0133 TET2 p.G1719E Missense
Extension PD00592 PD00592c NA sub 2 25463182 G A 0.0254 DNMT3A p.R771* Nonsense
Extension PD00605 PD00605c NA indel 17 58740684 CT C 0.1781 PPM1D p.P531fs*8 Frameshift
Extension PD00636 PD00636b NA indel 2 25469967ACGTGGCCTGGTGGAACGCACTGA 0.0613 DNMT3A p.S352fs*48 Frameshift
Extension PD00648 PD00648c NA indel 20 31021175 TC T 0.0169 ASXL1 p.S392fs*1 Frameshift
Extension PD00655 PD00655b NA indel 2 25466846 AG A 0.0604 DNMT3A p.P619fs*32 Frameshift
Extension PD00671 PD00671a NA sub 2 25467497 G A 0.0476 DNMT3A p.Q527* Nonsense
Extension PD00718 PD00718c NA indel 2 25463566 CA C 0.0739 DNMT3A p.I705fs*74 Frameshift
Extension PD00732 PD00732b NA sub 2 25457242 C T 0.0139 DNMT3A p.R882H Missense
Extension PD00734 PD00734c NA sub 11 119149280 G A 0.1 CBL p.V430M Missense
Extension PD00736 PD00736a NA sub 17 29562934 A G 0.0305 NF1 p.? Essential splice
Extension PD00736 PD00736a NA sub 9 5073770 G T 0.0338 JAK2 p.V617F Missense
Extension PD00740 PD00740c NA sub 4 106180868 A G 0.14 TET2 p.K1299R Missense
Extension PD00748 PD00748c NA sub 2 25457242 C T 0.0078 DNMT3A p.R882H Missense
Extension PD00748 PD00748c NA indel 2 25467039 G GT 0.0656 DNMT3A p.N612fs*7 Frameshift
Extension PD00772 PD00772c NA sub 2 25466852 C T 0.0494 DNMT3A p.? Essential splice
Extension PD00784 PD00784c NA sub 4 106197374 C T 0.048 TET2 p.Q1903* Nonsense
Extension PD00807 PD00807b NA sub 21 44524456 G A 0.0107 U2AF1 p.S34F Missense
Extension PD00828 PD00828c NA sub 12 25398285 C T 0.0118 KRAS p.G12S Missense
Extension PD00828 PD00828c NA sub 2 25467484 T C 0.0251 DNMT3A p.D531G Missense
Extension PD00832 PD00832c NA sub 2 25463170 C T 0.0071 DNMT3A p.? Essential splice
Extension PD00832 PD00832c NA sub 2 25470579 T A 0.0129 DNMT3A p.K299* Nonsense
Extension PD00834 PD00834c NA sub 2 25457243 G T 0.014 DNMT3A p.R882S Missense
Extension PD00837 PD00837c NA indel 17 58740653 CA C 0.1576 PPM1D p.M521fs*1 Frameshift
Extension PD00850 PD00850c NA sub X 129148664 G T 0.0496 BCORL1 p.R639L Missense
Extension PD00858 PD00858c NA sub 2 25463289 T C 0.0109 DNMT3A p.Y735C Missense
Extension PD00863 PD00863c NA sub 2 198267359 C A 0.0067 SF3B1 p.K666N Missense
Extension PD00869 PD00869c NA indel 4 106156933CCTGGGGGGCTCCCA C 0.0425 TET2 p.P612fs*21 Frameshift
Extension PD00872 PD00872c NA sub 21 44524456 G A 0.0065 U2AF1 p.S34F Missense
Extension PD00884 PD00884c NA sub 2 25463182 G A 0.0146 DNMT3A p.R771* Nonsense
Extension PD00885 PD00885c NA sub 4 106193977 C G 0.0141 TET2 p.S1480C Missense
Extension PD00887 PD00887c NA indel 2 25471082 CA C 0.0536 DNMT3A p.V227fs*89 Frameshift
Extension PD00900 PD00900c NA sub 20 31021295 C T 0.092 ASXL1 p.Q432* Nonsense
Extension PD00913 PD00913c NA sub 2 25457163 A C 0.0321 DNMT3A p.Y908* Nonsense
Extension PD00927 PD00927c NA indel 2 25505536CTTGGAGATCACCGCAGGGTCCTTTGGCGTGTCACCGCTTTCCACCTGCAAATGTAAGAAAGATACACAAGAGGAGGGTTAGATCAGTGGGCTC 0.0879 DNMT3A p.? Essential splice
Extension PD00943 PD00943c NA sub 2 25466800 G A 0.0105 DNMT3A p.R635W Missense
Extension PD00957 PD00957c NA sub 10 112333508 G T 0.0601 SMC3 p.? Essential splice
Extension PD00957 PD00957c NA sub 4 55604646 G C 0.0237 KIT p.D952H Missense
Extension PD00968 PD00968c NA sub 2 25457242 C T 0.011 DNMT3A p.R882H Missense
Extension PD00969 PD00969c NA sub 2 25463182 G A 0.0201 DNMT3A p.R771* Nonsense
Extension PD00970 PD00970c NA sub 2 25457209 C T 0.0277 DNMT3A p.W893* Nonsense
Extension PD00972 PD00972c NA sub 2 25457242 C T 0.0078 DNMT3A p.R882H Missense
Validation PD00008 PD00008a Case sub 2 25457243 G A 0.0319 DNMT3A p.R882C Missense
Validation PD00012 PD00012a Case sub 6 41903706 G C 0.13 CCND3 p.P284R Missense
Validation PD00028 PD00028a Case sub 2 25457243 G A 0.13 DNMT3A p.R882C Missense
Validation PD00052 PD00052a Case sub 17 7578190 T C 0.055 TP53 p.Y220C Missense
Validation PD00053 PD00053a Case indel 1 120458435 T TG 0.0534 NOTCH2 p.I2304fs*9 Frameshift
Validation PD00105 PD00105a Case sub 2 25457176 G A 0.057 DNMT3A p.P904L Missense
Validation PD00133 PD00133a Case indel 2 25468914 CA C 0.0154 DNMT3A p.V483fs*168 Frameshift
Validation PD00169 PD00169a Case sub 4 106196580 C G 0.0132 TET2 p.S1638* Nonsense
Validation PD00181 PD00181a Case sub 2 25463182 G A 0.068 DNMT3A p.R771* Nonsense
Validation PD00290 PD00290a Case sub 9 5073770 G T 0.0218 JAK2 p.V617F Missense
Validation PD00315 PD00315a Case sub 2 198266834 T C 0.0213 SF3B1 p.K700E Missense
Validation PD00375 PD00375a Case sub 1 36937219 C T 0.419 CSF3R p.R367Q Missense
Validation PD00435 PD00435a Case sub 4 106164778 C T 0.0269 TET2 p.R1216* Nonsense
Validation PD00461 PD00461a Case sub 17 40474482 T A 0.035 STAT3 p.Y640F Missense
Validation PD00541 PD00541a Case sub 2 25457176 G A 0.0072 DNMT3A p.P904L Missense
Validation PD00546 PD00546a Case sub 4 106197318 C T 0.093 TET2 p.T1884I Missense
Validation PD00547 PD00547a Case sub 2 61719471 T C 0.0285 XPO1 p.E571G Missense
Validation PD00600 PD00600a Case sub 2 25463289 T C 0.0077 DNMT3A p.Y735C Missense
Validation PD00620 PD00620a Case sub X 39921510 G C 0.053 BCOR p.S1437* Nonsense
Validation PD00659 PD00659a Case sub 2 25457242 C T 0.11 DNMT3A p.R882H Missense
Validation PD00664 PD00664a Case sub 9 5073770 G T 0.0123 JAK2 p.V617F Missense
Validation PD00695 PD00695a Case indel 2 25463554 AG A 0.0669 DNMT3A p.C710fs*69 Frameshift
Validation PD00708 PD00708a Case sub 4 106180865 G A 0.045 TET2 p.C1298Y Missense
Validation PD00769 PD00769a Case sub 17 7574003 G A 0.11 TP53 p.R342* Nonsense
Validation PD00769 PD00769a Case indel 9 139390648 CAG C 0.0696 NOTCH1 p.P2514fs*4 Frameshift
Validation PD00789 PD00789a Case indel 2 25464532 TG T 0.0306 DNMT3A p.Y660fs*1 Frameshift
Validation PD00798 PD00798a Case sub 4 106197377 C T 0.056 TET2 p.H1904Y Missense
Validation PD00815 PD00815a Case sub 11 108216597 G C 0.044 ATM p.R2849P Missense
Validation PD00255 PD00255b Control sub 2 25462077 G A 0.0181 DNMT3A p.P777L Missense
Validation PD00261 PD00261b Control sub 2 25457243 G T 0.0065 DNMT3A p.R882S Missense
Validation PD00333 PD00333c Control sub 17 7578268 A C 0.078 TP53 p.L194R Missense
Validation PD00387 PD00387a Control sub 2 25457242 C T 0.0133 DNMT3A p.R882H Missense
Validation PD00408 PD00408b Control sub 4 106180794 G C 0.0283 TET2 p.Q1274H Missense
Validation PD00471 PD00471a Control sub 2 25467449 C A 0.0205 DNMT3A p.G543C Missense
Validation PD00471 PD00471a Control sub 4 106180931 G A 0.095 TET2 p.? Essential splice
Validation PD00476 PD00476a Control sub 7 140453155 C T 0.0027 BRAF p.D594N Missense
Validation PD00554 PD00554a Control sub 17 7577117 A T 0.0145 TP53 p.V274D Missense
Validation PD00566 PD00566c Control indel 9 21974794AGGCTCCATGCTGCTCCCCGCCGCCA 0.0743 CDKN2A p.A4_P11delAAGSSMEP Inframe
Validation PD00597 PD00597a Control indel 2 25505536CTTGGAGATCACCGCAGGGTCCTTTGGCGTGTCACCGCTTTCCACCTGCAAATGTAAGAAAGATACACAAGAGGAGGGTTAGATCAGTGGGCTC 0.0413 DNMT3A p.? Essential splice
Validation PD00809 PD00809a Control sub 2 25457209 C T 0.0143 DNMT3A p.W893* Nonsense
Validation PD00809 PD00809a Control sub 4 55593639 G T 0.0059 KIT p.V569F Missense
Validation PD00810 PD00810c Control sub 20 31022592 C T 0.0087 ASXL1 p.R693* Nonsense
Validation PD00810 PD00810c Control indel 4 106155537 TA T 0.0281 TET2 p.K147fs*5 Frameshift
Validation PD00810 PD00810c Control indel 4 106197288 AG A 0.0389 TET2 p.E1874fs*13 Frameshift

A 105



Validation PD00830 PD00830c Control sub 2 25463170 C T 0.0075 DNMT3A p.? Essential splice
Validation PD00911 PD00911c Control sub 20 31021295 C T 0.11 ASXL1 p.Q432* Nonsense
Validation PD00918 PD00918c Control sub 2 25466800 G A 0.0102 DNMT3A p.R635W Missense

Serial sample PD00003 PD00003b NA sub 12 25398281 C T 0.0104 KRAS p.G13D Missense
Serial sample PD00004 PD00004a NA sub 17 7577082 C T 0.0143 TP53 p.E286K Missense
Serial sample PD00012 PD00012b NA sub 6 41903706 G C 0.27 CCND3 p.P284R Missense
Serial sample PD00035 PD00035a NA sub 4 106196794 T A 0.083 TET2 p.C1709* Nonsense
Serial sample PD00068 PD00068c NA sub 2 25468935 T A 0.075 DNMT3A p.? Essential splice
Serial sample PD00107 PD00107b NA sub 2 25457242 C T 0.0083 DNMT3A p.R882H Missense
Serial sample PD00166 PD00166c NA sub 2 25469632 C T 0.0271 DNMT3A p.R379H Missense
Serial sample PD00181 PD00181b NA sub 2 25463182 G A 0.0443 DNMT3A p.R771* Nonsense
Serial sample PD00186 PD00186a NA indel 12 49434894 GC G 0.1189 KMT2D p.A2220fs*44 Frameshift
Serial sample PD00199 PD00199a NA sub 21 44514780 C T 0.0087 U2AF1 p.R156H Missense
Serial sample PD00200 PD00200a NA sub 2 25463286 C T 0.0316 DNMT3A p.R736H Missense
Serial sample PD00226 PD00226a NA sub 2 25466790 G C 0.078 DNMT3A p.S638C Missense
Serial sample PD00241 PD00241c NA indel 17 58740401 A AT 0.0768 PPM1D p.P437fs*6 Frameshift
Serial sample PD00241 PD00241c NA sub 2 25458661 T C 0.15 DNMT3A p.N838D Missense
Serial sample PD00241 PD00241c NA sub 2 25466800 G A 0.0347 DNMT3A p.R635W Missense
Serial sample PD00282 PD00282b NA indel 11 108202611 CTCTAGAATT C 0.3809 ATM p.R2547_S2549delRIS Inframe
Serial sample PD00310 PD00310a NA sub 7 140481417 C A 0.0035 BRAF p.G464V Missense
Serial sample PD00310 PD00310b NA sub 7 140481417 C A 0.0077 BRAF p.G464V Missense
Serial sample PD00315 PD00315b NA sub 11 108117757 T G 0.0512 ATM p.I323R Missense
Serial sample PD00315 PD00315b NA sub 11 108203543 C T 0.0649 ATM p.Q2615* Nonsense
Serial sample PD00315 PD00315b NA sub 2 61719471 T A 0.0128 XPO1 p.E571V Missense
Serial sample PD00315 PD00315b NA sub 2 198266834 T C 0.23 SF3B1 p.K700E Missense
Serial sample PD00330 PD00330b NA sub 2 25457209 C G 0.0135 DNMT3A p.W893S Missense
Serial sample PD00332 PD00332a NA sub 2 25463289 T C 0.0038 DNMT3A p.Y735C Missense
Serial sample PD00471 PD00471c NA sub 2 25467449 C A 0.0071 DNMT3A p.G543C Missense
Serial sample PD00471 PD00471c NA sub 4 106180931 G A 0.22 TET2 p.? Essential splice
Serial sample PD00476 PD00476c NA sub 17 7577538 C G 0.19 TP53 p.R248P Missense
Serial sample PD00476 PD00476c NA sub 6 41903688 A G 0.21 CCND3 p.I290T Missense
Serial sample PD00476 PD00476c NA sub 7 140453155 C T 0.24 BRAF p.D594N Missense
Serial sample PD00561 PD00561c NA sub 2 25457242 C T 0.11 DNMT3A p.R882H Missense
Serial sample PD00659 PD00659b NA indel 16 3781420 TG T 0.2509 CREBBP p.I1649fs*95 Frameshift
Serial sample PD00659 PD00659b NA sub 2 25457242 C T 0.055 DNMT3A p.R882H Missense
Serial sample PD00659 PD00659b NA sub 6 41903710 T C 0.078 CCND3 p.T283A Missense
Serial sample PD00666 PD00666a NA indel 2 25469976 GGT G 0.1158 DNMT3A p.H355fs*37 Frameshift
Serial sample PD00666 PD00666c NA indel 2 25469976 GGT G 0.0549 DNMT3A p.H355fs*37 Frameshift
Serial sample PD00666 PD00666c NA sub 2 198266834 T C 0.31 SF3B1 p.K700E Missense
Serial sample PD00666 PD00666c NA indel 4 106193849 G GA 0.0465 TET2 p.R1440fs*38 Frameshift
Serial sample PD00793 PD00793c NA sub 11 119149251 G A 0.0274 CBL p.R420Q Missense
Serial sample PD00793 PD00793c NA sub 2 25470546 T A 0.1 DNMT3A p.I310F Missense
Serial sample PD00795 PD00795c NA sub 2 25468202 C G 0.069 DNMT3A p.? Essential splice
Serial sample PD00820 PD00820a NA sub 17 74732959 G A 0.0069 SRSF2 p.P95L Missense
Serial sample PD00820 PD00820a NA sub 2 25463289 T C 0.0097 DNMT3A p.Y735C Missense
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Appendix 15: Lymphoid neoplasm risk prediction model coefficients

Cox proportional hazards model trained on the discovery cohort Cox proportional hazards model trained on validation cohort

Variable Coefficient P value Adjusted P value Variable Coefficient P value Adjusted P value
ATM 0.946 5.45E-09 1.25E-07 ASXL1 0.472 4.49E-01 1.00E+00

BRAF 2.996 8.01E-19 1.84E-17 DNMT3A 2.214 8.38E-05 1.51E-03

CBL 2.341 1.57E-04 3.61E-03 JAK2 1.651 1.68E-04 3.03E-03

DNMT3A 0.861 2.26E-03 5.20E-02 TET2 0.857 1.01E-01 1.00E+00

KMT2D 3.691 3.15E-05 7.23E-04 TP53 1.642 6.90E-03 1.24E-01

KRAS 3.621 3.45E-05 7.93E-04 TC -0.092 3.27E-01 1.00E+00

SRSF2 2.962 4.94E-21 1.14E-19 Diastolic BP 0.031 5.45E-01 1.00E+00

TET2 2.408 8.83E-12 2.03E-10 HbA1c -0.044 7.17E-01 1.00E+00

TP53 3.982 1.16E-29 2.68E-28 HDL -0.284 1.47E-02 2.65E-01

U2AF1 2.718 2.16E-18 4.97E-17 LDL 0.165 9.53E-02 1.00E+00

TC -0.222 1.51E-04 3.48E-03 LYM 0.097 4.28E-01 1.00E+00

Diastolic BP 0.129 2.17E-01 1.00E+00 MCV -0.084 4.57E-05 8.23E-04

HbA1c -0.037 6.62E-01 1.00E+00 RBC -0.031 7.96E-01 1.00E+00

HDL -0.475 2.91E-03 6.69E-02 RDW 0.042 3.70E-01 1.00E+00

LDL -0.047 5.66E-01 1.00E+00 Systolic BP 0.180 1.97E-02 3.55E-01

LYM 0.355 5.14E-03 1.18E-01 WBC 0.151 4.03E-02 7.26E-01

MCV 0.131 2.15E-02 4.94E-01 Gender 0.143 2.13E-01 1.00E+00

RBC -0.301 6.28E-02 1.00E+00 Age 0.078 5.03E-01 1.00E+00

RDW -0.243 9.85E-02 1.00E+00

Systolic BP -0.094 5.48E-01 1.00E+00

WBC 0.144 2.83E-01 1.00E+00

Gender -0.323 1.79E-02 4.12E-01

Age 0.086 3.86E-01 1.00E+00

MCV, mean corpuscular volume; RBC, red cell distribution

Cox proportional hazards model trained on combined cohort

Variable Coefficient P value Adjusted P value
ASXL1 0.362 6.32E-01 1.00E+00

ATM 0.951 1.33E-09 3.72E-08

BRAF 2.639 2.31E-18 6.46E-17

CBL 1.995 3.99E-04 1.12E-02

DNMT3A 1.192 8.74E-06 2.45E-04

JAK2 3.112 1.26E-28 3.53E-27

KMT2D 3.315 6.36E-05 1.78E-03

KRAS 3.579 1.59E-05 4.46E-04

NOTCH1 3.747 1.71E-06 4.78E-05

SRSF2 2.550 1.39E-17 3.90E-16

TET2 1.700 1.23E-06 3.43E-05

TP53 1.888 2.25E-03 6.31E-02

U2AF1 2.392 3.12E-18 8.74E-17

XPO1 3.228 1.92E-31 5.38E-30

TC -0.198 1.12E-03 3.14E-02

Diastolic BP 0.120 2.51E-01 1.00E+00

HbA1c -0.047 5.71E-01 1.00E+00

HDL -0.544 9.67E-05 2.71E-03

LDL 0.035 6.04E-01 1.00E+00

LYM 0.258 1.61E-02 4.52E-01

MCV 0.002 9.72E-01 1.00E+00

RBC -0.283 4.19E-02 1.00E+00

RDW -0.150 2.90E-01 1.00E+00

Systolic BP 0.162 2.76E-01 1.00E+00

WBC 0.286 5.14E-02 1.00E+00

Gender -0.142 1.90E-01 1.00E+00

Age 0.115 1.58E-01 1.00E+00

TC, total cholesterol; BP, blood pressure; HDL, high-density lipoprotein; LDL, low density lipoprotein; LYM, lymphocytes;  width; WBC, white blood cells
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Prediction of acute myeloid leukaemia risk in 
healthy individuals
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The incidence of acute myeloid leukaemia (AML) increases with age 
and mortality exceeds 90% when diagnosed after age 65. Most cases 
arise without any detectable early symptoms and patients usually 
present with the acute complications of bone marrow failure1. 
The onset of such de novo AML cases is typically preceded by the 
accumulation of somatic mutations in preleukaemic haematopoietic 
stem and progenitor cells (HSPCs) that undergo clonal expansion2,3. 
However, recurrent AML mutations also accumulate in HSPCs 
during ageing of healthy individuals who do not develop AML, 
a phenomenon referred to as age-related clonal haematopoiesis 
(ARCH)4–8. Here we use deep sequencing to analyse genes that are 
recurrently mutated in AML to distinguish between individuals 
who have a high risk of developing AML and those with benign 
ARCH. We analysed peripheral blood cells from 95 individuals 
that were obtained on average 6.3 years before AML diagnosis 
(pre-AML group), together with 414 unselected age- and gender-
matched individuals (control group). Pre-AML cases were distinct 
from controls and had more mutations per sample, higher variant 
allele frequencies, indicating greater clonal expansion, and showed 
enrichment of mutations in specific genes. Genetic parameters were 
used to derive a model that accurately predicted AML-free survival; 
this model was validated in an independent cohort of 29 pre-AML 

cases and 262 controls. Because AML is rare, we also developed 
an AML predictive model using a large electronic health record 
database that identified individuals at greater risk. Collectively our 
findings provide proof-of-concept that it is possible to discriminate 
ARCH from pre-AML many years before malignant transformation. 
This could in future enable earlier detection and monitoring, and 
may help to inform intervention.

To examine the occurrence of somatic mutations before the develop-
ment of AML, we carried out deep error-corrected targeted sequencing 
of AML-associated genes in a discovery cohort of 95 pre-AML cases 
and 414 age- and gender-matched controls (Supplementary Table 1). 
A validation cohort comprising 29 pre-AML cases and 262 controls 
(Supplementary Table 1) was analysed using deep sequencing with 
an overlapping gene panel. Taking both cohorts together, ARCH, 
defined on the basis of putative driver mutations (ARCH-PD), was 
found in 73.4% of the pre-AML cases at a median of 7.6 years before 
diagnosis. By contrast, ARCH-PD was observed in 36.7% of controls 
(P < 2.2 × 10−16, two-sided Fisher’s exact test; Fig. 1a), consistent with 
data from a study of more than 2,000 unselected individuals assayed 
using a similarly sensitive method9,10. Additionally, 39% of pre-AML 
cases above the age of 50 had a driver mutation with a variant allele 
frequency (VAF) of more than 10%, compared to only 4% of controls, 
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a prevalence that is in line with the largest studies of ARCH in the 
general population4 (P < 2.2 × 10−16, two-sided Fisher’s exact test; 
Extended Data Fig. 1).

The median number of ARCH-PD mutations per individual 
increased with age and was significantly higher in the pre-AML group 
relative to controls (Fig. 1b and Supplementary Table 2). Furthermore, 
examination of ARCH-PD VAF distribution revealed significantly 
larger clones among the pre-AML cases (P = 1.2 × 10−13, two-
sided Wilcoxon rank-sum test; Fig. 1c). To gain insight into clonal  
growth dynamics, we examined serially collected samples that  
were available for a subset of the validation cohort. We did not find 
significant differences in clonal expansion rates between pre-AML 
cases and controls (Extended Data Fig. 2a, b), although this may 
in part reflect the shorter follow-up of pre-AML cases, small sam-
ple size and large variance in growth rates (Extended Data Fig. 2c).  
The observed differences between pre-AML cases and controls  
may arise through cell-intrinsic or -extrinsic factors. Although  
these variables have not been adequately studied in ARCH, a  
number of observations in different contexts, such as aplasia,  
advanced age and after chemotherapy, have shown that increased 
clonal fitness is associated with distinct mutations depending on 
context10–12. Notably, mutations in splicing factor genes were signif-
icantly enriched among the pre-AML cases relative to the controls 
(odds ratio, 17.5; 95% confidence interval, 8.1–40.4; P = 5.2 × 10−16, 
two-sided Fisher’s exact test) and were present in significantly younger 
individuals (median age 60.3 compared to 77.3 years, P = 1.7 × 10−4, 
two-sided Wilcoxon rank-sum test; Fig. 2a). Previous work suggests 
that spliceosome mutations appear to confer a competitive advantage 
in the context of ageing10. Therefore, it is possible that the signifi-
cantly higher prevalence of such clones in younger pre-AML cases 
may reflect extrinsic selection pressures rather than earlier mutation 
acquisition.

In line with previous reports5,6, we found that DNMT3A and TET2 
were the most commonly mutated genes in both groups (Fig. 2b). 
We could not identify any canonical NPM1 mutations nor any FLT3-
internal tandem duplication mutations, consistent with these arising 
late in leukaemogenesis10,13. Recurrent CEBPA mutations, which are 
implicated in around 10% of de novo AML14, were also absent, sug-
gesting that driver events in this gene may also be late events in AML 
evolution. In order to quantify the effect of different mutations on 
the likelihood of progression to AML, we ranked ARCH-PD muta-
tions based on the number of times that they have been reported 
in Catalogue of Somatic Mutations in Cancer (COSMIC) database 
among individuals with haematological malignancies15. We found that 
mutations that are highly recurrent in cancer specimens were more 
common in pre-AML cases than in controls with ARCH-PD, whereas  
driver events in the controls tended to affect loci that are less  
frequently mutated in haematological malignancies and occurred at 
significantly lower VAF (Fig. 2c, d). Overall, these findings demon-
strate notable differences in the mutational landscape of ARCH and 
pre-AML. Moreover, this work, in conjunction with recent insights 
into the origins of AML relapse16, suggests that AML progression 
typically occurs over many years through clonal evolution of pre- 
leukaemic HSPCs before acquisition of late mutations leads to overt 
malignant transformation.
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Fig. 1 | Prevalence of ARCH, number of mutations and clone size in 
individuals who developed AML. a, Prevalence of ARCH-PD among 
pre-AML cases (red) and controls (blue). b, The number of ARCH-PD 
mutations detected in cases and controls according to age. Box plot 
centres, hinges and whiskers represent the median, first and third quartiles 
and 1.5× interquartile range, respectively. Individual values are indicated 
as dots. c, VAF of ARCH-PD mutations. *P < 0.0005, two-sided Wilcoxon 
rank-sum test with Bonferroni multiple testing correction. All panels show 
data for n = 800 biologically independent samples.
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On the basis of these findings, we next developed an approach to 
quantify the relative contributions of driver mutations and clone sizes 
to the risk of progressing to AML. We tested different regularised 
logistic and Cox proportional hazards regression approaches, which 
achieved similar performance in both the discovery cohort (concord-
ance (C) = 0.77 ± 0.03) and the validation cohort (C = 0.84 ± 0.05; 
Extended Data Figs. 3, 4 and Supplementary Table 3). Models that were 
only trained on data from the discovery or validation cohort had sim-
ilar coefficients (Fig. 3a). We therefore combined the datasets for a 
more accurate analysis of the contributions of mutations in individual 
genes to risk (C = 0.77 ± 0.05; area under curve, 0.79; Supplementary 
Table 3). Quantitatively, we found that driver mutations in most genes 
conferred an approximately twofold increased risk of developing AML 
per 5% increase in clone size (Fig. 3a and Supplementary Table 3). 
Notable exceptions to this trend are the most frequently mutated ARCH 
genes, DNMT3A and TET2, which confer a lower risk of progression to 
AML (Fig. 3a, b and Supplementary Table 3). By contrast, a larger effect 
size was apparent for TP53 (hazard ratio, 12.5; 95% confidence inter-
val, 5.0–160.5) and U2AF1 (hazard ratio, 7.9; 95% confidence interval,  
4.1–192.2) mutations (Fig. 3a, b). However, we note that other ARCH-PD  
genes, such as SRSF2, can contribute a similar relative risk owing to 
their presence at a higher VAF in pre-AML cases (Fig. 3a, Extended 
Data Fig. 5a and Supplementary Note). Of note, mutations in TP53 and 
spliceosome genes (including U2AF1) are also associated with a poorer 
prognosis in AML14. Because the effect of each ARCH-PD mutation 
is deleterious and the effect of multiple mutations that are present in 
the same individual is multiplicative, a higher number of mutations is 
predicted to increase the risk of progression to AML (Fig. 3c). Similarly, 

the size of the largest driver clone was also strongly associated with the 
risk of progression to AML, in agreement with the risk of individual 
mutations generally being proportional to VAF (Fig. 3c). Collectively, 
although the VAF and the number of mutations confer much of the 
predictive value, this model does demonstrate distinct gene-level risk 
factors, and is able to quantify the cumulative impact of multiple muta-
tions and clonal size on the likelihood of progression to AML.

Although our predictive model performs well in identifying those 
at risk of developing AML in our experimental cohorts, AML inci-
dence rates in the general population are low (4:100,000)1, and thus 
millions of individuals would need to be screened to identify the 
few pre-AML cases, with many false positives. We therefore sought 
to determine whether routinely available clinical information could 
improve prediction accuracy or identify a high-risk population for 
targeted genetic screening. We first analysed complete blood count 
and biochemistry data that were available for 37 of the pre-AML cases 
and 262 controls. As reported previously5,10,17, ARCH-PD was over-
whelmingly associated with normal blood counts and this was also 
the case for pre-AML cases, indicating that these did not represent 
undiagnosed myelodysplastic syndrome18. We identified a significant 
association between higher red blood cell distribution width (RDW) 
and risk of progression to AML (P = 0.0016, Wald test with Bonferroni 
multiple-testing correction, Fig. 3d). Although traditionally used in the 
evaluation of anaemia, raised RDW has been correlated with inflam-
mation, ineffective erythropoiesis, cardiovascular disease and adverse 
outcomes in several inflammatory and malignant conditions19. The 
correlation between RDW and risk of AML development remained 
highly significant when controls without ARCH-PD were excluded 
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from the analysis (P = 3.5 × 10−6, Wald test with Bonferroni multiple 
testing correction; Extended Data Fig. 5b). Higher RDW has previously 
been associated with ARCH and overall mortality5, but has never been 
shown to distinguish ARCH from pre-leukaemia. In order to verify 
RDW as a predictive factor and determine whether additional clinical 
parameters are associated with risk of AML development, we studied 
the Clalit database20, which contains electronic health records that 
include an average of 3.45 million individuals per year and data that 
were collected over a 15-year period21. We identified 875 cases with 
AML using stringent criteria based on diagnostic codes and treatment 
records (Extended Data Fig. 6 and Supplementary Table 4). Analysis 
of RDW trends revealed significantly raised measurements several 
years before AML diagnosis relative to age and sex-matched controls 
(Fig. 4a). Additional parameters that correlated with risk of AML 
development included reductions in monocyte, platelet, red blood 
cell and white blood cell counts, albeit usually remaining above the 
thresholds for clinically relevant cytopenias18 (Fig. 4a and Extended 
Data Fig. 7). These findings suggest that evolving de novo AML may 
sometimes have a considerable prodrome with subtle but discernible 
clinical manifestations. We next applied a machine-learning approach 
to construct an AML prediction model based entirely on variables that 
are routinely documented in electronic health records (Extended Data 
Fig. 8 and Supplementary Table 4). This model was able to predict AML 
6–12 months before diagnosis with a sensitivity of 25.7% and overall 
specificity of 98.2%. The model performed consistently across different 
age groups with an increased relative risk of 28 and 24 for males and 
females, respectively, between the age of 60 and 70 years (Fig. 4b). To 
better understand which patients are most likely to be accurately clas-
sified by this model, we compared absolute laboratory values for true 
positives and false negatives. We found that 35.5% of false-negative 
predictions were for patients for whom infrequent blood count data 
were available (Extended Data Fig. 9). Some of the true-positive cases 

had mildly abnormal blood counts that would not initiate a diagnostic 
work-up (Fig. 4c), and cytopenias that would be compatible with undi-
agnosed myelodysplastic syndrome18 were uncommon.

Collectively, our findings provide new insights into the pre-clinical 
evolution of AML and support the hypothesis that individuals at high 
risk of AML development can be identified years before they develop 
overt disease. To this end, we present two distinct models for the pre-
diction of de novo AML: one based on somatic point mutations and 
the other on routinely documented clinical information. We find that 
basic clinical and laboratory data can identify a high-risk subgroup 
6–12 months before AML presentation, while genetic information can 
identify a substantial fraction of cases several years to more than a 
decade before diagnosis. By characterizing features that distinguish 
benign ARCH from pre-leukaemia, our models give valuable insights 
into leukaemogenesis. It is evident from the current study, together with 
our recent analysis of mutation acquisition from pre-leukaemic devel-
opment through to relapse16, that long-term pre-leukaemic HSPCs fre-
quently carry mutations and undergo considerable clonal expansion 
while retaining differentiation capacity for years before AML diagnosis. 
Furthermore, it is clear that some mutations, particularly those affect-
ing TP53 and U2AF1, impart a relatively high risk of subsequent AML, 
whereas mutations in other genes, for example DNMT3A and TET2, 
confer a lesser risk of malignant transformation. Previous studies sug-
gest that oncogenic mutations in TP53 and spliceosome genes confer 
little or no competitive advantage in the absence of particular selective 
pressures11,22, indicating that cell-extrinsic factors may be important 
determinants of clonal trajectory.

Cancer predictive models have enabled successful early detection 
and intervention programmes for several solid tumours23–25. However, 
screening tests are unavailable for the sub-clinical stages of most  
haematological malignancies. Our study provides proof-of-concept 
for the feasibility of early detection of healthy individuals at high risk 
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of developing AML, and is a first step in the design of future clinical 
studies to investigate the potential benefits of early interventions in 
this deadly disease. However, the infrequency of AML necessitates 
that future screening tests provide high sensitivity and specificity. Our 
findings suggest that basic clinical data may identify a higher risk pop-
ulation that might benefit from targeted genetic screening. Equally, 
combining clinical and genetic information in a single model and 
including structural driver events is likely to improve model accuracy 
further. Nevertheless, establishing the utility of such a tandem approach 
will require extensive clinical and genetic analysis on the same popula-
tion cohort, in a prospective setting. Furthermore, ARCH is associated 
with several non-malignant conditions4,5, and may have a causal role in 
cardiovascular disease26,27. Therefore, genetic testing for ARCH may 
also prove useful in the management of common age-related diseases. 
Moreover, this study has broader implications for cancer screening and 
early intervention beyond AML. Advances in sequencing technologies 
have revealed a remarkable degree of somatic genetic diversity in nor-
mal ageing tissues, often characterized by the presence of clones that 
have canonical oncogenic mutations28. The degree to which clones at 
high risk of malignant transformation can be reliably distinguished 
from their indolent counterparts is an important biological question 
with compelling clinical ramifications. Understanding the selective 
pressures and cell-intrinsic mechanisms governing clonal fate is the 
next important step in developing strategies to predict and prevent 
progression to overt malignancy.
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METHODS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Study participants. Samples for both the discovery and validation cohort were 
obtained from participants in the EPIC study29. All relevant ethical regulations 
were followed. Written informed consent was obtained from all participants in 
accordance with the Declaration of Helsinki and protocols were approved by 
the relevant ethics committees (IARC Ethics Committee approval #14-31, the 
Weizmann Institute of Science Ethics board approval #60-1 and East of England–
Cambridgeshire and Hertfordshire Research Ethics Committee reference num-
ber 98CN01). Patients with AML were identified based on the following ICD9 
codes: 9861/3, 9860/3, 9801/3, 9866/3, 9891/3, 9867/3, 9874/3, 9840/3, 9872/3, 
9895/3, 9873/3, which included only cases of de novo AML, and no secondary 
AML. All patients provided peripheral blood samples for which the buffy coat 
fractions were separated and aliquoted for long-term storage in liquid nitrogen 
before DNA extraction.
Discovery cohort. In total, 509 DNA samples were collected from individuals 
upon enrolment into the EPIC study between 1993 and 1998 across 17 different  
centres29 (Supplementary Table 1). Altogether, 95 individuals who developed AML 
an average of 6.3 years (interquartile range (IQR) = 4.8 years) after the sample was 
collected were included in the pre-AML group. For the control group, 414 age- and 
gender-matched individuals were selected, as they did not develop any haematolog-
ical disorders during the average follow-up period of 11.6 years (IQR = 2.1 years). 
The median age at recruitment was 56.7 years (range, 36.08–74.42). In order to 
minimize any possible demographic biases, an approximate 1:4.5 pre-AML to con-
trol ratio was maintained across the different centres.
Validation cohort. Samples were obtained from individuals enrolled in the EPIC-
Norfolk longitudinal cohort study between 1994 and 2010. Samples and clinical 
metadata were available from 37 patients with AML (of which 8 were already 
included in the discovery cohort) and 262 age- and gender-matched controls with-
out a history of cancer or any haematological conditions. The average time between 
the first blood sampling and AML diagnosis was 10.5 years (IQR = 8.3 years). The 
average follow-up period for the control cohort was 17.5 years (IQR = 3.8). For 
12 individuals in the pre-AML cohort, 2–3 blood specimens were available, taken 
a median of 3.4 years apart. Of the 262 controls, 141 had multiple blood samples 
available, spanning a median of 10.5 years. Blood counts and other clinical param-
eters were available for all study participants (Supplementary Table 1).
Targeted sequencing. Discovery cohort sequencing. Targeted deep sequencing was 
performed using error-corrected sequencing as follows.

Shearing of genomic DNA, preparation of pre-capture sequencing libraries, 
hybridization-based enrichment, assessment of the libraries quality and enrich-
ment following hybridization were performed as previously described30. In brief, 
100 ng of genomic DNA was sheared before library construction (KAPA Hyper 
Prep Kit KK8504, Kapa Biosystems) with a Covaris E220 instrument using the 
recommended settings for 250-bp fragments. Following end repair and A-tailing, 
adaptor ligation was performed using 100-fold molar excess of Molecular Index 
Adaptor. Library clean-up was performed with Agencourt AMPure XP beads 
(Beckman-Coulter) and the ligated fragments were then amplified for eight cycles 
using 0.5 µM Illumina universal and indexing primers.

Targeted capture was carried out on pools containing three indexed libraries. 
Each pool of adaptor-ligated DNA was combined with 5 µl of 1 mg ml−1 Cot-I 
DNA (Invitrogen), and 1 nmol each of xGEN Universal Blocking Oligo, TS-p5, 
and xGen Universal Blocking Oligo, TS-p7 (8 nucleotides). The mixture was 
dried using a SpeedVac and then re-suspended in 1.1 µl water, 8.5 µl NimbleGen 
2× hybridization buffer and 3.4 µl NimbleGen hybridization component A. The 
mixture was heat denatured at 95 °C for 10 min before addition of 4 µl of xGen 
Lockdown Probes (xGen AML Cancer Panel v.1.0, 3 pmol). Each pool was then 
hybridized at 47 °C for 72 h. Washing and recovery of the captured DNA was 
performed according to the manufacturer’s specifications. In brief, 100 µl of clean 
streptavidin beads was added to each capture. Following separation and removal 
of the supernatant using a magnet, 200 µl 1× Stringent Wash Buffer was added and 
the reaction was incubated at 65 °C for 5 min. The supernatant containing unbound 
DNA was removed before repeating the high stringency wash one additional time. 
Then, the bound DNA was washed as follows: (1) 200 µl 1× Wash Buffer I and 
separation of the supernatants by magnetic separation; (2) 200 µl 1× Wash Buffer 
II after magnetic separation; (3) 200 µl 1× Wash Buffer III and removal of the 
supernatants using magnetic separation. The captured DNA on beads was resus-
pended in 40 µl of Nuclease-Free water before dividing the total volume into two 
PCR tubes and subjecting the libraries to 10 cycles of post-capture amplification 
(manufacturer-recommended conditions; Kapa Biosystems). Before sequencing, 
libraries were spiked with 2% PhiX.
Validation cohort sequencing. Targeted sequencing was performed using a  
custom complementary RNA bait set (SureSelect, Agilent, ELID 0537771) designed 

complementary to all coding exons of 111 genes that have been implicated in mye-
loid leukaemogenesis (Extended Data Table 1). Genomic DNA was extracted from 
peripheral whole blood and sheared using the Covaris M220. Equimolar pools of 
10 libraries were prepared and sequenced on the Illumina HiSeq 2000 using 75-bp 
paired-end sequencing as per Illumina and Agilent SureSelect protocols.
Variant calling. Discovery cohort variant calling and error correction. The 126-bp  
paired-end reads sequencing data from the Illumina platform were converted  
to FASTQ format, the 2-bp molecular barcode information at each read of the 
pair was trimmed and was written in the reads’ name. The thymine nucleotide 
required for ligation was removed from the sequences. Burrows–Wheeler aligner 
(BWA-mem)31 was used for alignment of the processed FASTQ files to the refer-
ence hg19 genome, after realignment of insertions and deletions (indels) using 
GATK32. An in-house algorithm was written to collapse read families that share 
the same molecular barcode sequence, the left-most genomic position of where 
each read of the pair maps to the reference and the CIGAR string. Families that 
consisted of at least two reads were used to generate consensus reads and a con-
sensus base was called when there was at least 70% agreement. When a consensus 
base was called, it was assigned with the maximum base quality score observed in 
its corresponding pre-collapsed reads. Furthermore, when possible, duplex reads33 
were generated from two consensus reads, from a singleton read and a consensus 
read, or from two singleton reads. For each sequenced sample, we generated two 
BAM files, called BAM1 and BAM2. BAM1 consisted of duplex reads, consensus 
reads and singleton reads, thereby including some error-corrected and non-error 
corrected reads, while still containing all the genomic information encoded in the 
data in the form of unique DNA molecules. BAM2 consisted of duplex reads and 
consensus reads but not singleton reads. Both files were then analysed to detect 
single nucleotide variants (SNVs) and small indels using Varscan234. To further 
remove sequencing artefacts and improve sensitivity, we applied a two-step pol-
ishing statistical approach that models the error rate for each sequenced genomic 
position. For both steps, BAM1 was used and all samples except the sample that 
was investigated were included for error rate modelling. At step one, as previously 
described30, the error rates were modelled by fitting Weibull distribution curves to 
the non-reference allele fractions. SNVs with allele fractions that were statistically 
distinguishable from the background error rates (P = 0) were further analysed. 
At step 2, the coverage of the non-reference allele fractions was considered using 
linear line fitting that describes the negative correlation that exist between the 
log(non-reference allele fraction) and the corresponding log(coverage) values. This 
allowed us to estimate different error rates at different coverage depths. Because 
indel errors are rare and cannot be appropriately modelled by the same statistical 
framework, they were called using barcode-mediated error correction alone. At 
least 10 consensus reads, 5 supporting reads on the forward strand, 5 supporting 
reads on the reverse strand and 2 duplex reads were required to call an indel. 
Additional post-processing steps applied to data from both the discovery cohort 
and validation cohort are detailed in ‘Additional post-processing filters applied to 
discovery and validation cohort data’. Variants were annotated using Annovar35.
Validation cohort variant calling. Sequencing reads were aligned to the refer-
ence genome (GRCh37d5) using the Burrows–Wheeler aligner (BWA-aln)31. 
Unmapped reads, PCR duplicates and reads mapping to regions outside the target 
regions (merged exonic regions and 10 bp either side of each exon) were excluded 
from analysis. Sequencing depth at each base was assessed using Bedtools coverage 
v.2.24.036.

Somatic SNVs were called using shearwater, an algorithm developed for 
detecting subclonal mutations in deep-sequencing experiments (https://github.
com/gerstung-lab/deepSNV v.1.21.5)37–39 considering only reads with minimum 
nucleotide and mapping quality of 25 and 40, respectively. This algorithm models 
the error rate at individual loci using information from multiple unrelated sam-
ples. Additionally, allele counts at the recurrent AML mutation hotspots listed in 
‘Curation of oncogenic variants’ were generated using an in-house script (https://
github.com/cancerit/alleleCount) and manually inspected in the Jbrowse genome 
browser40. To further complement our SNV calling approach, we applied an exten-
sively validated in-house version of CaVEMan v.1.11.2 (Cancer variants through 
expectation maximization)41. CaVEMan compares sequencing reads between 
study and nominated normal samples and uses a naive Bayesian model and  
expectation-maximization approach to calculate the probability of a somatic  
variant at each base (https://github.com/cancerit/CaVEMan).

Post-processing filters required that the following criteria were met for 
CaVEMan to call a somatic substitution. (1) If coverage of the mutant allele was 
less than 8, at least one mutant allele was detected in the first two-thirds of the 
read. (2) Less than 3% of the mutant alleles with base quality ≥15 were found in 
the nominated normal sample. (3) Mean mapping quality of the mutant allele reads 
was ≥21. (4) The mutation does not fall in a simple repeat or centromeric region. 
(5) Fewer than 10% of the reads covering the position contained an indel according 
to mapping. (6) Less than 80% of the reads report the mutant allele at the same 
read position. (7) At least a third of the reads calling the variant had a base quality 
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of 25 or higher. (8) Not all mutant alleles reported in the second half of the read. 
(9) Position does not fall within a germline insertion or deletion.

The following additional post-processing criteria were applied to all SNV calls. 
(1) Minimum VAF = 0.5% with a minimum of five bidirectional calls reporting 
the mutant allele (with at least two reads in forward and reverse directions). (2) No 
indel called within a read length (75 bp) of the putative substitution.

Small indels were sought using two complementary bioinformatics approaches. 
First, an in-house version of Pindel v.2.242 (https://github.com/cancerit/cgpPindel) 
was applied. We additionally used the aforementioned deepSNV algorithm in order 
to increase sensitivity for indels present at low VAF. VAF correction was performed 
using an in-house script (https://github.com/cancerit/vafCorrect).

Post-processing filters required that the following criteria were met for a variant 
to be called. (1) A minimum of five reads supporting the variant with a minimum 
of two reads in each direction. For Pindel, the total read count was based on the 
union of the BWA and Pindel reads reporting the mutant allele. (2) VAF ≥ 0.5%. 
(3) Variant not present within an unmatched normal panel of approximately 400 
samples. (4) No reads supporting the variant identified in the nominated normal 
sample.

Mutations were annotated according to ENSEMBL v.58 using VAGrENT43 
for transcript and protein effects (https://github.com/cancerit/VAGrENT) and 
Annovar35 for additional functional annotation.
Additional post-processing filters applied to discovery and validation cohort data. The 
following variants were flagged for additional inspection for potential artefacts, 
germline contamination or index-jumping event. (1) Any mutant allele reported 
within 75 bp of another variant. (2) Any mutant allele with a population allele 
frequency >1 in 1,000 according to any of five large polymorphism databases 
(ExAC, 1000 Genomes Project, ESP6500, CG46 and Kaviar) that is not a canon-
ical hotspot driver mutation with COSMIC recurrence >100. (3) Mutations that 
were present in >10% of the control cohort but not recurrent in COSMIC were 
flagged as potential germline variants or sequencing artefacts. (4) As artefactual 
indels tend to be recurrent, any indels occurring in >2 samples were flagged as 
for additional inspection.
Curation of oncogenic variants. Putative oncogenic variants were identified 
according to evidence for functional relevance in AML as previously described 
and used to define ARCH-PD14.

Variants were annotated as likely driver events if they fulfilled any of the follow-
ing criteria. (1) Truncating mutations (nonsense, essential splice site or frameshift 
indel) in the following genes implicated in AML pathogenesis by loss-of-function: 
NF1, DNMT3A, TET2, IKZF1, RAD21, WT1, KMT2D, SH2B3, TP53, CEBPA, 
ASXL1, RUNX1, BCOR, KDM6A, STAG2, PHF6 and KMT2C. (2) Truncating vari-
ants in CALR exon 9. (3) JAK2V617F. (4) FLT3 internal tandem duplication. (5) Non-
synonymous variants at the following hotspot residues: CBL E366, L380, C384, 
C404, R420 and C396; DNMT3A R882; FLT3 D835; IDH1 R132; IDH2 R172 and 
R140; KIT W557, V559 and D816; KRAS A146, Q61, G13 and G12; MPL W515; 
NRAS Q61, G12 and G13; SF3B1 K700 and K666; SRSF2 P95; U2AF1 Q157, R156 
and S34. (6) Non-synonymous variants reported at least 10 times in COSMIC 
with VAF <42% and population allele frequency <0.003. (7) Non-synonymous 
variants clustering within a functionally validated locus or within four amino acids 
of a hotspot variant with population allele frequency <0.003 and VAF <42%. (8) 
Non-synonymous variants reported in COSMIC >100 times with population allele 
frequency <0.003 regardless of VAF.

Our driver curation strategy inevitably runs a small risk of including germline 
variants in familial AML genes. We feel that in the real world, where a matched 
constitutional DNA sample would be unavailable, this is the best approach.
Statistical analysis. All statistical analyses were performed in the R statistical 
programming environment. A two-sided Wilcoxon rank-sum test was used to 
assign significance level for differences in the median number of somatic mutations 
among the pre-AML and control groups, the median VAF of mutations among 
groups. and the age of individuals with spliceosome mutations. Fisher’s exact test 
was used to assess the significance of differences in the prevalence of ARCH among 
the groups and spliceosome mutations in the pre-AML group.
Predictive modelling. Cox proportional hazards model with random effects. We 
used a Cox proportional hazards regression to model AML progression-free sur-
vival as previously described14,38. We used random effects for the Cox proportional 
hazards model in the CoxHD R package (http://github.com/gerstung-lab/CoxHD). 
A key strength of this approach is the ability to include many variables in one 
model while shrinking estimated effects for parameters with weak support in the 
data, thus controlling for overfitting. We used weighting to minimize the biases 
introduced by the artificial case–control ratio44,45 and calculated hazard ratios 
relative to the (approximate) true cumulative incidence of about 1–3/1,000 in the 
given age range over a follow up of 10–20 years. The observed driver mutation 
frequency and VAF in pre-AML cases closely resembled values expected based 
on the estimated risks, indicating that risk model and driver prevalence are well 
aligned (Extended Data Fig. 4). Full details of model derivation and comparisons 

with alternative methods are included in the accompanying code (Supplementary 
Note, also available at https://github.com/gerstung-lab/preAML). In brief, variables 
comprised age, gender and the VAF of putative driver mutations (see ‘Curation of 
oncogenic variants’ for details of variant curation). We performed agnostic impu-
tation of missing variables by mean and linear rescaling of gene variables by a 
power of 10 to a magnitude of 1. The model was first trained separately on the 
discovery cohort and validation cohort. For each of these two models, we evalu-
ated the following measures of predictive accuracy before and after leave-one-out 
cross-validation (LOOCV): concordance (C)46 and time-dependent area under 
the receiver-operating characteristic curve (AUC)47. The models trained on the 
validation and discovery cohorts were then cross-validated using the data from the 
other cohort. In view of the cross-validation results and close correlation between 
coefficients (Supplementary Table 3), we derived a model on the combined cohorts 
using both cohorts in order to achieve greater accuracy on the individual effects. 
Confidence intervals were calculated using 100 bootstrap samples. The coeffi-
cients and performance metrics for each iteration of the model are included in 
Supplementary Table 3.

Concordance measures were obtained using the survConcordance() function 
implemented in the survival R package45. Dynamic AUC was calculated with 
AUC.uno() implemented in the survAUC package. Time-independent AUCs were 
calculated using the performance function implemented in the ROCR package. 
The expected incidence of AML was calculated from the UK office of national 
statistics, available at http://www.cancerresearchuk.org/health-professional/ 
cancer-statistics/statistics-by-cancer-type/leukaemia-aml/incidence. All-cause 
mortality data was obtained from the office of national statistics (https://www.ons.
gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectan-
cies/datasets/nationallifetablesunitedkingdomreferencetables).
Ridge-regularized logistic regression. Using the same covariates as in ‘Cox propor-
tional hazards model with random effects’, we fitted a ridge-regularized logistic 
regression model to dichotomised outcome data. While logistic regression is a 
common choice for case–control analyses, a downside of this approach is the 
inability to explicitly use time-dependent covariates. The penalty parameter was 
chosen using LOOCV on the full cohort; this value was then used on the discovery 
cohort and validation cohort to yield the same scaling of coefficients. Confidence 
intervals were calculated using 100 bootstrap samples. Fitting was performed using 
the glmnet R package. AUC as the primary performance metric was calculated 
using the ROCR R package.
Additional regression models. Two alternative predictive models were developed. 
Model 1 performs logistic-regression-based predictions using four types of  
features: gender, age at blood sampling, the sum of the VAFs ARCH-PD reported 
in COSMIC v.80 to be recurrent (at least two case reports in haematopoietic and 
lymphoid tissues) and somatic mutation burden of selected genes, where each gene 
was represented by the sum of the VAFs corresponding to ARCH-PD mutations 
in that gene. We measured the predictive performance of each gene via the AUC 
obtained in a fivefold cross-validation when using only the gene as a predictive 
feature, and only retained genes with AUC > 55% in the final model.

For model 2 we applied LASSO regression as implemented in the glmnet R 
package, while enabling LOOCV to fit a Cox regression model. A minimal subset 
of ARCH-PD variants was selected for which the respective weighted combined 
VAFs were highly predictive of AML development in the training set. Scores were 
calculated for each patient as a linear combination of VAF of mutations weighted by 
regression coefficients that were estimated from the training data. As most scores 
were zero in the training subset, non-zero scores were discretized to take on a value 
of 1 that corresponds to AML prediction.

Models 1 and 2 were trained on the discovery cohort and tested for their asso-
ciation with AML development using the validation cohort data. Survival analysis 
was performed using the Kaplan–Meier and Cox proportional hazards models. 
Wald’s test was used to evaluate the significance of hazard ratios. Logistic regression 
models were used with the positive predictive value metric to determine the ability 
of various mutations and other patient parameters to predict AML development. 
The rms R package was used for logistic regression analysis, and the pROC 1.8 R 
package was used for receiver-operating characteristic curve analysis.
AML-predictive model based on electronic health records. Clalit database. The 
Clalit database includes information from patients covered by the Clalit health 
services in Israel20 during the years 2002–2017. The Clalit training-set data, con-
tains the electronic health records (EHR) of 3.45 million individuals per year on 
average. All data was anonymized through hashing of personal identifiers and 
addresses and randomization of dates by sampling a random number of weeks 
for each patient and adding it to all dates in the patient diagnoses, laboratory 
and medication records. This approach maintained differential data analysis per 
patient. Diagnoses codes were acquired from both primary care and hospitalization 
records, and were mapped to the ICD-9 coding system for historical reasons, with 
few exceptions that used a partial ICD-10 coding system. Laboratory records were 
normalized for age and gender by subtracting raw test values from the median 
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levels observed among all test values with matching gender and age (using a bin 
size of five years). We observed some chronological biases in laboratory ranges, 
but avoid normalizing these and instead insured case and controls are matched 
for chronological distributions.
Defining AML cases. We screened for all active patients (18 < age < 100) who 
were diagnosed with AML (ICD-9 code 205.0*) between the years 2003 and 2016. 
We then excluded cases based on the following criteria. (1) We excluded patients 
with prior myeloid malignancies to omit secondary AML, consistent with the 
case selection for the genetic model. The following diagnosis were excluded if  
documented within five years before the diagnosis of AML: essential thrombo-
cythemia (ICD-9 238.71), low-grade myelodysplastic syndrome (MDS) (ICD-9 
238.72); high-grade MDS lesions (ICD-9 238.73); MDS with 5q deletion (ICD-9 
238.74); MDS, unspecified (ICD-9 238.75); polycythemia vera (ICD-9 238.4);  
myelofibrosis (ICD-9 289.83); chronic myelomonocytic leukaemia (ICD-9 206.10-
206.22).

(2) Patients that had any procedures performed on bone marrow or spleen 
(ICD-10 code Z41) in the five-year period before first mention of AML diagnosis 
code in their record. These patients were presumed to have an inaccurate AML 
diagnosis date or misdiagnosis recorded.

(3) Patients that received medications suggestive of an alternative diagnosis 
of chronic myeloid leukaemia, lymphoid malignancy or acute promyelocytic 
leukaemia (APL). At any time before diagnosis: imatinib, dasatinib, anagrelide, 
hydroxycarbamide, asparaginase, pegaspargase or arsenic trioxide. At any time 
after diagnosis: imatinib, dasatinib, methotrexate, tretinoin or arsenic trioxide. At 
any time after diagnosis, along with any acute lymphoblastic leukaemia diagnosis 
(ICD-9 204) or more than single dose: mercaptopurine. APL cases were excluded 
as early diagnosis of APL will most probably not change its outcome, as treatment 
is successful already.

(4) Patients without a hospitalization record within three months before or after 
the onset diagnosis. This parameter was used as it is unlikely that a patient with 
AML will not be hospitalized close to diagnosis. This filter reduced false-positive 
cases and better defined the onset date.

We refined the estimated time of onset using the earliest time at which any of the 
following diagnosis appeared in the patient’s history: amyloidosis (ICD-9 277.3), 
lymphoid leukaemia (ICD-9 204), myeloid leukaemia (ICD-9 205), leukaemia of 
unspecified cell type (ICD-9 208).

This strategy retained 875 AML cases in the training set for further analysis. 
These were further validated by manual expert inspection of the complete records 
of 8% of the cases.

To define the control set, we included all Clalit individuals that were not cases. 
Since our analysis was aggregating data from a historical time window of 15 years, 
we associated each control with a randomized time point for evaluation. Using this 
approach, both cases and controls represented a specific time point in the historical 
record of a patient, with matching calendric, age and gender distributions. Through 
this strategy 5,238,528 controls were used.
Defining features for construction of a predictive a score. We extracted the follow-
ing features for discriminative analysis of cases and controls (this procedure was 
applied repeatedly in cross-validation as discussed below). (1) Age (in years) at time 
point. (2) Gender. (3) Laboratory features. Out of 2,770 different types of labora-
tory tests, we selected the top 50 most frequent laboratory tests (Supplementary 
Table 4). For each laboratory measurement, we used median age- and gender- 
normalized test values per patient in three time windows for 6–12 months before 
onset, 1–2 years before onset and 2–3 years before onset. In addition, we compute 
the slope of the normalized laboratory measurements for the 6–12 month time 
window using a linear regression model. (4) Diagnosis features. Of the 1780 differ-
ent major ICD-9 diagnosis codes, we selected only diagnoses that were previously 
observed in at least 10 different cases and have an increased relative risk for AML 
>twofold (as observed in the training set, Supplementary Table 4). For each diag-
nosis code, we mark whether it appeared in each of the patients in time intervals of 
6 months to 3 years, and 3–5 years before onset. (5) BMI features. For each patient 
in the cohort, we extracted median BMI, weight and height as measured in time 
intervals of 6 months to 2 years, and 2–3 years before onset.
Gradient boosting. We used the R package xgboost to infer parameters for a clas-
sifier given cases and controls. Objective was set to binary:logistic, the evaluation 
metric to AUC. We set nrounds = 5000, eta = 0.001, gamma = 0.1, lambda = 0.01, 
alpha = 0.01, max_depth = 6, min_child_weight = 2, subsample = 0.7 and col-
sample_bytree = 0.7. The boosting algorithm reports a function f that computes 
a predictive score given the features. Given a threshold T the expression f(patient 
features) > T defines a classifier. To standardise thresholds we estimate quantiles 
for the scores on the training set T(p) = quantile(f(train),p) and define the clas-
sifier for specificity level p as f(patient features) > T(p) (Supplementary Table 4).
Cross-validation and relative risk evaluation. To evaluate the predictive value 
of the classification scheme while considering the strong age and gender biases in 
the incidence of AML, we performed fivefold cross-validation after splitting the 

cases and controls into five age- and gender-matched groups. For each fold, we 
sampled 100,000 controls and combined with the cases, constructed the feature 
set and trained the model. The model was then tested on the fold cases along 
with 200,000 sampled controls. We used standardized classifier parameters and 
standardized thresholds that were inferred based on each training set to generate 
a series of classifications on each test set and merged these based on the control 
quantiles in the test as described above. Given a threshold p to define high and 
low prediction score, we counted for each bin b that defines a patient in a specific 
age (<40, 40–50, 50–60, 60–70, 70–80, >80) and gender group: the number of 
cases in bin b (Nb

case) and the number of controls in bin b (Nb
control) where Nb is 

the number of patients in bin b (entire database minus recall controls that are only 
a sample of the cohort). Nb(case, high score) = Nb

TP indicates the number of true 
positives (TP); Nb(case, low score) = Nb

FN indicates the number of false negatives 
(FN); Nb(control, high score) = Nb

FP indicates the number of false positives (FP); 
Nb(control, low score) = Nb

TN indicates number of true negatives (TN).
For each age and gender group, the absolute risk for AML in the bin is com-

puted by rb
abs = Nb

case/Nb. The absolute risk given a high score is estimated 
as rb

abs,high = Nb
TP/(Nb

FP+ Nb
TP). The relative risk in the bin is defined by 

rrb = rb
abs,high/rb

abs where the sensitivity level for the classifier threshold level is 
defined as senseb = Nb

TP/Nb
case.
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Clonal growth rate calculation. Individual clones were defined by different muta-
tions in different study participants. Per clone we calculated α according to the 
following equation:

= / / −a V V T Tlog( ) ( )0 0

where T and T0 indicate the age of the individual at the two measurement time 
points. V and V0 correspond to the VAF at T and T0, respectively.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. Code for derivation of the prediction model is publically availa-
ble on Github (https://github.com/gerstung-lab/preAML). Code for the analysis of 
error-corrected sequencing is available from the Shlush lab upon request.
Data availability. Targeted sequencing data for the discovery cohort are deposited 
as BAM files at the European Genome-phenome Archive (http://www.ebi.ac.uk/
ega/) under accession number EGAD00001003583. All other data are available 
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Meningiomas arise from arachnoidal cells of the meninges and are classi!ed as grade I (80% of cases), grade II 
(10–20%) or grade III (1–3%). Grade III meningiomas comprise papillary, rhabdoid and anaplastic histological 
subtypes, with anaplastic tumors accounting for the vast majority of grade III diagnoses1,2. Nearly half of anaplas-
tic meningiomas represent progression of a previously resected lower grade tumor, whereas the remainder arise 
de novo3,4. Recurrence rates are 5–20% and 20–40%, respectively, for grade I and II tumors2,5. By contrast, the 
majority of anaplastic meningioma patients su"er from inexorable recurrences with progressively diminishing 
bene!t from repeated surgery and radiotherapy and 5-year overall survival of 30–60%4,6.

A recent study of 775 grade I and grade II meningiomas identi!ed !ve molecular subgroups de!ned by driver 
mutation pro!le7. In keeping with previous smaller studies, mutually exclusive mutations in NF2 and TRAF7 were 
the most frequent driver events, followed by mutations a"ecting key mediators of PI3K and Hedgehog signal-
ling7,8. Recurrent hotspot mutations were also identi!ed in the catalytic unit of RNA polymerase II (POLR2A) in 
6% of grade I tumors7. More recently, a study comparing benign versus de novo atypical (grade II) meningiomas 
found the latter to be signi!cantly associated with NF2 and SMARCB1 mutations9. Atypical meningiomas were 
further de!ned by DNA and chromatin methylation patterns consistent with upregulated PRC2 activity, aber-
rant Homeobox domain methylation and transcriptional dysregulation of pathways involved in proliferation and 
di"erentiation9.

Despite the high mortality rate of anaplastic meningiomas, e"orts to identify adjuvant treatment strategies 
have been hampered by a limited understanding of the distinctive molecular features of this aggressive subtype. 
A recent analysis of meningioma methylation pro!les identi!ed distinct subgroups within Grade III tumors pre-
dictive of survival outcomes, though the biology underpinning these di"erences and any therapeutic implications 
remain unknown10. Here, we present an analysis of the genomic, transcriptional and DNA methylation patterns 
de!ning anaplastic meningioma. Our results reveal molecular hallmarks of aggressive disease and suggest novel 
approaches to risk strati!cation and targeted therapy.

Results
��������������������������������������������������������������������������������Ǥ� We 
performed whole genome sequencing (WGS) on a discovery set of 19 anaplastic meningiomas resected at !rst 
presentation (‘primary’). A subsequent validation cohort comprised 31 primary tumors characterised by targeted 
sequencing of 366 cancer genes. We integrated genomic !ndings with RNA sequencing and methylation array 
pro!ling in a subset of samples (Supplementary Table S1). Somatic copy number alterations and rearrangements 
were derived from whole genome sequencing reads, with RNA sequences providing corroborating evidence for 
gene fusions. Given the propensity of anaplastic meningioma to recur, we studied by whole genome sequencing 
13 recurrences from 7 patients.

Excluding a hypermutated tumor (PD23359a, see Supplementary Discussion), the somatic point mutation 
burden of primary anaplastic meningioma was low with a median of 28 somatic coding mutations per tumor 
(range 11 to 71; mean sequencing coverage 66X) (Supplementary Fig. S1). Mutational signatures analysis of 
substitutions identi!ed in whole genome sequences revealed the age-related, ubiquitous processes 1 and 5 as 
the predominant source of substitutions (Supplementary Fig. S2)11. $e rearrangement landscape was also rel-
atively quiet, with a median of 12 structural rearrangements (range 0–79) in the 18 primary tumor genomes 
(Supplementary Fig. S3, Table S3). Somatic retrotransposition events, a signi!cant source of structural variants in 
over half of human cancers, were scarce (Supplementary Fig. S4, Table S4)12. Analysis of expressed gene fusions 
did not reveal any recurrent events involving putative cancer genes (Supplementary Table S5).

Recurrent large copy number changes were in keeping with known patterns in aggressive meningiomas, nota-
bly frequent deletions a"ecting chromosomes 1p, 6q, 14 and 22q (Fig. 1b, Supplementary Table S6)7,9,13.

����������������������������������������������������������������Ǥ� Over 80% of low grade men-
ingiomas segregate into 5 distinct subgroups based on driver mutation pro!le7,9. In anaplastic meningioma, how-
ever, we found a more uniform driver landscape dominated by deleterious mutations in NF2 (Fig. 1a). A key 
feature distinguishing anaplastic meningioma from its lower grade counterparts were driver events in genes of 
the SWI/SNF chromatin regulatory complex (Fig. 1a; Supplementary Fig. S7). $e SWI/SNF (mSWI/SNF or 
BAF) complex is the most commonly mutated chromatin-regulatory complex in cancer14,15, and acts as a tumor 
suppressor in many cell types by antagonising the chromatin modifying PRC216–18. $e most frequently mutated 
SWI/SNF component was ARID1A, which harbored at least one deleterious somatic change in 12% of our cohort 
of 50 primary tumors (Supplementary Table S1). ARID1A has not been implicated as a driver in grade I or grade 
II meningiomas7,9. Single variants in SMARCB1, SMARCA4 and PBRM1 were also detected in three tumors 
(Supplementary Fig. S7). In total, 16% of anaplastic meningiomas contained a damaging SWI/SNF gene muta-
tion. By contrast, SWI/SNF genes are mutated in <5% of benign and atypical meningiomas7,9.

In the combined cohort of 50 primary tumors, we found at least one driver mutation in NF2 in 70%, similar 
to the prevalence reported in atypical meningiomas and more than twice that found in grade I tumors7,9. As 
observed in other cancer types, it is possible that non-mutational mechanisms may contribute to NF2 loss of 
function in a proportion of anaplastic meningiomas19,20. We considered promoter hypermethylation as a source 
of additional NF2 inactivation, but found no evidence of this (Supplementary Table S7). $ere was no signi!cant 
di"erence in NF2 expression between NF2 mutant and wild-type tumors (p-value 0.960; Supplementary Fig. S8), 
suggesting that a truncated dysfunctional protein may be expressed.

Other driver genes commonly implicated in low grade tumors were not mutated, or very infrequently 
(Fig. 1a). Furthermore, and consistent with the most recent reports7,9, we did not observe an increased frequency 
of TERT promoter mutations, previously associated with progressive or high grade tumors21. Notably13, meth-
ylation analysis revealed CDKN2A and PTEN promoter hypermethylation in 17% and 11% of primary tumors, 
respectively (Fig. 1a). We did not !nd evidence of novel cancer genes in our cohort, applying established methods 
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to search for enrichment of non-synonymous mutations22. $e full driver landscape of anaplastic meningioma, 
considering point mutations, structural variants with resulting copy number changes and promoter hypermeth-
ylation is presented in Supplementary Fig. S7.

$e genomic landscape of recurrent tumors was largely static both with respect to driver mutations and struc-
tural variation. Driver mutations di"ered between primary and recurrent tumors for only two of eleven patients 
with serial resections available. For seven sets of recurrent tumors studied by whole genome sequencing, only two 
demonstrated any discrepancies in large copy number variants (PD23344 and PD23346; Supplementary Fig. S5). 
Similarly, matched primary and recurrent samples clustered closely together by PCA of transcriptome data, sug-
gesting minimal phenotypic evolution (Supplementary Fig. S6).

��ơ���������������������������Ƥ��������������������������������������������������������
����������������Ƥ�����Ǥ� We performed messenger RNA (mRNA) sequencing of 31 anaplastic meningioma 
samples from a total of 28 patients (26 primary tumors and 5 recurrences). Gene expression variability within 
the cohort did not correlate with clinical parameters including prior radiotherapy, anatomical location or clin-
ical presentation (de novo versus progressive tumor) (Supplementary Fig. S6). However, unsupervised hierar-
chical clustering demonstrated segregation of tumors into two main groups, herea%er referred to as C1 and C2 
(Fig. 2a). $ese groups were recapitulated by principal component analysis (PCA) of normalised transcript counts 
(Fig. 2b), which delineated C1 as a well-demarcated cluster clearly de!ned by the !rst two principal components 
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Figure 1. $e landscape of driver mutations and copy number alterations in anaplastic meningioma. (a) $e 
landscape of somatic driver variants in primary anaplastic meningioma. Somatic mutation and promoter 
methylation data is shown for a discovery cohort of 18 primary tumors characterised by whole genome 
sequencing. Mutations in recurrently altered genes, established meningioma genes and SWI/SNF complex 
subunits are included. Samples are annotated for chromosome 22q LOH, prior radiotherapy exposure, and 
clinical presentation (de novo verus progression from a lower grade meningioma). $e bar plot to the right 
indicates mutation frequency in a validation cohort of 31 primary tumors sequenced with a 366 cancer gene 
panel. Asterisks indicate genes not included in the targeted sequencing assay. (b) Aggregate copy number pro!le 
of primary anaplastic meningioma. For the 18 tumors characterized by whole genome sequencing, the median 
relative copy number change was calculated across the genome in 10 kilobase segments, adjusting for ploidy. 
$e grey shaded area indicates the !rst and third quantile of copy number for each genomic segment. $e solid 
red and blue lines represent the median relative copy number gain and loss, respectively, with zero indicating 
no copy number change. X-axis: Chromosomal position. Y-axis: median relative copy number change. Potential 
target genes are noted. AM, anaplastic meningioma; LOH, loss of heterozygosity; RT, radiotherapy.
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(PC). Of note, all SWI/SNF mutations were con!ned to the poor prognosis (C1) subgroup (Fig. 2c). C1 consti-
tuted a more di"use group on PCA, distinguished from C2 mainly along the !rst principal component. We next 
retrospectively sought follow-up survival data from the time of !rst surgery, which was available for 25 of the 28 
patients included in the transcriptome analysis (12 patients in C1, 13 in C2; mean follow-up of 1,403 days from 
surgery). We observed a signi!cantly worse overall survival outcome in C1 compared to C2 (P < 0.0001; hazard 
ratio 17.0, 95% CI 5.2–56.0) (Fig. 2g; Supplementary Table S8). $e subgroups were well balanced with respect 
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Figure 2. Transcriptomic classi!cation of anaplastic meningioma. (a) Unsupervised hierarchical clustering and 
(b) principal component analysis of anaplastic meningioma gene expression revealed two subgroups (denoted 
C1 and C2). (c) Dendrogram obtained by unsupervised clustering annotated with clinical and genomic features. 
(d) Volcano plot depicting genes di"erentially expressed between C1 versus C2 anaplastic meningioma samples. 
X-axis, log2 fold change; y-axis, −log10 adjusted P-value. Genes with an adjusted P-value < 0.01 and absolute 
log2 fold change >2 are highlighted in red. (e,f) Box plots of (e) CXLC14 and (f) HOTAIR expression across 31 
anaplastic meningomas classi!ed into C1 and C2 subgroups, 100 primary breast tumors, and 219 cancer cell 
lines from 11 tumor types. Upper and lower box hinges correspond to !rst and third quartiles, horizontal line 
and whiskers indicate the median and 1.5-fold the interquartile range, respectively. Underlying violin plots show 
data distribution and are color-coded according to specimen source (blue, cell line; green, primary tumor). 
X-axis indicates tumor type and number of samples; y-axis shows log10 TPM values. (g) Kaplan-Meier curves 
showing overall survival for 25 anaplastic meningioma patients in C1 and C2 subgroups for whom follow-up 
data was available. Dashes indicate timepoints at which subjects were censored at time of last follow-up. TPM, 
transcripts per kilobase million; AM, anaplastic meningioma; TNBC, triple negative breast carcinoma; wt, wild-
type; mt, mutated; PC, principal component.
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to potential confounding features such as gender, age, radiotherapy, anatomical location and amount of residual 
tumor remaining a%er surgery (Supplementary Table S9).

Recent work has demonstrated that anaplastic meningiomas segregate into 2–3 prognostically signi!cant 
subgroups on the basis of methylation pro!le10. Unsupervised hierarchical clustering using methylation data 
available for a subset of the cohort (n = 19) demonstrated segregation into two main groups largely overlapping 
the subgroups delineated on the basis of gene expression pro!le, though correlation with survival outcomes was 
less marked (Supplementary Fig. S8).

Transcriptional programs segregating indolent and aggressive anaplastic meningiǦ
���Ǥ� Nineteen hundred genes underpinned the di"erentiation of anaplastic meningioma into subgroups C1 
and C2, which could be reduced to only 6 transcripts selected on the basis of PCA coe&cient and di"erential 
expression analysis (see Methods; Supplementary Tables S10 and S11, Fig. S9). Pathway enrichment analysis 
was most signi!cant for evidence of epithelial-mesenchymal transition (EMT) in the C1 tumors, with concord-
ant loss of E-cadherin (CDH1) and upregulation of CXCL14, both prognostic biomarkers in diverse other can-
cers (Supplementary Table S12, Fig. 2d–f)23–25. EMT, which involves reprogramming of adherent epithelial cells 
into migratory mesenchymal cells, is critical for embryogenesis and tissue plasticity, and can play an important 
role in malignant progression, metastasis and therapy resistance24,26. Interestingly, NF2 and the closely related 
cytoskeletal protein ezrin normally help maintain E-cadherin expression at adherence junctions, whereas HOXB7 
and HOXB9, both overexpressed in C1 tumors, suppress CDH1 expression27–29. It is increasingly recognised that 
CXCL14 and other EMT mediators are o%en derived from cancer-associated !broblasts (CAFs) and function in 
a paracrine manner25,30,31. It is hence possible that some of the gene expression patterns we observed may re'ect 
di"erences in the tumor stromal compartment, itself an increasingly recognised therapeutic target30,32,33.

The C1 tumors were further characterised by upregulation of transcriptional programs associated with 
increased proliferation, PRC2 activity and stem cell phenotype (Supplementary Table S13). Hox genes constituted 
a notable proportion of the transcripts distinguishing the two anaplastic meningioma subgroups, largely under-
pinning the signi!cance of pathways involved in tissue morphogenesis. Furthermore, di"erentially methylated 
genes were also signi!cantly enriched for Hox genes, with pathway analysis results corroborating the main bio-
logical themes apparent from the transcriptome (Supplementary Tables S14 and S15). Given the transcriptional 
evidence of increased PRC2 activity in the C1 subgroup, is noteworthy that SWI/SNF gene mutations occurred 
exclusively in C1 tumors (P = 0.016, Fisher’s exact test).

����������������������������������������������������������������Ǥ� Previous studies investi-
gating the relationship between meningioma WHO grade and gene expression pro!les have included few ana-
plastic tumors34,35. We therefore extended our analysis to include published RNA sequences from 19 benign 
grade I meningiomas. External data was processed using our in-house pipeline with additional measures taken to 
minimise batch e"ects (Methods, Supplementary Tables S16 and S17). Unsupervised hierarchical clustering and 
principal component analysis demonstrated clear tumor segregation by histological grade (Fig. 3a,b). In keeping 
with previous reports, the anaplastic tumors demonstrated marked upregulation of major growth factor receptor 
and kinase circuits implicated in meningioma pathogenesis, notably epidermal growth factor receptor (EGFR), 
insulin-like growth factor (IGFR), vascular endothelial growth factor receptor (VEGFR) and mTOR complex 1 
(mTORC1) kinase complex36–41.

Consistent with there being a coherent biological trend across histological grades and anaplastic meningi-
oma subgroups, we noted signi!cant overlap between genes di"erentially expressed between grades and between 
C1 and C2 tumors (hypergeometric distribution P = 5.08 × 10−9). In keeping with this !nding, formal pathway 
analysis identi!ed signi!cant dysregulation of stemness, proliferation, EMT and PRC2 activity (Supplementary 
Tables S18 and S19). $e most signi!cantly dysregulated pathways also included TGF-beta, Wnt and integrin 
signalling, mediators of invasion and mesenchymal di"erentiation that are normally in part controlled by NF2 
and other Hippo pathway members20,24,42. Yes-associated protein 1 (Yap1), a cornerstone of oncogenic Hippo 
signalling, is frequently overexpressed in cancer and synergises with Wnt signalling to induce EMT43,44. YAP1 
was upregulated in anaplastic tumors along with MYL9, a key downstream e"ector essential for Yap1-mediated 
stromal reprogramming (Fig. 3c)43.

����������
Meningiomas constitute a common, yet diverse tumor type with few therapeutic options6,7,9,45. E"orts to improve 
clinical outcomes have been hampered by limited understanding of the molecular determinants of aggressive 
disease. Here, we explored genomic, epigenetic and transcriptional features of anaplastic meningioma, the most 
lethal meningioma subtype4.

Frequent somatic changes in SWI/SNF complex genes, predominantly ARID1A, constitute the main genomic 
distinction between anaplastic and lower grade meningiomas7,9. SWI/SNF inactivation is associated with aberrant 
PRC2 activation, stem cell-like phenotype and poor outcomes in diverse cancer types46–48.

Although anaplastic tumors resist comprehensive classi!cation based on driver mutation patterns, transcrip-
tional pro!ling revealed two biologically distinct subgroups with dramatically divergent survival outcomes. $is 
!nding is emblematic of the limitations of histopathological grading as a risk strati!cation system for meningi-
oma2,4,10,45,49. All SWI/SNF mutations were con!ned to the poor prognosis (C1) subgroup, which was further 
characterised by transcriptional signatures of PRC2 target activation, stemness, proliferation and mesenchymal 
di"erentiation. $ese !ndings were in part underpinned by di"erential expression of Hox genes. Acquisition of 
invasive capacity and stem cell traits are frequently co-ordinately dysregulated in cancer, o%en through subversion 
of Hox gene programs integral to normal tissue morphogenesis50–52. Hox genes have a central role in orchestrating 
vertebrate development and act as highly context-dependent oncogenes and tumor suppressors in cancer51,53. 
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Several of the most starkly upregulated Hox genes in the C1 tumors consistently function as oncogenes across 
a range of solid and haematological malignancies, including HOTAIR, HOXB7, HOXA4, HOXA-AS2, HOXC11, 
and NKX2-228,29,51,54–62. Like many other long non-coding RNAs (lncRNA), HOTAIR and HOXA-AS2 modulate 
gene expression primarily by interacting directly with chromatin remodelling complexes, exerting oncogenic 
activity by recruiting PRC2 to target genes54,56,61–65. HOXA-AS2 has been shown to mediate transcriptional repres-
sion of the tumor suppressor gene CDKN2A (p16INK4A), deletion of which is associated with poor meningioma 
survival54,61,62,66,67. Given the antagonistic relationship between the SWI/SNF and PRC2 chromatin regulators, 
deleterious SWI/SNF mutations and overexpression of lncRNAs known to mediate PRC2 activity emerge as 
potentially convergent mechanisms underpinning the di"erences between C1 and C2 tumors68. Further endors-
ing a link between transcriptional subgroups and chromatin dysregulation, 15 of the di"erentially expressed tran-
scripts delineating C1 and C2 subgroups (absolute log2 fold change >2 and FDR < 0.01) are among the 50 genes 
most o%en associated with frequently bivalent chromatin segments (FBS) in cancer, including 11 transcripts from 
the HOXB cluster on chromosome 1769. $is overlap was highly statistically signi!cant (hypergeometric distribu-
tion P = 1.98 × 10−11). Bivalent, or epigenetically ‘poised’, chromatin is characterised by !nely balanced activating 
(H3K4me1/H3K4me3) and repressive (H3K27me3) histone marks and pre-loaded DNA polymerase II poised 
to transcribe in response to modest epigenetic changes70. Bivalent chromatin most o%en marks genes involved in 
developmental reprogramming, in particular Hox cluster genes and homeotic non-coding transcripts, and is a 
frequent target of aberrant chromatin modi!cation in cancer65,69,71.

ba

Grade 1
Grade 3 Correlation

1 0

c

Figure 3. Di"erences in gene expression pro!le between grade I and anaplastic meningomas. (a,b) Normalised 
transcript counts from grade I and anaplastic meningioma samples clustered by (a) Pearson’s correlation 
coe&cient and (b) principal component analysis. (c) Volcano plot illustrating di"erences in gene expression 
between anaplastic versus grade I meningiomas with selected genes indicated. $e horizontal axis shows 
the log2 fold change and the vertical axis indicates the −log10 adjusted P-value. Genes with an adjusted P-
value < 0.01 and absolute log2 fold change >2 are highlighted in red. PC, principal component.
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In the context of recent studies of lower grade meningiomas, our !ndings raise the possibility that the bal-
ance between PRC2 and SWI/SNF activity may have broader relevance to meningioma pathogenesis. Compared 
to grade I tumors, atypical meningiomas are more likely to harbor SMARCB1 mutations and large deletions 
encompassing chromosomes 1q, 6q and 14q. Notably, these genomic regions encompass ARID1A and several 
other SWI/SNF subunit genes. Both SMARCB1 mutations and the aforementioned copy number changes were 
associated with epigenetic evidence of increased PRC2 activity, di"erential Homeobox domain methylation, and 
upregulation of proliferation and stemness programs in atypical grade II meningiomas9.

$e extent to which SWI/SNF depletion plays a role in meningioma development may be therapeutically 
relevant. Diverse SWI/SNF mutated cancers exhibit dependence on both catalytic and non-catalytic functions 
of EZH2, a core subunit of PRC272–74. Several EZH2 inhibitors are in development with promising initial clinical 
results75. Other modulators of PRC2 activity, including HOTAIR, may also be relevant therapeutic targets76,77. 
Furthermore, growing recognition of the relationship between EMT and resistance to conventional and targeted 
anti-cancer agents has profound implications for rational integration of treatment approaches32,33. Notably, EGFR 
inhibition has yielded disappointing response rates in meningioma despite high EGFR expression37,78. A mesen-
chymal phenotype is strongly associated with resistance to EGFR inhibitors in lung and colorectal cancer32,33,79–81. 
Combining agents that abrogate EMT with other therapies is a promising strategy for addressing cell-autonomous 
and extrinsic determinants of disease progression and may warrant further investigation in meningioma32,33.

$is study has revealed biologically and prognostically signi!cant anaplastic meningioma subgroups and 
identi!ed potentially actionable alternations in SWI/SNF genes, PRC2 activity and EMT regulatory networks. 
However, a substantially larger series of tumors, ideally nested in a prospective multicentre observational study, 
will be required to expand upon our main !ndings and explore mechanistic and therapeutic rami!cations of 
meningioma diversity.

�������
����������������Ǥ� DNA was extracted from 70 anaplastic meningiomas; 51 samples at !rst resection (‘pri-
mary’) and 19 from subsequent recurrences. Matched normal DNA was derived from peripheral blood lympho-
cytes. Written informed consent was obtained for sample collection and DNA sequencing from all patients in 
accordance with the Declaration of Helsinki and protocols approved by the NREC/Health Research Authority 
(REC reference 7/YH/0101) and Ethics Committee at University Hospital Carl Gustav Carus, Technische 
Universität Dresden, Germany (EK 323122008). Samples underwent independent specialist pathology review 
(V.P.C and K.A). DNA extracted from fresh-frozen material was submitted for whole genome sequencing whereas 
that derived from formalin-!xed para&n-embedded (FFPE) material underwent deep targeted sequencing of 366 
cancer genes.

One tumor sample PD23348 (and two subsequent recurrences) separated from the main study samples in 
a principal components analysis of transcriptomic data (Supplementary Fig. S10). Analysis of WGS and RNA 
sequencing data identi!ed an expressed gene fusion, NAB2-STAT6. $is fusion is pathognomonic of menin-
geal hemangiopericytoma, now classi!ed as a separate entity, solitary !brous tumors82–84. We therefore excluded 
three samples from this tumor from further study. A second sample (PD23354a), diagnosed as an anaplastic 
meningioma with papillary features, was found to have a strong APOBEC mutational signature as well as an 
EML4-ALK gene fusion (exon 6 EML4, exon 19 ALK) (Supplementary Fig. S11)85. $erefore this sample was 
also removed as a likely metastasis from a primary lung adenocarcinoma. $e hypermutator sample PD23359a 
underwent additional pathological review to con!rm the diagnosis of anaplastic meningioma (K.A., Department 
of Histopathology, Cambridge University Hospital, Cambridge, UK).

RNA was extracted from fresh-frozen material from 34 primary and recurrent tumors, 3 of which were from 
PD23348 and were subsequently excluded from !nal analyses (Supplementary Table S1).

Whole genome sequencing. Short insert 500 bp genomic libraries were constructed, 'owcells prepared and 
sequencing clusters generated according to Illumina library protocols86. 108 base/100 base (genomic), or 75 base 
(transcriptomic) paired-end sequencing were performed on Illumina X10 genome analyzers in accordance with 
the Illumina Genome Analyzer operating manual. $e average sequence coverage was 65.8X for tumor samples 
and 33.8X for matched normal samples (Supplementary Table S1).

���������������������������Ǥ� For targeted sequencing we used a custom cRNA bait set (Agilent) to 
enrich for all coding exons of 366 cancer genes (Supplementary Table S20). Short insert libraries (150 bp) were 
prepared and sequenced on the Illumina HiSeq 2000 using 75 base paired-end sequencing as per Illumina proto-
col. $e average sequence coverage was 469X for the tumor samples.

����������������������������������Ǥ� For transcriptome sequencing, 350 bp poly-A selected RNA 
libraries were prepared on the Agilent Bravo platform using the Stranded mRNA library prep kit from KAPA 
Biosystems. Processing steps were unchanged from those speci!ed in the KAPA manual except for use of an 
in-house indexing set. Reads were mapped to the GRCh37 reference genome using STAR (v2.5.0c)87. Mean 
sequence coverage was 128X. Read counts per gene, based on the union of all exons from all possible transcripts, 
were then extracted BAM !les using HTseq (v0.6.1)88. Transcripts Per kilobase per Million reads (TPM) were 
generated using an in-house python script (https://github.com/TravisCG/SI_scripts/blob/master/tpm.py)87,88. We 
downloaded archived RNA sequencing FASTQ !les for 19 grade I meningioma samples representing the major 
mutational groups (NF2/chr22 loss, POLR2A, KLF4/TRAF7, PI3K mutant) (ArrayExpress: GSE85133)7. Reads 
were then processed using STAR and HTseq as described above. Cancer cell line (n = 252) and triple-negative 
breast cancer (n = 100) RNA sequencing data was generated in-house by the aforementioned sequencing and 
bioinformatic pipeline.
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Expressed gene fusions were sought using an in-house pipeline incorporating three algorithms: 
TopHat-Fusion (v2.1.0), STAR-Fusion (v0.1.1) and deFuse (v0.7.0) (https://github.com/cancerit/cgpRna)87,89,90. 
Fusions identi!ed by one or two algorithms or also detected in the matched normal sample were 'agged as likely 
artefacts. Fusions were further annotated according to whether they involved a kinase or known oncogene and 
whether they occurred near known fragile sites or rearrangement break points91 (Supplementary Table S5).

The C1 and C2 subgroups were defined by unsupervised hierarchical clustering using Poisson distance 
between samples92,93. Poisson distance was calculated using the PoissonDistance function implemented in the 
‘PoiClaClu’ R package92 and unsupervised hierarchical clustering performed with the stats::hclust() function 
using the 250 transcripts with the most variable expression across tumors. Silhouette information was computed 
using the cluster::silhouette() function. $e highest mean silhouette score was consistently achieved with two 
clusters.

������������������������������������������������������������Ǥ� The DESeq2 R package was 
used for all di"erential gene expression analyses94,95. DESeq2 uses shrinkage estimation of dispersion for the 
sample-speci!c count normalization and subsequently applies a linear regression method to identify di"erentially 
expressed genes (DEGs)94,95.

Preliminary comparison of anaplastic and externally-generated grade I meningioma data revealed evidence 
of laboratory batch e"ects, which we mitigated with two batch-correction methods: RUVg and PEER96,97. RUVg 
estimates the factor attributed to spurious variation using control genes that are assumed to have constant expres-
sion across samples98–100. We selected control genes (RPL37A, EIF2B1, CASC3, IPO8, MRPL19, PGK1 and POP4) 
on the basis of previous studies of suitable control genes for transcript-based assays in meningioma101. PEER 
(‘probabilistic estimation of expression residuals’) is based on factor analysis methods that infer broad variance 
components in the measurements. PEER can !nd hidden factors that are orthogonal to the known covariates. We 
applied this feature of PEER to remove additional hidden e"ect biases. $e !nal !tted linear regression model 
consists of the factor identi!ed by RUVg method that represents the unwanted laboratory batch e"ect and 13 
additional hidden factors found by PEER that are orthogonal to the estimated laboratory batch e"ect. Using this 
approach we were able to reduce the number of DEGs from more than 18000 to 8930, of which <4,000 are pre-
dicted to be protein-coding.

To identify biological pathways di"erentially expressed between meningioma grades and anaplastic menin-
gioma subgroups we applied a functional class scoring algorithm using a collection of 461 published gene sets 
mapped to 10 canonical cancer hallmarks (Supplementary Table S21)50,102–106. We further corroborated these 
!ndings with a more general Gene Ontology (GO) pathway analysis107.

������Ƥ����������ͼ����������������������������������������������������������Ǥ� Mapped RNA 
sequencing reads were normalised using the regularised logarithm (rlog) function implemented by the DESeq2 
package94,95. PCA was performed using the top 500 most variably expressed transcripts and the R stats::prcomp 
function108. Given that primary component 1 (PC1) was the vector most clearly distinguishing the closely clus-
tered C2 subgroup from the more di"usely clustered C1 (Fig. 3a), we extracted the top 50 transcripts with the 
highest absolute PC1 coe&cients. We then identi!ed the subset that overlapped with the most signi!cantly di"er-
entially expressed genes (absolute log2 fold change >4 and adjust p-value < 0.0001) between i) the C1 and C2 ana-
plastic meningioma subgroups and ii) the C1 anaplastic meningiomas and the 19 grade I tumors (Supplementary 
Tables S10 and S17). Iteratively reducing the number of PC1 components identi!ed the minimum number of 
transcripts that recapitulated segregation of C1 and C2 tumors upon unsupervised hierarchical clustering and 
PCA (Supplementary Table S11, Fig. S9).

�������������������������������������Ǥ� Genomic reads were aligned to the reference human 
genome (GRCh37) using the Burrows-Wheeler Aligner, BWA (v0.5.9)109. CaVEMan (Cancer Variants $rough 
Expectation Maximization: http://cancerit.github.io/CaVEMan/) was used for calling somatic substitutions. 
Small insertions and deletions (indels) in tumor and normal reads were called using a modi!ed Pindel ver-
sion 2.0. (http://cancerit.github.io/cgpPindel/) on the NCBI37 genome build110,111. Annotation was according to 
ENSEMBL version 58. Structural variants were called using a bespoke algorithm, BRASS (BReakpoint AnalySiS) 
(https://github.com/cancerit/BRASS) as previously described112.

$e ascatNGS algorithm was used to estimate tumor purity and ploidy and to construct copy number pro!les 
from whole genome data113.

����������������������������������������������������������������������Ǥ� To identify recur-
rently mutated driver genes, we applied an established dN/dS method that considers the mutation spectrum, the 
sequence of each gene, the impact of coding substitutions (synonymous, missense, nonsense, splice site) and the 
variation of the mutation rate across genes22.

��������������������������������������������������������Ǥ� Non-synonymous coding variants 
detected by Caveman and Pindel algorithms were 'agged as putative driver mutations according to set crite-
ria and further curated following manual inspection in the Jbrowse genome browser114. Variants were screened 
against lists of somatic mutations identi!ed by a recent study of 11,119 human tumors encompassing 41 can-
cer types and also against a database of validated somatic drivers identi!ed in cancer sequencing studies at the 
Wellcome Trust Sanger Institute (Supplementary Tables S22 and S23)115.

Copy number data was analysed for homozygous deletions encompassing tumor suppressor genes and for 
oncogene ampli!cations exceeding 5 or 9 copies for diploid and tetraploid genomes, respectively. Only focal 
(<1 Mb) copy number variants meeting these criteria were considered potential drivers. Additional truncating 
events (disruptive rearrangement break points, nonsense point mutations, essential splice site mutations and 
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frameshi% indels) in established tumor suppressors were also 'agged as potential drivers. Only rearrangements 
with breakpoints able to be reassembled at base pair resolution are included in this dataset.

���	�����������������������������������������������������Ǥ� For the identi!cation of putative solo-L1 
and L1-transduction integration sites, we used the TraFiC (Transposome Finder in Cancer) algorithm12. TraFiC 
uses paired-end sequencing data for the detection of somatic insertions of transposable elements (TEs) and exog-
enous viruses. $e identi!cation of somatic TEs (solo-L1, Alu, SINE, and ERV) is performed in three steps: (i) 
selection of candidate reads, (ii) transposable element masking, (iii) clustering and prediction of TE integration 
sites and (iv) !ltering of germline events12.

�������������������������������Ǥ� We performed quantitative methylation analysis of 850,000 CpG sites 
in 25 anaplastic meningiomas. Bisul!te-converted DNA (bs-DNA) was hybridized on the Ilumina In!nium 
HumanMethylationEPIC BeadChip array following the manufacturer’s instructions. All patient DNA samples 
were assessed for integrity, quantity and purity by electrophoresis in a 1.3% agarose gel, picogreen quanti!ca-
tion and Nanodrop measurements. Bisul!te conversion of 500 ng of genomic DNA was done using the EZ DNA 
Methylation Kit (Zymo Research), following the manufacturer’s instructions. Resulting raw intensity data (IDATs) 
were normalized using the Illumina normalization method developed under the min! R package (v1.19.10). 
Normalized intensities were then used to calculate DNA methylation levels (beta values). We then excluded from 
the analysis the positions with background signal levels in methylated and unmethylated channels (p > 0.01). 
Finally we removed probes with one or more single nucleotide polymorphisms (SNPs) with a minor allele fre-
quency (MAF) >1% in the !rst 10 bp of the interrogated CpG, as well as the probes related to X and Y chromo-
somes. From the !ltered positions, we selected only CpG sites present both in promoter regions (TSS, 5′UTR and 
1st exon) and CpG islands (UCSC database, genome version hg19).

For the supervised analysis of the probes, CpG sites were selected by applying an ANOVA test to identify 
statistically signi!cant CpG positions (FDR adjusted p-value < 0.01) that were di"erentially methylated among 
the compared groups (∆β > 0.2). Selected CpG sites were later clustered based on the Manhattan distances aggre-
gated by ward’s linkage. Finally, the genes corresponding to the selected CpGs were used to perform a Gene Set 
Enrichment Analysis (GSEA) with curated gene sets in the Molecular Signatures Database116. $e gene sets used 
were: H: hallmark gene sets, BP: GO biological process, CC: GO cellular component, MF: GO molecular function 
and C3: motif gene sets (http://so%ware.broadinstitute.org/gsea/msigdb/collections.jsp). $e gene clusters result-
ing from the hypergeometric test with a FDR adjusted p-value < 0.05 were !nally considered. We observed high 
levels of methylation for CREBBP in the majority of tumor samples, however, similar patterns were manifest in 
normal tissue controls, hence CREBBP hypermethyation does not appear to be a feature of oncogenesis in these 
samples.

For principal component analysis, we used the R function prcomp to calculate the Singular Value 
Decomposition of the beta value matrix a%er removing the CpGs without methylation information. We plotted 
the !rst two principal components which contain most variation by using the ggbiplot R package (http://github.
com/vqv/ggbiplot). For each group we plotted a normal data ellipse with size de!ned as a normal probability 
equal to 0.68. Unsupervised hierarchical clustering was performed with the stats::hclust() function using the 75 
probes with the highest variance in methylation beta values.

�����������������������������Ǥ� Mutational signature extraction was performed using the nonnegative 
matrix factorization (NNMF) algorithm11. Brie'y, the algorithm identi!es a minimal set of mutational signatures 
that optimally explains the proportions of mutation types found across a given mutational catalogue and then 
estimates the contribution of each identi!ed signature to the mutation spectra of each sample.

�������������������������Ǥ� $e Kaplan-Meier method was used to analyze survival outcomes by the log-rank 
Mantel-Cox test, with hazard ratio and two-sided 95% con!dence intervals calculated using the Mantel_Haenszel 
test (GraphPad Prism, ver 7.02). Overall survival data from time of !rst surgery for each anaplastic meningioma 
within gene-expression de!ned subgroups C1 and C2 was collected and used to plot a Kaplan-Meier survival 
curve.

������������������������
����������������������������������������������������������Ǥ� One primary anaplastic menin-
gioma resected from an 85-year old female (PD23359a) had a hypermutator phenotype, with 27,332 point muta-
tions and LOH across nearly its entire genome (Supplementary Fig. S12, Table S24). Independent pathological 
review con!rmed the original diagnosis of anaplastic meningioma, and transcriptome analysis demonstrated 
that this tumor clustered appropriately with the rest of the cohort (Fig. 3a,b). $e majority of the mutations were 
substitutions, 72% of which were C > T transitions. We identi!ed two deleterious mutations in DNA damage 
repair mediators: a TP53 p.R248Q missense mutation and a homozygous truncating variant in the mismatch 
repair gene MSH6 (p.L1330Vfs*9). Despite the latter !nding, mutational signatures analysis was dominated by 
signature 1, with no evidence of signatures typically associated with defects in homologous recombination, mis-
match repair or POLE activity (signatures 3, 6, 10, 15, 20 or 26). $e copy number pro!le is most consistent with 
this tumor having !rst undergone haploidization of its genome, with the exception of chromosomes 7, 19 and 
20, followed by whole genome duplication (Supplementary Fig. S12). Of note, several important oncogenes are 
located on chromosome 7, including EGFR, MET and BRAF. Widespread LOH has been described in a signi!cant 
proportion of oncocytic follicular thyroid cancers where preservation of chromosome 7 heterozygosity has also 
been observed117.
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�����������������
All sequencing data that support the !ndings of this study have been deposited in the European Genome-Phe-
nome Archive and are accessible through the accession numbers EGAS00001000377, EGAS00001000828, 
EGAS00001000859, EGAS00001001155 and EGAS00001001873. All other relevant data are available from the 
corresponding author on request.
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Recurrent intragenic rearrangements of EGFR
and BRAF in soft tissue tumors of infants
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Soft tissue tumors of infancy encompass an overlapping spectrum of diseases that pose

unique diagnostic and clinical challenges. We studied genomes and transcriptomes of

cryptogenic congenital mesoblastic nephroma (CMN), and extended our findings to five

anatomically or histologically related soft tissue tumors: infantile fibrosarcoma (IFS),

nephroblastomatosis, Wilms tumor, malignant rhabdoid tumor, and clear cell sarcoma of the

kidney. A key finding is recurrent mutation of EGFR in CMN by internal tandem duplication of

the kinase domain, thus delineating CMN from other childhood renal tumors. Furthermore,

we identify BRAF intragenic rearrangements in CMN and IFS. Collectively these findings

reveal novel diagnostic markers and therapeutic strategies and highlight a prominent role of

isolated intragenic rearrangements as drivers of infant tumors.
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Many childhood tumors show a predilection for specific
developmental stages. Tumors that predominantly
occur in infancy include congenital mesoblastic

nephroma (CMN), which accounts for 4% of all childhood renal
malignancies and the majority of those diagnosed in children
under 6 months of age1,2. CMN is classified histologically into
classical, cellular, and mixed subtypes based primarily on degree
of cellularity and mitotic activity3. The cellular variant is char-
acterized by a sarcoma-like diffuse hypercellular morphology,
whereas classical CMN is composed of less proliferative spindle
cells3. Cellular CMN is driven by rearrangements involving the
tropomyosin receptor kinase (TRK) gene NTRK3, most com-
monly a t(12;15)(p13;q25) reciprocal translocation with the ETV6
transcription factor4,5. Less frequent somatic aberrations include
trisomies of chromosomes 8, 11, 17, and 206,7 and rarer TRK
fusions, involving NTRK1, NTRK2, or NTRK38. By contrast, the
genetic changes underpinning the classical variant, accounting for
>30% of cases, are unknown9. Cellular CMN shares its genetic
and morphological hallmarks with infantile fibrosarcoma (IFS), a
spindle cell tumor typically arising in the soft tissues of the
extremities or abdomen5,9,10.

Standard treatment for CMN and IFS is complete surgical
resection9–11. In the case of IFS, local control frequently requires
cytotoxic chemotherapy10,11. The role for up-front chemotherapy
in CMN is less clear9. Recently, a phase I/II clinical trial of a

selective TRK inhibitor, larotrectinib, reported high response
rates in diverse tumor types harboring TRK gene fusions,
including IFS and other soft tissue tumors of infancy12. Morbidity
and infrequent death result from tumor recurrence or from
treatment-related complications9–11.

Here, we investigated the genetic basis of CMN and IFS
lacking the canonical NTRK3-ETV6 fusion gene. We identify
oncogenic rearrangements in MAPK signaling genes across all
cases interrogated by unbiased sequencing, notably ther-
apeutically tractable intragenic rearrangements in EGFR and
BRAF.

Results
Overview of the genomic landscape of CMN. To identify the
genetic basis of cryptogenic CMN, we first applied whole genome
and transcriptome sequencing to a discovery cohort of ten clas-
sical CMN lacking an NTRK3 fusion (Supplementary Data 1).
Somatic variants were identified by comparing tumor and mat-
ched peripheral blood sequences (see Methods). The genomic
landscape was universally quiet, with a low burden of point
mutations (median of 45 substitutions and 9 insertions or dele-
tions per genome; Supplementary Data 2). The predominant
mutational signatures, as defined by the trinucleotide context of
substitutions, were the ubiquitous signatures 1 and 513
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classical histology. b Schematic of the wild-type transcript. c Schematic of the fusion transcript annotated with cDNA sequence of rearrangements (sense
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(Supplementary Fig. 1). Copy number changes and structural
rearrangements were likewise scarce (Supplementary Fig. 2).

Internal tandem duplication of the EGFR kinase domain in
CMN. Annotating all cases for potential oncogenic variants
revealed a single intragenic, in-frame internal tandem duplication
(ITD) of the EGFR kinase domain in all ten tumors (Table 1;
Fig. 1; Supplementary Data 3). The breakpoints clustered in a
narrow genomic window around the kinase domain of EGFR
encoded in exons 18−25 (Fig. 1a). This rearrangement is rarely
observed in several other tumor types including in glioma and in
lung adenocarcinoma, and confers sensitivity to a targeted EGFR
inhibitor, afatinib14. We validated all rearrangements by genomic
copy number analysis and reconstruction of cDNA reads span-
ning the breakpoint junction (Fig. 1; see Methods). Of note, the
same mutant cDNA junction sequence was found in every case,
irrespective of the genomic location of breakpoints. A search for
additional known or novel driver variants revealed no further
plausible candidates in any of the EGFR-mutant tumors. We next
extended this investigation to seven non-classical CMN lacking
an NTRK3 fusion, including four mixed cellularity cases and three
cellular tumors (Table 1; Supplementary Data 1). Two of the four
mixed cellularity tumors surveyed also harbored an EGFR-ITD.
Of note, for one child with EGFR-ITD-positive mixed cellularity
CMN (PD37214), both primary tumor and recurrence were
studied, with no additional driver events apparent at relapse.

BRAF rearrangements in CMN and IFS. A further striking
finding was the discovery of mutations in the BRAF oncogene in 2/3
cellular histology CMNs. BRAF fusions have been implicated in a
minority of IFS but not in CMN15. In both cases the BRAF

rearrangement involved a compound deletion of conserved region 1
(CR1) and tandem duplication of exon 2 (Fig. 2; Table 1; Supple-
mentary Data 3). CR1 encompasses the negative regulatory Ras-
binding domain (RBD), loss of which is predicted to generate a
constitutively active form of BRAF16,17. Mutated tumors displayed
intense staining of phosphorylated ERK by immunohistochemistry,
consistent with activated signaling downstream of BRAF
(Figs. 1e and 2e). A further tumor harbored the KIAA1549-BRAF
fusion, a molecular hallmark of a childhood brain tumor, pilocytic
astrocytoma18,19. This fusion likewise results in loss of the N-
terminal portion of the BRAF protein containing the RBD17,18.

Other TRK fusions in CMN. The remaining two cases of CMN
interrogated by whole genome and transcriptome sequencing
were accounted for by gene fusions involving NTRK1, an alter-
nate kinase of the TRK family of protein kinases: TPR-NTRK1
and LMNA-NTRK1. Both of these fusions have been observed in
IFS and rarely in adult cancers, but not, to our knowledge, in
CMN20–23 (Table 1). Hence, every cryptogenic CMN interrogated
by whole-genome sequencing contained an oncogenic rearran-
gement in BRAF, EGFR, or NTRK1, all of which encode kinases
involved in MAPK signaling and are amenable to inhibition with
existing drugs9,12,14,17,24.

EGFR-ITD distinguishes CMN from other childhood renal
tumors. To validate and extend our findings, we screened IFS and
a range of childhood renal tumors for EGFR-ITD, BRAF-ID, and
ETV6-NTRK3 using PCR. Tumor types included additional cases
of CMN (n= 63), IFS (n= 26), Wilms tumor (n= 208), clear cell
sarcoma of the kidney without BCOR rearrangements (n= 20),
malignant rhabdoid tumor (n= 3), and nephroblastomatosis
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orange exons encode the kinase domain and conserved region 1, respectively. Horizontal lines above exons demarcate rearrangements (blue: tandem
duplication; red: deletion). b Outline of wild-type transcript. c Outline of fusion transcript with cDNA sequence of rearrangements (sense orientation) with
translation. d Intragenic copy number of BRAF (x-axis: genomic coordinate; y-axis: copy number derived from coverage). e Representative phospho-ERK
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(n= 12; Table 1; Supplementary Data 1). EGFR-ITD was most
prevalent in classical and mixed cellularity CMN, though was also
found in cellular CMN (2/17 cases). The frequency of EGFR
rearrangement in classical tumors was lower in the validation
cohort (20/35 cases) than in the initial discovery cohort (10/10
cases). None of the IFS cases, nor other childhood kidney tumors,
harbored EGFR-ITD. However, we encountered three cases of IFS
with intragenic BRAF deletions. Remarkably, in two cases BRAF-
ID co-occurred with NTRK3 fusions, the disease-defining muta-
tion of IFS. We were unable to accurately estimate relative allele
frequencies by nested PCR (see Methods). Hence, it is possible
that both fusions co-exist within the same clone or represent
independent clones that evolved in parallel within the same tumor.

Discussion
In this exploration of infant tumors we identify ITD of the EGFR
kinase domain that delineates a genetic subgroup of CMN
transcending histological subtypes. Additionally, we report a
novel rearrangement of BRAF present in both cellular CMN and
IFS. These mutations represent diagnostic markers that can be
readily integrated into routine clinical practice. Furthermore,
EGFR and BRAF emerge as therapeutic targets, which may be
exploited in certain clinical situations, e.g., large surgically
intractable tumors, disease recurrence or metastases.

It is noteworthy that an oncogenic mutation was identified in
every tumor that we studied by whole-genome sequencing. Of
these, 78% harbored either EGFR-ITD or BRAF-ID, while the
remaining 22% presented with non-canonical mutations invol-
ving BRAF, NTRK1, or NTRK3. This suggests that less recurrent
rearrangement variants, albeit implicated in the same signaling
circuity, may elude detection by targeted diagnostic assays.
Moreover, our results indicate that a subset of tumors harbor
multiple drivers with important implications for targeted therapy
efforts. The finding of co-mutation of NTRK3 and BRAF in IFS
raises the possibility of intrinsic resistance of some tumors to
TRK inhibition, regardless of whether these mutations occur in
the same clone or in independent competing clones. This finding
is pertinent to clinical trials of TRK inhibitors in CMN and IFS12.
In this vein a structurally similar BRAF fusion transcript, albeit
without duplication of exon 2, has recently been implicated as a
mechanism of resistance to certain BRAF/MEK inhibitors16,17.
These considerations underscore the need for adequate genomic
profiling in order to match patients to the most appropriate
basket studies and to enable meaningful interpretation of

treatment responses. Therefore, we would advocate extending the
diagnostic work-up of refractory or relapsed CMN and IFS to
whole genome sequencing, particularly in the context of clinical
trials.

Biologically our findings draw further parallels between CMN
and IFS. We identify BRAF and NTRK1 as additional cancer
genes operative in both malignancies, substantiating the view that
these diagnoses represent variants on the same disease spectrum
converging on aberrant RAS-RAF-MEK-ERK signaling5,8,9.
Furthermore, in the wider context of the childhood cancer
genome, our findings add to the growing body of studies that
identify short distance intragenic rearrangements as a dominant
source of oncogenic mutations in otherwise quiet genomes.
We note the parallel between CMN, clear cell sarcoma of
the kidney and low-grade glioma that are in large part driven
by ITDs often involving kinase domains, mostly as isolated
driver events18,25–29. Furthermore, even in acute myeloid
leukemia, where FLT3-ITD is a recurrent driver event in
adult disease, childhood AML demonstrates a distinct structural
variant profile enriched for focal chromosomal gains and
losses30. We can only speculate on the biological significance
of this parallel which may allude to specific mutational
mechanisms operative during discrete stages of human
development.

Methods
Patient samples. All tissue samples were obtained after gaining written informed
consent for tumor banking and future research from the patient (or their guardian)
in accordance with the Declaration of Helsinki and appropriate national and local
ethical review processes. German tissue samples were obtained from the following
studies: SIOP93-01/GPOH and SIOP2001/GPOH (Ethikkommission der
Ärztekammer des Saarlandes reference numbers 23.4.93/Ls and 136/01), the
PTT2.0 study (Medical Faculty Heidelberg ethics reference number S-546/2016),
the CWS trials CWS-96 and CWS-2002P (Universitätsklinikum Tübingen Medi-
zinische Fakultät ethics approval, reference numbers 105/95 and 51/2003) and the
SoTiSaR registry (ethics approval reference 158/2009B02). UK patients were
enrolled under ethics approval from National Research Ethics Service Committee
East of England, Cambridge Central (reference 16/EE/0394). Use of UK archival
material was approved by the National Research Ethics Service Committee London
Brent (reference 16/LO/0960). Additional tissue was obtained from the UK Chil-
dren’s Cancer and Leukaemia Group tissue bank.

Sequencing. Tumor DNA and RNA were extracted from fresh frozen tissue that
had been reviewed by reference pathologists. Normal tissue DNA was derived from
blood samples. Whole genome sequencing was performed by 150-bp paired-end
sequencing on the Illumina HiSeq X platform. We followed the Illumina no-PCR
library protocol to construct short insert libraries, prepare flowcells, and generate
clusters. Coverage was at least 30×. Messenger RNA was enriched by polyA-

Table 1 Rearrangements in infant soft tissue tumors

Assay Tumor
type

Subtype Total EGFR-ITD BRAF-ID BRAF-ID+
ETV6-
NTRK3

ETV6-
NTRK3

KIAA1549-
BRAF

LMNA-
NTRK1

EML4-
NTRK3

TPR-
NTRK1

WGS+mRNA
sequencing

CMN Cellular 3 0 2 0 0 0 1 0 0
Classical 10 10 0 0 0 0 0 0 0
Mixed 4 2 0 0 0 1 0 0 1

IFS − 1 0 0 0 0 0 0 1 0
PCR for EGFR-ITD,
BRAF-ID and ETV6-
NTRK3

CMN Cellular 17 2 0 0 13 – – – –
Classical 35 20 0 0 0 – – – –
Mixed 11 9 0 0 0 – – – –

IFS – 26 0 1 2 16 – – – –
WT – 208 0 0 0 0 – – – –
CCSKa – 20 0 0 0 0 – – – –
MRT – 3 0 0 0 0 – – – –
NB – 12 0 0 0 0 – – – –

CMN congenital mesoblastic nephroma, IFS infantile fibrosarcoma,WTWilms tumor, CCSK clear cell sarcoma of the kidney,MRTmalignant rhabdoid tumor, NB nephroblastomatosis,WGS whole genome
sequencing, mRNA messenger RNA, PCR polymerase chain reaction
aNegative for BCOR rearrangement
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selection and sequenced on an Illumina HiSeq 2000 (paired end, 75-bp read
length). DNA and RNA sequencing reads were aligned to the GRCh 37d5 reference
genome using the Burrows−Wheeler transform (BWA-MEM)31 and STAR
(2.0.42)32, respectively.

Variant detection. The Cancer Genome Project (Wellcome Trust Sanger Institute)
variant calling pipeline was used to call somatic mutation and includes the fol-
lowing algorithms: CaVEMan (1.11.0)33 for substitutions, an in-house version of
Pindel (2.2.2; github.com/cancerit/cgpPindel)34 for indels, BRASS (5.3.3; github.
com/cancerit/BRASS) for rearrangements, and ASCAT NGS (4.0.0) for copy
number aberrations35. RNA sequences were analyzed with an in-house pipeline
(github.com/cancerit/cgpRna/wiki) which uses HTSeq36 for gene feature counts,
and a combination of TopHat-Fusion (v2.1.0)37, STAR-fusion (v0.1.1)32 and
DeFuse (v0.7.0)38 to detect expressed gene fusions. In addition to filters inherent to
the CaVEMan algorithm, we used the following post-processing filtering criteria
for substitutions: a minimum of two reads in each direction reporting the mutant
allele, at least tenfold coverage at the mutant allele locus, minimum variant allele
fraction 5%; no insertion or deletion called within a read length (150 bp) of the
putative substitution, no soft-clipped reads reporting the mutant allele, and a
median BWA alignment score of the reads reporting the mutant allele ≥140. The
following variants were flagged for additional inspection for potential artifacts,
germline contamination or index-jumping event: any mutant allele reported within
150 bp of another variant, any mutant allele with a population allele frequency >1
in 1000 according to any of five large polymorphism databases (ExAC, 1000
Genomes Project, ESP6500, CG46, Kaviar), variant reported in more than 10% of
the tumor samples and mutant allele reported in >1% of the matched normal reads.
For indels, the inbuilt filters of the Pindel algorithm, as implemented in our
pipeline, were used. In addition, recurrent indels occurring in >2 samples were
flagged for additional inspection.

Mutational signatures were derived using principal component analysis and
non-negative matrix factorization as implemented in the SomaticSignatures
R package39.

Variant validation. The Cancer Genome Project (Wellcome Trust Sanger Insti-
tute) variant calling pipeline has been continually validated and bench-marked40,41.
We confirmed variant calling quality through manual visual inspection of raw
sequencing read for 8% of all variants called. All rearrangements reported were
validated by reconstruction at base pair resolution and by cDNA reads spanning
the breakpoint junction.

Analysis of mutations in cancer genes. We considered variants as potential
drivers if they presented in established cancer genes42. Tumor suppressor coding
variants were considered if they were annotated as functionally deleterious by an
in-house version of VAGrENT (http://cancerit.github.io/VAGrENT/)43 or were
disruptive rearrangement breakpoints or focal (<1Mb) homozygous deletions.
Mutations in oncogenes were considered driver events if they were located at
previously reported canonical hot spots (point mutations) or amplified the intact
gene. Amplifications also had to be focal (<1Mb) and increase the copy number of
oncogenes to a minimum of five copies for a diploid genome. To search for driver
variants in novel cancer genes or in non-coding regions, we employed previously
developed statistical methods that identify significant enrichment of mutations,
taking into account various confounders such as overall mutation burden and local
variation in the mutability of the genomic region44.

Targeted mutation screening. RNA from frozen tumors (1 µg) or corresponding
to approximately 5 cm2 of 10 µm FFPE sections was reverse transcribed using
oligo-dT or random hexamer primers (RevertAid first strand cDNA synthesis kit,
ThermoFisher). PCR screening was performed using primer combinations that
allow amplification of candidate alterations as well as additional control fragments
from the unaffected allele to assess cDNA quality. Amplified fragments were
sequenced by Sanger sequencing (GATC, Konstanz, Germany) using primers
detailed in Supplementary Table 1.

Immunohistochemistry. Immunohistochemical staining for phospho-ERK1/2
(Cell Signaling Technology, clone D13.14.4E) was performed according to standard
protocol (dilution 1:800, pre-treatment with target retrieval TR6.1, Dako). Results
were scored in a semi-quantitative fashion (negative, weak, moderate, strong).

Code availability. The algorithms used to analyze sequencing data are available at
http://cancerit.github.io/.

Data availability. All data supporting the findings of this study are available within
the article and its supplementary files or from the corresponding author on rea-
sonable request. Sequencing data have been deposited at the European Genome-
Phenome Archive (http://www.ebi.ac.uk/ega/) that is hosted by the European
Bioinformatics Institute (accession numbers EGAS00001002534 and
EGAS00001002171).
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Recurrent histone mutations in T-cell acute lymphoblastic
leukaemia

Mutations affecting key modifiable histone type 3 (H3;

Table SI) residues are frequent oncogenic events in certain

solid tumours (Feinberg et al, 2016), and have also recently

been implicated in a subset of acute myeloid leukaemia

(AML) (Lehnertz et al, 2017). Here, we systematically

reviewed the somatic mutations in >20 000 cancer specimens

to identify tumours harbouring H3 mutations. In a subset of

T-cell acute lymphoblastic leukaemia (T-ALL) we identified

non-methionine mutations of the key modifiable H3 resi-

dues, lysine (K) 27 and 36.

The starting point of our investigation was a search for H3

hotspot mutations in 1020 human cancer cell lines (Table SII).

In two cell lines, both derived from T-ALL, we found lysine-

to-arginine mutations at H3K27 and H3K36 (Table I). One of

the cell lines, LOUCY, is derived from a NOTCH1 wild-type

adult T-ALL (Ben-Bassat et al, 1990). The second, CML-T1,

was derived from the T-lymphoblastic blast crisis of chronic

myeloid leukaemia (Kuriyama et al, 1989). Ten further T-ALL

cell lines lacked coding H3 mutations (Table SIII). In solid

tumours, H3K27 and H3K36 are typically mutated to

methionine (Fig 1) (Feinberg et al, 2016). However, recent

functional studies of H3 lysine-to-isoleucine mutations in

AML demonstrate that the latter also dramatically alter global

H3 methylation and acetylation patterns (Lehnertz et al,

2017). Therefore, we speculated that lysine-to-non-methionine

mutations may also be drivers of a subset of T-ALL.

We next searched for canonical H3 mutations in a pub-

lished targeted sequencing study of 633 epigenetic regulator

genes in >1000 childhood tumours encompassing 21 cancer

subtypes (Huether et al, 2014). Amongst 91 T-ALL speci-

mens, there were two cases with canonical H3 mutations:

H3F3A p.K27R and H3F3A p.K36R (Table I). Both muta-

tions were clonal, with a variant allele fraction (VAF) of 38%

and 55%, respectively. Among the 37 tumours with H3K

mutations, lysine-to-arginine mutations were restricted to T-

ALL (P = 0!001502; Fisher’s exact test).
We then extended our screen for H3 mutations to 18 704

tumours, encompassing >60 cancer types other than T-ALL

(Tables SIV and SV). This dataset comprised 8764 internally

sequenced specimens and 9940 TCGA samples re-analysed

using an in-house variant calling pipeline as previously

described (Martincorena et al, 2017). We identified only one

neomorphic H3 mutation in an acute leukaemia specimen: a

previously reported HIST1H3D p.K27M mutation in an adult

AML case (TCGA-AB2927-03) (Lehnertz et al, 2017).

Finally, we examined an additional T-ALL cohort by capil-

lary sequencing of recurrently mutated modifiable residues

K27, G34, and K36 across four frequently mutated H3 genes

(Tables SVI and SVII). The cohort comprised 38 T-ALL cases

described in detail previously (Maser et al, 2007). One speci-

men from a 30-year-old patient harboured a H3F3A p.K27N

mutation (Figure S1). Interestingly, a H3F3A p.K27N muta-

tion and a H3F3A p.K27T variant were previously identified

in a T-ALL RNA sequencing study (n = 31) (Atak et al,

2013). Collectively, our findings indicate that H3K27 and

H3K36 mutations are recurrent in T-ALL, a result we were

able to reproduce across multiple different cohorts encom-

passing adult and paediatric cases.

This finding is congruent with the fact that mutations in

SETD2 and EZH2, methyltransferases that catalyse trimethyla-

tion (me3) of H3K36 and H3K27, respectively, are frequent

T-ALL drivers (Belver & Ferrando, 2016). Disruptive SETD2

alterations occur in 7!8% of early T cell precursor acute lym-

phoblastic leukaemia (ETP-ALL), an aggressive subtype with

stem cell-like features (Belver & Ferrando, 2016). Interestingly,

both T-ALL specimens with H3K36R mutations originated

from ETP-ALL (Table I). Notably, mutually exclusive SETD2

and H3K36/H3K34 mutations are reported in paediatric high

grade glioma, where both result in reduced H3K36me3 medi-

ated by SETD2 (Feinberg et al, 2016). It is unclear whether a

similar co-mutation pattern exists in T-ALL, as H3 genes have

not been included in targeted sequencing panels used by the

largest T-ALL genomic studies (Belver & Ferrando, 2016).

The role of H3K27 modifications in T-ALL pathogenesis is

complex (Belver & Ferrando, 2016). It is plausible that muta-

tions affecting this residue could impact the activity of sev-

eral histone modifiers with established roles in T-ALL

pathogenesis. Loss-of-function mutations in EZH2 or other

core components of Polycomb repressive complex 2 (PRC2)

are found in 42% of ETP-ALL and 25% of T-ALL overall

(Belver & Ferrando, 2016). Impaired PRC2 catalytic activity

in T-ALL is associated with reduced H3K27me3, stemness

and poor prognosis (Belver & Ferrando, 2016). H3F3A

p.K27M mutations appear to act predominantly by blocking

H3K27 di- and trimethylation and increasing H3K27 acetyla-

tion (Feinberg et al, 2016). Recent work demonstrates that

H3K27I mutations in AML are associated with similar

changes in H3 modification patterns (Lehnertz et al, 2017),

suggesting that other non-methionine mutations at modifi-

able H3 residues may influence the activity of PRC2 and
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other histone modifying enzymes. The lysine-specific

demethylases JMJD3 and UTX are further important regula-

tors of H3K27me3 distribution in T-ALL (Belver & Ferrando,

2016), and it is conceivable that these enzymes may also be

affected by H3K27 or H3K36 mutations.

A feature of H3 mutations in solid cancers is their exqui-

site tumour type specificity (Fig 1) (Feinberg et al, 2016). In

this context, it is notable that 5/5 H3 mutations in T-ALL

identified by this survey are lysine-to-non-methionine muta-

tions, and 4/5 are lysine-to-arginine mutations. Out of the

>20 000 tumour specimens screened for H3 variants, only

two other samples harboured H3 lysine-to-arginine muta-

tions, both at low VAF and in tumours with relatively high

coding mutation burdens (TCGA-BT-A20Q-01 and TCGA-

Lymphoid

Childhood brain tumours

MidlineHemispheres

Bone tumours

Osteoblastic
lineage

Chondroblastic
lineage

180 23 3947 141 9132 53 15 77 75N  =
Mutated (%) 10.6 81.7 47.8 92 1.5 11.1 92.5 6.7 94.8 1.33.5

Myeloid

Haematological cancers

615
0.5

Fig 1. Prevalence and amino acid specificity of type 3 histone mutations in different cancer types. Columns indicate cancer types and rows show
key histone type 3 regulatory residues. Tiles are coloured according to amino acid substitution. The percentage of each tumour type affected by
the given class of histone mutation is indicated within the tiles and the overall prevalence of histone mutations is summarised at the bottom of
each column. NBS HGG, non-brain stem high grade glioma; DIPG, diffuse intrinsic pontine glioma; ASTR, astrocytoma; AML, acute myeloid
leukaemia; T-ALL, T cell acute lymphoblastic leukaemia; OS, osteosarcoma; ADM, adamantinoma; GCTB, giant cell tumour of bone; CCC, clear
cell chondrosarcoma; CB, chondroblastoma; CS, chondrosarcoma.

Table I. Type 3 histone mutations in T cell leukaemia.

Sample name Sample type Donor age (years) Donor sex H3 mutation

LOUCY Cell line derived from ETP-ALL 38 Female HIST1H3G p.K36R

CML-T1 Cell line derived from the acute T-lympoblastic

blast crisis of CML

36 Female H3F3A p.K27R

SJTALL174 Primary ETP-ALL specimen Unknown (paediatric) Unknown H3F3A p.K36R

SJTALL080 Primary T-ALL specimen Unknown (paediatric) Unknown H3F3A p.K27R

PD2752a Primary T-ALL specimen 30 Male H3F3A p.K27N

Out of 141 T cell leukaemia specimens screened (12 cell lines and 129 primary samples), 5 (3!5%) harboured a missense mutation at a modifiable

lysine residues K27 or K36. CML, chronic myeloid leukaemia; ETP-ALL, early T cell precursor acute lymphoblastic leukaemia; T-ALL, T cell acute

lymphoblastic leukaemia.
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AN-A0FW-01). Hence, it is possible that lysine-to-arginine

mutations confer particular selective advantage in the context

of T cell leukaemogenesis.

In summary, ~3% of T-ALL harbour non-methionine vari-

ants in H3 genes at key modifiable lysine residues. Given the

role of dysregulated H3K27/H3K36 modification in T-ALL

pathogenesis and the established prognostic significance of

mutations in lysine-specific histone modifiers (Belver & Fer-

rando, 2016), this finding warrants further investigation of the

prevalence, clinical and functional significance of H3 muta-

tions in T-ALL. In light of the recent discovery of oncogenic

H3K37 mutations in AML (Lehnertz et al, 2017), our findings

suggest a broader role for histone mutations in acute leukae-

mias and clearly justify incorporation of H3 genes into haema-

tological cancer sequencing panels.
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Hairy cell leukemia (HCL) is a chronic, incurable B cell
malignancy that presents with splenomegaly, bone marrow
infiltration, and cytopenias [1]. Long remissions are typically
achieved with purine analogs such as cladribine, but most cases
will relapse and require further therapy. The discovery of the
BRAF V600E mutation in almost all cases of HCL [2] has led
to the widespread adoption of the BRAF inhibitor vemurafenib
for treatment of patients relapsing after cladribine [3–5].
Impressive responses are reported; however, relapse is inevi-
table [5, 6] and hematologists are now faced with a growing
number of patients with vemurafenib-resistant HCL. The
optimal management of these patients remains unclear.

The molecular basis of vemurafenib resistance has been
extensively investigated in recent years in patients with
BRAF mutant solid organ malignancies such as melanoma
and colorectal cancer [7]. Resistance to vemurafenib in
melanoma frequently results from reactivation of ERK

pathway signaling by a variety of genetic mechanisms that
include activating mutations of NRAS or KRAS, amplifica-
tion of mutant BRAF, aberrant splicing of BRAF, and acti-
vating mutation of MAP2K1, which encodes the MEK1
protein [7, 8]. ERK-independent mechanisms are less fre-
quent and include activation of PI3K signaling [7]. The
predominance of genetic mechanisms converging on ERK
reactivation has led to the successful use of dual MEK/
BRAF inhibition in melanoma [9]. In colorectal cancer
however, different mechanisms apply; here primary resis-
tance usually results from reduced feedback inhibition upon
upstream receptor tyrosine kinase activity leading to
restoration of ERK activity [10]. In this scenario, combined
BRAF and MEK inhibition has not proved effective [11].

In contrast to our comprehensive understanding in solid
organ cancer, very little is known about the mechanistic
basis of vemurafenib resistance in HCL. Given the diversity
of resistance mechanisms established in other cancers, it is
unclear which, if any, of these might predominate in HCL.
Two acquired subclonal, activating KRAS mutations were
previously reported in a single patient with vemurafenib
resistance [5]. Deletions of NF1 and NF2 have been pro-
posed as an alternative mechanism in another case of pri-
mary resistance [12]. The use of MEK inhibition has been
suggested as a logical therapeutic strategy in patients who
have reactivated ERK signaling. However, the use of MEK
inhibition has never previously been reported in a patient
with HCL and at present there is no consensus on the
optimal management of patients relapsing on vemurafenib.

A 74-year-old patient with HCL had been treated at our
institution with splenectomy, cladribine, and pentostatin.
We previously reported his initial response to vemurafenib
at a dose of 240 mg twice daily [4]. This dose was lower
than used in the initial phase II trial [5], but has since been
shown in several reports to be an effective dosing strategy
for HCL [3, 13, 14]. Vemurafenib was initially stopped after
58 days; however, this was associated with rapid return of
marrow infiltration and thrombocytopenia. Vemurafenib
was restarted at the same dose and cytopenias rapidly
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resolved. Continuous low-dose vemurafenib continued to
sustain his remission for over 3 years, attesting to the effi-
cacy of this dosing schedule. However, 38 months after
restarting vemurafenib, his blood indices deteriorated, and
he required platelet transfusion (Fig. 1a). Bone marrow

trephine biopsy confirmed relapse of HCL. A trial of
rituximab with continued vemurafenib led to transient
recovery of hematological indices. However, bone marrow
infiltration did not improve over the next 4 months, and the
patient became anemic, thrombocytopenic, and required
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Fig. 1 a The patient’s peripheral blood indices are shown over time
relative to the first dose of the MEK inhibitor cobimetinib. Vertical red
lines indicate the timing of rituximab dosing. Blue shading indicates
vemurafenib monotherapy 240 mg twice daily (vem mono). Pale pink
shading indicates vemurafenib with cobimetinib 20 mg daily (cobi-20).
Darker pink indicates vemurafenib with cobimetinib 60 mg daily (21/
28 days) (cobi-60). The lower limits of normal reference values are
indicated by horizontal dashed lines. b Schematic of the MEK-ERK
signaling pathway with mutations identified in purified tumor cells

after emergence of resistance to vemurafenib. c Annexin V staining
was used to quantify the induction of apoptosis in tumor cells purified
from the patient and incubated for 48 h ex vivo with inhibitors of
BRAF (vemurafenib) or MEK (trametinib). Apoptosis is induced by
MEK inhibition but not by BRAF inhibition. d Immunoblots of a
lymphoma cell line transduced with the indicated KRAS or MAP2K1
constructs and incubated with inhibitors of BRAF or MEK. Complete
suppression of ERK activity is seen with MEK inhibition but not with
BRAF inhibition
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further platelet transfusion. A second trial of two doses of
rituximab produced a minimal improvement of platelet
count to 30 × 109/l. The patient became systemically unwell
with B symptoms. Bone marrow trephine biopsy confirmed
99% infiltration with HCL.

To elucidate the mechanism of his resistance we per-
formed whole-genome and deep-targeted sequencing of 292
genes (Supplementary Table 1) of DNA from purified tumor
cells collected prior to starting vemurafenib and again at
relapse. Samples were used with informed written patient
consent in accordance with the Declaration of Helsinki and
appropriate institutional ethical approvals. Sequencing stu-
dies revealed the presence of the known BRAF V600E
mutation and chromosome 7q deletion. Remarkably, we also
identified seven distinct activating mutations in KRAS and
two mutations in MAP2K1 (encoding MEK1) (Fig. 1b and
Supplementary Table 2). These were detectable at relapse
but were not detectable prior to vemurafenib exposure.
Allele frequencies were consistent with the parallel, con-
vergent evolution of multiple clones. Deep-targeted ampli-
con sequencing at multiple time points showed how KRAS
mutations developed early, initially with codon 146 muta-
tions, followed by emergence of the more classical activat-
ing mutations of codons 12 and 61 [15]. MAP2K1 mutations
appeared later with MAP2K1 p.K57T expanding to become
the dominant clone (Fig. 2c and Supplementary Table 2).
The convergent nature of these mutations strongly impli-
cated reactivation of MEK-ERK signaling as the likely
mechanism of resistance. Indeed, immunohistochemistry
confirmed strong pERK activity in all tumor cells (Fig. 2a).
We looked for other mechanisms of resistance reported in
melanoma. Specifically, we found no genetic or protein
evidence of either increased pAKT activity or altered BRAF
splicing (Supplementary Figure 1A & B).

We concluded that reactivation of MEK/ERK activity
was the most likely driver of relapse and hypothesized that
MEK inhibition might be a successful therapeutic strategy.
Expression of the KRAS and MAP2K1 mutants in a lym-
phoid cell line showed that while each mutation was able to
activate ERK in the presence of vemurafenib, all mutations
remained sensitive to MEK inhibition (Fig. 1d). Exposure
of the patient’s purified tumor cells to vemurafenib ex vivo
failed to completely suppress ERK activity and did not
induce apoptosis. In contrast, ERK activity was completely
suppressed and apoptosis induced by exposure to a MEK
inhibitor (Supplementary Figure 1C and Fig. 1c).

Based on our in vitro experiments, we treated the patient
with the MEK inhibitor cobimetinib, initially at 20 mg daily
combined with vemurafenib 240 mg twice daily. Remark-
ably, B symptoms resolved within 1 week, followed by
rapid platelet count recovery. A bone marrow biopsy at
4 months showed complete suppression of ERK activity
(Fig. 2a). However, HCL marrow infiltration persisted, and

therefore cobimetinib dose was increased to 60 mg daily
(taken 21 out of 28 days). The dose was well tolerated and
was associated with further resolution of cytopenias, a
substantial reduction in bone marrow cellularity and HCL
infiltration, ongoing suppression of ERK activity and
restoration of normal hematopoiesis (Fig. 2a, b). Ongoing
treatment was also associated with suppression of mutant
allele frequencies for BRAF, KRAS, andMAP2K1 mutations
(Fig. 2c). At 12 months, the patient remains well and
asymptomatic with continued combination therapy.

The finding of nine activating mutations, all converging
upon the activation of RAS/RAF/MEK/ERK signaling,
underscores the centrality of this pathway in HCL and its
reactivation as a potent mechanism of resistance to
vemurafenib in this disease. This report provides a detailed
analysis of the molecular basis for acquired vemurafenib
resistance in HCL. It is the first reported use of a MEK
inhibitor to treat vemurafenib-resistant HCL. It proposes a
new therapeutic option for such patients and provides
impetus for testing in a formal trial setting.
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Clonal haematopoiesis is not prevalent in survivors of
childhood cancer

Clonal haematopoiesis driven by leukaemia-associated

somatic mutations is a common feature of ageing (Link &

Walter, 2016). This phenomenon, termed clonal haemato-

poiesis of indeterminate potential (CHIP), is associated

with an increased risk of haematological malignancies and

all-cause mortality (Link & Walter, 2016). Recent empirical

evidence and computational models suggest that mutation

acquisition may not be the major rate-limiting factor in the

emergence of CHIP (Altrock et al, 2015; McKerrell et al,

2015; Link & Walter, 2016; Young et al, 2016). Instead, clo-

nal expansion of mutant haematopoietic stem cells (HSCs)

probably reflects the interaction between the effects of dri-

ver mutations and selection pressures prevailing in the bone

marrow microenvironment (Link & Walter, 2016). Notably,

cytotoxic therapies have been shown to favour expansion of

pre-malignant haematopoietic clones (Link & Walter, 2016).

Furthermore, both adult and paediatric cancer patients trea-

ted with intensive chemoradiotherapy display an earlier

onset of ageing-associated morbidities and an elevated risk

of therapy-related myeloid neoplasms (t-MN) and other

secondary malignancies (Rowland & Bellizzi, 2014). A

recent study in adult cancer patients found that CHIP was

more prevalent than in the general population and was

strongly associated with t-MN and overall mortality (Gibson

et al, 2017). Although CHIP is extremely rare in healthy

young individuals, its prevalence and prognostic significance

in paediatric cancer patients has not been studied. We

therefore performed targeted deep sequencing of peripheral

blood DNA from 84 childhood cancer survivors to search

for subclonal mutations common in t-MN and adult clonal

haematopoiesis. No individuals with somatic variants at

these loci were identified. Whilst our findings could be

explained by a rarity of driver mutations, the fact that

human HSCs accrue somatic variants from the first decade

of life (Welch et al, 2012) proposes the alternative possibil-

ity that such mutations may not confer clonal advantage in

the young.

We obtained peripheral blood DNA samples from patients

enrolled on long-term follow-up after treatment for a paedi-

atric malignancy and from three age-matched controls with

no cancer history. Written informed consent was obtained

for sample collection and DNA sequencing from all patients

or their guardian in accordance with the Declaration of Hel-

sinki and protocols approved by the relevant institutional

ethics committees (approval numbers 09REG2015, 1-09/12/

2015). The median age at cancer diagnosis was 4!5 years, and

the commonest malignancies were acute lymphoblastic leu-

kaemia (n = 21), neuroblastoma (n = 17) and non-Hodgkin

lymphoma (n = 10). Nineteen patients had received a HSC

transplant (8 allogeneic and 11 autologous). The median

interval between completion of cancer treatment and blood

sampling was 6 years (range 2–25). Patient characteristics are
summarized in Table SI.

We performed targeted next generation sequencing (NGS)

using multiplex polymerase chain reaction to amplify 32

regions of 14 genes frequently mutated in CHIP or t-MN

(Table I) (McKerrell et al, 2015; Link & Walter, 2016; Gib-

son et al, 2017). For this we extended a previously validated

assay that detected clonal haemopoiesis in 2!6% of unselected

adults (McKerrell et al, 2015), to include all coding exons of

TP53 and PPM1D, genes implicated in t-MN pathogenesis

(Rowland & Bellizzi, 2014; Link & Walter, 2016; Gibson

et al, 2017). Primer design and sequencing was performed as

described previously (McKerrell et al, 2015); see Table SII for

primer sequences. Reads were aligned to human genome

build GRCh37 using the Burrows-Wheeler Aligner (Li &

Durbin, 2010) and analysed for somatic single nucleotide

variants. Allele counts were generated using an in-house

script (https://github.com/cancerit/alleleCount), considering

only loci with ≥1000 reads and minimum base and mapping

quality of 25 and 35, respectively. Somatic mutations with

Table I. Genomic regions sequenced.

Gene Chromosome Target codon/exon

NRAS 1 p.G12

SF3B1 2 p.K666; p.K700

DNMT3A 2 p.R882

IDH1 2 p.R132

KIT 4 exon 17

NPM1 5 exon 12

JAK2 9 p.V617

KRAS 12 p.G12

IDH2 15 p.R140; p.R172

PPM1D 17 exons 1–6
TP53 17 exons 1–12
SRSF2 17 p.P95

ASXL1 20 exon 12

U2AF1 21 p.S34; p.Q157
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variant allele frequency (VAF) ≥0!008 (McKerrell et al, 2015)

were sought and examined visually and by interrogation with

the Shearwater algorithm (https://github.com/mg14/dee

pSNV) (Gerstung et al, 2014).

The median sequencing depth across regions of interest

was 5!3 9 103. No somatic mutations with VAF ≥ 0!008
were observed in any of our patients or controls, demon-

strating that CHIP driven by mutations at these loci is not

prevalent in young individuals who have received cytotoxic

treatment. By contrast, Gibson et al (2017) identified post-

chemotherapy CHIP (VAF > 0!02) in 29!9% of 401 adult

lymphoma patients. Notably, mutations in PPM1D, a regula-

tor of TP53, were the commonest CHIP drivers (Gibson

et al, 2017). Similarly, several smaller studies have demon-

strated clonal expansion in older patients undergoing

chemoradiotherapy for other cancers (Link & Walter, 2016).

An investigation of haematopoietic clonal dynamics in 15

adult acute myeloid leukaemia patients found that, after

induction chemotherapy, five had marked expansion of

clones unrelated to their leukaemia (Link & Walter, 2016).

Most clones carried canonical leukaemia mutations and con-

tinued to expand years after remission (Link & Walter,

2016). In a study exploring the clonal origins of t-MN,

TP53-mutated clones expanded dramatically after cytotoxic

treatment, whereas the same mutations demonstrated very

modest clonal advantage in healthy individuals (Link & Wal-

ter, 2016). In light of the above, our findings have two plau-

sible explanations: (i) that somatic driver mutations are very

uncommon in young individuals even after exposure to

chemotherapy or (ii) that accrual of such mutations is insuf-

ficient to trigger clonal expansion in this age group. The lat-

ter is supported by findings that oncogenic mutations begin

accumulating early in life (Welch et al, 2012) and that can-

cer-associated mutations are less able to drive clonal expan-

sion in young compared to old stem cells (Zhu et al, 2016).

The fact that bona-fide driver mutations do not always lead

to haematopoietic clonal expansion, even after several years,

was highlighted by Young et al (2016), using ultra-sensitive

sequencing. Therefore our results should not be taken to

reflect absence of potentially oncogenic HSC mutations in

young cancer survivors. Rather, it is possible that even

canonical leukaemogenic mutations may not commonly drive

clonal outgrowth in children and young adults despite expo-

sure to extreme haematopoietic stress, implicating age-related

changes in HSCs and/or their microenvironment as key

determinants of relative fitness. More sensitive DNA sequenc-

ing methods may enable detection of very rare cells harbour-

ing known CHIP drivers mutations in similar patient

cohorts, which would lend support to this hypothesis. Stud-

ies of larger numbers of paediatric cancer survivors are

needed to identify rare individuals with CHIP after chemora-

diotherapy, whose particular characteristics may offer insights

into factors facilitating clonal outgrowth of mutated HSCs.

Furthermore, in view of the shifting patterns of mutations

driving CHIP in different adult age groups (McKerrell et al,

2015), selective pressures particular to a less mature bone

marrow environment may confer clonal advantage on a dis-

tinct spectrum of somatic variants in the very young.

Although a much broader screening approach is required to

identify such mutations, the potential role for CHIP as a bio-

marker for patient risk-stratification (Gibson et al, 2017)

may render this a worthwhile endeavour.
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