
  

Chapter   2:   Heterogeneity   in   primary   adult   microglial   transcriptomes   

  

Collaboration   note   

The  work  described  in  the  following  chapter  forms  part  of  a  collaborative  project.               

Patient  samples  were  collected  and  primary  microglia  were  isolated  by  Dr  Adam              

Young  and  colleagues  at  the  Division  of  Clinical  Neurosciences  based  at  Cambridge              

University  Hospital  and  the  Wellcome  Trust  Medical  Research  Council  Cambridge            

Stem  Cell  Institute.  Single  cell  sequencing  preparation  was  carried  out  by  the  single               

cell  sequencing  facility  at  the  Wellcome  Sanger  Institute.  Myself  and  Dr  Andrew              

Knights  worked  collaboratively  to  process  the  bulk  primary  microglia  samples  for             

sequencing.  Dr  Natsuhiko  Kumasaka  ran  the  initial  quality  control  analysis  across  the              

dataset.  For  the  bulk  data,  he  used  genotype  information  to  identify  any  sample               

swaps  and  mixes  and  for  the  single  cell  analysis  he  ran  the  initial  processing  to                 

remove   poor   quality   samples.   

  

Initial  analysis  of  the  single  cell  dataset  was  carried  out  by  myself  including               

visualisation  and  clustering  of  single  cell  data,  links  to  clinical  metadata  and              

Alzheimer’s  disease.  It  was  then  determined  that  the  analysis  needed  to  be  updated               

to  be  corrected  for  potential  batch  effects  or  confounding  factors.  Due  to  an  injury,                

and  a  3  month  medical  intermission  of  my  PhD,  Dr  Natsuhiko  Kumasaka  ran  the                

re-analysis  of  the  data  in  order  to  prepare  a  manuscript  for  submission 210 .  The  single                

cell  work  discussed  in  this  chapter  is  from  the  analysis  run  by  Dr  Natsuhiko                

Kumasaka  and  some  extended  work  by  myself.  Any  figures  taken  directly  from  the               

analysis   are   noted   in   the   figure   legend.     

  

  

2.1   Introduction   
  

As  interest  in  microglia  has  developed  it  is  important  to  fully  characterise  the  gene                

expression  profile  of  primary  microglia,  both  to  understand  how  they  are  perturbed  in               

disease  and  how  we  can  be  modeled   in-vitro .  To  date,  most  studies  of  primary                

microglia  have  been  in  mice,  with  validation  in  small  numbers  of  human  samples.               
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Many  studies  have  used  RNA-sequencing  to  identify  transcriptional  markers  of            

microglia,  with  a  focus  on  differentiating  the  native  cell  from  classical  macrophages              

and   other   tissue   resident   macrophages.     

  

2.1.1   Marker   gene   identification   in   mice   and   human   samples   

Microarray  analysis  has  been  used  to  compare  tissue  resident  dendritic  cells  (from              

the  spleen,  liver  and  lung)  and  tissue  resident  macrophages  (spleen,  lung  and              

peritoneal  macrophages  and  microglia)  in  C57BL/6J  mice  in  order  to  identify  markers              

of  each  cell  type 177 .  Microglia  were  shown  to  have  a  lower  expression  of  hundreds  of                 

transcripts  that  were  expressed  in  other  tissue  resident  macrophages.  The  paper             

also  identified  gene  expression  that  is  specific  to  microglia  in  comparison  to  the  other                

tissue  resident  cells,  notably  the  transcription  factor   SALL1  and  cell  surface  marker              

CX3CR1 .  More  recently 178  a  six-gene  microglial  transcriptional  signature  ( P2RY12 ,           

GPR34 ,   PROS1 ,   GAS6 ,   C1QA  and   MERTK )  has  been  identified  which  appears  to              

distinguish  microglia  from  other  immune  cells,  including  other  myeloid  cell  types,  and              

other  brain  cells,  such  as  astrocytes  and  neurons.  As  well  as  validating  the  unique                

signature  within  primary  human  cells,  the  group  also  cultured  adult  mouse  microglia              

in  the  presence  or  absence  of  TGF-β   and  demonstrated  that  the  signature  they               

described   is   TGF-β     dependent.     

  

Two  independent  studies 211,212  have  since  pinpointed   TMEM119 ,  a  protein  coding            

gene  originally  linked  to  bone  formation,  as  a  marker  that  distinguishes  native              

microglia  cells  from  infiltrating  myeloid  progenitors.  It  is  currently  unclear  whether             

resident  microglia  cells  and  infiltrating  cells  play  differing  roles  in  disease,  such  as               

AD,  and  the  studies  described  above  suggest  that  finding  markers  for  each  cell  type                

may   help   future   researchers   to   follow   the   role   of   each   cell   type.     

  

2.1.2   Fresh,   primary   human   microglia   bulk   RNA-sequencing   

The  most  extensive  bulk  RNA-sequencing  dataset  of  fresh  human  primary  microglia             

to-date  profiled  the  cell  type  across  19  individuals  between  the  ages  of  5  and  15  and                  

also  included  chromatin  accessibility  studies  of  the  same  samples 171 .  Here  it  was              

shown  that  broad  clinical  diagnosis  (acute  ischemia,  epilepsy  and  tumour),  age  and              

sex  had  no  observable  impact  on  microglial  gene  expression  and  highlighted  that              
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pathology  did  not  significantly  affect  expression  of  the  most  highly  expressed             

microglial  genes  in  their  dataset  (e.g.   SPP1 ,   CD74  and   ACTB ).  Using  ATAC-seq  and              

ChIP-seq,  they  detected  the  most  enriched  transcription  factor  recognition  motif            

associated  with  open  chromatin  and  highlighted  a  dominant  signature  for  the   PU.1              

transcription  factor.  The  group  also  ran  RNA,  ATAC  and  ChIP-seq  on  matched              

samples  from  fresh  collections  and  cells  that  had  been  cultured  for  varying  lengths  of                

time.  They  noted  that  expression  of  microglia  marker  genes  such  as   CX3CR1  and               

P2RY12  as  well  as  transcription  factors  such  as   SALL1 ,  decreased  after  a  period  of                

only   6   hours   in   culture   and   continued   to   decline   over   7   days   in   cell   culture.   

  

The  authors  also  demonstrated  that  the  addition  of  TGF-β  to  the   in-vitro  culture               

media  of  the  primary  cells  had  a  modest  effect  on  gene  expression,  with  expression                

of  certain  genes,  such  as   SALL1 ,  increasing  back  towards  the  levels  seen  in  the                

fresh  primary  cells.  Although,  it  was  noted  that  none  of  the  genes  whose  expression                

increased  in  the  presence  of  TGF-β  returned  to  fully  match  the  levels  seen  in  the                 

primary  cells.  As  had  been  suggested  in  earlier  studies 178 ,  this  provided  further              

evidence  that  TGF-β  signalling  is,  at  least  in  part,  important  for  maintaining  microglial               

transcriptional   identity.     

  

2.1.3   Single   cell   sequencing   and   primary   microglia   

Advances  in  technology  means  that  it  is  now  possible  to  study  transcriptomes  at  a                

single  cell  level,  which  allows  researchers  to  study  heterogeneity  of  cell  types  in  a                

population.  Single  cell  profiling  of  16,000  CD45  and  CD11b  sorted  microglial  cells              

from  15  individuals  (7  autopsy  and  8  biopsy  samples)  identified  14  unique  microglial               

populations  within  the  brain 185 .  Within  the  14  subpopulations  identified,  the  authors             

noted  that  the  three  largest  clusters  were  transcriptionally  similar  with  no  differentially              

expressed  transcription  factors  between  groups.  It  was,  therefore,  suggested  that            

these  subpopulations  represented  cells  of  the  same  class  but  in  different  activation              

states.  The  remaining,  more  transcriptionally  distinct,  microglial  clusters  were           

considered   more   specialised   subtypes   of   microglial   cells.     

  

Single  cell  transcriptomics  can  also  be  used  to  understand  dynamic  changes  in  cell               

expression  or  cell  proportions  in  health  and  disease  across  whole  tissues.  In              
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microglial  research  this  is  of  particular  interest  when  looking  at  changes  that  occur               

during  Alzheimer’s  disease  (AD).  Single  cell  analysis  of  whole  brain  tissue  has              

identified  AD  specific  microglia  gene  expression  changes  in  both  mice 164  and             

human 166,184  samples.  Although  it  is  worth  noting  that  as  microglia  represent  a  small               

fraction  of  cells  within  the  brain,  there  are  limitations  in  the  ability  to  understand                

heterogeneity   within   the   cell   type   due   to   low   cell   numbers.     

  

2.1.4   The   impact   on   age   and   sex   on   microglial   transcriptomes   

As  microglia  have  a  distinct  origin  and  are  not  replenished  by  circulating  monocytes               

under  normal  conditions 17 ,  previous  work  has  also  focused  on  how  microglial             

transcriptomes  change  with  age.  Comparison  of  10  aged  (average  age  at  death  =  95)                

bulk  post-mortem  microglia  RNA-sequencing  profiles  to  a  publicly  available  dataset            

of  primary  microglia  from  middle-aged  individuals  (mean  age  =  53)  identified  1060              

upregulated  and  1174  downregulated  genes  in  the  aged  microglia 179 .  Pathway            

enrichment  analysis  showed  that  upregulated  genes  were  enriched  for  amyloid  fiber             

formation  and  those  genes  with  decreased  expression  in  aged  microglia  were             

enriched  for  TGF-β  signaling.  The  loss  of  TGF-β  signaling  in  aged  cells  was               

suggested   to   represent   a   loss   of   the   homeostatic   function   of   microglia   during   aging.     

  

While  comprehensive  aging  studies  in  human  microglia  are  complex,  due  to  the  lack               

of  accessibility  of  the  cell  type,  it  is  possible  to  monitor  changes  in  microglial                

transcriptomes  across  the  lifespan  of  mice 213 .  Using  single  cell  sequencing,           

researchers  were  able  to  identify  populations  of  microglia  enriched  for  cells  from              

aged  mice  and  showed  that  the  gene  expression  profile  of  these  cells  was  shifted                

towards  a  more  active  state,  due  to  increased  expression  of  inflammatory  markers.              

However,  the  authors  noted  that  the  proportion  of  the  cells  in  this  increased  active                

state  was  only  a  small  fraction  of  the  total  cells  in  these  aged  mice.  It  was  suggested                   

in  the  study  that  this  may  be  because  the  activated  cells  were  responding  to  local                 

disruptions,  such  as  blood  brain  barrier  compromise 214  or  microinfarcts 215 ,  that  can  be              

associated  with  aging  as  opposed  to  representative  of  a  global  change  in  expression               

profile.    
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Previous  work  has  also  focused  on  whether  microglial  transcriptomes  differ  between             

sexes.  Evidence  from  mouse  studies  is  often  conflicting.  One  study 216 ,  noted  large              

numbers  of  differentially  expressed  genes  between  male  and  female  adult  mice  and              

the  authors  highlighted  that  male  microglia  show  an  increased  inflammatory            

phenotype.  The  researchers  also  showed  that  female  microglia  are  protective  during             

ischemia  within  mice  and  suggested  that  it  was  due  to  the  fact  that  the  microglia  were                  

able  better  control  excessive  inflammation.  Further  studies  in  mice  have  also             

highlighted  how  microglial  gene  expression  can  be  impacted  in  sex  specific  ways              

during  development 217  and  as  part  of  the  interaction  with  the  microbiome 218 .  However,              

Hammond   et  al. 213 ,  compared  single  cell  microglial  gene  expression  in  male  and              

female  mice  across  three  major  developmental  ages  (E14.5,  P4/P5,  and  P100)  and              

highlighted  only  a  small  difference  between  the  sexes.  While,  as  expected,  genes  on               

the  sex  chromosomes  were  differentially  expressed  between  male  and  female  mice             

there  was  only  a  small  fraction  of  cells  (~0.5%  of  microglia)  that  appeared  to  cluster                 

in  a  sex  specific  way.  The  cluster  was  enriched  for  female  cells  of  the  P4/P5                 

developmental  age  and  showed  increased  expression  of  genes  such  as   CD74  and              

ARG1 .  In  human  studies,  the  evidence  for  sex-specific  expression  of  genes  in              

microglia  is  limited.  Using  bulk  RNA-sequencing,  Gosselin   et  al. 171  observed  that  a              

small  set  of  genes,  most  located  on  the  sex  chromosomes,  showed  sex-specific              

differences.     

  

One  limitation  of  the  studies  discussed  above  are  their  small  sample  sizes.  This              

means  that  previous  observations  of  correlations  between  microglial  transcriptional           

profiles  and  life-history  or  clinical  pathology  are  based  on  phenotypes  from  small              

numbers  of  individuals.  In  this  chapter,  I  describe  the  analysis  of  bulk  and  single  cell                 

RNA-sequencing  data  from  a  cohort  of  141  patients  samples  of  fresh  primary  adult               

human  microglia,  the  largest  cohort  to  date.  I  describe  how  heterogeneous  primary              

microglia  were  across  patients  and  identified  markers  for  individual  subpopulations  of             

the  cell  type.  I  highlight  how  clinical  pathology  was  a  major  driver  of  heterogeneity                

across  microglia  and  how  this  information  can  be  used  in  conjunction  with              

subpopulation  markers  to  infer  biological  relevance  of  clusters.  Using  both  single  cell              

and  bulk  data  I  investigate  how  various  other  clinical  phenotypes,  such  as  age,  sex                

and   brain   region,   can   affect   microglial   transcriptomes.     
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2.2   Methods   

  

2.2.1   Experimental   design   and   sample   collection   

Human  brain  tissue  was  obtained  with  informed  consent  under  protocol  REC             

16/LO/2168  approved  by  the  NHS  Health  Research  Authority.  All  collections  were             

completed  by  Dr  Adam  Young  and  his  colleagues  at  the  Division  of  Clinical               

Neurosciences  based  at  Cambridge  University  Hospital.  Samples  were  collected           

from  neurosurgical  patients  undergoing  scheduled  procedures  where  tissue  would           

normally  be  removed.  Patient  pathologies  were  grouped  into  four  major  categories:             

control,  haemorrhage,  hydrocephalus,  trauma  and  tumour.  Control  samples  include           

tissue  where  the  site  of  sampling  is  a  site  further  away  from  the  site  of  injury  or                   

disease  (i.e.  tumour  biopsy  where  the  tissue  sampled  is  considered  pathologically             

normal).  Figure  2.1  summarises  the  metadata  for  all  patient  samples  collected  and              

includes  the  experimental  design  of  the  study.  Tissue  samples  were  used  for  both               

bulk  and  single  cell  RNA-sequencing.  Paired  blood  samples  were  also  taken  from              

each  patient  at  the  induction  of  anaesthesia  for  genotyping.  However,  genotype             

information   was   not   used   in   the   analysis   described   in   this   chapter.   

  

Once  collected  tissue  was  immediately  transferred  to  Hibernate  A  low  fluorescence             

(HALF)  supplemented  with  1x  SOS  (Cell  Guidance  Systems),  2%  Glutamax  (Life             

Technologies),  1%  P/S  (Sigma),  0.1%  BSA  (Sigma),  insulin  (4g/ml,  Sigma),  pyruvate             

(220  g/ml,  Gibco)  and  DNase  1  Type  IV  (40  g/ml,  Sigma)  on  ice  and  transported  to  a                   

dedicated   CL2   laboratory.   
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Figure   2.1    Schematic   of   experimental   design     

Experimental  protocol  for  all  (141)  samples  collected  as  part  of  the  16/LO/2168  linked               

study.   Plot   created   by   Dr   Natsuhiko   Kumasaka.     

  

2.2.2   Tissue   processing   and   cell   sorting   

All  tissue  processing  was  completed  by  Dr  Adam  Young  colleagues  at  the  Division  of                

Clinical  Neurosciences  based  at  Cambridge  University  Hospital  and  the  Wellcome            

Trust   Medical   Research   Council   Cambridge   Stem   Cell   Institute.   

  

Brain  tissue  was  mechanically  digested  in  fresh  ice-cold  HALF  supplemented  with  1x              

SOS  (Cell  Guidance  Systems),  2%  Glutamax  (Life  Technologies),  1%  P/S  (Sigma),             

0.1%  BSA  (Sigma),  insulin  (4g/ml,  Sigma),  pyruvate  (220  g/ml,  Gibco)  and  DNase  1               

Type  IV  (40  g/ml,  Sigma).  The  prepared  mix  was  spun  in  HBSS+  (Life  Technologies)                
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at  300g  for  5  mins  and  supernatant  discarded.  The  digested  tissue  was  rigorously               

triturated  at  4°C  and  filtered  through  a  70  m  nylon  cell  strainer  (Falcon)  to  remove                 

large  cell  debris  and  undigested  tissue.  Filtrate  was  spun  in  a  22%  Percoll  (Sigma)                

gradient  with  DMEM  F12  (Sigma)  and  spun  at  800g  for  20  mins.  Supernatant  was                

discarded   and   the   pellet   was   resuspended   in   ice   cold   supplemented   HALF.   

  

For  single  cell  smartseq2  sequencing,  human  microglia  were  sorted  using            

fluorescence-activated  cell  sorting  (FACS).  The  isolated  cell  suspension  was           

incubated  with  conjugated  PE  anti-human  CD11b  antibody  (BioLegend)  for  20  mins             

at  4°C.  Cells  were  washed  twice  in  ice  cold  supplemented  HALF  and  stained  with                

Helix  NP  viability  marker.  Cell  sorting  was  performed  on  BD  AriaIII  cell  sorter               

(Becton,  Dickinson  and  Company,  Franklin  Lakes,  New  Jersey,  US)  at  the  University              

of  Cambridge  Cell  Phenotyping  Hub  at  Cambridge  University  Hospital,  Cambridge,            

UK.  Cells  were  sorted  into  96  well  plates,  prepared  by  the  Wellcome  Sanger  Institute                

for   the   purposes   of   single   cell   sequencing.   

  

To  avoid  sustained  stress  on  microglia  as  a  result  of  prolonged  sorting  times  for  bulk                 

sequencing  magnetic-activated  cell  sorting  was  performed  on  these  cells.  Isolated            

cell  suspensions  were  incubated  with  anti-CD11b  conjugated  magnetic  beads           

(Miltenyi)  for  15  mins  at  4°C.  Cells  were  washed  twice  with  supplemented  HALF  and                

passed  through  an  MS  column  (Miltenyi).  Each  sample  was  washed  three  times  in               

the  column  and  then  extracted.  Samples  were  added  to  a  1.5ml  Eppendorf  to  which                

300  l  of  RNAlater  (Qiagen)  was  added,  samples  were  stored  at  -80C  prior  to  library                 

preparation   and   sequencing.   

2.2.3   RNA   handling   

For  single  cell  sequencing,  96  well  plates  were  prepared  and  sequenced  by  the               

Wellcome  Sanger  Institute  single  cell  core  facility  using  the  SmartSeq2  protocol   219 .              

Extraction  and  library  preparation  of  bulk  samples  was  completed  by  Dr  Andrew              

Knights  and  myself.  Total  RNA  from  the  bulk  primary  microglia  samples  was              

extracted  with  the  Qiagen  AllPrep  DNA/RNA  micro  kit.  This  was  carried  out  according               

to  the  manufacturer's  instructions.  Following  extraction  samples  were  analysed  using            
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an   A gilent  Technologies  Bioanalyser  RNA  Pico  kit  for  quality  (RIN  number)  and              

quantification.   Extracted   RNA   was   stored   at   -80   °C   until   library   preparation.   

  

The  amount  of  total  RNA  extracted  from  these  samples  was  incredibly  varied,              

ranging  from  >  300  ng  to  0.5  ng  of  approximate  yield,  with  the  majority  of  samples                  

producing  less  than  10  ng  of  total  RNA.  This  is  a  much  lower  input  RNA  level  than  is                    

required  for  traditional  bulk  sequencing  and,  therefore,  we  used  a  low  RNA  input               

library  preparation  pipeline  developed  in-house  by  Dr  Andrew  Knights  which  is  a              

modified  version  of  the  SmartSeq2  protocol  protocols  developed  for  single  cell             

sequencing.  For  samples  with  large  amounts  of  RNA  yields,  10  ng  was  used  as  a                 

maximum  input  for  the  protocol.  Samples  with  lower  than  10  ng  of  RNA  input  were                 

processed  in  the  same  way,  although  the  number  of  PCR  amplification  cycles  was               

increased  for  certain  samples  to  compensate  for  the  low  input  amounts  (Figure  2.2).               

In  total  120  of  the  141  collected  samples  were  prepared  for  sequencing,  the  21                

samples  that  were  not  included  in  sequencing  pools  were  discarded  due  to  either               

having  no  quantifiable  RNA  or  large  amounts  of  RNA  degradation,  to  the  point  where                

no   RIN   value   could   be   calculated.     

  

25  µL  of  lysis  binding  buffer  (Table  2.1)  was  added  to  the  extracted  RNA,  that  had                  

been  diluted  to  25  µL  with  nuclease  free  water.  20  µL  of  oligo-DT  beads  were  added                  

to  wells  of  a  96-well  plated  and  washed  once  with  100  µL  of  lysis  binding  buffer  while                   

on  a  magnetic  plate.  The  pelleted  bead  plate  was  removed  from  the  magnet  and  the                 

beads  were  resuspended  with  the  50  µL  RNA  samples.  The  wells  were  pipette-mixed               

and  incubated  at  room  temperature  for  15  minutes,  with  shaking  (1100  rpm  Mixmate).               

The  plates  were  then  placed  back  on  the  magnet  for  supernatant  removal  and  two                

washes  with  150  µL  of  wash  buffer  A  (Table  2.1).  Samples  were  then  transferred  to  a                  

fresh   plate   before   washing   twice   with   50   µL   of   wash   buffer   B   (Table   2.1).     

  

The  samples  were  washed  again  with  50  µL  of  elution  buffer  before  RNA  is  eluted                 

from  the  beads  by  re-suspension  in  9.5  µL  of  elution  buffer  and  incubating  at  75  °C                  

for  2  minutes.  Plates  were  then  immediately  transferred  back  to  the  magnetic  plate               

and  7  µL  of  eluted  solution  was  transferred  to  a  fresh  plate  on  ice.  2  µL  10  µM  oligo                     

dT 30 VN  and  2.34  µL  10  mM  dNTPs  (Thermo)  were  added  to  each  well  of  the  96-well                  
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plates  and  samples  were  heated  at  72  °C  for  3  minutes  before  being  rapidly  chilled                 

on  ice.  13.65  µL  of  reverse  transcription  (RT)  master  mix  (Table  2.1)  was  added  to                 

each  well  of  the  plate  and  following  mixing  the  samples  were  placed  on  a  PCR  block                  

for   RT   (Figure   2.2).   

  

Table   2.1   Reaction   mixes   used   in   low-input   RNA-sequencing   library   preparation   
  
  

Following  RT  of  the  samples,  25  µL  of  nuclease-free  water  (NFW)  was  added  to  each                 

well  of  the  96-well  plate  and  a  0.8:1  Ampure  XP  clean-up  (Beckman  Coulter               

A663882)  was  performed  using  a  Zephyr  (PerkinElmer).  The  material  was  then             

eluted  in  10  µL  of  10  mM  Tris-HCl  (pH  7.5)  and  13  µL  PCR  master  mix  was  added  to                     

the  solution  (12.5  µL  of  2x  KAPA  HiFi  hotstart  and  0.5  µL  of  10  µM  ISPCR  primer).  A                    

further  PCR  reaction  was  carried  out  for  amplification  (Figure  2.2);  due  to  the               
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Lysis   binding   

buffer   (100   mL)   

Wash   buffer   A   

(250   mL)   

Wash   buffer   B   

(100   mL)   
RT   master   mix   (per   reaction)  

20   mL   of   1   M   

Tris-HCl   pH   7.5   

(FC   =   200   mM)   

2.5   mL   1   M   

Tris-HCl   pH   7.5   

(FC   =   10   mM)   

1   mL   1   M   Tris-HCl   

pH   7.5   (FC   =   10   

mM)   

5   µL   5x   SmartScribe   FS   Buffer  

12.50   mL   8   M   LiCl   

(FC   =   1   M)   

4.69   mL   8   M   LiCl   

(FC   =   0.15   M)   

1.88   mL   8   M   LiCl   

(FC   =   0.15   M)   

0.63   µL   SUPERase   Inhibitor   

(Thermo   Fisher   AM2696)   

4   mL   500   mM   

EDTA   pH   8   (FC   =   

20   mM)   

500   µL   500   mM   

EDTA   pH   8.0   (FC   

=   1   mM)   

200   µL   500   mM   

EDTA   pH   8.0   (FC   

=   1   mM)   

1.25   µL   0.1   M   dithiothreitol   

2   g   LiDS   

(L9781-5G)   (FC   =   2  

%   w/v)   

0.25   g   LiDS   (FC   =   

0.1   %   w/v)   
96.92   mL   NFW   

5   µL   5   M   betaine   (Sigma   

PCR-grade   B0300-5VL)   

1   mL   1   M   DTT   

(P2325)   (FC   =   10   

mM)   

242.31   mL   NFW     0.15   µL   1   M   MgCl2   

62.5   mL   NFW       0.38   µL   100   µM   TSO   

      

1.25   µL   SMARTScribe   reverse   

transcriptase   (Takara   Clontech   

639538)   



  

variability  in  input  RNA  quantity  for  this  reaction,  the  number  of  PCR  cycles  used  was                 

increased   for   low   input   samples   (see   Figure   2.2   for   range).     

  

  

Figure   2.2   PCR   reactions   in   low-input   RNA-sequencing   library   preparation   
  

  

After  the  PCR  reaction,  a  further  25  µL  of  NFW  was  added  to  samples  and  a  0.8:1                   

Ampure  XP  clean-up  was  carried  out  before  elution  in  20  µL  of  10  mM  Tris-HCl  (pH                  

8.0).  cDNA  was  then  quantified  with  the  Quant-iT  High  Sensitivity  kit  (Thermo  Fisher               

Q33120),  according  to  the  manufacturer’s  instructions.  Samples  were  read  on  a  BMG              

Pherastar.  4  ng  of  cDNA  was  diluted  with  10  mM  Tris-HCl  (pH  7.5)  to  a  volume  of  9.5                    

µL.  5  µL  of  a  3x  tagmentation  buffer  (99  mM  Tris  acetate,  198  mM  potassium                 

acetate,  30  mM  magnesium  acetate  and  48  %  v/v  N,N-dimethylformamide)  and  0.5              

µL  of  TDE1  were  then  added  and  mixed  before  samples  were  incubated  at  55  °C  for                  

5  minutes.  Tagmentation  was  then  halted  by  the  addition  of  2.5  µL  of  stop  buffer  (220                  

mM  EDT  and  1.1%  w/v  sodium  dodecyl  sulphate),  with  samples  then  incubated  at               

room  temperature  for  10  minutes.  Tagmented  cDNA  was  then  diluted  to  a  volume  of                

50  µL  with  10mM  Tris-HCl  (pH  7.5)  and  purified  with  a  2:1  ratio  of  Ampure  XP  beads.                   

The  cDNA  samples  were  eluted  in  7  µL  of  10mM  Tris-HCl  (pH  7.5)  and  then                 

amplified  and  sample  indexed  using  PCR.  Briefly,  the  eluted  7  µL  of  tagmented  cDNA                

was  added  to  2.5  µL  of  i5  index  adapter  and  2.5  µL  of  i7  index  adapter  from  the                    

Nextera  XT  index  kit  v2  set  A  ,  0.25  µL  of  50  µM  PC1  primer,  0.25  µL  of  50  µM  PC2                       

primer  and  12.5  µL  of  2x  KAPA  HiFi  polymerase.  Mixed  samples  were  then  incubated                
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at  72  °C  for  3  minutes,  98  °C  for  30  seconds,  followed  by  9  cycles  at  98  °C  for  15                      

seconds,  62  °C  for  30  seconds  and  72  °C  for  30  seconds,  followed  by  a  final                  

extension  at  72  °C  for  3  minutes.  Libraries  were  purified  using  a  0.8:1  ratio  of  Ampure                  

XP  beads  and  the  final  individual  libraries  were  eluted  in  20  µL  of  10mM  Tris-HCl  (pH                  

7.5).  Samples  were  then  pooled  together  (three  independent  pools)  at  equal  cDNA              

concentrations   and   submitted   for   75   bp   paired-end   sequencing.     

  

2.2.4   Initial   processing   and   quality   control   of   sequencing   data   

Initial  processing  of  sequencing  was  carried  out  by  Dr  Natsuhiko  Kumasaka.  Prior  to               

alignment  adapter  trimming  of  Tn5  transposon  and  PCR  primer  sequences  was             

carried  out  using  the  skewer  package 220 .  Both  bulk  and  smart-seq2  sequencing  data              

were  aligned  using  the  STAR  package 221 ,  version  2.5.3a,  using  ENSEMBL  human             

gene  assembly  90  as  the  reference  transcriptome.  Samples  were  then  quantified  with              

featureCounts 222 ,  version  1.5.3.  Genotype  information  collected  from  patients  was           

then  used  to  check  for  sample  swaps  or  mixing  of  samples  that  may  have  occurred                 

during  processing.  Following  QC  for  sample  swaps  and  mixes,  109  patient  samples              

were   used   in   bulk   analysis.     

  

For  single-cell  analysis  each  individual  cell  was  passed  through  a  further  quality              

control  pipeline  to  remove  poor  quality  cells  from  the  dataset.  The  final  thresholds               

used  were:  number  of  expressed  genes  >  500,  number  of  fragments  >  10000,  <  20                 

%  mitochondrial  genes  and  the  percentage  of  fragments  mapped  to  the  top  100               

highly  expressed  genes  is  <  70  %.   Demuxlet   223  was  used  to  remove  doublets  from                  

two  different  patients  with  different  genetic  backgrounds  from  within  the  sample.             

Following  QC  analysis  9538  cells  from  129  patients  were  taken  forward  for  further               

analysis.   

  

2.2.5   Comparison   of   bulk   data   to   publicly   available   datasets     

Processed  bulk  microglia  RNA-sequencing  data  was  combined  with  publicly  available            

datasets  from  other  cell  types:  brain  tissue  from  The  Genotype-Tissue  Expression             

(GTEx)  Project  (The  data  used  for  the  analyses  described  in  this  thesis  were               

obtained  from  the  GTEx  Portal),  monocytes  from  the  BLUEPRINT  consortium  (this             

study  makes  use  of  data  generated  by  the  BLUEPRINT  Consortium)  and  a  collection               
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of  publicly  available   in-vitro  model  data  (see  section  3.2.1  for  data  references).  Count               

tables  were  combined  and  converted  into  counts  per  million  (CPM)  and  Uniform              

Manifold  Approximation  and  Projection  (UMAP)  analysis  was  run  using  Seurat’s            

RunUMAP  function  with  the  following  parameters:  5  PCs,  30  nearest  neighbours  and              

a   minimum   distance   set   to   0.3.     

  

2.2.6   Classification   of   microglial   cells   using   publicly   available   datasets     

Full  descriptions  of  the  single  cell  data  analysis  carried  out  by  Dr  Natsuhiko               

Kumasaka  can  be  found  in  the  preprint  of  the  manuscript  describing  this  work   210  but                 

the   methodology   will   be   summarised   below.   

  

Gene  count  data  for  single  cell  datasets  of  68k  peripheral  blood  mononuclear  cells               

(PBMCs) 224  and  15K  unsorted  brain  cells 225  were  downloaded  from  publicly  available             

sources  and  all  datasets  (including  the  data  collected  for  this  study)  were  converted               

to   Counts   Per   Million   (CPM).   

  

A  latent  factor  linear  mixed  model  was  used,  with  the  3  studies  treated  as  random                 

effects,  to  obtain  12  latent  factors.  These  factors  were  then  used  to  run  Uniform                

Manifold  Approximation  and  Projection  (UMAP)  analysis.  The  publicly  available           

datasets  also  included  pre-determined  cell  type  classification  and  these           

classifications  were  then  used  to  identify  microglia  cells  from  within  our  unclassified              

dataset.  8,662  cells  were  identified  as  microglia  and  taken  forward  for  further              

analysis.   

  

2.2.7   Variance   components   analysis     

Variance  components  analysis  was  used  to  determine  how  clinical  and  technical             

factors  within  the  dataset  impacted  gene  expression.  Count  data  (log(TPM+1))            

across  all  genes  whose  TPM>0  for  at  least  10%  of  cells  was  used  in  a  linear  mixed                   

model  to  estimate  variation.  13  known  factors  (patient,  number  of  expressed  genes              

per  cell,  pathology,  plate  ID,  ERCC  percentage,  number  of  fragments,  plate  position,              

age,  mitochondria  RNA  percentage,  brain  region,  brain  hemisphere,  ethnicity  and            

sex)   were   fitted   as   random   effects   with   idependent   variance   parameters.   
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2.2.8  Clustering  of  single  cell  data,  differential  expression  and  clinical            

metadata   links   

A  latent  linear  mixed  model  was  again  used  to  estimate  latent  factors  for  downstream                

dimensionality  reduction  and  clustering  on  only  the  microglia  cells  identified  through             

the  methodology  described  in  section  2.2.6.  The  13  factors  described  in  section  2.2.7               

were  included  in  the  model  to  control  for  potential  confounding  between  the  known               

factors  and  unknown  heterogeneity  within  the  dataset.  The  first  15  latent  factors  were               

then  used  within  Shared  Nearest  Neighbour  Clustering  (as  run  in  Seurat  version              

3.0.2)  with  a  resolution  parameter  of  0.2.  The  first  15  latent  factors  were  also  used  to                  

run   UMAP   analysis.   

  

The  same  linear  mixed  model  used  for  variance  component  analysis  was  also  used               

for  differential  expression  analysis,  with  the  addition  of  the  four  subpopulations  fitted              

as  a  random  effect.  The  model  was  fit  on  a  gene-by-gene  basis  and  across  each                 

factor.  If  the  factor  of  interest  was  numerical  (i.e.  age)  Bayes  factor  of  effect  size  was                  

computed  by  comparing  the  full  model  and  the  model  without  the  factor  of  interest.  If                 

the  factor  of  interest  was  categorical  with x  levels  (i.e.  pathology  with  5  levels),                

samples  were  partitioned  into  any  of  two  groups.  There  were  2 x -1  contrasts  which               

were  tested  against  outputs  when  removing  the  factor  of  interest  from  the  model  to                

calculate  Bayes  factors.  Bayes  factors  were  then  used  within  a  finite  mixture  model  to                

calculate  the  posterior  probability  as  well  as  the  local  true  sign  rate  ( lstr ).  Lstr  values                 

were  used  to  identify  differentially  expressed  genes  ( lstr  >  0.5  unless  stated              

otherwise)   

  

2.2.9   Pathway   enrichment   analysis   

I  then  used  gProfiler 226 ,  version  e94_eg41_p11_36d5c99  with  significance          

determined  at  a  5%  FDR,  to  estimate  the  significance  of  enrichment  across  defined               

pathways,  through  a  hypergeometric  distribution  model.  Gene  lists  were  established            

from   the   differential   expression   studies   described   above   (section   2.2.8).   
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2.3   Quality   control   analysis   across   datasets   

  

2.3.1   Bulk   RNA-sequencing   quality   control     

Before  running  downstream  analysis  pipelines,  extended  quality  control  analysis  was            

run  on  all  samples  that  passed  the  technical  quality  control  (109  samples  in  bulk                

dataset).  In  bulk  data  initially  correlation  analysis  was  run  between  all  samples              

(averaged  across  all  genes  for  each  sample).  These  correlations  were  then             

compared  to  those  observed  in  BLUEPRINT  monocytes  and  a  small  primary             

microglia  dataset.  Figure  2.3  is  a  heatmap  of  the  correlation  coefficients  across  all               

samples.  While  correlation  coefficients  between  the  monocyte  and  peadiatric           

microglial  samples  are  high  and  consistent  across  all  samples,  within  the  adult              

primary  microglia  dataset  there  is  a  much  larger  amount  of  variability  amongst              

samples.     

  

After  looking  at  variability  amongst  the  samples  collected  as  part  of  this  study,  I                

wanted  to  compare  global  expression  patterns  in  our  bulk  RNA-seq  dataset  to  other               

large  scale  datasets  in  other  similar  cell  types.  I  used  UMAP  analysis  to  understand                

the  transcriptional  similarities  between  primary  microglia,  brain  tissue  from  GTEx,            

monocyte  data  from  BLUEPRINT  and  a  selection  of  in-vitro  models  (note:  for  detailed               

analysis  of  primary  microglia  versus   in-vitro  models  please  refer  to  Chapter  3,  sect).               

The  UMAP  analysis  plot  (UMAP  1  vs  UMAP  2)  highlights  how  samples  group               

together   based   on   their   transcriptional   similarities   (Figure   2.4).     

  

At  the  top  of  the  plot  the  brain  tissue  samples  split  into  two  distinct  groups,  with                  

cerebellum  tissue  on  the  left  and  the  remaining  regions  on  the  right.  The  three                

remaining  distinct  clusters  represented:  monocytes,  primary  microglia  and   in-vitro           

models.  The  separation  of  the  microglia  samples  from  other  large  scale  datasets              

suggested  a  transcriptional  signature  in  microglia  that  is  not  captured  by  other              

available  datasets.  The  primary  microglia  data  collected  as  part  of  this  study,  also               

clustered  with  small  numbers  of  samples  from  other  fresh  human  primary  microglia              

datasets.  This  highlights  that  despite  higher  levels  of  variation  between  samples             
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(Figure  2.3),  the  microglia  collected  as  part  of  this  study  were  transcriptionally  similar               

to   other   publicly   available   datasets.   

  

  

Figure  2.3  Heatmap  of  correlation  of  bulk  RNA-seq  gene  expression  between             

samples   in   primary   microglia   and   BLUEPRINT   monocytes   

Average  Spearman’s  rank  correlations  across  all  genes  of  gene  expression  for  each              

sample  in  the  in-house  primary  microglia  dataset,  fresh  paediatric  microglia  samples             

from   a   published   dataset 171    and   BLUEPRINT   monocyte   dataset.     
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Figure  2.4  UMAP  analysis  of  bulk  primary  microglia  data  and  publicly  available              

RNA-sequencing   datasets   

UMAP  analysis  from  Seurat’s  RunUMAP  function  on  a  collection  of  publicly  available              

datasets.  Analysis  run  using  the  following  parameters:  PCs=15,  n_neighbours  =  30             

and  min_dist  =  0.3.  Samples  highlighted  as  “Adult  and  paediatric  primary  microglia”              

included  data  from  this  study  and  publicly  available  datasets  (section  3.2.1  for  full               

details).     
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2.3.2   Metadata   comparison   

As  much  of  the  analysis  completed  in  this  chapter  focuses  on  understanding  the               

effect  of  clinical  phenotypes  on  microglial  transcriptomes,  I  initially  wanted  to  ensure              

that  there  were  no  major  confounding  groups  of  clinical  phenotypes.  I,  therefore,              

compared  the  number  of  patients  across  pairs  of  clinical  phenotypes  in  both  the               

single  cell  and  bulk  patient  groups  (Figure  2.5  and  2.6),  all  pairwise  comparisons  for                

the  four  meta  group  (age,  sex,  brain  region  and  clinical  pathology)  are  shown.  Within                

both  the  bulk  and  single  cell,  patient  groups  clinical  pathology  and  brain  region  were                

confounded   because   trauma   patients   were   only   found   in   one   brain   region.     

  

Figure  2.5  Frequency  of  patients  from  metadata  groups  within  the  bulk  (A,  C               

and   E)   and   single   cell   (B,   D   and   F)   RNA-seq   datasets   

Numbers  of  patients  in  different  age  ranges  (A  and  B),  sexes  (C  and  D)  and  brain                  

regions   (E   and   F)   subdivided   by   clinical   pathology   (colour).      
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Figure  2.6  Frequency  of  patients  from  metadata  groups  within  the  bulk  (A,  C               

and   E)   and   single   cell   (B,   D   and   F)   RNA-sequencing   datasets   

Numbers  of  patients  with  samples  from  different  brain  regions  (A  and  B)  and  age                

ranges   (C,   D,   E   and   F)   subdivided   by   sex   (A,   B,   C   and   D)   and   brain   region   (E   and   F).     
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2.4   Single   cell   clustering   and   identification   of   sub-populations   

  

2.4.1   Comparison   to   publicly   available   single   cell   datasets   

Initially  we  compared  our  microglia  single  cell  data  to  two  publicly  available  datasets,               

68K  peripheral  blood  mononuclear  cells 224  (PBMCs)  and  15K  unsorted  brain  cells 225             

(Figure  2.7).  This  allowed  for  the  identification  of  infiltrating  blood  derived  cells  or               

contaminating  neuronal  cells  while  also  providing  a  comparison  of  our  sorted             

microglial   cells   to   an   unsorted   dataset.     

  

Figure  2.7  UMAP  analysis  of  microglia  single  cell  data  and  publicly  available              

PBMC   and   whole   brain   tissue   single   cell   datasets   

Cells  collected  as  part  of  this  study  coloured  in  red.  Cell  type  annotations  were                

obtained  from  original  manuscripts:  glutamatergic  neurons  from  the  PFC  (exPFC);            

64   



  

pyramidal  neurons  from  the  hip  CA  region  (exCA);  GABAergic  interneurons  (GABA);             

granule  neurons  from  the  hip  dentate  gyrus  region  (exDG);  astrocytes  (ASC);             

oligodendrocytes  (ODC);  oligodendrocyte  precursor  cells  (OPC);  neuronal  stem  cells           

(NSC);  endothelial  cells  (END);  dendritic  cell  (DC);  B  cell  (B);  hematopoietic             

progenitor   cell   (CD34+);   NK   T   cell   (NK).   Plot   generated   by   Dr   Natsuhiko   Kumasaka.     

  

A  total  8,662  cells  from  our  single  cell  dataset  clustered  with  microglia  identified               

within  the  unsorted  brain  cell  dataset  (see  Table  2.2  for  breakdown  of  identified  cells                

in  the  dataset).  Alongside  the  microglial  cells  identified  a  small  fraction  of  the  single                

cells  collected  as  part  of  this  study  appeared  transcriptionally  similar  to  PBMC  cells,               

specifically  NKT  cells,  monocytes  and  B  cells.  These  cells  could  represent  either              

infiltrating  cells  that  have  entered  the  brain  following  disruption  to  the  BBB  or               

intravascular   contamination   of   the   tissue   that   occurred   during   the   collection.     

  

Table  2.2  Cell  numbers  and  number  of  patients  represented  in  each  immune              
cell   type   collected.     
Cell  type  classification  determined  by  UMAP  analysis  and  comparison  to  publicly             
available   datasets   that   had   been   previously   classified.     
  

The  cells  identified  as  microglia  also  expressed  known  marker  genes   P2RY12 ,             

CX3CR1  and   TMEM119  (Figure  2.8).  These  8,622  cells  were  therefore  taken  forward              

for   further   analysis.   
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Cell   Type  Number   of   cells   Number   of   patients   

Microglia  8662   127   

NKT   cells  799   91   

Monocyte  46   18   

B   cell   28   16   



  

  

Figure  2.8  UMAP  analysis  of  microglia  single  cell  data  and  publicly  available              

PBMC   and   whole   brain   tissue   single   cell   datasets     

Cells  coloured  by  expression  (CPM)  of  microglial  marker  genes   P2RY12  (A),             

CX3CR1    (B)   and    TMEM119    (C   ).   Plot   generated   by   Dr   Natsuhiko   Kumasaka.     

  

2.4.2   Clustering   of   microglial   cells   and   cluster   maker   analysis   

Clustering  of  the  microglia  highlighted  a  relative  homogeneity  between  cells  although             

4  transcriptionally  distinct  clusters  were  identified  (Figure  2.9).  A  linear  mixed  model,              

with  the  cluster  membership  fitted  as  a  random  effect,  was  used  to  identify               

differentially   expressed   genes   between   cluster   groups.     
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Figure  2.9  UMAP  analysis  of  microglia  cells  from  this  study  identified  from              

previous   analysis   (Figure   2.7)   

Cells  coloured  by  cluster  membership  as  determined  by  Louvain  clustering  (see             

section   2.2.8   for   full   clustering   methodology).     

  

Figure  2.10  highlights  some  of  the  cluster  markers  identified  as  part  of  this  analysis                

and  Table  2.3  shows  the  top  5  most  enriched  GO  terms  for  cluster  marker  genes                 

(identified  as  any  gene  with  a  LTSR  value  of  >0.5  when  comparing  expression  of                

cells   in   one   cluster   to   all   other   cells).   
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Figure   2.10   Cluster   maker   genes   for   microglia   single   cell   data   

Averaged,  across  cells  in  each  cluster,  normalised  expression  level  (defined  as  the              

posterior  mean  of  pathology  random  effect  term,  see  section  2.2.8  for  full  details)  of                

differentially   expressed   genes   at   the   local   true   sign   rate   ( ltsr )   greater   than   0.9.     

  
  

As  demonstrated  in  Figure  2.10  cells  in  clusters  A  and  B  had  higher  expression  of                 

microglial  marker  genes   P2RY12  and   CX3CR1  than  cells  in  clusters  C  and  D.  Cells                

within  cluster  A  also  had  significantly  reduced  expression  of  immune  activation             

marker  genes,  like   IL1B  and   CCL3 ,  when  compared  to  all  other  cells.  GSEA  of  the                 

genes  differentially  expressed  within  this  cluster  identified  an  enrichment  of  metabolic             

and  translational  processes.  Cells  in  cluster  A  were  therefore  identified  as             

homeostatic  microglial  cells  with  those  in  other  clusters  representing  cells  in  differing              

activation   states.     
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As  well  as  increased  expression  of  marker  genes,  cells  associated  with  cluster  B  had                

increased  expression  of  activation  genes  such  as   JUN  and   EGR3 .  These  often              

represent  early  activation  patterns  of  macrophage  cells  and  therefore  cluster  B  may              

represent  a  population  of  cells  moving  towards  an  activated  state.  Further             

investigation,  using  techniques  such   in-situ   single  cell  transcriptomics,  would  be            

needed  to  confirm  that  these  cells  arise  in  the  brain  and  are  not  artificially  activated                 

by   the   tissue   processing   used   in   this   study.     

  

Cells  in  cluster  C  had  significantly  increased  expression  of  genes  such  as   CD14 ,               

ACTB  and   ERC2 .  One  of  the  other  marker  genes  associated  with  cells  in  this  cluster                 

is   HAMP  which  encodes  for  hepcidin  protein,  a  key  molecule  in  iron  homeostasis.               

Iron  homeostasis  has  been  linked  to  multiple  brain  disorders  including  ischemia,             

cancer  and  Alzheimer’s  disease 227 .  Enrichment  analysis  of  marker  genes  associated            

with  this  cluster  showed  significant  enrichment  for  terms  such  as  immune  response              

and   immune   system   process,   highlighting   a   clear   activation   pattern   within   these   cells.     

  

Like  in  cells  associated  with  cluster  C,  those  in  cluster  D  were  also  enriched  for  terms                  

such  as  immune  system  process.  However,  gene  markers  for  cells  in  cluster  D  were                

also  enriched  for  cell  migratory  and  communication  terms.  Cluster  D  is  also              

characterised  by  expression  of   VEGF  and  a  receptor  for  the  molecule,   FLT1 .  FLT1               

and  VEGF  have  been  shown  to  be  important  in  angiogenesis  in  the  brain  particularly                

following  traumatic  brain  injury 228,229 .  Recent  evidence  has  also  suggested  a  potential             

role  for  VEGF  response  in  microglial  chemotaxis  to  amyloid  beta,  a  key  protein  in  AD                 
230 .     
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Cluster   GO   ID   Term   name   Padj   

A   

GO:0016071   mRNA   metabolic   process   6.22e -14  

GO:0006413   translational   initiation   6.22e -14  

GO:0006886   intracellular   protein   transport   4.74e -13  

GO:0006613   cotranslational   protein   targeting   to   membrane   4.74e -13  

GO:0070972   protein   localization   to   endoplasmic   reticulum  5.16e -13  

B   
GO:0006614   

SRP-dependent   cotranslational   protein   targeting   to   
membrane   1.66e -27  

GO:0006613   cotranslational   protein   targeting   to   membrane   3.44e -27  



  

Table   2.3   Top   enriched   biological   process   terms   for   cluster   marker   genes   

Statistical  enrichment  analysis  using  an  ordered  list  through  the  g:GOSt  programme             

of  g:Profiler  with  significance  determined  at  a  5%  FDR.  Five  most  significantly              

enriched  biological  process  terms  for  genes  determined  as  cluster  markers  at  the              

local   true   sign   rate   ( ltsr )   greater   than   0.9   (section   2.2.8   for   full   details).     

  

  

2.5   Clinical   metadata   and   microglial   transcriptome   signatures     

  

2.5.1   Variance   components   analysis     

The  large  sample  size  of  this  study  across  a  variety  of  patients  also  allowed  us  to                  

study  how  a  range  of  biological  factors  impact  microglial  gene  expression.  Variance              

components  analysis  highlights  how  much  variability  in  gene  expression  can  be             

explained  by  different  biological  and  technological  factors.  Figure  2.11  shows  that             

individual  patients  were  the  largest  driver  of  variation  within  the  dataset,  this  may               

represent  the  effect  of  genetic  background  on  gene  expression  but  could  also  be  in                

part   due   to   unknown   factors   that   weren’t   collected   as   part   of   this   study.   
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GO:0000184   
nuclear-transcribed   mRNA   catabolic   process,   
nonsense-mediated   decay   1.06e -26  

GO:0045047   protein   targeting   to   ER   1.83e -26  

GO:0072599   
establishment   of   protein   localization   to   endoplasmic   
reticulum   3.89e -26  

C   

GO:0006955   immune   response   3.34e -14  

GO:0002376   immune   system   process   1.80e -13  

GO:0002252   immune   effector   process   1.50e -08  

GO:0002682   regulation   of   immune   system   process   1.50e -08  

GO:0043299   leukocyte   degranulation   2.74e -08  

D   

GO:0002376   immune   system   process   2.48e -25  

GO:0048583   regulation   of   response   to   stimulus   6.50e -22  

GO:0070887   cellular   response   to   chemical   stimulus   5.78e -21  

GO:0007154   cell   communication   1.31e -20  

GO:0050896   response   to   stimulus   1.79e -20  



  

Of  the  non-technical  factors,  clinical  pathology  was  the  largest  driver  of  variation              

contributing  to  more  variation  in  gene  expression  than  the  other  biological  factors              

combined.  The  variance  components  analysis  also  highlighted  how  technical  factors            

can  impact  gene  expression  and  why  they  need  to  be  accounted  for  in  downstream                

analysis.     

  

Figure   2.11   Variance   components   analysis   

Proportion  of  variance  explained  by  both  biological  and  technical  factors  collected  as              

part   of   this   dataset.   Plot   generated   by   Dr   Natsuhiko   Kumasaka.   

  

2.5.2   Gene   expression   linked   to   clinical   metadata   
Due  to  the  size  of  the  dataset  collected  as  part  of  the  study,  we  were  able  to                   

determine  genes  whose  expression  is  affected  by  clinical  factors,  while  controlling             

not  just  for  the  other  interlinked  clinical  factors  but  also  technical  factors  that  can                

influence   gene   expression.     

  

The  variance  component  analysis  highlighted  that  pathology  was  the  largest  known             

clinical  factor  driving  variation  in  this  dataset.  We  therefore  ran  enrichment  analysis  to               

understand  if  cells  part  of  different  clusters  were  enriched  for  patients  with  certain               
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clinical  pathologies.  Figure  2.12  demonstrates  the  log  odds  ratio  for  enrichment  of              

clinical   pathologies   in   each   cluster.   

  

Figure  2.12  Odds  ratios  from  Fisher’s  exact  tests  across  clinical  pathologies             

for   each   cluster.   

The  number  of  cells  contributing  to  each  cluster,  from  each  pathology  group  were               

used  to  run  two-tailed  Fisher’s  exact  tests.  Results  displayed  show  Odds  Ratios  for               

each   test.   Plot   generated   by   Dr   Natsuhiko   Kumasaka.   

  

Enrichment  analysis  showed  that  clusters  C  and  D,  those  with  distinct  activation              

patterns,  were  significantly  enriched  for  trauma  patients,  as  well  as  haemorrhage             

patients,   and   cluster   B   was   enriched   for   tumour   patients   (OR=4.9,   P=7.6x10 -169 ).   

  

While  pathology  was  the  largest  clinical  factor  driving  variation,  other  factors  such  as               

age,  brain  region  and  sex  also  contributed  to  variance  within  the  dataset  and               

therefore  differentially  expressed  genes  were  calculated  across  clinical  groups,           

controlling   for   other   factors.     

  

Table  2.4  summarizes  the  top  5  genes  whose  expression  in  microglia  was  positively               

or  negatively  correlated  with  age  as  well  as  the  top  5  enriched  GO  terms  for  all                  

correlated  genes.  Gene  set  enrichment  analysis  of  the  156  genes  whose  expression             

was  positively  correlated,  highlighted  a  significant  enrichment  in  immune  activation            

genes   suggesting   that   microglia   may   take   on   a   more   active   phenotype   as   we   age.   

  

There  were  144  genes  whose  expression  was  negatively  correlated  with  age,             

including  microglia  marker  genes   P2RY12   and   CX3CR1 .  Gene  set  enrichment            
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analysis  highlighted  an  enrichment  of  genes  involved  in  cell  migration  and  regulation              

of   locomotion   (p   =   1.974×10 -5 ).   

  

Table  2.4  Top  5  genes  and  enriched  biological  process  terms  associated  with              

age   

Statistical  enrichment  analysis  using  an  ordered  list  through  the  g:GOSt  programme             

of  g:Profiler  with  significance  determined  at  a  5%  FDR.  Five  most  significantly              

enriched  biological  process  terms  for  genes  with  local  true  sign  rate  ( ltsr )  greater  than                

0.5.     

  

Differential  expression  focussing  on  brain  region,  highlighted  varying  levels  of            

heterogeneity  across  different  areas  of  the  brain.  There  were  over  400  genes  with               

higher  expression  in  microglia  originating  from  the  occipital  lobe,  whereas  only  two              

genes  were  more  highly  expressed  in  microglia  sourced  from  the  frontal  lobe.              

Pathway  enrichment  analysis  showed  genes  more  highly  expressed  in  occipital            

microglia  were  enriched  for  immune  activation  pathways  but  also  cell  motility             

(GO:0048870)   and   migration   (GO:0016477).   
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Genes   and   GO   terms   positively   correlated   with   age   

Gene   

  

GO   ID   Term   name   Padj   

HLA-DRA   GO:0002376  immune   system   process   6.60e -20   

HLA-DRB1   GO:0006955  immune   response   7.57e -20   

PADI2   GO:0001775  cell   activation   4.65e -18   

MS4A6A   GO:0006952  defense   response   2.62e -17   

HLA-DPA1   GO:0045321  leukocyte   activation   5.20e -17   

  

Genes   and   GO   terms   negatively   correlated   with   age   

Gene   

  

GO   ID   Term   name   Padj   

P2RY12   GO:0030334  regulation   of   cell   migration   1.92e -05   

PDK4   GO:0070887  cellular   response   to   chemical   stimulus   1.92e -05   

CH25H   GO:0010033  response   to   organic   substance   1.92e -05   

C3   GO:0051270  regulation   of   cellular   component   movement   1.92e -05   

CSF1R   GO:1901701   cellular   response   to   oxygen-containing   compound  1.92e -05   



  

Table  2.5  Top  5  genes  and  enriched  biological  process  terms  associated  with              

brain   region   

Statistical  enrichment  analysis  using  an  ordered  list  through  the  g:GOSt  programme             

of  g:Profiler  with  significance  determined  at  a  5%  FDR.  Five  most  significantly              

enriched  biological  process  terms  for  genes  with  local  true  sign  rate  ( ltsr )  greater  than                

0.5.     
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Region   
Number   of   DE   

genes    GO   ID   Term   name   Padj   

Occipital   441   

  

GO:0006955   immune   response   4.15e -18  

GO:0002376   immune   system   process   1.69e -15  

GO:0002252   immune   effector   process   1.87e -14  

GO:0019221   
cytokine-mediated   signaling   

pathway   3.05e -14  

GO:0034097   response   to   cytokine   6.39e -14  

Cerebellum  51   

GO:2001242   
regulation   of   intrinsic   apoptotic   

signaling   pathway   0.00170  

GO:0090288   

negative   regulation   of   cellular   
response   to   growth   factor   

stimulus   0.00170  

GO:0048583   
regulation   of   response   to   

stimulus   0.00170  

GO:0051091   

positive   regulation   of   
DNA-binding   transcription   

factor   activity   0.00170  

GO:0002376   immune   system   process   0.00260  

Temporal   36   

GO:0006614   
SRP-dependent   cotranslational   
protein   targeting   to   membrane   3.42e -20  

GO:0006613   
cotranslational   protein   targeting  

to   membrane  3.44e -20  

GO:0045047   protein   targeting   to   ER   7.41e -20  

GO:0072599   

establishment   of   protein   
localization   to   endoplasmic   

reticulum   9.05e -20   

GO:0000184   

nuclear-transcribed   mRNA   
catabolic   process,   

nonsense-mediated   decay   1.83e -19   

Parietal   7   
N/A   

Frontal   2   



  

There  were  fewer  genes  whose  expression  differed  significantly  based  on  sex,  55              

with  increased  expression  and  95  with  increased  expression  in  males.  Table  2.6              

shows  the  top  genes  with  higher  expression  in  males  or  females  alongside  the               

enrichment   terms.   

  

Table  2.6  Top  5  genes  and  enriched  biological  process  terms  associated  with              

sex   

Statistical  enrichment  analysis  using  an  ordered  list  through  the  g:GOSt  programme             

of  g:Profiler  with  significance  determined  at  a  5%  FDR.  Five  most  significantly              

enriched  biological  process  terms  for  genes  with  local  true  sign  rate  ( ltsr )  greater  than                

0.5.     

  

  
  

75   

Genes   and   enriched   GO   terms   in   males   

Gene   

  

GO   ID   Term   name   Padj   

HLA-DQB1   GO:0006614   
SRP-dependent   cotranslational   
protein   targeting   to   membrane   4.25e -70   

EEF1A1   GO:0006613   
cotranslational   protein   targeting   to   

membrane   3.05e -69   

HLA-DRA   GO:0045047   protein   targeting   to   ER   1.63e -67   

RPL37   GO:0072599   
establishment   of   protein   localization   

to   endoplasmic   reticulum   7.41e -67   

RPS3A   GO:0000184   
nuclear-transcribed   mRNA   catabolic   
process,   nonsense-mediated   decay   1.74e -65   

  

Genes   and   enriched   GO   terms   in   females   

Gene   

  

GO   ID   Term   name   Padj   

B2M   GO:0098542   defense   response   to   other   organism   1.32e -09   

H2BC8   GO:0006952   defense   response   2.09e -09   

AC011586.2   GO:0051707   response   to   other   organism   5.36e -09   

H4C5   GO:0045814   
negative   regulation   of   gene   

expression,   epigenetic   5.36e -09   

H2BC3   GO:0009607   response   to   biotic   stimulus   5.36e -09   



  

2.6   Microglia   and   disease   
  

2.6.1   Microglial   gene   expression   and   Alzheimer’s   disease   (AD)   

Next,  I  examined  expression  of  known  AD  genes  across  the  microglia  dataset.  I               

included  familial  AD  genes  ( APP,   PSEN1  and   PSEN2 ),  and  a  selection  of  genes               

associated  with  late-onset  AD.  The  late-onset  AD  genes  included  the  large  effect  size               

gene  and  APOE  rare  missense  variant  genes  ( TREM2 ,   PLCG2  and   ABI3 ).  While              

these  genes  have  been  definitively  linked  to  AD,  many  complex  disease  risk  variants               

for  late-onset  AD  identified  by  genome  wide  association  studies  (GWAS)  lie  in              

non-coding  regions  of  the  genome 134,136,137,231 .  This  presents  a  problem  for  expression             

analysis,  because  linking  these  signals  to  candidate  genes  is  challenging.  One            

approach  to  identifying  the  candidate  causal  genes  is  colocalization,  which  compares             

association  signals  between  a  GWAS  and  those  from  an  expression  quantitative  trait              

loci  (eQTL).  I  examined  the  expression  of  a  set  of  genes  identified  as  candidate                

causal  AD  risk  genes  identified  as  part  of  the  same  study  described  in  this  chapter                 

(eQTL  analysis  carried  out  by  Dr  Natsuhiko  Kumasaka).  This  gene  set  included:              

BIN1 ,    MEF2A ,    PTK2B ,    CASS4 ,    CD33    and    EPHA1-AS1 .     

  

Table  2.7  summaries  whether  these  genes,  and  genes  that  have  been  identified  as               

the  “nearest  gene”  to  an  AD  risk  variant  in  more  than  one  GWAS  study  (see  Table                  

1.1),  had  increased  expression  within  specific  microglia  clusters  or  between  males             

and  females.  I  also  looked  at  whether  the  AD  genes  were  positively  or  negatively                

correlated  with  age  or  whether  expression  was  increased  in  a  particular  brain  region.               

Only  4  of  30  the  AD-linked  genes  studied  here  showed  a  significant  correlation               

between  expression  level  and  age  and  the  majority  of  the  AD  linked  genes  showed                

no  differential  expression  across  clusters.  However  the  6  genes  whose  expression             

was  increased  within  specific  clusters  were  within  the  “activated”  populations  while             

none   were   increased   in   the   homeostatic   population   (cluster   A).     
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Table   2.7   AD   associated   risk   genes   and   microglia   single   cell   expression.   

AD  associated  genes  cross-referenced  against  differentially  expressed  genes          

between   clusters,   sex,   brain   region   and   age.   
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Nearest   
Gene   

Cluster   
marker?   

Higher   expression   in   
male   or   females?   

Higher   expression   in   
specific   brain   region?  

Correlated   
with   age?   

APP   D         

PSEN1           

PSEN2           

APOE         Positively   

TREM2   B   Male   Occipital     

PLCG2           

ABI3   C         

BIN1         Negatively   

MEF2A       Occipital     

CASS4   B       Negatively   

PTK2B           

CD33           

EPHA1-AS 
1   

        

CR1           

CD2AP           

EPHA1       Occipital     

MS4A6A   D     Occipital   Positively   

PICALM           

ABCA7           

SORL1           

SLC24A4           

DSG2           

INPP5D   D         

ZCWPW1           

FERMT2           

CLU           

ADAM10           

KAT8           

ACE           

ECHDC3           



  

2.7   Discussion   
  

In  this  chapter  I  describe  the  collection  and  sequencing  of  the  largest  human  primary                

microglia  dataset  to  date.  Dr  Adam  Young  collected  brain  samples  from  141              

neurosurgical  patients  and  sorted  CD11b+  cells  for  bulk  and  single  cell             

RNA-sequencing.  From  the  141  samples,  109  were  included  for  bulk  data  analysis              

and  9,538  cells  from  129  patients  were  analysed  from  smartseq  single  cell              

sequencing.   This  provides  the  largest  RNA-sequencing  resource  of  fresh  primary            

human  microglia  to-date  with  patients  in  the  study  coming  from  a  variety  of  clinical                

backgrounds.  Due  to  the  large  scale  of  the  dataset  and  the  range  of  clinical               

backgrounds  we  have  been  able  to  run  comparisons  across  pathologies,  age  ranges,              

sex  and  brain  regions.  The  samples  also  cluster  with  other  smaller  datasets  of  fresh                

primary  cells,  despite  larger  amounts  of  between  sample  variability,  confirming  that             

our   data   matches   well   with   high   quality   published   datasets.     

  

From  single  cell  analysis,we  have  identified  limited  amounts  of  heterogeneity  in             

primary  microglia  and  suggest  that  the  majority  of  the  heterogeneity  is  driven  not  by                

distinct  subpopulations  of  cells  but  of  microglial  populations  that  are  in  differing              

activation  states.  3  of  the  4  clusters  identified  within  this  dataset  had  increased               

expression  of  immune  activation  genes,  although  Cluster  B  may  have  represented             

pre-activated  cells.  The  cells  in  clusters  C  and  D  were  enriched  for  patients  from                

specific  pathological  backgrounds,  most  significantly  trauma  patients.  This  suggests           

that  the  majority  of  microglia  in  the  brain  are  in  a  homeostatic  state  that  is  only                  

altered   under   trauma   or   disease.     

  

I  also  demonstrated  that  selected  genes  had  expression  profiles  that  significantly             

correlated  with  age,  with  an  increase  in  expression  of  inflammatory  genes  and  a               

reduced  expression  of  locomotion  and  motility  genes  with  age.  While  there  were              

small  effects  on  gene  expression  linked  with  age  in  the  primary  microglia,  there  were                

almost  no  differentially  expressed  genes  between  male  and  female  samples,  which  is              

similar  to  what  has  been  suggested  in  large  scale  mouse  studies 213 .  It  may  be  that  in                  

small  sub-populations  of  cells  there  are  more  subtle  sex  or  age  effects,  but  as  many                 
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of  the  populations  described  here  are  made  up  of  small  numbers  of  cells  the  ability  to                  

detect   this   subtle   differences   is   reduced.     

  

As  microglia  have  been  suggested  to  be  a  pathogenic  cell  type  in  Alzheimer’s               

disease  (AD)  and  disease  specific  changes  in  microglial  transcriptomes  have            

previously  been  reported  in  AD  patients 166,184 ,  I  also  looked  at  specific  changes  in  AD                

linked  gene  expression  within  our  dataset.  While  many  of  the  AD  linked  genes,  both                

those  identified  in  previous  single  cell  studies  and  GWAS  genes,  were  expressed              

within  this  dataset,  there  was  no  enrichment  for  increased  gene  expression  within              

one  specific  microglia  cluster.  This  further  adds  to  the  theory  microglia  react  in  a                

disease  or  pathology  specific  manner.  Interestly,  reactive  microglia  have  been            

suggested  to  be  a  potential  pathogenic  cell  type  that  links  traumatic  brain  injury  to  an                 

increased  long-term  risk  of  dementia.  In  this  dataset  there  was  no  enrichment  for  AD                

linked  genes  within  the  trauma  patients  but  this  may  be  because  samples  were  taken                

within  a  short  time  period  of  the  trauma.  It  may  be  that  as  time  progresses  the  cells                   

take   on   a   more   AD   specific   phenotype.     
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