
  

Chapter   3:   Comparison   of    in-vitro    models   of   microglia   
  

  

Collaboration   note   

Data  collected  for  this  chapter  comes  mainly  from  publicly  available  RNA-seq             

datasets.  For  details  of  these  data  sources  please  refer  to  the  methods  section  of  the                 

chapter.  However,  a  small  number  of  samples  were  generated  as  part  of  other               

projects  in  the  Gaffney  Lab.  The  primary  microglia  are  a  subset  of  samples  from  the                 

data  described  in  Chapter  2,  as  part  of  REC  16/LO/2168.  A  number  of  the                

iPSC-derived  macrophage  samples  are  from  the  MacroMap  project,  involving  Dr            

Andrew  Knights,  Dr  Nikos  Panousis  and  the  CGaP  core  facility  at  the  Wellcome               

Sanger  Institute.  Within  the  cancer  cell  line  samples  are  a  selection  of  samples               

generated   by   Carl   Fishwick   (GSK)   as   part   of   an   Open   Targets   project.   

  

  

3.1   Introduction   

  

Although  primary  microglia  are  a  critically  important  cell  there  are  factors  that  limit  the                

use  of  the  primary  cells  in  the  laboratory.  Primary  human  microglia  are  inaccessible,               

particularly  as  fresh  rather  than  post-mortem  samples,  and  recoverable  cell  numbers             

are  relatively  small.  While  it  is  possible  to  culture  primary  cells  following  isolation  from                

the  brain,  previous  data  has  shown  that  culturing  primary  microglia  causes  a              

significant  change  in  gene  expression  and  the  cells  have  limited  proliferation             

potential 171 .   

  

The  limited  ability  for  researchers  to  use  primary  cells  for in-vitro  studies,  particularly               

large-scale  genetics  studies,  means  that  there  is  a  need  to  develop  robust  model              

systems  for  primary  microglia,  and  to  understand  how  well  these  models  capture  the               

biology  of  the  primary  cell.  For  primary  microglia  these  model  systems  can  range               

from  established  macrophage  models  to  more  specialised  microglia  systems.  The            

models  discussed  in  this  chapter  include:  monocyte-derived  macrophages  (MDMs),           
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cancer-cell  lines  (such  as  THP-1  and  U937  lines)  and  induced  pluripotent  stem  cell               

(iPSC)   models   of   both   macrophages   and   microglia.     

  

3.1.1   Monocyte-derived   macrophages     

Both  monocyte-derived  macrophages  (MDMs)  and  primary  microglia  are  part  of  the             

myeloid  cell  family  and  are  both  considered  to  be  macrophages,  with  microglia              

representing  a  tissue-specific  arm  of  the  cell  group.  However,  there  are  fundamental              

differences  in  the  origin  and  developmental  lineages  of  the  two  cell  types.  Primary               

microglia  have  been  shown  to  develop  from  yolk-sac  derived  precursor  cells  that              

arise  in  early  embryonic  development 7,17,232 .  Adult  monocytes,  on  the  other  hand,  are              

constantly  replenished  by  bone-marrow  derived  cells.  How  these  different  lineages            

impact  the  cell  function  remains  a  controversial  topic;  particularly  as  it  is  known  when                

the  blood  brain  barrier  (BBB)  is  disrupted,  circulating  monocytes  can  enter  the  central               

nervous   system   (CNS)   and   differentiate   into   brain   macrophages 232 .   

  

While  human  MDMs  are  somewhat  easier  to  derive  than  primary  microglia,  sampling              

primary  human  cells  is  still  complex  and  comes  with  experimental  limitations  such  as               

an  inability  to  run  repeated  experiments  and  a  lack  system  of  manipulation.  For               

instance  introducing  genetic  modifications  into  MDMs  can  be  inefficient  and  may             

impact   function   and   expression   in   nonspecific   ways 233,234 .     

  

3.1.2   Cancer   cell   lines   

A  large  proportion  of  the   in-vitro  studies  of  macrophage  function  have  been  carried               

out  in  human  myeloid  leukemia  lines,  such  as  THP-1 235  and  U937 236  cells.  The  patient                

derived  cell  lines  are  thought  to  represent  cells  similar  to  that  of  monocytes  that  can                 

be  pushed  towards  more  macrophage  like  phenotypes  through  simulations  with            

compounds  such  as  phorbol-12-myristate-13-acetate  (PMA) 237 .  The  differentiated         

cells  appear  morphologically  similar  to  MDMs  and  have  similar  functional  capabilities             

such  as  phagocytosis  as  the  primary  cells 237–239 .  However,  certain  aspects  of  cancer              

cell  line  function  have  already  been  shown  to  differ  from  MDMs.  For  instance,  THP-1                

cell  response  to  lipopolysaccharide  (LPS)  stimulation  significantly  differs  when           
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compared  to  MDMs 240 ,  showing  a  lack  of  IL-6  and  IL-10  response  and  a  reduction  in                 

IL-8   release   compared   to   primary   cells.     

  

As  the  cell  lines  have  been  created  from  single  patients,  they  provide  a  tool  to                 

repeatedly  study  cell  effects  on  the  same  genetic  background.  However,  the  cells  are               

derived  from  immortalised  cancer  cell  lines  and,  therefore,  their  genetic  background             

may  not  accurately  represent  that  of  healthy  individuals.  For  instance,  119  genetically              

aberrant  regions  in  the  THP-1  genome  have  been  detected 241 ,  including  deletions  in              

the    PTEN    gene,   a   key   tumour   suppressor   gene,   and   trisomy   of   chromosome   8.     

  

3.1.3   iPSC   derived   macrophages   

As  mentioned  in  section  1.6,  induced  pluripotent  stem  cell  (iPSC)  based  models              

provide  an  attractive  option  for  studying  human  disease 191 .  Like  in  the  primary  cell               

type  (MDMs),  iPSC-derived  macrophage  cells  have  been  shown  to  express  known             

myeloid  cell  marker  genes  such  CD18  and  CD68  as  well  as  being  functionally  similar                

in  their  ability  to  phagocytose  compounds 194,195 .  Gene  expression  studies  and            

cytokine  profiling  have  also  demonstrated  a  conserved  pro-inflammatory  response,           

such  as  that  following  LPS  stimulation,  in  both  iPSC  and  monocyte-derived             

macrophages 194,195 ,  unlike  that  seen  with  cancer-cell  lines.  However,  iPSC           

differentiated  macrophages  do  not  fully  match  the  transcriptional  phenotype  seen  in             

MDMs.  For  instance,  MDMs  have  consistently  shown  an  increased  expression  of  the              

MHC-II  cell  surface  marker 192,193  or  genes  that  encode  for  the  receptor 194,195 .  Using              

differential  expression  analysis,  it  has  also  been  noted  that  iPSC-derived            

macrophages  often  express  selected  genes  at  a  higher  level  than  their  monocyte              

derived  counterparts 194,195 .  These  genes  are  often  enriched  for  extracellular           

matrix 194,195 ,   cell   adhesion 194    or   fibroblast 195    processes.     

  

Interestingly,  through  CRISPR  knock-out  of  a  variety  of  transcription  factors  the             

formation  of  the  myeloid  precursors  cells  generated  by  EB  formation,  as  used  in               

many  of  the  studies  above,  has  been  shown  to  be   MYB  independent 242 .  The               

formation  of  these  precursors  and  downstream  macrophage-like  cell  formation           

appeared  to  be  dependent  on  the  activation  of   RUNX1  and   PU.1  and  this  specific                
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transcription  factor  pattern  is  also  seen  in  yolk-sac  myeloid  progenitor  development.             

It  has,  therefore,  been  suggested  that  the  iPSC-derived  macrophage  differentiation            

protocols  described  above  produce  cells  more  closely  related  to  tissue  resident  cells,              

such  as  microglia,  as  opposed  to  circulating  monocytes 243 ,  especially  as  the  cells              

have  been  shown  to  have  significantly  increased  expression  of  microglia-linked            

genes   such   as    TREM2    and    TMEM119    than   monocytes.   

  

3.1.4   iPSC   derived   microglia   

As  interest  in  microglia  has  increased,  a  number  of  research  groups  have  focussed               

on  pushing  iPSC  derived  myeloid  models  closer  to  a  specialised  microglial             

phenotype  as  opposed  to  more  generic  macrophage-like  cells 197–201 .  The           

iPSC-derived  microglia  cells  have  consistently  shown  expression  of  known  microglial            

genes  such  as   TMEM119 ,   P2RY12 ,   PU.1  and   CX3CR1 197–201  and  often  have  a              

ramified  structure,  with  highly  motile  processes  which  are  a  unique  feature  seen  in               

primary   microglia.     

  

As  with  iPSC-derived  macrophage  studies,  many  of  the  differentiation  papers            

described  here  use  transcriptional  profiling  through  RNA-sequencing  to  determine           

how  closely  the  in-vitro  models  match  the  primary  cell  type.  The  iPSC-derived              

microglia  have  been  shown  to  have  gene  expression  profiles  more  similar  to              

fetal/cultured  adult  primary  microglia  than  dendritic  cells,  monocytes 198,201 ,  other           

neuronal  cell  types 197  and  MDMs 199 .  However  all  of  these  comparisons  come  with              

limitations:  the  number  of  primary  samples  studied  are  often  small  (<  10)  and  the                

comparison  is  also  only  run  against  one  iPSC  differentiation  protocol.  The  largest              

published  model  comparison  dataset  includes  RNA-sequencing  data  from  over  50           

primary  microglia  samples,  from  three  independent  studies,  and  compared  it  two             

iPSC-microglia  differentiation  protocols  along  with  MDMs  from  one  study 200 .  In  this             

dataset,  iPSC-derived  microglia  appeared  transcriptionally  distinct  from  fresh  adult           

primary   microglia   but   were   more   similar   to   cultured   microglial   cells.     

84   



  

  

3.1.5   Limitations   of   current   transcriptional   comparisons   across   model   systems   

Many  of  the  studies  described  above  use  transcriptional  data  to  compare   in-vitro              

models  to  primary  cell  types  and  in  many  cases  this  requires  comparison  of               

RNA-sequencing  datasets  from  differing  groups.  However,  comparisons  across          

sequencing  studies  comes  with  caveats,  particularly  batch  effects  that  can  arise  in              

these  datasets 207–209 .  These  batch  effects  can  arise  from  a  range  of  biological  and               

technical  factors,  particularly  when  data  is  processed  by  entirely  different  research             

groups.     

  

The  impact  of  batch  effects  can  vary  across  studies.  Unknown  causes  of  variability               

can  increase  noise  in  samples  and,  therefore,  reduce  biological  signals 207 .  In  extreme              

cases,  when  the  unknown  or  technical  batch  effects  are  confounded  with  a  condition               

of  interest,  they  may  even  lead  to  incorrect  biological  conclusions.  This  is  something               

to  consider  in  many  of  the  above  studies,  whereby  often  RNA-sequencing  data  is               

collected  from  different  studies  for  differing  cell  types.  It  is,  therefore,  difficult  to               

determine  if  the  effects  described  are  due  to  the  differing  cell  types  or  differing                

experimental  studies.  However,  it  is  not  just  technical  batch  effects  that  need  to  be                

controlled  for.  Processing  pipelines  post-sequencing  can  also  significantly  impact  the            

quantification  of  gene  expression 209 .  Even  when  the  same  raw  RNA-sequencing            

reads  across  the  same  samples  were  processed  across  independent  analysis            

pipelines,  abundance  estimates  of  protein  coding  genes  varied  by  more  than             

four-fold.  It  is,  therefore,  key  to  not  only  try  to  reduce  experimental  and  technical                

batch  effects  that  arise  during  sample  processing  but  also  to  ensure  all  data  is                

processed   through   identical   analysis   pipelines.   

  

As  well  as  being  aware  of  the  potential  batch  effects  that  may  have  arisen  within  the                  

studies  described  in  this  introduction,  it  is  noted  that  none  of  the  currently  published                

work  compares  the  transcriptional  profile  of  all  available   in-vitro  model  systems  for              

primary  microglia.  In  particular,  it  would  be  interesting  to  compare  iPSC-derived             

macrophages  to  the  more  specialised  microglia  differentiation  protocols.  In  an  ideal             

experiment  all  the  samples  would  be  collected  from  the  same  research  group,              
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processed  in  an  identical  manner  and  matched  for  genetic  background  to  try  and               

reduce  any  batch  effects  that  may  arise.  However,  in  a  comparison  of  this  scale,  and                 

particularly  when  collecting  difficult  to  access  primary  cells,  often  it  is  not  feasible  to                

run  these  perfectly  controlled  experiments.  In  this  chapter  I  have,  therefore,  collected              

a  mixture  of  publicly  available  and  in-house  generated  data  across  5  cell  types:               

primary  microglia,  MDMs,  cancer  cell  lines  (THP-1/U937)  and  iPSC-derived           

macrophages  and  microglia.  While,  in  the  study  there  must  be  comparisons  across              

samples  collected  from  different  laboratories,  to  try  and  minimise  the  impact  of  study               

batch  effects  I  ensured  that  data  for  each  cell  type  came  from  multiple  studies.  As                

mentioned  previously,  processing  pipelines  can  also  impact  quantification  of  gene            

expression 209  and  so  in  order  to  counteract  some  of  these  potential  issues,  I  collected                

raw  sequencing  data  for  each  sample  and  processed  all  the  data  through  an  identical                

analysis  pipeline.  I  have  used  gene  expression  analysis  to  understand  how  each  of               

the  model  systems  compared  to  primary  microglia  and  gene  network  analysis  to              

determine  which  pathways  may  need  to  be  switched  on  to  move  model  systems               

closer   to   the   primary   cell   type.     

  

  

3.2   Methods   

  

3.2.1   Data   collection   and   initial   processing   

Datasets  for  this  study  were  identified  from  known  large  scale  transcriptional             

comparison  papers,  in  house  datasets  and  through  pubmed  searches  for  data             

accession  of  the  desired  cell  types.  Other  than  in-house  data  (see  collaboration  note               

for  the  sources  of  these  specific  samples),  all  samples  collected  as  part  of  this  study                 

were  from  publicly  available  sources  (GEO,  ENA,  EGA  and  dbGAP).  Table  3.1              

summarises  the  12  different  studies  (11  publicly  available  and  in-house  data)  used              

within  this  dataset  including  accession  codes  and  references  for  published  work             

attached  to  the  study.  It  should  be  noted  that  access  to  the  samples  from  the                 

Gosselin  et  al.   study 171  are  part  of  a  managed  access  dataset  for  which  use  in  this                  

project   was   approved   in   October   2017.     
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Table   3.1   Sources   of   data   collected   

Accession   codes   and   paper   links   to   datasets   used   within   this   analysis   project.     

  

Table  3.2  shows  a  breakdown  how  samples  from  each  study  are  separated  by  the                

cell  types  studied.  During  collection  of  these  samples,  I  wanted  to  ensure  that  for                

each  cell  type  I  had  samples  from  at  least  three  independent  studies.  As  well  as                 

dividing  samples  by  cell  type,  metadata  across  the  studies  was  collected.  The              

available  metadata  varied  across  the  studies  and  particularly  for  studies  with  only  cell               

lines  the  metadata  was  limited.  However,  for  all  samples  data  was  collected  for  a                

mixture  of  technical  (sequencing  type,  sequencing  depth)  and  experimental  (sex,            

stimulation  and  culture  status)  effects.  For  primary  microglia  samples,  the  source  of              

the  samples  was  also  identified.  Samples  collected  as  part  of  this  dataset  originated               

from  5  distinct  sources:  fresh  adult  microglia,  fresh  paediatric  microglia,  fetal             

microglia,   cultured   microglia   and   microglia   purchased   from   repositories.     

  

I  downloaded  raw  sequencing  files  and  converted  all  data  into  FASTQ  file  format.  All               

data  was  then  aligned  to  GRCh38  using  the  STAR  alignment  tool 221 .  Following              

alignment,  reads  were  quantified  using  featureCounts 222 .  I  used  three  different            
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Study   authors   Accession   code   

Abud    et   al.    (2017)    198   GSE89189   

Alasoo    et   al .   (2015)    194   EGAS00001000563   

J.   de   Boer   (GEO   accession   only)   GSE96544   

Douvaras    et   al .   (2017)    199   GSE97744   

Gosselin    et   al.    (2017)    171   dbGAP   :   phs001373.v1.p1   

In-house   N/A   

Gan    et   al .   (2017)    244   GSE97041   

Muffat    et   al .   (2016)    197   GSE85839   

Phanstiel    et   al .   (2017)    245   GSE96800   

Yeung    et   al.    (2017)    246   ERP006216   

Zhang    et   al.    (2015)    195   GSE55536   

Zhang    et   al.    (2016)    247   GSE73721   



  

normalisation  methods  following  calculation  of  raw  counts  for  comparison  in  this             

study:  calculation  of  transcripts  per  million  (TPM),  variance  stabilising  transformation            

(VST)  from  the  DESeq2  package 248  and  quantile  normalisation  as  described            

previously 249 .     

  

Table   3.2   Data   summary   

Table   with   summary   of   number   of   samples   for   each   broad   cell   type   

  

3.2.2   Principal   components   and   variance   components   analysis   

Following  normalisation,  I  used  the  prcomp  function  in  R  to  to  compute  principal               

components  (PCs)  using  either  all  genes  in  the  dataset  or  across  the  top  500  most                 
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  Cell   Type   

  

Primary   

microglia  

(pmic)   

Monocyte-derived  

macrophage   

(MDM)   

Cancer   cell   

lines   

(THP-1/U937)  

iPSC-derived   

macrophage   

iPSC-derived  

microglia   

Abud 198   6   -   -   -   9   

Alasoo 194   -   10   -   8   -   

J.   de   Boer   

(accession   

only)   

-   -   6   -   -   

Douvaras 199  4   8   -   -   10   

Gosselin 171   45   -   -   -   -   

In-house   16   -   24   54     

Gan 244   -   -   4   -   -   

Muffat 197   3   -   -   -   9   

Phanstiel 245  -   -   4   -   -   

Yeung 246   -   -   -   32     

Zhang 195   -   9   -   18     

Zhang 247   3   -   -   -   -   

Total   

(studies)   
77   (6)   27   (3)   38   (4)   112   (4)   28   (3)   



  

variable  genes.  The  most  highly  variable  genes  were  identified  using  the  rowVars              

function,  to  calculate  variance  for  each  gene  row,  as  carried  out  in  the  DESeq2                

plotPCA  function 248 .  Following  principal  components  analysis  (PCA),  using  the           

varimax  function,  I  rotated  calculated  PCs  to  identify  the  most  highly  loaded  genes  for                

each   PC.     

  

As  well  as  identification  of  individual  genes  that  were  driving  PCs,  I  used  variance                

components  analysis  to  identify  which  metadata  may  be  associated  with  variability  in              

gene  expression.  Initially  I  filtered  the  dataset  to  include  only  protein  coding  and              

lincRNA  genes  that  had  at  least  a  Log 2 (TPM+1)  of  five  across  all  samples.  I  used  the                  

lmer  function  of  the  lme4  package 250  to  run  a  mixed  effect  linear  model  for  individual                 

genes,   with   each   factor   fitted   as   a   random   effect:   

  

lmer  (expression  ~  (1|study)  +  (1|cell)  +  (1|stimulated)  +  (1|sequence_type)  +             

(1|cultured)   +   (1|sex))   

  

As  described  in  Chapter  2,  I  then  used  the  VarCorr  function  of  lmer  to  estimate  the                  

amount  of  variance  attributed  to  each  gene.  Following  this  I  calculated  the  proportion               

of  variance  each  factor  explained  by  dividing  individual  factor  variance  by  the  total               

amount  of  variance  for  each  gene.  I  did  this  across  all  genes  analysed  as  well  as                  

across  two  subsets  of  genes:  microglia  marker  genes  and  AD  linked  genes  (for  list  of                 

genes   see   Table   3.3).   
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Microglia   marker   genes  Alzheimer's   disease   genes   

C1QA   ABCA7   CR1L   NME8   

CX3CR1   ACE   DSG2   NYAP1   

GAS6   ADAM10   ECHDC3   PICALM   

GPR34   ALPK2  EED   PILRA   

MERTK   APH1B   EPHA1   PLCG2   

P2RY12   APOC1   FBXO46   PTK2B   

PROS1   APOE   FERMT2   SCIMP   

SALL1   B4GALT3   HESX1   SLC24A4   



  

Table   3.3   Gene   lists   used   in   variance   components   analysis   

Microglia  marker  genes  identified  from  previously  published  studies 177,178,211,212   and           

Alzheimer’s  disease  genes  collated  from  Open  Targets  project  OTAR037  (not  yet             

published).   

  

3.2.3   Differential   expression   and   gene   set   enrichment   analysis     

I  used  the  DESeq2  package 248  to  run  differential  expression  across  the  dataset.              

Before  differential  expression  testing  the  dataset  was  filtered  to  only  include  genes              

with  more  than  5  reads  in  at  least  3  samples  in  the  data.  The  model  was  set  to                    

compare  cell  types  while  controlling  for  study  effects  where  possible.  Genes  with  an               

adjusted  p-value  of  <  0.05  (with  Benjamini  &  Hochberg  multiple  testing  correction)              

and   a    log 2    fold   change   (LFC)   of   >   1   were   considered   differentially   expressed.     

  

Gene  lists,  from  differential  expression  or  variance  components  analysis,  were  tested             

for  specific  gene  set  enrichment  using  the  g:OSt  function  of  the  online  gProfiler  tool,                

version  e94_eg41_p11_36d5c99 226 .  The  function  uses  a  hypergeometric  distribution          

model  to  run  over  representation  analysis  on  given  gene  lists,  to  associate  the  gene                

sets  with  known  biological  pathways.  Gene  lists  were  provided  to  the  tool  as  an                

ordered  list  and  significant  terms  were  identified  as  those  with  an  adjusted  p-value  of                

<   0.05   (with   Benjamini   &   Hochberg   multiple   testing   correction).   
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TMEM119   BIN1   HLA-DQA1   SORL1   

  CASS4   HLA-DRB1   TREM2   

  CCDC6   INPP5D   TREML2   

  CD2AP   KAT8   UNC5CL  

  CD33   MEF2C   USP6NL   

  CELF1   MS4A6A   ZCWPW1   

  CLU   MYBPC3   ZNF652   



  

3.3   Technical   comparisons   within   the   dataset   

  

3.3.1   Normalisation   comparison   

It  has  been  demonstrated  that  different  processing  pipelines  can  lead  to  significant              

differences  in  gene  abundance  estimates 209 .  While  a  full  comparison  of  how  differing              

initial  analysis  pipelines  (alignment  and  quantification)  has  not  been  carried  out  as              

part  of  this  study,  I  was  interested  to  look  at  how  differing  normalisation  techniques                

could  impact  downstream  results.  I  compared  transcripts  per  million  (Log 2 (TPM+1)),            

quantile  normalisation  (QN)  and  the  variance  stabilising  transformation  (VST)           

described   as   part   of   the   DESeq2   package 248 .     

  

Following  normalisation  of  the  data  using  each  of  these  methods,  I  ranked  genes  by                

variance  across  all  samples  and  compared  the  top  500  most  variable  genes  for  each                

normalised  dataset.  Figure  3.1  shows  a  venn  diagram  of  the  numbers  of  overlapping               

genes  for  each  normalisation  method.  Only  236  of  the  top  500  genes  for  each                

normalisation  method  were  shared  between  all  three  techniques,  with  QN            

normalisation  having  the  most  unique  genes  (165).  Log 2 (TPM+1)  and  VST            

normalizations  had  the  greatest  overlap  across  highly  variable  genes  with  364  shared              

genes.  This  highlights  that,  even  when  initial  alignment  and  quantification  is  identical              

across  samples,  differing  normalization  methods  can  still  impact  certain  downstream            

analysis   outcomes.    
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Figure   3.1   Venn   diagram   of   overlapping   most   variable   genes   

Top  500  most  variable  genes  were  calculated  following  three  independent            

normalisation  methods:  variance  stabilising  transformation  (VST),  quantile         

normalisation   (QN)   and   transcript   per   million   (Log 2 (TPM+1)).     

  

As  well  as  identifying  specific  differences  in  the  most  variable  genes  across              

normalisation  methods,  I  also  wanted  to  understand  how  these  differences  may             

impact  downstream  PCA  and  the  biological  conclusions  that  could  be  drawn  from  it.  I                

took  the  top  500  genes  calculated  above  for  each  normalisation  and  used  those               

genes  to  run  PCA.  I  plotted  samples  (Figure  3.2)  based  on  their  PC  scores  for  the                  

first  two  principal  components  and  coloured  samples  by  cell  type  to  compare  the               

pattern   of   sample   distribution   across   the   normalisation   methods.     

  

Broadly  the  patterns  of  sample  clustering  were  the  same  across  all  three              

normalisation  methods.  PC1  captured  the  variation  in  iPSC  based  models  (both             

macrophages  and  microglia).  Across  all  three  normalisation  methods  PC2  captured  a             

similar  spread  of  cell  types  with  the  cancer  cell  models  at  one  end,  MDM/iPSC                

macrophages/iPSC  microglia  in  the  middle  band  and  a  group  of  primary  microglia  at               

the  opposite  end.  This  suggests  that  even  though  the  specific  genes  driving  the  PCs               

may  differ  slightly  between  normalisation  methods,  the  biological  conclusions  that            

can   be   drawn   from   initial   PCA   was   similar.     
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Figure   3.2   PC1   vs   PC2   for   three   normalisation   methods   

Principal  component  analysis  of  RNA-sequencing  samples,  using  the  top  500  most             

variable  genes  following  3  normalisation  methods:  A)  quantile  normalisation  (QN),  B)             

transcripts   per   million   (log 2 (TPM+1))   and   C)   variance   stabilising   normalisation   (VST).   

  

3.3.2   Variance   components   analysis   

In  order  to  futher  understand  which  biological  and  technical  factors  may  be  driving               

variation  within  the  dataset,  I  used  variance  components  analysis  to  calculate  the              

proportion  of  variation  explained  across  individual  genes  for  six  factors:  study,  cell              

type,  cultured/non-cultured  cells,  naive/stimulated  cells,  single/paired  end  sequencing          

and  sex.  I  used  Log 2 (TPM+1)  normalised  data  to  calculate  this  proportion  first  across               

all  genes,  as  well  as  specifically  in  AD  genes  and  microglia  marker  genes.  Figure  3.3                 

highlights  the  spread  of  the  proportion  of  variance  for  each  of  the  factors  subdivided                

by  the  gene  groups.  When  looking  at  variation  across  all  genes,  study  explained  the                

largest  proportion  of  variation.  However,  when  looking  at  only  microglia  marker  genes              

cell  type  and  the  culturing  status  of  cells  became  more  important.  Sex  and               

stimulation  status  had  little  effect  on  variation  within  all  three  gene  groups  and,  while                

93   



  

on  average  sequence  type  only  explained  a  very  small  proportion  of  variability,  the               

variability  across  all  genes  was  relatively  high  with  over  50%  of  variability  explained               

by   sequence   type   in   a   small   number   of   genes.   

  

Figure   3.3   Variance   components   analysis   

Proportion  of  variance  explained  by  metadata  groups  -  across  all  genes  (green),              

Alzheimer’s  disease  (AD)  linked  genes  (orange)  and  microglia  marker  genes            

(purple).   

  

3.3.3   Effects   of   differing   gene   set   inputs   on   principal   components   analysis   

The  variance  components  analysis  described  above  showed  that  across  all  genes  in              

this  dataset  study  explains  on  average  the  largest  proportion  of  variation  in  gene               

expression,  however  this  changed  as  the  genes  were  subsetted.  I  wanted  to              

understand  if  changing  the  number  of  genes  included  in  PCA  would  impact  the               

outcome  and  interpretation  of  the  analysis.  I  used  all  genes  and  the  500  top  most                 

variable  genes,  as  suggested  in  the  standard  DESeq2  pipeline,  to  run  PCA  and               

compared  sample  distribution  across  PC1  and  PC2  (Figure  3.4).  When  looking  at              

grouping  of  different  cell  types  across  the  first  two  PCs,  both  gene  inputs  appeared  to                 

capture  some  similar  biological  patterns,  with  PC2  appearing  to  separate  the  cancer              

cell  models  from  the  other  cell  types  included  here.  However,  when  all  genes  were                

used  as  an  input  (Figure  3.4  A),  PC1  appears  to  capture  variability  in  primary                
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microglia.  The  same  PC  when  using  the  top  500  most  variable  genes  (Figure  3.4  B),                 

appears  to  capture  variability  in  the  iPSC  based  systems.  Colouring  samples  by              

study  shows  that  there  may  be  less  integration  of  different  studies  when  all  genes  are                 

used  (Figure  3.4  C)  compared  to  the  top  500  (Figure  3.4  D).  Although  this  is  only  true                   

outside  of  the  cancer  cell  line  samples,  where  in  both  gene  inputs,  the  cell  type                 

differences  appear  to  be  a  larger  driver  of  variation  than  study  to  study  effects.  Based                 

on  these  results,  in  all  downstream  analysis  of  computed  principal  components             

using  top  500  most  variable  genes  (Figure  3.4  B)  in  order  to  minimise  any  study                 

based   effects.   

  

Figure   3.4   PC1   vs   PC2   for   all   genes   and   top   500   genes   

Samples  plotted  following  calculation  of  principal  components  with:  all  genes  (A  and              

C)  and  the  500  most  variable  genes  (B  and  D).  All  samples  are  coloured  by  cell  type                   

(A   and   B)   or   study   (C   and   D).   
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3.4   Utilising   principal   component   analysis   to   identify   sources   of   variation   

  

3.4.1   Defining   principal   components   

Following  the  assessment  of  how  technical  factors  could  influence  PCA  described             

above,  I  then  wanted  to  understand  whether  PCA  could  be  used  to  understand               

drivers  of  variation  within  this  dataset.  First  I  focused  on  the  spread  of  samples                

across  PC1  and  PC2  as  shown  in  Figure  3.5.  The  largest  amount  of  variation  in  the                  

top  500  most  variable  genes  (33%)  appeared  to  capture  variation  within  the  iPSC               

derived  macrophages  and  microglia,  while  PC2  (14%  of  variation)  appeared  to             

separate  samples  by  cell  type  (Figure  3.5  A).  The  cancer  cell  models  had  the  lowest                 

PC2  scores,  with  a  band  of  MDMs  and  iPSC-derived  cells  falling  in  the  middle  range                 

of  scores  and  the  primary  microglia  with  the  highest  PC2  scores.  The  primary               

microglia  separated  into  two  almost  distinct  groups,  with  some  samples  sitting  much              

closer  to  the  iPSC  model/MDM  band  in  the  central  part  of  the  PC.  In  order  to                  

understand  what  might  have  been  driving  this  variation  along  PC2,  particularly             

amongst  the  primary  microglia  samples,  I  looked  at  the  culture  status  of  each  sample                

(Figure  3.5  B).  This  showed  that  samples  that  had  been  cultured  had  lower  PC2                

score  than  the  fresh  primary  microglia  and  suggested  that  cultured  primary  microglia              

cells  looked  more  like  iPSC-derived  samples.  It  is  also  worth  noting  that  fetal               

microglia  (Figure  3.5  C),  even  when  sequenced  without  culturing,  also  had  PC2              

scores   more   similar   to   that   of   iPSC-derived   cells.     

  

Next  I  tried  to  characterise  the  variation  in  expression  captured  by  additional  PCs.               

Figure  3.6  shows  samples  projected  on  PC3  vs  PC4  coloured  by  available  metadata               

groups.  PC3  was  associated  with  stimulation  status  (p  =  5.11e -14  following  Welch  Two               

Sample  t-test  between  PC3  score  and  stimulation  status),  while  the  factors  driving              

PC4   remained   unclear.   
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Figure   3.5   PC1   vs   PC2   calculated   using   the   top   500   genes   

Samples  plotted  following  calculation  of  principal  components  with  top  500  most             

variable   genes.   Coloured   by   cell   source   (left   panel)   and   cultured   status   (right   panel).   
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Figure   3.6   PC3   vs   PC4   calculated   using   the   top   500   genes   

Samples  plotted  following  calculation  of  principal  components  with  top  500  most             

variable  genes.  Coloured  by:  A)  cell  type,  B)  study,  C)  stimulation,  D)  sequencing               

read   length,   E)   sequence   type   and   F)   sex.   
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3.4.2   Varimax   analysis   of   principal   components   

While  PCA  provides  a  tool  for  understanding  drivers  of  variation  with  a  gene               

expression  dataset,  as  shown  above  this  often  relies  on  associating  principal             

components  with  known  metadata  which  is  not  always  possible.  Therefore,            

techniques  have  been  developed  to  increase  the  interpretability  of  PCA.  Varimax  is              

an  orthogonal  rotation  technique  that  allows  the  identification  of  specific  variables             

that  heavily  load  principle  components.  In  the  case  of  gene  expression  data,  it  links                

the  expression  of  specific  genes  with  each  PC.  I,  therefore,  used  the  varimax  function                

in  R  to  rotate  the  first  5  PCs  in  order  to  further  understand  what  may  have  been                   

driving  the  major  sources  of  variation  within  the  dataset.  Table  3.4  highlights  the  most                

heavily  loaded  genes  for  each  component.  The  genes  most  negatively  loaded  on              

PC1  included  collagen  genes  as  well  as  genes  linked  to  the  extracellular  matrix  and                

cell  adhesion.  Previous  work  comparing  iPSC-derived  macrophages  to  MDMs,           

showed  that  similar  gene  sets  were  more  highly  expressed  in  the  iPSC-derived              

cells 194 .  It  may  be  that  the  variability  in  expression  of  these  genes  across  the  iPSC                 

based  model  systems,  represents  variation  in  the  completeness  of  differentiation  as             

many   of   the   genes   are   also   highly   expressed   in   undifferentiated   cells.     

Table   3.4   Top   5   loaded   genes   for   each   principal   component     

Varimax  analysis  of  the  first  5  principal  components  from  the  top  500  most  variable                

genes.   Top   5   most   negatively   and   positively   loaded   genes   for   each   component.    
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  PC1   PC2   PC3   PC4   PC5   

Top   5   loaded   genes   

(-ve)   

COL3A1   CCL13   GPR34   RNASE1   RN7SL2   

COL1A1   MMP9   ADORA3   C1QC   CHIT1   

IGFBP5   ANXA2   PALD1   STAB1   RN7SL3   

POSTN   S100A4   DDIT4L   C1QB   HIST1H1E   

CTGF   CD36   PDK4   C1QA   SCARNA7   

Top   5   loaded   genes   

(+ve)   

CAT   FOSB   CXCL10   ELANE   RNASE2   

MMP9   CH25H   IDO1   CTSG   CD93   

SPN   P2RY12   ACOD1   AZU1   MT-TN   

CHI3L1   CX3CR1   TNFAIP6   PRTN3   MT-ATP8   

CSTA   EGR3   CCL8   CES1   MT-TL1   



  

  

When  looking  at  the  genes  that  were  driving  PC2,  those  most  positively  loaded               

included  many  known  microglia  marker  genes  such  as  P2RY12   and   CX3CR1  as  well               

as  transcription  factors  such  as   SALL1 .  Figure  3.9  highlights  expression            

(log 2 (TPM+1))   of    P2RY12    and    SALL1    across   the   first   two   PCs.     

  

Figure   3.7   PC1   vs   PC2   coloured   by   expression   of   genes   heavily   loading   PC2   

Samples  plotted  following  calculation  of  principal  components  using  the  top  500  most              

variable  genes.  Samples  coloured  by:  A)  cell  type  and  B)  &  C)  expression               

(Log 2 (TPM+1))   of   microglia   marker   genes   SALL1   and   P2RY12   respectively.     

  

Genes  most  negatively  loading  on  the  third  PC  were  linked  to  inflammatory  pathways               

in  immune  cells  (such  as  CXCL10  and  CCL8).  This  further  supports  the  hypothesis               

that  PC3  may  capture  stimulation  effects.  The  genes  most  negatively  loading  on  PC4               

included  many  of  the  C1Q  complex  and  gene  set  enrichment  analysis  highlighted              
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terms  such  as  defense  response  (GO:0006952).  The  genes  most  positively  loaded             

on  PC4  included  immune  activation  linked  genes.  Genes  that  were  found  to  drive               

PC5  included  mitochondrial  genes  and  apoptosis-linked  genes  such  as   CD93 .  This             

suggested  that  PC5  may  have  been  capturing  sample  quality.  As  much  of  the  data                

collected  for  this  analysis  was  from  publicly  available  sources  it  is  difficult  to  obtain                

information  regarding  the  quality  of  the  cells  that  are  used  in  the  analysis  prior  to                 

sequencing  (i.e.  ratio  of  live/dead  cells  prior  to  sequencing,  RIN  value  of  RNA)  and                

therefore   accurately   determining   what   may   have   been   driving   PC5   was   difficult.     

  

  

3.5   Differential   expression   between   cell   types   

  

3.5.1   Primary   microglia   vs   all   models     

Initially  I  used  differential  expression  (DE)  analysis,  using  the  DESeq2  package,  to              

compare  primary  microglia  to  all  the   in-vitro  model  systems  in  order  to  understand              

which  regulatory  mechanisms  and  programmes  were  not  well  captured  by  all  existing              

models.  Figure  3.8  shows  the  MA  plot  following  DE  analysis  comparing  primary              

microglia  to  all  other  model  systems.  I  used  this  analysis  to  curate  a  list  of  7297                  

genes  which  had  a  significantly  (p adj  <  0.05  and  a  LFC  >  1)  higher  expression  in                  

primary  microglia  than  any  of  the   in-vitro   model  systems.  I  shall  refer  to  this  gene  set                  

as  the  primary  microglia  marker  (PMM)  gene  set  throughout  the  remainder  of  this               

thesis.  The  PMM  gene  set  included  many  known  microglia  marker  genes  including:              

P2RY12  (p adj  =  5.73e -41  and  LFC  =  7.4),   CX3CR1  (p adj  =  4.23e- 27  and  LFC  =  6.4)  and                   

TMEM119  (p adj  =  9.05e -80  and  LFC  =  7.0).  As  well  as  including  microglial  cell  surface                 

markers,  the  list  of  genes  also  included  transcription  factors  such  as   SALL1  that  may                

need  to  be  switched  on  in  order  for  model  systems  to  move  closer  to  the  primary                  

phenotype.     

  

As  well  as  identifying  individual  genes  of  interest  in  the  PMM  gene  set,  I  also  ran                  

gene  set  enrichment  analysis  (GSEA)  on  the  PPM  genes  to  identify  molecular              

pathways  that  were  not  switched  on  in  the  model  systems.  Table  3.5  highlights  the                

top  10  enriched  terms  within  the  PMM  gene  set.  Many  of  the  enriched  terms  were                 
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linked  to  neuronal  signalling,  including  nervous  system  development  and  synaptic            

signalling.  This  suggests  that  many  of  the  signalling  processes  missing  from  the              

in-vitro   model  systems  studied  here  are  related  to  the  CNS  microenvironment  that              

microglia   are   normally   found   in.     

  

There  were  also  2686  genes  with  a  significantly  (p adj  <  0.05  and  a  LFC  >  1)  higher                   

expression  in  the   in-vitro  model  systems  compared  to  primary  microglia  (Figure  3.8),              

including  genes  such  as   POSTN  and   TTR .  GSEA  of  the  genes  highlighted  an               

enrichment  for  extracellular  matrix  terms  like  extracellular  matrix  organization           

(GO:0030198,  p adj  =  3.5e -27 )  and  extracellular  structure  organization  (GO:0043062,           

p adj    =   2.52e -25 ).   

  

  

Figure  3.8  MA  plot  following  differential  expression  analysis  comparing           

primary   microglia   to   all   other   cell   types   

Average  normalised  counts  of  individual  genes  plotted  against  Log 2 (fold  change)  in             

expression  when  comparing  primary  microglia  to  all  other  cell  types.  Points  coloured              

in  red  represent  genes  reaching  a  p adj   threshold  of  <  0.05  and  triangular  points  are                 

genes   were   the   Log 2 (fold   change)   falls   outside   the   limits   of   the   graph.     
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Table   3.5   Top   enriched   biological   process   terms   in   the   PMM   gene   set   

Statistical  enrichment  analysis  using  an  ordered  list  through  the  g:GOSt  programme             

of  g:Profiler  with  significance  determined  at  a  5%  FDR.  Ten  most  significantly              

enriched  biological  process  terms  for  genes  with  higher  expression  in  primary             

microglia   compared   to   all   model   systems.   

  

3.5.2   Primary   microglia   vs   individual   model   systems     

PCA  analysis  of  the  dataset  (section  3.4.1)  identified  cell  type  as  a  potential  factor                

driving  PC2  with  iPSC  derived  cells  sitting  as  an  intermediate  along  the  PC  between                

primary  microglia  and  cancer  models.  This  suggested  that  iPSC-derived  cells  may             

represent  a  closer  cell  type  to  primary  microglia  than  cancer  cell  models.  To  confirm                

this  theory,  I  ran  DE  comparing  primary  microglia  to  cancer  cell  models  and               

iPSC-derived  cells  individually  (Figure  3.9).  There  were  more  genes  with  significantly             

higher  expression  (p adj  <  0.05  and  a  LFC  >  1)  when  primary  microglia  were  compared                 

to  cancer  cell  models  than  when  compared  to  iPSC-derived  cells  (13996  and  6963               

respectively).  As  well  as  having  more  DE  genes  in  total,  the  average  Log 2 (fold               

change)  across  the  primary/cancer  cell  model  comparison  was  also  higher  than  the              

primary/iPSC-derived   comparison   (3.9   and   2.7   respectively).     
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Term   name   Term   ID   P adj   

nervous   system   development   GO:0007399  8.18e -29   

ion   transport   GO:0006811  8.80e -28   

trans-synaptic   signaling   GO:0099537  2.89e -26   

cell   adhesion   GO:0007155  7.66e -26   

anterograde   trans-synaptic   signaling   GO:0098916  7.66e -26   

chemical   synaptic   transmission   GO:0007268  7.66e -26   

biological   adhesion   GO:0022610  8.76e -26   

synaptic   signaling   GO:0099536  4.02e -25   

cell   development   GO:0048468  1.57e -24   

cation   transport   GO:0006812  2.04e -23   



  

  

Figure  3.9  MA  plots  comparing  primary  microglia  to  cancer  cell  lines  and             

iPSC-derived   cells  

Average  normalised  counts  of  individual  genes  plotted  against  Log 2 (fold  change)  in             

expression  when  comparing  primary  microglia  to  cancer  cell  models  (A)  or             

iPSC-derived  cells  (B).  Points  coloured  in  red  represent  genes  reaching  a  p adj              

threshold   of   <   0.05   (FDR).   

  

I  also  ran  GSEA  on  both  gene  lists  and  table  3.6  highlights  the  top  enriched  terms  on                   

genes  more  highly  expressed  in  primary  microglia  when  compared  to  cancer  cell              

models  and  iPSC-derived  cells  individually.  While  each  gene  list  identified  unique             

terms,  such  as  cell  adhesion  and  ion  transport,  neuronally  linked  terms  were  also               

present   in   both   GSEA.     

  

104   

Top   GO:BP   terms   for   primary   microglia   vs   
cancer   cell   models   

Top   GO:BP   terms   for   primary   microglia   
vs   iPSC-derived   cells   

Term   name   Term   ID   P adj   Term   name   Term   ID   P adj   

cell   adhesion   GO:0007155  1.17e -41   nervous   system   
development   

GO:0007399  6.03e -36   

biological   adhesion   GO:0022610  1.17e -41   trans-synaptic   
signaling   

GO:0099537  2.74e -28   

cell   communication   GO:0007154  1.50e -29   neurogenesis   GO:0022008  2.74e -28   

signaling   GO:0023052  2.92e -29   ion   transport   GO:0006811  5.21e -28   

regulation   of   
multicellular   organismal   

process   
GO:0051239  3.34e -29   chemical   synaptic   

transmission   
GO:0007268  5.21e -28   



  

Table  3.6  Significantly  enriched  biological  process  terms  for  genes  with            

significantly  higher  expression  in  primary  microglia  compared  to  individual           

model   systems.   

Statistical  enrichment  analysis  using  an  ordered  list  through  the  g:GOSt  programme             

of  g:Profiler  with  significance  determined  at  a  5%  FDR.  Ten  most  significantly              

enriched  biological  process  terms  for  genes  with  higher  expression  in  primary             

microglia   compared   to   cancer   cell   models   and   iPSC-derived   cells   individually.     

  

The  output  of  these  individual  DE  analyses  suggested  that,  when  looking  at  gene               

expression,  iPSC-derived  cells  were  transcriptionally  more  similar  to  primary           

microglia  than  cancer  cell  models  but  both  systems  still  lacked  the  CNS              

microenvironment   stimulus   identified   by   GSEA   on   the   PMM   gene   set.   

  

3.5.3   iPSC   macrophages   vs   iPSC   microglia   

Within  the  iPSC-derived  data  collected  for  this  study,  some  of  the  protocols  were               

developed  to  push  myeloid  progenitor  cells  towards  macrophages  whereas  others            

were  more  specifically  developed  to  move  the  progenitor  cells  closer  towards  primary              

microglia.  Next  I  compared  iPSC-derived  macrophages  and  iPSC-derived  microglia           

to  understand  whether  more  complex  microglia  differentiation  protocols  produce           

markedly  different  cells  to  standard  macrophage  differentiation  protocols.  It  should  be             

noted  that  for  this  differential  expression  analysis,  study  could  not  be  fitted  in  the                

differential  expression  model  (unlike  all  previous  analysis),  because,  for  this            

comparison,   study   was   confounded   with   cell   type.     
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system   development   GO:0048731  4.76e -28   

anterograde   
trans-synaptic   

signaling   
GO:0098916  5.21e -28   

nervous   system   
development   

GO:0007399  4.76e -28   synaptic   signaling   GO:0099536  5.89e -28   

anatomical   structure   
development   

GO:0048856  3.40e -26   generation   of   
neurons   

GO:0048699  3.21e -26   

regulation   of   signaling   GO:0023051  2.53e -25   cell   development   GO:0048468  7.51e -26   

multicellular   organismal   
process   

GO:0032501  9.23e -25   

multicellular   
organismal   

process   
GO:0032501  2.62e -25   



  

I  found  4975  genes  with  significantly  higher  expression  in  iPSC-derived  microglia             

and  5461  genes  that  had  higher  expression  in  iPSC-derived  macrophages  (p adj  <0.05              

and  LFC  >  1).  Genes  with  significantly  increased  expression  in  iPSC-derived             

microglia  were  enriched  for  ion  transport  terms  whereas  those  with  significantly             

increased  expression  in  iPSC-derived  macrophages  were  enriched  for          

developmental  terms  (Table  3.7).  As  I  wanted  to  understand  whether  specific             

microglia  differentiation  protocols  pushed  the  cell  model  systems  closer  to  the             

primary  cell  type,  I  compared  the  list  of  genes  more  highly  expressed  in  iPSC                

microglia  to  the  PMM  gene  set  described  in  section  3.5.1.  There  were  2,164  genes                

that  overlapped  between  the  two  lists,  approximately  30%  of  the  total  genes  in  the               

PMM  gene  set.  This  suggested  that  there  were  some  PMM  genes  that  were  also                

enriched  in  iPSC-derived  microglia  compared  to  their  macrophage  counterparts,           

potentially  highlighting  a  shift  closer  to  the  primary  phenotype.  These  genes  included              

some   known   microglia   marker   genes   such   as    P2RY12    and    CX3CR1 .   
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Top   GO:BP   terms   for   genes   with   
increased   expression   in   iPSC-derived   

macrophages   

Top   GO:BP   terms   for   genes   with   
increased   expression   in   iPSC-derived   

microglia   

Term   name   Term   ID   P adj   Term   name   Term   ID   P adj   

system   development  GO:0048731  7.76e -57   ion   transport   GO:0006811  1.32e -18  

multicellular   
organism   

development   
GO:0007275  1.43 e-52   cation   transport   GO:0006812  1.50e -16  

anatomical   structure   
development   

GO:0048856  3.86e -52   transmembrane   
transport   

GO:0055085  4.51e -15  

anatomical   structure   
morphogenesis   

GO:0009653  2.00e -50   regulation   of   ion   
transport   

GO:0043269  2.87e -14  

developmental   
process   

GO:0032502  1.63e -48   ion   transmembrane   
transport   

GO:0034220  3.80e -14  

multicellular   
organismal   process   

GO:0032501  6.86e -43   cation   transmembrane  
transport   

GO:0098655  6.01e -14  

cell   adhesion   GO:0007155  1.59e -39   metal   ion   transport   GO:0030001  3.56e -13  

biological   adhesion   GO:0022610  1.65e -39   

inorganic   ion   
transmembrane   

transport   
GO:0098660  1.33e -11  

animal   organ   
development   

GO:0048513  7.37e -38   regulation   of   biological  
quality   

GO:0065008  1.71e -11  



  

Table  3.7  Significantly  enriched  biological  process  terms  for  genes  with            

significantly  higher  expression  in  iPSC-derived  macrophages  or  microglia          

when   compared   to   each   other   

Statistical  enrichment  analysis  using  an  ordered  list  through  the  g:GOSt  programme             

of  g:Profiler  with  significance  determined  at  a  5%  FDR.  Ten  most  significantly              

enriched  biological  process  terms  for  genes  with  higher  expression  in  primary             

microglia   compared   to   cancer   cell   models   and   iPSC-derived   cells   individually.     

  

  

3.6   Expression   of   Alzheimer’s   disease   genes   across   model   systems   

  

One  common  use  of  the  scalable   in-vitro  cell  model  systems  is  to  study  the                

mechanism  of  action  of  individual  genes  and  how  perturbation  of  gene  expression              

may  impact  cell  function.  This  is  particularly  useful  when  trying  to  understand  how               

disease  risk  linked  genes  identified  by  genome  wide  association  studies  (GWAS)             

may  impact  cell  function  in  disease.  As  microglia  have  been  suggested  to  be  a                

pathological  cell  type  in  Alzheimer’s  disease  (AD) 1,31 ,  I  examined  the  level  of              

conservation  of  expression  of  known  or  suspected  AD  risk  genes  between  primary              

microglia   and   the   different   cellular   model   systems.   

  

3.6.1   Expression   of   known   Alzheimer’s   disease   genes   

I  first  looked  at  the  expression  of  three  genes  associated  with  familial  AD:   APP ,                

PSEN1  and   PSEN2 .  Figure  3.10  shows  expression  (DESeq2  normalised)  of  each  of              

the  three  genes  for  each  sample.  Expression  of  each  of  the  three  genes  was  not                 

significantly   increased   in   primary   microglia   compared   to    in-vitro    cell   models.   
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Figure   3.10   Expression   of   familial   AD   genes   by   cell   type   

DESeq2  normalised  expression  data  of  familial  AD  disease  genes,  samples            

separated   by   broad   cell   type.     

  

Next  I  examined  the  expression  of  genes  associated  with  late-onset  AD.  The              

strongest  signal  of  gene  association  with  AD  risk  is  the  APOE  region,  with  APOEε4                

associated  with  the  largest  risk  increase 123 .   APOE  was  significantly  more  highly             

expressed  in  primary  microglia  when  compared  to  all  other  model  systems  (p adj  =               

1.41e -10 ,  LFC  =  2.24)  Figure  3.11  A,  and  particularly  comparing  primary  microglia  to               

cancer  cell  lines  (p adj  =  1.96e -15 ,  LFC  =  4.42).   APOE  was  also  significantly  (p adj  =                 

3.03e -10 ,  LFC  =  2.1)  more  highly  expressed  in  iPSC-derived  microglia  than  in              

iPSC-derived  macrophages,  suggesting  that,  for  studying   APOE  function,  microglia           

rather   than   macrophage   differentiation   protocols   may   be   preferable.     

  

Rare  missense  variants  in   TREM2 251,252 ,   ABI3  and   PLCG2 130  have  all  been             

associated  with  increased  AD  risk,  and  have  suggested  immune  functions  .  There              
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was  no  significant  difference  in  expression  of   PLCG2  (Figure  3.14  B)  across  any  of                

the  cell  types.  Expression  of   TREM2  and   ABI3  (Figure  3.14  C  and  D  respectively)                

were  significantly  reduced  in  cancer  cell  lines  compared  to  primary  microglia  (p adj  =               

2.7e -8 ,  LFC  =  3.1  and  p adj  =  2.87e -128 ,  LFC  =  7  respectively).  However,  expression  in                 

iPSC-derived  cells  was  not  significantly  different  to  that  seen  in  primary  microglia              

and,  therefore,  iPSC  based  systems  could  be  used  as   in-vitro   models  for  studying  the                

effect   of   these   genes.     

  

Figure  3.11  Expression  of  late  onset  AD  rare  and  high  effect  size  genes  by  cell                 

type   

DESeq2  normalised  expression  data  of  late  onset  AD  disease  genes,  samples             

separated   by   broad   cell   type.     
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3.6.2   Expression   of   late   onset   Alzheimer’s   disease   linked   genes   

As  described  in  section  2.6.2  the  study  described  in  Chapter  2  of  this  thesis  was  part                  

of  a  large  collaborative  project  that  also  included  an  expression  quantitative  trait  loci               

(eQTL)  map  of  adult  primary  human  microglia(Young   et  al.  -  paper  in  preparation).               

The  identified  eQTLs  were  then  co-localised  with  variants  identified  from  AD  genome              

wide  association  studies  (GWAS)  to  identify  candidate  causal  AD  risk  genes  and              

variants.    

  

One  of  the  strongest  signals  of  colocalisation  we  identified  was  found  at  the   BIN1                

locus  that  appeared  to  be  driven  by  the  rs6733839  SNP  which  in  turn  perturbed  a                 

binding  site  for  the  transcription  factor  MEF2A.   BIN1  had  significantly  increased             

expression  in  primary  microglia  when  compared  to  all  model  systems  (p adj  =  8.03e -33               

and  LFC  =  3.18),  (Figure  3.12  A).  While  the  expression  of   MEF2A  (Figure  3.12  B)                 

was  not  significantly  different  when  primary  microglia  were  compared  to  the  model              

systems  collectively,  expression  of  the  gene  was  significantly  reduced  when  primary             

microglia  were  compared  to  cancer  cell  models  individually  (p adj  =  2.09e -13  and  LFC  =                

2.14).     

  

As  well  as  developing  our  understanding  of  the   BIN1  risk  loci,  the  eQTL/GWAS               

co-localisation  also  identified  other  potential  SNP-gene  links  at  AD  risk  loci  including:              

PTK2B ,   CASS4 ,   CD33  and   EPHA1-AS1  (Figure  3.12  C-F).  There  was  no  significant             

difference  in  expression  of   CD33 ,   PTK2B  or   EPHA1-AS1  when  comparing  primary             

microglia  and  the  model  systems  but  expression  of   CASS4  was  significantly             

increased  in  primary  cells  compared  to  all  other  model  systems(p adj  =  3.57e -14  and               

LFC   =   2.61).     

  

Table  3.8  summarises  the  DE  between  primary  microglia  and  cancer  cell  models  or               

iPSC-derived  cells  for  all  of  the  genes  described  in  this  section  (3.6)  as  well  as  other                  

genes  that  have  been  identified  as  the  “nearest  gene”  to  an  AD  risk  variant  in  more                  

than  one  GWAS  study  (see  Table  1.1  for  full  list  and  matching  subset  in  Table  2.11).                  

Of  the  30  AD  genes  identified,  70  %  had  a  statistically  similar  expression  in  at  least                  

one  model  system  compared  to  primary  microglia.  However,  for  9  individual  AD              
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genes  neither  cancer  cell  models  or  iPSC-derived  cells  accurately  captured  the             

expression   profile   of   primary   microglia   (p adj    <   0.05   and   LFC   >   1).   

  

  

Figure   3.12   Expression   of   late   onset   AD   risk   genes   

DESeq2  normalised  expression  data  of  late  onset  AD  disease  genes,  samples             

separated   by   broad   cell   type   
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Table  3.8  Comparison  of  AD  gene  expression  in  primary  microglia  and  model              

systems   
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Gene   name  
Is   expression   statistically   similar   in   primary   microglia   and   

cancer   cell   models?   iPSC-derived   cells?   

APP   Yes   Yes   

PSEN1   Yes   Yes   

PSEN2   Yes   Yes   

APOE*   No   No   

TREM2   No   Yes   

PLCG2   Yes   Yes   

ABI3   No   Yes   

BIN1*   No   No   

MEF2A   No   Yes   

CASS4*   No   No   

PTK2B   Yes   Yes   

CD33   Yes   Yes   

EPHA1-AS1  Yes   Yes   

CR1*   No   No   

CD2AP   Yes   Yes   

EPHA1   Yes   Yes   

MS4A6A   No   Yes   

PICALM   No   Yes   

ABCA7   Yes   Yes   

SORL1*   No   No   

SLC24A4*   No   No   

DSG2   Yes   Yes   

INPP5D*   No   No   

ZCWPW1   No   Yes   

FERMT2   Yes   Yes   

CLU*   No   No   

ADAM10   Yes   Yes   

KAT8   Yes   Yes   

ACE   Yes   Yes   

ECHDC3   No   No   



  

Summary  of  differential  expression  of  AD  genes  in  primary  microglia  when  compared              

to  cancer  cell  models  and  iPSC-derived  cells.  Statistical  differences  determined  by             

DESeq2  analysis  and  genes  with  an  p adj  <  0.05  and  LFC  >  1.  *  next  to  a  gene  name                     

highlights   genes   not   captured   by   either   of   the   model   systems   studied   here.   

  

  

3.7   Discussion   

  

In  this  chapter  I  used  publicly  available  RNA-sequencing  datasets  to  compare  the              

transcriptome  of  primary  human  microglia  to  a  variety  of   in-vitro   cell  models.  I               

obtained  raw  read  level  data  from  multiple  independent  studies  and  processed  them              

using  a  uniform  analysis  pipeline.  I  showed  that  even  with  the  uniform  alignment  and                

quantification  pipeline,  downstream  analysis  can  still  be  impacted  by  normalisation            

techniques.  The  normalisation  methods  studied  here,  Log 2 (TPM+1),  QN  and  VST,            

had  relatively  low  levels  of  overlap  when  identifying  the  top  500  most  variable  genes                

within  the  dataset,  with  less  than  250  genes  matching  across  all  three  methods.               

However,  PCA  using  the  top  500  most  variable  genes  resulted  in  broadly  similar               

sample  distribution  when  PC1  vs  PC2  scores  for  each  sample  were  plotted.  Variance              

components  analysis  revealed  that,  when  expression  at  all  genes  was  considered,             

study  was  the  major  driver  of  gene  expression  variation  illustrating  the  importance  of               

collecting   data   from   the   same   cell   type   across   multiple   experiments.     

  

Using  PCA  I  was  able  to  capture  interpretable  biological  signals  including  the              

completeness  of  iPSC  differentiation  across  PC1  and  the  differing  cell  types  along              

PC2.  Interestingly,  PC2  also  captured  a  separation  in  primary  microglia  samples  with              

cultured  primary  microglia  and  fetal  samples  having  lower  PC2  scores  than  fresh              

adult/pediatric  primary  cells.  It  appeared  that  along  this  PC,  these  cells  became  more               

transcriptionally  similar  to  iPSC-derived  cells.  Linking  PCs  with  biological  factors            

often  requires  prior  knowledge  of  sample  metadata  to  identify  drivers  of  variation  or               

technical  batch  effects.  However,  as  the  data  collected  for  this  study  was  mainly               

sourced  from  publicly  available  sources,  I  could  only  collect  metadata  provided             

alongside  the  samples.  The  amount  of  information  about  samples  varied  from  source              

to  source  meaning  there  may  have  been  technical  batch  effects  within  the  dataset               
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that  could  not  be  identified  and  so  the  driver  behind  each  PC  could  not  be                 

established.   

When  comparing  primary  microglia  to  all  the  model  systems  studied  here  many  of  the                

enriched  gene  sets  were  linked  to  neuronal  processes.  Previous  work  in  primary              

human  microglia,  has  shown  that  even  culturing  primary  cells  for  6  hours  following               

dissociation  of  brain  tissue  can  reduce  the  expression  of  specific  gene  patterns  in               

primary  cells 171 .  Many  of  the  genes  that  were  identified  as  part  of  the  environmentally                

linked  signature  described  in  primary  cells  including   TMEM119 ,   CX3CR1  and            

P2RY12 ,  were  also  identified  as  having  significantly  lower  expression  in  the  model              

systems  when  compared  to  primary  microglia.  This  environmental  signalling  may            

also  explain  the  separation  of  primary  microglia  samples  along  PC2,  with  cultured              

and  fetal  samples  lacking  the  cues  and  stimuli  from  the  developed  CNS  fully  capture                

the   microglia   specific   transcriptional   signature.     

  

Comparison  of  iPSC-derived  macrophages  to  iPSC-microglia  suggested  that  more           

specific  differentiation  protocols  pushed  differentiated  cells  closer  towards  the           

primary  phenotype  with  significantly  increased  expression  of  genes  such  as   P2RY12             

and   CX3CR1 .  However,  the  iPSC-microglia  still  did  not  fully  reflect  the  transcriptional              

signature  of  primary  cells,  and  expression  of  microglial-linked  TFs  such  as   SALL1              

was  lower  in  iPSC-derived  cells.  All  of  the  iPSC-derived  microglia  samples  used  here               

represent  monoculture  systems,  with  only  the  chemical  components  of  the            

differentiation  media  being  used  to  push  the  cells  towards  the  microglial  phenotype.              

However,  more  complex  differentiation  protocols  that  involve  culturing  microglia           

alongside  neurons  have  also  been  developed 198,200,202–206 .  These  culturing  systems           

should  more  closely  represent  the  brain  environment,  as  they  provide  both  the              

chemical  stimuli  and  contact  with  neurons  microglia  may  require  for  complete             

differentiation.  This  concept  is  explored  further  in  Chapter  4  of  this  thesis,  where  I                

have  used  bulk  and  single  cell  RNA-sequencing  of  co-culture  and  organoid  derived              

microglia,  from  a  previously  published  protocols 200 ,  to  look  at  how  neurons  influence              

microglial   gene   expression.     

  

As  microglia  are  thought  to  be  pathogenic  cells  in  Alzheimer’s  disease 31 ,  I  also  used                

this  dataset  to  compare  expression  of  disease  risk  genes  across  the  model  systems.               
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This  builds  on  extended  analysis  carried  out  on  the  primary  microglia  dataset              

described  in  Chapter  2,  in  which  it  has  been  shown  that  iPSC-derived  macrophages               

share  a  similar  genetic  architecture  to  primary  microglia(Young   et  al.  -  paper  in               

preparation).  In  the  analysis  carried  out  by  Dr  Natsuhiko  Kumasaka,  eQTL/GWAS             

co-localisations  identified  in  primary  microglia  were  replicated  in  iPSC-derived           

macrophages.  However,  as  demonstrated  this  does  not  always  translate  to  similar             

expression  levels  across  cell  types,  genes  such  as  BIN1 ,   APOE   and   CASS4  all  had                

significantly  higher  expression  in  primary  microglia  compared  to  the  iPSC  model             

systems.     
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