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The Transcriptional Profile of Microglia: from Brain to Dish

Fiona Elizabeth Calvert

Microglia are the tissue resident macrophages of the central nervous system (CNS)
and multiple lines of evidence indicate that microglia are a pathogenic cell type in
Alzheimer’s disease (AD). It is important to understand the transcriptional profiles of
microglia, both from primary human cells and the in-vitro model systems used to
study the cells at scale. In this thesis, | aim to build on previous small-scale studies of
primary microglia and in-vitro model systems to answer three major questions: 1.
Can transcriptional data from fresh, primary human microglia be used to identify
novel subpopulations of cells and understand how clinical phenotypes influence gene
expression? 2. How accurately do current simple in-vitro model systems of human
microglia capture the profile of primary human cells? 3. Do more complex model

systems move cultured cells further along a trajectory towards the primary cell type?

| have utilised RNA-sequencing technology to build the most comprehensive
transcriptional profile of primary human microglia to date, from over 100
neurosurgical patients. Using single-cell sequencing | have demonstrated that clinical
pathology, particularly major trauma, causes specific gene expression changes within
microglial transcriptomes. | have then shown that in-vitro models of primary microglia
have significantly reduced expression of key marker genes and transcription factors,
such as P2RY12 and SALL1, when compared to primary cells. Using gene-set
enrichment analysis tools, | have shown that many of the genes with higher
expression in primary cells can be linked to neuronal processes such as CNS
myelination. Data from the third chapter of this thesis identified the CNS environment
as a major stimulating factor in the gene expression profile of primary microglia.
Therefore, | used single cell analysis to understand how culturing stem cell derived
microglia in the presence of neurons could move in-vitro systems closer towards the
primary cell type. In summary, the work in this thesis has demonstrated that
microglial transcriptomes are constantly reacting to stimuli within the local CNS
environment, both to maintain their unique gene expression profiles and to respond
to clinical conditions. | have also shown that current in-vitro model systems do not
fully capture this transcriptional profile which largely appears to be driven by

environmental stimuli within the CNS.
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Chapter 1: Introduction

1.1 Identification and characterisation of microglial cells in the brain

Microglia are the tissue resident macrophages of the central nervous system (CNS)
and play an important role in it's immune defense'. Microglia were first described in
the early 1900s, as scientists began to use developing microscopy techniques to
study the brain. Santiago Ramén y Cajal, a Spanish neuroscientist famed for his
descriptions and images of the CNS, dedicated much of his research to the
non-neuronal cells within the brain, known as glial cells?3. Within this glial cell
population, Cajal identified the “third element” of the CNS describing the
non-neuronal, non-astrocytic population of cells he observed. Rio-Hortega divided
this “third element” into two subdivisions: microglia and interfascicular glia, now
known as oligodendrocytes?. Rio-Hortega observed that microglia were relatively
uniformly distributed in the brain, although noted a higher density in the grey matter,
and described the cells as highly dynamic, often adapting their morphology to the
features of the brain®. His later work focussed on microglial physiology following
trauma to the brain where he described the cells taking on an ameboid shape and

becoming highly phagocytic.

Since the early description of microglia, experimental tools have significantly
improved and it is now easier to identify and observe microglial cells in a variety of
systems, from primary cells across species to in-vitro models. Improved microscopy
techniques have confirmed Rio-Hortega’s initial observation that microglia have a
highly ramified morphology (Figure 1.1), with dynamic processes that constantly
survey the environment and maintain contact with neurons®. In-vivo time lapse
imaging using zebrafish has suggested that this motility is not a random process® and

that the cells are responding to ATP signals released from active neurons.
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Figure 1.1 Microscopy images of mouse (left), fetal human (middle) and
iPSC-derived microglia

Image taken from Muffat et al.%, Figure 3 panel b.

In addition to describing the characteristics of microglial cells, Rio-Hortega was the
first to theorise that microglia were of mesoderm origin’. For many years this theory
was overlooked and instead it was argued that the cells were derived from
neuro-ectoderm, along with other glial cell populations such as astrocytes®.
However, evidence began to build that supported Rio-Hortega’s original proposal:
microglia were shown to have similar morphological features to macrophages' and
were shown to express myeloid markers such as CD11b™. In mice, knockout (KO) of
the PU.1 gene, a key transcription factor (TF) in myeloid cell development, resulted in

an absence of microglial populations in the brain.

1.2 Lineage of microglial populations in the brain

It is now well recognised that the microglial cells first described by Rio-Hortega are
tissue resident macrophages of the CNS. While the myeloid origin of these cells is no
longer disputed, unique features of microglial development appear to distinguish
them from other macrophage cells both in their initial origin and maintenance

throughout adult life.

1.2.1 Microglial cell origin in embryonic development
Microglia-like cells have been identified in both rodent and human samples in the
very early stages of embryonic development'', suggesting they derive from a

lineage independent of bone marrow hematopoiesis. In human fetal development,
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Iba1+ (a myeloid cell marker) precursor cells have been observed in the developing
nervous system as early as 4.5 gestational weeks'®, while hematopoietic stem cells

don’t seed the fetal liver until around gestational week 5.

Dissociation of fetal tissue samples from mice provided the first evidence that
microglial progenitors are located in the yolk sac (YS) before moving into the
developing brain as embryogenesis progresses'. More recently, a fate-mapping
study has provided further evidence of the unique YS origin of microglial cells.
Fate-mapping relies on the ability to label cells from specific developmental origins
and trace them through the developmental process. In the case of microglia, yellow
fluorescent labelled protein (YFP) was linked to the RUNX1 TF, which is specific to
YS myeloid development. An estimated 32% of adult microglia cells were derived
from YS precursors compared to only 3% of circulating monocytes. Specific
erythro-myeloid progenitors within the mouse YS have since been identified'® and it
is these colony stimulating factor 1 receptor (CSF-1R) expressing-cells that appear to

give rise to tissue resident macrophages such as microglia.

Mouse models have also been used to identify the pathways and molecules that
regulate microglial differentiation from early progenitors. Myb is a TF which has
previously been shown to be dispensable for yolk sac myelopoiesis but necessary for
the creation of hematopoietic stem cells in the bone marrow. The initial production of
microglia cells has been shown to be a Myb independent process'®?, which further
adds to the evidence behind the YS origin of microglia. Other TFs, like PU.71 and
IRF8, as well as protein coding genes, such as MMP8 and MMP9, are required for
the development of mature microglial cells'®?'. The expression of CSF-1R by
progenitor cells and a functional circulatory system is also necessary for microglial

differentiation’’.

1.2.2 Maintenance of microglial populations throughout adulthood

The CNS has long been considered an “immune privileged” site, which limits immune
reactions in the brain??. This, in part, is due to the presence of the blood brain barrier
(BBB) that is thought to prevent circulating immune cells entering the brain. In most

other tissues, circulating monocytes provide a progenitor cell for expanding
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macrophage populations. It is known that even after the formation of the BBB, when
monocytes theoretically cannot enter the brain, the population of microglia in the
brain continues to grow with a large population surge two weeks after birth™. This
evidence suggests that microglial cells have expansion potential and can
self-maintain populations throughout adulthood. There are three proposed
mechanisms for this continued growth of microglial populations: i) microglia are in
fact replenished by circulating monocytes that cross the BBB, ii) there are
populations of microglial progenitor cells that are present in the brain throughout life

or iii) mature microglia themselves have the potential to proliferate.

Evidence for a significant contribution of circulating cells to the adult microglial
population is controversial. Consistent with this hypothesis, PU.7 KO mice lack any
embryonically-derived microglia, but develop microglia-like cells within their CNS
after receiving bone marrow transplants after birth?3. However, fate-mapping studies
have been used to demonstrate that up to 60% of microglia in adult mice are YS
derived® and sublethal irradiation of mice followed by healthy hematopoietic cell
transfer only gave rise to around 5% of donor derived microglia'’. Parabiotic mouse
models can be used to surgically join two mice and allow sharing of blood circulation,
providing a useful tool for researchers to study how circulating cells contribute to
certain populations?. If circulating monocytes contribute to the maintenance of
homeostatic levels of microglia, one would expect to see similar levels of non-host
cells in both the circulating system and the brain. However, multiple studies have
demonstrated that parabiotic mice maintain higher levels of host-linked microglia®>-’
suggesting that monocyte cells do not contribute to the adult microglial population
under normal conditions. It may be that under extreme conditions, such as a
complete absence of microglia, brain injury or following significant
neuroinflammation, circulating cells infiltrate the CNS. These cells may then
contribute to the population of microglia-like cells in the brain, but this does not

appear to be the case under homeostatic conditions'"2%28,

The second theory of microglial repopulation is that there are progenitor cells within
the brain that can differentiate into mature microglia. Following depletion of the

microglial population in the adult mouse brain, using CSF-1R inhibitors, it has been
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demonstrated that microglia rapidly repopulate the brain®. The rate of repopulation of
microglia described in this study (from 600 cells/slice to >14,000 cells/slice in 72
hours) was determined to be too quick for repopulation to be explained by surviving
cells. However, the presence of a progenitor population could explain these
observations. Within the same study a population of Nestin and Ki67 positive cells
were identified that appeared to be the source of repopulation. Initially, the nestin
positive population had a distinct morphology to resident microglia, but then adopted
the ramified morphology normally expected of native cells. However, since their initial
description, the presence of microglia progenitor cells in the brain has remained
controversial. Future studies have failed to identify a progenitor population®” and
noted that, while repopulating microglia may transiently express nestin, these cells
derived solely from surviving cells. This suggests that adult microglia have

proliferative potential and native cells are the driver behind population expansion.

1.3 Microglial function in development and the adult brain

There has been extensive research into the various roles microglia may play
throughout the lifespan (Figure 1.2 '*%%3). As macrophage cells, microglia can clearly
play an active role in the immune defense of the CNS. However, a growing body of
evidence has shown that microglia are required for both neuronal development and

normal brain function.

RUNX1*/c-Kit Microglia Phagocytosis
+ C' |+
PU.1, CSF-1R —
dependent differentiation
Synaptic
) 7| pruning
Yolk sac derived TMEM119*

Programmed cell
death

myeloid precursors \

Synaptic
plasticity

Figure 1.2 Overview of microglial development and function

A summary of microglial developmental pathways and functions in the healthy brain.
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1.3.1 The role of microglia in the developing brain

Research in both humans and mice has demonstrated that microglia play an
important role throughout brain development. Individuals with mutations in important
regulators of microglial function, such as the CSF-1R gene, have profound
neurological abnormalities® including abnormal arrangement of neurons and a lack
of corpus callosum development. Studies like this provide direct evidence from
human patients that microglial cells are required for normal brain development.
However, these small scale patient studies cannot provide mechanistic details and so

mouse models are often used as tools for studying microglia in development.

At the cellular level, microglia are able to phagocytose the early pool of neural
precursor cells in order to control neurogenesis®**. Studies have demonstrated that
microglia play other important roles in brain development beyond their phagocytic
function. Experimental evidence supports the idea that microglia provide trophic
support to developing neurons in layer V cortical neurons in mice®. The cells
accumulated close to the projection axons and, via a CX3CR1 dependent
mechanism, produced IGF1 that maintained neuronal survival. Alongside trophic
support for developing neurons microglial signalling has been shown to function in
the programmed cell death of neurons. In the development of murine retina,
prevention of microglial colonization of the tissue alleviated the production of nerve
growth factor (NGF) and significantly reduced the level of normal programmed cell
death. More recent studies in both mouse Purkinje cells*® and neurons in the mouse
hippocampus*®® have implicated superoxide ions produced by microglia, through a
CD11b/DAP12 dependent signalling pathway, in programmed cell death. Outside of
their direct interactions with neurons, microglia also appear to be important for
functional vasculature development in-vivo and, in the in-vitro based aortic ring

model, addition of microglia cells to the culture stimulated vessel sprouting®’.

While the studies described above provide some evidence of the potential impact of
microglia on neuronal development, one of the most well established and recognised
functions of the cells in the developing brain is within the process of synaptic pruning.

Synaptic pruning systematically removes weaker neurons and synaptic connections
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to strengthen and improve the efficiency of the remaining connections within the
brain. Experiments have shown that microglia closely co-localise to synaptic
connections during active periods of pruning** and lysosomal markers have been
used to highlight active engulfment of synaptic material*>**. Schafer et al.*’ studied
microglia engulfment of synapses within mouse retinal ganglions and demonstrated
that the cells preferentially digested “weaker” synaptic regions further supporting
microglial involvement in the synaptic pruning process. Other studies have since
established that the active engulfment of synapses by microglia is dependent on the
activation of the classical complement cascade*?*4*5, Disruptions of the CR3/C3
signaling cascade have been shown to cause deficits in synaptic connectivity*? and
C1g KO mice also have large disruptions in synapse elimination*. It is thought that
complement protein tagged neurons provide the signal for phagocytosis by

microglia**.

1.3.2 Microglia in adulthood

Under normal conditions the brain is considered an “immune privileged” site, with the
blood brain barrier (BBB) acting as a source of protection from infiltrating pathogens.
While microglia may not have major immune functions under homeostatic conditions
in the adult brain, it does not mean they remain inactive until disease or disruption
occurs. Microglia are known to have a variety of homeostatic functions including
phagocytosis of debris within the brain and monitoring of neuronal activity'. Many of
the identified functions of microglial cells have been linked to CX3CR1 signalling.
CX3CR1 is a receptor that is selectively expressed by microglia within the brain,

which interacts with CX3CL1 ligand produced by neurons?.

Recent evidence has also shown that microglia are important in the process of
learning and memory in adults*°. Learning and memory occur through the
strengthening of synaptic and neuronal connections via processes of synaptic
plasticity and long-term potentiation (LTP). CX3CR1 KO mice have an impairment in
measurable LTP alongside significant deficits in behavioural learning tests like fear
conditioning and the Morris Water Maze*’. ATP released by microglia in mice
appears to modulate synaptic transmission by acting on P2X, and adenosine A1

receptors®®. Using a selective eye closure mouse model, Sipe et al.** demonstrated
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that microglia actively contribute to experience dependent plasticity through P2RY12

signalling.

There is also some evidence that external environmental factors can modulate
microglial function. For instance, a high fat diet appeared to increase the number of
microglia present within the hypothalamic region and was accompanied by an
increased anti-inflammatory phenotype®. Obese humans studied within the same
paper also showed cell type specific differences, including microglial dystrophy.
Germ-free mice have also been used to study the impact of microbiome variation on
microglial function®'; without manipulation the mice showed global microglial defects
including an immature phenotype and an impaired innate immune response.
Recolonisation of germ-free mice partially restores microglia function, suggesting the
influence of the gut microbiome on the brain is a dynamic process. However, these
studies often do not provide evidence of specific molecular mechanisms that may
drive these effects. Therefore, further research would need to be carried out to fully

develop the scientific theories.

1.4 Microglia and disease

As the only major population of immune cells within the brain, microglia act as a first
line of defence against infiltrating pathogens and are responsible for the clearance of
cellular debris. However, microglia can also play a role in the development and
progression of many disorders not immediately thought of as immune related '3'%2,
When discussing microglia and disease it is important to distinguish between
examples where microglia appear to play a causal role and those where the cells
react to disease onset. The most well established causal link between microglial
function and disease is Alzheimer’s disease (AD) and as such this is discussed in
more detail in section 1.5. The remainder of this section describes the evidence
linking microglial function to a variety of other disorders and how the cells are

involved in onset and progression.
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1.4.1 Microglia in traumatic brain injury

Traumatic brain injury (TBI) is defined as “an alteration in brain function, or other
evidence of brain pathology, caused by an external force”® and can often be further
subdivided depending on the severity or outcome of the injury. As reactive immune
cells within the brain, in the immediate aftermath of TBI microglial processes move
rapidly to the site of injury, within minutes of damage®*. Here, their primary function is
to prevent disruption to the blood brain barrier®*¢. Release of ATP from damaged
tissue is thought to signal to microglia and stimulate the rapid movement of
processes to the injury site, often without the movement of the cell body®*. In mice it
appears that microglial processes form specific honeycomb structures with
single-process microglia dispersed throughout to assist with the sealing of the BBB*°.
A rapid increase in myeloid cell numbers occurs immediately in mice and can
continue for up to four days®’. Studies in human post-mortem brain samples have
shown that the neuroinflammatory response that follows TBI can persist for months

following injury®®.

TBI often has long term consequences including a potential increased risk of
neurodegenerative  disorders'**®, Meta analysis from 32 independent
epidemiological studies, totalling “2,013,197 individuals, 13,866 dementia events and
8,166 AD events”, showed TBI increased the risk of any form of dementia by 1.6
times, with individuals showing a 1.5 times higher risk for AD specifically®*. Many of
the proteins associated with neurodegeneration have been shown to accumulate in
the brain following TBI, including amyloid beta®®¢ tau®® and a-synuclein®’. Chronic
traumatic encephalopathy (CTE), a neurodegenerative disorder characterised by the
accumulation of hyperphosphorylated tau, has specifically been linked to consistent

and repeated brain trauma®®,

Research into the molecular pathways that may drive this connection has suggested
that chronic neuroinflammation driven by microglial responses may be responsible
for the long term neurodegeneration risk associated with TBI®*®®. Human brain
autopsy samples from patients who have previously experienced a TBI have densely

packed, reactive microglia that are not observed within aged matched control

25



samples™. The presence of these reactive microglia also appears to correlate with
white matter degeneration, although only observational correlations were provided
within this study. While some studies suggest that prolonged activation of microglia
has a harmful impact on cognitive function there is also conflicting evidence that
microglia may have a neuroprotective effect following TBI®®. For instance, in a small
randomised control study, TBI patients treated with the antibiotic minocycline showed
a reduction in microglial activation but an increase in neurodegeneration compared to
those patients not given the drug”. As well as the conflicting nature of some of the
evidence around long-term microglial involvement in TBI, it should also be noted that
neither side of the argument provides conclusive proof that microglia functions are

driving the potential link between TBI and neurodegeneration.

The epidemiological studies linking TBI to dementia risk can also be difficult to
interpret for a variety of reasons including misclassification of neurodegeneration and
a lack of official clinical information®. It may also be that the link observed between
TBI and AD could be driven by hidden factors that increase the risk of both AD and
TBI without a causal link between the two. This means further work needs to be
carried out on more controlled patient groups in order to fully understand the impact
of TBI on dementia risk. It would also be worth building our understanding of how
genetic risk factors can impact both TBI outcome and dementia risk. For instance,
variants in the APOE gene linked to AD risk have been shown to impact TBI

outcomes’? but the interplay between the two is poorly understood.

1.4.2 Microglia in Multiple Sclerosis

Multiple sclerosis (MS) is a chronic neurological condition that is classified as both a
neurodegenerative and autoimmune disorder. The immune system begins to attack
the myelin sheath that surrounds neurons in the brain which leads to a multitude of
symptoms including muscle weakness and coordination deficits. T-cells, primed to
recognise myelin as forgien, are the driving immune cell type behind the

development of MS.

While microglia are not associated with the onset of MS, the cells are present in the

characteristic brain lesions of MS patients”"* and have been shown to be found near
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to degenerating neurons in the brain™. The presence of the cells within diseased
regions and their clear involvement in the immune response in the brain provides
some evidence that microglia are involved in disease progression. However, as seen
in TBI, different studies report opposing impacts of microglia function: either
suggesting they further the progression of MS or that microglia play a neuroprotective

role.

Production of reactive oxygen species (ROS) has been implicated in a variety of
processes in MS 7 and microglia are often thought of as the major source of ROS
within the brain. Microglia within the brain have been shown to express
myeloperoxidase (MPO) and generate ROS as part of the myelin phagocytosis
process’®. Expression of MPO also significantly increased in MS patients compared
to controls, with the highest level of expression seen in myeloid cells closest to lesion
sites. The concept that microglia are the major source of ROS within MS has been
further backed-up by more recent experimental data’” and is thought to be due to
Nox2 dependent oxidative burst. Microglia have also been shown to modulate
neuronal activity in MS, further adding to described symptoms of the condition. In the
Experimental Autoimmune Encephalomyelitis (EAE) mouse model of MS, activated
microglia have been shown to release TNFa’® which can in turn lead to enhanced

glutamate function and synaptic degeneration.

On the other hand, a growing body of evidence has linked microglial function to
protective disease processes, particularly remyelination”®. CX3CR1 KO mice, which
have altered microglial functions, had a significantly reduced clearance of myelin
debris in the EAE model which prevented remyelination”. It is also thought that
anti-inflammatory microglia can aid the oligodendrocyte differentiation that is required

for the remyelination process®.

1.4.3 Microglial response in other neurological disorders

As the reactive immune cells within the brain, microglia have also been shown to
respond to a variety of other neurological disorders, even though they may not play a
causal role in the development of the disease. For instance, autism patients have

increased microglia cell numbers when compared with healthy controls®’ and have
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increased inflammatory profiles within the cerebrospinal fluid, including increased
expression of macrophage chemoattractant protein (MCP)-1%2. Microglia in autistic
individuals may also be morphologically distinct. Morgan et al.®® described a
reduction in the number and length of distinctive microglial processes within the
postmortem tissue from 13 male individuals with autism. Positron emission
tomography (PET) scanning has revealed increased levels of microglial activation in
autistic brains when compared to healthy controls®. Transcriptional profiling of brain
tissue from autism patients has highlighted an increased expression of type 1
interferon genes compared to controls®® and an enrichment of immune module genes
within patient samples®. However, the genes linked to this immune module showed
no enrichment for autism genome-wide association study (GWAS) genes. The lack of
enrichment of immune genes within autism GWAS studies implies that the microglial

response seen in patients is reactive rather than causal.

Microglia have also been linked to the symptoms associated with neuropathic
pain®'¥78 g chronic and debilitating pain caused by trauma, infection or pathology
explicitly linked to peripheral nerve damage. As well as chronic pain symptoms,
neuropathic pain also causes tactile allodynia: a disorder when pain hypersensitivity
can be caused by what would normally be considered innocuous stimuli. While
microglia are not involved in the initial pain stimuli or signalling, they have been
shown to react to nerve damage associated with the disorder. Following initial
peripheral injury there is marked neuroinflammation, microglial proliferation 8% and
increased surveillance °' by microglia. Crosstalk between neurons and microglia,
through the CSF-1R signalling pathway, has also been linked to the onset of pain
hypersensitivity®2. Deletion of the CSF1 gene from sensory neurons, which inhibits
production of the signalling molecule, reduced pain hypersensitivity and microglial

activation in mice.

1.5 Alzheimer’s disease and microglia

Alzheimer’s disease (AD) is the most common cause of dementia, a disease that

affects around 850,000 people in the UK. Symptoms include progressive memory
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loss and a reduction in general cognitive function. AD is also characterised by a
general loss of neuronal mass. AD was first described by Dr. Alois Alzheimer in the
early 1900s 3% where he noted plaques and tangles in patient autopsy samples that
are now classically associated with AD pathology. AD is now clinically often split into
two distinct categories: familial (early onset) and late onset AD (LOAD). It is thought
that early onset AD makes up approximately 5% of all diagnosis’ with this branch of
the neurodegenerative disorder thought to be highly heritable®. Appearance of early
onset AD symptoms often occur in patients in their 30s or 40s but are grouped up
until the age of 65. Those that appear to sporadically develop symptoms after the

age of 65, which is the more common condition, are classified as LOAD patients.

1.5.1 Early hypotheses in Alzheimer’s disease research

The first major AD hypothesis focussed on the loss of cholinergic neurons within the
brain®. Evidence of reduced acetylcholine release and its links with learning and
memory further added to the theory®”. The cholinergic hypothesis was the driver
behind major pharmaceutical developments in AD treatments including the
cholinesterase inhibitors that are still used in therapy today. However, since their
approval as AD therapies, the cholinergic based treatments have appeared to only
provide symptomatic relief with little to no effect on the progression of AD%. These
observations suggest the specific loss of cholinergic neurons may not be driving the

progression of the disease.

As understanding of the pathology of AD developed, the amyloid cascade hypothesis
became the prevailing pathological theory. The amyloid cascade hypothesis states
that it is the formation of the plaque like structures, seen within AD patient brains,
that are the molecular drivers of the disease. It is now well accepted that the plaques
first described by Alois Alzheimer are made up of aggregated amyloid protein (AB),
specifically AB-42, and neurofibrillary tangles are composed of hyperphosphorylated
tau. Hardy and Higgins were the first to coin the “amyloid cascade hypothesis” *® and
put forward the theory that the accumulation of plaques in the brain was the initiating
stimulus that led to neuronal loss and the appearance of tau tangles. Since its
development, amyloid and its role in the disease has been a major focus of AD

research.
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The earliest evidence implicating amyloid in AD came from studies of familial AD.
Mutations within the amyloid precursor protein (APP) gene'®'' and within the
presenilin genes PSEN1 and PSEN2'"-'% cause familial AD. APP, PSEN1 and
PSEN2 are all involved in the production of the toxic AB-42 protein that forms the
major component of plaques. The APP protein can be cleaved in different ways that
lead to the production of a variety of forms of amyloid beta. It is thought that
mutations associated with familial AD cause a bias towards the cleavage mechanism
that generates the toxic AB-42. Further support came from early onset of AD in
patients with Down’s syndrome, who have three copies of the APP gene'®. While
mice do not spontaneously develop AD-like pathology or symptomatology as they
age, APP and PSEN mutant mice have been shown to develop cognitive deficits,

amyloid accumulation and synaptic loss'®.

Since the initial description of the amyloid cascade hypothesis, large bodies of
research using a variety of molecular tools have been used to demonstrate that
various forms of AB can initiate symptoms of AD''%. For instance: in rat
hippocampal cultures the addition of aggregated AR is neurotoxic'®’, APP transgenic
mice have increased levels of AB oligomers and the same miceshow significant
cognitive impairment compared to controls'®. In mouse models of AD disrupting the
amyloid pathway can result in a reversal of many of the cognitive phenotypes seen in

the mice'%®'°,

The growing evidence from in-vitro and in-vivo studies led to a push for drugs
targeting the amyloid pathway. However, the amyloid cascade hypothesis is not
without controversy ™12 Qne of the most significant problems with the theory that
amyloid is the driver behind AD pathology is the repeated failure of anti-amyloid
therapies in clinical trials'. These therapies fall into two broad categories: direct
reduction of AB through antibody-style therapies and targeting of enzymes involved in
the production of amyloid, such as BACE and y-secretase. Many of the drugs
targeting the enzymatic pathways have failed in clinical trials, either due to lack of

efficacy’ or significant off-target effects''®'6,
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Despite the initial clinical safety failings of immunotherapies targeting AB'"’, multiple
therapies reached phase Il and lll trials'*. However, the majority of these compounds
have also dropped out of trials due to the failure to meet clinical endpoints'3. In 2014,
data was published from phase lll trials of the anti-AB monoclonal antibody
Bapineuzumab in which patients on the drug showed no significant improvement in
AD-linked cognitive function compared to the placebo group™®. The failure of
Bapineuzumab in phase lll trials came despite evidence from earlier phase |l studies
that long term treatment with the drug significantly reduced cortical amyloid fibrillar

load™"®.

The fact that immunotherapies targeting the amyloid pathway appear not to halt
disease development despite reductions in amyloid load, has led to suggestions that
targeting amyloid is the wrong strategy since it is not driving AD progression'3120_ |t
is worth noting, however, that in late 2019 pharmaceutical company Biogen
announced that they were seeking FDA approval for their anti-Af antibody despite
earlier failure of the drug in trials'*'. The repeated failure of AD modifying drugs in
clinical trials leads to questions not just about the validity of the targets but also
practical factors about how trials are carried out'® including whether patients are
targeted for treatment too late in disease progression. There are also questions
around the sensitivity of the major cognitive test used in AD clinical trials, the
Alzheimer’'s Disease Assessment Scale—Cognitive Subscale (ADAS-cogs),

particularly in the early mild stages of disease'®.

1.5.2 Alzheimer’s disease genetics and the neuroinflammation hypothesis

Although the amyloid cascade hypothesis has driven a large part of AD research, it is
important to remember that the theory was founded on the genetics of early onset,
familial, AD. The genetics behind LOAD is more complex and heterogeneous, not
driven by single mutations in disease linked genes but by large numbers of variants

of individually small effect sizes.

One of the first major genetic risk factors that was identified in LOAD is the APOE
gene, a protein involved in cholesterol transport'®'2  Specifically it has been

demonstrated that the €4 allele significantly increases AD risk, while the €2 allele
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confers a protective effect compared to the other alleles'®. Early studies of the
genetic risk factors for LOAD were carried out in relatively small patient numbers.
This only allowed for the identification of single nucleotide polymorphisms (SNPs)
which conferred relatively large increases in risk, such as APOE, or those within
small targeted gene sets identified before analysis, such as SORL7?°. However,
genome-wide association studies (GWAS) have generated large scale datasets from
case/control comparisons that can detect small effect size genetic links to complex

disorders including AD'%,

While activation of the immune system, particularly microglia, was known to occur in
AD as part of normal pathology'®'?°, for many years this was thought to be a
downstream effect of the disease. The results of AD GWAS provided the first
indication that the innate immune system may have a causal role in the development
of AD. ldentification of SNPs near genes such as CD33, CR1 and MS4A6A, which
are classically considered immune related, suggests some role for the immune
system within the disease. The identification of rare missense variants in genes, such
as TREM2, ABI3 and PLCG2, which are highly expressed in immune cells™ has
provided further evidence for the neuroinflammation theory. Table 1.1 lists the risk

alleles identified in AD GWAS studies and the nearest gene to each SNP.

Lead SNP  Nearest gene Publications
rs3851179 PICALM 131-134
rs10792832 135-137
rs11136000 131-133,138
rs9331896 CLU 134-136
rs4236673 137
rs3818361 132,139
rs6656401 CR1 135-138
rs4844610 134
rs744373 133,139
rs6733839 BIN1 134-136
rs4663105 137
rs3764650 ABCA7 139
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rs4147929
rs3752246
rs111278892
rs610932
rs983392
rs2081545
rs10948363
rs9473117
rs9381563
rs11771145
rs10808026
rs7810606
rs3865444
rs28834970
rs73223431

rs11218343

rs10498633
rs12881735
rs12590654
rs8093731
rs35349669
rs10933431
rs1476679
rs1859788
rs17125924
rs7274581
rs6024870
rs6014724
rs593742
rs442495
rs889555
rs59735493
rs138190086
rs12444183
rs75932628

MS4A6A

CD2AP

EPHA1

CD33

PTK2B

SORL1

SLC24A4

DSG2/SUZ12P1

INPP5D

ZCWPW1

FERMT?2

CASS4

ADAM10

BCKDK/KATS

ACE
PLCG2*

TREM2*

135,136
134

137

139
135,136
137
135,136
134

137
135,136
134

137
135-137
135,136

134
134-137

135,136
134

137
135,137
135,136
134,137
135,136
137
134-136
135,136
134

137

136

137

136

137
134,136
136

134
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rs187370608

137

rs7920721 134
ECHDC3

rs11257238 137

rs28394864 ABI3* 137

rs179943 ATXN1 140

rs3826656 NT_011109.848

140

rs2049161 BC040718 140
rs597668 EXOC3L2 133
rs670139 MS4A4E 139
rs190982 MEF2C 135

rs2718058 NMES8 135

rs10838725 CELF1 135

rs9381040 TREML2 136

rs59685680 SPPL2A 136
rs4985556 IL-34 136
rs3740688 SPI1 134
rs7933202 MS4A2 134
rs4575098 ADAMTS4 137
rs184384746 HSEX1 137

rs6448453 CLNK 137
rs114360492 CNTNAP2 137
rs117618017 APH1B 137
rs113260531 SCIMP 137

rs2632516  BZRAP1-AS1
rs76726049 ALPK2 137
rs76320948 AC074212.3 ¥

Table 1.1 Summary of reported AD GWAS hits
Lead SNPs and nearest genes identified in AD GWAS studies. Certain loci have
differing lead SNPs identified by studies but are grouped by nearest gene. Loci with a

* next to the gene name have previously been identified in rare variant studies.

The results of GWAS studies displayed here provide summaries of each locus,
highlighting only the most associated SNP and the nearest gene to that SNP for each
region. Linkage-disequilibrium (LD) within the human genome is a terminology that

describes certain SNPs within a region that are found to be more associated with
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each other than would be expected if they were inherited randomly. This means there
are often multiple SNPs within a region in strong association with the “lead” SNP
identified in a GWAS. It is, therefore, not possible to tell from standard GWAS
analysis which of these SNPs is causal. Additionally, because disease associated
variants are noncoding, there are many genes within a specific window of the
associated SNPs that could be impacted by the variant. This means that it is also not
possible to tell exactly which gene, and downstream signalling pathways, may be

linked to disease risk.

To address these problems, methods to combine GWAS data with functional data,
including transcriptomics (expression quantitative trait loci (eQTL) maps) and open
chromatin assays (chromatin accessibility quantitative trait loci (caQTL) maps). It is
then possible to run co-localisation analysis to identify variants affecting both disease
risk and a functional output have been developed. Computation tools also provide
methods to extend traditional GWAS analysis. For instance, GoShifter'*" prioritises
functional annotations to identify causal variants by finding SNP enrichments in

annotated regions.

In the case of AD, these combination approaches have further linked the immune
system to disease risk. For instance, when eQTL maps of monocytes and T cells
were colocalized with GWAS summary statistics from a variety of complex traits,
significant co-localisations with AD GWAS SNPs were only identified within the
monocyte eQTL map™2. While this implied that the myeloid cell lineage of the
immune system may be driving the neuroinflammatory component of AD, it did not
fully rule out a role for neurons themselves. Integrative analysis of published GWAS
summary statistics and whole-brain single cell RNA-sequencing data shows a
significant enrichment of AD GWAS signal within the specific gene expression pattern
of microglial cells, while no enrichment was seen in neurons™?. AD risk SNPs are
also significantly enriched in regions of open chromatin in myeloid cells, including
microglia, but not in whole brain chromatin accessibility data'*. Although AD genetics
studies have now identified multiple risk loci these have not yet provided direct

information on the biological role of microglia in neurodegeneration.
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1.5.3 The role of microglia in Alzheimer’s disease

Genetic studies have spurred a resurgence of research into how microglial function
changes during AD. When Alois Alzheimer first described the brain pathology of AD,
in addition to identifying amyloid plaques and tau tangles, he also observed
alterations in the glia surrounding these abnormal proteins, including the
development of “fibers” and “adipose saccules™?. Since this initial description, there
has been a growing body of research that focuses on microglial involvement in AD.
This has provided evidence that often falls into one of two categories: that promoting
microglial activity will be beneficial in AD or that a reduction in activity will slow AD
progression. However, these two ideas may not be mutually exclusive in that certain

processes may be both beneficial or harmful depending on the context.

Microglial phagocytosis is a good example of the above phenomenon. Initially,
research focussed on microglial phagocytosis of amyloid plaques within the
brain'214%14¢ "in part due to the observed physical association of microglia with the
plaques. It has been suggested that microglial recruitment to plaque sites promotes
phagocytosis and lowers plaque burden'’. However, as the disease progresses the
phagocytic capability of microglia reduces’™? and in fact the cytokines produced by
the process are part of a negative feedback loop that reduces phagocytosis'’. The
evidence from these mouse studies implies that promoting microglial phagocytosis
could be a viable therapeutic target as it reduced amyloid load. However, selective
reduction in microglial populations in an AD mouse model may reduce neuronal loss
without impacting amyloid load'® which suggests microglial phagocytosis of amyloid
is not necessarily required for the reversal of AD symptoms. In fact, microglial
phagocytosis, via a complement dependent mechanism, has since been linked to
excessive engulfment of healthy synapses’®. This means that increasing microglial

phagocytic capabilities may in turn lead to further neuronal loss.

Outside of phagocytosis, microglia have been linked to a variety of other molecular
processes in AD. For instance CSF-1R inhibition in the 5XFAD mouse model of AD
has been shown to significantly reduce the seeding of plaques within the brain'"'%2,
although AB accumulation still appears in cortical blood vessels. Other work suggests

that microglia may form a barrier around developing plaques which reduces further
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accumulation of AB™®. In tauopathy mouse models, microglia aid the propagation of

tau across the brain via the secretion of previously phagocytosed tau in exosomes'.

Further insights into microglial functions in AD have come from studying mutations
identified by GWAS. For example, multiple studies have functionally characterised
mutations in TREM2'°*7%%_ Triggering receptor expressed on myeloid cells 2 (TREM2)
is a receptor that signals through a TYROBP/DAP12 dependent mechanism to
activate a variety of signalling pathways and downstream functions, such as
phagocytosis and chemotaxis'®. A variety of approaches have shown that
disease-associated missense mutations in TREMZ2 can alter microglial phagocytosis,
survival and proliferation'™®. The soluble form of TREM2, produced following
cleavage of the receptor, has also been implicated in AD'""~">°. There is evidence that
TREM2 may function in conjunction with other GWAS risk genes during AD including
APQE'0076" CD33%2 and MS4A™3,

Alternative experimental approaches have examined how microglial functions change
in AD patients compared to age matched healthy controls, particularly at the level of
gene expression. In mice, two studies have identified microglial populations that only
appear in diseased states'®'®® and identify a loss of homeostatic gene expression
(P2RY12, CX3CR1 and TMEM119) alongside an increase in inflammatory markers
such as AXL, CLEC7A and CST7. Additionally, activation of TREMZ2 signalling
pathways were required for the formation of this disease associated subtype of
microglia cells in mice. In human samples, single cell analysis of AD post-mortem
brain samples also identified a disease specific population of microglial cells'®. Like
the populations identified in mice, these cells had increased expression of genes like
SPP1 and APOE. The disease specific microglia also showed an increased
expression of HLA and complement linked genes, compared to non-disease linked

microglia.

In summary, it is clear that microglia play a significant role in how our brains function
in health and disease but exactly how microglial processes change in disease and
precisely how to target the same pathways in treatments remains unclear. Much of

this complexity often arises because microglia seem to play both detrimental and
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beneficial roles in many diseases depending on the stage, activation pattern or model

system being studied.

1.6 Studying human microglia

While significant advances have been made in microglial research, many of the
studies that have been used to understand microglia function in health and disease
have been carried out in mice. Mouse models are an invaluable tool, enabling large
scale studies, manipulation of the cells and providing a way to study microglia
throughout the lifespan of an organism. However, studies in mice are not without
limitations and controversies'®"%°, There are significant differences in the
fundamental functions of microglia in mice and humans, including differences in
marker expression, such as IFNy and TLR4, and differences in response to
pharmacological compounds. In mouse models of AD, microglia are often described
as taking on an activated phenotype while in human autopsy samples the cells
appear to degenerate with age, often referred to as dystrophic or senescent'®. This

can lead to opposing theories about the role microglia play in disease.

However, primary human microglia are extremely difficult to source and come with
experimental caveats. Many commercially available human microglia sources are
fetal samples which may behave differently to fully developed microglia. Additionally,
commercially available cells are often cultured which can impact microglial

expression'’".

Protocols for accessing human adult microglia cells from both
post-mortem and surgical tissues have been refined and appear to yield relatively
pure samples'?'", Although isolated human microglia may have high purity, there
are multiple experimental factors to consider when using these cells. Even small
periods of culturing can alter the profile of human microglia’'7° and little is known
about how the isolation protocols (dissociation and cell marker expression based
sorting) may impact microglial profiles. Small scale microarray analysis of sorted
murine mammary glands has suggested that fluorescence activated cell sorting

(FACS) has minimal impact on gene expression'’®. However, full comparisons have
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not been carried out to understand how FACS sorting may impact immune cell

expression, particularly microglia.

While it is possible to isolate fresh primary adult human microglia from neurosurgical
patients, in order to study microglia from healthy individuals, samples must be
acquired from post-mortem tissue. As microglial phenotypes have been shown to be
heavily dependent on the active neuronal environment'”", it is therefore difficult to
know how much post-mortem delay impacts microglia. A study comparing isolated
microglia from brains with differing lengths of post-mortem delay demonstrated that
disease state had a greater impact on microglia than the time between death and
collection'. However, it is difficult to directly compare fresh microglia to post-mortem
samples while controlling for confounding factors. Therefore, it is impossible to

definitively know the impact of post-mortem collection on microglial phenotype.

1.6.1 Transcriptomic studies in primary human microglia

RNA-sequencing technology enables the study of the whole transcriptome of cells
and whole tissues. Statistical analysis of the resulting data can be used to compare
the transcriptional profiles of samples across a variety of conditions. As isolation
protocols for human primary microglia have improved RNA-sequencing has become
widely used to understand differing aspects of microglia. This includes comparisons
between human and mouse samples'”", identifying microglia-specific marker
genes'’"'8 comparison of transcriptomes across ages'’®, highlighting region and
disease specific changes in gene expression™ and understanding the role

environment plays in microglial gene expression'”".

While RNA-sequencing at a bulk level has provided tools to study large scale gene
expression and generated vast amounts of data, the ability to use the technology at
the single-cell resolution has provided a tool to study gene expression at a much finer
resolution’'®2 Single-cell RNA-sequencing (scRNA-seq) allows identification of
individual populations of cells in silico, obviating the need for prior knowledge of cell
markers, and enabling comparisons of tissue composition between experimental

groups.
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scRNA-seq has allowed researchers to take whole brain tissue and identify multiple
cell types, such as neurons and microglia'®®'8318 \Whole brain single cell analysis
has been used to investigate changes that occur to different cell types in the brain
during development'®® and disease'®'®. Being able to identify microglia from whole
brain samples also removes the cell sorting step required for bulk RNA-sequencing,
which in turn reduces the chances of experimental processes impacting microglial
gene expression. However, within whole brain single cell analysis the fraction of
microglia is relatively low (3% reported by Mathys et al.’®®) and smaller numbers of
cells per subgroup makes statistical comparisons more difficult. Therefore, it is also
possible to use single-cell sequencing on sorted primary human microglia’1% in
order to better capture subtle microglial population changes. This has been used to

further our understanding of microglial populations across ages'®® and disease'®1%,

An extended review of how transcriptional analysis of primary microglia has impacted
our understanding of the cell type can be found in section 2.1. While current
published datasets have provided an insight into microglial transcriptomes, many are
still based on relatively small patient numbers. This is largely because access to
primary human microglial samples is still difficult. Growing brain bank collections
have allowed access to larger numbers of post-mortem samples but these studies
are still limited by patient number (with the largest reported at 48 collections'®®) and
often cover only specific disease states. Fresh human microglia are even more

difficult to access, coming from either fetal samples or neurosurgical patients.

1.6.2 Modelling human microglia

While studying primary human microglia is important for understanding the cells in
health and disease, there are clear limitations with these studies particularly around
scale and the ability to experimentally manipulate the cells. Therefore, a clear
challenge has been to develop ways to model human cells in the lab. Induced
pluripotent stem cells (iPSCs) are proliferating cells that have been reverted back to
a stem cell like state from adult cells and they have the potential to differentiate into
any cell’®'%_This means iPSC based cell model systems provide researchers with a
useful tool for studying human disease in a dish'': they are able to be used at scale,

can be manipulated experimentally and allow for repeated sampling. Large scale
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banks of iPSC lines, such as the HipSci consortium, mean that researchers can also
run iPSC based experiments using large numbers of both healthy and diseased cell

lines.

As iPSC cells can technically be differentiated into any cell in the body, methods have
been developed to differentiate these cells along a myeloid lineage. Initially these
studies focussed on the development of macrophage models and their utilisation for
studying immune response’?'%. Many of these iPSC-derived macrophage
differentiation protocols make use of the induction of embryoid bodies (EB) from stem
cells. These EB structures are made up of cells from all three germ layers'® that can

then further differentiate into more specialised cells.

However, in more recent years there has also been a focus on pushing the myeloid
cells closer towards the specialised microglia-like phenotype. These protocols range
from simple monoculture based systems'2%" similar to those used to generate
macrophage-like cells, to more complex co-cultured'®®?> and organoid
systems?%0203-2%6_ These more complex model systems build on the idea that much of
the unique microglial transcriptional signature comes from the environmental

stimulation they receive from neurons and other parts of the CNS'"".

A major factor to consider when using in-vifro models for human cells is
understanding how accurately the cell culture systems capture the primary cell type.
Often this comparison is limited to marker gene expression and functional
capabilities. For a detailed analysis of how the iPSC models described above have
been compared to primary cells see Chapters 3 and 4. For microglia particularly,
comparison is complex, as the primary cells are difficult to access and therefore
transcriptional comparisons are often made across studies. This can often lead to
confounding batch effects, especially when running small scale comparisons.
Systematic comparisons of model systems to the primary microglia can be used to
highlight potential signalling pathways that are not switched on in-vitro and could be

manipulated to move cells closer towards the primary cell type.
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1.7 Thesis overview

The overarching theme of the following thesis builds on section 1.6 and the
difficulties around studying human microglia. | aim to answer three major questions
throughout the thesis: 1. How does microglial composition and gene expression
profile change across a population? 2. How accurately do current simple in-vitro
model systems of human microglia capture the profile of primary human cells? 3.
Does culturing stem cell derived microglia with neurons move the model systems

closer to the primary phenotype?

The analysis in the second chapter of my thesis forms part of a large-scale project in
collaboration with Dr Adam Young and Dr Natsuhiko Kumasaka studying the genetic
architecture of human primary microglia. As part of the project we collected and
processed the largest number of fresh, primary human microglia samples to date
from a wide variety of clinical phenotypes. In this chapter | used single cell
RNA-sequencing to identify different subpopulations of primary microglia and
identified how the likelihood of finding cells within these populations is influenced by
clinical phenotypes. | then used bulk and single cell RNA sequencing data from the
same patient population to further understand how clinical phenotypes such as age,

pathology and sex influcenced microglial transcriptomes.

In the third chapter of my thesis, | focus on the transcriptional profiles of in-vitro
models of microglia and how closely they match the transcriptional profile of the
primary human cell type. | collected publicly available data and combined it with
available in-house datasets to generate a large scale analysis project to compare
primary human microglia with monocyte-derived macrophages, cancer-cell lines,
iPSC-derived macrophages and iPSC-derived microglia. For all the data, | used raw
sequencing files that were all processed through the same pipeline and | ensured
that | collected data from multiple studies for each cell type. Both of these decisions
were made to reduce the batch effects that can occur when comparing sequencing

data across different studies?*’-2%°. | used the processed data to understand how the
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different in-vitro systems capture the gene expression of the primary cells and which

signalling pathways may not be switched on in these in-vitro systems.

In the final results chapter of my thesis, | will focus on more complex stem cell based
model systems, including co-culture and orgainoid based models. This forms part of
a collaboration with Dr Phil Brownjohn and Dr Moritz Haneklaus, from the Livesey
Lab, working with their published microglia differentiation protocols?®. | initially used
bulk RNA-sequencing to add the complex model systems to the large dataset
generated in Chapter 3 in order to understand how the more complex model systems
compared to the monoculture systems described in Chapter 2. | then used single cell
sequencing, and particularly single cell trajectory analysis, to understand how
microglial cells from each of the model systems fit on a developmental pathway that

ultimately ends with the primary cell type.
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Chapter 2: Heterogeneity in primary adult microglial transcriptomes

Collaboration note

The work described in the following chapter forms part of a collaborative project.
Patient samples were collected and primary microglia were isolated by Dr Adam
Young and colleagues at the Division of Clinical Neurosciences based at Cambridge
University Hospital and the Wellcome Trust Medical Research Council Cambridge
Stem Cell Institute. Single cell sequencing preparation was carried out by the single
cell sequencing facility at the Wellcome Sanger Institute. Myself and Dr Andrew
Knights worked collaboratively to process the bulk primary microglia samples for
sequencing. Dr Natsuhiko Kumasaka ran the initial quality control analysis across the
dataset. For the bulk data, he used genotype information to identify any sample
swaps and mixes and for the single cell analysis he ran the initial processing to

remove poor quality samples.

Initial analysis of the single cell dataset was carried out by myself including
visualisation and clustering of single cell data, links to clinical metadata and
Alzheimer’s disease. It was then determined that the analysis needed to be updated
to be corrected for potential batch effects or confounding factors. Due to an injury,
and a 3 month medical intermission of my PhD, Dr Natsuhiko Kumasaka ran the
re-analysis of the data in order to prepare a manuscript for submission?'°. The single
cell work discussed in this chapter is from the analysis run by Dr Natsuhiko
Kumasaka and some extended work by myself. Any figures taken directly from the

analysis are noted in the figure legend.

2.1 Introduction

As interest in microglia has developed it is important to fully characterise the gene
expression profile of primary microglia, both to understand how they are perturbed in
disease and how we can be modeled in-vitro. To date, most studies of primary

microglia have been in mice, with validation in small numbers of human samples.
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Many studies have used RNA-sequencing to identify transcriptional markers of
microglia, with a focus on differentiating the native cell from classical macrophages

and other tissue resident macrophages.

2.1.1 Marker gene identification in mice and human samples

Microarray analysis has been used to compare tissue resident dendritic cells (from
the spleen, liver and lung) and tissue resident macrophages (spleen, lung and
peritoneal macrophages and microglia) in C57BL/6J mice in order to identify markers
of each cell type'”’. Microglia were shown to have a lower expression of hundreds of
transcripts that were expressed in other tissue resident macrophages. The paper
also identified gene expression that is specific to microglia in comparison to the other
tissue resident cells, notably the transcription factor SALL1 and cell surface marker
CX3CR1. More recently'® a six-gene microglial transcriptional signature (P2RY12,
GPR34, PROS1, GAS6, C1QA and MERTK) has been identified which appears to
distinguish microglia from other immune cells, including other myeloid cell types, and
other brain cells, such as astrocytes and neurons. As well as validating the unique
signature within primary human cells, the group also cultured adult mouse microglia
in the presence or absence of TGF-B and demonstrated that the signature they
described is TGF- dependent.

Two independent studies?'?'2 have since pinpointed TMEM119, a protein coding
gene originally linked to bone formation, as a marker that distinguishes native
microglia cells from infiltrating myeloid progenitors. It is currently unclear whether
resident microglia cells and infiltrating cells play differing roles in disease, such as
AD, and the studies described above suggest that finding markers for each cell type

may help future researchers to follow the role of each cell type.

2.1.2 Fresh, primary human microglia bulk RNA-sequencing

The most extensive bulk RNA-sequencing dataset of fresh human primary microglia
to-date profiled the cell type across 19 individuals between the ages of 5 and 15 and
also included chromatin accessibility studies of the same samples'”". Here it was
shown that broad clinical diagnosis (acute ischemia, epilepsy and tumour), age and

sex had no observable impact on microglial gene expression and highlighted that

46



pathology did not significantly affect expression of the most highly expressed
microglial genes in their dataset (e.g. SPP1, CD74 and ACTB). Using ATAC-seq and
ChlIP-seq, they detected the most enriched transcription factor recognition motif
associated with open chromatin and highlighted a dominant signature for the PU.1
transcription factor. The group also ran RNA, ATAC and ChIP-seq on matched
samples from fresh collections and cells that had been cultured for varying lengths of
time. They noted that expression of microglia marker genes such as CX3CR1 and
P2RY12 as well as transcription factors such as SALL1, decreased after a period of

only 6 hours in culture and continued to decline over 7 days in cell culture.

The authors also demonstrated that the addition of TGF-B to the in-vitro culture
media of the primary cells had a modest effect on gene expression, with expression
of certain genes, such as SALL1, increasing back towards the levels seen in the
fresh primary cells. Although, it was noted that none of the genes whose expression
increased in the presence of TGF-B returned to fully match the levels seen in the
primary cells. As had been suggested in earlier studies'”®, this provided further
evidence that TGF-f signalling is, at least in part, important for maintaining microglial

transcriptional identity.

2.1.3 Single cell sequencing and primary microglia

Advances in technology means that it is now possible to study transcriptomes at a
single cell level, which allows researchers to study heterogeneity of cell types in a
population. Single cell profiling of 16,000 CD45 and CD11b sorted microglial cells
from 15 individuals (7 autopsy and 8 biopsy samples) identified 14 unique microglial
populations within the brain'. Within the 14 subpopulations identified, the authors
noted that the three largest clusters were transcriptionally similar with no differentially
expressed transcription factors between groups. It was, therefore, suggested that
these subpopulations represented cells of the same class but in different activation
states. The remaining, more transcriptionally distinct, microglial clusters were

considered more specialised subtypes of microglial cells.

Single cell transcriptomics can also be used to understand dynamic changes in cell

expression or cell proportions in health and disease across whole tissues. In

47



microglial research this is of particular interest when looking at changes that occur
during Alzheimer’s disease (AD). Single cell analysis of whole brain tissue has
identified AD specific microglia gene expression changes in both mice'®* and
human'®'® samples. Although it is worth noting that as microglia represent a small
fraction of cells within the brain, there are limitations in the ability to understand

heterogeneity within the cell type due to low cell numbers.

2.1.4 The impact on age and sex on microglial transcriptomes

As microglia have a distinct origin and are not replenished by circulating monocytes
under normal conditions', previous work has also focused on how microglial
transcriptomes change with age. Comparison of 10 aged (average age at death = 95)
bulk post-mortem microglia RNA-sequencing profiles to a publicly available dataset
of primary microglia from middle-aged individuals (mean age = 53) identified 1060
upregulated and 1174 downregulated genes in the aged microglia'®. Pathway
enrichment analysis showed that upregulated genes were enriched for amyloid fiber
formation and those genes with decreased expression in aged microglia were
enriched for TGF-B signaling. The loss of TGF-B signaling in aged cells was

suggested to represent a loss of the homeostatic function of microglia during aging.

While comprehensive aging studies in human microglia are complex, due to the lack
of accessibility of the cell type, it is possible to monitor changes in microglial
transcriptomes across the lifespan of mice®'®. Using single cell sequencing,
researchers were able to identify populations of microglia enriched for cells from
aged mice and showed that the gene expression profile of these cells was shifted
towards a more active state, due to increased expression of inflammatory markers.
However, the authors noted that the proportion of the cells in this increased active
state was only a small fraction of the total cells in these aged mice. It was suggested
in the study that this may be because the activated cells were responding to local
disruptions, such as blood brain barrier compromise?'* or microinfarcts?'®, that can be
associated with aging as opposed to representative of a global change in expression

profile.
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Previous work has also focused on whether microglial transcriptomes differ between
sexes. Evidence from mouse studies is often conflicting. One study?'®, noted large
numbers of differentially expressed genes between male and female adult mice and
the authors highlighted that male microglia show an increased inflammatory
phenotype. The researchers also showed that female microglia are protective during
ischemia within mice and suggested that it was due to the fact that the microglia were
able better control excessive inflammation. Further studies in mice have also
highlighted how microglial gene expression can be impacted in sex specific ways
during development?'” and as part of the interaction with the microbiome?'®, However,
Hammond et al.?’”®, compared single cell microglial gene expression in male and
female mice across three major developmental ages (E14.5, P4/P5, and P100) and
highlighted only a small difference between the sexes. While, as expected, genes on
the sex chromosomes were differentially expressed between male and female mice
there was only a small fraction of cells (~0.5% of microglia) that appeared to cluster
in a sex specific way. The cluster was enriched for female cells of the P4/P5
developmental age and showed increased expression of genes such as CD74 and
ARG1. In human studies, the evidence for sex-specific expression of genes in
microglia is limited. Using bulk RNA-sequencing, Gosselin et al.””’ observed that a
small set of genes, most located on the sex chromosomes, showed sex-specific

differences.

One limitation of the studies discussed above are their small sample sizes. This
means that previous observations of correlations between microglial transcriptional
profiles and life-history or clinical pathology are based on phenotypes from small
numbers of individuals. In this chapter, | describe the analysis of bulk and single cell
RNA-sequencing data from a cohort of 141 patients samples of fresh primary adult
human microglia, the largest cohort to date. | describe how heterogeneous primary
microglia were across patients and identified markers for individual subpopulations of
the cell type. | highlight how clinical pathology was a major driver of heterogeneity
across microglia and how this information can be used in conjunction with
subpopulation markers to infer biological relevance of clusters. Using both single cell
and bulk data | investigate how various other clinical phenotypes, such as age, sex

and brain region, can affect microglial transcriptomes.

49



2.2 Methods

2.2.1 Experimental design and sample collection

Human brain tissue was obtained with informed consent under protocol REC
16/LO/2168 approved by the NHS Health Research Authority. All collections were
completed by Dr Adam Young and his colleagues at the Division of Clinical
Neurosciences based at Cambridge University Hospital. Samples were collected
from neurosurgical patients undergoing scheduled procedures where tissue would
normally be removed. Patient pathologies were grouped into four major categories:
control, haemorrhage, hydrocephalus, trauma and tumour. Control samples include
tissue where the site of sampling is a site further away from the site of injury or
disease (i.e. tumour biopsy where the tissue sampled is considered pathologically
normal). Figure 2.1 summarises the metadata for all patient samples collected and
includes the experimental design of the study. Tissue samples were used for both
bulk and single cell RNA-sequencing. Paired blood samples were also taken from
each patient at the induction of anaesthesia for genotyping. However, genotype

information was not used in the analysis described in this chapter.

Once collected tissue was immediately transferred to Hibernate A low fluorescence
(HALF) supplemented with 1x SOS (Cell Guidance Systems), 2% Glutamax (Life
Technologies), 1% P/S (Sigma), 0.1% BSA (Sigma), insulin (4g/ml, Sigma), pyruvate
(220 g/ml, Gibco) and DNase 1 Type IV (40 g/ml, Sigma) on ice and transported to a
dedicated CL2 laboratory.
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Figure 2.1 Schematic of experimental design
Experimental protocol for all (141) samples collected as part of the 16/L0O/2168 linked
study. Plot created by Dr Natsuhiko Kumasaka.

2.2.2 Tissue processing and cell sorting
All tissue processing was completed by Dr Adam Young colleagues at the Division of
Clinical Neurosciences based at Cambridge University Hospital and the Wellcome

Trust Medical Research Council Cambridge Stem Cell Institute.

Brain tissue was mechanically digested in fresh ice-cold HALF supplemented with 1x
SOS (Cell Guidance Systems), 2% Glutamax (Life Technologies), 1% P/S (Sigma),
0.1% BSA (Sigma), insulin (4g/ml, Sigma), pyruvate (220 g/ml, Gibco) and DNase 1
Type IV (40 g/ml, Sigma). The prepared mix was spun in HBSS+ (Life Technologies)
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at 300g for 5 mins and supernatant discarded. The digested tissue was rigorously
triturated at 4°C and filtered through a 70 m nylon cell strainer (Falcon) to remove
large cell debris and undigested tissue. Filtrate was spun in a 22% Percoll (Sigma)
gradient with DMEM F12 (Sigma) and spun at 800g for 20 mins. Supernatant was

discarded and the pellet was resuspended in ice cold supplemented HALF.

For single cell smartseq2 sequencing, human microglia were sorted using
fluorescence-activated cell sorting (FACS). The isolated cell suspension was
incubated with conjugated PE anti-human CD11b antibody (BioLegend) for 20 mins
at 4°C. Cells were washed twice in ice cold supplemented HALF and stained with
Helix NP viability marker. Cell sorting was performed on BD Arialll cell sorter
(Becton, Dickinson and Company, Franklin Lakes, New Jersey, US) at the University
of Cambridge Cell Phenotyping Hub at Cambridge University Hospital, Cambridge,
UK. Cells were sorted into 96 well plates, prepared by the Wellcome Sanger Institute

for the purposes of single cell sequencing.

To avoid sustained stress on microglia as a result of prolonged sorting times for bulk
sequencing magnetic-activated cell sorting was performed on these cells. Isolated
cell suspensions were incubated with anti-CD11b conjugated magnetic beads
(Miltenyi) for 15 mins at 4°C. Cells were washed twice with supplemented HALF and
passed through an MS column (Miltenyi). Each sample was washed three times in
the column and then extracted. Samples were added to a 1.5ml Eppendorf to which
300 | of RNAlater (Qiagen) was added, samples were stored at -80C prior to library

preparation and sequencing.

2.2.3 RNA handling

For single cell sequencing, 96 well plates were prepared and sequenced by the
Wellcome Sanger Institute single cell core facility using the SmartSeq2 protocol 2'°.
Extraction and library preparation of bulk samples was completed by Dr Andrew
Knights and myself. Total RNA from the bulk primary microglia samples was
extracted with the Qiagen AllPrep DNA/RNA micro kit. This was carried out according

to the manufacturer's instructions. Following extraction samples were analysed using

52



an Agilent Technologies Bioanalyser RNA Pico kit for quality (RIN number) and

quantification. Extracted RNA was stored at -80 °C until library preparation.

The amount of total RNA extracted from these samples was incredibly varied,
ranging from > 300 ng to 0.5 ng of approximate yield, with the majority of samples
producing less than 10 ng of total RNA. This is a much lower input RNA level than is
required for traditional bulk sequencing and, therefore, we used a low RNA input
library preparation pipeline developed in-house by Dr Andrew Knights which is a
modified version of the SmartSeq2 protocol protocols developed for single cell
sequencing. For samples with large amounts of RNA yields, 10 ng was used as a
maximum input for the protocol. Samples with lower than 10 ng of RNA input were
processed in the same way, although the number of PCR amplification cycles was
increased for certain samples to compensate for the low input amounts (Figure 2.2).
In total 120 of the 141 collected samples were prepared for sequencing, the 21
samples that were not included in sequencing pools were discarded due to either
having no quantifiable RNA or large amounts of RNA degradation, to the point where

no RIN value could be calculated.

25 pL of lysis binding buffer (Table 2.1) was added to the extracted RNA, that had
been diluted to 25 uL with nuclease free water. 20 yL of oligo-DT beads were added
to wells of a 96-well plated and washed once with 100 uL of lysis binding buffer while
on a magnetic plate. The pelleted bead plate was removed from the magnet and the
beads were resuspended with the 50 yL RNA samples. The wells were pipette-mixed
and incubated at room temperature for 15 minutes, with shaking (1100 rpm Mixmate).
The plates were then placed back on the magnet for supernatant removal and two
washes with 150 yL of wash buffer A (Table 2.1). Samples were then transferred to a

fresh plate before washing twice with 50 pL of wash buffer B (Table 2.1).

The samples were washed again with 50 pL of elution buffer before RNA is eluted
from the beads by re-suspension in 9.5 pL of elution buffer and incubating at 75 °C
for 2 minutes. Plates were then immediately transferred back to the magnetic plate
and 7 pL of eluted solution was transferred to a fresh plate on ice. 2 yL 10 uM oligo
dT,,VN and 2.34 yL 10 mM dNTPs (Thermo) were added to each well of the 96-well
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plates and samples were heated at 72 °C for 3 minutes before being rapidly chilled
on ice. 13.65 pL of reverse transcription (RT) master mix (Table 2.1) was added to
each well of the plate and following mixing the samples were placed on a PCR block
for RT (Figure 2.2).

Lysis binding Wash buffer A Wash buffer B
RT master mix (per reaction)

buffer (100 mL) (250 mL) (100 mL)

20mLof 1 M 25mL1M 1 mL 1 M Tris-HCI
Tris-HCI pH 7.5 Tris-HCI pH 7.5 pH7.5(FC =10 5 uL 5x SmartScribe FS Buffer
(FC =200 mM) (FC =10 mM) mM)

12.50 mL 8 M LICl  4.69 mL8MLiCl 1.88mL8MLIiCl 0.63 uL SUPERase Inhibitor
(FC=1M) (FC = 0.15 M) (FC = 0.15 M) (Thermo Fisher AM2696)

4 mL 500 mM 500 uL 500 mM 200 pL 500 mM
EDTApH 8 (FC= EDTApH 8.0 (FC EDTApH 8.0 (FC  1.25 pL 0.1 M dithiothreitol

20 mM) =1 mM) =1 mM)
2gLiDS _ . )
0.25g LiDS (FC = 5 yL 5 M betaine (Sigma
(L9781-5G) (FC =2 96.92 mL NFW
0.1 % wiv) PCR-grade B0300-5VL)
% wiv)
1mL1MDTT
(P2325) (FC =10 242.31 mL NFW 0.15 uL 1 M MgCI2
mM)
62.5 mL NFW 0.38 yL 100 yM TSO

1.25 uL SMARTScribe reverse
transcriptase (Takara Clontech
639538)

Table 2.1 Reaction mixes used in low-input RNA-sequencing library preparation

Following RT of the samples, 25 uL of nuclease-free water (NFW) was added to each
well of the 96-well plate and a 0.8:1 Ampure XP clean-up (Beckman Coulter
A663882) was performed using a Zephyr (PerkinElmer). The material was then
eluted in 10 pL of 10 mM Tris-HCI (pH 7.5) and 13 pL PCR master mix was added to
the solution (12.5 yL of 2x KAPA HiFi hotstart and 0.5 pL of 10 uM ISPCR primer). A

further PCR reaction was carried out for amplification (Figure 2.2); due to the

54



variability in input RNA quantity for this reaction, the number of PCR cycles used was

increased for low input samples (see Figure 2.2 for range).

Reverse transcription PCR Amplification PCR

42 °C - 90 minutes 98 °C - 3 minutes

50 °C - 2 minutes 98 °C - 20 seconds Variable cycles:
10 ng input = 11

42 °C - 2 minutes 10 cycles 67 °C - 15 seconds 5-9ng =13
2-5ng =15

70 °C - 15 minutes 72 °C - 6 minutes <2ng=18

10 °C - hold 72 °C - 5 minutes

10 °C - hold

Figure 2.2 PCR reactions in low-input RNA-sequencing library preparation

After the PCR reaction, a further 25 pL of NFW was added to samples and a 0.8:1
Ampure XP clean-up was carried out before elution in 20 yL of 10 mM Tris-HCI (pH
8.0). cDNA was then quantified with the Quant-iT High Sensitivity kit (Thermo Fisher
Q33120), according to the manufacturer’s instructions. Samples were read on a BMG
Pherastar. 4 ng of cDNA was diluted with 10 mM Tris-HCI (pH 7.5) to a volume of 9.5
ML. 5 pL of a 3x tagmentation buffer (99 mM Tris acetate, 198 mM potassium
acetate, 30 mM magnesium acetate and 48 % v/v N,N-dimethylformamide) and 0.5
pL of TDE1 were then added and mixed before samples were incubated at 55 °C for
5 minutes. Tagmentation was then halted by the addition of 2.5 pL of stop buffer (220
mM EDT and 1.1% w/v sodium dodecyl sulphate), with samples then incubated at
room temperature for 10 minutes. Tagmented cDNA was then diluted to a volume of
50 pL with 10mM Tris-HCI (pH 7.5) and purified with a 2:1 ratio of Ampure XP beads.
The cDNA samples were eluted in 7 pL of 10mM Tris-HCI (pH 7.5) and then
amplified and sample indexed using PCR. Briefly, the eluted 7 yL of tagmented cDNA
was added to 2.5 pL of i5 index adapter and 2.5 pL of i7 index adapter from the
Nextera XT index kit v2 set A, 0.25 pL of 50 uM PC1 primer, 0.25 uL of 50 yM PC2

primer and 12.5 yL of 2x KAPA HiFi polymerase. Mixed samples were then incubated
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at 72 °C for 3 minutes, 98 °C for 30 seconds, followed by 9 cycles at 98 °C for 15
seconds, 62 °C for 30 seconds and 72 °C for 30 seconds, followed by a final
extension at 72 °C for 3 minutes. Libraries were purified using a 0.8:1 ratio of Ampure
XP beads and the final individual libraries were eluted in 20 pyL of 10mM Tris-HCI (pH
7.5). Samples were then pooled together (three independent pools) at equal cDNA

concentrations and submitted for 75 bp paired-end sequencing.

2.2.4 Initial processing and quality control of sequencing data

Initial processing of sequencing was carried out by Dr Natsuhiko Kumasaka. Prior to
alignment adapter trimming of Tn5 transposon and PCR primer sequences was
carried out using the skewer package®?°. Both bulk and smart-seq2 sequencing data
were aligned using the STAR package??!, version 2.5.3a, using ENSEMBL human
gene assembly 90 as the reference transcriptome. Samples were then quantified with
featureCounts???, version 1.5.3. Genotype information collected from patients was
then used to check for sample swaps or mixing of samples that may have occurred
during processing. Following QC for sample swaps and mixes, 109 patient samples

were used in bulk analysis.

For single-cell analysis each individual cell was passed through a further quality
control pipeline to remove poor quality cells from the dataset. The final thresholds
used were: number of expressed genes > 500, number of fragments > 10000, < 20
% mitochondrial genes and the percentage of fragments mapped to the top 100
highly expressed genes is < 70 %. Demuxlet #*® was used to remove doublets from
two different patients with different genetic backgrounds from within the sample.
Following QC analysis 9538 cells from 129 patients were taken forward for further

analysis.

2.2.5 Comparison of bulk data to publicly available datasets

Processed bulk microglia RNA-sequencing data was combined with publicly available
datasets from other cell types: brain tissue from The Genotype-Tissue Expression
(GTEx) Project (The data used for the analyses described in this thesis were
obtained from the GTEx Portal), monocytes from the BLUEPRINT consortium (this
study makes use of data generated by the BLUEPRINT Consortium) and a collection
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of publicly available in-vitro model data (see section 3.2.1 for data references). Count
tables were combined and converted into counts per million (CPM) and Uniform
Manifold Approximation and Projection (UMAP) analysis was run using Seurat’s
RunUMAP function with the following parameters: 5 PCs, 30 nearest neighbours and

a minimum distance set to 0.3.

2.2.6 Classification of microglial cells using publicly available datasets
Full descriptions of the single cell data analysis carried out by Dr Natsuhiko
Kumasaka can be found in the preprint of the manuscript describing this work #'° but

the methodology will be summarised below.

Gene count data for single cell datasets of 68k peripheral blood mononuclear cells
(PBMCs)*?* and 15K unsorted brain cells?** were downloaded from publicly available
sources and all datasets (including the data collected for this study) were converted
to Counts Per Million (CPM).

A latent factor linear mixed model was used, with the 3 studies treated as random
effects, to obtain 12 latent factors. These factors were then used to run Uniform
Manifold Approximation and Projection (UMAP) analysis. The publicly available
datasets also included pre-determined cell type classification and these
classifications were then used to identify microglia cells from within our unclassified
dataset. 8,662 cells were identified as microglia and taken forward for further

analysis.

2.2.7 Variance components analysis

Variance components analysis was used to determine how clinical and technical
factors within the dataset impacted gene expression. Count data (log(TPM+1))
across all genes whose TPM>0 for at least 10% of cells was used in a linear mixed
model to estimate variation. 13 known factors (patient, number of expressed genes
per cell, pathology, plate ID, ERCC percentage, number of fragments, plate position,
age, mitochondria RNA percentage, brain region, brain hemisphere, ethnicity and

sex) were fitted as random effects with idependent variance parameters.
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2.2.8 Clustering of single cell data, differential expression and clinical
metadata links

A latent linear mixed model was again used to estimate latent factors for downstream
dimensionality reduction and clustering on only the microglia cells identified through
the methodology described in section 2.2.6. The 13 factors described in section 2.2.7
were included in the model to control for potential confounding between the known
factors and unknown heterogeneity within the dataset. The first 15 latent factors were
then used within Shared Nearest Neighbour Clustering (as run in Seurat version
3.0.2) with a resolution parameter of 0.2. The first 15 latent factors were also used to

run UMAP analysis.

The same linear mixed model used for variance component analysis was also used
for differential expression analysis, with the addition of the four subpopulations fitted
as a random effect. The model was fit on a gene-by-gene basis and across each
factor. If the factor of interest was numerical (i.e. age) Bayes factor of effect size was
computed by comparing the full model and the model without the factor of interest. If
the factor of interest was categorical with x levels (i.e. pathology with 5 levels),
samples were partitioned into any of two groups. There were 2*-1 contrasts which
were tested against outputs when removing the factor of interest from the model to
calculate Bayes factors. Bayes factors were then used within a finite mixture model to
calculate the posterior probability as well as the local true sign rate (/str). Lstr values
were used to identify differentially expressed genes (Istr > 0.5 unless stated

otherwise)

2.2.9 Pathway enrichment analysis

| then used gProfiler’®, version €94 _eg41 p11_36d5c99 with significance
determined at a 5% FDR, to estimate the significance of enrichment across defined
pathways, through a hypergeometric distribution model. Gene lists were established

from the differential expression studies described above (section 2.2.8).
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2.3 Quality control analysis across datasets

2.3.1 Bulk RNA-sequencing quality control

Before running downstream analysis pipelines, extended quality control analysis was
run on all samples that passed the technical quality control (109 samples in bulk
dataset). In bulk data initially correlation analysis was run between all samples
(averaged across all genes for each sample). These correlations were then
compared to those observed in BLUEPRINT monocytes and a small primary
microglia dataset. Figure 2.3 is a heatmap of the correlation coefficients across all
samples. While correlation coefficients between the monocyte and peadiatric
microglial samples are high and consistent across all samples, within the adult
primary microglia dataset there is a much larger amount of variability amongst

samples.

After looking at variability amongst the samples collected as part of this study, |
wanted to compare global expression patterns in our bulk RNA-seq dataset to other
large scale datasets in other similar cell types. | used UMAP analysis to understand
the transcriptional similarities between primary microglia, brain tissue from GTEX,
monocyte data from BLUEPRINT and a selection of in-vitro models (note: for detailed
analysis of primary microglia versus in-vitro models please refer to Chapter 3, sect).
The UMAP analysis plot (UMAP 1 vs UMAP 2) highlights how samples group

together based on their transcriptional similarities (Figure 2.4).

At the top of the plot the brain tissue samples split into two distinct groups, with
cerebellum tissue on the left and the remaining regions on the right. The three
remaining distinct clusters represented: monocytes, primary microglia and in-vitro
models. The separation of the microglia samples from other large scale datasets
suggested a transcriptional signature in microglia that is not captured by other
available datasets. The primary microglia data collected as part of this study, also
clustered with small numbers of samples from other fresh human primary microglia

datasets. This highlights that despite higher levels of variation between samples
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(Figure 2.3), the microglia collected as part of this study were transcriptionally similar

to other publicly available datasets.
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Figure 2.3 Heatmap of correlation of bulk RNA-seq gene expression between
samples in primary microglia and BLUEPRINT monocytes

Average Spearman’s rank correlations across all genes of gene expression for each
sample in the in-house primary microglia dataset, fresh paediatric microglia samples

from a published dataset'”' and BLUEPRINT monocyte dataset.
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Figure 2.4 UMAP analysis of bulk primary microglia data and publicly available

RNA-sequencing datasets

UMAP analysis from Seurat’s RunUMAP function on a collection of publicly available
datasets. Analysis run using the following parameters: PCs=15, n_neighbours = 30
and min_dist = 0.3. Samples highlighted as “Adult and paediatric primary microglia”

included data from this study and publicly available datasets (section 3.2.1 for full

details).
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2.3.2 Metadata comparison

As much of the analysis completed in this chapter focuses on understanding the
effect of clinical phenotypes on microglial transcriptomes, | initially wanted to ensure
that there were no major confounding groups of clinical phenotypes. |, therefore,
compared the number of patients across pairs of clinical phenotypes in both the
single cell and bulk patient groups (Figure 2.5 and 2.6), all pairwise comparisons for
the four meta group (age, sex, brain region and clinical pathology) are shown. Within
both the bulk and single cell, patient groups clinical pathology and brain region were

confounded because trauma patients were only found in one brain region.
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2.4 Single cell clustering and identification of sub-populations

2.4.1 Comparison to publicly available single cell datasets

Initially we compared our microglia single cell data to two publicly available datasets,
68K peripheral blood mononuclear cells?®** (PBMCs) and 15K unsorted brain cells??®
(Figure 2.7). This allowed for the identification of infiltrating blood derived cells or
contaminating neuronal cells while also providing a comparison of our sorted

microglial cells to an unsorted dataset.

ODC

Microglia
(DroNc-seq)

Infiltrating
cells

Microglia
(this study)

Monocyte

UMAP dim2

UMAP dim1

Figure 2.7 UMAP analysis of microglia single cell data and publicly available
PBMC and whole brain tissue single cell datasets
Cells collected as part of this study coloured in red. Cell type annotations were

obtained from original manuscripts: glutamatergic neurons from the PFC (exPFC);
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pyramidal neurons from the hip CA region (exCA); GABAergic interneurons (GABA);
granule neurons from the hip dentate gyrus region (exDG); astrocytes (ASC);
oligodendrocytes (ODC); oligodendrocyte precursor cells (OPC); neuronal stem cells
(NSC); endothelial cells (END); dendritic cell (DC); B cell (B); hematopoietic
progenitor cell (CD34+); NK T cell (NK). Plot generated by Dr Natsuhiko Kumasaka.

A total 8,662 cells from our single cell dataset clustered with microglia identified
within the unsorted brain cell dataset (see Table 2.2 for breakdown of identified cells
in the dataset). Alongside the microglial cells identified a small fraction of the single
cells collected as part of this study appeared transcriptionally similar to PBMC cells,
specifically NKT cells, monocytes and B cells. These cells could represent either
infiltrating cells that have entered the brain following disruption to the BBB or

intravascular contamination of the tissue that occurred during the collection.

Cell Type Number of cells Number of patients

Microglia 8662 127

NKT cells 799 91

Monocyte 46 18
B cell 28 16

Table 2.2 Cell numbers and number of patients represented in each immune
cell type collected.

Cell type classification determined by UMAP analysis and comparison to publicly
available datasets that had been previously classified.

The cells identified as microglia also expressed known marker genes P2RY12,
CX3CR1 and TMEM119 (Figure 2.8). These 8,622 cells were therefore taken forward

for further analysis.
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Figure 2.8 UMAP analysis of microglia single cell data and publicly available
PBMC and whole brain tissue single cell datasets
Cells coloured by expression (CPM) of microglial marker genes P2RY12 (A),
CX3CR1 (B) and TMEM119 (C ). Plot generated by Dr Natsuhiko Kumasaka.

2.4.2 Clustering of microglial cells and cluster maker analysis
Clustering of the microglia highlighted a relative homogeneity between cells although
4 transcriptionally distinct clusters were identified (Figure 2.9). A linear mixed model,
with the cluster membership fitted as a random effect, was used to identify

differentially expressed genes between cluster groups.
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Figure 2.9 UMAP analysis of microglia cells from this study identified from
previous analysis (Figure 2.7)
Cells coloured by cluster membership as determined by Louvain clustering (see

section 2.2.8 for full clustering methodology).

Figure 2.10 highlights some of the cluster markers identified as part of this analysis
and Table 2.3 shows the top 5 most enriched GO terms for cluster marker genes
(identified as any gene with a LTSR value of >0.5 when comparing expression of

cells in one cluster to all other cells).
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Figure 2.10 Cluster maker genes for microglia single cell data
Averaged, across cells in each cluster, normalised expression level (defined as the
posterior mean of pathology random effect term, see section 2.2.8 for full details) of

differentially expressed genes at the local true sign rate (/tsr) greater than 0.9.

As demonstrated in Figure 2.10 cells in clusters A and B had higher expression of
microglial marker genes P2RY12 and CX3CR1 than cells in clusters C and D. Cells
within cluster A also had significantly reduced expression of immune activation
marker genes, like IL1B and CCL3, when compared to all other cells. GSEA of the
genes differentially expressed within this cluster identified an enrichment of metabolic
and translational processes. Cells in cluster A were therefore identified as
homeostatic microglial cells with those in other clusters representing cells in differing

activation states.
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As well as increased expression of marker genes, cells associated with cluster B had
increased expression of activation genes such as JUN and EGR3. These often
represent early activation patterns of macrophage cells and therefore cluster B may
represent a population of cells moving towards an activated state. Further
investigation, using techniques such in-situ single cell transcriptomics, would be
needed to confirm that these cells arise in the brain and are not artificially activated

by the tissue processing used in this study.

Cells in cluster C had significantly increased expression of genes such as CD174,
ACTB and ERCZ2. One of the other marker genes associated with cells in this cluster
is HAMP which encodes for hepcidin protein, a key molecule in iron homeostasis.
Iron homeostasis has been linked to multiple brain disorders including ischemia,
cancer and Alzheimer’s disease®?’. Enrichment analysis of marker genes associated
with this cluster showed significant enrichment for terms such as immune response

and immune system process, highlighting a clear activation pattern within these cells.

Like in cells associated with cluster C, those in cluster D were also enriched for terms
such as immune system process. However, gene markers for cells in cluster D were
also enriched for cell migratory and communication terms. Cluster D is also
characterised by expression of VEGF and a receptor for the molecule, FLT1. FLT1
and VEGF have been shown to be important in angiogenesis in the brain particularly
following traumatic brain injury??22, Recent evidence has also suggested a potential

role for VEGF response in microglial chemotaxis to amyloid beta, a key protein in AD

230

Cluster GOID Term name Padj
G0:0016071 mRNA metabolic process 6.22e™
G0:0006413 translational initiation 6.22e™

A G0:0006886 intracellular protein transport 4.74e"
GO0:0006613 cotranslational protein targeting to membrane 4.74e"
GO0:0070972 protein localization to endoplasmic reticulum 5.16e™

SRP-dependent cotranslational protein targeting to
GO0:0006614 membrane 1.66e%’
B G0:0006613 cotranslational protein targeting to membrane 3.44e”
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nuclear-transcribed mRNA catabolic process,

G0:0000184 nonsense-mediated decay 1.06e2°
G0:0045047 protein targeting to ER 1.83e%°
establishment of protein localization to endoplasmic
G0:0072599 reticulum 3.89e%
G0:0006955 immune response 3.34e™
G0:0002376 immune system process 1.80e™
G0:0002252 immune effector process 1.50e
G0:0002682 regulation of immune system process 1.50e®
G0:0043299 leukocyte degranulation 2.74e0®
G0:0002376 immune system process 2.48e%
G0:0048583 regulation of response to stimulus 6.50e%
G0:0070887 cellular response to chemical stimulus 5.78¢e™
G0:0007154 cell communication 1.31e®
GO0:0050896 response to stimulus 1.79e®

Table 2.3 Top enriched biological process terms for cluster marker genes

Statistical enrichment analysis using an ordered list through the g:GOSt programme
of g:Profiler with significance determined at a 5% FDR. Five most significantly
enriched biological process terms for genes determined as cluster markers at the

local true sign rate (/tsr) greater than 0.9 (section 2.2.8 for full details).

2.5 Clinical metadata and microglial transcriptome signatures

2.5.1 Variance components analysis

The large sample size of this study across a variety of patients also allowed us to
study how a range of biological factors impact microglial gene expression. Variance
components analysis highlights how much variability in gene expression can be
explained by different biological and technological factors. Figure 2.11 shows that
individual patients were the largest driver of variation within the dataset, this may
represent the effect of genetic background on gene expression but could also be in

part due to unknown factors that weren’t collected as part of this study.
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Of the non-technical factors, clinical pathology was the largest driver of variation
contributing to more variation in gene expression than the other biological factors
combined. The variance components analysis also highlighted how technical factors
can impact gene expression and why they need to be accounted for in downstream

analysis.
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Figure 2.11 Variance components analysis
Proportion of variance explained by both biological and technical factors collected as

part of this dataset. Plot generated by Dr Natsuhiko Kumasaka.

2.5.2 Gene expression linked to clinical metadata

Due to the size of the dataset collected as part of the study, we were able to
determine genes whose expression is affected by clinical factors, while controlling
not just for the other interlinked clinical factors but also technical factors that can

influence gene expression.
The variance component analysis highlighted that pathology was the largest known

clinical factor driving variation in this dataset. We therefore ran enrichment analysis to

understand if cells part of different clusters were enriched for patients with certain
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clinical pathologies. Figure 2.12 demonstrates the log odds ratio for enrichment of

clinical pathologies in each cluster.

ABCD
Control
Hydrocephalus
Tumour
Haemorrhage

Trauma [
20 W20

Figure 2.12 Odds ratios from Fisher’s exact tests across clinical pathologies
for each cluster.

The number of cells contributing to each cluster, from each pathology group were
used to run two-tailed Fisher’s exact tests. Results displayed show Odds Ratios for

each test. Plot generated by Dr Natsuhiko Kumasaka.

Enrichment analysis showed that clusters C and D, those with distinct activation
patterns, were significantly enriched for trauma patients, as well as haemorrhage

patients, and cluster B was enriched for tumour patients (OR=4.9, P=7.6x107%°),

While pathology was the largest clinical factor driving variation, other factors such as
age, brain region and sex also contributed to variance within the dataset and
therefore differentially expressed genes were calculated across clinical groups,

controlling for other factors.

Table 2.4 summarizes the top 5 genes whose expression in microglia was positively
or negatively correlated with age as well as the top 5 enriched GO terms for all
correlated genes. Gene set enrichment analysis of the 156 genes whose expression
was positively correlated, highlighted a significant enrichment in immune activation

genes suggesting that microglia may take on a more active phenotype as we age.

There were 144 genes whose expression was negatively correlated with age,

including microglia marker genes P2RY12 and CX3CR71. Gene set enrichment

72



analysis highlighted an enrichment of genes involved in cell migration and regulation

of locomotion (p = 1.974x107°).

Genes and GO terms positively correlated with age

Gene GOID Term name Padj
HLA-DRA G0:0002376 immune system process 6.60e°
HLA-DRB1 GO0:0006955 immune response 7.57e?°

PADI2 G0:0001775 cell activation 4.65e™®

MS4A6A G0:0006952 defense response 2.62e™"
HLA-DPA1 G0:0045321 leukocyte activation 5.20e™’
Genes and GO terms negatively correlated with age
Gene GO ID Term name Padj
P2RY12 G0:0030334 regulation of cell migration 1.92¢

PDK4 G0:0070887 cellular response to chemical stimulus 1.92e¢

CH25H G0:0010033 response to organic substance 1.92¢
C3 G0:0051270 regulation of cellular component movement 1.92¢
CSF1R G0:1901701 |cellular response to oxygen-containing compound | 1.92e%

Table 2.4 Top 5 genes and enriched biological process terms associated with
age
Statistical enrichment analysis using an ordered list through the g:GOSt programme
of g:Profiler with significance determined at a 5% FDR. Five most significantly
enriched biological process terms for genes with local true sign rate (/tsr) greater than
0.5.

Differential expression focussing on brain region, highlighted varying levels of
heterogeneity across different areas of the brain. There were over 400 genes with
higher expression in microglia originating from the occipital lobe, whereas only two
genes were more highly expressed in microglia sourced from the frontal lobe.
Pathway enrichment analysis showed genes more highly expressed in occipital
microglia were enriched for immune activation pathways but also cell motility

(G0:0048870) and migration (GO:0016477).
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Number of DE

Region genes GOID Term name Padj
G0:0006955 immune response 4.15¢™®
G0:0002376 immune system process 1.69e™
. ; 14
Occipital 441 G0:0002252 immune effector process 1.87e
cytokine-mediated signaling
G0:0019221 pathway 3.05e™
G0:0034097 response to cytokine 6.39¢™
regulation of intrinsic apoptotic
G0:2001242 signaling pathway 0.00170
negative regulation of cellular
response to growth factor
G0:0090288 stimulus 0.00170
Cerebellum 51 regulation of response to
G0:0048583 stimulus 0.00170
positive regulation of
DNA-binding transcription
GO0:0051091 factor activity 0.00170
G0:0002376 immune system process 0.00260
SRP-dependent cotranslational
G0:0006614 | protein targeting to membrane | 3.42¢®
cotranslational protein targeting
G0:0006613 to membrane 3.44e2°
GO0:0045047 protein targeting to ER 7.41e®
Temporal 36 . .
establishment of protein
localization to endoplasmic
G0:0072599 reticulum 9.05e?°
nuclear-transcribed mRNA
catabolic process,
G0:0000184 | nonsense-mediated decay | 1.83e™
Parietal 7
N/A
Frontal 2

Table 2.5 Top 5 genes and enriched biological process terms associated with

brain region

Statistical enrichment analysis using an ordered list through the g:GOSt programme

of g:Profiler with significance determined at a 5% FDR. Five most significantly

enriched biological process terms for genes with local true sign rate (/tsr) greater than

0.5.
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There were fewer genes whose expression differed significantly based on sex, 55
with increased expression and 95 with increased expression in males. Table 2.6
shows the top genes with higher expression in males or females alongside the

enrichment terms.

Genes and enriched GO terms in males

Gene GOID Term name Padj
SRP-dependent cotranslational
HLA-DQB1 G0:0006614 protein targeting to membrane 4.25¢"°
cotranslational protein targeting to
EEF1A1 G0:0006613 membrane 3.05e™°
HLA-DRA G0:0045047 protein targeting to ER 1.63e®

establishment of protein localization
RPL37 GO0:0072599 to endoplasmic reticulum 7.41e*

nuclear-transcribed mRNA catabolic
RPS3A GO0:0000184 | process, nonsense-mediated decay 1.74e

Genes and enriched GO terms in females

Gene GOID Term name Padj
B2M G0:0098542 | defense response to other organism 1.32e™
H2BCS8 GO0:0006952 defense response 2.09e™
AC011586.2 G0:0051707 response to other organism 5.36e
negative regulation of gene
H4C5 GO0:0045814 expression, epigenetic 5.36e™
H2BC3 G0:0009607 response to biotic stimulus 5.36e

Table 2.6 Top 5 genes and enriched biological process terms associated with
sex

Statistical enrichment analysis using an ordered list through the g:GOSt programme
of g:Profiler with significance determined at a 5% FDR. Five most significantly
enriched biological process terms for genes with local true sign rate (/tsr) greater than

0.5.
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2.6 Microglia and disease

2.6.1 Microglial gene expression and Alzheimer’s disease (AD)

Next, | examined expression of known AD genes across the microglia dataset. |
included familial AD genes (APP, PSEN1 and PSEN2), and a selection of genes
associated with late-onset AD. The late-onset AD genes included the large effect size
gene and APOE rare missense variant genes (TREM2, PLCG2 and ABI3). While
these genes have been definitively linked to AD, many complex disease risk variants
for late-onset AD identified by genome wide association studies (GWAS) lie in
non-coding regions of the genome*36137.31 Thijs presents a problem for expression
analysis, because linking these signals to candidate genes is challenging. One
approach to identifying the candidate causal genes is colocalization, which compares
association signals between a GWAS and those from an expression quantitative trait
loci (eQTL). | examined the expression of a set of genes identified as candidate
causal AD risk genes identified as part of the same study described in this chapter
(eQTL analysis carried out by Dr Natsuhiko Kumasaka). This gene set included:
BIN1, MEF2A, PTK2B, CASS4, CD33 and EPHA1-AS1.

Table 2.7 summaries whether these genes, and genes that have been identified as
the “nearest gene” to an AD risk variant in more than one GWAS study (see Table
1.1), had increased expression within specific microglia clusters or between males
and females. | also looked at whether the AD genes were positively or negatively
correlated with age or whether expression was increased in a particular brain region.
Only 4 of 30 the AD-linked genes studied here showed a significant correlation
between expression level and age and the majority of the AD linked genes showed
no differential expression across clusters. However the 6 genes whose expression
was increased within specific clusters were within the “activated” populations while

none were increased in the homeostatic population (cluster A).
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Nearest Cluster Higher expression in Higher expressionin = Correlated
Gene marker? male or females? specific brain region?  with age?

APP D
PSEN1
PSEN2

APOE Positively
TREM2 B Male Occipital
PLCG2

ABI3 C

BIN1 Negatively
MEF2A Occipital
CASS4 B Negatively
PTK2B

CD33

EPHA1-AS
1

CR1
CD2AP
EPHA1 Occipital
MS4A6A D Occipital Positively
PICALM
ABCA7
SORL1
SLC24A4
DSG2
INPP5D D
ZCWPW1
FERMT?2
CLU
ADAM10
KATS8
ACE
ECHDC3
Table 2.7 AD associated risk genes and microglia single cell expression.
AD associated genes cross-referenced against differentially expressed genes

between clusters, sex, brain region and age.
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2.7 Discussion

In this chapter | describe the collection and sequencing of the largest human primary
microglia dataset to date. Dr Adam Young collected brain samples from 141
neurosurgical patients and sorted CD11b+ cells for bulk and single cell
RNA-sequencing. From the 141 samples, 109 were included for bulk data analysis
and 9,538 cells from 129 patients were analysed from smartseq single cell
sequencing. This provides the largest RNA-sequencing resource of fresh primary
human microglia to-date with patients in the study coming from a variety of clinical
backgrounds. Due to the large scale of the dataset and the range of clinical
backgrounds we have been able to run comparisons across pathologies, age ranges,
sex and brain regions. The samples also cluster with other smaller datasets of fresh
primary cells, despite larger amounts of between sample variability, confirming that

our data matches well with high quality published datasets.

From single cell analysis,we have identified limited amounts of heterogeneity in
primary microglia and suggest that the majority of the heterogeneity is driven not by
distinct subpopulations of cells but of microglial populations that are in differing
activation states. 3 of the 4 clusters identified within this dataset had increased
expression of immune activation genes, although Cluster B may have represented
pre-activated cells. The cells in clusters C and D were enriched for patients from
specific pathological backgrounds, most significantly trauma patients. This suggests
that the majority of microglia in the brain are in a homeostatic state that is only

altered under trauma or disease.

| also demonstrated that selected genes had expression profiles that significantly
correlated with age, with an increase in expression of inflammatory genes and a
reduced expression of locomotion and motility genes with age. While there were
small effects on gene expression linked with age in the primary microglia, there were
almost no differentially expressed genes between male and female samples, which is
similar to what has been suggested in large scale mouse studies?'. It may be that in

small sub-populations of cells there are more subtle sex or age effects, but as many
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of the populations described here are made up of small numbers of cells the ability to

detect this subtle differences is reduced.

As microglia have been suggested to be a pathogenic cell type in Alzheimer’s
disease (AD) and disease specific changes in microglial transcriptomes have
previously been reported in AD patients'®'® | also looked at specific changes in AD
linked gene expression within our dataset. While many of the AD linked genes, both
those identified in previous single cell studies and GWAS genes, were expressed
within this dataset, there was no enrichment for increased gene expression within
one specific microglia cluster. This further adds to the theory microglia react in a
disease or pathology specific manner. Interestly, reactive microglia have been
suggested to be a potential pathogenic cell type that links traumatic brain injury to an
increased long-term risk of dementia. In this dataset there was no enrichment for AD
linked genes within the trauma patients but this may be because samples were taken
within a short time period of the trauma. It may be that as time progresses the cells

take on a more AD specific phenotype.
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Chapter 3: Comparison of in-vitro models of microglia

Collaboration note

Data collected for this chapter comes mainly from publicly available RNA-seq
datasets. For details of these data sources please refer to the methods section of the
chapter. However, a small number of samples were generated as part of other
projects in the Gaffney Lab. The primary microglia are a subset of samples from the
data described in Chapter 2, as part of REC 16/LO/2168. A number of the
iPSC-derived macrophage samples are from the MacroMap project, involving Dr
Andrew Knights, Dr Nikos Panousis and the CGaP core facility at the Wellcome
Sanger Institute. Within the cancer cell line samples are a selection of samples

generated by Carl Fishwick (GSK) as part of an Open Targets project.

3.1 Introduction

Although primary microglia are a critically important cell there are factors that limit the
use of the primary cells in the laboratory. Primary human microglia are inaccessible,
particularly as fresh rather than post-mortem samples, and recoverable cell numbers
are relatively small. While it is possible to culture primary cells following isolation from
the brain, previous data has shown that culturing primary microglia causes a
significant change in gene expression and the cells have limited proliferation

potential".

The limited ability for researchers to use primary cells for in-vitro studies, particularly
large-scale genetics studies, means that there is a need to develop robust model
systems for primary microglia, and to understand how well these models capture the
biology of the primary cell. For primary microglia these model systems can range
from established macrophage models to more specialised microglia systems. The

models discussed in this chapter include: monocyte-derived macrophages (MDMs),
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cancer-cell lines (such as THP-1 and U937 lines) and induced pluripotent stem cell

(iPSC) models of both macrophages and microglia.

3.1.1 Monocyte-derived macrophages

Both monocyte-derived macrophages (MDMs) and primary microglia are part of the
myeloid cell family and are both considered to be macrophages, with microglia
representing a tissue-specific arm of the cell group. However, there are fundamental
differences in the origin and developmental lineages of the two cell types. Primary
microglia have been shown to develop from yolk-sac derived precursor cells that
arise in early embryonic development”'"?*2, Adult monocytes, on the other hand, are
constantly replenished by bone-marrow derived cells. How these different lineages
impact the cell function remains a controversial topic; particularly as it is known when
the blood brain barrier (BBB) is disrupted, circulating monocytes can enter the central

nervous system (CNS) and differentiate into brain macrophages?2.

While human MDMs are somewhat easier to derive than primary microglia, sampling
primary human cells is still complex and comes with experimental limitations such as
an inability to run repeated experiments and a lack system of manipulation. For
instance introducing genetic modifications into MDMs can be inefficient and may

impact function and expression in nonspecific ways?3*234,

3.1.2 Cancer cell lines

A large proportion of the in-vitro studies of macrophage function have been carried
out in human myeloid leukemia lines, such as THP-12% and U9372% cells. The patient
derived cell lines are thought to represent cells similar to that of monocytes that can
be pushed towards more macrophage like phenotypes through simulations with
compounds such as phorbol-12-myristate-13-acetate (PMA)?*’. The differentiated
cells appear morphologically similar to MDMs and have similar functional capabilities
such as phagocytosis as the primary cells?®*"~>*°, However, certain aspects of cancer
cell line function have already been shown to differ from MDMs. For instance, THP-1

cell response to lipopolysaccharide (LPS) stimulation significantly differs when
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compared to MDMs?%, showing a lack of IL-6 and IL-10 response and a reduction in

IL-8 release compared to primary cells.

As the cell lines have been created from single patients, they provide a tool to
repeatedly study cell effects on the same genetic background. However, the cells are
derived from immortalised cancer cell lines and, therefore, their genetic background
may not accurately represent that of healthy individuals. For instance, 119 genetically
aberrant regions in the THP-1 genome have been detected®', including deletions in

the PTEN gene, a key tumour suppressor gene, and trisomy of chromosome 8.

3.1.3 iPSC derived macrophages

As mentioned in section 1.6, induced pluripotent stem cell (iPSC) based models
provide an attractive option for studying human disease'’. Like in the primary cell
type (MDMs), iPSC-derived macrophage cells have been shown to express known
myeloid cell marker genes such CD18 and CD68 as well as being functionally similar
in their ability to phagocytose compounds'*'®*, Gene expression studies and
cytokine profiling have also demonstrated a conserved pro-inflammatory response,
such as that following LPS stimulation, in both iPSC and monocyte-derived
macrophages'* ', unlike that seen with cancer-cell lines. However, iPSC
differentiated macrophages do not fully match the transcriptional phenotype seen in
MDMs. For instance, MDMs have consistently shown an increased expression of the
MHC-II cell surface marker''% or genes that encode for the receptor'®+'%. Using
differential expression analysis, it has also been noted that iPSC-derived
macrophages often express selected genes at a higher level than their monocyte
derived counterparts'*'%. These genes are often enriched for extracellular

matrix'®*1%° cell adhesion'* or fibroblast'®® processes.

Interestingly, through CRISPR knock-out of a variety of transcription factors the
formation of the myeloid precursors cells generated by EB formation, as used in
many of the studies above, has been shown to be MYB independent**?. The
formation of these precursors and downstream macrophage-like cell formation

appeared to be dependent on the activation of RUNX7 and PU.1 and this specific
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transcription factor pattern is also seen in yolk-sac myeloid progenitor development.
It has, therefore, been suggested that the iPSC-derived macrophage differentiation
protocols described above produce cells more closely related to tissue resident cells,
such as microglia, as opposed to circulating monocytes®?®, especially as the cells
have been shown to have significantly increased expression of microglia-linked
genes such as TREMZ2 and TMEM119 than monocytes.

3.1.4 iPSC derived microglia

As interest in microglia has increased, a number of research groups have focussed
on pushing iPSC derived myeloid models closer to a specialised microglial
phenotype as opposed to more generic macrophage-like cells'® 2", The
iPSC-derived microglia cells have consistently shown expression of known microglial
genes such as TMEM119, P2RY12, PU.1 and CX3CR1"-?" and often have a
ramified structure, with highly motile processes which are a unique feature seen in

primary microglia.

As with iPSC-derived macrophage studies, many of the differentiation papers
described here use transcriptional profiling through RNA-sequencing to determine
how closely the in-vitro models match the primary cell type. The iPSC-derived
microglia have been shown to have gene expression profiles more similar to
fetal/cultured adult primary microglia than dendritic cells, monocytes'??*!, other
neuronal cell types'” and MDMs'®. However all of these comparisons come with
limitations: the number of primary samples studied are often small (< 10) and the
comparison is also only run against one iPSC differentiation protocol. The largest
published model comparison dataset includes RNA-sequencing data from over 50
primary microglia samples, from three independent studies, and compared it two
iPSC-microglia differentiation protocols along with MDMs from one study®®. In this
dataset, iPSC-derived microglia appeared transcriptionally distinct from fresh adult

primary microglia but were more similar to cultured microglial cells.
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3.1.5 Limitations of current transcriptional comparisons across model systems

Many of the studies described above use transcriptional data to compare in-vitro
models to primary cell types and in many cases this requires comparison of
RNA-sequencing datasets from differing groups. However, comparisons across
sequencing studies comes with caveats, particularly batch effects that can arise in
these datasets®®2%°. These batch effects can arise from a range of biological and
technical factors, particularly when data is processed by entirely different research

groups.

The impact of batch effects can vary across studies. Unknown causes of variability
can increase noise in samples and, therefore, reduce biological signals®’. In extreme
cases, when the unknown or technical batch effects are confounded with a condition
of interest, they may even lead to incorrect biological conclusions. This is something
to consider in many of the above studies, whereby often RNA-sequencing data is
collected from different studies for differing cell types. It is, therefore, difficult to
determine if the effects described are due to the differing cell types or differing
experimental studies. However, it is not just technical batch effects that need to be
controlled for. Processing pipelines post-sequencing can also significantly impact the
quantification of gene expression®®. Even when the same raw RNA-sequencing
reads across the same samples were processed across independent analysis
pipelines, abundance estimates of protein coding genes varied by more than
four-fold. It is, therefore, key to not only try to reduce experimental and technical
batch effects that arise during sample processing but also to ensure all data is

processed through identical analysis pipelines.

As well as being aware of the potential batch effects that may have arisen within the
studies described in this introduction, it is noted that none of the currently published
work compares the transcriptional profile of all available in-vitro model systems for
primary microglia. In particular, it would be interesting to compare iPSC-derived
macrophages to the more specialised microglia differentiation protocols. In an ideal

experiment all the samples would be collected from the same research group,
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processed in an identical manner and matched for genetic background to try and
reduce any batch effects that may arise. However, in a comparison of this scale, and
particularly when collecting difficult to access primary cells, often it is not feasible to
run these perfectly controlled experiments. In this chapter | have, therefore, collected
a mixture of publicly available and in-house generated data across 5 cell types:
primary microglia, MDMs, cancer cell lines (THP-1/U937) and iPSC-derived
macrophages and microglia. While, in the study there must be comparisons across
samples collected from different laboratories, to try and minimise the impact of study
batch effects | ensured that data for each cell type came from multiple studies. As
mentioned previously, processing pipelines can also impact quantification of gene
expression?® and so in order to counteract some of these potential issues, | collected
raw sequencing data for each sample and processed all the data through an identical
analysis pipeline. | have used gene expression analysis to understand how each of
the model systems compared to primary microglia and gene network analysis to
determine which pathways may need to be switched on to move model systems

closer to the primary cell type.

3.2 Methods

3.2.1 Data collection and initial processing

Datasets for this study were identified from known large scale transcriptional
comparison papers, in house datasets and through pubmed searches for data
accession of the desired cell types. Other than in-house data (see collaboration note
for the sources of these specific samples), all samples collected as part of this study
were from publicly available sources (GEO, ENA, EGA and dbGAP). Table 3.1
summarises the 12 different studies (11 publicly available and in-house data) used
within this dataset including accession codes and references for published work
attached to the study. It should be noted that access to the samples from the
Gosselin et al. study'" are part of a managed access dataset for which use in this

project was approved in October 2017.
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Study authors

Accession code

Abud et al. (2017) "% GSE89189
Alasoo et al. (2015) ' EGAS00001000563

J. de Boer (GEO accession only) GSE96544

Douvaras et al. (2017) '*° GSE97744

Gosselin et al. (2017) '™

dbGAP : phs001373.v1.p1

In-house N/A
Gan et al. (2017) 2 GSE97041
Muffat et al. (2016) '¥’ GSE85839
Phanstiel et al. (2017) 2 GSE96800
Yeung et al. (2017) 2% ERP006216
Zhang et al. (2015) '* GSE55536
Zhang et al. (2016) %7 GSE73721

Table 3.1 Sources of data collected

Accession codes and paper links to datasets used within this analysis project.

Table 3.2 shows a breakdown how samples from each study are separated by the
cell types studied. During collection of these samples, | wanted to ensure that for
each cell type | had samples from at least three independent studies. As well as
dividing samples by cell type, metadata across the studies was collected. The
available metadata varied across the studies and particularly for studies with only cell
lines the metadata was limited. However, for all samples data was collected for a
mixture of technical (sequencing type, sequencing depth) and experimental (sex,
stimulation and culture status) effects. For primary microglia samples, the source of
the samples was also identified. Samples collected as part of this dataset originated
from 5 distinct sources: fresh adult microglia, fresh paediatric microglia, fetal

microglia, cultured microglia and microglia purchased from repositories.

| downloaded raw sequencing files and converted all data into FASTQ file format. All
data was then aligned to GRCh38 using the STAR alignment tool??'. Following

alignment, reads were quantified using featureCounts®?. | used three different
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normalisation methods following calculation of raw counts for comparison in this

study: calculation of transcripts per million (TPM), variance stabilising transformation

(VST) from the DESeq2 package®® and quantile normalisation as described

previously?*°.

Abud'®
Alasoo'

J. de Boer
(accession
only)

Douvaras'®

Gosselin'"

In-house

Gan244

Muffat'®’

Phanstiel**

246

Yeung

195

Zhang

247

Zhang

Total

(studies)

Table 3.2 Data summary

Cell Type

Primary Monocyte-derived Cancer cell

microglia

(pmic)

6

4

45

16

77 (6)

iPSC-derived iPSC-derived

macrophage lines
macrophage
(MDM) (THP-1/U937)
10 - 8
- 6 -
8 - -
- 24 54
- 4 -
- 4 -
- - 32
9 - 18
27 (3) 38 (4) 112 (4)

Table with summary of number of samples for each broad cell type

3.2.2 Principal components and variance components analysis

microglia

10

28 (3)

Following normalisation, | used the prcomp function in R to to compute principal

components (PCs) using either all genes in the dataset or across the top 500 most
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variable genes. The most highly variable genes were identified using the rowVars
function, to calculate variance for each gene row, as carried out in the DESeq2
plotPCA function®®®. Following principal components analysis (PCA), using the
varimax function, | rotated calculated PCs to identify the most highly loaded genes for
each PC.

As well as identification of individual genes that were driving PCs, | used variance
components analysis to identify which metadata may be associated with variability in
gene expression. Initially | filtered the dataset to include only protein coding and
lincRNA genes that had at least a Log,(TPM+1) of five across all samples. | used the
Imer function of the Ime4 package?® to run a mixed effect linear model for individual

genes, with each factor fitted as a random effect:

Imer (expression ~ (1|study) + (1]|cell) + (1|stimulated) + (1|sequence_type) +
(1|cultured) + (1]|sex))

As described in Chapter 2, | then used the VarCorr function of Imer to estimate the
amount of variance attributed to each gene. Following this | calculated the proportion
of variance each factor explained by dividing individual factor variance by the total
amount of variance for each gene. | did this across all genes analysed as well as
across two subsets of genes: microglia marker genes and AD linked genes (for list of

genes see Table 3.3).

Microglia marker genes Alzheimer's disease genes
C1QA ABCA7 CR1L NMES8
CX3CR1 ACE DSG2 NYAP1
GAS6 ADAM10 ECHDC3 PICALM
GPR34 ALPK2 EED PILRA
MERTK APH1B EPHA1 PLCG2
P2RY12 APOC1 FBX0O46 PTK2B
PROS1 APOE FERMT?2 SCIMP
SALL1 B4GALT3 HESX1 SLC24A4
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TMEM119 BIN1 HLA-DQA1 SORL1

CASS4 HLA-DRB1 TREM?Z2
CCDC6 INPP5D TREML2
CD2AP KATS8 UNC5CL
CD33 MEF2C USP6NL
CELF1 MS4A6A ZCWPW1
CLU MYBPC3 ZNF652

Table 3.3 Gene lists used in variance components analysis
Microglia marker genes identified from previously published studies'’’178211.212 gnd
Alzheimer’s disease genes collated from Open Targets project OTARO037 (not yet

published).

3.2.3 Differential expression and gene set enrichment analysis

| used the DESeq2 package®® to run differential expression across the dataset.
Before differential expression testing the dataset was filtered to only include genes
with more than 5 reads in at least 3 samples in the data. The model was set to
compare cell types while controlling for study effects where possible. Genes with an
adjusted p-value of < 0.05 (with Benjamini & Hochberg multiple testing correction)

and a log, fold change (LFC) of > 1 were considered differentially expressed.

Gene lists, from differential expression or variance components analysis, were tested
for specific gene set enrichment using the g:0St function of the online gProfiler tool,
version €94 eg41 p11_36d5c99%%. The function uses a hypergeometric distribution
model to run over representation analysis on given gene lists, to associate the gene
sets with known biological pathways. Gene lists were provided to the tool as an
ordered list and significant terms were identified as those with an adjusted p-value of

< 0.05 (with Benjamini & Hochberg multiple testing correction).
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3.3 Technical comparisons within the dataset

3.3.1 Normalisation comparison

It has been demonstrated that different processing pipelines can lead to significant
differences in gene abundance estimates?®. While a full comparison of how differing
initial analysis pipelines (alignment and quantification) has not been carried out as
part of this study, | was interested to look at how differing normalisation techniques
could impact downstream results. | compared transcripts per million (Log,(TPM+1)),
quantile normalisation (QN) and the variance stabilising transformation (VST)

described as part of the DESeq2 package?®.

Following normalisation of the data using each of these methods, | ranked genes by
variance across all samples and compared the top 500 most variable genes for each
normalised dataset. Figure 3.1 shows a venn diagram of the numbers of overlapping
genes for each normalisation method. Only 236 of the top 500 genes for each
normalisation method were shared between all three techniques, with QN
normalisation having the most unique genes (165). Log,(TPM+1) and VST
normalizations had the greatest overlap across highly variable genes with 364 shared
genes. This highlights that, even when initial alignment and quantification is identical
across samples, differing normalization methods can still impact certain downstream

analysis outcomes.

91



VST Log,(TPM+1)

A
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Figure 3.1 Venn diagram of overlapping most variable genes
Top 500 most variable genes were calculated following three independent
normalisation methods: variance stabilising transformation (VST), quantile

normalisation (QN) and transcript per million (Log,(TPM+1)).

As well as identifying specific differences in the most variable genes across
normalisation methods, | also wanted to understand how these differences may
impact downstream PCA and the biological conclusions that could be drawn from it. |
took the top 500 genes calculated above for each normalisation and used those
genes to run PCA. | plotted samples (Figure 3.2) based on their PC scores for the
first two principal components and coloured samples by cell type to compare the

pattern of sample distribution across the norm