
Chapter 3

Statistical colocalisation of Primary

Sclerosing Cholangitis risk loci with

functional quantitative trait loci

3.1 Introduction

The majority of genetic variants associated with complex disease risk are located within

non-coding regions of the genome. In the quest to unravel the function of non-coding risk

variants, our next challenge is to identify the precise genes upon which they impact. It is

now understood that many non-coding risk variants exert their influence via epigenetic gene

regulatory mechanisms and exert a quantitative rather than a qualitative e↵ect upon gene

expression. Variation in gene expression is therefore an important mechanism underlying

susceptibility to complex diseases. Expression quantitative trait loci (eQTL) are genetic

variants that exert a quantitative e↵ect upon gene expression, i.e. the abundance of a gene

transcript is directly modified by a genetic polymorphism, usually within a regulatory

element. In recent years eQTL mapping methods have been developed, which test the

association between genetic polymorphisms and transcript abundance by assaying gene

expression and genetic variation on a genome-wide scale, in a large number of individuals.

Similar to any complex trait, the abundance of a gene transcript is a quantitative trait

that can, with a su�cient sample size, be mapped with considerable power [116]. Variants

associated with complex diseases are demonstrably enriched for eQTLs [117]. Nicolae et al

have shown that SNPs associated with complex traits are significantly more likely to be

eQTLs than MAF–matched SNPs chosen from high-throughput GWAS platforms that are

not associated with complex traits. Investigating eQTLs in the functional study of genetic

risk loci associated with complex diseases such as PSC therefore remains a priority.

In order to further investigate the mechanism via which non-coding genetic variants

drive risk of complex disease, one challenge has been the integration of complex trait
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association data with eQTL data to measure the plausibility of a shared causal variant

between the two traits. Over the past decade, several methods have been developed to

try and address this challenge. One of the first methods of assessing whether two traits

shared a causal variant was by crude visual comparison of the overlap between two signals.

A number of computational tools were developed to facilitate the visual comparison of

trait-associated and gene-expression data [183]. For example, a study exploring eQTL

data for a particularly gene-dense region on chromosome 17q23 strongly associated with

susceptibility to asthma [184], found by visual comparison, that the same asthma-associated

variants also had highly significant e↵ects on the expression of ORMDL3 [185]. However,

observation of visual overlap cannot prove a causal relationship between, for example,

ORMDL3 and asthma because the abundance of eQTLs throughout the human genome

make the chance finding of an overlap highly likely [186]. Indeed, inference about shared

causality between two traits requires a more robust statistical assessment of colocalisation.

Plagnol et al proposed a ‘proportionality-testing’ method which tests a null hypothesis

of proportionality of regression coe�cients for any set of SNPs across two traits, with

the assumption that where there are multiple causal variants, these are shared between

both signals [187]. However it has been subsequently demonstrated that this method is

biased as a result of having to specify a subset of SNPs on which to base the analysis [188].

Moreover these, and other methods, reliant on individual level genotype data have become

impractical with the development of collaborative consortia facilitating the meta-analysis of

GWAS data from increasingly large sample sizes. In 2014, Giambartolomei et al published

Coloc, a method to test for colocalisation between two pairs of traits, which overcomes many

of these shortcomings by using a Bayesian model with single-SNP summary statistics [189].

Coloc, discussed further in the following Methods section, assesses the plausibility of a

single shared causal variant driving two traits, requiring densely-genotyped or well-imputed

summary statistics that have undergone stringent QC. Coloc bases its analysis upon all

SNPs within a locus, assuming each SNP is a priori equally likely to a↵ect the traits

under analysis. Furthermore it estimates the posterior probability (PP) for five di↵erent

hypotheses ranging from no shared genetic variation between two traits within a region

(PP0), to shared genetic variation with the same causal variant driving each signal (PP4).

Coloc can be applied to any two pairs of traits, including disease traits or functional

(epigenetic) traits such as eQTL, histone acetylation marks (histQTL) and methylation

marks (methQTL). Coloc, and other methods using a similar statistical approach have

become the singular method of analysis for performing colocalisation between genetic

traits.

Gene expression is the subject of both global and local regulatory variation, i.e. there

are eQTLs which act across multiple tissues, in addition to tissue-specific regulatory

variation [125]. Colocalisation between disease-associated risk loci and functional traits,
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therefore requires careful consideration of the tissue, cell-type or activation state in which

the functional trait has been measured. However, identifying the relevant cell-type or

stimulated state in which an eQTL is active remains challenging, as demonstrated by

several studies, which have sought to address this through the mapping of eQTLS across

multiple cell types challenged with multiple stimuli [129, 130]. Importantly, it has been

demonstrated that eQTLs are enriched for disease-associated variants in disease-relevant

cell- or tissue-types [190, 191]. For example, a recent IBD GWAS and colocalisation study

found that a chromosome 2 IBD risk locus co-localised with an eQTL that increased

expression of integrin a4 in stimulated monocytes, an eQTL that was not active in

unstimulated monocytes [60]. Furthermore, this pathway is already the target of successful

therapeutic blockade in IBD, by Vedolizumab, a monoclonal antibody to the a4b7 integrin

which inhibits T-cell tra�cking to the gut mucosa [83, 84]. Therefore, in order to unravel

the molecular basis of disease-specific risk loci, the evidence supports the preferential

use of eQTLs measured in disease-relevant tissues for colocalisation. However, paucity of

published eQTL data means that colocalisation with eQTLs in mechanistically-related

tissue/cell types may be limited by data availability. One interesting finding of a study

combining RNA-seq with ATAC-seq (Assay for Transposase-Accessible Chromatin using

sequencing) data, found that the majority of stimulus-specific eQTLs with a detectable

e↵ect upon chromatin accessibility also altered chromatin accessibility in the unstimulated

state [134]. On this basis, colocalisation with other functional QTL, for example chromatin

accessibility, histone modification or DNA methylation, may indicate the presence of an

eQTL in another (unstudied) stimulation state, in addition to revealing the epigenetic

mechanism via which disease-associated risk variants may influence gene expression.

Therefore in order to fully understand the functional mechanisms underlying GWAS

association signals using colocalisation, it is important to examine the relevant cell type,

in the right state of activation, at the right time.

3.2 Chapter overview

Colocalisation is one means of identifying the mechanistic impact of non-coding disease

risk loci, by examining whether the same non-coding variant is responsible for regulation of

gene expression (i.e. is an eQTL). In this chapter I perform colocalisation between PSC risk

loci and functional QTL in multiple immune cell- and gastrointestinal tissue-types. Genetic

variation is often shared between several immune mediated diseases (IMDs), implicating

the same genes and biological pathways as causal mechanisms for autoimmunity. I therefore

perform colocalisation between PSC risk loci and other IMDs to identify risk loci that are

PSC-specific and those that are shared. Genetic variants tend to exert a greater e↵ect upon

gene expression than upon risk of complex disease. For those risk loci that colocalise with
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other regulatory or functional QTL traits, I harness this increased power by fine-mapping

the colocalising functional QTL data, in an e↵ort to further refine the fine-mapping results

presented in the previous chapter.

3.3 Methods

3.3.1 Colocalisation analysis

To test the plausibility of a single shared causal variant between each of the 22 PSC

risk loci, and the same regions in multiple functional QTL and IMD GWAS data sets, I

implemented Bayesian tests of colocalisation using R package Coloc [189]. Specifically,

I used the coloc.abf function as it implements approximate Bayes Factor colocalisation

methods which can be applied to per-SNP summary statistics. I used full summary

statistics for the largest PSC GWAS [42] and the datasets outlined in Table 3.1. The 22

genomic loci for colocalisation were defined as 1Mb regions of interest centred on the most

associated or ‘lead’ PSC GWAS SNP for each locus.

Coloc requires per-SNP summary level data for each of the two input traits. This

must consist of all variants within the locus, including those variants that did and did

not reach the predetermined threshold for genome-wide significance or false discovery rate

(FDR). Colocalisation can be conducted using di↵erent combinations of input data for

each trait to approximate Bayes factors, depending upon the data available. The first

combination of input data includes per-SNP p-values and MAF, sample size and ratio of

cases:controls (if using a case-control trait). The second combination includes per-SNP

regression coe�cients (�) and the variance of these regression coe�cients (SE2), in addition

to sample size and ratio of cases:controls. Where available, I used regression coe�cients

and their variance in preference to p-values and MAFs to approximate Bayes factors, as the

former combination is more accurate when using imputed data. Where data availability

meant that p-values and MAF were used to approximate Bayes factors, I preferentially

used the MAF derived from the same dataset under investigation. Where study-specific

MAF data was not available, I used the MAF derived from the UK10K reference panel,

as all data-sets included only individuals with European ancestry and thus this was the

reference panel that best represented the study population. To interpret the direction

of e↵ect of an eQTL on gene expression in the context of the PSC risk allele, I matched

eQTL and GWAS reference alleles for all loci. To minimise the chance of combining the

wrong alleles, I discarded all A/T and C/G variants that had MAF>0.45.

In this Bayesian method of colocalisation, binary vectors representing a sequence of

SNPs by whether each individual SNP is causal (1) or not (0) are paired, with each binary

vector representing one trait, and pre-assigned to one of five hypotheses (H0, H1, H2, H3,

70



H4);

H0: No SNP is associated with either trait.

H1: A SNP is associated with trait 1 (PSC), but no SNP is associated to trait 2 (IMD

or eQTL)

H2: A SNP is associated with trait 2 (IMD or eQTL), but no SNP is associated to

trait 1 (PSC).

H3: Both traits are associated with genetic variation in the region, but this is driven

by di↵erent causal variants.

H4: Both traits are associated with genetic variation in the region and share the same

causal variant.

For each PSC risk locus tested, the probability of the data for each hypothesis is

calculated and the aggregate support (probabilities) for each hypothesis combined with

the prior probability, to obtain posterior probabilities for each hypothesis (PP0, PP1,

PP2, PP3, PP4). The Coloc method uses approximate Bayes factors. Bayes factors are

summary measures for the ranking of associations, similar to p-values and are defined as

the ratio of the probability of the data under the null and alternative hypotheses [192].

Bayesian methods require the definition of prior probabilities for all five hypotheses. In

line with recommendations made by the authors, for GWAS/eQTL analyses I set prior

probabilities to 1⇥10-4 for individual trait associations and 1⇥10-6 for the probability of a

SNP being associated with both QTL and PSC traits (denoted as the p12). In a study of

shared genetic variation between four IMDs (not including PSC or IBD) Fortune et al

suggested that the selection of priors for colocalisation between two IMD traits should

be set at a less stringent threshold between 1⇥10–5 and 1⇥10–6 for the prior probability

of a SNP being associated with both traits (p12) [193]. This is due to the expectation

of more shared genetic variation between loci of IMDs. In their study, whilst the choice

of p12 did not change which diseases were associated, the posterior odds for H3:H4 did

vary with p12. To inform the choice of priors for colocalisation between PSC and the

other IMDs in this study, I tested how varying the prior may impact upon the results

of colocalisation. I performed colocalisation between PSC and UC (the IMD expected

to show the most genetic overlap with PSC), varying the p12 from 1⇥10-4 to 1⇥10-7 and

examined the weights of the resulting PP3:PP4.

I performed colocalisation for each of the twenty-two PSC risk loci with the data-sets

outlined in Table 3.1. I focused on loci for which the PP for the H4 hypothesis (PP4)

was >80%, and subsequently refer to this as evidence of colocalisation when reporting

results. I also noted regions for which the PP for the H3 hypothesis (PP3) was >80%,

which suggests shared genetic variation between two traits, but a di↵erent causal variant

driving each signal. Finally I noted regions for which PP4 did not reach the 80% threshold,
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but where some of the PP had been attributed to PP0, PP1 or PP2, as this can, in the

presence of a low PP3, indicate a loss of power to detect colocalisation.

Coloc makes a number of important assumptions. Firstly it assumes that the two traits

undergoing colocalisation have been measured in two datasets of unrelated individuals.

The method also assumes that the individuals in both datasets are of the same ethnicity

and thus the MAF and LD structure are identical. Because the PSC GWAS data set is

derived from individuals of European ancestry, only functional QTL and IMD GWAS

data derived from European individuals could be included in this analysis. Resultantly, I

excluded one large eQTL meta-analysis of whole blood from 32,000 individuals of many

ethnicities [194]. A third Coloc assumption is that the true causal variant is included

within each set of SNPs, requiring that the dataset for each trait is densely-genotyped

or well-imputed. In situations where the true causal variant is not present within both

datasets, this tends to result in a decrease in the resulting PP4 statistic. The final

assumption of this method is that there is, at most, only one independent association for

each trait within the region of interest. It is however not uncommon for genomic regions

to contain more than one independent association signal. Indeed, fine-mapping of the PSC

GWAS data from the previous chapter supported the presence of 19 independent signals

across the 15 fine-mapped PSC risk loci. For those regions in which there is more than one

independent signal, Coloc considers only the strongest of these distinct association signals.

3.3.2 Functional QTL data

Colocalisation of disease-associated risk loci with functional QTLs requires careful con-

sideration of the choice of cell-type or tissue in which the functional QTL trait has been

measured. Those tissues potentially relevant to PSC could be any whole-tissue or cell-

type from the gastrointestinal or hepato-biliary systems, or any immune-cell type. To

find published and un-published eQTL data for inclusion in my analysis, I performed a

literature search of existing eQTL studies. From this, I gathered together 42 functional

QTL data-sets covering five gastrointestinal whole tissues, six immune-cell types and five

di↵erent functional traits including gene-expression (cis-eQTL), histone marks (histQTL),

DNA methylation (methQTL) and splice site QTL (spliceQTL) data (Table 3.1). All data

included for colocalisation in this analysis had been subject of prior QC conducted by the

publishing authors.

Datasets used for colocalisation included functional QTL data from the Blueprint

epigenome project phase 2 data release [195]. The Blueprint epigenome project is a large-

scale research project which aims to generate at least 100 reference epigenomes for distinct

haematopoietic cell-types in health and common autoimmune diseases (not including

PSC or IBD). Blueprint have isolated CD14+CD16- monocytes, CD45+CD66b+CD16+

neutrophils and CD3+CD4+CD45RA+ näıve T-cells from the peripheral blood of between
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Table 3.1: Characteristics of data-sets included in colocalisation analysis
data-set Tissue type / GWAS Trait Condition Sample size

GTEx v7 Liver eQTL unstimulated 153
Transverse Colon eQTL unstimulated 246
Sigmoid Colon eQTL unstimulated 203
Terminal Ileum eQTL unstimulated 122
Whole Blood eQTL unstimulated 369
EBV-Transformed Lymphocytes eQTL unstimulated 117

Blueprint Näıve T cells eQTL unstimulated 171
(CD3+CD4+CD45RA+) Methylation unstimulated 133

H3K4me1 unstimulated 104
H3K27ac unstimulated 142

PSI unstimulated 171

Blueprint Neutrophils eQTL unstimulated 192
(CD45+CD66b+CD16+) Methylation unstimulated 197

H3K4me1 unstimulated 173
H3K27ac unstimulated 174

PSI unstimulated 192

Blueprint Monocytes eQTL unstimulated 194
(CD14+CD16-) Methylation unstimulated 196

H3K4me1 unstimulated 172
H3K27ac unstimulated 162

PSI unstimulated 194

Glinos et al, unpub T regulatory cells eQTL unstimulated 123
(CD3+CD4+CD25highCD127-) H3K4me3 unstimulated 73

H3K27ac unstimulated 91
ATAC unstimulated 88

Panousis et al, unpub Macrophages eQTL CIL (6 and 24 hrs) 83
(derived from iPS cells) eQTL Ctrl (6 and 24 hrs) 81

eQTL IFNB (6 and 24 hrs) 84
eQTL IFNG (6 and 24 hrs) 84
eQTL IL4 (6 and 24 hrs) 85
eQTL LIL10 (6 and 24 hrs) 75
eQTL MBP (6 and 24 hrs) 44
eQTL P3C (6 and 24 hrs) 86
eQTL PIC (6 and 24 hrs) 44
eQTL PIC (6 and 24 hrs) 45
eQTL Prec (Day 0 and 2) 42
eQTL R848 (6 and 24 hrs) 83
eQTL sLPS (6 and 24 hrs) 81

Kim-Hellmuth et al, 2017 Monocytes eQTL unstimulated 134
(CD14+) eQTL LPS (90’ and 6hrs) 134

eQTL RNA lipofectamine (90’ and 6hrs) 134
eQTL MDP (90’ and 6hrs) 134

Astle et al, 2016 Lymphocyte counts GWAS 173,480
Monocyte counts GWAS 173,480
Neutrophil Counts GWAS 173,480

De Lange et al, 2017 Ulcerative colitis GWAS 12,160
Crohns Disease GWAS 12,160

Cordell et al, 2015 Primary Biliary cirrhosis GWAS 2,764
Bradfield et al, 2011 Type 1 Diabetes GWAS 9,934
Trynka et al, 2011 Coeliac Disease GWAS 12,041
Okada et al, 2012 Rheumatoid Arthritis GWAS 29,880
Beecham et al, 2013 Multiple Sclerosis GWAS 14,802
Bentham et al, 2015 Systemic Lupus Erythematosus GWAS 7,219
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100-200 healthy adults, followed by epigenomic analyses [196]. These include gene expres-

sion, CpG methylation, H3K4me1, a marker for active and poised enhancers, H3K27ac, a

marker for active enhancers and active promoters and percentage splice index (PSI) which

provides the inclusion level of each exon, indicating perturbation of a splice site. I also in-

cluded published data from the Genotype-Tissue Expression (GTEx) Consortium v7 [197].

GTEx is an established data resource and tissue bank for the study of the relationship

between genetic variation and gene expression in multiple human post-mortem tissues.

Included within the GTEx database are whole tissue cis-eQTL maps for PSC-relevant

tissues including liver, transverse and sigmoid colon, terminal ileum, whole blood and

Epstein Barr Virus (EBV)-transformed lymphocytes (immortalised B-cells) isolated from

between 100-400 individuals. To try and capture colocalisations with eQTLs only active in

the stimulated state, I included published data from an eQTL study of CD14+ monocytes

derived from 134 healthy individuals and stimulated with microbe-associated molecular

patterns; lipopolysaccharide (LPS), RNA lipofectamine and muramyl dipeptide (MDP)

[198]. Two sets of unpublished data, were also included for colocalisation. The first was

an eQTL dataset measured in induced pluripotent stem cell (iPSC)-derived macrophages

di↵erentiated from the skin fibroblasts of up to 85 healthy donors, and exposed to 13 dif-

ferent states of stimulation. These included stimuli mimicking bacterial, viral and allergic

response, and measured at 6 and 24 hour time-points (data kindly provided by Dr Nikolaus

Panousis, Postdoctoral Fellow at the Wellcome Trust Sanger Institute). The second was

data from an analysis of unstimulated T-regulatory cells (CD3+CD4+CD25highCD127-)

derived from the peripheral blood of 70-125 healthy individuals and subject to RNAseq,

ChIP-Seq and ATAC-seq (data kindly provided by Dr Daphne Glinos, former PhD student

at the Wellcome Trust Sanger Institute). Finally, in order to identify PSC risk loci that colo-

calised with other IMDs, I downloaded summary statistics for the largest available GWAS

study for each of eight IMDs from the GWAS catalogue (https://www.ebi.ac.uk/gwas/).

These were UC and CD [60], Primary Biliary Cholangitis (PBC) [199], Type 1 Diabetes

(TIDM) [200], Coeliac disease (CeD) [201], Rheumatoid arthritis (RhA) [148], multiple

sclerosis (MS) [202] and systemic lupus erythematosus (SLE) [203]. I also conducted

colocalisation between PSC risk loci and risk loci associated with lymphocyte, neutrophil

and monocyte counts from a GWAS of human blood cell trait variation [204].

3.3.3 Fine-mapping of functional QTL loci

In the previous chapter I presented the results of fine-mapping the PSC risk loci. Fine-

mapping is influenced by several factors including the sample size of the cohort, the e↵ect

size, the MAF and thus the strength of association of the variants within the locus. One

of the challenges of studying a rare complex disease such as PSC is that amassing the

GWAS samples sizes comparable to more common IMDs such as T1DM and IBD is not
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feasible. Genetic variants tend to exert a greater e↵ect upon gene expression than upon

complex disease risk. Therefore, where colocalisation proves that a GWAS trait shares a

causal variant with a functional trait, there will often be more power to fine-map within

the functional QTL data and resolve the locus to a single causal variant, or small set of

credible variants. With the aim of improving upon the fine-mapping of the PSC risk loci

described in Chapter 2, I developed the following workflow pipeline (Figure 3.1). For each

PSC risk locus I conducted fine-mapping in the PSC GWAS data (Chapter 2), followed by

colocalisation with the multiple functional QTLs listed in Table 3.1. Where I observed a

PSC-QTL colocalisation, I then fine-mapped the colocalising functional QTL data, using

the same methods as described in Chapter 2. Fine-mapping requires an LD matrix, ideally

calculated from the original genotype data rather than a reference panel [159], I therefore

conducted fine-mapping in those functional QTL traits for which full genotype data was

available for the calculation of SNP correlation matrices. Functional trait fine-mapping

was therefore limited to the Blueprint data and Glinos et al’s T-regulatory QTL data.

1. Finemap locus in PSC 
GWAS data

2. Colocalise with functional
QTL

3. Finemap locus in 
colocalising funcQTL

Figure 3.1: Schematic diagram of the GWAS fine-mapping - colocalisation - functional-trait

fine-mapping pipeline to resolve the causal variants driving PSC risk loci, and the genes

they perturb.

Throughout the analyses described in this chapter, all SNPs are referred to according

to their RSID, and all base pair (bp) positions are reported according to Ensembl build

37. For ease of reference, all loci are referred to according to their chromosome and bp

position (b37) of the most probable causal SNP from fine-mapping in Chapter 2 and where

possible, the gene identified by colocalisation. Where a gene has not been identified by

colocalisation with an eQTL, I use the GWAS candidate gene, stipulating where a causal

association between a locus and a gene is proven and where it is not.
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3.4 Results

I performed colocalisation analysis between the twenty-two non-HLA PSC risk loci and

eight other IMDs (Table 3.2). To inform my choice of priors for this analysis, I first

tested how varying the prior impacted upon the PP3 and PP4 weights. I performed

colocalisation between PSC and UC, varying the p12 (prior probability for a SNP being

associated with both traits) from 1⇥10-4 to 1⇥10-7. For 7 PSC risk loci, Figure 3.2

demonstrates how varying the p12 changes the weights for PP3 and PP4. Fortune et

al previously recommended a p12 threshold somewhere between 1⇥10–5 and 1⇥10–6.

Although the weights for PP3 and PP4 varied with a p12 of 1⇥10–5 and 1⇥10–6, the results

of colocalisation (number of loci for which PP4>80%) were the same. I therefore chose

to retain the more stringent of the two p12 thresholds, which was set at 1⇥10-6 for all

subsequent colocalisation analyses.
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Figure 3.2: Colocalisation between seven PSC risk loci with UC and the evidence for PP4

and PP3 with varying p12.

For those seven risk loci not reaching genome-wide significance in Ji et al’s data,

the results consistently supported no evidence of colocalisation and therefore the results

for these seven loci are not subsequently shown. Supporting previous observations of

shared genetic architecture between IMDs, eleven of the remaining fifteen PSC risk loci,

colocalised with at least one other IMD with PP4>80%. I observed the largest number

of colocalisations between PSC and UC, a finding that was expected due to the genetic

overlap between PSC and IBD (particularly UC). Four loci colocalised between PSC and

UC and two of these four were also shared with CD. Four loci also colocalised with loci

for T1DM. There were several risk loci which could not be resolved to a single causal

variant or small set of credible variants from Chapter 2’s fine-mapping e↵orts. For these
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Table 3.2: Colocalisation between PSC risk loci and immune-mediated diseases
UC CD PBC T1DM CeD RhA MS SLE

Chr Region OR p-value H4 H4 H4 H4 H4 H4 H4 H4
1 MMEL1 1.20 5.12E-13 0.08 0.00 0.56 0.01 0.36 0.45 0.95 0.02
2 BCL2L11 1.29 2.18E-11 0.89 0.05 0.73 0.00 0.23 0.00 0.08
2 CD28 1.25 4.12E-16 0.06 0.01 0.00 0.00 0.00 0.00 0.07
3 MST1 1.33 5.25E-26 0.85 0.74 0.01 0.00 0.08 0.00 0.00 0.00
3 FOXP1 1.44 2.80E-15 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 IL2-IL21 1.28 8.25E-14 0.02 0.06 0.56 0.00 0.04 0.00 0.01
6 BACH2 1.21 1.09E-09 0.01 0.07 0.04 0.18 0.49 0.87 0.00 0.02
10 IL2RA 1.22 1.44E-16 0.05 0.00 0.00 0.00 0.95 0.00
11 CCDC88B 1.20 1.81E-13 0.00 0.56 0.03 0.82 0.00 0.29 0.00 0.04
12 SH2B3 1.18 3.86E-13 0.89 0.84 0.94 1.00 1.00 0.20 0.00 0.73
16 CLEC16A 1.20 5.22E-13 0.00 0.00 0.57 0.61 0.00 0.00 0.05
18 CD226 1.19 5.87E-12 0.00 0.03 0.88 0.76 0.02 0.00 0.25
19 PRKD2 1.28 2.12E-12 0.03 0.00 0.00 0.96 0.01 0.00 0.00
21 ETS2 1.23 3.40E-13 0.82 0.79 0.00 0.00 0.00 0.00 0.00
21 UBASH3A 1.22 2.42E-12 0.05 0.00 0.00 0.82 1.00 0.42 0.00 0.00
OR; odds ratio for lead GWAS SNP risk allele, p-value; for lead GWAS SNP
PP H4>0.8 highlighted in green, evidence for PP H3>0.8 highlighted in red

loci, in Chapter 2 I had examined fine-mapping studies of the same loci in other IMDs to

define the most likely causal variants. Reassuringly, for all loci where this was the case,

colocalisation supported a shared causal variant between PSC and the other IMD locus.

For example, fine-mapping of PSC region 8 (Chr10:6108139) resolved this locus to a five

variant credible set with a 46% PP of causality supporting rs4147359 as the most probable

causal variant. Westra et al have previously fine-mapped this locus in RhA to a three

variant credible set in which rs706778 has 89% PP of causality [114]. Here, I show that

this same locus colocalised in PSC and RhA with 95% PP4 supporting a common causal

variant between the two IMDs. Thus rs706778 is the most probable causal variant for

both PSC and RhA.

When trying to identify the gene perturbed by a PSC risk locus, colocalisation with

an eQTL is the most useful functional trait, as it enables us to identify not only the gene

a↵ected, but whether PSC risk is conferred by increased or decreased expression of that

gene. The gene quantitatively a↵ected by an eQTL, or the eQTL-gene pair is called an

eGene. I conducted colocalisation analysis between the twenty-two PSC risk loci and

42 functional QTL datasets covering five gastrointestinal whole-tissue types, six immune

cell-types and five di↵erent functional traits including gene-expression (eQTL), histone

marks (histQTLs), DNA methylation (methQTLs) and splice site QTL (spliceQTLs)

(Table 3.1). For those seven risk loci not reaching genome-wide significance in Ji et al’s

data, the results consistently supported no evidence of colocalisations with any functional

traits, thus the results for these seven loci are not shown. I found colocalisations with

eQTL for four of the remaining fifteen PSC risk loci. Of these four loci, three colocalised
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with one eGene and one colocalised with two eGenes. Where a disease risk locus colocalises

with an eQTL, further colocalisation of the same region with another functional QTL such

as a histQTL or methQTL helps us to idenitfy the epigenetic mechanism via which that

eQTL a↵ects gene expression. For example an eQTL may decrease expression of gene X

by impeding transcription factor binding, evidenced by colocalisation of the same locus

with an eQTL of gene X and a H3K27ac mark (histQTL). Of the four loci that colocalised

with one or more eGenes, I found evidence that all four also colocalised with another

functional QTL; two with methQTLs, one with a histQTL and one with a spliceQTL.

Where colocalisation for a risk locus identifies the same single eGene in more than one

cell-type or tissue, particularly those mechanistically related to PSC, this lends further

weight to a causal role for this gene in disease pathogenesis. This was the case for

three of the fifteen PSC risk loci; Chr19:47205707 PRKD2, Chr21:40466744 ETS2 and

Chr21:43855067 UBASH3A. For each of these three loci, I found colocalisations with one

eGene across several cell-types and tissues. Followed by functional trait fine-mapping, for

these three loci this allowed me to identify a perturbed gene, a direction of e↵ect, a set

of relevant cell-types, a single or small set of credible causal variants and the mechanism

via which the causal variant potentially dysregulated the quantitative expression of that

gene. The colocalisation and functional trait fine-mapping results for these three loci are

discussed in more detail below. This is followed by the discussion of two other loci of

interest; Chr12:11184608 SH2B3 and Chr18:67543688 CD226.
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3.4.1 The PRKD2 locus

The Chr19:47205707 risk locus colocalised with an eQTL for PRKD2 in monocytes

with 94% PP of causality. Notably, the PSC risk increasing allele was associated with

decreased expression of PRKD2. This locus also colocalised with two CpG methylation

sites (cg00838415 and cg08634012) in both monocytes and neutrophils, suggesting that

the causal variant for this locus may exert its repressive e↵ect upon gene expression via

hypermethylation. Interestingly, although this region colocalised with an eQTL decreasing

expression of PRKD2 in transverse and sigmoid colonic tissue (PP4=94%) and the 1Mb

region surrounding this PSC risk locus also contains a significant IBD risk locus, the

evidence supported a di↵erent causal variant driving the IBD signal (PP3 for colocalisation

with UC and CD of 94% and 97% respectively). However, co-localisation with other IMDs

demonstrated that the causal variant for this region was shared between PSC and T1DM.

Furthermore, in T1DM this locus has been reported as an eQTL for PRKD2 in monocytes

[182], a finding I was able to replicate by conducting colocalisation between T1DM and

the Blueprint monocyte eQTL data (PP4=96%). Thus, these results support that PSC

risk, T1DM risk and expression of PRKD2 in monocytes are all likely driven by the same

causal variant. The most probable causal variant was identified by fine-mapping this

locus in the PSC GWAS data which resolved the region to a fourteen variant credible set

with the majority of the PP attached to rs313839 (PP=23%), followed by rs112445263

(PP=20%) (see Chapter 2). This finding was replicated by fine-mapping the same region

in the monocyte PRKD2 eQTL data, resulting in an eight variant credible set led by

rs313839 (PP=14%), and rs112445263 (PP=14%) two variants in high LD (r2=0.98) with

one another (Table 3.4 and Figure 3.3). The remaining PP was split evenly across a further

6 variants in high LD, all with r2>0.8). Fine-mapping supported a second independent

signal in the PRKD2 eQTL data with 55% PP of causality. This was supported by the

finding that the most probable causal configuration contained two uncorrelated SNPs;

rs313839 and rs314675.

Confirming the fine-mapping assumption that all potential causal variants have been

included in the analysis, a search of the 1000 Genomes and UK10K reference panels

found there were no SNPs in high LD (r2>0.8) with rs313839, missing from the eQTL

data. The most probable credible variant for this locus, rs313839, lies within an intron.

Colocalisation with two methQTLs suggests that this variant alters two CpG methylation

sites in monocytes and neutrophils. Furthermore, rs313839*C>G (where rs313839*G

is the PSC risk increasing allele) has also been associated with the disruption of many

transcription factor binding motifs though ChIPseq studies, as previously discussed in

Chapter 2. This suggests several plausible mechanisms via which rs313839*G may exert its

repressive e↵ect upon PRKD2 expression and subsequent e↵ect upon PSC risk. However,

the location of other variants in the credible set within gene regulatory elements may
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also be important in driving the observed molecular QTL trait. For example, rs402072 at

Chr19:47219122, is the only variant that is in high LD with rs313839 and also lies within

several hundred base pairs of the transcription start site (TSS) within the promoter region.

PRKD2 (Protein kinase D2) is a member of the serine/threonine protein kinase family

and is known to be highly expressed in PSC-relevant tissues including whole blood, small

intestine, colon and liver [176]. PRKD2 has known roles in monocyte migration and

adhesion. In THP-1 cells (a widely used experimental model of monocytes) expression of a

dominant-negative form of PRKD2 resulted in decreased monocyte migration in response

to stimulus [179]. Knockdown of PRKD2 was shown to reduce adhesion of THP-1 cells to

endothelial cells in culture, whereas activation of PRKD2 through phosphorylation at Ser

744/748 was shown to increase adhesion to endothelial cells [180]. Monocytes and their

macrophage progenitors play an important role in immune-regulation and tissue-repair.

Therefore genetic variants that result in decreased expression of PRKD2 may impair

monocyte migration into tissues and subsequent tissue regeneration. PRKD2 is however

not only active in monocytes. The importance of PRKD2 in T-cells has been demonstrated

in vivo through T-cell-mediated immune responses in mice expressing PRKD2 variants

that cannot be phosphorylated by protein kinase C [205]. While PRKD2 catalytic activity

is not essential for the development of mature peripheral T- and B-lymphocytes [206],

PRKD2-mutant mice show a striking reduction in the ability of the T-cell receptor (TCR)

to induce production of pro-inflammatory cytokines such as interleukin 2 (IL-2) and

interferon-g (IFN-g), which are important for optimal T-cell-dependent antibody responses

[205]. In response to TCR stimulation in Jurkat cells (a model of peripheral T-cells),

PRKD2 was activated and translocated from the cytoplasm to the nucleus, to allow IL-2

and IFN-g promoter up-regulation [207]. Furthermore, in T-cell specific PRKD2-deficient

mice, the generation of CD4+ thymocytes is abrogated. This defect is likely to be caused

by attenuated TCR signalling during positive selection and incomplete CD4+ lineage

specification. The role of PRKD2 in activated T-cells/thymocytes may explain the absence

of an observed e↵ect in the näıve CD4+ T-cells studied in my colocalisation analysis. This

suggests that the generation of eQTL maps in other T-cell subsets, in di↵erent states of

activation, may be useful in the further investigation of PRKD2 in immune-mediated

disease risk.
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Table 3.4: Fine-mapping of PSC risk loci in functional QTL data
GWAS Finemapping Colocalisation MolQTL Finemapping

Chr SNP PP CS QTL type Cell type Gene SNP PP CS

11 rs663743* 0.41 2 eQTL Monocyte CCDC88B rs663743 0.03 245
19 rs313839 0.23 14 eQTL Monocyte PRKD2 rs112445263 0.14 8
21 rs4817988 0.58 10 eQTL Monocyte ETS2 rs4817987 0.07 47

H3K27ac Monocyte N/A rs2836878 0.13 11
21 rs1893592 0.61 5 eQTL CD4+ T-cell UBASH3A rs1893592 1.00 1

SpliceQTL CD4+ T-cell UBASH3A rs1893592 1.00 1

*2nd signal in region, CS; Credible set size, PP; Maximum posterior probability

Figure 3.3: Chr19:47205707 regional association plots for most probable fine-mapped SNP,

rs313839, in PSC GWAS data and colocalising eQTL data for PRKD2 in monocytes.
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3.4.2 The ETS2 locus

The Chr21:40466744 locus colocalised with a eQTL for ETS2 in three di↵erent tissues;

whole blood, monocytes and IL-4 stimulated macrophages. GWAS studies in both IBD and

PSC have consistently proposed that the most likely candidate gene for the Chr21:40466744

locus is PSMG1 [42, 73]. This was based upon the paucity of genes in this region, and

a study of colonic biopsies from paediatric-onset IBD patients, which demonstrated

a ‘modest’ increase in the colonic expression of PSMG1 in IBD cases compared to

controls [175]. Indeed, PSMG1 which encodes proteasome assembly chaperone 1, has

a biologically plausible role in IBD, as part of the ubiquitin-protesosome system. The

ubiquitin-protesosome system regulates the generation of peptide antigen presented to

MHC class I [208] and TCRs, in addition to regulating co-stimulatory signaling [209].

However, the results of my analysis instead support ETS2 as the gene dysregulated by

this locus. In each tissue, the PSC risk increasing allele was associated with increased

expression of ETS2. This locus also co-localised with a histQTL for H3K7ac, a marker

associated with higher activation of transcription, in both unstimulated monocytes and

neutrophils. This suggests that the mechanism by which the causal variant increases

expression of ETS2 in monocytes may, for example, be via increasing the a�nity of

transcription factor binding. Where a risk locus does not colocalise with an eGene in a

particular cell-type, colocalisation with a functional QTL may suggest the presence of an

eQTL in a di↵erent activation state [134]. It is therefore possible that this locus may be

an eQTL of ETS2, if investigated in stimulated or activated neutrophils.

Colocalisation of this locus with an eQTL for ETS2 in iPSC-derived macrophages,

six hours following stimulation with IL-4, is particularly interesting as this is a stimulus

that mimics the allergic response. Of note, there was no evidence for colocalisation with

a macrophage eQTL in either the resting state or the multiple other stimulation states

outlined in Table 3.1. This is particularly notable because the vast majority of eQTLs in

these data are shared widely across stimulation states. Not only does this highlight the

importance of studying cells in the correct state of activation on our ability to identify

eQTLs, but also supports a role for ETS2 in the autoimmune response. The ETS2 locus

also colocalised with a GWAS locus for neutrophil counts (PP4=83%), where the PSC risk

increasing allele was associated with a reduction in neutrophil counts. This is biologically

plausible given the role of ETS2 in inducing expression of pro-inflammatory cytokines

in macrophages, and the close interactions between macrophages and neutrophils in the

inflammatory response.
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Figure 3.4: Chr21:40466744 regional association plot showing the most probable fine-

mapped SNP for PSC GWAS (rs4817987) and colocalising eQTL data for ETS2 in

monocytes (fine-mapped to rs4817987) and for a H3K27ac histQTL in monocytes (fine-

mapped to rs2836878).

The Chr21:40466744 locus colocalised with UC and CD (PP4 of 84% and 80% re-

spectively), with no evidence supporting colocalisation with any other IMD (Table 3.2).
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However, ETS2 is a ubiquitously expressed transcription factor, with a well-defined role

in macrophages. Cytokine-dependent phosphorylation of Ets-2 results in Ets-2 directly

binding the promoters of matrix metaloproteinases MMP-1 and MMP-9, and the in-

duction of other pro-inflammatory target genes including TNFa, IL-1b, and chemokines,

CCL2/MCP-1 and CCL3/MIP-1↵ [210]. In mice with severe macrophage-induced pneu-

monitits, the prevention of Ets-2 phosphorylation on Thr(72) by the Ets-2(A72) mutant

allele results in decreased tissue macrophage infiltration [211]. Thus, activated Ets-2

has an important role in the persistent inflammatory response. It is therefore biological

plausible that increased expression of ETS2 could contribute to driving the aberrant

inflammatory response observed in PSC. Although I did not observe any colocalisation

of this locus with functional QTLs in T-regulatory or CD4+ T-cells, ETS2 also has a

role in IL-2 regulation, the first cytokine produced when näıve T-helper (Th) cells are

activated and di↵erentiate into dividing pre-Th0 proliferating precursors. A study by

Panagoulias et al has demonstrated that Ets-2 binds to the IL-2 promoter which allows

transition of näıve Th cells to Th0 cells upon stimulation with antigen, and that Ets-2

silencing allows for constitutive IL-2 expression in unstimulated T-cells [212]. Indeed, they

hypothesise that disturbance of this pathway could cause deranged Th cell plasticity and

resultant autoimmune disease. Further analysis of eQTL maps in di↵erent T-cell subsets

and activation states would be necessary to evaluate any e↵ect of the ETS2 risk locus on

ETS2 expression in T-cells.

Fine-mapping of the Chr21:40466744 ETS2 locus within the functional QTL data did

not prove useful in resolving the causal variant(s) driving this locus. Fine-mapping in the

monocyte eQTL data resulted in a credible set of forty-seven variants compared to ten

variants in the GWAS data fine-mapping (presented in Chapter 2). This larger credible

set is partially attributable to the higher numbers of variants directly genotyped in the

whole-genome sequenced eQTL data. Resultantly, the PP was more evenly split between

a larger number of very highly correlated variants (Figure 3.4). Furthermore, the failure

of eQTL fine-mapping to improve upon the GWAS fine-mapping is a consequence of the

reduced strength of association between the lead variant in the eQTL signal compared to

the GWAS signal, reducing the power to fine-map. Fine-mapping in the histQTL data

resulted in a similar sized credible set of eleven variants compared to ten in the PSC GWAS

data. Whilst all ten variants in the GWAS credible set overlapped with the histQTL

credible set, the evidence supported rs2836878 as the most probable causal variant in the

histQTL signal (PP=13%), compared to rs4817988 in the GWAS data (PP=58%).

3.4.3 The UBASH3A locus

Of all PSC risk loci, the Chr21:43855067 locus was the most extensively investigated prior

to this study. This locus was already a known eQTL of UBASH3A from two whole-blood
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and one B-cell only analysis [172, 213, 214] and a likely shared risk locus with CeD and

RhA [148, 201]. I confirmed, with colocalisation, that this PSC locus shared a causal

variant with CeD (PP4=100%), as well as T1DM (PP4=82%). However colocalisation

resulted in almost equivocal evidence supporting a shared (PP4=42%) or di↵erent causal

variant (PP3=54%) driving the signal in RhA.

Colocalisation confirmed that this locus is an eQTL of UBASH3A in T-regulatory cells

(PP4=100%) and näıve CD4+ T cells (PP4=99%). In both T-cell types, the PSC risk

increasing rs1893592*A allele, which is also the major allele at this locus, was associated

with decreased expression of UBASH3A. Interestingly, although there was no evidence

supporting shared genetic variation with UC or CD, the Chr21:43855067 rs1893592 locus

also colocalised with a eQTL of UBASH3A in transverse colon tissue (PP4=95%), but

not sigmoid colon, a pattern of colonic involvement reminiscent of the PSC-associated

IBD phenotype. Fine-mapping of this locus in PSC GWAS and CD4+ T-cell eQTL

data supported rs1893592 as the most probable causal variant. As a result of the higher

strengths of association in the functional QTL data increasing power to fine-map the

signal, fine-mapping in the eQTL data attributed 99% of the PP4 to rs1893592 compared

to 61% in the GWAS data. The rs1893592 variant is thought to alter the conserved 5’

splice donor sequence. The predicted consequence of the PSC protective rs1893592*C

allele is to increase expression of the downstream intron, causing intron 10 to be retained

in the UBASH3A mRNA [42, 215]. This was supported by the finding of a colocalisation

with a spliceQTL in CD4+ T-cells (PP4=99%), which was also fine-mapped to the same

causal variant, rs1893592, with 100% PP4 of causality.

UBASH3A has a described role in human T-cells where it has been shown to attenuate

the NF-kB signalling pathway upon TCR stimulation, by specifically suppressing activation

of the IkB kinase complex, through a ubiquitin-dependent mechanism [216]. In the T-cell

eQTL data used for colocalisation in this analysis, the PSC protective rs1893592*C allele

was associated with increased UBASH3A expression. It has been previously demonstrated

in human primary CD4+ T cells that following TCR stimulation, the PSC-protective

rs1893592*C allele is associated with a significant reduction in the overall mRNA levels of

UBASH3A, but an increase in the proportion of a normally occurring, but low-abundant

UBASH3A transcript that retains intron-9 sequences and cannot produce full-length

UBASH3A protein [217]. The reduction in UBASH3A mRNA subsequently results in

increased secretion of IL-2, a key cytokine in T-cell function and activation. This therefore

provides important insights into how dysregulation of UBASH3A splicing and expression

may be causal in the pathogenesis of PSC.
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Figure 3.5: Chr21:43855067 regional association plots for fine-mapped SNP, rs1893593, in

PSC GWAS and colocalising eQTL data for UBASH3A and spliceQTL data for UBASH3A.
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3.4.4 The SH2B3 locus

The Chr12:11184608 SH2B3 PSC risk locus colocalised with five other IMDs; UC, CD,

PBC, T1DM and CeD, supporting a single-shared causal variant driving all six diseases.

Fine-mapping in the PSC GWAS data (Chapter 2), highlighted rs3184504, a missense

variant within the 3rd exon of SH2B3, as the most probable causal variant (PP=99%).

Whilst this locus has not been fine-mapped in UC, CD, PBC or CeD, a fine-mapping study

of T1DM resolved this locus to a credible set including two variants; rs653178 (PP4=66%)

and rs3184504 (PP4=33%) [114]. Notably, both of these variants were included within the

PSC fine-mapping analysis.

SH2B3 is ubiquitously expressed across many cell and tissue types, with a role in the

regulation of signalling pathways involved in cell migration, di↵erentiation, inflammation

and haematopoiesis [218]. It was therefore unsurprising that this locus colocalised with

GWAS traits for leucocyte, monocyte and neutrophil counts. The PSC risk increasing

rs3184504*T allele is associated with an increase in all myeloid and lymphoid cell counts,

compared to the reference rs3184504*C allele. SH2B3 is a negative regulator of T-cell

activation, TNF production, and Janus kinase (JAK)-2 and -3 signalling. Another eQTL

study has shown that the autoimmune hepatitis (AIH) rs3184504*A risk allele, which

results in the same protein coding change as rs3184504*T, is associated with increased

expression of genes involved in IFNg production [172]. This suggests a mechanism via

which this locus might contribute to increased immune cell counts and aberrant immune-

and inflammatory-response.

3.4.5 The Chr18:67543688 locus

PBC is an immune-mediated inflammatory condition a↵ecting the small bile ducts that

is often considered a sister condition to PSC. Somewhat surprisingly, colocalisation of

PSC risk loci with PBC identified only two loci for which there was evidence of a single

shared causal variant between both traits. The first was the Chr12:11184608 SH2B3 locus

discussed above, and the second was the Chr18:67543688 locus. The Chr18:67543688 locus

could not be well fine-mapped in the PSC GWAS data with a credible set containing

44 variants. Furthermore, this locus did not colocalise with any other IMD, other than

PBC, in this analysis. It is therefore possible that the genes and pathways a↵ected

by this locus are perhaps the most likely candidates for bile-duct specific e↵ects. This

1Mb region of the genome contains only four genes (see Figure 2.7, Chapter 2); DOK6,

CD226, RTTN and SOCS6, however I did not find subsequent evidence for colocalisation

with any functional QTLs or eQTLs to support a causal role for one of these four genes.

Two of these four candidate genes, CD226 and SOCS6, have important roles in relevant

immune cell pathways. The first gene, CD226, is expressed on the surface of natural killer
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cells, T-cell subsets, platelets and monocytes. CD226 mediates cellular adhesion to other

cells expressing its ligands, CD112 and CD155. The second gene, SOCS6 (suppressor of

cytokine signalling 6), is a cytokine-inducible negative regulator of cytokine signaling. The

third gene in this region, DOK6, is a less likely candidate for involvement in PSC or PBC

pathogenesis as it is expressed mainly in the central nervous system where it is involved in

the receptor tyrosine kinase signalling cascade [219]. Whilst little is known about the final

candidate gene in this locus, RTTN, it encodes Rotatin, an intracellular protein thought to

play a role in the maintenance of normal ciliary structure [220]. Cholangiocytes are ciliated

cells which have a role in expediting bile flow, and disturbance of the normal structure

or function of cholangiocyte cilia is likely to contribute to several cholangiopathies [221].

Thus RTTN is the only gene within the Chr18:67543688 PSC-PBC risk locus with a

potential role in bile duct homeostasis, highlighting it as a potential candidate gene for

further investigation.

3.5 Discussion

In this chapter I describe the first investigation of PSC risk loci using colocalisation with

multiple traits including IMD risk, cell count indices, eQTLs and functional QTLs across

a variety of PSC-relevant cell-types and tissues. By combining colocalisation to identify

the genes impacted by PSC risk loci and the epigenetic mechanisms underlying the gene

perturbation, with fine-mapping in the colocalising functional traits, I identify the genes,

cell-types and causal variants a↵ected by several PSC risk loci. For four of the fifteen

PSC risk loci, this was successful in identifying the genes perturbed and for three of these

five loci, it was successful in identifying a single causal variant, or small set of credible

variants. Perhaps most notably, these analyses determine that the most probable causal

variant driving the Chr19:47205707 PSC and T1DM risk locus, rs313839, results in a

reduction of PRKD2 expression in monocytes and colonic tissue, possibly mediated by

hyper-methylation. Similarly, I have fine-mapped the shared PSC-IBD Chr21:40466744

risk locus to a set of ten credible variants, of which the true causal variant increases

expression of ETS2 by activating transcription in monocytes and macrophages subject to

allergic stimulus. Thus the results of this study can guide further functional follow-up of

these loci in terms of causal variants, direction of e↵ect upon gene expression and relevant

cell types in which the e↵ects are mediated. Furthermore, they advocate the combination

of colocalisation and functional trait fine-mapping as an alternative approach to resolving

the causal variants driving complex trait loci in rare diseases, in which amassing the

large sample sizes required to improve upon GWAS trait fine-mapping is unlikely to be

feasible. However, for some non-coding PSC risk loci, this pipeline was not e↵ective in

determining either causal variants or genes. For example the Chr2:111933001 (BCL211 ),
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Chr6:91030441 (BACH2 ), Chr10:6108439 (IL2RA) and Chr18:67543688 (CD226 ) loci did

not colocalise with any functional QTL in the tissues and cell types included within this

analysis. Each of these loci did, importantly, colocalise with at least one other IMD (Table

3.2), all of which are more common diseases with larger GWAS sample sizes, meaning

that colocalisation and fine-mapping in those other colocalising IMD traits may be an

alternative route to resolving these PSC risk loci.

This study focused on colocalisation with functional traits in cells and tissue types

relevant to PSC. This was based upon previous studies demonstrating that some eQTLs

are only active in particular cell types or activation states [130], and that eQTLs are

enriched for disease-associated variants in disease-relevant tissue-types [190, 191]. The

choice of disease-relevant tissues in this study was however limited by two factors. Firstly,

designating a cell-type ‘relevant’ in a disease such as PSC, in which we have limited

understanding of disease pathogenesis, is challenging. Secondly, the limited availability of

functional QTL data with publicly accessible full summary statistics in these ‘relevant’

cell types further impairs this choice. However the results from this analysis serve to

highlight the importance of conducting colocalisation with eQTLs measured in the relevant

cell-types. For example, analysis of the Chr21:40466744 locus supported ETS2 as the

most likely gene perturbed by this risk locus, with colocalisations observed in monocytes

and IL-4 stimulated macrophages. Whilst ETS2 has a described role in the induction

of pro-inflammatory cytokine release from macrophages, ETS2 also has a role in IL-2

regulation in näıve Th transitioning to Th0 cells upon antigenic stimulation. Given this

role in näıve Th cells, it is unsurprising that we did not find any colocalisation with eQTLs

for ETS2 in the available CD4+ or T-regulatory cell datasets. However, it is plausible

that if examined in the right T-cell subtype or activation state, the Chr21:40466744 locus

may also be an eQTL of ETS2 in some T-cell subtypes. Similarly, investigation of the

Chr19:47205707 risk locus found it colocalised with an eQTL for PRKD2 in monocytes,

a gene with a role in the adhesion of monocytes to endothelial cells. Whilst this gene

also has a role in negative selection of T-cells, I did not find any colocalisation with a

PRKD2 eQTL in the available CD4+ T-cell and T-regulatory cell data. Furthermore,

there are no published and publicly available eQTL datasets for T-cells in the activated

or stimulated state, again introducing the possibility that the correct cell type has not

been examined. Future work could focus upon conducting combined colocalisation and

fine-mapping in functional QTL data from all available cell-types and tissues, with the

added risk of introducing noise by examining traits across multiple tissue types and the

di�culty of interpreting colocalisations with genes in tissues such as brain or muscle

which are seemingly remote from PSC pathogenesis. Another solution would be to use

the current hypotheses of disease pathogenesis in PSC to select those cell types of most

potential mechanistic relevance to PSC and to build eQTL maps in those PSC-specific
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cell types. This is an analysis presented in the following chapter.

Several properties of Coloc are likely to have influenced the results presented in this

chapter. Firstly, Bayesian colocalisation analysis is strongly influenced by the choice of

priors. Indeed, as the p12 threshold is increased (e.g. from 10-6 to 10-5), there is more

certainty that the data supports a shared causal variant between both traits. This can be

especially important in regions where there are extended patterns of strong LD and thus

uncertainty as to whether the data supports the H3 or H4 hypothesis, because it is in

keeping with both scenarios. For these loci, the choice of prior becomes the determinant of

the colocalisation. An example of this is the Chr4:123499745 locus near the candidate gene

IL2-IL21, for which there was no evidence supporting colocalisation with any functional

QTLs or IMDs at p12=10-6, but with evidence supporting shared genetic variation with

several other IMDs driven by a di↵erent causal variant (PP3>80%) (Table 3.2). However,

the evidence supporting colocalisation (PP4) increases as the p12 threshold is increased

(Figure 3.2). Whilst this may favour a higher p12 for the detection of more colocalising IMD

traits, it is known that variants associated with complex traits are more likely to be eQTLs

than MAF-matched variants from GWAS analyses chosen at random, thus supporting the

more stringent choice of priors used in this analysis [117, 222]. Secondly, Coloc makes the

assumption that each risk locus contains only one independent signal. For those regions in

which there were more than one independent signal, Coloc considers only the strongest of

these distinct association signals. Where each of the association signals explains a similar

proportion of the variance of the trait, the PP4 will drop and PP3 proportionately increase

[189]. Fine-mapping of the PSC risk loci described in Chapter 2 supported the presence of

two independent signals in four of the 15 loci. For those four PSC risk loci containing two

independent signals, there was evidence for colocalisation with functional QTLs for only

one of these four risk loci. This was the Chr11:64107735 locus, which colocalised with

an eQTL for CCDC88B in monocytes and an eQTL for AP003774.1 in whole blood and

EBV-transformed lymphocytes. A future means of investigating these multi-signal loci

is to include a step-wise conditional regression [223] to identify additional independent

signals within a locus, and to perform colocalisation on the resultant conditional p-values,

as a means to accounting for multiple independent signals [189].

Colocalisation with eQTLs, functional QTLs and other IMDs allows us to ascribe a

gene, the direction of e↵ect on gene expression associated with PSC risk, the epigenetic

mechanism dysregulating that genes expression as well as the other IMDs impacted via

the same gene and epigenetic mechanism. With the example of the Chr19:47205707 risk

locus, colocalisation identified that the causal PSC risk increasing allele for this locus

correlated with an eQTL reducing expression of PRKD2, via hypermethylation, and that

the same causal variant also conferred risk of T1DM. In order however, to unequivocally

prove that T1DM risk at this locus is also mediated by perturbation in PRKD2 expression,
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I needed to performed further colocalisation between T1DM and monocyte eQTL data.

More recently, Giambartolomei et al have published methods to quantify the evidence

supporting a common causal variant in a particular region across multiple traits from

summary statistics [224]. This method, Moloc, was published in 2018 after the analysis

presented in this chapter was largely complete. Similar to Coloc, Moloc uses a Bayesian

framework to integrate GWAS and functional QTL data, with the same three assumptions

pertaining to the inclusion of the true causal variant within the data, a maximum of one

independent association per region and that samples are drawn from the same ethnic

population and thus share LD structure. The future use of such a method would be

advantageous in providing a quantification of evidence for a shared causal variant between

all traits tested for one locus, avoiding the need for the multiple rounds of pair-wise

colocalisation conducted in this analysis. Such an approach could also be useful in the fine-

mapping of PSC risk loci. An important part of this analysis was to conduct fine-mapping

of loci within functional traits, in an e↵ort to identify the causal variant driving these

colocalising traits. Whilst data availability meant that this approach could only be applied

to four of the PSC risk loci, it was successful in improving fine-mapping resolution for

two of these loci. An potentially fruitful future analysis might focus upon boosting power

for fine-mapping by combining multiple colocalising datasets for a single locus into one

meta-dataset using a model that allows for mixed e↵ect sizes, followed by fine-mapping of

the meta-dataset. Methods based upon similar approaches have been published by Wallace

et al [225] and will form part of my future follow-up work, not presented in this thesis.

Using a combination of colocalisation and fine-mapping across multiple traits, I have

been able to identify the genes, causal variants and epigenetic mechanisms implicated

by five PSC risk loci. In addition, my work highlights some of the cell-types in which

these aforementioned genes and mechanisms are especially relevant. However, several loci

remain unresolved, and future work should focus upon using current knowledge of PSC

pathogenesis to build eQTL maps in the most PSC-relevant cell types, followed by similar

colocalisation and fine-mapping analyses. This analysis, presented in the following chapter

is a means to further understanding the causal biology of PSC.
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