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Abstract

Primary sclerosing cholangitis: from genetic risk to disease biology

Elizabeth Claire Goode

One in 10,000 people in the Western world lives with Primary Sclerosing Cholangitis

(PSC), an immune-mediated, inflammatory disease of the bile ducts that is highly co-

morbid with inflammatory bowel disease (IBD). PSC confers risk of serious disease sequelae

including hepatobiliary malignancy and progression to end-stage liver failure, for which the

only treatment option is liver transplantation. The absence of e↵ective medical therapies for

PSC reflects our current limited understanding of the disease’s aetiology and pathogenesis.

Our DNA, laid down at conception, gives us an unrivalled opportunity to understand

the underlying causal biology of disease. This is because the genetic variants associated

with disease susceptibility perturb genes and biological pathways that contribute to disease

causality. Twenty-two regions of the genome, outside of the HLA, have been associated

with PSC risk. These loci o↵er the potential for huge insight into the causal biology of

PSC, if only we can robustly identify the true causal variants driving these loci and the

genes they perturb. However, this is complicated by several scientific challenges. Firstly,

the majority of disease-associated risk loci occur within non-coding regions of the genome.

Secondly, patterns of correlation between variants within a risk locus means that the true

causal variant driving the signal could be any of those highly correlated with the variant

with the smallest p-value.

In this thesis, I present analyses aimed at identifying the true genes and causal variants

underlying each of the twenty-two PSC risk loci. Many non-coding risk variants associated

with complex disease exert a quantitative a↵ect upon gene expression i.e. are expression

quantitative trait loci (eQTLs). Colocalisation assesses the evidence that a single shared

causal variant is responsible for driving PSC risk and gene expression via an eQTL. In order

to assign dysregulated genes to PSC risk loci, I perform colocalisation with eQTLs mapped

in multiple cell-types and tissues mechanistically relevant to PSC. Because PSC is rare,

eQTLs have not previously been mapped in all cell-types most relevant to this disease. In

addition, I therefore map eQTLs in six peripheral blood T-cell subsets (including the rare

CCR9+ gut-homing T-cells) from ⇠80 patients with PSC and IBD. With colocalisation, I

assign causal genes to five PSC risk loci, and assign other epigenetic regulatory features



including methylation or histone modification, to six risk loci. Statistical fine-mapping of

each risk locus in both the GWAS and eQTL data enables me to resolve three PSC risk

loci to a single causal variant and nine loci to 95% credible sets containing ten or fewer

variants.

The results presented in this thesis identify three genes (PRKD2, ETS2 and UBASH3A),

causal in the pathogenesis of PSC, which are currently the target of existing or experimental

therapeutic agents. Firstly, reduced expression of PRKD2 causes excessive cell-autonomous

T-follicular helper cell development and B-cell activation, and is associated with increased

risk of PSC. Several studies are investigating the therapeutic e↵ects of increasing the

kinase activity of PRKD2. ETS2 is involved in the induction of pro-inflammatory cytokine

release from macrophages and IL-2 regulation in Th to Th0 transition. ETS2 inhibitors

are currently the subject of early therapeutic trials. Finally, UBASH3A attenuates the

NF-kB/I-KKb pathway, an inflammatory pathway that is already targeted by proteasome

inhibitors and acetylsalicylic acid, both of which could be potentially therapeutic in PSC.

PSC is a debilitating disease with serious disease sequelae, for which new therapeutic

options are urgently needed. In this thesis, I elucidate multiple genes with a causal role in

PSC pathogenesis, several of which are potential candidates for future therapeutic target.
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Chapter 1

Introduction

One in 10,000 people in Western countries lives with Primary Sclerosing Cholangitis

(PSC), an immune-mediated, inflammatory disease of the bile ducts. PSC is a rare disease,

which confers risk of serious disease sequelae including hepatobiliary malignancy and

progression to end-stage liver failure, where the only treatment option is liver transplan-

tation. Inflammatory bowel disease (IBD) is highly co-morbid, present in up to 80%

of patients with PSC. Patients with PSC and IBD also have a high risk of developing

colorectal cancer. The absence of e↵ective medical therapy for PSC reflects our current

limited understanding of disease aetiology and pathogenesis. Over the past decade several

genome-wide association studies (GWAS) have investigated the genetic architecture of

PSC, identifying genetic variants associated with disease susceptibility. Whilst it was

anticipated that these findings would translate into further biological understanding of

PSC pathogenesis and the identification of potential therapeutic drug targets, progress

has been slow. This thesis will explore the biological significance of genetic risk variants

associated with PSC susceptibility and the genes and cell types they perturb, with the aim

of identifying potential future therapeutic targets. This introductory chapter will provide

an overview of our current understanding of the genetic and biological architecture of PSC,

and the associated challenges for the functional follow-up of genetic risk loci associated

with rare complex diseases, such as PSC.

1.1 What is Primary Sclerosing Cholangitis?

PSC is chronic progressive fibro-obliterative disease of the intra- and extra-hepatic bile

ducts of the liver. It is characterised by recurrent biliary inflammation leading to a

progressive, di↵use, multi-focal, biliary stricturing and fibrosis. Eventually this can

progress to complete obliteration of small bile ducts and resultant cholestasis. Common

symptoms can range from fatigue to the sequelae of cholestasis such as jaundice, pruritus

and recurrent cholangitis. Progressive fibrosis and cirrhosis of the hepatic parenchyma can
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result in end-stage liver failure, with up to 20% of patients requiring liver transplantation

within 10 years of diagnosis [1, 2]. High transplant rates are further precipitated by the

lack of any e↵ective medical treatments that can attenuate or halt the progression of this

debilitating disease. Even liver transplantation itself does not always o↵er a cure, with

more than 20% of patients experiencing recurrent disease in their transplant graft [3]. In

addition, inflammation-associated biliary dysplasia results in a greatly increased risk of

cholangiocarcinoma and gallbladder cancer and thus PSC confers a 15% lifetime risk of

developing hepatobiliary or colorectal malignancy [4, 5]. Therefore, although it is a rare

disease, PSC places a disproportionately high burden on gastroenterology, oncological and

transplant services, remaining the 5th most common indication for liver transplantation

across the UK and Europe [6, 7].

PSC is strongly associated with inflammatory bowel disease (IBD), most commonly

ulcerative colitis (UC), which co-exists in 60-80% of PSC patients. The clinical phenotype

of PSC-associated IBD (PSC-IBD) is distinct from that of lone IBD, more commonly

a↵ecting the right side of the colon with rectal sparing [8–10]. Despite its milder in-

flammatory phenotype, PSC-associated IBD carries a significantly higher risk of colonic

malignancy, which is ten-fold that of the general population [4, 11]. Furthermore, the lesser

common PSC-associated with Crohns disease, has been associated with a lower risk of liver

transplant, death and malignancy compared to PSC associated with UC [12]. There are

several other clinical subtypes of PSC which have been demonstrated to confer di↵erent

prognoses compared to ‘classical’ PSC. The first is small-duct PSC, defined by the absence

of cholangiographic evidence of PSC in the presence PSC a↵ecting the small bile ducts on

histological examination. Patients with small-duct PSC demonstrate improved survival

(6% versus 34%) and lower risk of cholangiocarcinoma (0% versus 11%) [13]. Conversely,

the second clinical subtype, PSC with an elevated IgG4 concentration, has been associated

with an increased risk of progression to cirrhosis; 50% versus 12% of those without [14, 15].

Despite trials of multiple therapeutic agents in PSC, none have proven successful and

there is absence of any e↵ective medical therapies which can either cure or attenuate

disease progression in PSC. Perhaps the most widely trialed therapeutic agent in PSC is

Ursodeoxycholic acid (UDCA), given its proven e�cacy in the treatment of other cholestatic

diseases such as PBC. UDCA is postulated to have two mechanisms of actions; reducing

hydrophobicity of bile and a direct e↵ect on adaptive immunity by inhibiting dendritic cell

response [16]. Since 1990, at least twelve trials, nine of which were randomised and placebo-

controlled, have studied the e↵ect of varying doses of UDCA on liver biochemistry [17].

Whilst most observed an improvement in liver biochemistry, there was no demonstrable

e↵ect on time to transplantation or liver-related death. These trials are notable due to their

small numbers of patients in each study arm, and their short duration compared to the

natural history of PSC. Despite these findings, UDCA remains widely prescribed for PSC.
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Various immunosuppressive drugs have been trialled in PSC, including placebo-controlled

trials of ciclosporin and methotrexate, and uncontrolled trials of steroids, azathioprine and

tacrolimus [17]. Whilst again these trials remained limited by sample size and duration,

they still failed to identify any e↵ect on hepatic cholangiography, transplant or survival.

Moreover, there has been limited enthusiasm for further trialling of immunosuppressive

agents, given that the commonality of PSC-IBD means that many patients with PSC are

taking immunosuppressants at the time of PSC diagnosis and progression.

1.2 PSC is a complex disease

Complex diseases result from a complex interplay between genetic and environmental

factors, most of which remain unidentified. Monogenic diseases results from a rare variant

that exerts a large, usually qualitative e↵ect upon a single gene resulting in a disease

phenotype. In contrast, the genetic component of a complex disease is driven by multiple

variants with modest to small e↵ect sizes, acting in a predominantly additive fashion

[18, 19]. Familial studies support both an environmental and genetic aetiology for PSC,

with familial and geographic clustering of cases, particularly in Northern Europe where

prevalence estimates are as high as 16/100,000 [20]. In comparison, prevalence estimates

in Asia are as low as 4/100,000 [21, 22]. Whilst one of the best means of quantifying the

genetic and environmental influences on complex disease is by the comparison of disease

concordance in monozygotic versus dizygotic twins, there are currently no published twin

studies in PSC. Familial clustering of disease provides another means to estimate the level

of genetic influence on complex disease. The relative risk ratio of a sibling (ls) is the risk

of disease development in the siblings of an a↵ected individual and is calculated as the

prevalence of a complex disease among siblings divided by the prevalence of the disease in

the population at large. Disease prevalence in the first-degree relatives of PSC-a↵ected

patients is significantly increased compared to that of the general population with a ls of

approximately 100 [23, 24]. Despite being a rare disease with observed familial clustering,

PSC does not display a classical Mendelian inheritance pattern, and is considered to be a

complex disease driven by multiple dynamic gene-environment and gene-gene interactions,

acting in concert to cause the PSC phenotype. Environmental factors that have been

implicated include a protective e↵ect from co↵ee consumption (OR=0.52, p=0.006) and

smoking (OR=0.33, p<0.001) on the development of PSC [25].

1.3 Genome-wide association studies

Genome-wide association studies (GWAS) are the standard study design for testing the

association of genetic variants throughout the genome with the presence of a complex
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trait. Disease-associated variants are those for which one allele occurs significantly more

frequently in cases compared with controls. These variants mark regions of the genome

associated with the trait and are called ‘risk loci’. The GWAS design was facilitated

by an important biological observation; linkage disequilibrium (LD), the non-random

association of alleles between nearby genetic variants [26]. Patterns of LD between nearby

genetic variants allow the capture of most of the common variation within the human

genome by assaying just a small subset of single-nucleotide polymorphisms (SNPs) [27].

Approximately five million common SNPs with a minor allele frequency (MAF) <0.5,

could be well-tagged (r2>0.8) using a subset of just 500,000 SNPs, in East Asian and

European populations [28]. Because LD patterns vary by population, the International

Hapmap Project was set up to map the patterns of LD across several populations, providing

the foundation for GWAS [29]. Thus, one could perform a GWAS by genotyping just a

small subset of variants across the genome followed by the imputation of non-genotyped

variants using the LD structure from reference panels, dramatically reducing the costs of

genotyping and increasing the economic scalability of GWAS. To account for the hundreds

of thousands of genetic variants tested in a GWAS, the genome-wide significance threshold

is set, by convention, at p<5⇥10-8 to account for multiple testing and to avoid type I

(false-positive) statistical errors [30]. In order to achieve su�cient statistical power, GWAS

therefore requires thousands of cases and controls. The amassing of increasingly large

sample sizes to improve statistical power was facilitated by a second biological observation.

The results from several early GWAS of immune-mediated diseases (IMDs) led to the

observation that many genetic associations were shared across multiple IMDs [31, 32].

This facilitated the development of the Immunochip, a targeted genotyping array with

dense coverage across approximately 130,000 SNPs within 186 known risk loci, from

twelve immune-mediated diseases. Similarly, genetic architecture was shared across many

metabolic disorders resulting in the development of the Metobochip, which was designed for

studying metabolic and cardiovascular disease [33]. These chips provided a cost-e↵ective

means of identifying common and rare variants associated with complex traits, at a fraction

of the cost of a GWAS chip. This allowed the genotyping of increasingly large samples

sizes, although at the cost of being unable to identify rare variants and variants outside

of the predefined regions included in the chip [34]. ‘Common’ variants, those occurring

at a frequency of >5% in the general population, typically have low to moderate e↵ect

upon complex traits, with odds ratios (OR) of up to 1.4. ‘Rare’ variants (those with a

MAF<1%) with larger e↵ect sizes are less likely to be represented by genotyping chips and

reference panels, due to the fact that variants with large e↵ect on disease risk are likely to

be kept at low frequency due to negative selection pressure [35, 36]. The identification

of rare variants associated with complex traits through GWAS has been made possible

over the past decade by improvement in LD reference panels, an exponential reduction
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in the cost of GWAS and the development of collaborative research consortia for the

meta-analysis of GWAS data from increasingly large sample sizes.

PSC research has derived significant benefit from the genetics revolution. To date,

at least six studies have examined the e↵ects of genetic variation on PSC susceptibility

[37–42]. Although PSC was not included in the original design of the Immunochip, in 2013

an Immunochip study of 3,789 PSC cases of European ancestry and 25,079 population

controls identified twelve genome-wide significant associations outside the human leukocyte

antigen (HLA) complex, nine of which were new [40]. This was further improved in 2017,

when the largest PSC GWAS to date, including 4,796 cases and 19,955 population controls,

identified fifteen regions of the genome associated with PSC susceptibility, four of which

were new. To date, we have identified a total of 23 regions of the genome associated with

susceptibility to PSC.

1.4 Genetic associations within the human leucocyte

antigen

In keeping with findings in many other IMDs, the strongest genetic associations with PSC

have been observed within the highly polymorphic HLA region, supporting an important

role for the adaptive immune system in the pathogenesis of PSC. The HLA gene complex

is an ⇠7 million base pair (bp) region of DNA on the short arm of chromosome 6, encoding

more than 250 genes, of which approximately a third relate to immune cell function. The

HLA plays an essential role in the tuning of the adaptive immune system, encoding cell-

surface proteins responsible for the regulation and presentation of foreign antigens to T-cells.

Many IMDs have been associated with particular HLA SNPs or haplotypes, suggesting

the involvement of disease-specific antigens. However, for many diseases, including PSC,

the causative antigens remain unidentified [43]. Despite the evidence supporting a strong

e↵ect of the HLA on PSC susceptibility, dissecting this region into the underlying specific

genes that confer disease risk is challenging due to several characteristics of the HLA

region. These include high levels of variation and strong patterns of LD, extending up

to several thousand kilobases, in addition to the presence of multiple genes of potential

relevance with roles in antigen presentation and immune-regulation within this particularly

gene-dense region [26].

Class I HLAs present intracellular foreign antigens to CD8+ T-cells, inducing CD8+

mediated cytotoxicity. The strongest observed e↵ect on PSC susceptibility is with the class

I HLA haplotype, HLA-B*08:10 [40]. Liu et al identified rs4143332 as the top associated

SNP with PSC risk, which was in almost perfect LD (r2=0.996) with HLA-B*08:01.

Step-wise conditional analysis containing both SNP and HLA allele genotypes identified

rs4143332 as SNP most associated with PSC risk, both within and outside of the HLA
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(OR=3.00, p=3.7⇥10-246). Other associations have also been observed adjacent to class

II HLA haplotypes HLA-DRB1*03:01, 04:01, 07:01 and 13:01, [44, 45]. Class II HLAs

present extracellular antigens to CD4+ T-helper cells which stimulate antibody-producing

B-cells. Liu et al identified a complex HLA class II association signal determined by HLA-

DQA1*01:03 and SNPs rs532098, rs1794282 and rs9263964, which along with rs4143332

(tagging HLA-B*08:01), explained most of the HLA association signal in PSC.

1.5 Genetic associations outside of the HLA

Genetic associations outside of the HLA further support the role of immune dysregulation

in PSC pathogenesis, as the majority occur within, or close to genes involved in immune-cell

function. Notably, several of the risk loci with the greatest e↵ect on PSC susceptibility

may a↵ect genes involved in T-e↵ector and T-regulatory cell signalling pathways, including

CD28, MST1, IL2 and IL2RA (Figure 1.1). Furthermore, polymorphisms in these genomic

regions are also associated with a number of other IMDs including type I Diabetes (T1DM),

rheumatoid arthritis (RhA), multiple sclerosis (MS) and systemic lupus erythematosus

(SLE) [46–49]. Disease risk loci outside of the HLA provide an important anchor for

unravelling some of the potential pathogenic mechanisms involved in PSC. Evidence

supporting the potential pathogenic contribution of some of these risk loci to PSC disease

biology is discussed below.
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Figure 1.1: Twenty of the twenty-two non-HLA PSC risk loci plotted according to their

e↵ect size (OR) and MAF in Ji et al ’s GWAS data [42].

1.5.1 PSC risk loci in coding regions of the genome

Of the 22 PSC risk loci outside of the HLA region, only four have lead SNPs within coding

regions of the genome. The genetic risk locus on chromosome 3 has one of the strongest

e↵ects on PSC risk (OR=1.33, CI=1.26-1.40). The lead SNP for this signal, rs3197999, is

a missense variant in MST-1. MST-1 encodes macrophage stimulating protein (MSP),

which is expressed primarily in the liver by biliary epithelial cells. It functions as part of

Hippo pathways that regulate tumour suppression, and deletion of MST-1 in hepatocytes

results in excessive proliferation and hepatomegaly [50]. MST-1 is known to have a role

in cellular immunity, modulating integrin- and selectin-mediated lymphocyte migration

and chemotaxis in lymphoid tissues [51]. Moreover, autosomal recessive MST-1 deficiency

is an identified cause of combined immunodeficiency [52]. Taken together, this suggests

that MST-1 may play an important role in homing of lymphocytes between the gut and

the liver, supporting one of the most common hypotheses of disease pathogenesis in PSC,

the ‘gut-homing T-cell’ hypothesis [53]. Associations with the MST-1 region have also

been reported in UC and CD, and a study of the lead variant, rs3197999, suggests that

the risk allele is associated with a gain of function and increased stimulatory e↵ect of

MSP on chemotaxis and proliferation in a monocyte THP-1 cell line [54]. Whilst it is

more common for risk variants with the largest e↵ect sizes to occur within protein coding
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regions, it is important to note that LD in this region extends over a large number of

theoretically relevant genes [55]. Indeed, an IBD fine-mapping study of the MST-1 locus

identified a credible set of 437 SNPs explaining >95% of the variation within this region,

any one of which could be the true causal variant [56].

Another PSC risk locus in a coding region is on chromosome 2 within GPR35 (G-

protein-coupled receptor 35). The lead variant in this region, rs3749171, is a missense

variant, located in the 3’ exon of GPR35. Structural modelling suggests that the residue

a↵ected by this threonine to methionine substitution is found in the third trans-membrane

helix and is predicted to e↵ect the e�ciency of signalling through the GPR35 receptor [39].

GPR35 is expressed in high levels in the gastrointestinal tract, predominantly by intestinal

crypt enterocytes and sub-populations of immune cells [57]. It functions as a receptor for

kynurenic acid, an intermediate in the tryptophan metabolic pathway, which is found at

high concentrations in bile and intestinal fluid, and increases during inflammation [58, 59].

Furthermore, variation in this gene is also associated with IBD risk [60] and increased

levels of plasma kynurenic acid have been reported in patients with IBD [61]. GPR35

has also been shown to promote the activity of Na/K-ATPase, with the PSC-associated

lead variant, rs3749171, inducing a more pronounced increase in Na/K-ATPase activity,

enhancing glycolysis and proliferation in intestinal epithelial cells [62]. Whilst genetic

associations with the GPR35 region have been robustly replicated across multiple IBD

GWAS, associations with PSC have not been consistently reported across all PSC GWAS

[41]. This includes the most recent and largest PSC GWAS to date, where associations

with this region failed to reach genome-wide significance [42].

1.5.2 PSC risk loci in non-coding regions of the genome

The vast majority of risk loci associated with IMDs, of which PSC is no exception, occur

in non-coding regions of the genome and are presumed to exert regulatory e↵ects upon

nearby genes. In the absence of a proven association been gene and locus, candidate genes

have been historically assigned to non-coding risk loci according to a combination of their

genomic proximity to the lead variant and existing knowledge of a genes biological function.

The non-coding PSC risk locus on chromosome 2 occurs 3’ downstream of CD28 (OR=1.25,

95% CI=1.19-1.32) and has been implicated by genetic association with several other

IMDs, including MS and RhA [47, 63]. Due to its role in T-cell signalling, CD28 has been

highlighted as a candidate gene for this locus. This gene encodes a co-stimulatory protein

on T-cells necessary for activation and proliferation. Co-stimulation through CD28 and the

T-cell receptor (TCR) induces the production of multiple interleukins. These include IL-2,

a cytokine with a dual role in both the activation of the inflammatory immune response

via T-e↵ector cells, and suppression of the inflammatory immune response via T-regulatory

cells. Interestingly, in PSC a greater proportion of CD4+ and CD8+ liver-infiltrating

26



T-cells are CD28- in comparison with controls without liver disease (30.3% vs 2.5% for

CD4+ and 68.5% vs 31.9% in CD8+) as well as controls with other forms of liver disease

including primary biliary cirrhosis (PBC) and non-alcoholic steatohepatitis (NASH) [64].

These CD28- cells are induced by TNFa and infiltrate the peri-biliary region where they

secrete pro-inflammatory cytokines resulting in apoptosis of biliary epithelial cells.

Interleukin-2 receptor alpha (IL2RA), also known as CD25, is constitutively expressed

by T-regulatory cells (T-regs). It binds IL-2 to promote the survival and proliferation of

T-regs, thus promoting an anti-inflammatory and immune-suppressive response. Both the

IL-2 (OR 1.33, 95% CI=1.26-1.40) and IL2RA (OR=1.22, 95% CI=1.16-1.28) genes have

been implicated in PSC by genetic associations in non-coding regions on chromosomes 4

and 10 respectively. IL2RA knock-out mice develop a phenotype similar to PSC with the

spontaneous development of T-cell mediated biliary inflammation and colitis [65]. However

evidence is not just restricted to mice and activated liver-derived T-lymphocytes of PSC

patients demonstrate reduced expression of the IL-2 receptor and impaired proliferative

response and functional capacity in comparison with patients with PBC, autoimmune

hepatitis (AIH) or healthy controls [66]. Furthermore, a link between homozygosity for

polymorphisms in the IL2RA gene and reduced numbers of FOXP3+ T-regs has been

demonstrated in the peripheral blood of patients with PSC [67]. Collectively, the CD28,

and IL-2 and IL2RA risk loci may support an important role for defects in T-regulatory

pathways in the pathogenesis of PSC.

Non-coding genetic associations within the introns of SIK2, HDAC7 and PRKD2 (on

chromosomes 11, 12 and 19 respectively) highlight the potential pathogenic importance of

T-cell selection in PSC pathogenesis [40]. Negative selection of immature T-cells within

the thymus is essential for the development and maintenance of tolerogenic response, the

disruption of which facilitates the development of IMDs. SIK2 (salt-inducible kinase 2)

regulates the expression of both IL-10 in macrophages, and leukocyte transcription factor,

Nur77 [68, 69]. Following engagement of the thymocyte TCR, PRKD2 (serine-threonine

protein kinase D2) phosphorylates HDAC7, leading to loss of HDAC7-mediated repression

of Nur77 (regulated by SIK2) [70]. This results in nuclear exclusion of HDAC7 and loss of

HDAC7’s regulatory functions, ultimately resulting in apoptosis and negative selection of

immature T-cells [71]. Notably, HDAC7 has also been implicated by genetic association,

with IBD [72], although genetic associations in both the HDAC7 and SIK2 regions fell

short of genome-wide significance in the most recent and most well-powered PSC GWAS

[42].

1.5.3 Current genetic understanding of PSC subtypes

The association between PSC and IBD provides an important opportunity for further

understanding of the genetics of PSC. The increased commonality of IBD means that
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GWAS of IBD dwarf those of PSC, both in terms of number and sample sizes [60, 73].

Consequently, there have been 240 regions of the genome associated with risk of IBD,

compared to just twenty-three in PSC. Unfortunately, the absence of phenotype data

identifying those IBD cases with concomitant PSC has limited our insights into PSC

genetic risk from published IBD GWAS.

Despite the presence of coexistent IBD in up to 80% of PSC patients, most of the HLA

associations with PSC are distinct from those with IBD. The exception is HLA-DRB1*15:01

which is associated with increased risk of PSC, increased risk of UC, and decreased risk

of Crohn’s disease (CD) [74]. In the largest PSC GWAS to date, Ji et al performed

Bayesian tests of colocalisation between IBD and PSC GWAS summary statistics to

identify fourteen non-HLA loci with strong evidence of shared causal variants between

PSC and IBD [42]. Six of the fourteen non-HLA loci associated with both PSC and IBD

displayed strong evidence of a shared causal variant with UC, CD or both (MST1, IL21,

HDAC7, SH2B3, CD226 and PSMG1 ), demonstrating an important degree of shared

genetic variation between both diseases (Figure 1.2). However, four of the same fourteen

loci demonstrated strong evidence that the causal variant was independent from that in

UC and CD (IL2RA, CCDC88B, CLEC16A and PRKD2 ). This demonstrates that even

between highly co-morbid diseases, significant associations in the same genomic regions

will not always share the same causal variant.

Figure 1.2: Figure taken from Ji et al demonstrating odds ratios (and their 95% confidence

intervals) for PSC, UC and CD across the 6 PSC associated SNPs demonstrating strong

evidence for a shared causal variant (maximum posterior probability >0.8) [42].
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Genetic studies of the PSC sub-phenotypes, small-duct PSC and PSC with raised

IgG4, have been significantly impeded by the low prevalence of PSC and the lack of power

resulting from the further subdivision of already small cohorts of patients with PSC. As a

result, genetic studies of PSC sub-phenotypes have, to date, focused solely on associations

within the HLA. HLA-DRB1*15:01 is present at increased frequency in patients with PSC

and high IgG4 levels, the sub-phenotype of PSC reportedly associated with increased

risk of progression to cirrhosis [14, 75]. Interestingly, as mentioned above, this haplotype

is also associated with increased risk of UC, which in turn has been associated with

increased severity of PSC. Patients with small-duct PSC without concomitant IBD, the

sub-phenotype which confers an improved survival and lower risk of cholangiocarcinoma,

also demonstrate distinct HLA associations [13]. Small-duct PSC without IBD is associated

only with HLA-DRB1*13:01 and is otherwise distinctly di↵erent from large-duct PSC

with IBD in terms of its HLA associations [76]. This may support the hypothesis that

small-duct PSC without IBD is a distinct clinical entity from large-duct PSC. However,

these results must be interpreted with caution as this study analysed genotype data for just

four classical HLA loci in only 87 small-duct and 485 large-duct PSC patients compared

with 1117 controls. As both sample sizes and depth of phenotype data in PSC research

increases, future studies will be able to further delineate the distinct and overlapping

genetic architecture of PSC sub-phenotypes.

1.6 Current hypotheses of disease pathogenesis in

PSC

In order to identify potential proteins and biological pathways for therapeutic target, there

is an urgent need for a greater understanding of the causal biology underlying PSC. There

are currently three main working hypotheses of PSC pathogenesis; the ‘gut-homing T-cell’,

‘toxic bile’ and ‘leaky gut’ hypotheses. Genetic support for these hypotheses is one means

of establishing whether the underlying biological observations on which they are based,

represent disease causation, or the e↵ects of an established disease process. The three

main hypotheses of PSC pathogenesis and existing genetic support for these hypotheses

are discussed below.

1.6.1 The ‘gut-homing T-cell’ hypothesis

The PSC ‘gut-homing T-cell hypothesis’ is the hypothesis that memory T-cells, originally

activated by inflammation within the gut are recruited to the liver where they cause the

inflammation observed in PSC [53]. PSC is histologically characterised by T-cell rich

portal infiltration with peri-ductal inflammation, portal fibrosis and progressive loss of
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the bile ducts, known as ductopenia. Between 50-70% of patients with PSC also have

concomitant IBD, although the observed course of hepatobiliary inflammation is notably

independent from that of the colon. Approximately 75% of the blood supply to the liver

originates from the intestine via the portal vein, thus creating an anatomical connection

between the liver and gut. The portal vein drains into the hepatic sinusoids which are lined

by fenestrated epithelia with Kup↵ner cells (a specialised liver-resident macrophage that

phagocytoses pathogens or antigens from the portal blood). First proposed by Grant et al

in 2001, the ‘gut-homing T-cell hypothesis’ conjectures that memory T-cells, originally

activated by inflammation within the gut and expressing gut-specific ligands CCR9+ and

a4b7+, are recruited to the liver due to aberrant inflammation-induced expression of their

receptors MAdCAM-1 and CCL25 [53]. High levels of MAdCAM-1 (mucosal addressin cell

adhesion molecule) and CCL25 (chemokine C-C motif ligand 25) are usually restricted

to the mucosal vessel endothelia of the gut and small intestine, respectively. In health,

lymphocytes expressing the MAdCAM-1 receptor, CCR9, are found almost exclusively in

the small intestine, with <10% of T-cells being CCR9+ in normal colon [77]. In active

colitis however, their numbers increase, with approximately 90% of CD4+ and 30% of

CD8+ tissue-infiltrating e↵ector T-cells being CCR9+ [78]. Furthermore, in active colitis,

intestinal CCL25, is up-regulated and levels correlate with mucosal TNFa expression

and endoscopic measures of disease severity [78]. In support of the gut-homing T-cell

hypothesis, MAdCAM-1 is found to be aberrantly expressed on the portal vein endothelium

and CCL25 on the liver sinusoidal endothelium of patients with PSC [79]. Furthermore, in

PSC it has been observed that 20% of liver-infiltrating lymphocytes express the respective

MAdCAM-1 and CCL25 receptors, CCR9 and a4b7 [80]. The majority of these CCR9+

T-lymphocytes are CD45RA+ CCR7+CD11a(high) and secrete IFN-g in keeping with

an e↵ector memory phenotype. After recruitment to the liver, Grant et al proposed

that CCR9+ and a4b7+ gut-derived lymphocytes are likely to use other chemokines such

as CXCL12 and CXCR6 to localise to biliary epithelium where they mediate targeted

inflammation of the bile ducts.
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Figure 1.3: The ‘gut-homing’ T-cell hypothesis of PSC pathogenesis.

The a4b7 dimer (co-expressed alongside CCR9 in gut-homing T-cells) is an integrin

complex expressed on T-cells, normally restricted to the gut. The importance of the

integrin a4 gene has recently been confirmed by an IBD GWAS study, which has shown

that the IBD risk increasing variant also increases expression of integrin a4 in stimulated

monocytes [81, 82]. In IBD, this pathway is already the target of successful therapeutic

blockade by Vedolizumab, a monoclonal antibody to the a4b7 integrin, which inhibits

T-cell tra�cking to the gut mucosa [83, 84]. Genetic studies in PSC have not yet detected

any association with the integrin a4 gene, although are likely to be underpowered to do

so, given that samples sizes in excess of 25,000 were required to detect the association

with IBD. However disappointingly, clinical trials in patients with PSC and IBD have

consistently observed no improvement of liver biochemistry with Vedolizumab treatment

[85, 86].

Associations with several HLA and non-HLA PSC risk loci in close proximity to genes

involved in T-cell biology such as IL2RA and IL2/IL21, supports a role for aberrant

T-cell activation in PSC pathogenesis [42]. Furthermore, a study using high-throughput

sequencing of TCRb repertoires found significantly higher sharing of TCRb repertoires in

the gut and liver of PSC-IBD patients compared to paired normal gut and liver tissue,

suggesting a common clonal origin between gut- and liver-derived memory T-cells of

PSC-IBD patients. This finding is likely to result from reaction to a common antigen [87].

Therefore gut-homing T-cells may have an important pathogenic role in PSC.
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1.6.2 The ‘toxic bile’ hypothesis

PSC belongs to the group of cholestatic liver diseases in which bile acid accumulation, or

cholestasis, causes inflammation, apoptosis and necrosis of cells within the surrounding

hepatic parenchyma. Whilst most hypotheses of PSC pathogenesis cite stricturing biliary

inflammation as the cause of bile acid accumulation, the ‘toxic bile’ hypothesis conversely

proposes that abnormal composition of bile itself mediates bile-duct injury and resultant

cholestasis [88]. This hypothesis was based upon observations of the MDR2-/- knock-

out mouse, a mouse deficient in a bile acid canalicular transporter, which is similar to

the human MDR3/ABCB4 transporter that mediates biliary excretion of phospholipids.

Phospholipids, excreted into the bile cannaliculi, combine with bile acids and cholesterol to

form mixed micelles, which protect the biliary epithelium against the detergent properties

of bile acids [89]. However due to their inability to secrete phospholipids into bile, MDR2-/-

knockout mice spontaneously develop bile-duct injury with macroscopic and microscopic

features closely resembling human PSC [90]. Notably, however, there have been no

associations yet identified between genetic variants in ABCB4 or other genes involved

in the bile acid pathway with PSC risk. A second mechanism for protecting the apical

surface of hepatocytes and cholangiocytes exists in the form of the ‘HCO3- umbrella’,

which protects against attack from apolar hydrophobic bile acids. Decreased biliary

HCO3- secretion can result in bile acid toxicity and thus damage to hepatocytes and

cholangiocytes [88]. Early GWAS studies reported potential genetic associations with

GPBAR1 (G-protein-coupled bile acid receptor 1), which encodes a receptor involved in

HC03- regulation [91], however this region has consistently fallen short of genome-wide

significance in subsequent larger studies [40, 41].

Based upon the ‘toxic bile’ hypothesis, subsequent trials of therapeutic agents known to

modify the bile acid composition have yielded mixed results. Ursodeoxycholic acid (UDCA),

is a hydrophilic dihydroxy bile acid, very e↵ective in the treatment of sister biliary condition,

PBC. However trials in PSC have proved disappointing, with meta-analyses confirming

no benefit on liver transplant rates, liver-related death or hepatic decompensation and

only a small improvement in serum liver function tests with standard doses. Moreover, at

high doses there was an increased risk of progression to hepatic decompensation and liver

transplantation [92], attributed to the production and accumulation of hepatotoxic bile

acids, such as lithocholic acid [93]. NorUDCA, a C
23

homologue of UDCA with a side chain

shortened by one methylene group, is secreted into bile in an unconjugated, glucoronidated

form and metabolised to non-hepatotoxic nor -lithocholate [94, 95]. It is known have

anti-fibrotic properties, with a phase II trial in PSC reporting a significant improvement in

serum ALP (alkaline phosphatase), a common surrogate measure of PSC disease activity

[2, 96]. Furthermore trials of Obeticholic acid, an FXR agonist which down-regulates

cytochrome P450, limiting bile salt production, has been recently approved for treatment
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in PBC, with the results of phase II trials in PSC awaited [97]. Overall, whilst the evidence

supports that toxic bile acid accumulation expedites biliary inflammation, both genetic

and clinical studies provide minimal support for this hypothesis as the underlying causal

process in PSC.

1.6.3 The ‘leaky gut’ hypothesis

The ‘leaky gut’ hypothesis conjectures that disruption of colonic permeability leads to

microbial infection of bile, activating cholangiocytes and subsequently leading to hepatic

inflammation and fibrosis [98]. In health, colonic pathogens and commensals remain

confined to the colon due to the presence of mesenteric lymph nodes. These act as sites

for the induction of tolerance to food proteins and protection against live commensal

intestinal bacteria, penetrating the systemic immune system [99]. In the presence of

intestinal inflammation, such as in IBD, the inner mucus layer of the intestinal mucosal

barrier demonstrates increased permeability allowing interaction between the intestinal

microbiota and the normally inaccessible surface epithelium [100]. Further disruption of the

tight junctions connecting these epithelial cells allows translocation of bacteria across the

mucosal barrier, where it enters the portal circulation [101]. This is supported by several

observations. Firstly, the more frequent finding of translocated bacterial products in the

explanted livers of patients with PSC, compared to other liver disorders [102]. Secondly,

the transient improvement of serum ALP following treatment with metronidazole, an

antibiotic which alters intestinal bacterial composition [103]. Thirdly, colectomy performed

prior to liver transplantation is associated with a significantly decreased risk of recurrent

PSC, post-transplantation [104].

The microbiome has a recognised role in the immune-pathogenesis of colonic inflamma-

tion in IBD, via the induction of T-regulatory cells and down-regulation of pro-inflammatory

and up-regulation of anti-inflammatory cytokines [105]. In CD, intestinal microbial dysbio-

sis has been shown to be characterised by reduced microbial richness with an increase in

mucus-degrading Ruminococcus gnavus [106] and a decrease in Faecalibacterium prausnitzii,

Bifidobacterium adolescentis and Dialister invisus species [107]. In contrast, intestinal mi-

crobial richness in UC remains normal, but with a reduction in levels of butyrate-producing

bacterial species Roseburia hominis and F. prausnitzi, a short-chain fatty acid with known

anti-inflammatory properties [108]. Surprisingly, the few existing studies in PSC suggest

that PSC demonstrates an intestinal microbial dysbiosis signature, independent from

both UC and CD. PSC has been shown to be characterised by decreased microbiota

diversity, and over-representation of Lactobacillus, Fusobacterium and Enterococcus genera,

with one taxonomic unit belonging to the Enterococcus genus associated with increased

levels of serum ALP [109]. More recently, several studies have confirmed a link between

genetic variation and the gut microbiome, identifying genetic variants with e↵ects upon
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gut microbial composition in healthy individuals [110, 111]. In IBD, risk alleles within

NOD2, have been associated with increased relative abundance of Enterobacteriaceae [112],

with evidence that the increased susceptibility to ileal CD, conferred by these genetic

variants is partially mediated by the microbiome itself. Furthermore variants within FUT2

that have been associated (although not consistently replicated) with PSC risk, are also

associated with changes in the commensal phyla in a↵ected PSC patients [38]. These

changes are characterised by reduced Proteobacteria and elevated Firmicutes. FUT2

encodes galactoside 2-alpha-L-fucosyltransferase-2 and variants within the gene result in

altered recognition and binding of various pathogens to FUT2 carbohydrate receptors

on the mucosal surface. Overall, whilst intestinal microbial dysbiosis and translocation

across a leaky gut barrier might be a consequence of disease pathogenesis, the evidence

supporting a causal role is minimal.

Importantly, both the ‘gut-homing T-cell’ and ‘leaky gut’ hypotheses assume an

inflamed colon as a key component of the disease model. They therefore cannot explain the

presence of PSC in patients without IBD. However, whilst only 60-80% of PSC patients

have diagnosed concomitant IBD, the milder IBD phenotype which often displays only

microscopic levels of inflammation, may mean that actual rates of IBD in PSC are much

higher [8–10]. Of the three hypotheses of PSC pathogenesis, the ‘gut-homing T-cell’

hypothesis is still widely considered the most biologically plausible causal mechanism on

account of the supporting experimental and (albeit limited) genetic evidence.

1.7 Challenges in deciphering PSC risk loci

Our DNA, laid down at conception, provides a unique anchor for improving our under-

standing of the underlying causal biology of disease. This is because the genetic variants

associated with disease susceptibility perturb genes and biological pathways that contribute

to disease causality, and allow us to di↵erentiate between cause and consequence of disease.

The twenty-three genetic risk loci associated with PSC o↵er the potential for huge insight

into the causal biology of this disease, if only we can robustly identify the true causal

variants driving these loci and the genes they perturb.

When trying to extract disease-relevant biological insights from genetic risk loci there

are two major hurdles. Firstly, identifying the causal variants driving the signals within

each locus can be challenging due to patterns of LD or correlation between nearby genetic

variants. The GWAS design uses this to its advantage, utilising several hundred thousand

‘tagging’ SNPs to capture a large proportion of the common variation in the human

genome to powerfully identify loci associated with disease. Resultantly, the most strongly

associated SNP identified by GWAS is likely to be in high LD with many other SNPs,

any of which may be the causal SNP [113]. Identifying the causal variant within each
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PSC locus is important for the design of follow-up studies investigating the underlying

function of that variant. Statistical approaches aimed at identifying the most likely causal

variant within risk loci are known as fine-mapping methods, and have been successful in

resolving the causal variant for many IMD-associated risk loci. For example, fine-mapping

of seventy-six RhA and T1DM loci defined credible sets containing five or fewer causal

variants at five RhA and ten T1DM loci [114]. Furthermore, fine-mapping of 94 of the 240

known IBD risk loci resolved eighteen associations down to a single causal variant with

>95% certainty, and twenty-seven associations to a single variant with >50% certainty [56].

Interestingly, of these forty-five variants, thirteen were found to be significantly enriched

for protein-coding changes, three caused direct disruption of transcription-factor binding

sites and ten were tissue-specific epigenetic marks in specific immune cells.

The second hurdle in understanding the functional importance of genetic risk loci is

identifying the genes they a↵ect. The vast majority of genetic variants associated with

IMDs are located within non-coding regions of the genome, a complicating factor when

considering their functional evaluation. Indeed, of the 22 known PSC risk loci outside of

the HLA, only four have lead SNPs within coding regions of the genome. In the search to

unravel the function of non-coding risk variants, it is now understood that many exert

their influence via gene regulatory mechanisms and exert a quantitative e↵ect upon gene

expression. This is supported by the finding that up to 93% of GWAS risk loci occur

in regulatory regions of the genome [115]. As such, variation in gene expression is an

important component of the genetics of complex disease.

Understanding the epigenetic regulation of gene expression is already assisting the

translation of genetic associations to disease mechanisms. This includes identifying genetic

variants that alter gene expression either directly through a regulatory element, or indirectly

by DNA methylation and chromatin accessibility. Defining the epigenetic changes that

regulate genes associated with disease can improve both our ability to predict disease risk

and our understanding of the underlying pathogenesis. Some of these epigenetic regulatory

mechanisms are discussed below.

1.7.1 Expression quantitative trait loci

Expression quantitative trait loci (eQTLs) are genomic loci in which the abundance

of a gene transcript is directly modified by a genetic polymorphism, usually within a

regulatory element. Similar to any complex trait, the abundance of a gene transcript is a

quantitative trait that can be measured [116]. In recent years eQTL mapping methods have

been developed which test for association between genetic polymorphisms and transcript

abundance, by simultaneously assaying gene expression and genetic variation on a genome-

wide scale, in a large number of individuals. Importantly, variants associated with complex

traits are more likely to be eQTLs than MAF-matched variants from GWAS analyses
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chosen at random, confirming the importance of examining eQTLs in the functional study

of genetic risk loci associated with complex diseases [117–119].

Variants that are eQTLs can act either in cis (within 1 megabase (Mb) of a gene

transcription start site (TSS)), or trans (at least 5Mb up- or down-stream of the TSS), to

directly alter gene expression. Cis-eQTLs tend to have greater e↵ect sizes in comparison

to their trans-eQTL counterparts, and thus modest sample sizes in the order of tens-to

hundreds are su�cient for the detection of cis-eQTLs [120–122]. Cis-eQTL are often

located close to the TSS of genes, with eQTL e↵ect sizes generally tending to increase as

the distance to TSS decreases [123]. In addition to altering transcription factor binding

sites, cis-eQTL also tend to overlap other active regulatory elements such as activating

DNAse-I hypersensitive sites that a↵ect chromatin accessibility [124], whilst being depleted

for repressive regulatory elements such as CTCF binding sites [125]. Many are also located

within gene introns, however perhaps surprisingly, do not always a↵ect the expression of

that particular gene. For example, non-coding intronic variants within the FTO gene

and associated with susceptibility to type-2 diabetes mellitus (T2DM), a↵ect the gene

expression levels of IRX3, a gene located several megabases away [126]. Measuring of

trans-eQTLs requires much larger sample sizes than cis-eQTLs in order to generate enough

power to detect their smaller e↵ect sizes and correct for the greater number of tests

required to measure the e↵ects of each variant on all genes [118, 127]. Consequently,

comparatively fewer trans-eQTLs have been reported within the literature. However, when

observed, their presence can identify entire networks of gene pathways causally involved

in disease pathogenesis. For example, a trans-eQTL analysis identified a SNP in the

IRF7 locus associated with T1DM susceptibility that exhibited trans-regulatory e↵ects on

an interferon regulatory factor 7 (IRF7)-driven inflammatory network enriched for viral

response genes [128].

Multiple recent studies have demonstrated that genetic e↵ects on gene expression can

di↵er significantly between cell types and environments [129, 130]. Indeed, an eQTL may

only be active in one particular cell type or state of activation [131–133]. Therefore in

order to fully understand the functional mechanisms underlying GWAS risk loci it is

important to examine the right cell type, in the right state of activation, at the right

time. Identifying the relevant cell-type or stimulated state in which an eQTL is active

remains challenging, and several studies have sought to address this through the mapping

of eQTLs across several cell types challenged with multiple stimuli [130]. Interestingly, in

a study combining RNA-seq with ATAC-seq (Assay for Transposase-Accessible Chromatin

using sequencing), the majority of stimulus-specific eQTLs with a detectable e↵ect upon

chromatin accessibility also altered chromatin accessibility in unstimulated (näıve) cells

[134]. Therefore in order to unravel the biological significance of disease-associated risk

loci, it may also be important to examine other epigenetic markers including chromatin
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accessibility and DNA methylation.

1.7.2 Histone modification

Histone modification marks are a common means of exploring the genetic determinants of

chromatin conformation. To form chromosomal structures, chromatin is tightly packaged

into an array of nucleosomes, each consisting of 147 bp of DNA. These wrap around alkaline

proteins known as histones, which are arranged in octamers (H3, H4, H2A and H2B) and

separated by linker DNA. The terminal tails of these histone octomers are subject to many

forms of postranslational modification including methylation, acetylation, phosphorylation,

and ubiquitination, which imparts functionality to nucleosomes both in the compaction of

chromatin and in gene regulation [135]. Specific combinations of histone modifications

provide landmarks for gene regulatory proteins. Commonly studied histone marks include

H3K4me1, H3K4me3 and H3K27ac. H3K4me1 describes the mono-methylation of the

fourth lysine from the N-terminal of the H3 protein and marks enhancer and promoter

elements. H3K4me3 (trimethylation at lysine 4 on histone H3) marks the 5' region of

active genes and is commonly associated with the activation of transcription. H3K27ac

(acetylation at lysine 27 on histone 3) is found at both proximal and distal regions of

TSSs [136]. The development of ATAC-seq and ChIP-Seq (chromatin immunoprecipitation

followed by sequencing) technology, has enabled the genome-wide profiling of DNA-binding

proteins and histone modifications.

1.7.3 DNA methylation

DNA methylation also plays an important role in the regulation of transcription, and

is a potential candidate for exploring the functional importance of non-coding disease-

associated risk variants. DNA methylation describes the addition of a methyl group to

the 5' position of a cytosine residue that is 5' to a guanosine, commonly annotated as a

‘CpG’ site [137]. These methyl groups project into the groove of DNA, reversibly altering

the biophysical properties of DNA to facilitate or prevent the binding of proteins [138].

CpG pairing generally occurs at a lower than expected frequency throughout the genome,

with the exception of some particular CpG rich regions called ‘CpG islands’. About

half of CpG islands are associated with the promoter regions of genes [139], whilst the

other half are located within genes or intergenic regions, often marking TSSs [140]. In

general, DNA methylation is associated with gene repression with an inverse relationship

between the extent of DNA methylation and expression levels of proximal genes [141, 142].

One mechanism via which cytosine methylation may lead to transcriptional silencing is

via DNA methyltransferases interacting with transcription factors leading to site-specific

methylation of promoter regions, influencing the assembly of transcriptional machinery
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[143]. Methyl-binding proteins may exert influences on gene expression through a second

functional domain which represses the transcription or recruiting of co-repressors or histone

deactetylases which in turn a↵ect chromatin modelling [144]. The combination of genome-

wide SNP genotyping, CpG DNA methylation assays and RNA sequencing can be used to

identify SNPs that influence DNA methylation (methQTLs) as well as down-stream gene

expression [145]. Indeed, it has already been demonstrated that disease-associated variants

have widespread e↵ects on DNA methylation in trans, reflecting di↵erential occupancy of

trans binding sites by cis-regulated transcription factors [146].

1.8 Translating genetic risk loci into biological drug

targets

GWAS have identified many genetic risk loci associated with susceptibility to complex

disease. Nevertheless, the value of these genetic associations in the development of

biological drug targets has been doubted due to the modest to small e↵ect sizes of the

vast majority of these risk loci. However, the impact of variant and gene discovery on the

development of therapeutics has been greater than initially anticipated. Abatacept, is a

drug highly successful in the treatment of RhA that targets the protein product of CTLA4

[147]. However, at the CTLA4 risk locus, the RhA risk increasing allele has an OR of just

1.1 [148]. Similarly, in IBD, Vedolizumab is a monoconal antibody that targets components

of the a4b7 dimer, encoded by ITGA4 and ITGB7 [84]. At the ITGA4 IBD locus, the

IBD risk increasing allele also has an OR of just 1.1 [60]. Furthermore, Ustekinumab, used

for the induction and maintenance of remission in refractory CD, is a monoclonal antibody

that targets IL12B [149]. At the IL12B CD risk locus, the risk increasing allele has an OR

of just 1.2 [150]. When trying to understand why a drug targeting a gene for which the lead

variant of the risk locus has only a small to modest e↵ect size, it is important to consider

the allelic series. The presence of multiple causal variants within that gene, with the same

direction of e↵ect may generate a genotype–phenotype dose–response curve, explaining

more than the e↵ect of the individual causal variant [151]. Significantly, Nelson et al have

demonstrated that drug mechanisms with genetic support are twice as likely to succeed

from phase I trials to approval, than those without [152]. Therefore, it is anticipated

that by expanding our understanding of the true causal variants and genes implicated by

genetic risk loci, we will be more able to identify putative therapeutic targets for PSC.
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1.9 Outline of this thesis

In this introductory chapter I have given an outline of the current knowledge of the

genetic architecture of PSC. In addition, I have described the current hypotheses of PSC

pathogenesis and the benefits and challenges of deciphering the genes and biological

pathways impacted by PSC risk loci. The aim of this thesis is to build upon our current

knowledge of the mechanisms by which genetic risk loci associated with PSC might result

in the disease phenotype. This thesis aims to define the genetic variants, genes and cell

types perturbed by each of the PSC risk loci, in an e↵ort to bring us closer to drug target

discovery.

In chapter 2, I describe the fine-mapping of each PSC risk locus. I use Bayesian

fine-mapping methods to define a single causal variant or small set of credible causal

variants with >95% posterior probability of causality. I describe two PSC risk loci which

are fine-mapped to single variant resolution with >95% certainty, and a further three

loci resolved to a credible causal variant with >50% certainty. In order to define the

mechanisms via which non-coding variants impact upon PSC risk, I analyse all PSC

credible causal variants for enrichment of known regulatory elements in PSC-relevant

cell-types and tissues. Thus, I identify individuals credible causal variants which overlap

enhancer or promoter elements in cell-types and tissues relevant to PSC.

In chapter 3, using colocalisation I aim to identify PSC risk loci which directly

influence gene expression (i.e. are eQTLs) or indirectly influence gene regulation via DNA

methylation or chromatin accessibility. I perform Bayesian colocalisation between PSC

risk loci and functional QTLs measured in relevant cell-types and tissues. For each of

three PSC risk loci, I find evidence of colocalisation with an eQTL for a single gene across

multiple tissues. By fine-mapping these loci in the colocalising functional QTL traits,

I further refine the credible sets for two PSC risk loci. Thus through a combination of

colocalisation and fine-mapping, for each of these three risk loci I identify the dysregulated

gene, a set of relevant cell-types and tissues in which the eQTL is active, a single or small

set of credible causal variants, a direction of e↵ect upon gene expression and the functional

mechanism via which the causal variant perturbs the quantitative expression of that gene.

In chapter 4, I describe the generation and analysis of eQTL maps measured in the

cell-types of most potential relevance to PSC. I develop eQTL maps in six PSC-specific

T-cell subsets, including the rare CCR9+ gut-homing T-cells, isolated from the peripheral

blood of patients with PSC and IBD. I perform di↵erential gene expression according

to disease phenotype with DESeq2. I map eQTLs in all six individual cell-types using

QTLtools and identify eQTLs that are cell-type specific and those that are shared across

multiple cell-types using mashR. Finally, I conduct colocalisation of eQTLs with PSC and

IBD risk loci, identifying two genes that are causal in the pathogenesis of PSC, and three

genes that are causal in the pathogenesis of IBD.
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In Chapter 5, I discuss the major findings and discoveries from the previous chapters.

I propose relevant further work, which could build upon and further the findings of this

thesis. Finally, I conclude by discussing the future direction of genetic research in PSC.
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Chapter 2

Fine-mapping of disease-associated

risk loci in Primary Sclerosing

Cholangitis

2.1 Introduction

GWAS have identified many thousands of regions of the genome associated with immune-

mediated disease (IMD), which have been replicated both within and between diseases. One

biological phenomenon facilitating the success of GWAS is that of linkage disequilibrium

(LD), the non-random association of alleles between nearby genetic variants. LD blocks

can consist of anywhere between two and thousands of highly correlated single-nucleotide

polymorphisms (SNPs). The GWAS design uses LD to its advantage, utilising several

hundred thousand ‘tagging’ SNPs to capture a large proportion of the common variation in

the human genome, to accurately identify loci associated with disease. The most strongly

associated variant with the smallest p-value within the disease-associated locus is referred

to as the ‘lead variant’. However, one important shortcoming of the GWAS design is that

the lead variant identified by GWAS is likely to be in high LD with many other SNPs,

resulting in a statistical association of approximately equivalent strength across all of the

variants in high LD (defined as r2>0.8), any one of which could be the true causal variant.

Distinguishing the causal variant from the often hundreds of variants in LD is not possible

from GWAS alone. Whilst conditional analysis is one means of identifying the number of

independent association signals within a region, it cannot ascribe an individual probabilistic

measure of causality for each individual variant within a locus. Identifying the true causal

variant within each risk locus is an essential step in translating genetic associations into

biological functions that explain disease processes. Knowledge of the precise location of

the causal variant within, for example, a gene intron, exon, splice junction, promoter or

enhancer region, may provide important clues about the mechanism via which the variant

41



exerts its e↵ect on disease risk. With the development of CRISPR/Cas9 gene editing

technology, which allows the introduction of targeted mutations within cellular DNA,

knowledge of the causal variant can now greatly facilitate the design of functional assays

investigating the mechanistic impact of disease-associated variants. Furthermore, it allows

recall-by-genotype experiments, studying individuals with and without a particular causal

variant.

Statistical approaches aimed at identifying the most likely causal variant within GWAS

risk loci are known as fine-mapping methods. Fine-mapping aims to define a single variant

or credible set of variants which contain the true causal variant with a high probability.

Several conditions are important when conducting fine-mapping studies. Firstly, whilst

GWAS requires only one variant in LD with the true causal variant to detect a signal

for disease association, fine-mapping requires that all common SNPs within a region are

genotyped or well-imputed [113]. This is because an important fine-mapping assumption is

that the true causal variant is included within the data. Imputation using reference panels

such as UK10K or the 1000 Genomes Project, allows the incorporation of variants that

were not included within the original genotyping array [153, 154]. This aims to satisfy the

assumption that when estimating the relative evidence for each variant being causal, the

true causal variant is present within the analysis [113]. Secondly, fine-mapping utilises

subtle di↵erences in the strength of association between tightly correlated variants to infer

causality. It is therefore especially sensitive to data quality and stringent quality control

is essential to remove genotyping errors and batch e↵ects. Large sample sizes are also

necessary to achieve su�cient power to di↵erentiate between SNPs in high LD. As shown

in Figure 2.1, taken from Huang, Fang, Jostins et al [56], power to identify the causal

variant in a correlated pair increases with the significance of the association, and therefore

with sample size and e↵ect size. Initially, the generation of larger sample sizes was achieved

by the use of cheaper custom genotyping arrays, such as the Immunochip, at the expense

of analyses restricted to only those regions of the genome previously associated with risk

of those IMDs included within the Immunochip, of which PSC was not included. However

more recently, the reducing cost of sequencing has allowed GWAS on an unprecedented

scale, with the meta-analysis of pooled data through collaborative consortia.

The standard approach for refining association signals is via conditional analysis,

a step-wise, iterative approach which conditions on the SNP with the lowest p-value

for association and continues to add SNPs until no additional SNP reaches the p-value

threshold, usually set at 5⇥10-8. This process provides information about the number

of complementary signals within a locus, but cannot assign an probabilistic measure

of causality to each individual variant within the locus. Furthermore, p-values are not

necessarily comparable between studies as they are heavily influenced by characteristics

of the individual study design such as power and locus-specific factors such as minor
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allele frequency (MAF) and e↵ect size [113]. Currently, the most common approaches to

fine-mapping therefore employ Bayesian methods in which the evidence for the association

of each variant is tested using an approximate Bayes factor (ABF). These are then used

to calculate the posterior probability (PP) for each variant being causal within a region.

Each PP describes the ratio for that variant being causal, versus all other variants in

the region, and thus Bayesian PPs are more comparable between variants of the same or

di↵erent studies. Furthermore, the Bayesian approach enables the weighting of evidence

for a particular variant being causal according to prior knowledge, known as the prior

probability. Typical fine-mapping approaches in complex diseases aim to define the number

of independent signals within a risk locus, and to identify a ‘credible set’ of variants, in

which the sum of the PPs is >0.95, and thus the credible set is >95% likely to contain the

true causal variant.

Figure 2.1: Power (y axis) to identify the causal variant in a correlated pair increases with

the significance of the association (x axis), and therefore with sample size and e↵ect size

(vertical dashed line shows genome-wide significance level). Figure taken from Huang,

Fang, Jostins et al [56].

Fine-mapping approaches have been applied to several IMDs to date and have been

successful in resolving some disease risk loci down to single or small set of credible causal

variants. For example Westra et al fine-mapped 76 rheumatoid arthritis (RhA) and type 1

diabetes (T1DM) risk loci, defining credible sets of  5 causal variants at 5 RhA and 10
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T1DM loci [114]. IBD remains the most extensively fine-mapped IMD to date. Huang,

Fang and Jostins et al fine-mapped 94 of the 240 known IBD risk loci and resolved 18

associations down to a single causal variant with >95% certainty, and 27 associations

to a single variant with >50% certainty [56]. Importantly, of these 45 variants, 13 were

found to be significantly enriched for protein-coding changes, 3 caused direct disruption of

transcription-factor binding sites and 10 were tissue-specific epigenetic marks in specific

immune cells. In addition de Lange and Moutsianas et al resolved an additional 7 IBD

loci to a single credible variant with >50% PP of being causal [60]. To date, there have

been no fine-mapping studies of the genetic risk loci associated with PSC.

2.2 Chapter overview

Twenty-three regions of the genome have been associated with susceptibility to PSC. The

first step in translating these genetic associations into biological understanding of disease

mechanisms is to accurately define those variants which are responsible for driving each

risk locus. In this chapter I describe the first fine-mapping analysis of genetic risk loci

associated with PSC susceptibility. I apply Bayesian fine-mapping approaches to PSC

risk loci, with the aim of resolving each locus to a single causal variant or a small set

of credible causal variants. To identify those credible variants in non-coding loci which

overlap known functional regions of the genome, I perform annotation of the fine-mapped

variants to define their functional e↵ects.

2.3 Methods

2.3.1 Fine-mapping

There are multiple computational software programs which employ Bayesian approaches

to fine-mapping. In order to develop a fine-mapping analysis pipeline that could be

easily applied to data-sets for which full genotype data might not be available, I aimed

to use a method of fine-mapping which could be applied to summary statistic data. At

the time of conducting this study, several methods for fine-mapping using summary

statistics and a SNP correlation matrix, were available. These included Paintor [155],

Caviar [156], CaviarBF [157] and FINEMAP [158]. Of these four methods, the first

three implement an exhaustive search through all possible causal SNP configurations and

therefore become computationally slow when considering more than one independent causal

variant within each region. I therefore opted to use FINEMAP v1.3, a computational

software program for the fine-mapping of complex traits [159]. The FINEMAP model is

made up of four components; the likelihood function, priors, likelihood evaluation and
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search algorithm. It di↵ers from the other three methods in that it employs a Bayesian

approach to explore a set of the most likely causal configurations of variants within each

region via a shotgun stochastic search algorithm [160]. By focusing the analysis on those

variants with a non-negligible causal probability rather than searching through all possible

causal configurations, FINEMAP avoids becoming computationally slow or intractable

when considering several causal variants in a data-set with many thousands of variants

within each region.

The first step of Bayesian fine-mapping requires a set of summary statistics and risk

loci. I used summary statistics from the largest available PSC GWAS dataset, published

by Ji et al [42]. Ji et al identified 15 PSC risk loci outside of the HLA, associated with

PSC susceptibility. In addition, a further seven risk loci have been previously reported as

associated with PSC from other studies (CCL20, CPR35, NFKB1, SIK2, HDAC7, RFX4,

TCF4 ), however these did not reach genome-wide significance in Ji et al’s study. I therefore

excluded these seven loci, focusing fine-mapping e↵orts on the 15 significant PSC risk loci

(shown in Table 2.1). FINEMAP assumes that each region to be fine-mapped includes at

least one causal SNP, and that all causal SNPs are included within the data (either directly

genotyped or imputed). Genotyping of the PSC GWAS data-set had been previously

conducted on three di↵erent genotyping arrays; the Illumina Omni 2.5-8 and Omni 2.5-4

and the A↵ymetrix A↵y 6 with imputation using a combined reference panel of the 1000

Genomes Phase 1 integrated version 1 and the UK10K cohort [153]. Quality control had

been previously conducted by Ji et al using strict standards for genetic association analysis

[42]. For the purposes of fine-mapping, I defined each of the 15 PSC risk loci as 1Mb

regions centred upon the lead GWAS SNP. GWAS summary statistics required for the

analysis were the variant RSID, the chromosome and base pair (bp) position of each SNP,

all reported according to Ensembl build 37, the major and minor alleles along with the

MAF, the estimated e↵ect size (b) and standard error (SE) of the e↵ect size.

The second step of Bayesian fine-mapping requires the calculation of an LD matrix with

the estimation of LD between variants within each risk locus using Pearson correlations.

Recent studies support the use of original genotype data, where available, for the calculation

of LD structure over the use of reference panels [159]. This is not only because the LD

matrix will then match exactly the study population, but because the size of the reference

panel for calculation of the LD matrix needs to scale with the GWAS sample to maintain

optimal fine-mapping performance. Fine-mapping with smaller reference panels (e.g.

100 individuals) misleadingly results in smaller credible sets, with much lower coverage

over variants than the larger reference panels or original genotype data. Benner et al

demonstrated that a reference panel of 1,000 individuals is su�cient when summary

statistics originate from a GWAS with 5-10,000 individuals. For this reason, I used full

original genotype data from Ji et al [42] to calculate the SNP correlation matrix, using
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computational software program LD Store v1.1 [159]. Importantly, this ensured that the

ancestry of the LD cohort matched exactly the ancestry of the GWAS cohort. For any two

variants, LD information was only extracted if absolute Pearson correlation was above zero.

One of the drawbacks of fine-mapping methods based on summary statistics is that they

are more sensitive to the choice of data-set used to calculate the LD matrix. I therefore

also conducted fine-mapping analyses using LD structure derived from the UK10K project

reference panel, to assess any di↵erences dependent upon the choice of LD matrix.

FINEMAP assumes that each SNP is causal with prior probability of 1 / number of

SNPs in the genomic region. I left prior probabilities for the number of independent causal

SNPs in the genomic region unspecified, however repeated the analyses with iterations

assuming between one and five independent causal variants per region. For each of the 15

risk loci, the analysis output included model-averaged posterior summaries for each SNP,

posterior summaries for each causal configuration, posterior summaries for the number of

independent signals per region and the 95% credible sets for each causal signal conditional

on other causal signals in the genomic region. To declare a locus fine-mapped to single

causal variant, I defined that the PP of causality for that single variant had to be � 95%.

Evidence for additional independent signals within a risk locus was taken as a PP of >50%

in support of two or more independent signals within a risk locus. In order to check the

fine-mapping assumption that each locus contained a true causal variant and all potential

causal variants had been included within the analysis, I searched the UK10K and 1000

Genomes reference panels for any SNPs in moderate or high LD (defined as an r2>0.5 and

>0.8 respectively) with the most probable fine-mapped variant, noting any that were not

included within the analysis.

2.3.2 Functional annotation

The majority of common disease-associated variants are located within non-coding regions

of the genome. These non-coding variants are thought to overlap functional DNA elements

involved in gene regulation such as transcription factor binding sites, open chromatin or

gene enhancer regions [117]. Functional annotation complements statistical fine-mapping

methods by providing independent information about the likely biological function of each

variant. In recent years functional annotation profiles have been developed across many

hundreds of tissue and cell types collated into databases such as the Encyclopedia of DNA

Elements (ENCODE) database [161].

I aimed to further define the function of those non-coding variants included within

the credible sets from the above fine-mapping analysis, by assessing which credible causal

variants overlapped functional regions of the genome. Several existing fine-mapping

approaches have integrated functional annotation as a means of prioritising causal variants.

Paintor is one example of such an approach which integrates association strength with
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functional genomic annotation data to improve the accuracy in selecting credible causal

variants for functional validation [155]. Genomic Annotation Shifter (GoShifter) is a

statistical approach that tests for enrichment of functional annotations overlapping a

disease-associated variant, as a means to prioritising variants for further functional follow-

up [162]. GoShifter identifies all variants in high LD (defined as an r2>0.8) with the

lead GWAS variant, and the median size (in bp) of the tested annotation feature, X.

GoShifter defines the ‘locus’ as the region between the two furthest SNPs linked with

the lead variant, plus twice the median size of X. GoShifter identifies the proportion of

loci in which at least one SNP overlaps X, and compares this to a null distribution of

iterations, generated by repeated random shifting of the site of X within the locus. The

p-value is computed as the proportion of iterations for which the number of overlapping

loci is equal to or greater than that for the tested SNPs. GoShifter then uses stratified

enrichment analysis to asses the significance of an overlap with X, independent of overlap

with any other colocalising annotation, Y. This involves separating the locus into two

fragments- that which overlaps Y, and that which does not, Y
0

. X is then shifted separately

within Y and Y
0

to generate the null distribution, and the significance of the observed

overlap assessed by the proportion of loci in which any SNPs overlaps annotation X in

Y or Y
0

. The delta overlap describes the di↵erence between the observed proportion of

loci overlapping X and the mean proportion of loci overlapping X under the null derived

by shifting and provides a measure of the e↵ect size of the observed enrichment. In the

absence of enrichment, the observed overlap will be close to the mean overlap of the

null, and delta-overlap will be close to 0, whereas stronger enrichment corresponds with

larger delta overlap. Finally, to identify loci in which the overlap between a SNP and

an annotation is particularly informative and thus should be higher priority for further

functional evaluation, the ‘overlap score’ is calculated. The overlap score describes the

probability that each locus overlaps an annotation by chance, and is only computed for

loci that overlap the annotation in the observed data. Loci with better (lower) overlap

scores suggest significant enrichment and are therefore proposed to be higher priority for

functional evaluation of causal variants.

To identify those non-coding credible variants that overlapped gene regulatory features,

I used a modified version of GoShifter, with modifications similar to those implemented in

a published study by Ulirsch et al [163]. These modifications included substitution of the

high-LD variants with the credible set variants from my fine-mapping analysis. Therefore,

the ‘locus’ provided to GoShifter was defined as the region between the two furthest

credible SNPs linked with the variant with the highest PP of causality from fine-mapping,

plus twice X (the median size in bp of the tested annotation). In the first stage of the

analysis GoShifter therefore takes all PSC credible causal variants across all non-coding

PSC loci and tests for regulatory features enriched across all PSC credible causal variants.
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In the second stage, it tests for overlap of each locus with those enriched features from the

first stage of the analysis, to prioritise credible causal variants based upon those with the

lowest overlap score.

I used the ENCODE v4 database [161] for all annotations, including promoters,

enhancers, histone acetylation marks and DNase-I hypersensitive sites for 28 whole tissue

and immune cell sub-types, relevant to PSC. I defined relevant PSC tissues as any immune

cell type and any tissue from an organ system a↵ected by PSC. Instead of using a set of

high LD variants, for each independent signal within each locus, I input the 95% credible

set of variants defined from my fine-mapping study and performed 20,000 local shift

iterations per annotation. I calculated delta-overlap scores to measure the enrichment of

overlap between annotations and credible variants. I adjusted the enrichment p-values for

multiple testing using the Benjamin Hochberg FDR correction at 5% [164]. I chose this less

stringent form of multiple testing correction as some annotations are not independent (for

example enhancer marks are made up from a combination of annotations) and therefore a

more lenient method than the Bonferonni correction is required. I calculated overlap scores

for those loci that overlapped annotations. Lower scores suggest significant enrichment

and higher priority as causal variants. Although GoShifter does not define a overlap score

threshold to interpret significance, I prioritised variants from credible sets based upon the

variant or variants with the lowest feature overlap score per PSC risk locus.

For ease of reference, SNPs are referred to according to their RSID. The 15 PSC risk

loci are numbered 1 to 15, and referred to according to their PSC risk region number,

chromosome and bp position of the lead GWAS SNP for the region, according to Ensembl

build 37 (see Table 2.1). Where a region is referred to according to a nearby candidate

gene, it is important to note that candidate genes are assigned according to locality and

biological plausibility and do not necessarily describe a proven causal association between

variant and gene, unless specifically stated otherwise.

2.4 Results

I conducted fine-mapping of the fifteen PSC risk loci in the GWAS dataset published

by Ji et al [42]. Genotyping, quality control (QC) and imputation had been previously

conducted on the genotype data of 24,751 individuals of European ancestry, including

4,796 PSC cases 19,955 controls, as previously described by Ji et al. Fine-mapping of the

PSC risk loci identified nineteen independent signals across fifteen risk loci (Figure 2.2).

Evidence supported just one causal signal within eleven of the fifteen regions with >50%

certainty. For seven of those regions the PP supporting one independent causal signal

was >70%. In the remaining four regions the evidence supported the presence of two

independent signals with >50% certainty. For each signal detected, variants were sorted
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by the PP of causality and added to the credible set of associated variants until the sum of

their PPs exceeded 95%. These credible sets ranged in size from one to sixty-two variants

(Table 2.1). For all loci, review of the 1000 Genomes and UK10K data-sets revealed

that there were no SNPs in high LD (r2>0.8) with the most probable causal variants,

missing from the analysis. Two of the fifteen risk loci resolved to a single causal variant

with >95% certainty and three loci to larger credible sets where one credible variant was

assigned >50% PP of causality. Of these five variants, one was enriched for a significant

protein-coding change, one caused direct disruption to a splice site and three overlapped

tissue-specific epigenetic marks in PSC-relevant tissue- and cell-types (Table 2.2).

Sensitivity analysis using a di↵erent LD matrix derived from UK10K reference cohort

demonstrated that when considering one independent causal variant, choice of LD matrix

did not a↵ect the most probable SNP or PP of causality according to FINEMAP. As

expected, when considering more than one independent causal variant in each region, the

results of fine-mapping were more sensitive to the choice of LD matrix. For five of the

fifteen loci, the most probable fine-mapped causal variant using LD from GWAS and

UK10K remained the same. For seven of the fifteen loci the credible sets derived from both

analyses were identical, with a slight redistribution of the PP of causality to a neighbouring,

highly-correlated variant. Fine-mapping attempts in the remaining three loci resulted in

credible sets containing more than forty credible causal variants with complex patterns of

LD in all three regions, which was not improved with a di↵erent choice of LD matrix.

GoShifter identified significant enrichment of credible causal variants from all 19

independent signals with promoter and enhancers annotations in all five tested immune-

cell types (B-cell, CD14+ monocytes, macrophage, peripheral blood mononuclear cells and

T-regulatory cells) and eleven gastro-intestinal tissues (colonic mucosa, duodenal mucosa,

gastroesophageal sphincter, large intestine, liver, duodenal muscle, rectal smooth muscle,

rectal mucosa, Sigmoid colon, small intestine and transverse colon). It is important to

note that GoShifter is applied only to variants within non-coding regions and therefore

PSC regions 4 and 10 (loci within coding regions) and PSC region 15 (a splice site region),

were not included in this analysis.
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Number of independent signals per region

11 4

2

Number of credible set variants in each signal 

1

5

2

19 independent signals identified in 15 
regions

1 2-5 6-10 11-20 21+

3 2 3

7 signals mapped to ≤10 
variants

1-10%

34 variants have PP ³ 10%

Posterior probability of a variant being causal
<1%10-50%

29 147 70

³95% 50-95%
2 3

5 variants have PP³ 50%

Figure 2.2: Summary of fine-mapping the PSC risk loci.

50



T
ab

le
2.
1:

F
in
e-
m
ap

p
in
g
of

P
S
C

ri
sk

lo
ci

R
eg

io
n

F
in
e-
m
a
p
p
in
g

R
eg

io
n

S
ig
n
a
l

C
h
r

C
a
n
d
id
a
te

G
en

e
L
ea

d
G
W

A
S
S
N
P

P
o
si
ti
o
n
(b

3
7
)

S
N
P

P
P

m
a
x

P
o
si
ti
o
n
(b

3
7
)

P
P

C
a
u
sa
l

C
re
d
ib
le

se
t
si
ze

1
1

1
M
M
E
L
1

rs
37
48
81
6

25
26
74
6

rs
61
76
36
97

28
10
79
1

0.
07

62
2

1
2

B
C
L
2L

11
rs
72
83
78
26

11
19
33
00
1

rs
72
83
78
26

11
19
33
00
1

0.
18

12
3

1
2

C
D
28

rs
74
26
05
6

20
46
12
05
8

rs
58
37
87
5

20
46
47
87
8

0.
19

6
2

rs
23
17
99

20
47
07
41
7

0.
17

4
1

3
M
S
T
1

rs
31
97
99
9

49
72
15
32

rs
11
71
68
95

49
76
27
79

0.
11

13
2

rs
13
08
37
91

49
72
17
98

0.
07

5
1

3
F
O
X
P
1

rs
80
06
04
85

71
15
38
90

rs
80
06
04
85

71
15
38
90

0.
99

1
2

rs
36
02
33
90

71
52
30
93

0.
14

6
1

4
IL
2-
IL
21

rs
13
14
04
64

12
34
99
74
5

rs
13
11
97
23

12
32
18
31
3

0.
09

50
7

1
6

B
A
C
H
2

rs
56
25
82
21

91
03
04
41

rs
77
50
27
1

91
03
62
25

0.
20

12
8

1
10

IL
2R

A
rs
41
47
35
9

61
08
43
9

rs
41
47
35
9

61
08
43
9

0.
46

5
9

1
11

C
C
D
C
88
B

rs
66
37
43

64
10
77
35

rs
35
24
76
80

63
88
47
47

0.
61

2
2

rs
66
37
43

64
10
77
35

0.
41

1
0

1
12

S
H
2B

3
rs
31
84
50
4

11
18
84
60
8

rs
31
84
50
4

11
18
84
60
8

0.
99

1
1
1

1
16

C
L
E
C
16
A

rs
72
56
13

11
16
96
83

rs
72
56
13

11
16
96
83

0.
16

12
1
2

1
18

C
D
22
6

rs
17
88
09
7

67
54
36
88

rs
16
10
55
5

67
54
31
47

0.
08

44
1
3

1
19

P
R
K
D
2

rs
31
38
39

47
22
15
57

rs
31
38
39

47
22
15
57

0.
23

14
1
4

1
21

E
T
S
2

rs
28
36
88
3

40
46
67
44

rs
48
17
98
8

40
46
88
38

0.
58

10
1
5

1
21

U
B
A
S
H
3A

rs
18
93
59
2

43
85
50
67

rs
18
93
59
2

43
85
50
67

0.
62

5

P
P
;
p
os
te
ri
or

p
ro
b
ab

il
it
y
of

ca
u
sa
li
ty

51



T
ab

le
2.
2:

P
S
C

ri
sk

lo
ci

ov
er
la
p
p
in
g
ge
n
e
re
gu

la
to
ry

fe
at
u
re
s

R
eg

io
n

S
ig
n
a
l

C
h
r

C
a
n
d
.
g
en

e
F
IN

E
M

A
P

S
N
P

F
M

P
P

G
o
S
h
if
te
r
S
N
P

F
M

P
P

O
v
er
la
p
s
p
ro

m
o
te
r
in

th
es
e
ti
ss
u
e

O
v
er
la
p
s
en

h
a
n
ce

r
in

th
es
e
ti
ss
u
es

1
1

1
M
M
E
L
1

rs
61
76
36
97

0.
07

rs
60
73
34
00

0.
02

S
I,
R
M
,L
,C
M
,M

D
,
C
D
14
,S
C
,P
B
M
C
,T
C
,D

M
,L
I,
M
R
,S
C

S
C
,S
I,
L
,G

O
S
,B
C
,M

R
,T
C
,C
M
,C
D
14
,
P
B
M
C
,L
I,
D
M
,
M
D

2
1

2
B
C
L
2L

11
rs
72
83
78
26

0.
18

rs
72
83
63
45

0.
18

S
I,
R
M
,L
,C
M
,C
D
14
,S
C
,P
B
M
C
,T
C
,D

M
,L
I,
M
R
,M

S
C
,G

O
S
,B
C
,R
M
,T
C
,C
M
,C
D
14
,P
B
M
C

3
1

2
C
D
28

rs
58
37
87
5

0.
19

rs
58
37
87
5

0.
19

R
M
,C
M
,P
B
M
C
,L
,D

M
,M

R
,
R
M
,C
D
14
,M

,T
R

S
I,
S
C
,C
D
14
,
P
B
M
C
,R
M
,G

O
S
,C
M
,T
R

2
rs
23
17
79

0.
16

rs
23
17
79

0.
16

R
M
,C
M
,P
B
M
C
,L
,D

M
,M

R
,
R
M
,C
D
14
,M

,T
R

S
I,
S
C
,C
D
14
,
P
B
M
C
,R
M
,G

O
S
,C
M
,T
R

5
1

3
F
O
X
P
1

rs
80
06
04
85

0.
99

rs
80
06
04
85

0.
99

C
D
14
,M

R
,R
M
,B
C
,T
R
,M

S
C
,G

O
S
,M

R
,R
M
,L
I,
B
C
,T
R

2
rs
36
02
33
90

0.
14

rs
36
02
33
90

0.
14

C
D
14
,M

R
,R
M
,B
C
,T
R

S
C
,G

O
S
,M

R
,R
M
,L
I,
B
C
,T
R
,C
M

6
1

4
IL
2-
IL
21

rs
13
11
97
23

0.
09

rs
67
96
36
13

0.
01

S
I,
R
M
,L
,C
M
,D

M
,S
C
,P
B
M
C
,C
D
14
,T
C
,
D
M
,L
I,
M
R
,R
M
,M

,T
R

S
C
,S
I,
L
,G

O
S
,B
C
,R
M
,M

R
,T
C
,C
M
,C
D
14
,P
B
M
C
,L
,M

D
,D

M
,T
R

7
1

6
B
A
C
H
2

rs
77
50
27
1

0.
20

rs
77
50
27
1

0.
20

S
I,
R
M
,L
,C
M
,M

D
,S
C
,P
B
M
C
,C
D
14
,T
C
,
D
M
,L
I,
M
R
,R
M
,M

,B
C

S
C
,S
I,
L
,G

O
S
,B
C
,R
M
,M

R
,T
C
,C
M
,P
B
M
C
,C
D
14

8
1

10
IL
2R

A
rs
41
47
35
9

0.
46

rs
41
47
35
9

0.
46

C
D
14
,M

,L
,D

M
,C
D
14
,C
M
,S
C
,R
M
,T
R
,L
I,
C
M
,B
C
,S
I,
M
R
,M

D
S
C
,S
I,
L
,G

O
S
,B
C
,
R
M
,T
C
,C
M
,
C
D
14
,P
B
M
C
,M

D
,
L
,D

M
,

C
M
,T
R
s,
L
I,
B
C
,S
I,
M
R

9
1

11
C
C
D
C
88
B

rs
35
24
76
80

0.
61

rs
35
24
76
80

0.
61

S
I,
R
M
,L
,C
M
,
M
D
,
C
D
14
,S
C
,P
B
M
C
,
T
C
,D

M
,L
I,
M
R
,M

L
,S
C
,G

O
S
,B
C
,R
M
,
T
C
,C
M
,C
D
14
,P
B
M
C
,L
I
,S
I,
D
M

2
rs
66
37
43

0.
41

rs
66
37
43

0.
41

S
I,
R
M
,L
,C
M
,
M
D
,
C
D
14
,S
C
,P
B
M
C
,
T
C
,D

M
,L
I,
M
R
,M

,L
L
,S
C
,G

O
S
,B
C
,R
M
,
T
C
,C
M
,C
D
14
,P
B
M
C
,L
I
,S
I,
D
M
,T
C

1
1

1
16

C
L
E
C
16
A

rs
72
56
13

0.
16

rs
11
33
44
84
2

0.
02

S
C
,S
I,
L
,G

O
S
,B
C
,M

R
,T
C
,C
M
,C
D
14
,R
M
,M

D
,D

M
,C
M
,

C
M
,C
D
14
,P
B
M
C
,M

R
,R
M
,M

,L
,D

M
,C
D
14
,C
M
,P
B
M
C
,S
C
,B
C
,

P
B
M
C
,R
M
,T
R
s,
L
I

R
M
,S
I,
T
R
,L
I,
C
M
,M

R
,M

D
1
2

1
18

C
D
22
6

rs
16
10
55
5

0.
08

rs
48
91
78
1

0.
03

P
B
M
C
,S
C
,T
R
,M

D
,S
I,
P
B
M
C

L
I,
R
M

1
3

1
19

P
R
K
D
2

rs
31
38
39

0.
23

rs
31
38
39

0.
23

S
I,
R
M
,L
,C
M
,M

D
,C
D
14
,S
C
,P
B
M
C
,T
C
,D

M
,
L
I,
M
R
,R
M
,M

S
C
,S
I,
L
,G

O
S
,B
C
,R
M
,M

R
,T
C
,C
M
,C
D
14
,P
B
M
C
,L
I,
M
D
,D

M
1
4

1
21

E
T
S
2

rs
48
17
98
8

0.
58

rs
28
36
88
3

0.
05

C
M
,R
M
,C
D
14
,P
B
M
C
,M

,S
I

S
C
,S
I,
L
,G

O
S
,R
M
,T
C
,C
M
,
C
D
14
,P
B
M
C
,M

D
,D

M
,B
C

B
C
;
B
-c
el
l,
C
D
14
;
C
D
14
+

m
on

oc
yt
e,

C
M
;
C
ol
on

ic
m
u
co
sa
,
D
M
;
D
u
od

en
al

m
u
co
sa
,
G
O
S
;
ga
st
ro
es
op

h
ag
ea
l
sp
h
in
ct
er
,
L
I;
L
ar
ge

in
te
st
in
e,

L
;
li
ve
r,
M
;
m
ac
ro
p
h
ag
e,

M
D
;
D
u
od

en
al

m
u
sc
le
.

M
R
;
R
ec
ta
l
sm

oo
th

m
u
sc
le
,
P
B
M
C
;
P
er
ip
h
er
al

b
lo
od

m
on

on
u
cl
ea
r
ce
ll
,
R
M
;
R
ec
ta
l
m
u
co
sa
,
S
C
;
S
ig
m
oi
d
co
lo
n
,
S
I;
sm

al
l
in
te
st
in
e,

T
C
;
T
ra
n
sv
er
se

co
lo
n
,
T
R
;
T
-r
eg
u
la
to
ry

ce
ll

52



2.4.1 Loci mapped to a single causal variant

Two of the fifteen PSC risk loci mapped to a single causal variants with � 95% PP of

causality. The first single variant credible set was in PSC region 5 (Chr3:71153890), where

the GWAS lead SNP, rs80060485 at position 71153890, was predicted to be causal with a

PP of 99%. FINEMAP strongly supported the presence of a second independent signal

within this region with 83% certainty. Signal 2 could not be well fine-mapped with 14%

PP of causality for the most probable causal variant, rs36023390 at position 71523093

(Figure 2.3a). The presence of two independent causal variants was supported by the

finding that the causal configuration with the highest PP contained both rs80060485 and

rs36023390 and that these two SNPs were not correlated (r2=0). GoShifter identified that

the credible causal variant for signal 1, rs80060485, overlapped promoter and enhancer

marks in three immune cell types and ten gastrointestinal tissue types (see Table 2.2).

The fine-mapped causal variant, rs80060485, occurs within an intron of FOXP1 (fork-

head box P1), a transcription factor with an important role in B- and T-cell di↵erentiation.

CD4+ T-follicular helper (T-FH) cells, are a specialised T-cell subset found in germinal

centres, which interact with B-cells, inducing antibody formation and response. Foxp1

is a negative regulator of T-FH cell di↵erentiation, directly and negatively regulating

IL-21 production [165]. Foxp1-deficient CD4+ T cells preferentially di↵erentiate into

CD4+ T-FH cells, resulting in substantially enhanced germinal centre and antibody

responses. T-FH cells can also be found in the periphery where they are characterised

by the expression of chemokine receptor type 5 (CXCR5) and the inhibitory receptor,

programmed death 1 (PD-1). Circulating T-FH cells lacking the chemokine (C-C mo-

tif) receptor 7 (CCR7), closely resemble lymphoid tissue-derived T-FH cells, that are

pathogenic in autoimmunity [166]. Interestingly, the frequency of potentially pathogenic

CCR7lowCXCR5+PD-1+CD4+ T-FH cells is increased in patients with PSC, compared

to healthy donors [167], suggesting Foxp1 and T-FH cells may have an important role in

PSC pathogenesis. Whilst it is not yet clear whether or how the expression of FOXP1 is

a↵ected by the intronic rs80060485 variant, this analysis demonstrates that this variant

overlaps several important markers for active enhancers, suggesting a mechanism via which

this variant may exert a quantitative e↵ect upon the expression of FOXP1 or several other

genes within the region.

The second locus fine-mapped to a single causal variant with � 95% PP of causality

was PSC region 10 (Chr12:111884608). Fine-mapping confirmed that rs3184504, the lead

GWAS SNP, was the most probable causal variant with 99% certainty (Figure 2.3b). The

rs3184504 SNP, is a multi-allelic missense variant which is positioned within exon 3 of

the SH2B3 (Scr homology 2 adaptor protein 3) gene. The rs3184504*A and rs3184504*C

alleles code for a basic polar arginine and the rs3184504*G allele codes for a polar glycine

at position 262 in the pleckstrin homology domain of the SH2B3 protein. The minor allele
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for this locus, present at a frequency of 15%, is the PSC risk increasing rs3184504*T allele,

which codes for a non-polar tryptophan at this position. Analysis of the functional e↵ect

of this missense mutation using Ensembl’s variant e↵ect predictor (VEP) assigned the

rs3184504*C>T SNP a PHRED-like scaled CADD score of 11.08, where a score of �10

indicates polymorphisms predicted to be within the 10% most deleterious substitutions in

the human genome [168].

Figure 2.3: Regional association plots for PSC risk loci mapped to single variants.

SH2B3 is an interesting gene in the pathogenesis of PSC, as it is a negative regulator

of T-cell activation, TNF production, and Janus kinase (JAK) 2 and 3 signalling. It
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is known to encode the T-cell adapter protein LNK, which regulates T-cell receptor-,

growth factor- and cytokine receptor-mediated signalling [169]. The SH2B3 locus is a

shared risk locus with several other IMDs and rs3184504 remains the lead SNP in GWAS

of coeliac disease (CeD), rheumatoid arthritis (RhA), type 1 diabetes mellitus (T1DM)

and autoimmune hepatitis (AIH) [169–171]. Fine-mapping of this risk locus in RhA

predicted that rs3184504 was the most probable causal variant for this locus with 76%

PP of causality [114]. Expression quantitative trait loci (eQTL) studies have shown that

rs3184504 is associated with increased expression of genes involved in IFN� production

[172]. Furthermore, functional investigation of this locus has shown that peripheral

blood mononuclear cells isolated from individuals homozygous for the rs3184504*A allele,

which increases risk of RhA and T1DM, display increased production of pro-inflammatory

cytokines in response to bacterial stimuli compared to individuals homozygous for the

non-risk G allele [173]. The same study also suggested that the SH2B3 protein has

an inhibiting function on the MDP-NOD2-RIP2 pathway, which responds to bacterial

ligands, with disease-associated alleles causing diminished inhibitory activity of SH2B3.

Unfortunately, they did not include analysis of individuals homozygous for the minor

rs3184504*T allele, which not only increases the risk of PSC, but also of AIH [174],

suggesting the resultant Arg262Trp amino acid substitution may contribute to an aberrant

immune- and inflammatory-response targeted at the hepato-biliary system.

2.4.2 Variants with a greater than 50% posterior probability of

causality

Three signals mapped to credible sets containing more than one variant, where one

variant within each credible set had >50% PP of causality. The first was within PSC

region 9 (Chr11:64107735), where rs35247680 at position 63884747 was predicted to be

causal with 61% PP. This SNP is a non-coding variant within an intron of MACROD1.

GoShifter demonstrated that this variant overlapped promoter marks enriched in four

immune cell-types and nine gastrointestinal tissues and overlapped enhancer marks in

four immune cell-types and eleven gastrointestinal tissues (Table 2.2), thereby suggesting

several mechanisms via which this credible causal variant may regulate expression of

nearby genes. There was evidence to support a second independent signal within this

region with 68% certainty (Figure 2.4a). The most probable causal variant for signal 2

was the previously reported lead GWAS SNP for this locus, rs663743 at position 64107735.

Independence of these two signals was supported by the fact that these variants were

not highly correlated with one another (r2=0.02). The rs663743 SNP is non-coding and

within the 5' untranslated region overlapping a promoter region for CCDC88B (coiled-coil

domain containing 88B). However with 41% PP of causality attributed to rs663743, signal
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2 could not be considered fine-mapped.

Figure 2.4: Regional association plots for PSC risk loci mapped to casual variants with

>50% posterior probability of causality.

The second region mapped to a credible set containing a variant with >50% PP of

causality was in PSC region 14 (Chr21:40466744). The lead GWAS variant for this region,
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rs4817988, is highly correlated (r2>0.8) with more than ten other variants of genome-wide

significance that lie in close proximity, all with similar measures of association (Figure

2.4b). Fine-mapping of this region identified a 95% credible set containing ten of these

high-LD variants with the most probable causal variant for this region, rs4817988 at

position 40468838 with 58% PP of causality. The next most probable causal variants were

rs2836884 at position 40467643 (8% PP) and rs2836883 at position 40466744 (5% PP).

This locus is located 5’ upstream of PSMG1, which is the commonly quoted candidate

gene for this region, based upon its genomic locality and evidence from the study of

paediatric IBD colon where levels of PSMG1 were increase compared to healthy colon [175].

Importantly, although rs4817988 is located in a non-coding region, it overlaps a CTCF

transcription factor binding site and has been correlation with the expression of ETS2

(v-ets avian erythroblastosis virus E26 oncogene homolog 2) in the GTEx eQTL analysis

of whole blood [176]. GoShifter prioritised rs2836883, followed closely by rs4817988 with

the lowest overlap scores and found these variants to overlap promoter marks in three

immune cell types and three gastrointestinal tissue types (Table 2.2). This same locus has

also been associated with IBD and has been the subject of an IBD fine-mapping study

[56]. Huang, Fang, Jostins et al resolved the ETS2 locus to a credible set of 10 variants,

with a 39% PP attributed to the most probable variant, rs9977672. In PSC, I mapped

this region to a 10 variant credible set, 8 of which overlapped with the IBD credible set

for this region, however prioritising a di↵erent variant, rs4817988 at position 40468838, as

causal with 58% certainty. The two non-overlapping variants within the IBD credible set,

one of which is the most probable IBD fine-mapped variant, are both present within the

PSC data-set. It is likely that for this region, the same variant is causal is both PSC and

IBD, although further analysis is required to validate this hypothesis.

The third locus fine-mapped to a credible set containing a variant with >50% PP of

causality was PSC region 15 (Chr21:43855067). Ji et al reported an association between

the Chr21:43855067 locus and PSC risk, driven by lead SNP rs1893592, and proposed

UBASH3A as the most likely gene a↵ected by this risk locus on the basis that this SNP

was an eQTL of UBASH3A in one B-cell only [129] and two whole blood analyses [118,

177] (Figure 2.4c). Fine-mapping of this region confirmed that rs1893592 at position

43855067, which is located three bases downstream of the 10th exon of UBASH3A within

the splice consensus sequence, was the most probable causal variant in this region with

62% PP of causality. The PSC risk reducing rs1893592*C allele, disrupts the conserved

5' splice donor sequence at this position, and is predicted to cause partial retention of

the downstream intron and possible non-stop mediated decay [178]. I fine-mapped this

locus to a credible set containing just four additional variants, each located within intronic

regions of UBASH3A, but with a low individual probability of causality; rs11203203

(14%), rs3788013 (9%), rs9974339 (6%) and rs876498 (6%), and all in low LD (r2<0.6)
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with the most probable SNP, rs1893592. Interestingly, this locus has also been reported

as associated with T1DM, where a fine-mapping study has identified the second most

probably PSC SNP, rs11203203 at Chr21:43836186, as the most probable causal variant

for this locus in T1DM with 39% PP of causality [114]. In this T1DM fine-mapping study,

the 95% credible set contained four variants, of which only rs11203203 is contained with

both the PSC and T1DM credible sets. Notably, a review of the summary statistics from

both data-sets showed that SNPs from both credible sets were considered within both the

PSC and T1DM fine-mapping analyses. Whilst it is possible that di↵erent SNPs within

this same locus may precipitate di↵erent IMDs, it is more likely, where the credible sets

overlap, that it is the same causal variant responsible for both IMDs. Further work to

colocalise the signals in PSC and T1DM at this locus would be helpful to establish a

shared causal variant.

2.4.3 Variants with a greater than 20% posterior probability of

causality

Fine-mapping of two loci resulted in credible sets containing at least one causal variant

with >20% PP of causality. Although these loci could not be considered fine-mapped,

a large credible set with >20% PP attributed to one SNP could, in combination with

functional annotation, provide useful information about the potential causal variants

within a locus. The first locus containing at least one causal variant with >20% PP of

causality was PSC region 8 (Chr10:6108139 region). The lead GWAS SNP for this locus,

rs4147359 (Chr10:6108139), located upstream of IL2RA, was predicted to be the most

probable causal variant for this region with 46% PP of causality. The 95% credible set

included four other variants, two intergenic and two intronic variants (Figure 2.5a). These

variants were found to be enriched for overlapping regulatory regions in PSC-relevant

tissues. GoShifter identified variants within this locus as potentials for functional follow

up with one of the lowest overlaps scores across all credible variants from all non-coding

loci observed for rs4147359, also the most probable causal variant from fine-mapping of

this locus. This variant is located within an intergenic region and overlaps a marker of

active transcription, H3K36me3. This suggests that the mechanism via which rs4147359

may increase PSC risk is through modulation of an active transcription histone acetylation

mark, although the downstream gene and direction of e↵ect cannot be identified from

either of these analyses. FINEMAP could not distinguish whether there were one or two

independent signals within the region, with equal evidence for both, although the most

probable causal configuration contained just one single variant, rs4147359. Interestingly,

this locus has been previously fine-mapped in a study of individual and combined summary

statistics for T1DM and RhA [114]. In the combined T1DM and RhA data, this locus
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was fine-mapped to a credible set containing 3 SNPs; rs706778 (89% PP), rs7072793 (4%

PP) and rs7096384 (3% PP). Reassuringly, two of these T1DM/RhA credible set variants

(rs706778 and rs7072793) were also included within the PSC credible set, with 12% and

9% PP of causality respectively. Both PSC and T1DM/RhA GWAS datasets included

all SNPs within the credible sets for both of these IMDs. Given that the T1DM/RhA

fine-mapping study included data from 11,475 RhA cases and 9,334 T1DM cases, compared

to the 4,796 PSC cases analysed in this study, the T1DM/RhA fine-mapping study was

better powered to fine-map individual rick loci. Therefore, where fine-mapping of risk

loci within one data-set is inconclusive, the sharing of genetic architecture between IMDs

means that other fine-mapping studies of the same locus can be informative.

Figure 2.5: Regional association plots for PSC risk loci mapped to casual variants with

>20% posterior probability of causality.
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The second locus containing at least one causal variant with >20% PP of causality was

PSC region 13 (Chr19:47205707). This locus was fine-mapped to a credible set containing

fourteen variants, with the most probable causal variant for the region being rs313839

at position 47221557 with 23% PP of causality (Figure 2.5b). The rs313839 variant lies

within an intron region that has been associated with binding of many transcription factors

though chromatin immunoprecipitation (ChIP)-sequencing studies and overlaps a promoter

region for a gene called PRKD2. Notably, rs313839 was also prioritised by GoShifter as it

overlaps transcription activation marks, H3K4me3 and H3K27ac, in CD14+ monocytes.

This finding is in keeping with the known role of PRKD2 in monocyte migration and

adhesion [179], [180]. Analysis of the major and minor allele sequences using PROMO,

which identifies putative transcription factor binding sites [181], showed that rs313839

C>G (where rs313839*G is the PSC risk increasing allele) resulted in loss of binding motifs

for transcription factors LEF-1 TCF1A, TCF-4E, DEF:GLO:SQUA, TCF-3 and ADR1,

and gain of motifs for EIIE-A, VSF-1, V-MYB and MYB2. Although further investigation

is required to identify the genes a↵ected by these transcription factors, the results of this

study suggest that the most probable causal variant, rs313839, modulates transcription

factor binding, with evidence supporting PRKD2 as a likely candidate gene for this locus.

2.4.4 Loci not well-resolved with fine-mapping

Several regions could not be fine-mapped to credible sets with the majority of the PP for

causality attributed to one variant. However, four regions were resolved to relatively small

credible sets. PSC region 3 (Chr2:204612058) was mapped to a six variant credible set, with

the majority of the PP for causality (19%) attributed to rs5837875 at position 204647878,

a variant located in an transcription factor binding site and associated with expression of

CD28 in one whole blood eQTL analysis [118]. PSC region 2 (Chr2:111933001), region 7

(Chr6:91030441) and region 11 (Chr16:11169683) were each resolved to credible sets of

twelve variants, in which the respective most probable causal variants had PPs of 0.18,

0.20 and 0.16. Although PSC region 2 (Chr2:111933001) and region 11 (Chr16:11169683)

have been reported as associated with IBD and PBC respectively, the Chr2:111933001

locus has not been considered in either of the published IBD fine-mapping studies [56],

[60] and there have been no published fine-mapping studies in PBC, to date. PSC region

7 (Chr6:91030441) has been fine-mapped to a credible set of nine variants in RhA [114].

Whilst the most probable causal variants di↵ered between PSC and RhA, all nine variants

within the RhA credible set were contained within the PSC credible set.

Four PSC risk loci were not well resolved with fine-mapping, defined by large credible

sets with the most probable causal variant assigned  10% PP of causality. PSC region 4

(Chr3:49721532) MST1 (Figure 2.6a) and region 6 (Chr4:123499745) IL2-IL21 (Figure

2.6b) both contain many variants in tight LD with one another, extending over a wide
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genomic region of >500Mb, all with very similar strengths of association. Both of

these loci have been associated with IBD, however fine-mapping in IBD was unable to

resolve the Chr3:49721532 MST1 and Chr4:123499745 Il2-Il21 loci, with credible sets

containing 437 and 29 variants respectively, a likely consequence of the extended, complex

patterns of LD observed within these regions. PSC region 1 (Chr1:2526746) (Figure 2.7a)

and region 12 (Chr18:67543688) (Figure 2.7b) both contain many variants with similar

strengths of association, all in tight LD with one another. Under such circumstances

FINEMAP, which utilises subtle di↵erences in strengths of association between tightly

correlated variants, performs less well, and prioritisation of non-coding causal variants

using functional annotation of genomic regions become more important to infer causality.

The GoShifter overlap scores for these two loci were comparatively high, compared to other

loci, suggesting GoShifter was unable to easily prioritise causal variants from these loci in

comparison with other PSC risk loci. However, based upon the variant with the lowest

overlap score relative to other credible variants within the same locus, for PSC region 1

(Chr1:2526746) GoShifter prioritised rs60733400 at position 2516781 with an overlap score

of 0.17. This variant overlaps several regulatory features including H3K27ac, an active

enhancer marker in CD14+ monocytes. For PSC region 12 (Chr18:67543688), GoShifter

prioritised rs4891781 at position 67524646 with an overlap score of 0.14, as it overlapped

an H3K9ac mark in peripheral blood mononuclear cells (PBMCs). This variant is in tight

LD with the most probable causal variant from fine-mapping, and lies only 10Kb upstream.

However in both cases the overlap scores were relatively high (>0.14) suggesting that in

comparison to the other PSC risk loci, these loci should not be prioritised for further for

functional follow-up. PSC region 12 (Chr18:67543688) has been associated with T1DM,

however fine-mapping of locus in T1DM was no more successful, with a reported credible

set containing 32 variants [114].
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Figure 2.6: Regional association plots for PSC risk loci not well resolved with fine-mapping.

62



Figure 2.7: Regional association plots for PSC risk loci not well resolved with fine-mapping.

2.5 Discussion

In this chapter I perform the first fine-mapping analysis of risk loci associated with PSC.

Using an established Bayesian fine-mapping method I was able to fine-map five of these risk
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loci to a credible set containing a variant with >50% PP of causality, two of which were

fine-mapped to a single causal variant with >95% PP of causality. Of these five variants,

one is enriched for a significant protein-coding change, one is predicted to cause direct

disruption to a splice site and three overlap tissue-specific epigenetic marks in PSC-relevant

cell- and tissue-types. Stringent prior quality control and filtering of GWAS data means

that for common variant associations, the results of this fine-mapping analysis are likely

to be robust. This is supported by the finding that PSC credible sets are significantly

enriched for variants that overlap enhancer or promoter regions in PSC-relevant tissues

and cell-types. This analysis however, illustrates some of the challenges associated with

fine-mapping. Only seven loci were mapped to credible sets containing  10 credible

causal variants and for only 5 of these loci was is possible to identify a single causal variant

as a promising candidate with >50% PP. For several loci, the presence of large credible

sets with multiple plausible causal variants, each with low PPs of causality means that

functional annotation is essential for prioritisation. The generation of precise annotation

maps in disease-relevant tissues will therefore be crucial to our ability to further interpret

these risk loci. Nevertheless, the identification of causal variants for even just a few loci

remains a valuable outcome.

Precise fine-mapping should frequently point to the same variant in di↵erent diseases

with shared risk loci. IBD remains the disease which shares the most genetic architecture

with PSC. Of the 15 PSC risk loci fine-mapped within this study, it has been previously re-

ported that five loci; Chr3:49721532 (MST1), Chr4:123499745 (Il2-Il21), Chr12:111884608

(SH2B3), Chr18:67543688 (CD226) and Chr21:40466744 (ETS2), demonstrate strong

evidence for a shared causal variant with IBD [42]. Three of these loci, Chr3:49721532

(MST1), Chr4:123499745 (Il2-Il21) and Chr21:40466744 (ETS2), have been the subject

of fine-mapping in IBD [56, 60]. Huang, Fang, Jostins et al resolved the ETS2 locus to

a credible set of ten variants, with a 39% PP attributed to the most probable variant,

rs9977672. In PSC, I fine-mapped this region to a ten variant credible set, eight of which

overlap with the IBD credible set for this region, however prioritising a di↵erent variant,

rs4817988 at position 40468838, as causal with 58% certainty. The two non-overlapping

variants within the IBD credible set, one of which is the most probable IBD fine-mapped

variant, are both present within the PSC dataset. It is likely that for this region, the

same variant is causal is both PSC and IBD, supporting a higher prior in any future

fine-mapping studies and consideration of these two additional IBD credible variants in any

future functional follow-up studies. Fine-mapping in IBD was however unable to resolve

the Chr3:49721532 MST1 and Chr4:123499745 Il2-Il21 loci, with credible sets containing

437 and 29 variants respectively, a likely consequence of the extended, complex patterns

of LD observed within these regions. This is an important negative finding, as for those

regions not well resolved by fine-mapping in PSC, it has been suggested that the future
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use of larger GWAS sample sizes will enable the statistical resolution of more risk loci,

due to the ability to better distinguish subtle di↵erence in LD between tightly correlated

variants. Sample sizes in IBD GWAS dwarf those of PSC, with the numbers of subjects

now approaching 60,000. However despite this, for these high LD regions, fine-mapping

was no more successful in the larger samples sizes of IBD. One remedy to this might be to

leverage LD from other ethnicities by undertaking GWAS in populations with di↵erent

LD structure to improve fine-mapping resolution [113]. However, to date, GWAS in PSC

have only included individuals of European ancestry, and the number of non-European

individuals included in IBD GWAS is comparatively small.

Several of the PSC risk loci in this study have been reported as risk loci and fine-mapped

in RhA and T1DM. Similar to IBD, this provides an important means of verifying the

precision of these PSC fine-mapping results and where PSC fine-mapping has not resolved

a locus to a small credible set, it provides the opportunity to review fine-mapping results

from IMDs with larger sample sizes and thus greater power to di↵erentiate between highly

correlated SNPs. However, whilst we know there is significant sharing of risk loci between

IMDs, to date, there have been no studies that determine shared risk loci between PSC

and other IMDs, outside of IBD. In order to conclusively prove that a risk locus is shared

between two traits, and thus the results from the fine-mapping of one trait are applicable

to both traits, some form of statistical analysis is required. Colocalisation is a statistical

means of assessing the probability that the signal observed in two traits e.g. a PSC risk

locus and a T1DM risk locus, is driven by the same causal variant. Whilst colocalisation

does not define which is the true causal variant for each colocalising trait, in combination

with fine-mapping it provides a powerful means of determining shared genetic architecture

and resolving causal variants. This is an analysis explored in the following chapter of this

thesis.

An important step in using genetic risk loci to further our biological understanding of

disease causation is to identify the genes impacted. When the fine-mapped variant falls

within a coding region of the genome, this can be relatively straightforward. For example,

fine-mapping of PSC region 10 (Chr12:111884608) identified rs3184504, a missense variant

located in exon three of SH2B3, as the most probable causal variant with 99% certainty.

SH2B3 is an interesting gene in the pathogenesis of PSC, as it is a negative regulator of

T-cell activation, TNF production, and Janus kinase (JAK) 2 and 3 signalling, with several

studies exploring the allele-specific e↵ects of this SNP on immune- and inflammatory-

response and subsequent risk of IMD. However, the majority of genetic associations with

IMD fall within non-coding genomic regions, and PSC is no exception. Of the 15 PC-risk

loci fine-mapped in this study, only two loci were fine-mapped to variants within a coding

region. For the remaining 13 loci, identifying the precise genes impacted by the non-coding

variants, and the direction of e↵ect on gene expression remains challenging. For example,

65



fine-mapping and annotation of the Chr19:47205707 PRKD2 locus supported rs313839

at position 47221557 as the most probable causal variant. The PSC risk increasing allele

at this position is predicted to cause direct disruption to a binding site for multiple

transcription factors. However, identifying the gene a↵ected by this mutation, and whether

the PSC risk increasing allele results in increased or decreased expression of that gene is

not possible from fine-mapping and annotation alone.

One means of identifying the genes a↵ected by the many non-coding risk loci is via

colocalisation analysis with variants that exert a quantitative e↵ect upon gene expression

(eQTL). Colocalisation can be performed between any two types of traits, for example

two disease risk loci, or a disease risk locus and an eQTL locus. For example, the

Chr19:47205707 PRKD2 locus is also a T1DM locus, which has been shown to colocalise

with an eQTL in monocytes [182]. It is likely that the gene a↵ected by this same PSC locus

is also PRKD2, however colocalisation is a statistical means of measuring the probability

that this is true. Colocalisation with eQTLs allows us to identify the genes impacted by

non-coding risk loci, in addition to identifying the direction of e↵ect a particular disease

risk allele has upon downstream gene expression. Following on from fine-mapping, an

important next step to infer biological understanding from genetic risk loci in PSC is

therefore to identify the genes impacted, by colocalisation with eQTLs mapped in relevant

cell types, an analysis which is presented in the next chapter of this thesis.

Fine-mapping of genomic regions associated with disease risk is an important step in

understanding the biological mechanisms via which risk variants exert their e↵ect to cause

disease. Through fine-mapping, we can filter the often many hundreds of potential causal

variants within a locus to a single variant or set of variants responsible for the observed

association. In many cases, functional annotation of these credible sets gives us insight

into the mechanisms via which they alter gene expression and thus the biological pathways

that may be important in disease causation. Colocalisation with eQTLs measured in

disease-relevant cell-types and tissues is an important next step for identifying those genes,

cell-types and biological pathways a↵ected by disease risk loci, and will bring us one step

closer to understanding the causal biology of PSC.
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Chapter 3

Statistical colocalisation of Primary

Sclerosing Cholangitis risk loci with

functional quantitative trait loci

3.1 Introduction

The majority of genetic variants associated with complex disease risk are located within

non-coding regions of the genome. In the quest to unravel the function of non-coding risk

variants, our next challenge is to identify the precise genes upon which they impact. It is

now understood that many non-coding risk variants exert their influence via epigenetic gene

regulatory mechanisms and exert a quantitative rather than a qualitative e↵ect upon gene

expression. Variation in gene expression is therefore an important mechanism underlying

susceptibility to complex diseases. Expression quantitative trait loci (eQTL) are genetic

variants that exert a quantitative e↵ect upon gene expression, i.e. the abundance of a gene

transcript is directly modified by a genetic polymorphism, usually within a regulatory

element. In recent years eQTL mapping methods have been developed, which test the

association between genetic polymorphisms and transcript abundance by assaying gene

expression and genetic variation on a genome-wide scale, in a large number of individuals.

Similar to any complex trait, the abundance of a gene transcript is a quantitative trait

that can, with a su�cient sample size, be mapped with considerable power [116]. Variants

associated with complex diseases are demonstrably enriched for eQTLs [117]. Nicolae et al

have shown that SNPs associated with complex traits are significantly more likely to be

eQTLs than MAF–matched SNPs chosen from high-throughput GWAS platforms that are

not associated with complex traits. Investigating eQTLs in the functional study of genetic

risk loci associated with complex diseases such as PSC therefore remains a priority.

In order to further investigate the mechanism via which non-coding genetic variants

drive risk of complex disease, one challenge has been the integration of complex trait
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association data with eQTL data to measure the plausibility of a shared causal variant

between the two traits. Over the past decade, several methods have been developed to

try and address this challenge. One of the first methods of assessing whether two traits

shared a causal variant was by crude visual comparison of the overlap between two signals.

A number of computational tools were developed to facilitate the visual comparison of

trait-associated and gene-expression data [183]. For example, a study exploring eQTL

data for a particularly gene-dense region on chromosome 17q23 strongly associated with

susceptibility to asthma [184], found by visual comparison, that the same asthma-associated

variants also had highly significant e↵ects on the expression of ORMDL3 [185]. However,

observation of visual overlap cannot prove a causal relationship between, for example,

ORMDL3 and asthma because the abundance of eQTLs throughout the human genome

make the chance finding of an overlap highly likely [186]. Indeed, inference about shared

causality between two traits requires a more robust statistical assessment of colocalisation.

Plagnol et al proposed a ‘proportionality-testing’ method which tests a null hypothesis

of proportionality of regression coe�cients for any set of SNPs across two traits, with

the assumption that where there are multiple causal variants, these are shared between

both signals [187]. However it has been subsequently demonstrated that this method is

biased as a result of having to specify a subset of SNPs on which to base the analysis [188].

Moreover these, and other methods, reliant on individual level genotype data have become

impractical with the development of collaborative consortia facilitating the meta-analysis of

GWAS data from increasingly large sample sizes. In 2014, Giambartolomei et al published

Coloc, a method to test for colocalisation between two pairs of traits, which overcomes many

of these shortcomings by using a Bayesian model with single-SNP summary statistics [189].

Coloc, discussed further in the following Methods section, assesses the plausibility of a

single shared causal variant driving two traits, requiring densely-genotyped or well-imputed

summary statistics that have undergone stringent QC. Coloc bases its analysis upon all

SNPs within a locus, assuming each SNP is a priori equally likely to a↵ect the traits

under analysis. Furthermore it estimates the posterior probability (PP) for five di↵erent

hypotheses ranging from no shared genetic variation between two traits within a region

(PP0), to shared genetic variation with the same causal variant driving each signal (PP4).

Coloc can be applied to any two pairs of traits, including disease traits or functional

(epigenetic) traits such as eQTL, histone acetylation marks (histQTL) and methylation

marks (methQTL). Coloc, and other methods using a similar statistical approach have

become the singular method of analysis for performing colocalisation between genetic

traits.

Gene expression is the subject of both global and local regulatory variation, i.e. there

are eQTLs which act across multiple tissues, in addition to tissue-specific regulatory

variation [125]. Colocalisation between disease-associated risk loci and functional traits,
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therefore requires careful consideration of the tissue, cell-type or activation state in which

the functional trait has been measured. However, identifying the relevant cell-type or

stimulated state in which an eQTL is active remains challenging, as demonstrated by

several studies, which have sought to address this through the mapping of eQTLS across

multiple cell types challenged with multiple stimuli [129, 130]. Importantly, it has been

demonstrated that eQTLs are enriched for disease-associated variants in disease-relevant

cell- or tissue-types [190, 191]. For example, a recent IBD GWAS and colocalisation study

found that a chromosome 2 IBD risk locus co-localised with an eQTL that increased

expression of integrin a4 in stimulated monocytes, an eQTL that was not active in

unstimulated monocytes [60]. Furthermore, this pathway is already the target of successful

therapeutic blockade in IBD, by Vedolizumab, a monoclonal antibody to the a4b7 integrin

which inhibits T-cell tra�cking to the gut mucosa [83, 84]. Therefore, in order to unravel

the molecular basis of disease-specific risk loci, the evidence supports the preferential

use of eQTLs measured in disease-relevant tissues for colocalisation. However, paucity of

published eQTL data means that colocalisation with eQTLs in mechanistically-related

tissue/cell types may be limited by data availability. One interesting finding of a study

combining RNA-seq with ATAC-seq (Assay for Transposase-Accessible Chromatin using

sequencing) data, found that the majority of stimulus-specific eQTLs with a detectable

e↵ect upon chromatin accessibility also altered chromatin accessibility in the unstimulated

state [134]. On this basis, colocalisation with other functional QTL, for example chromatin

accessibility, histone modification or DNA methylation, may indicate the presence of an

eQTL in another (unstudied) stimulation state, in addition to revealing the epigenetic

mechanism via which disease-associated risk variants may influence gene expression.

Therefore in order to fully understand the functional mechanisms underlying GWAS

association signals using colocalisation, it is important to examine the relevant cell type,

in the right state of activation, at the right time.

3.2 Chapter overview

Colocalisation is one means of identifying the mechanistic impact of non-coding disease

risk loci, by examining whether the same non-coding variant is responsible for regulation of

gene expression (i.e. is an eQTL). In this chapter I perform colocalisation between PSC risk

loci and functional QTL in multiple immune cell- and gastrointestinal tissue-types. Genetic

variation is often shared between several immune mediated diseases (IMDs), implicating

the same genes and biological pathways as causal mechanisms for autoimmunity. I therefore

perform colocalisation between PSC risk loci and other IMDs to identify risk loci that are

PSC-specific and those that are shared. Genetic variants tend to exert a greater e↵ect upon

gene expression than upon risk of complex disease. For those risk loci that colocalise with
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other regulatory or functional QTL traits, I harness this increased power by fine-mapping

the colocalising functional QTL data, in an e↵ort to further refine the fine-mapping results

presented in the previous chapter.

3.3 Methods

3.3.1 Colocalisation analysis

To test the plausibility of a single shared causal variant between each of the 22 PSC

risk loci, and the same regions in multiple functional QTL and IMD GWAS data sets, I

implemented Bayesian tests of colocalisation using R package Coloc [189]. Specifically,

I used the coloc.abf function as it implements approximate Bayes Factor colocalisation

methods which can be applied to per-SNP summary statistics. I used full summary

statistics for the largest PSC GWAS [42] and the datasets outlined in Table 3.1. The 22

genomic loci for colocalisation were defined as 1Mb regions of interest centred on the most

associated or ‘lead’ PSC GWAS SNP for each locus.

Coloc requires per-SNP summary level data for each of the two input traits. This

must consist of all variants within the locus, including those variants that did and did

not reach the predetermined threshold for genome-wide significance or false discovery rate

(FDR). Colocalisation can be conducted using di↵erent combinations of input data for

each trait to approximate Bayes factors, depending upon the data available. The first

combination of input data includes per-SNP p-values and MAF, sample size and ratio of

cases:controls (if using a case-control trait). The second combination includes per-SNP

regression coe�cients (�) and the variance of these regression coe�cients (SE2), in addition

to sample size and ratio of cases:controls. Where available, I used regression coe�cients

and their variance in preference to p-values and MAFs to approximate Bayes factors, as the

former combination is more accurate when using imputed data. Where data availability

meant that p-values and MAF were used to approximate Bayes factors, I preferentially

used the MAF derived from the same dataset under investigation. Where study-specific

MAF data was not available, I used the MAF derived from the UK10K reference panel,

as all data-sets included only individuals with European ancestry and thus this was the

reference panel that best represented the study population. To interpret the direction

of e↵ect of an eQTL on gene expression in the context of the PSC risk allele, I matched

eQTL and GWAS reference alleles for all loci. To minimise the chance of combining the

wrong alleles, I discarded all A/T and C/G variants that had MAF>0.45.

In this Bayesian method of colocalisation, binary vectors representing a sequence of

SNPs by whether each individual SNP is causal (1) or not (0) are paired, with each binary

vector representing one trait, and pre-assigned to one of five hypotheses (H0, H1, H2, H3,
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H4);

H0: No SNP is associated with either trait.

H1: A SNP is associated with trait 1 (PSC), but no SNP is associated to trait 2 (IMD

or eQTL)

H2: A SNP is associated with trait 2 (IMD or eQTL), but no SNP is associated to

trait 1 (PSC).

H3: Both traits are associated with genetic variation in the region, but this is driven

by di↵erent causal variants.

H4: Both traits are associated with genetic variation in the region and share the same

causal variant.

For each PSC risk locus tested, the probability of the data for each hypothesis is

calculated and the aggregate support (probabilities) for each hypothesis combined with

the prior probability, to obtain posterior probabilities for each hypothesis (PP0, PP1,

PP2, PP3, PP4). The Coloc method uses approximate Bayes factors. Bayes factors are

summary measures for the ranking of associations, similar to p-values and are defined as

the ratio of the probability of the data under the null and alternative hypotheses [192].

Bayesian methods require the definition of prior probabilities for all five hypotheses. In

line with recommendations made by the authors, for GWAS/eQTL analyses I set prior

probabilities to 1⇥10-4 for individual trait associations and 1⇥10-6 for the probability of a

SNP being associated with both QTL and PSC traits (denoted as the p12). In a study of

shared genetic variation between four IMDs (not including PSC or IBD) Fortune et al

suggested that the selection of priors for colocalisation between two IMD traits should

be set at a less stringent threshold between 1⇥10–5 and 1⇥10–6 for the prior probability

of a SNP being associated with both traits (p12) [193]. This is due to the expectation

of more shared genetic variation between loci of IMDs. In their study, whilst the choice

of p12 did not change which diseases were associated, the posterior odds for H3:H4 did

vary with p12. To inform the choice of priors for colocalisation between PSC and the

other IMDs in this study, I tested how varying the prior may impact upon the results

of colocalisation. I performed colocalisation between PSC and UC (the IMD expected

to show the most genetic overlap with PSC), varying the p12 from 1⇥10-4 to 1⇥10-7 and

examined the weights of the resulting PP3:PP4.

I performed colocalisation for each of the twenty-two PSC risk loci with the data-sets

outlined in Table 3.1. I focused on loci for which the PP for the H4 hypothesis (PP4)

was >80%, and subsequently refer to this as evidence of colocalisation when reporting

results. I also noted regions for which the PP for the H3 hypothesis (PP3) was >80%,

which suggests shared genetic variation between two traits, but a di↵erent causal variant

driving each signal. Finally I noted regions for which PP4 did not reach the 80% threshold,

71



but where some of the PP had been attributed to PP0, PP1 or PP2, as this can, in the

presence of a low PP3, indicate a loss of power to detect colocalisation.

Coloc makes a number of important assumptions. Firstly it assumes that the two traits

undergoing colocalisation have been measured in two datasets of unrelated individuals.

The method also assumes that the individuals in both datasets are of the same ethnicity

and thus the MAF and LD structure are identical. Because the PSC GWAS data set is

derived from individuals of European ancestry, only functional QTL and IMD GWAS

data derived from European individuals could be included in this analysis. Resultantly, I

excluded one large eQTL meta-analysis of whole blood from 32,000 individuals of many

ethnicities [194]. A third Coloc assumption is that the true causal variant is included

within each set of SNPs, requiring that the dataset for each trait is densely-genotyped

or well-imputed. In situations where the true causal variant is not present within both

datasets, this tends to result in a decrease in the resulting PP4 statistic. The final

assumption of this method is that there is, at most, only one independent association for

each trait within the region of interest. It is however not uncommon for genomic regions

to contain more than one independent association signal. Indeed, fine-mapping of the PSC

GWAS data from the previous chapter supported the presence of 19 independent signals

across the 15 fine-mapped PSC risk loci. For those regions in which there is more than one

independent signal, Coloc considers only the strongest of these distinct association signals.

3.3.2 Functional QTL data

Colocalisation of disease-associated risk loci with functional QTLs requires careful con-

sideration of the choice of cell-type or tissue in which the functional QTL trait has been

measured. Those tissues potentially relevant to PSC could be any whole-tissue or cell-

type from the gastrointestinal or hepato-biliary systems, or any immune-cell type. To

find published and un-published eQTL data for inclusion in my analysis, I performed a

literature search of existing eQTL studies. From this, I gathered together 42 functional

QTL data-sets covering five gastrointestinal whole tissues, six immune-cell types and five

di↵erent functional traits including gene-expression (cis-eQTL), histone marks (histQTL),

DNA methylation (methQTL) and splice site QTL (spliceQTL) data (Table 3.1). All data

included for colocalisation in this analysis had been subject of prior QC conducted by the

publishing authors.

Datasets used for colocalisation included functional QTL data from the Blueprint

epigenome project phase 2 data release [195]. The Blueprint epigenome project is a large-

scale research project which aims to generate at least 100 reference epigenomes for distinct

haematopoietic cell-types in health and common autoimmune diseases (not including

PSC or IBD). Blueprint have isolated CD14+CD16- monocytes, CD45+CD66b+CD16+

neutrophils and CD3+CD4+CD45RA+ näıve T-cells from the peripheral blood of between

72



Table 3.1: Characteristics of data-sets included in colocalisation analysis
data-set Tissue type / GWAS Trait Condition Sample size

GTEx v7 Liver eQTL unstimulated 153
Transverse Colon eQTL unstimulated 246
Sigmoid Colon eQTL unstimulated 203
Terminal Ileum eQTL unstimulated 122
Whole Blood eQTL unstimulated 369
EBV-Transformed Lymphocytes eQTL unstimulated 117

Blueprint Näıve T cells eQTL unstimulated 171
(CD3+CD4+CD45RA+) Methylation unstimulated 133

H3K4me1 unstimulated 104
H3K27ac unstimulated 142

PSI unstimulated 171

Blueprint Neutrophils eQTL unstimulated 192
(CD45+CD66b+CD16+) Methylation unstimulated 197

H3K4me1 unstimulated 173
H3K27ac unstimulated 174

PSI unstimulated 192

Blueprint Monocytes eQTL unstimulated 194
(CD14+CD16-) Methylation unstimulated 196

H3K4me1 unstimulated 172
H3K27ac unstimulated 162

PSI unstimulated 194

Glinos et al, unpub T regulatory cells eQTL unstimulated 123
(CD3+CD4+CD25highCD127-) H3K4me3 unstimulated 73

H3K27ac unstimulated 91
ATAC unstimulated 88

Panousis et al, unpub Macrophages eQTL CIL (6 and 24 hrs) 83
(derived from iPS cells) eQTL Ctrl (6 and 24 hrs) 81

eQTL IFNB (6 and 24 hrs) 84
eQTL IFNG (6 and 24 hrs) 84
eQTL IL4 (6 and 24 hrs) 85
eQTL LIL10 (6 and 24 hrs) 75
eQTL MBP (6 and 24 hrs) 44
eQTL P3C (6 and 24 hrs) 86
eQTL PIC (6 and 24 hrs) 44
eQTL PIC (6 and 24 hrs) 45
eQTL Prec (Day 0 and 2) 42
eQTL R848 (6 and 24 hrs) 83
eQTL sLPS (6 and 24 hrs) 81

Kim-Hellmuth et al, 2017 Monocytes eQTL unstimulated 134
(CD14+) eQTL LPS (90’ and 6hrs) 134

eQTL RNA lipofectamine (90’ and 6hrs) 134
eQTL MDP (90’ and 6hrs) 134

Astle et al, 2016 Lymphocyte counts GWAS 173,480
Monocyte counts GWAS 173,480
Neutrophil Counts GWAS 173,480

De Lange et al, 2017 Ulcerative colitis GWAS 12,160
Crohns Disease GWAS 12,160

Cordell et al, 2015 Primary Biliary cirrhosis GWAS 2,764
Bradfield et al, 2011 Type 1 Diabetes GWAS 9,934
Trynka et al, 2011 Coeliac Disease GWAS 12,041
Okada et al, 2012 Rheumatoid Arthritis GWAS 29,880
Beecham et al, 2013 Multiple Sclerosis GWAS 14,802
Bentham et al, 2015 Systemic Lupus Erythematosus GWAS 7,219
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100-200 healthy adults, followed by epigenomic analyses [196]. These include gene expres-

sion, CpG methylation, H3K4me1, a marker for active and poised enhancers, H3K27ac, a

marker for active enhancers and active promoters and percentage splice index (PSI) which

provides the inclusion level of each exon, indicating perturbation of a splice site. I also in-

cluded published data from the Genotype-Tissue Expression (GTEx) Consortium v7 [197].

GTEx is an established data resource and tissue bank for the study of the relationship

between genetic variation and gene expression in multiple human post-mortem tissues.

Included within the GTEx database are whole tissue cis-eQTL maps for PSC-relevant

tissues including liver, transverse and sigmoid colon, terminal ileum, whole blood and

Epstein Barr Virus (EBV)-transformed lymphocytes (immortalised B-cells) isolated from

between 100-400 individuals. To try and capture colocalisations with eQTLs only active in

the stimulated state, I included published data from an eQTL study of CD14+ monocytes

derived from 134 healthy individuals and stimulated with microbe-associated molecular

patterns; lipopolysaccharide (LPS), RNA lipofectamine and muramyl dipeptide (MDP)

[198]. Two sets of unpublished data, were also included for colocalisation. The first was

an eQTL dataset measured in induced pluripotent stem cell (iPSC)-derived macrophages

di↵erentiated from the skin fibroblasts of up to 85 healthy donors, and exposed to 13 dif-

ferent states of stimulation. These included stimuli mimicking bacterial, viral and allergic

response, and measured at 6 and 24 hour time-points (data kindly provided by Dr Nikolaus

Panousis, Postdoctoral Fellow at the Wellcome Trust Sanger Institute). The second was

data from an analysis of unstimulated T-regulatory cells (CD3+CD4+CD25highCD127-)

derived from the peripheral blood of 70-125 healthy individuals and subject to RNAseq,

ChIP-Seq and ATAC-seq (data kindly provided by Dr Daphne Glinos, former PhD student

at the Wellcome Trust Sanger Institute). Finally, in order to identify PSC risk loci that colo-

calised with other IMDs, I downloaded summary statistics for the largest available GWAS

study for each of eight IMDs from the GWAS catalogue (https://www.ebi.ac.uk/gwas/).

These were UC and CD [60], Primary Biliary Cholangitis (PBC) [199], Type 1 Diabetes

(TIDM) [200], Coeliac disease (CeD) [201], Rheumatoid arthritis (RhA) [148], multiple

sclerosis (MS) [202] and systemic lupus erythematosus (SLE) [203]. I also conducted

colocalisation between PSC risk loci and risk loci associated with lymphocyte, neutrophil

and monocyte counts from a GWAS of human blood cell trait variation [204].

3.3.3 Fine-mapping of functional QTL loci

In the previous chapter I presented the results of fine-mapping the PSC risk loci. Fine-

mapping is influenced by several factors including the sample size of the cohort, the e↵ect

size, the MAF and thus the strength of association of the variants within the locus. One

of the challenges of studying a rare complex disease such as PSC is that amassing the

GWAS samples sizes comparable to more common IMDs such as T1DM and IBD is not
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feasible. Genetic variants tend to exert a greater e↵ect upon gene expression than upon

complex disease risk. Therefore, where colocalisation proves that a GWAS trait shares a

causal variant with a functional trait, there will often be more power to fine-map within

the functional QTL data and resolve the locus to a single causal variant, or small set of

credible variants. With the aim of improving upon the fine-mapping of the PSC risk loci

described in Chapter 2, I developed the following workflow pipeline (Figure 3.1). For each

PSC risk locus I conducted fine-mapping in the PSC GWAS data (Chapter 2), followed by

colocalisation with the multiple functional QTLs listed in Table 3.1. Where I observed a

PSC-QTL colocalisation, I then fine-mapped the colocalising functional QTL data, using

the same methods as described in Chapter 2. Fine-mapping requires an LD matrix, ideally

calculated from the original genotype data rather than a reference panel [159], I therefore

conducted fine-mapping in those functional QTL traits for which full genotype data was

available for the calculation of SNP correlation matrices. Functional trait fine-mapping

was therefore limited to the Blueprint data and Glinos et al’s T-regulatory QTL data.

1. Finemap locus in PSC 
GWAS data

2. Colocalise with functional
QTL

3. Finemap locus in 
colocalising funcQTL

Figure 3.1: Schematic diagram of the GWAS fine-mapping - colocalisation - functional-trait

fine-mapping pipeline to resolve the causal variants driving PSC risk loci, and the genes

they perturb.

Throughout the analyses described in this chapter, all SNPs are referred to according

to their RSID, and all base pair (bp) positions are reported according to Ensembl build

37. For ease of reference, all loci are referred to according to their chromosome and bp

position (b37) of the most probable causal SNP from fine-mapping in Chapter 2 and where

possible, the gene identified by colocalisation. Where a gene has not been identified by

colocalisation with an eQTL, I use the GWAS candidate gene, stipulating where a causal

association between a locus and a gene is proven and where it is not.
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3.4 Results

I performed colocalisation analysis between the twenty-two non-HLA PSC risk loci and

eight other IMDs (Table 3.2). To inform my choice of priors for this analysis, I first

tested how varying the prior impacted upon the PP3 and PP4 weights. I performed

colocalisation between PSC and UC, varying the p12 (prior probability for a SNP being

associated with both traits) from 1⇥10-4 to 1⇥10-7. For 7 PSC risk loci, Figure 3.2

demonstrates how varying the p12 changes the weights for PP3 and PP4. Fortune et

al previously recommended a p12 threshold somewhere between 1⇥10–5 and 1⇥10–6.

Although the weights for PP3 and PP4 varied with a p12 of 1⇥10–5 and 1⇥10–6, the results

of colocalisation (number of loci for which PP4>80%) were the same. I therefore chose

to retain the more stringent of the two p12 thresholds, which was set at 1⇥10-6 for all

subsequent colocalisation analyses.
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Figure 3.2: Colocalisation between seven PSC risk loci with UC and the evidence for PP4

and PP3 with varying p12.

For those seven risk loci not reaching genome-wide significance in Ji et al’s data,

the results consistently supported no evidence of colocalisation and therefore the results

for these seven loci are not subsequently shown. Supporting previous observations of

shared genetic architecture between IMDs, eleven of the remaining fifteen PSC risk loci,

colocalised with at least one other IMD with PP4>80%. I observed the largest number

of colocalisations between PSC and UC, a finding that was expected due to the genetic

overlap between PSC and IBD (particularly UC). Four loci colocalised between PSC and

UC and two of these four were also shared with CD. Four loci also colocalised with loci

for T1DM. There were several risk loci which could not be resolved to a single causal

variant or small set of credible variants from Chapter 2’s fine-mapping e↵orts. For these
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Table 3.2: Colocalisation between PSC risk loci and immune-mediated diseases
UC CD PBC T1DM CeD RhA MS SLE

Chr Region OR p-value H4 H4 H4 H4 H4 H4 H4 H4
1 MMEL1 1.20 5.12E-13 0.08 0.00 0.56 0.01 0.36 0.45 0.95 0.02
2 BCL2L11 1.29 2.18E-11 0.89 0.05 0.73 0.00 0.23 0.00 0.08
2 CD28 1.25 4.12E-16 0.06 0.01 0.00 0.00 0.00 0.00 0.07
3 MST1 1.33 5.25E-26 0.85 0.74 0.01 0.00 0.08 0.00 0.00 0.00
3 FOXP1 1.44 2.80E-15 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 IL2-IL21 1.28 8.25E-14 0.02 0.06 0.56 0.00 0.04 0.00 0.01
6 BACH2 1.21 1.09E-09 0.01 0.07 0.04 0.18 0.49 0.87 0.00 0.02
10 IL2RA 1.22 1.44E-16 0.05 0.00 0.00 0.00 0.95 0.00
11 CCDC88B 1.20 1.81E-13 0.00 0.56 0.03 0.82 0.00 0.29 0.00 0.04
12 SH2B3 1.18 3.86E-13 0.89 0.84 0.94 1.00 1.00 0.20 0.00 0.73
16 CLEC16A 1.20 5.22E-13 0.00 0.00 0.57 0.61 0.00 0.00 0.05
18 CD226 1.19 5.87E-12 0.00 0.03 0.88 0.76 0.02 0.00 0.25
19 PRKD2 1.28 2.12E-12 0.03 0.00 0.00 0.96 0.01 0.00 0.00
21 ETS2 1.23 3.40E-13 0.82 0.79 0.00 0.00 0.00 0.00 0.00
21 UBASH3A 1.22 2.42E-12 0.05 0.00 0.00 0.82 1.00 0.42 0.00 0.00
OR; odds ratio for lead GWAS SNP risk allele, p-value; for lead GWAS SNP
PP H4>0.8 highlighted in green, evidence for PP H3>0.8 highlighted in red

loci, in Chapter 2 I had examined fine-mapping studies of the same loci in other IMDs to

define the most likely causal variants. Reassuringly, for all loci where this was the case,

colocalisation supported a shared causal variant between PSC and the other IMD locus.

For example, fine-mapping of PSC region 8 (Chr10:6108139) resolved this locus to a five

variant credible set with a 46% PP of causality supporting rs4147359 as the most probable

causal variant. Westra et al have previously fine-mapped this locus in RhA to a three

variant credible set in which rs706778 has 89% PP of causality [114]. Here, I show that

this same locus colocalised in PSC and RhA with 95% PP4 supporting a common causal

variant between the two IMDs. Thus rs706778 is the most probable causal variant for

both PSC and RhA.

When trying to identify the gene perturbed by a PSC risk locus, colocalisation with

an eQTL is the most useful functional trait, as it enables us to identify not only the gene

a↵ected, but whether PSC risk is conferred by increased or decreased expression of that

gene. The gene quantitatively a↵ected by an eQTL, or the eQTL-gene pair is called an

eGene. I conducted colocalisation analysis between the twenty-two PSC risk loci and

42 functional QTL datasets covering five gastrointestinal whole-tissue types, six immune

cell-types and five di↵erent functional traits including gene-expression (eQTL), histone

marks (histQTLs), DNA methylation (methQTLs) and splice site QTL (spliceQTLs)

(Table 3.1). For those seven risk loci not reaching genome-wide significance in Ji et al’s

data, the results consistently supported no evidence of colocalisations with any functional

traits, thus the results for these seven loci are not shown. I found colocalisations with

eQTL for four of the remaining fifteen PSC risk loci. Of these four loci, three colocalised
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with one eGene and one colocalised with two eGenes. Where a disease risk locus colocalises

with an eQTL, further colocalisation of the same region with another functional QTL such

as a histQTL or methQTL helps us to idenitfy the epigenetic mechanism via which that

eQTL a↵ects gene expression. For example an eQTL may decrease expression of gene X

by impeding transcription factor binding, evidenced by colocalisation of the same locus

with an eQTL of gene X and a H3K27ac mark (histQTL). Of the four loci that colocalised

with one or more eGenes, I found evidence that all four also colocalised with another

functional QTL; two with methQTLs, one with a histQTL and one with a spliceQTL.

Where colocalisation for a risk locus identifies the same single eGene in more than one

cell-type or tissue, particularly those mechanistically related to PSC, this lends further

weight to a causal role for this gene in disease pathogenesis. This was the case for

three of the fifteen PSC risk loci; Chr19:47205707 PRKD2, Chr21:40466744 ETS2 and

Chr21:43855067 UBASH3A. For each of these three loci, I found colocalisations with one

eGene across several cell-types and tissues. Followed by functional trait fine-mapping, for

these three loci this allowed me to identify a perturbed gene, a direction of e↵ect, a set

of relevant cell-types, a single or small set of credible causal variants and the mechanism

via which the causal variant potentially dysregulated the quantitative expression of that

gene. The colocalisation and functional trait fine-mapping results for these three loci are

discussed in more detail below. This is followed by the discussion of two other loci of

interest; Chr12:11184608 SH2B3 and Chr18:67543688 CD226.
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3.4.1 The PRKD2 locus

The Chr19:47205707 risk locus colocalised with an eQTL for PRKD2 in monocytes

with 94% PP of causality. Notably, the PSC risk increasing allele was associated with

decreased expression of PRKD2. This locus also colocalised with two CpG methylation

sites (cg00838415 and cg08634012) in both monocytes and neutrophils, suggesting that

the causal variant for this locus may exert its repressive e↵ect upon gene expression via

hypermethylation. Interestingly, although this region colocalised with an eQTL decreasing

expression of PRKD2 in transverse and sigmoid colonic tissue (PP4=94%) and the 1Mb

region surrounding this PSC risk locus also contains a significant IBD risk locus, the

evidence supported a di↵erent causal variant driving the IBD signal (PP3 for colocalisation

with UC and CD of 94% and 97% respectively). However, co-localisation with other IMDs

demonstrated that the causal variant for this region was shared between PSC and T1DM.

Furthermore, in T1DM this locus has been reported as an eQTL for PRKD2 in monocytes

[182], a finding I was able to replicate by conducting colocalisation between T1DM and

the Blueprint monocyte eQTL data (PP4=96%). Thus, these results support that PSC

risk, T1DM risk and expression of PRKD2 in monocytes are all likely driven by the same

causal variant. The most probable causal variant was identified by fine-mapping this

locus in the PSC GWAS data which resolved the region to a fourteen variant credible set

with the majority of the PP attached to rs313839 (PP=23%), followed by rs112445263

(PP=20%) (see Chapter 2). This finding was replicated by fine-mapping the same region

in the monocyte PRKD2 eQTL data, resulting in an eight variant credible set led by

rs313839 (PP=14%), and rs112445263 (PP=14%) two variants in high LD (r2=0.98) with

one another (Table 3.4 and Figure 3.3). The remaining PP was split evenly across a further

6 variants in high LD, all with r2>0.8). Fine-mapping supported a second independent

signal in the PRKD2 eQTL data with 55% PP of causality. This was supported by the

finding that the most probable causal configuration contained two uncorrelated SNPs;

rs313839 and rs314675.

Confirming the fine-mapping assumption that all potential causal variants have been

included in the analysis, a search of the 1000 Genomes and UK10K reference panels

found there were no SNPs in high LD (r2>0.8) with rs313839, missing from the eQTL

data. The most probable credible variant for this locus, rs313839, lies within an intron.

Colocalisation with two methQTLs suggests that this variant alters two CpG methylation

sites in monocytes and neutrophils. Furthermore, rs313839*C>G (where rs313839*G

is the PSC risk increasing allele) has also been associated with the disruption of many

transcription factor binding motifs though ChIPseq studies, as previously discussed in

Chapter 2. This suggests several plausible mechanisms via which rs313839*G may exert its

repressive e↵ect upon PRKD2 expression and subsequent e↵ect upon PSC risk. However,

the location of other variants in the credible set within gene regulatory elements may
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also be important in driving the observed molecular QTL trait. For example, rs402072 at

Chr19:47219122, is the only variant that is in high LD with rs313839 and also lies within

several hundred base pairs of the transcription start site (TSS) within the promoter region.

PRKD2 (Protein kinase D2) is a member of the serine/threonine protein kinase family

and is known to be highly expressed in PSC-relevant tissues including whole blood, small

intestine, colon and liver [176]. PRKD2 has known roles in monocyte migration and

adhesion. In THP-1 cells (a widely used experimental model of monocytes) expression of a

dominant-negative form of PRKD2 resulted in decreased monocyte migration in response

to stimulus [179]. Knockdown of PRKD2 was shown to reduce adhesion of THP-1 cells to

endothelial cells in culture, whereas activation of PRKD2 through phosphorylation at Ser

744/748 was shown to increase adhesion to endothelial cells [180]. Monocytes and their

macrophage progenitors play an important role in immune-regulation and tissue-repair.

Therefore genetic variants that result in decreased expression of PRKD2 may impair

monocyte migration into tissues and subsequent tissue regeneration. PRKD2 is however

not only active in monocytes. The importance of PRKD2 in T-cells has been demonstrated

in vivo through T-cell-mediated immune responses in mice expressing PRKD2 variants

that cannot be phosphorylated by protein kinase C [205]. While PRKD2 catalytic activity

is not essential for the development of mature peripheral T- and B-lymphocytes [206],

PRKD2-mutant mice show a striking reduction in the ability of the T-cell receptor (TCR)

to induce production of pro-inflammatory cytokines such as interleukin 2 (IL-2) and

interferon-g (IFN-g), which are important for optimal T-cell-dependent antibody responses

[205]. In response to TCR stimulation in Jurkat cells (a model of peripheral T-cells),

PRKD2 was activated and translocated from the cytoplasm to the nucleus, to allow IL-2

and IFN-g promoter up-regulation [207]. Furthermore, in T-cell specific PRKD2-deficient

mice, the generation of CD4+ thymocytes is abrogated. This defect is likely to be caused

by attenuated TCR signalling during positive selection and incomplete CD4+ lineage

specification. The role of PRKD2 in activated T-cells/thymocytes may explain the absence

of an observed e↵ect in the näıve CD4+ T-cells studied in my colocalisation analysis. This

suggests that the generation of eQTL maps in other T-cell subsets, in di↵erent states of

activation, may be useful in the further investigation of PRKD2 in immune-mediated

disease risk.
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Table 3.4: Fine-mapping of PSC risk loci in functional QTL data
GWAS Finemapping Colocalisation MolQTL Finemapping

Chr SNP PP CS QTL type Cell type Gene SNP PP CS

11 rs663743* 0.41 2 eQTL Monocyte CCDC88B rs663743 0.03 245
19 rs313839 0.23 14 eQTL Monocyte PRKD2 rs112445263 0.14 8
21 rs4817988 0.58 10 eQTL Monocyte ETS2 rs4817987 0.07 47

H3K27ac Monocyte N/A rs2836878 0.13 11
21 rs1893592 0.61 5 eQTL CD4+ T-cell UBASH3A rs1893592 1.00 1

SpliceQTL CD4+ T-cell UBASH3A rs1893592 1.00 1

*2nd signal in region, CS; Credible set size, PP; Maximum posterior probability

Figure 3.3: Chr19:47205707 regional association plots for most probable fine-mapped SNP,

rs313839, in PSC GWAS data and colocalising eQTL data for PRKD2 in monocytes.
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3.4.2 The ETS2 locus

The Chr21:40466744 locus colocalised with a eQTL for ETS2 in three di↵erent tissues;

whole blood, monocytes and IL-4 stimulated macrophages. GWAS studies in both IBD and

PSC have consistently proposed that the most likely candidate gene for the Chr21:40466744

locus is PSMG1 [42, 73]. This was based upon the paucity of genes in this region, and

a study of colonic biopsies from paediatric-onset IBD patients, which demonstrated

a ‘modest’ increase in the colonic expression of PSMG1 in IBD cases compared to

controls [175]. Indeed, PSMG1 which encodes proteasome assembly chaperone 1, has

a biologically plausible role in IBD, as part of the ubiquitin-protesosome system. The

ubiquitin-protesosome system regulates the generation of peptide antigen presented to

MHC class I [208] and TCRs, in addition to regulating co-stimulatory signaling [209].

However, the results of my analysis instead support ETS2 as the gene dysregulated by

this locus. In each tissue, the PSC risk increasing allele was associated with increased

expression of ETS2. This locus also co-localised with a histQTL for H3K7ac, a marker

associated with higher activation of transcription, in both unstimulated monocytes and

neutrophils. This suggests that the mechanism by which the causal variant increases

expression of ETS2 in monocytes may, for example, be via increasing the a�nity of

transcription factor binding. Where a risk locus does not colocalise with an eGene in a

particular cell-type, colocalisation with a functional QTL may suggest the presence of an

eQTL in a di↵erent activation state [134]. It is therefore possible that this locus may be

an eQTL of ETS2, if investigated in stimulated or activated neutrophils.

Colocalisation of this locus with an eQTL for ETS2 in iPSC-derived macrophages,

six hours following stimulation with IL-4, is particularly interesting as this is a stimulus

that mimics the allergic response. Of note, there was no evidence for colocalisation with

a macrophage eQTL in either the resting state or the multiple other stimulation states

outlined in Table 3.1. This is particularly notable because the vast majority of eQTLs in

these data are shared widely across stimulation states. Not only does this highlight the

importance of studying cells in the correct state of activation on our ability to identify

eQTLs, but also supports a role for ETS2 in the autoimmune response. The ETS2 locus

also colocalised with a GWAS locus for neutrophil counts (PP4=83%), where the PSC risk

increasing allele was associated with a reduction in neutrophil counts. This is biologically

plausible given the role of ETS2 in inducing expression of pro-inflammatory cytokines

in macrophages, and the close interactions between macrophages and neutrophils in the

inflammatory response.
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Figure 3.4: Chr21:40466744 regional association plot showing the most probable fine-

mapped SNP for PSC GWAS (rs4817987) and colocalising eQTL data for ETS2 in

monocytes (fine-mapped to rs4817987) and for a H3K27ac histQTL in monocytes (fine-

mapped to rs2836878).

The Chr21:40466744 locus colocalised with UC and CD (PP4 of 84% and 80% re-

spectively), with no evidence supporting colocalisation with any other IMD (Table 3.2).
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However, ETS2 is a ubiquitously expressed transcription factor, with a well-defined role

in macrophages. Cytokine-dependent phosphorylation of Ets-2 results in Ets-2 directly

binding the promoters of matrix metaloproteinases MMP-1 and MMP-9, and the in-

duction of other pro-inflammatory target genes including TNFa, IL-1b, and chemokines,

CCL2/MCP-1 and CCL3/MIP-1↵ [210]. In mice with severe macrophage-induced pneu-

monitits, the prevention of Ets-2 phosphorylation on Thr(72) by the Ets-2(A72) mutant

allele results in decreased tissue macrophage infiltration [211]. Thus, activated Ets-2

has an important role in the persistent inflammatory response. It is therefore biological

plausible that increased expression of ETS2 could contribute to driving the aberrant

inflammatory response observed in PSC. Although I did not observe any colocalisation

of this locus with functional QTLs in T-regulatory or CD4+ T-cells, ETS2 also has a

role in IL-2 regulation, the first cytokine produced when näıve T-helper (Th) cells are

activated and di↵erentiate into dividing pre-Th0 proliferating precursors. A study by

Panagoulias et al has demonstrated that Ets-2 binds to the IL-2 promoter which allows

transition of näıve Th cells to Th0 cells upon stimulation with antigen, and that Ets-2

silencing allows for constitutive IL-2 expression in unstimulated T-cells [212]. Indeed, they

hypothesise that disturbance of this pathway could cause deranged Th cell plasticity and

resultant autoimmune disease. Further analysis of eQTL maps in di↵erent T-cell subsets

and activation states would be necessary to evaluate any e↵ect of the ETS2 risk locus on

ETS2 expression in T-cells.

Fine-mapping of the Chr21:40466744 ETS2 locus within the functional QTL data did

not prove useful in resolving the causal variant(s) driving this locus. Fine-mapping in the

monocyte eQTL data resulted in a credible set of forty-seven variants compared to ten

variants in the GWAS data fine-mapping (presented in Chapter 2). This larger credible

set is partially attributable to the higher numbers of variants directly genotyped in the

whole-genome sequenced eQTL data. Resultantly, the PP was more evenly split between

a larger number of very highly correlated variants (Figure 3.4). Furthermore, the failure

of eQTL fine-mapping to improve upon the GWAS fine-mapping is a consequence of the

reduced strength of association between the lead variant in the eQTL signal compared to

the GWAS signal, reducing the power to fine-map. Fine-mapping in the histQTL data

resulted in a similar sized credible set of eleven variants compared to ten in the PSC GWAS

data. Whilst all ten variants in the GWAS credible set overlapped with the histQTL

credible set, the evidence supported rs2836878 as the most probable causal variant in the

histQTL signal (PP=13%), compared to rs4817988 in the GWAS data (PP=58%).

3.4.3 The UBASH3A locus

Of all PSC risk loci, the Chr21:43855067 locus was the most extensively investigated prior

to this study. This locus was already a known eQTL of UBASH3A from two whole-blood
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and one B-cell only analysis [172, 213, 214] and a likely shared risk locus with CeD and

RhA [148, 201]. I confirmed, with colocalisation, that this PSC locus shared a causal

variant with CeD (PP4=100%), as well as T1DM (PP4=82%). However colocalisation

resulted in almost equivocal evidence supporting a shared (PP4=42%) or di↵erent causal

variant (PP3=54%) driving the signal in RhA.

Colocalisation confirmed that this locus is an eQTL of UBASH3A in T-regulatory cells

(PP4=100%) and näıve CD4+ T cells (PP4=99%). In both T-cell types, the PSC risk

increasing rs1893592*A allele, which is also the major allele at this locus, was associated

with decreased expression of UBASH3A. Interestingly, although there was no evidence

supporting shared genetic variation with UC or CD, the Chr21:43855067 rs1893592 locus

also colocalised with a eQTL of UBASH3A in transverse colon tissue (PP4=95%), but

not sigmoid colon, a pattern of colonic involvement reminiscent of the PSC-associated

IBD phenotype. Fine-mapping of this locus in PSC GWAS and CD4+ T-cell eQTL

data supported rs1893592 as the most probable causal variant. As a result of the higher

strengths of association in the functional QTL data increasing power to fine-map the

signal, fine-mapping in the eQTL data attributed 99% of the PP4 to rs1893592 compared

to 61% in the GWAS data. The rs1893592 variant is thought to alter the conserved 5’

splice donor sequence. The predicted consequence of the PSC protective rs1893592*C

allele is to increase expression of the downstream intron, causing intron 10 to be retained

in the UBASH3A mRNA [42, 215]. This was supported by the finding of a colocalisation

with a spliceQTL in CD4+ T-cells (PP4=99%), which was also fine-mapped to the same

causal variant, rs1893592, with 100% PP4 of causality.

UBASH3A has a described role in human T-cells where it has been shown to attenuate

the NF-kB signalling pathway upon TCR stimulation, by specifically suppressing activation

of the IkB kinase complex, through a ubiquitin-dependent mechanism [216]. In the T-cell

eQTL data used for colocalisation in this analysis, the PSC protective rs1893592*C allele

was associated with increased UBASH3A expression. It has been previously demonstrated

in human primary CD4+ T cells that following TCR stimulation, the PSC-protective

rs1893592*C allele is associated with a significant reduction in the overall mRNA levels of

UBASH3A, but an increase in the proportion of a normally occurring, but low-abundant

UBASH3A transcript that retains intron-9 sequences and cannot produce full-length

UBASH3A protein [217]. The reduction in UBASH3A mRNA subsequently results in

increased secretion of IL-2, a key cytokine in T-cell function and activation. This therefore

provides important insights into how dysregulation of UBASH3A splicing and expression

may be causal in the pathogenesis of PSC.
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Figure 3.5: Chr21:43855067 regional association plots for fine-mapped SNP, rs1893593, in

PSC GWAS and colocalising eQTL data for UBASH3A and spliceQTL data for UBASH3A.
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3.4.4 The SH2B3 locus

The Chr12:11184608 SH2B3 PSC risk locus colocalised with five other IMDs; UC, CD,

PBC, T1DM and CeD, supporting a single-shared causal variant driving all six diseases.

Fine-mapping in the PSC GWAS data (Chapter 2), highlighted rs3184504, a missense

variant within the 3rd exon of SH2B3, as the most probable causal variant (PP=99%).

Whilst this locus has not been fine-mapped in UC, CD, PBC or CeD, a fine-mapping study

of T1DM resolved this locus to a credible set including two variants; rs653178 (PP4=66%)

and rs3184504 (PP4=33%) [114]. Notably, both of these variants were included within the

PSC fine-mapping analysis.

SH2B3 is ubiquitously expressed across many cell and tissue types, with a role in the

regulation of signalling pathways involved in cell migration, di↵erentiation, inflammation

and haematopoiesis [218]. It was therefore unsurprising that this locus colocalised with

GWAS traits for leucocyte, monocyte and neutrophil counts. The PSC risk increasing

rs3184504*T allele is associated with an increase in all myeloid and lymphoid cell counts,

compared to the reference rs3184504*C allele. SH2B3 is a negative regulator of T-cell

activation, TNF production, and Janus kinase (JAK)-2 and -3 signalling. Another eQTL

study has shown that the autoimmune hepatitis (AIH) rs3184504*A risk allele, which

results in the same protein coding change as rs3184504*T, is associated with increased

expression of genes involved in IFNg production [172]. This suggests a mechanism via

which this locus might contribute to increased immune cell counts and aberrant immune-

and inflammatory-response.

3.4.5 The Chr18:67543688 locus

PBC is an immune-mediated inflammatory condition a↵ecting the small bile ducts that

is often considered a sister condition to PSC. Somewhat surprisingly, colocalisation of

PSC risk loci with PBC identified only two loci for which there was evidence of a single

shared causal variant between both traits. The first was the Chr12:11184608 SH2B3 locus

discussed above, and the second was the Chr18:67543688 locus. The Chr18:67543688 locus

could not be well fine-mapped in the PSC GWAS data with a credible set containing

44 variants. Furthermore, this locus did not colocalise with any other IMD, other than

PBC, in this analysis. It is therefore possible that the genes and pathways a↵ected

by this locus are perhaps the most likely candidates for bile-duct specific e↵ects. This

1Mb region of the genome contains only four genes (see Figure 2.7, Chapter 2); DOK6,

CD226, RTTN and SOCS6, however I did not find subsequent evidence for colocalisation

with any functional QTLs or eQTLs to support a causal role for one of these four genes.

Two of these four candidate genes, CD226 and SOCS6, have important roles in relevant

immune cell pathways. The first gene, CD226, is expressed on the surface of natural killer
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cells, T-cell subsets, platelets and monocytes. CD226 mediates cellular adhesion to other

cells expressing its ligands, CD112 and CD155. The second gene, SOCS6 (suppressor of

cytokine signalling 6), is a cytokine-inducible negative regulator of cytokine signaling. The

third gene in this region, DOK6, is a less likely candidate for involvement in PSC or PBC

pathogenesis as it is expressed mainly in the central nervous system where it is involved in

the receptor tyrosine kinase signalling cascade [219]. Whilst little is known about the final

candidate gene in this locus, RTTN, it encodes Rotatin, an intracellular protein thought to

play a role in the maintenance of normal ciliary structure [220]. Cholangiocytes are ciliated

cells which have a role in expediting bile flow, and disturbance of the normal structure

or function of cholangiocyte cilia is likely to contribute to several cholangiopathies [221].

Thus RTTN is the only gene within the Chr18:67543688 PSC-PBC risk locus with a

potential role in bile duct homeostasis, highlighting it as a potential candidate gene for

further investigation.

3.5 Discussion

In this chapter I describe the first investigation of PSC risk loci using colocalisation with

multiple traits including IMD risk, cell count indices, eQTLs and functional QTLs across

a variety of PSC-relevant cell-types and tissues. By combining colocalisation to identify

the genes impacted by PSC risk loci and the epigenetic mechanisms underlying the gene

perturbation, with fine-mapping in the colocalising functional traits, I identify the genes,

cell-types and causal variants a↵ected by several PSC risk loci. For four of the fifteen

PSC risk loci, this was successful in identifying the genes perturbed and for three of these

five loci, it was successful in identifying a single causal variant, or small set of credible

variants. Perhaps most notably, these analyses determine that the most probable causal

variant driving the Chr19:47205707 PSC and T1DM risk locus, rs313839, results in a

reduction of PRKD2 expression in monocytes and colonic tissue, possibly mediated by

hyper-methylation. Similarly, I have fine-mapped the shared PSC-IBD Chr21:40466744

risk locus to a set of ten credible variants, of which the true causal variant increases

expression of ETS2 by activating transcription in monocytes and macrophages subject to

allergic stimulus. Thus the results of this study can guide further functional follow-up of

these loci in terms of causal variants, direction of e↵ect upon gene expression and relevant

cell types in which the e↵ects are mediated. Furthermore, they advocate the combination

of colocalisation and functional trait fine-mapping as an alternative approach to resolving

the causal variants driving complex trait loci in rare diseases, in which amassing the

large sample sizes required to improve upon GWAS trait fine-mapping is unlikely to be

feasible. However, for some non-coding PSC risk loci, this pipeline was not e↵ective in

determining either causal variants or genes. For example the Chr2:111933001 (BCL211 ),
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Chr6:91030441 (BACH2 ), Chr10:6108439 (IL2RA) and Chr18:67543688 (CD226 ) loci did

not colocalise with any functional QTL in the tissues and cell types included within this

analysis. Each of these loci did, importantly, colocalise with at least one other IMD (Table

3.2), all of which are more common diseases with larger GWAS sample sizes, meaning

that colocalisation and fine-mapping in those other colocalising IMD traits may be an

alternative route to resolving these PSC risk loci.

This study focused on colocalisation with functional traits in cells and tissue types

relevant to PSC. This was based upon previous studies demonstrating that some eQTLs

are only active in particular cell types or activation states [130], and that eQTLs are

enriched for disease-associated variants in disease-relevant tissue-types [190, 191]. The

choice of disease-relevant tissues in this study was however limited by two factors. Firstly,

designating a cell-type ‘relevant’ in a disease such as PSC, in which we have limited

understanding of disease pathogenesis, is challenging. Secondly, the limited availability of

functional QTL data with publicly accessible full summary statistics in these ‘relevant’

cell types further impairs this choice. However the results from this analysis serve to

highlight the importance of conducting colocalisation with eQTLs measured in the relevant

cell-types. For example, analysis of the Chr21:40466744 locus supported ETS2 as the

most likely gene perturbed by this risk locus, with colocalisations observed in monocytes

and IL-4 stimulated macrophages. Whilst ETS2 has a described role in the induction

of pro-inflammatory cytokine release from macrophages, ETS2 also has a role in IL-2

regulation in näıve Th transitioning to Th0 cells upon antigenic stimulation. Given this

role in näıve Th cells, it is unsurprising that we did not find any colocalisation with eQTLs

for ETS2 in the available CD4+ or T-regulatory cell datasets. However, it is plausible

that if examined in the right T-cell subtype or activation state, the Chr21:40466744 locus

may also be an eQTL of ETS2 in some T-cell subtypes. Similarly, investigation of the

Chr19:47205707 risk locus found it colocalised with an eQTL for PRKD2 in monocytes,

a gene with a role in the adhesion of monocytes to endothelial cells. Whilst this gene

also has a role in negative selection of T-cells, I did not find any colocalisation with a

PRKD2 eQTL in the available CD4+ T-cell and T-regulatory cell data. Furthermore,

there are no published and publicly available eQTL datasets for T-cells in the activated

or stimulated state, again introducing the possibility that the correct cell type has not

been examined. Future work could focus upon conducting combined colocalisation and

fine-mapping in functional QTL data from all available cell-types and tissues, with the

added risk of introducing noise by examining traits across multiple tissue types and the

di�culty of interpreting colocalisations with genes in tissues such as brain or muscle

which are seemingly remote from PSC pathogenesis. Another solution would be to use

the current hypotheses of disease pathogenesis in PSC to select those cell types of most

potential mechanistic relevance to PSC and to build eQTL maps in those PSC-specific
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cell types. This is an analysis presented in the following chapter.

Several properties of Coloc are likely to have influenced the results presented in this

chapter. Firstly, Bayesian colocalisation analysis is strongly influenced by the choice of

priors. Indeed, as the p12 threshold is increased (e.g. from 10-6 to 10-5), there is more

certainty that the data supports a shared causal variant between both traits. This can be

especially important in regions where there are extended patterns of strong LD and thus

uncertainty as to whether the data supports the H3 or H4 hypothesis, because it is in

keeping with both scenarios. For these loci, the choice of prior becomes the determinant of

the colocalisation. An example of this is the Chr4:123499745 locus near the candidate gene

IL2-IL21, for which there was no evidence supporting colocalisation with any functional

QTLs or IMDs at p12=10-6, but with evidence supporting shared genetic variation with

several other IMDs driven by a di↵erent causal variant (PP3>80%) (Table 3.2). However,

the evidence supporting colocalisation (PP4) increases as the p12 threshold is increased

(Figure 3.2). Whilst this may favour a higher p12 for the detection of more colocalising IMD

traits, it is known that variants associated with complex traits are more likely to be eQTLs

than MAF-matched variants from GWAS analyses chosen at random, thus supporting the

more stringent choice of priors used in this analysis [117, 222]. Secondly, Coloc makes the

assumption that each risk locus contains only one independent signal. For those regions in

which there were more than one independent signal, Coloc considers only the strongest of

these distinct association signals. Where each of the association signals explains a similar

proportion of the variance of the trait, the PP4 will drop and PP3 proportionately increase

[189]. Fine-mapping of the PSC risk loci described in Chapter 2 supported the presence of

two independent signals in four of the 15 loci. For those four PSC risk loci containing two

independent signals, there was evidence for colocalisation with functional QTLs for only

one of these four risk loci. This was the Chr11:64107735 locus, which colocalised with

an eQTL for CCDC88B in monocytes and an eQTL for AP003774.1 in whole blood and

EBV-transformed lymphocytes. A future means of investigating these multi-signal loci

is to include a step-wise conditional regression [223] to identify additional independent

signals within a locus, and to perform colocalisation on the resultant conditional p-values,

as a means to accounting for multiple independent signals [189].

Colocalisation with eQTLs, functional QTLs and other IMDs allows us to ascribe a

gene, the direction of e↵ect on gene expression associated with PSC risk, the epigenetic

mechanism dysregulating that genes expression as well as the other IMDs impacted via

the same gene and epigenetic mechanism. With the example of the Chr19:47205707 risk

locus, colocalisation identified that the causal PSC risk increasing allele for this locus

correlated with an eQTL reducing expression of PRKD2, via hypermethylation, and that

the same causal variant also conferred risk of T1DM. In order however, to unequivocally

prove that T1DM risk at this locus is also mediated by perturbation in PRKD2 expression,
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I needed to performed further colocalisation between T1DM and monocyte eQTL data.

More recently, Giambartolomei et al have published methods to quantify the evidence

supporting a common causal variant in a particular region across multiple traits from

summary statistics [224]. This method, Moloc, was published in 2018 after the analysis

presented in this chapter was largely complete. Similar to Coloc, Moloc uses a Bayesian

framework to integrate GWAS and functional QTL data, with the same three assumptions

pertaining to the inclusion of the true causal variant within the data, a maximum of one

independent association per region and that samples are drawn from the same ethnic

population and thus share LD structure. The future use of such a method would be

advantageous in providing a quantification of evidence for a shared causal variant between

all traits tested for one locus, avoiding the need for the multiple rounds of pair-wise

colocalisation conducted in this analysis. Such an approach could also be useful in the fine-

mapping of PSC risk loci. An important part of this analysis was to conduct fine-mapping

of loci within functional traits, in an e↵ort to identify the causal variant driving these

colocalising traits. Whilst data availability meant that this approach could only be applied

to four of the PSC risk loci, it was successful in improving fine-mapping resolution for

two of these loci. An potentially fruitful future analysis might focus upon boosting power

for fine-mapping by combining multiple colocalising datasets for a single locus into one

meta-dataset using a model that allows for mixed e↵ect sizes, followed by fine-mapping of

the meta-dataset. Methods based upon similar approaches have been published by Wallace

et al [225] and will form part of my future follow-up work, not presented in this thesis.

Using a combination of colocalisation and fine-mapping across multiple traits, I have

been able to identify the genes, causal variants and epigenetic mechanisms implicated

by five PSC risk loci. In addition, my work highlights some of the cell-types in which

these aforementioned genes and mechanisms are especially relevant. However, several loci

remain unresolved, and future work should focus upon using current knowledge of PSC

pathogenesis to build eQTL maps in the most PSC-relevant cell types, followed by similar

colocalisation and fine-mapping analyses. This analysis, presented in the following chapter

is a means to further understanding the causal biology of PSC.
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Chapter 4

T-cell expression quantitative trait

loci maps in Primary sclerosing

cholangitis

4.1 Introduction

Colocalisation of GWAS risk loci with eQTLs provides a powerful way to indentify the

functional role of the numerous non-coding risk loci by assigning molecular function to

them. As shown in the previous chapter, colocalisation using published eQTL datasets

for a variety of immune cell types and tissues has enabled the identification the genes

perturbed by six of the studied PSC risk loci. The failure to identify the genes underlying

the remaining risk loci may result, in part, from the failure to identify genetic variants

that regulate gene-expression in cell-types and states relevant to PSC.

Whilst many eQTLs are shared across multiple tissues, some remain highly specific

to a particular cell type, tissue, environment or activation state [130]. One of the on-

going challenges is to identify the correct cell-type or tissue in which to map eQTLs

for colocalisation with GWAS risk loci. Indeed, it has been shown that when trying to

unravel the molecular basis of disease-specific risk loci, the choice of disease-relevant tissues

supports the finding of eQTLs enriched for disease-associated variants [190, 191]. However,

colocalisation analysis remains limited by the availability of published eQTL summary

statistics. Furthermore, since PSC is a rare disease, there are currently no published eQTL

studies of the cell types perhaps most relevant to PSC, in the environments most relevant

to PSC. Therefore eQTL mapping in PSC-specific cell types, in PSC-specific environments,

is of great scientific interest.

Identification of the cell types of most potential relevance to the causal pathogenesis of

a disease relies upon existing knowledge of disease pathogenesis, which unfortunately, in

PSC remains limited. As with many immune-mediated diseases (IMDs), T-regulatory cells
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have been implicated in the pathogenesis of PSC, not least supported by the finding of

two PSC risk loci near the IL2RA and IL2/IL21 genes, the protein products of which are

expressed or involved in pathways of T-regulatory cells. Histological observations provide

further evidence of potentially relevant cell types. PSC is histologically characterised by a

T-cell rich portal infiltration with peri-ductal inflammation, portal fibrosis and progressive

loss of the bile ducts, known as ductopenia [226]. Moreover, evidence for potentially

relevant cell types comes from the strong link with IBD, which is present in 50-70% of

patients with PSC [23]. The liver and colon are anatomically linked with 75% of the blood

supply to the liver originating from the intestine via the portal vein. In PSC, it has been

shown that 20% of liver-infiltrating lymphocytes express gut-specific ligands CCR9 and

a4b7. The ‘gut-homing T-cell hypothesis’ suggests that these CCR9+ memory T-cells are

originally activated by inflammation within the gut and are recruited to the liver due to

the observed aberrant inflammation-induced expression of their receptors MAdCAM-1 and

CCL25 [53, 79]. In support of this, the vast majority of these CCR9+ liver-infiltrating

T-lymphocytes in PSC are CD45RA+ CCR7+CD11a(high) and secrete IFN-g , in keeping

with an e↵ector-memory phenotype. After recruitment to the liver, Grant et al proposed

that CCR9+ and a4b7+ gut-derived lymphocytes are likely to use other chemokines such

as CXCL12 and CXCR6 to localise to the biliary epithelium where they mediate targeted

inflammation of the bile ducts. To date, no existing studies have mapped eQTLs in any

of the aforementioned cell types. Therefore, some of the most potentially relevant cell

types for the focus of future eQTL mapping e↵orts in PSC include the CD4+ and CD8+

e↵ector-memory T-cells with the CCR9+ phenotype. Furthermore, one of the means

of evaluating cells in the PSC-specific activated state, most representative of the active

disease transcriptional phenotype, is to derive those cells from individuals with the active

inflammatory condition.

4.2 Chapter Overview

Many studies have sought to map genetic variants associated with quantitative changes

in gene expression in order to assign molecular function to non-coding disease risk loci

via colocalisation. However eQTLs are known to be specific to both tissue type and

activation state. Thus, one means of better understanding the genetic risk loci associated

with susceptibility to PSC is to explore eQTL maps specific to the tissues and activation

states of the disease. In this chapter, I describe the generation of eQTL maps in six

peripheral blood T-cells subtypes, currently hypothesised to be important in the causal

pathogenesis of PSC. These cells are derived from patients with active PSC and the highly

co-morbid condition, UC. I describe the entire study process from patient recruitment to

sample preparation and RNA sequencing analysis. I perform di↵erential gene expression
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analysis based on disease status. I map eQTLs for each cell type and identify those shared

across several T-cell subtypes and those specific to an individual T-cell subtype. Finally, I

perform colocalisation with genetic risk loci for PSC, IBD and other immune-mediated

diseases (IMDs) in order to identify the genes perturbed by disease-associated risk loci.

4.3 Methods

4.3.1 Sample type and Patient recruitment

The PSC-specific cell-types chosen for analysis in this study were; T-regulatory cells

(T-regs), non-activated memory T-cells (T-mems) and activated CD4+ and CD8+ e↵ector-

memory T-cells that are positive and negative for the gut-homing ligand, CCR9 (CD4+CCR9-

, CD4+CCR9+, CD8+CCR9-, CD8+CCR9+) [53]. The surface marker phenotype of

each cell subtype is shown in Table 4.1. I aimed to recruit a total of 80 patients for this

study, based upon evidence that previous studies with similar numbers of individuals have

identified eQTLs. For example, the GTEx Consortium pilot study of post mortem tissues

was able to detect tissue-specific quantitative genetic traits for a median sample size of 105

for the 9 high-priority tissues [176]. Furthermore, the HapMap study of genetic variants

underlying variation in gene expression detected an abundance of cis-regulatory variants

in the human genome with a median sample size of just 40 individuals in each population

group [120]. However, PSC is a rare disease with a prevalence of 1 in 10,000 and there are

predicted to be just 7,000 patients living with PSC in the UK. Due to the rarity of PSC it

is therefore di�cult to recruit large numbers of PSC patients with a homogenous, active,

disease phenotype. To address this di�culty, I aimed to recruit a total of 80 patients, 40

with PSC and concomitant UC and a further 40 with UC alone. Both PSC-UC and UC

patients harbour increased numbers of CCR9+ e↵ector-memory T-cells that have been

activated in the inflamed colon [78, 80], and thus this combined cohort would facilitate a

sample size large enough to detect eQTLs.

I recruited patients for this study from the Autoimmune liver disease clinic in the

Department of Gastroenterology at the Norfolk and Norwich University Hospital. I was

granted prior ethical approval for the study by the Norfolk and Norwich University Hospital

Human Tissue Bank (reference number: 20122013-57 HT). Given that the ultimate aim of

this study was to perform colocalisation with loci associated with risk of PSC in European

populations, all patients were of white European ancestry. In order to minimise immune

influences on the transcriptome, patients on steroids or biologic therapy, as well as those

with previous cancer diagnoses, were excluded. In addition, given that one of the important

cell types under investigation was the CCR9+ e↵ector-memory T-cell activated within the

inflamed colon, patients with previous colectomy were also excluded. Finally, all recruited
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Table 4.1: Fluorochrome-labelled antibody panel defining six subtypes of T-cell by FACS
Cell type Abbreviation Antibody panel

T-regulatory cells T-reg CD3+CD4+CD25+CD45RO+CD127low
Memory T-cells (non-activated) T-mem CD3+CD4+CD45RO+CD25-
CD4+ CCR9- e↵ector memory T-cells CD4+CCR9- CD3+CD4+CD62L-CD45RO+CD199-
CD8+ CCR9- e↵ector memory T-cells CD8+CCR9- CD3+CD8+CD62L-CD45RO+CD199-
CD4+ CCR9+ e↵ector memory T-cells CD4+CCR9+ CD3+CD4+CD62L-CD45RO+CD199+
CD8+ CCR9+ e↵ector memory T-cells CD8+CCR9+ CD3+CD8+CD62L-CD45RO+CD199+

patients had a serum alkaline phosphatase raised above the reference range for the upper

limit of normal, but no histological or radiological evidence of cirrhosis to ensure an active

PSC transcriptome. A total of seventy-nine donors were recruited; forty-four with PSC

and UC and thirty with lone UC. Five healthy controls (HC) for the pilot study set-up

which were also included for analysis.

4.3.2 Sample preparation

I drew 50mls of peripheral blood from each donor, and processed this immediately at 4oC

to prevent activation or degradation of cells. From whole blood, I separated peripheral

blood mononuclear cells (PBMCs) over Ficoll and stained them with a fluorochrome

labelled antibody panel designed to isolate the six T-cell subtypes, using three rounds of

two-way sorting, as shown in Table 4.1. I sorted cells directly into chilled cell lysis bu↵er

(Bu↵er RLT Plus, Qiagen) using a Sony SH800 fluorescent activated cell sorter (FACS).

Samples were then immediately stored at -80oC. An example of the standard FACS gating

strategy used is shown in Figure 4.2.

PSC-UC (n=40)

UC (n=40)

50mls 
blood

PBMC Separation FACS sort RNA extraction

Figure 4.1: Sample preparation pipeline.

During the set-up phase, I verified a small subset of twelve samples (two of each cell

type) to >95% purity by performing repeated FACS on already-sorted samples, using the
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same gating strategy. To minimise cellular perturbation, I performed all cell sorting using a

100µm nozzle at low sorting pressures using chilled, preservative-free Hank’s Balanced Salt

Solution (HBSS). Maximum time from acquisition of the whole blood sample to freezing

of lysed, FACS sorted, T-cell samples, was six hours. Technical failure of the cell-sorter

calibration on two occasions resulted in the loss of all T-cell samples from three individuals

(two with PSC-UC and one with lone UC). Therefore, in total 456 T-cell samples were

isolated from 76 individuals; 42 with PSC-UC, 29 with UC and 5 healthy controls.
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Figure 4.2: Gating strategy used for FACS separation of CD4+CCR9-, CD4+CCR9+,

CD8+CCR9- and CD8+CCR9+ central e↵ector T-cells from peripheral blood mononuclear

cells.

4.3.3 RNA extraction, library preparation and sequencing

I sequenced six di↵erent cell-type samples from seventy-six donors giving a total of 456

libraries. I performed RNA extraction using the Qiagen RNAeasy Micro plus kit. I checked

RNA concentration and quality on a 20% subset of samples (equally representative of all

cell-types) using the Agilent 2100 Bioanalyser, confirming RNA integrity number (RIN)
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of >8.0. All samples were then sent to the Wellcome Sanger Institute RNA Pipelines

for library preparation and RNA sequencing. Library preparation was performed by

Sanger Pipelines using NEBNext Ultra II Directional RNA kit, with a poly(A) pulldown

using oligo d(T) beads. Samples were then sequenced using 75 base-pair, paired-end

read sequencing, performed on the Illumina HiSeq 4000. Four plates, each containing 96

samples, were pooled at 96-plex and run over twelve lanes (eight samples sequenced per

lane) and the fifth plate containing 76 samples was run at 76-plex across ten lanes (7.6

samples per lane). The expected number of reads per samples was ⇠60 million reads.

4.3.4 Read alignment, counts and quality control

I aligned reads to the human genome and transcriptome, using STAR (Spliced Transcripts

Alignment to a Reference) software [227] and the reference genome; Genome Reference

Consortium Human Build 38 Release 29 (GRCh38.p12). This is a comprehensive reference

transcriptome, which includes protein coding RNA, all known non-coding RNA, non-

sense mediated decay transcripts, and both processed and unprocessed pseudogenes. The

reference genome is however incomplete, particularly around centromeres, meaning that

reads can be incorrectly mapped to other places within the genome (albeit with low quality)

resulting in false positive calls. I therefore included decoy contigs, known true human

genome sequence that is not included within the reference genome, to map reads that

would otherwise map to other regions of the genome.

Read counts were assigned to genes using FeatureCounts, implemented in R [228]. For

RNA samples, greater than 75% alignment of the total number of reads to the genome was

considered successful [229]. Samples with less than 60% of reads aligned to the genome

were immediately removed from the analysis, and those between 60-75% aligned initially

retained, but ultimately excluded following further quality control (QC) steps described

below. Across all samples, the mean proportion of the total reads mapping to exons was

0.79, with a median of 0.80. Samples with a proportion of exonic mapped reads less than

0.6 were also removed from the analysis. Following these preliminary QC steps, 6 T-cell

samples were removed from the analysis (Figure 4.3).
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Figure 4.3: Proportion of reads mapped to exons for a subset of 96 of the total 456

samples, highlighting an experimental outlier which was subsequently excluded due to a

low proportion of reads mapped to exons compared to the mean.
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Duplicated genes within the pseudo-autosomal regions (PAR) were removed and

normalisation performed by calculating transcripts per million (TPM). The number of

reads mapping to a genes is a↵ected by both sequencing depth (as each library has

di↵erent sequencing depth) and gene length. TPM is a normalisation method that allows

comparisons of genes across samples by normalising for both length of each gene and

sequencing depth. Genes not expressed, or expressed at extremely low levels, defined

as a sum of TPMs across all samples of <0.5, were removed. Because the presence of

lowly expressed genes can decrease the sensitivity to detect di↵erentially expressed genes,

I performed a further filtering step, retaining only genes with a mean TPM of �1 in at

least one disease condition.

In order to visualise samples that were experimental outliers, I performed principal

component analysis (PCA) of the top 500 most variably expressed genes across all samples

of all cell-types, implemented in DESeq2 [230]. PCA uses linear combinations of gene

expression values to define a new set of unrelated variables called principal components.

Principal components (PCs) are orthogonal variables, where the PCs are ordered by the

proportion of variation they explain in the data. This allows the description of a dataset

and its variance by using a reduced number of variables, with the first two components

describing the largest variability. The distances in the projection of the space defined by

the principal components correlates with the similarities between the samples and thus

the transcriptomes of di↵erent cell types. PC1 enabled CD4+ T-cells to be distinguished

from CD8+ T-cells, explaining 52% of the variance (Figure 4.4). PC2 enabled samples

from males and females to be distinguished (8% variance) and PC3 enabled CCR9+ and

CCR9- cells to be distinguished (7% variance) (Figures 4.4 and 4.5). PCA was also used to

identify experimental outliers, by performing PCA of the top 500 most variably expressed

genes for all samples labelled according to sex, disease type and cell type. This process

identified two outlying samples which did not cluster with the other samples of the same

cell type (samples A and B shown in Figure 4.4), and therefore they were removed from

the analysis. PCA also identified a further four outlying samples derived from two patients,

which did not cluster with other samples of the expected sex (Figure 4.5). These four

outlying samples were collected on the same day, and PCA confirmed that each sample

clustered with the expected cell type and were therefore likely to be a direct swap or

mislabelling of four samples between two patients. These samples were retained within

the experiment for subsequent analysis using the MBV module of QTLtools [231] which

matches genotype with transcriptome data (discussed later in Sample mismatch and

amplification bias section).
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Figure 4.4: Principal component analysis of the top 500 most variably expressed genes,

identifying two experimental outliers which did not cluster with their expected cell types.
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Figure 4.5: PCA analysis of the top 500 most variably expressed genes, identifying four

experimental outliers from two patients.

To confirm that the gating strategy and FACS had successfully isolated the expected

T-cell subtypes, I compared expression of known marker genes such as CD4, CD8, CCR9

and FOXP3 across all cell types. For this, I used the PlotCounts function implemented in

DESeq2 to visualise normalised counts of marker genes according to each cell type. This

demonstrated good correlation between expected and observed marker gene expression for

all cell types (Figure 4.6). The four CD4+ cell subtypes were shown to express high levels

of CD4 in comparison with the two CD8+ cell subtypes, which in turn expressed high

levels of CD8. FOXP3 is a transcription factor important in the development of T-regs.

The T-regs in this study expressed high levels of FOXP3, compared to the other five cell

types. CCR9 expression was high in the two CCR9+ cell subtypes and the T-reg cell

population and low in the T-mems, CD4+CCR9- and CD8+CCR9- cell types.
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Figure 4.6: Expression of marker genes across all cell types.

4.3.5 Di↵erential gene expression

As previously discussed, I recruited patients with both PSC-UC and lone UC for inclusion

within this study, based upon evidence that the colonic inflammation in both PSC-UC
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and UC patients results in increased numbers of CCR9+ e↵ector-memory T-cells. Thus,

I hypothesised that these cells would have a similar activated phenotype, with similar

transcriptomic profiles in both disease groups. In order to prove that the cell types from

the PSC-UC and UC groups had a similar transcriptomic profile, I performed di↵erential

gene expression (DGE) analysis between disease groups (PSC-UC, UC and HC) in each of

the six T-cell subtypes.

For the analysis of di↵erential gene expression I used DESeq2 package version: 1.25.0.

DESeq2 is a tool for analysis of di↵erential gene expression, using shrinkage estimation for

dispersions and fold changes to improve stability and interpretability of estimates [230].

There are several similar methods available, including edgeR and limma-voom. I chose the

DESeq2 method over limma-voom because it o↵ers a more stringent count normalisation

method, based upon generalised linear modelling (GLM) or negative binomial modelling

rather than linear modelling. This is especially important when dealing with very small

sample sizes. For example, the HC sample group in my study contained only 5 individuals

and DESeq2 has been shown to have comparatively improved specificity and sensitivity

as well as good control of false positive errors, even with small samples sizes [232]. In

comparison with DESeq2, the edgeR method also uses a negative binomial distribution,

with comparable specificity and sensitivity and I chose the former due to improved usability.

The input for DESeq2 is the raw count matrix K (where ‘count’ refers to the number

of sequencing reads unambiguously mapped to gene in a sample), including only those

genes and samples taken forward following the aforementioned QC steps. Each row of

the count matrix contains one gene i, and each column contains the number of counts

for that gene in a sample j. DESeq2 firstly normalises for sources of systemic variation

between samples; library size and sequencing depth. This is important because not all

samples have been sequenced to exactly the same depth and larger library sizes result in

higher counts. It also normalises for two important sources of within-sample gene-specific

e↵ects. The first is related to gene length, because the total number of reads mapped to a

given transcript is proportional to the expression level of the transcript multiplied by the

length of the transcript [233]. The second is related to GC content which is heterogeneous

across the genome and can a↵ect the mapping of reads [234]. The method of normalisation

used by DESeq2 is called the ‘median-of-ratios’ method, which I have described in Figure

4.7. The output of this normalisation is a normalisation factor, S
ij

, for each sample in

the experiment [235]. DESeq2 models the counts for K
ij

as following a negative binomial

distribution with mean µ
ij

and dispersion a
i

(dispersion estimation described more fully

below). µ
ij

is a quantity, q
ij

, proportional to the concentration of cDNA fragments from

the gene in the sample, scaled by the normalisation factor S for that sample;

µ

ij

= S

ij

⇤ q
ij
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Figure 4.7: Schematic representation of the DESeq2 method of normalisation.

To compare two groups (eg. PSC-UC versus UC), DESeq2 fits a GLM with logarithmic

link of the overall expression strength of a gene and the log
2

fold change (LFC) between the

two groups, as a combination of explanatory factors or covariates such as group, patient

and sample;
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log2q
ij

= a+ (b ⇤ group) + (c ⇤ patient) + (d ⇤ sample) + e

where a is the intercept, b, c and d are parameters estimated from the data, and e is the

error term. When comparing a gene’s expression level between groups, DESeq2 accounts

for the within group variability of that gene’s expression using dispersion estimation, a
i

to

model the variance of counts, Var Kij.

V arKij = µ

ij

+ (↵
i

⇤ µij)

For the statistical inference of di↵erential expression, it is important that estimation of

the dispersion parameter, a
i

is accurate. Because some RNAseq experiments, such as the

HC group in my study, include only a few biological replicates, estimating the within group

variability is di�cult, especially because genes expressed at very low levels have much

higher dispersion estimates. If used, these higher dispersion estimates would introduce

noise and a↵ect the accuracy of the di↵erential expression analysis. To account for this

DESeq2 assumes that genes with a similar average expression have similar dispersion.

It then estimates gene-wise dispersions (for each gene separately) using a maximum

likelihood and shrinks dispersion estimates towards a fitted average dispersion curve, using

an empirical Bayes approach. As sample size increases, the scale of shrinkage decreases.

When estimating log fold change (LFC), there is strong variance for genes expressed at

very low levels. This is a result of working with count data, where even a small error in

counting mapped reads causes a comparatively big change in LFC estimation for those

genes expressed at very low levels. If unaccounted for, this would make the downstream

estimation of e↵ect sizes di�cult to compare across the range of data. DESeq2 deals with

this by shrinking LFC estimates towards zero using an empirical Bayes method. This can

be visualised on an MA plot, which shows the di↵erences between measurements taken in

samples, by transforming the data onto M (log ratio or LFC) and A (mean of normalised

counts) scales, then plotting these values. Figure 4.8 shows two MA plots for all of the

data in my di↵erential gene expression (DGE) study, before and after shrinkage has been

applied. This demonstrates that shrinkage is stronger when counts are low and dispersion

is high, removing the problem of exaggerated LFCs for genes with low counts.
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Figure 4.8: MA plots with and without shrinkage applied. Points are coloured red where

the adjusted p-value is less than 0.05, and plotted as open triangles pointing either up or

down if they fall outside of the window.

Having fit a GLM for each gene, the next stage is to test whether the coe�cient for

each model is significantly di↵erent from zero. DESeq2 uses a Wald test for significance
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where the shrunken estimate of LFC is divided by its standard error and the resulting Z

statistic compared to a standard normal distribution with a resultant p-value. Because

many thousands of genes are tested, it is possible to obtain some significant p-values just

by chance (false positives), hence in the final stage of the analysis I corrected the p-values

for multiple testing. I used the Benjamini-Hochberg (BH) correction method [164] to

obtain adjusted p-values at a 5% false discovery rate (FDR).

I performed di↵erential gene expression analysis between each of the three disease

groups (PSC-UC, UC and HC), in a pair-wise fashion. I controlled for known covariates in

the DESeq2 model including patient age, sex, use of drugs including 5-aminosalicylates and

azathioprine, and the sample sequencing run. I reported genes as di↵erentially expressed

if the adjusted p-value was <0.05. I performed gene ontology (GO) analysis of all DEGs

in each group, using web-based GO platform, g:Profiler [236], to elucidate aspects of the

underlying disease biology.

4.3.6 Genotype QC and imputation

Paired genotype and expression data is required for the mapping of eQTL. DNA samples

from blood or saliva were available for 74 of the 76 patients. DNA extraction of all samples

was performed by Dr Rebecca McIntyre, Senior Sta↵ Scientist at the Wellcome Trust

Sanger Institute. Extraction was performed using Qiagen DNeasy Blood and Tissue

Kit and sequenced by the Wellcome Sanger Institute DNA pipelines, using the Illumina

Omni2.5-8Exome BeadChip. I performed all QC on the raw genotype data, using the

PLINK software version 1.9, following Anderson et al ’s published standards for the QC

of genotype data for genome-wide case-control association studies [237]. I considered all

autosomal and chromosome X SNPs without insertions or deletions. The sequence of pre-

imputation QC is shown in Figure 4.10 with further details on per-SNP and per-individual

QC outlined below.

The removal of suboptimal SNPs is important for avoiding false-positive associations

which reduce the ability to identify true associations correlated with disease risk. To

remove individuals and SNPs with a particularly high error rate, but maximise the number

of SNPs remaining within the study, I first removed individuals with a genotype call rate of

<95% and SNPs with call rate of <95%. SNPs with a very low frequency can be di�cult

to call using current genotype calling algorithms due to the small numbers of heterozygotes

and homozygotes. Furthermore, power to detect association at rare variants is low, and

thus I removed variants with a MAF <0.01.

Per-individual QC included the identification of individuals for whom information on

sex was disconcordant between genotype and ascertained sex. This was done by calculating

the homozygosity rate across all X chromosome SNPs for each individual within the sample

and comparing this to the expected rate. Males are expected to have a homozygosity rate
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around 1 (with some variation due to genotyping error), and females a homozygosity rate of

around 0.2. This is because males have just one copy of the X-chromosome and thus cannot

be heterozygous for any marker outside of the pseudo-autosomal Y chromosome region.

There were no sex discrepancies between genotype and ascertained sex in my samples. In

order to reduce the e↵ect of population stratification, I next identified any individuals of

ancestry divergent from the expected European ancestry. Excluding variants from regions

of known high LD, I identified a pruned set of 62,805 independent variants from my dataset,

all with an r2<0.2 and MAF>0.01. I then identified the same subset of variants within

the 1000 Genomes dataset. Using this pruned set of independent variants, I performed a

PCA analysis of my individuals combined with the 1000 Genomes cohort. By plotting the

first and second principal components of this combined dataset, I could visually identify

that all of my samples were clustered with the known European individuals of the 1000

Genomes dataset (labelled ‘PSC’ in Figure 4.9). Notably, of all individuals passing QC

and retained for downstream analysis, three were of Southern European/Iberian ethnicity,

highlighted on Figure 4.9 and all remaining samples were of Northern European ethnicity.

All samples from individuals of Northern and Southern European ethnicity were retained

for further analysis.

Figure 4.9: PCA of study samples compared to 1000 Genomes samples of known ethnicity

using a pruned set of 62,805 independent variants with an r2<0.2 and MAF>0.01.
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Figure 4.10: Outline of pre-imputation QC of genotype data.
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The heterozygosity rate per individual can be used as a measure of DNA sample

quality. Considering only autosomal chromosomes, I examined the distribution of the

heterozygosity rate, excluding any samples with a heterozygosity rate more than two

standard deviations from the mean. The mean heterozygosity rate was 0.274 and one

sample fell outside the two standard deviations threshold resulting in its removal from the

analysis. To avoid the bias of over-represented genotypes introduced by first-or second

degree relatives, the next stage of per-individual QC was to identify any duplicated or

related individual, to ensure the maximum relatedness between any pair of individual was

less than second-degree relatives. I used KING software v2.2 and a set of 2,513,131 variants

with MAF>0.01, and call rate >98% to infer close relatives based on the estimated kinship

coe�cients. I identified two first degree relatives (kinship coe�cient range 0.177 to 0.354),

one of which was removed from subsequent analysis.

SNPs with extensive deviation from Hardy-Weinberg Equilibrium (HWE) may indicate

selection, occurring at loci associated with disease, but can often be indicative of genotype

calling error. As part of the per-marker QC, I removed variants with a HWE p-value of

<1⇥ 10-8. Following the above QC steps a dataset including 71 individuals and 1,590,593

variants remained, and were put forward for imputation. I imputed a further ⇠5.5 million

variants against the UK10K, 1000 Genomes phase 3 and Haplotype Reference Consortium

reference panels, using the Wellcome Sanger Imputation and Phasing Service pipeline,

IMPUTE2 [238]. IMPUTE2 provides an ‘info’ score related to the quality of the imputation

for each SNP. Post-imputation QC consisted of removing any SNPs with a low info score

<0.3. This threshold was decided by plotting an info score frequency curve and assigning

the threshold at the inflexion point [239]. The final post-imputation QC step was to

re-check the HWE as described above. The resultant post-imputation, post-QC dataset

consisted of 7,027,506 SNPs. Mapping of eQTLs requires the addition of known covariates

within the model, including principal components (PCs) from the genotype data. Therefore,

using the final QC’d and imputed genotype dataset, I performed a PCA using the PLINK

(v1.9) PCA function with the aforementioned pruned set of 62,805 independent variants

from low LD regions. I retained the resulting genotype PCs for inclusion as covariates in

the downstream eQTL analysis.

I processed all genotype and imputed data in ensembl build 37, but for further

downstream processing performed a genome coordinates conversion or ’lift-over’ to ensembl

build 38 using CrossMap v0.3.5 which supports the conversion of variant call format (VCF)

files between di↵erent genome assemblies [240].

4.3.7 eQTL mapping

I conducted all eQTL analysis and mapping using QTLtools v1.1 9, which provides a

complete toolset for molecular QTL discovery and analysis [241]. The analysis outlined

112



below was performed using a normalised gene expression matrix, which had undergone

prior QC (as described in the RNA sequencing and sample QC section above), and the

previously QC’d and imputed genotype data (as described in the Genotype QC and

Imputation section above).

4.3.7.1 Identifying sample mismatches and amplification bias

To ensure that the genotype and gene expression data for each individual in the study was

a true match, I used the MBV (Match BAM to VCF) module of QTLtools [231]. MBV

identifies sample mislabelling, cross-sample contamination and PCR amplification bias. The

input files for MBV were the VCF file containing the genotype data for all 71 individuals

within my study, and the BAM file for the mapped RNA reads for each individual at a time.

For each SNP site in the VCF file, MBV aggregates the sequencing reads and discards those

SNPs not reaching a minimal coverage parameter threshold. For each individual within the

VCF file, it calculates the proportion of heterozygous and homozygous genotypes for which

both alleles have been captured by the sequencing reads and reports the two concordance

measures for each individual. Where both measures are close to 100% concordance,

this describes a match between genotype and gene expression datasets. Where there is

decreased heterozygous concordance with no change in homozygous concordance this is

described as ‘no match’ between genotype and gene expression, but in fact represents a

match but with amplification bias e↵ect (Figure 4.11). Twenty-three percent of samples

demonstrated heterozygosity concordance of less than 0.66 with no change in homozygous

concordance. In order to account for the e↵ect of such amplification bias, the fraction of

heterozygosity concordance for each sample was taken forward as a covariate for inclusion

in the eQTL analysis.

There were no instances of sample contamination within this dataset, which can

be detected by a reduction in the fraction concordance at homozygous compared to

heterozygous sites. I detected four cases of ‘unexpected matches’, two from the same

male recruit and two from the same female recruit (Figure 4.12). These were the same

four samples detected to be outliers on PCA according to sex, as previously described in

the RNA sequencing and sample QC section above. This was the result of an accidental

direct swap of two RNA sample labels (CD8+CCR9- and CD8+CCR9+ samples) from

one male individual with two RNA sample labels for the same two cell types from one

female individual. Following this stage of QC, these four samples could be re-assigned to

the correct individual and therefore retained for eQTL mapping.
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Figure 4.11: Concordance at heterozygous genotypes (x-axis) versus concordance at

homozygous genotypes (y-axis), for each individual genotype sample (black dots). A

match between genotype (box at top) and gene expression data (plot title) is coloured red

(two left hand examples). A mismatch or amplification bias is coloured black (right hand

example).
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Figure 4.12: Concordance at heterozygous genotypes (X-axis) versus concordance at

homozygous genotypes (Y-axis), for each individual genotype sample (black dots). An

sample mismatch is shown by a match between a di↵erent genotype (in box at top) and

gene expression data (plot title) in all four examples.

4.3.7.2 Identifying cis-eQTLs

For the identification and mapping of cis-eQTLs in each of my T-cell subsets, I used

QTLtools [241]. Mapping eQTLs involves the testing of association between gene ex-

pression (phenotype of interest) and all the genetic variants within a window upstream

and downstream of the transcription start site (TSS) of the gene, with millions of tests

performed genome-wide. A linear regression model is fitted between the genotypes and

gene expression, including multiple covariates to correct for batch and other e↵ects, in

order to find the best nominal associated variant per gene. Analysis of all gene-variant

pairs requires millions of association tests, each producing a nominal p-value. Whilst

adjustment of nominal p-values to correct for multiple testing and avoid false positives
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must be performed, the presence of linkage disequilibrium (LD) means that the tests

are not entirely independent, calling for a less stringent correction than the Bonferonni

method. To deal with this issue QTLtools uses permutations to derive adjusted p-values

per phenotype/gene. QTLtools uses a beta approximation permutation scheme based

on Ongen et al ’s FastQTL beta approximation permutation scheme, to correct for the

testing of multiple variants per gene [242]. This scheme creates multiple permuted datasets

by keeping the genotypes static (thus preserving correlation structure between variants)

and permuting the gene expression data for every gene. For every permutation the best

nominal association is retained to form a distribution of p-values expected under the null

hypothesis of no association. Next, an adjusted p-value is calculated based on how likely

it is that an observed association obtained in the nominal pass, originates from the null.

QTLtools models this distribution of p-values expected under the null hypothesis of no

associations, using a beta distribution. It approximates the tail of the null distribution to

estimate adjusted p-values at any significance threshold, with no lower bounds.

The input files for QTLtools are the zipped and indexed VCF file (which had been

previously QC’d and imputed as described above), the indexed and zipped gene expression

BED files (reporting normalised expression in TPM and QC’d as previously described)

and the covariate files. In my analysis I included age, sex, the first three genotype

principle components (described in Genotype QC and imputation section above), fraction

of heterozygosity concordance (described in Sample mismatch and amplification bias

section) and a variable number of gene expression-derived principal components (PCs) as

covariates. I calculated the gene expression PCs in the same way as the genotype PCs,

using PLINK v1.9’s PCA function.

To map eQTLs I ran QTLtools for each of the six T-cell datasets, using 1,000 per-

mutations and a cis-window of 1Mb. To maximise the number of eQTL discoveries, I

optimised the QTL mapping by performing multiple runs of the analysis including an

increasing number of gene expression-derived principal components from zero to 50. To

account for the thousands of genes tested genome-wide, I performed an FDR correction

on the set of adjusted p-values obtained by the permutation analysis for every gene, using

the R package, qvalue [243]. In contrast to the p-value, which measures significance in

terms of the false positive rate, the q value is a measure of significance in terms of the

false discovery rate. An FDR threshold of 5% therefore means that on average, 5% of the

eQTLs called significant are truly null [243]. In order to find the optimal number of gene

expression PCs required to detect the maximum number of eQTLs, I plotted the number

of eQTLs against the number of expression PC’s included within the linear regression

model. For each cell type, I settled on the number of PC’s that maximised the number of

eQTLs, and included this number of PCs in the covariate model which was taken forward

for subsequent analyses as described below [215, 241].
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Further analysis of eQTL data, for example for meta-analysis or colocalisation, requires

all the nominal associations (including those that do not reach statistical significance). To

generate this data, I used the QTLtools nominal pass function, the same gene expression

BED and genotype VCF files as described above and the covariate files containing the

same number of gene expression PCs for detecting the maximum number of significant

eQTLs.

4.3.8 Identifying shared and tissue-specific eQTL

Having mapped eQTLs for six individual cell types, an important question is to identify

those eQTLs which are shared across cell types, and those that are cell-type specific. By

allowing for the correlations of e↵ect sizes among cell types using a form of meta-analysis,

this can increase power by improving estimation of e↵ect sizes and allow for more accurate

comparison of e↵ect sizes between tissues. Several statistical methods for analysing shared

eQTL associations have been published which learn the patterns of eQTL sharing from

the data using a hierarchical model [244–246]. However, each has its own limitations,

for example the model by Flutre et al is limited by the assumption that correlations are

non-negative and equal, such that it does not allow for genetic variants leading to an

increased e↵ect in one trait and a decrease in another [244]. Furthermore, Flutre et al ’s

methods provides flexibility at the cost of becoming computationally intractable when

considering even moderate numbers of tissues or cell types and thus the authors sought to

solve this by restricting e↵ects to either a single cell type, or shared across all cell types.

Another method published by Wei et al allows for all patterns of sharing, but is limited by

the assumption that nonzero e↵ects are uncorrelated among conditions, and thus focuses

only on testing for significant e↵ects and not on estimating e↵ect sizes [245]. MashR

(multivariate adaptive shrinkage in R) is a method that addresses these limitations, allowing

for shared, condition-specific and arbitrary patterns of correlation among conditions, as

well as providing measurements of significance and e↵ect size estimates [246].

I used mashR, implemented in R, for further analysis of my eQTL data. The input

data for mashR are the nominal pass of the individual cell-type analysis performed

with QTLtools as described above. These include the e↵ect size estimates (b’s) and

corresponding standard errors (SE) for all eQTL/Gene pairs in each cell type with no

significance threshold. These measurements are the input for mashR’s two-step empirical

Bayes procedure, which firstly learns the patterns of sparsity, sharing and correlations

among e↵ects from the individual cell-type results and secondly, combines these learned

patterns to produce improved estimates of e↵ect and their corresponding significance. For

the first step, mashR requires a subset of ‘strong’ tests, corresponding to the strongest

e↵ects in the individual cell-type analysis. I identified this subset of ‘strong’ tests by taking

the most significant eQTL per gene across all six cell types, from all significant eGenes
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from the individual cell-type analysis. This produced a strong subset of 5,487 eGenes.

Next, mashR requires a ‘random’ subset of all tests, which is an unbiased representation

including null and non-null tests. I created a ‘random’ subset of 200,000 tests using the R

function, set.seed, which is a reproducible random number generator. The random subset

is used by mashR to estimate the correlation structure between tests, via a PCA-like

approach and the strong subset is used to define the data-driven covariance matrices. The

mashR model is then fitted to the random tests using both the data-driven covariance

and mashR’s in-built canonical covariances. I then used the resultant mashR model to

compute posterior summaries for all of my data. For each eQTL/Gene test in each of the

six cell-types, the output includes the posterior b, SE, lfsr (local false sign rate, analogous

to an FDR) and log
10

Bayes factor (a measure of the overall significance for a non-zero

e↵ect in any condition).

The final stage of the analysis is to call cell-type specific and shared eQTL from the

mashR posterior summaries. From the posterior summaries for all of my data, I identified

the subset of eQTL/Gene pairs significant in at least one cell type at lfsr<0.05. From this

subset I extracted data for the most significant eQTL per gene, defined by the eQTL/gene

pair with the smallest lfsr across any of the six cell types as described by Kim-Hellmuth

et al in the analysis of cell-type specific eQTLs in the GTEx data [247].

4.3.9 Colocalisation

I performed colocalisation with the eQTL data derived for each individual cell type

using the output data from QTLtools’ nominal pass and permutation pass. I performed

colocalisation at the fifteen PSC risk loci reported by Ji et al [42] with GWAS summary

statistics from the same study using the same methods for colocalisation as previously

described in Chapter 3. Where the PP4 for colocalisation of a PSC risk locus with a

T-cell eQTL was >0.8 for at least one cell type, I explored whether this same locus also

colocalised with the same eQTL in other cell types using the mashR eQTL data. I took

the posterior results of mashR analysis for posterior standard deviation (standard error),

lfsr (analogous to an FDR) and posterior mean (b) for each cell type, and performed

colocalisation at those PSC risk loci, visualising the results on regional association plots.

Finally, given that the majority of the study cohort were patients with UC and that genetic

architecture is shared across many IMDs, I conducted colocalisation with other IMDs.

I performed colocalisation with 240 IBD, 100 RhA and 45 T1DM risk loci, using their

associated GWAS summary statistics [60, 148, 200] and nominal pass eQTL data for each

T-cell subset (derived from the QTLtools individual cell-type eQTL analysis).
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4.4 Results

4.4.1 Di↵erential gene expression

I tested 20,547 genes for di↵erential expression between each of the three disease groups

(PSC-UC, UC and HC). Characteristics of the study cohort, according to disease group

are shown in Table 4.2. I controlled for covariates including patient age, sex, use of

5-aminosalicylates or azathioprine and the sample sequencing run. The results of this

analysis showed no significant di↵erences is gene expression across all six T-cell subtypes in

the PSC-UC group compared to the UC group (Table 4.3). Given that both groups share

the UC phenotype, this finding is not unexpected. Furthermore, the results supported no

significant changes in gene expression between both the PSC-UC and UC groups versus

HC, in T-regs, CD4+CCR9-, CD4+CCR9+ and CD8+CCR9+ cells. Whilst there were

a few DEG’s ( 7) between the above comparator groups, genes are reported at a 5%

FDR, therefore a false positive rate of 5% is expected, limiting any interpretation where

such low number of DEGs are reported. Further visualisation of normalised counts for

these few genes in each disease group confirmed that most genes reported as di↵erentially

expressed, were false positives.

Di↵erential gene expression was observed between both PSC-UC and UC groups

compared to HCs in two cell populations; T-memory and CD8+CCR9- T-cells. Using

gProfiler, I performed GO analysis of all genes di↵erentially expressed between these disease

groups. GO term analysis of 367 DEGs in the T-memory cells of UC compared to HCs

demonstrated enrichment of pathways involved in cellular metabolic activity (p=1.1⇥10-12)

(Figure 4.13). The finding of a more metabolically active phenotype in the T-memory

cells of patients with UC versus HCs may support a role for these cells in the disease

pathogenesis. GO analysis was unable to find any more specific pathway enrichment based

upon these DEGs. There were 101 DEGs between PSC-UC and HCs in T-memory cells.

However GO analysis did not find any significant pathway enrichment, likely a result of

the relatively low numbers of DEGs between these two groups.

The second cell type demonstrating significant numbers of DEGs in the PSC-UC

and UC groups compared to the HC group, were the CD8+CCR9- T-cells. Here, 94

and 34 genes were di↵erentially expressed in PSC-UC and UC groups compared to HCs

respectively. GO analysis did not find any specific pathway enrichment for any of the

DEGs, again, likely a result of the low numbers of DEGs. However the finding of a

di↵erence between the transcriptomes of CD8+CCR9- cells of PSC-UC and UC patients

versus HCs, in the absence of any di↵erence in the transcriptomes of CD4+CCR9- in the

same groups, is interesting given existing evidence in IBD, of a CD8+ T-cell signature

of immune-cell exhaustion, driving a more severe disease course in IBD [248]. Indeed, it

has been reported that elevated expression of genes involved in antigen-dependent T-cell
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Table 4.2: Characteristics of the study cohort according to disease group.

PSC-UC UC HC
n=42 n=29 n=5

Gender (% male) 78 69 60
Mean Age (Range) 50 (17-86) 52 (48-56) 44 (28-51)
UDCA use (%) 71 0 0
5-ASA use (%) 67 90 0
Azathioprine use (%) 57 21 0

responses, including IL-7 signaling and TCR ligation, specific to CD8+ T-cells and absent

in CD4+ T-cells, can predict a more severe disease phenotype in IBD patients [248, 249].

Importantly, I found that several genes involved in TCR antigen recognition were up-

regulated in CD8+CCR9- T-cells of PSC-UC groups versus HC, including TRAV38-2DV8

(T cell receptor alpha variable) and TRBV25-1 (T cell receptor beta variable), genes which

encode the variable domain of T cell receptor (TCR) a and b chains respectively. In the

CD8+CCR9- T-cells of PSC-UC versus HC, there was increased expression of BTLA (B-

and T-lymphocyte attenuator), a gene induced during activation of T cells, and decreased

expression of IL-15, a cytokine which prevents apoptosis and maintains memory T cells in

the absence of antigen. Thus it appears that the CD8+CCR9- memory T-cells in PSC

patients express genes consistent with a more active phenotype with reduced repression of

apoptosis, compared to HCs.
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Figure 4.13: Gene ontology pathway analysis for DEGs in T-memory cells of UC compared

to HC. Figure generated using g:profiler [236], 20/12/2019.
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4.4.2 eQTL mapping

I mapped cis-eQTLs for six T-cell subtypes. For four of the T-cell subtypes (T-regulatory,

T-memory, CD4+CCR9- and CD8+CCR9- T-cells), the optimal number of expression-

derived PCs for detecting maximum number of significant eQTLs at 5% FDR was nine, for

T-regs and CD8+CCR9- T-cells this number was eight (Figure 4.14). After extracting all

significant eQTL/gene pairs, I detected a median of 1,337 eQTLs per cell type (5% FDR).

The largest number of eQTLs (2,804) were detected in T-memory cells and the fewest (901)

in CD8+CCR9+ cells (Figure 4.14). This is likely to reflect that T-memory cells were

the most abundant cell type, and CCR9+ cells the least abundant, thus influencing the

power to detect eQTLs for each cell type. Whilst data for the initial numbers of cells per

sample was not available, the lesser-abundant CCR9+ cells underwent more amplification

bias compared to the other cell types, as represented by the heterozygosity concordance

rate was included within the covariate model. For each cell type, I plotted the position of

each eQTL in relation to the gene transcription start sites (TSS), demonstrating that the

majority of significant eQTLs were within 100,000 bp of the TSS (Figure 4.15). This is in

keeping with the findings of several previous studies that most cis-eQTLs occur in close

proximity to gene TSS [120, 250, 251].
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Figure 4.14: Number of significant eQTLs (y-axis) mapped for each individual cell type at

5% (blue line) and 10% FDR (red line), using covariate models with di↵erent numbers of

gene-expression derived PCs from zero to fifty (x-axis).
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Figure 4.15: Distance from transcription start site (TSS) for each significant eQTL

(coloured red for those less than 5% FDR) per cell type.
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4.4.3 Shared and tissue-specific eQTLs

With mashR, I identified a set of 10,459 significant unique eGenes (5% FDR). This number

was more than three times the sum of all significant, unique eGenes detected in the

individual cell-type analysis, demonstrating the enormous boost in power provided by

the aggregation of measurements across the six cell types to improve the estimates of the

b/SE’s. Of these 10,459 unique eGenes, 87% (9,176) were shared across all 6 cell types,

4.7% (489) were specific to a single cell type. The distribution of eQTL-sharing across the

six cell types is shown in Figure 4.16. These data suggest that the vast majority of eQTLs

are shared across all six T-cell subtypes, with very few cell-type specific eQTLs. This

finding is not unexpected given that all six of these cell types are subsets of peripheral

blood T-cells subject to similar disease conditions. GO analysis of the eGenes using

g:profiler [236] did not highlight any gene sets or pathways enriched for cell-type specific

or shared eQTLs.

Figure 4.16: Number of cell-type specific and shared QTLs.

4.4.4 Colocalisation of disease-risk loci with eQTL

To identify eQTLs with a causative role in PSC pathogenesis, I performed colocalisation of

the fifteen PSC risk loci reported by Ji et al [42], with the PSC GWAS summary statistics

and eQTL data for each individual T-cell subtype. Two of the fifteen risk loci colocalised

(PP4�0.8) with eQTLs in one or more T-cell subtypes (Table 4.4).
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Colocalisation of the Chromosome 21 rs1893592 PSC risk locus demonstrated that

this locus was an eQTL of UBASH3A in T-memory cells. Whilst this is in keeping with

my previous finding of colocalisation of this locus with an eQTL for UBASH3A in both

T-regs and CD4+ naive T-cells in Chapter 3, there was no evidence from the individual

cell type analysis to support colocalisation with this eQTL in the other T-cell subsets (all

PP4<0.5) (Table 4.4). To identify if this GWAS risk locus was an eQTL of UBASH3A

across all T-cell subsets, I conducted colocalisation with the eQTL data from the mashR

analysis. Colocalisation with the mashR data supported that this risk locus colocalised

with an eQTL for UBASH3A across five of the six cell types, including T-regs, T-mems,

CD4+CCR9-, CD4+CCR9+ and CD8+CCR9- T-cells, with PP4� 0.98 (Figures 4.17 and

4.18). This supports the finding that the Chromosome 21 rs1893592 SNP is an eQTL of

UBASH3A across most T-cell sub types. Furthermore, plotting of the UBASH3A eQTL at

this SNP confirmed that the PSC risk increasing rs1893592*A allele reduced expression of

UBASH3A across all T-cell subtypes (Figure 4.19), in keeping with my previous findings

for this locus in Chapter 3.

Figure 4.17: Regional association plot for the Chromosome 21 rs1893592 risk locus in PSC

GWAS data.
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Figure 4.18: Regional association plots for colocalisation between PSC GWAS and eQTLs

for UBASH3A in T-cells at Chromosome 21 rs1893592 risk locus, using mashR eQTL data.
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Figure 4.19: Expression of UBASH3A according to Chromosome 21 rs1893592 genotype

in T-memory cells.

The second PSC risk locus which colocalised with an eQTL in one or more T-cell subsets

was the Chromosome 11 rs663743 PSC risk locus. This locus colocalised with an eQTL for

AP003774.1 in three of the six T-cell subtypes; T-regs, T-mems and CD4+CCR9- T-cells

with � 95% PP (PP4) of causality (Figure 4.20). In addition, there was some evidence

to support colocalisation of this locus with an eQTL for AP003774.1 in CD8+CCR9-

T-cells with PP4 of 0.70. Following mashR analysis, the strength of the association for

this eQTL increased across all six cell types (Table 4.4). Subsequent colocalisation of

this locus within the mashR eQTL data supported the finding that this PSC risk locus

colocalised with an eQTL for AP003774.1 in four of the six cell types including T-mem,

T-reg, CD4+CCR9- and CD8+CCR9- T-cells (PP4 of � 0.95) with some additional

evidence (PP4=0.72) to support colocalisation with CD4+CCR9+ T-cells (4.21). Plotting

of the AP003774.1 eQTL at rs663743 confirmed that the PSC risk increasing rs663743*G

allele reduced expression of AP003774.1, with a consistent direction of e↵ect across all cell

types (Figure 4.22).
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Figure 4.20: Colocalisation between PSC GWAS and AP003774.1 eQTL data from the

individual cell-type analysis, at the chromosome 11 rs663743 PSC risk locus.
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Figure 4.21: Colocalisation between PSC GWAS andAP003774.1 eQTL data from the

mashR analysis, at the chromosome 11 rs663743 PSC risk locus.
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Figure 4.22: Expression of AP003774.1 according to Chromosome 11 rs663743 genotype

in T-regulatory cells.

AP003774.1 is a long non-coding RNA or lncRNA. LncRNA’s are defined as transcripts

with lengths exceeding 200 nucleotides that are not translated into protein. Whilst the

function of the majority of lncRNAs are unknown, it has been shown that lncRNAs are

themselves important regulators of gene expression, via interactions with transcription

factors or epigenetic modifiers [252, 253]. LncRNAs thus provide a link between non-coding

variants and protein-coding genes. Moreover, there is accumulating evidence that lncRNAs

are important regulators of both immune cell di↵erentiation and the innate and adaptive

immune responses [254–256]. They have also been implicated in the pathogenesis of several

IMDs, including (but not limited to) SLE, RhA, T1DM and MS [257–259]. Indeed, one

study that mapped cis-eQTLs at 460 IMD-associated SNPs found that >10% a↵ected

the expression of a lncRNA [260]. Whilst little is known about AP003774.1, according

to GTEx, this lncRNA is highly expressed in PSC-relevant tissues including colon, small

intestine and whole blood (Figure 4.23) [176]. In addition, a search of the database for

immune cell eQTL expression epigenomics (DICE) demonstrated that amongst immune

cells, AP003774.1 is most highly expressed in T-cells and NK cells, with lower expression

in monocytes [261]. In Chapter 2, I demonstrated that this same region overlaps both
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promoter and enhancer elements in multiple PSC-relevant tissues, suggesting plausible

mechanisms via which this eQTL for AP003774.1 may interact with epigenetic modifiers

to regulate expression of other genes in the region. More specifically, this locus overlaps

H3K27me3, a marker of an inactive or silenced regulatory region, in keeping with the

PSC risk increasing allele reducing expression of AP003774.1 (Figure 4.22). Interestingly,

Ricano-Ponce et al demonstrated that expression of AP003774.1 is also linked to another

IMD, MS, where the lead GWAS SNP for the MS risk locus (rs694739 at Chr11:64097233,

build 37) has been shown to decrease the expression level of AP003774.1 in PBMCs [260].

Whilst this region has not been fine-mapped in MS, the MS lead SNP, rs694739, lies close to

the fine-mapped SNP for this locus in PSC (rs663743 at Chr11:64107735) and both SNPs

are in high LD with one another (r2=0.74). In previous chapters I show that this same

rs663743 risk locus in PSC colocalises with a monocyte eQTL for another gene, CCDC88B,

which is not expressed in T-cells. It is therefore of particular note that Ricano-Ponce et al

similarly observed that this same MS SNP also a↵ected the expression of CCDC88B in

PBMCs and that many SNPs associated with IMDs can a↵ect the expression of more than

one gene within a 500Kb region. It is therefore likely that this PSC risk locus functions as

an eQTL for two di↵erent genes in two di↵erent cell types; AP003774.1 in T-cells and

CCDC88B in monocytes.
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Figure 4.23: Expression of AP003774.4 across multiple human tissues (figure generated

by GTEx portal, 25/02/20 [176]).
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Figure 4.24: Expression of AP003774.4 across multiple immune cell types (figure generated

by the Database of immune cell eQTL expression [261], 26/02/2020).

Many genetic risk loci are known to be shared across multiple IMDs and similar eQTL

studies have performed colocalisation of eQTLs with a range of IMDs. The majority of

samples for this study were derived from patients with UC. In an e↵ort to identify other

IMD risk loci that function as eQTLs, I performed colocalisation of T-cell eQTLs with UC,

CD and two other IMDs; RhA and T1DM. I identified ten IMD risk loci that colocalised

with eQTLs for one or more genes. The results of colocalisation with all IMDs are shown

in Table 4.5, however given that the focus of this thesis is PSC, only those IBD risk loci

that colocalised with T-cell eQTLs are discussed further.

This analysis identified two UC risk loci and one CD risk locus that colocalised with

T-cell eQTLs, thus identifying several genes involved in inflammatory or immune pathways

with a potential causal role in IBD. Of note, the UC Chromosome 7 rs4728142 risk

locus colocalised with an eQTL for IRF5 in T-memory cells. IRF5 is a transcription

factor which forms one of the major inflammatory pathways, crucial for activation of the

136



Table 4.5: Colocalisation of non-HLA GWAS risk loci for immune-mediated diseases and
T-cell eQTL
Chr GWAS SNP Disease eGene Cell type PP4 eQTL Beta eQTL p-val

1 rs3180018 UC GBAP1 T-reg 0.91 -0.74 3.88E-04
T-mem 0.98 -1.01 1.30E-10

CD4+CCR9- 0.98 -0.92 2.01E-07
CD4+CCR9+ 0.98 -0.91 7.66E-07

UC THBS3 CD4+CCR9- 0.98 0.88 5.59E-07

1 rs2317230 RhA FCRL3 CD8+CCR9- 0.93 0.82 3.29E-04

5 rs7731626 RhA IL6ST T-reg 0.97 -0.86 2.08E-04
T-mem 0.90 -0.81 6.16E-04

RhA ANKRD55 T-mem 1.00 -1.00 5.94E-07
CD4+CCR9- 1.00 -0.95 9.63E-06
CD4+CCR9+ 0.86 -0.86 1.20E-03

7 rs4728142 UC IRF5 T-mem 0.86 0.77 4.71E-05

11 rs663743 PSC AP003774.1 T-reg 0.99 0.98 7.27E-06
T-mem 0.95 1.07 1.35E-07

CD4+CCR9- 0.95 0.96 1.83E-05

11 rs968567 RhA FADS1 T-reg 0.89 1.51 1.38E-07
RhA FADS2 T-reg 0.98 1.60 2.01E-09

T-mem 1.00 1.58 2.23E-09
CD4+CCR9- 0.99 1.58 5.40E-09
CD4+CCR9+ 0.98 1.47 2.82E-07
CD8+CCR9- 0.96 1.56 9.58E-09
CD8+CCR9+ 0.95 1.46 4.22E-07

12 rs4760341 T1DM SUOX T-reg 0.80 -0.71 1.06E-03

14 rs941576 T1DM WARS T-reg 0.85 1.07 3.90E-05
T-mem 0.93 1.19 1.46E-07

CD4+CCR9- 0.80 1.35 2.41E-08
CD8+CCR9- 0.97 -1.03 1.37E-05

19 rs4802307 CD PPP5C T-mem 0.85 -0.92 1.63E-06
CD4+CCR9- 0.86 -0.99 2.38E-08
CD8+CCR9- 0.83 -0.82 1.48E-04

21 rs1893592 PSC UBASH3A T-mem 0.91 0.93 4.83E-04

22 rs909685 RhA SYNGR1 CD8+CCR9+ 0.98 1.14 7.15E-04

UC; Ulcerative colitis, CD; Crohn’s Disease, RhA; Rheumatoid arthritis, T1DM; Type 1 diabetes mellitus
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pro-inflammatory cytokines IL-6, IL-12 and TNF-a [262, 263]. Its expression is induced

in lymphocytes by activation of the Toll-like receptor (TLR) 7 and 9 pathways and

polymorphisms within this gene have been associated with SLE, RhA, MS, Sjogren’s

syndrome, psoriasis and IBD [56, 264]. Although there are no existing drugs targeting

this gene, it is widely considered to be a promising future target [265]. Furthermore,

the Chromosome 1 rs3180018 UC risk locus colocalised with an eQTL for GBAP1 in

T-reg, T-memory, CD4+CCR9- and CD4+CCR9+ T-cells (PP4� 0.91). Interestingly

this di↵ers from the previously reported candidate genes for this UC locus, SCAMP3 and

MUC1. However a causal role for GBAP1 in IBD has been further supported by the fact

that this same variant has been shown to increase expression of GBAP1 in a peripheral

blood eQTL study of patients with CD, resistant to anti-TNF treatment [266]. GBAP1

is an expressed pseudogene which is known to regulate GBA levels, a gene encoding

lysosomal glucocerebrosidase and the major predisposing gene involved in Parkinson’s

disease (PD) pathogenesis. It functions as a competing-endogenous RNA (ceRNA), acting

as a microRNA (miRNA) sponge, resulting in subsequent GBA degradation [267]. To date,

there have been no studies investigating the potential role of GBAP1 in relation to IBD

pathogenesis, however given the emergence of therapies modulating glucocerebrosidase

activity in PD, further investigation of this pathway outside of the central nervous system

and in the context of UC pathogenesis may be warranted [268].

4.5 Discussion

In this study, I develop the first eQTL maps of peripheral blood T-cell subsets in patients

with PSC. Using recently published methods to estimate patterns of similarity across

cell-types and thus improve estimates of e↵ect, I was able to identify >10,000 unique

eQTLs in at least one or more of the six T-cell subsets. Furthermore, by performing

colocalisation of disease risk loci with eQTLs in PSC-specific T-cell subsets, I was able to

identify the genes perturbed by two PSC risk loci, in addition to three IBD, four RhA and

two T1DM risk loci.

An important finding from this work is the identification of a lncRNA with a potentially

important role in PSC causal pathogenesis. The Chromosome 11 rs663743 PSC risk locus

functions as an eQTL of AP003774.1, which is highly expressed in PSC-relevant tissues

including colon, small intestine and whole blood, as well as T-cells and NK-cells. Indeed,

expression of this lncRNA has also been linked to MS, where an MS risk locus in this

region has also been shown to decrease the expression level of AP003774.1 in PBMCs

[260]. Further work to fine-map the causal variant for this signal in MS is needed to

establish if the same causal variant is responsible for the e↵ects seen in PSC and MS.

Nevertheless, these findings suggest that AP003774.1 may have an important role in the
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immune-regulatory pathways of T-cells and further study is warranted to establish how

reduced expression of this lncRNA might potentiate increased risk of IMD. One means

of identifying other genes within the same biological pathway, a↵ected by this risk locus

would be to map trans-eQTL in the same cell types. Due to their smaller e↵ect sizes and

the large numbers of tests required with all genes across the genome, trans-eQTL mapping

requires much larger sample sizes than available in this study (although this is less of

an issue with a targeted trans-eQTL study). However, the finding of more distant genes

a↵ected by this same risk variant may identify the relevant biological pathway for further

functional investigation.

The findings of this study confirm UBASH3A as an important gene in the causal

pathogenesis of PSC, a finding that appears, from the analyses outlined in this thesis, to

be specific to T-cells. The PSC risk increasing variant results in a reduction of UBASH3A

expression at the Chromosome 21 rs1893592 PSC risk locus in T-cells. This same risk locus

has been associated with several other IMDs including T1DM, CeD and RhA [169, 216].

Furthermore, an RNA sequencing study has demonstrated reduced expression of UBASH3A

in the PBMCs of patients with SLE [269]. UBASH3A functions to attenuate the signal

transduction of NF-kB upon TCR stimulation, by suppressing the activation of the I-kB

kinase complex, lending biological plausibility to its role in IMD pathogenesis [216]. There

are, to date, no known drugs targeting the UBASH3A gene, however there are several

therapeutic options for targeting the NF-kB/I-KKb pathway. Proteasome inhibitors, such

as bortezomib and carfilzomib are known modulators of targets in the NF-kB/I-KKb

pathway. In addition, the widely available drug, acetylsalicylic acid or Aspirin, is an

inhibitor of IKKb [270]. Notably, whilst there have been no randomised controlled trials

of Aspirin use in PSC, there are case-control data to support a chemoprotective role for

Aspirin in the development of de-novo cholangiocarcinoma, which is one of the serious

complications of PSC [271, 272]. Further study of the potential therapeutic e↵ects of

Aspirin and other modifiers of the NF-kB/I-KKb pathway in PSC are therefore warranted.

One of the most important limitations of this, and indeed many eQTL studies, is the

sample size. This study included ⇠450 samples from ⇠75 individuals, which was at the

lower limit to powerfully detect a significant number of eQTLs. Using DGE, I demonstrated

transcriptional equivalence between T-cell subsets in the PSC-UC and lone UC groups,

supporting the amalgamation of disease groups to improve subsequent power to detect

eQTLs. One important analysis, which was not possible due to the small sample size in

each individual disease group, would be to examine the e↵ects of disease-specific eQTLs.

For example, identifying those eQTLs which are active in PSC-UC, but not UC may point

to important causal biological pathways for PSC. Despite sample size limitations, the use

of stringent quality control measures enabled me to robustly identify a total of ⇠3,000

unique eGenes across all T-cell subtypes from the individual cell-type analysis, increasing
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this number to ⇠10,000 with mashR. For those PSC loci which colocalised with an eQTL

in one or more T-cell subtype, analysis of the mashR eQTL data enabled me to identify

PSC risk loci that colocalisaed with the same eQTL across multiple T-cell subtypes. Of the

⇠10,000 eQTLs identified in this study, >85% were shared across all six T-cell subtypes.

The finding that the majority of eQTLs in this study were shared across all six T-cell

subtypes is likely to be explained by the relative similarity between the T-cell phenotypes

studied in this analysis; all six cellular subtypes were CD3+ T-cells and four were CD4+.

During the design of this study, it was hypothesised that the acquisition and analysis of

six di↵erent T-cell subsets from each donor would allow the detection of cell-type specific

eQTLs. However, the resultant benefit of multiple T-cell subtypes from each donor was,

in fact, to enable the estimation of patterns of similarity across conditions or cell-types

using mashR, to improve accuracy of e↵ect estimates and thus identify greater numbers of

eQTLs. In a rare diseases such as PSC, where patient recruitment for sample donation

is limited by the number of sample donors, this may be an useful future mechanism to

improve eQTL mapping. The vast majority of samples in this study were from patients

with active PSC and UC, or UC alone. Whilst it is likely that mapping of eQTLs in

cell-types that have been subject to the active disease state may have uncovered some

additional eQTLs not active in the healthy state, this may only be evident in studies that

are well-powered enough to detect those e↵ects. Although this study focused on deriving

samples from PSC and UC patients, I also identified eQTLs that colocalised with RhA

and T1DM, suggesting that a more fruitful approach might be to study large cohorts of

individuals with RNA-seq data, whether or not they have the disease phenotype.

An important future analysis of this T-cell eQTL data would be to conduct fine-

mapping of those colocalising risk loci within the eQTL data. Whereas the previous

fine-mapping analysis in Chapter 3 had resolved the Chromosome 21 rs1893592 PSC risk

locus to this single causal variant, the Chromosome 11 PSC risk locus was fine-mapped to

two potential causal variants. Given that the strengths of association between rs663743

on Chromosome 11 and AP003774.1 expression are greater than with PSC risk, there is

likely to be greater power to fine-map the eQTL data and thus attribute a greater PP of

causality to a single causal variant. This would pave the way for future biological studies

to analyse the impact of the true causal variant perhaps through CRISPR analysis, or

recall by genotype experiments.

The rigorous analysis outlined in this chapter has resulted in the generation of a robust

set of eQTL maps for six T-cell subtypes, several of which have not previously been the

subject of eQTL mapping e↵orts, and none of which have been previously mapped in

patients with PSC. As demonstrated by the finding of eQTLs that colocalise with other

IMD risk loci, the results of these analyses can be relevant and important to variety of

IMDs outside of PSC and UC. These eQTL maps, which have revealed important findings
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for our understanding of PSC, will also provide a public resource available for further

scientific study.
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Chapter 5

Conclusions

Our DNA, laid down at conception, gives us an unrivalled opportunity to understand the

underlying causal biology of disease. This is because the genetic variants associated with

disease susceptibility perturb genes and biological pathways that contribute to disease

causality and allow us to distinguish cause from consequence of disease. The genetic risk

loci associated with risk of PSC provide an unrivalled opportunity to further understand

the causal biology of this disease, if only we can robustly identify the true causal variants

driving these loci and the genes they perturb.

In this thesis, I outline the first study aimed at identifying the true causal variants

driving PSC risk loci and the genes they perturb, in an e↵ort to further understand disease

biology and identify drug targets. Prior to this study, 23 loci had been associated with

PSC risk, the majority of which are in non-coding regions. Using statistical fine-mapping

and colocalisation with eQTLs mapped in multiple immune-cells, including self-generated

PSC T-cell eQTL maps, I have identified seven downstream genes (FOXP1, SH2B3,

AP003774.1, CCDC88B, PRKD2, ETS2 and UBASH3A) a↵ected by six PSC risk loci.

Furthermore, I have fine-mapped 15 PSC risk loci to credible sets of causal variants

driving each locus. The work outlined in this thesis identifies several genes not previously

connected to the causal pathogenesis of this disease, including ETS2 and AP003774.1, as

well as identifying several genes (ETS2, PRKD2 and UBASH3A) which warrant further

investigation as potential therapeutic targets. Importantly, whilst the work conducted

in thesis was not designed to further investigate any of the main hypotheses of PSC

pathogenesis, transcriptome analysis and eQTL mapping in CCR9+ e↵ector-memory

T-cells did not confirm or refute a specific pathogenic role for these cells in support of the

‘gut-homing T-cell’ hypothesis.

The overlap in both genetic and immune characteristics of many IMDs and previous

success in re-purposing drugs between di↵erent IMDs means that for a rare disease such

as PSC, the most e�cient means of finding a drug that may attenuate disease risk or

progression, is through the re-purposing of existing drugs. The results presented in this
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thesis identify three genes involved in pathways which are currently the target of existing

therapeutic agents or ongoing exploratory studies to develop therapeutic agents. The first of

these genes is UBASH3A. This study confirms a causal role for UBASH3A in PSC risk. My

results consistently demonstrate that the fine-mapped Chromosome 21 rs1893592 PSC risk

increasing allele acts as an eQTL for reducing UBASH3A expression across almost all T-cell

sub-types tested in this study, but not in the wide variety of other immune cells analysed.

Whilst one criticism of colocalisation analysis across multiple cell types is the finding of

multiple eGenes within each locus, consistency of both gene and cell-type, as in this case,

increases our confidence that we have identified the true gene or pathway a↵ected by a risk

locus. Whilst there are no existing drugs targeting UBASH3A, this gene has an important

role in the attenuation of the NF-kB/I-KKb pathway. Proteosome inhibitors (PIs) are an

existing group of drugs that target the NF-kB/I-KKb pathway, and are currently used

for the treatment of multiple myeloma and graft-versus-host disease. PIs not only inhibit

the activation of NF-kB and release of other pro-inflammatory cytokines, but also induce

apoptosis of activated immune cells. Circulating proteosomes have been found in the

serum of patients with several IMDs including SLE, RhA, systemic sclerosis and AIH [273,

274] and elevated levels of immunoproteasome are associated with disease progression

[275]. It has been hypothesised that these raised levels of circulating proteasomes in

IMDs function as auto-antigens [276], with anti-proteasome autoantibodies detected in the

serum of patients with RhA, SLE and MS [277, 278]. The immunusuppressive properties

of PIs in T-cell-mediated immune responses have been explored to some extent. PI’s

bortezomib, epoxomycin and lactacystin suppress the activation, proliferation, survival

and immune functions of T-helper (Th) cells [279]. In RhA patients, bortezomib, has

been shown to inhibit the release of NF-kB-inducible cytokines by activated T-cells [280].

The use of PIs in the treatment of other IMDs such as PSC is a potential avenue for

future investigation. Whilst most current experimental evidence has been conducted in

RhA, the availability of good first, second and third line immmunsuppressive treatments

for RhA means that further investigation of PIs in this disease is of not of great clinical

necessity. Furthermore, PIs produce a number of toxic side e↵ects, including (but not

limited to) peripheral neuropathy, thrombocytopenia, diarrhoea and an increased risk of

infection. Whilst, such a side e↵ects profile may be acceptable for those with a malignant

condition such as multiple myeloma, it is perhaps less acceptable for patients living with

some chronic IMDs. However, in PSC, a disease with no current therapeutic options and

high risk of serious disease complications, the further exploration of PIs as a therapeutic

agent is supported by evidence from this study.

The second potential gene for consideration as a therapeutic target is PRKD2. The

results of this study confirm that the Chromosome 19 PSC non-coding risk locus is an eQTL

of PRKD2. The fine-mapped PSC risk increasing allele of this locus, reduces expression
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of PRKD2 in monocytes and colonic tissue. It has been recently shown that PRKD2

has an important role in controlling transition from näıve CD4+ T cells to T-follicular

helper (TFH) cells in response to antigen or vaccine stimulus [281]. This is achieved

by the direct binding and phosphorylation of Bcl6 by Prkd2, constraining Bcl6 to the

cytoplasm, thereby limiting TFH development. Misawa et al demonstrated that a PRKD2

loss of function mutation which results in reduced expression of the Prkd2 protein in

mice, allows unrestricted Bcl6 nuclear translocation in Prkd2( �/�) CD4+ T cells. This

results in excessive cell-autonomous TFH development and B-cell activation in Prkd2(�/�)

spleens and polyclonal hypergammaglobulinemia of IgE, IgG1 and IgA isotypes. This is

particularly interesting given that TFH imbalance can contribute to IMD and IgE is often

raised in the presence of IMD. Whilst my T-cell study did not find any evidence that

this locus was an eQTL of PRKD2 in T-cell subsets, TFHs were not included within this

analysis. Certainly PRKD2 has an important regulatory role in TFH development and

further work examining the therapeutic e↵ects of increasing the kinase activity of Prkd2

in CD4+ T cells as well as monocytes, is warranted, not only for PSC, but also for T1DM

for which this is a shared risk locus.

A third potential drug target from this study is the ETS2 gene. I demonstrate that the

fine-mapped Chromosome 21 rs2836883 risk locus is an eQTL for ETS2, with the PSC risk

increasing allele resulting in increased expression of ETS2 in monocytes and macrophages.

ETS2 has been found to be up-regulated in a number of cancers, including renal cell

carcinoma, prostate cancer and more notably colorectal adenocarcinoma and hepatocellular

carcinoma [282–284]. ETS2 is a transcription factor with an important role in the

Ras/Raf/MEK/ERK cascade. It activates the BCL-2 promoter, which is one of various

apoptosis regulating factors that are phosphorylated by the Ras/Raf/MEK/ERK cascade,

subsequently inhibiting cellular apoptosis [284]. For this reason, there has been recent

interest in ETS2 inhibitors as a potential means of interrupting the Ras/Raf/MEK/ERK

pathway and thus a potential anti-cancer therapy [285]. In PSC, ETS2 may contribute

to several aspects of disease pathogenesis, including the induction of pro-inflammatory

cytokine release from macrophages, in addition to IL-2 regulation in the transition of

naive Th to Th0 cells upon antigenic stimulation. Furthermore, the role of ETS2 in the

development of inflammation-induced dysplasia is yet to be explored. Therefore, whilst

work on ETS2 inhibitors is in its very early stages, further research is warranted to explore

mechanisms of ETS2 inhibition and its potential for clinical application in PSC.

PSC is a rare complex disease, which provides many challenges for scientific study.

Ultimately the mapping of more eQTL across more cell types and activation states

alongside the expansion of GWAS sample sizes and numbers of disease rise loci, holds the

key to further understanding the causal pathogenesis of this debilitating disease and the

identification of biological pathways for therapeutic target. Common complex diseases
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such as IBD, RhA and T1DM have benefited enormously from the genetics revolution.

For these diseases, GWAS sample sizes now reaching the tens to hundreds of thousands

have lead to the discovery of increasingly large numbers of genetic risk loci. These diseases

stand to benefit further from the creation of giant biobanks and consortia, where GWAS

can be conducted on an unprecedented scale. For example, the UK Biobank (UKBB)

is a health resource that includes clinical phenotype data, multiple biological samples

and genotype data from ⇠500,000 individuals [286]. For a common complex disease

such as IBD, estimated to a↵ect 0.78% of the UK population [287], the UKBB currently

includes an additional 6,370 IBD patients whose data can contribute to GWAS meta-

analyses. For an even more common disease such as asthma, the UKBB contributes tens

of thousands of cases. However, for a rare disease such as PSC with a prevalence of just

1/10,000, the numbers of cases included within the UKBB will be too small to benefit

PSC research, especially given the selection bias of the UKBB towards more healthy

individuals. Disease-specific initiatives such as the NIHR IBD Bioresource, which has

collated biological, genetic and clinical phenotype data for ⇠25,000 patients with IBD

across the UK, provides a potential resource for further large scale genetic studies in PSC

[288]. However disappointingly, whilst the prevalence of PSC in IBD patients predicts

that up to ⇠1,700 of the 25,000 IBD recruits might have concomitant PSC, current

clinical phenotype data identifies only ⇠300 PSC cases in the IBD Bioresource. This only

serves to highlight the importance of accurate and complete phenotype data in genetic

studies of complex disease. The future of PSC research therefore requires ongoing e↵orts

from national and international PSC consortia, such as the UK-PSC consortium and

the international PSC Study Group (iPSCSG), to create a large biobank of biological

samples, genotype and clinical phenotype data from patients with PSC. Such a biobank

could be based upon the NIHR IBD Bioresource model, or indeed the UK-PSC component

embedded directly within it. An important question regarding the focus of future genetic

studies using such consortia will be whether to concentrate on GWAS, whole-exome or

whole-genome sequencing. Whole-exome sequencing (WES) requires the sequencing of just

2% of the genome at greater depth which provides more confidence in calling genotypes at

lower frequency SNPs compared to GWAS. Moreover, one captures many more variants

in the gene than one could ever capture and impute from a GWAS array. WES also

captures rare variants which have fewer LD friends than common variants, and are not

so well captured by GWAS. In addition to the above, whole genome sequencing (WGS),

allows the interrogation of the many non-coding variants associated with disease risk,

in addition to providing more complete coverage of exons than WES [289]. Whilst the

most desirable focus for PSC would be on WGS large numbers of PSC samples, WES is

hugely advantageous in terms of sequencing time, cost and storage, enabling the analysis

of greater numbers of samples where resources are limited.
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One group of methods closely related to GWAS–eQTL colocalisation studies, are the

transcriptome wide association studies (TWAS), which directly integrate GWAS and gene

expression data to identify gene–phenotype associations and prioritise causal genes at

GWAS loci. Existing TWAS methods allow the use of individual-level GWAS data [290],

or summary-level GWAS data [291, 292]. Firstly, using the gene expression data, a TWAS

uses allele counts of genetic variants within 500-1,000Kb of a gene, to learn per-gene

predictive models of variation in gene expression. Secondly, this model is then taken

forward to predict gene expression for each individual within the GWAS cohort and finally

the association between predicted gene expression and the phenotype, is estimated [293].

Thus, TWAS does not test for association with total expression, but rather genotype-

predicted expression. However, analogous to the groups of high-LD variants found to be

associated with a disease trait in a GWAS, TWAS frequently identify multiple genes per

locus, which can be a result of correlated gene expression within a locus [293, 294]. Similar

to fine-mapping in GWAS to identify causal variants, methods of fine-mapping causal

gene sets have been developed, which model predicted expression correlations in order to

assign posterior probabilities of causality to each gene [295]. Due to the variation in gene

expression across di↵erent cell types, TWAS is however susceptible to the identification

of spurious associations with expression data from tissues or cell types that are not

mechanistically related to the phenotype. Recent TWAS best practice recommendations

therefore suggest the use of only expression data from mechanistically related tissues,

even if this results in a smaller sample size. Importantly, as shown in this thesis, it is not

always clear which cell types may be the most mechanistically relevant. Finucane et al

have established one potential method to address this issue, involving stratified LD score

regression to test for enrichment of disease heritability in the genomic regions surrounding

genes with the highest specific expression in a given tissue [296]. This method could be used

in future studies to identify the cell-types most relevant to PSC. As identified in Chapter

4 of this thesis, there is often a lack of publicly available gene expression datasets. One

solution to this is to use a similar method to that developed by Barbeira et al involving the

aggregation of data across all available tissues in a ‘tissue-agnostic manner’ which can be

applied to either individual level or summary-level data [297]. Furthermore, a potentially

fruitful future fine-mapping analysis for this study would be to similarly combine data-sets

for all traits (both gene expression and genotype) at colocalising risk loci using a model

that allows for mixed e↵ect sizes, to perform a fine-mapping meta-analysis for the purposes

of better-defining the credible causal variants at each PSC risk locus. Indeed, a similar

approach has been used by Westra et al in their approach to fine-mapping disease risk

loci in RhA and T1DM [114]. Although they did not use colocalisation to prove sharing of

disease risk loci in RhA and T1DM, they harnessed the fact that the genetic architecture

is somewhat shared between IMDs, combining summary statistics from both diseases to
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increase their power to fine-map RhA and T1DM risk loci.

Advances in single-cell RNA sequencing (scRNA-seq) are likely to create several

advantages for the study of complex diseases such as PSC. As previously discussed, an

important next step in the linkage of disease risk-SNPs to downstream e↵ects on gene

expression is to define the cell-types in which disease risk-SNPs a↵ect gene expression

levels. The future of RNA sequencing analysis is rapidly moving towards scRNA-seq, which

unlike bulk RNA-seq, requires no prior definition of cell types. Furthermore, it allows the

analysis of many more cell types with a hypothesis-free approach, potentially limited only

by the cellular composition of the input tissue. Using scRNA-seq one can estimate both the

cellular composition of the input tissue and the gene expression for discrete cell populations

[298]. Furthermore, cell populations are not just limited to discrete populations, but can

also be defined along a dynamic continuum and are thus more likely to reflect the dynamics

of true human immune cell biology [299]. Several studies have already performed the

mapping of eQTLs at the single cell level [298–301]. There are several challenges to eQTL

mapping in scRNA-seq data, including the identification and subsequent classification of

cells into types or states and the normalisation of gene expression data to account for

di↵erences in sequencing depth. The single-cell eQTLGen consortium (sc-eQTLGen), is

a large-scale, international collaborative initiative that has been set up to ‘identify the

upstream interactors and downstream consequences of disease-related genetic variants’

in individual immune cell-types [302]. As part of this e↵ort the sc-eQTLGen aims to

address many of the outstanding issues with scRNA-seq data generation and analysis,

and to identify new standards for best practice. Whilst sc-eQTL mapping studies are in

their infancy, the future application of scRNA-seq and sc-eQTL mapping studies in PSC

provides an exciting avenue for the future study of downstream genes a↵ected by PSC risk

loci.

PSC is a debilitating disease with serious disease sequelae, for which new therapeutic

options are urgently needed. Genetics provides an unrivalled opportunity to improve our

mechanistic understanding of the causal pathogenesis and thus identify genes and pathways

for potential therapeutic target. In this thesis, I have used genetics to elucidate multiple

genes with a causal role in the pathogenesis of this disease, several of which are potential

candidates for therapeutic target. Via a combination of experimental and statistical

genetic approaches I have addressed and overcome many of the scientific challenges of

studying such a rare complex disease. The future of PSC genetic research will continue to

benefit enormously from the ongoing advances in computational and experimental research

approaches. Alongside rapid developments in disease specific biobanks guaranteeing

improved disease sampling as well as technological advances at the single cell level, we will

continue to unfurl the complex genetic basis of this disease and move ever closer to a cure

for PSC.
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