
Chapter 4

Conclusions

Genomics is driven by comparison. It is rare that we have reason to consider a single
genome in isolation. We apply alignment algorithms to infer the sequence-level relation-
ship between genomes, or between additional sequence data and genomes. As data scales
have increased, we have required incomplete methods to determine these relationships
among many individuals. Contemporary resequencing techniques focus on the placement
of new sequencing information into a reference system which is typically linear and
representative of only a single copy of each genomic locus. A pangenomic reference
system allows us to represent multiple versions of each locus, but until recently such
techniques have been difficult to apply at scales commonly reached in current analyses.

I propose the use of variation graphs as reference systems in resequencing. These
path-labeled, bidirectional DNA sequence graphs allow us to represent collections of
genomes in a single, coherent structure which fully capture the sequences and variation
between them. They support the direct representation of all kinds of genomic variation.
By building a software system supporting the construction, manipulation, indexing, and
alignment of new read sets and genomes to variation graphs, I am able to show that this
model reduces bias towards the reference in alignment in a wide array of genomic contexts.
These methods achieve a level of performance that will make them usable for large-scale
resequencing analyses. As I have shown, their modular implementation, based around a
handful of core data models, enables the rapid construction of novel graph-based analysis
processes that provide conceptual unity to alignment, assembly, and variant calling.
Although other methods for aligning sequences against pangenome data structures exist,
vg is the first set of tools that does so in a completely coherent manner against arbitrary
bidirectional sequence graphs. This is also the first framework to provide graph based
analogs of many of the data types standardly used in resequencing.
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In addition to developing methods to support alignment to variation graphs, we have
explored a variety of related analyses. We developed new techniques for visualizing
variation graphs that will help to build the genome browsers necessary to navigate data
placed in the context of the graph. To record and interface with annotations embedded
in a variation graphs, we have linked the variation graph data model to RDF. To simplify
their construction, I provide a method to losslessly induce variation graphs from a set
of aligned sequences. We built systems that allow for the efficient summarization of
alignment data sets against variation graph. And we worked on methods to support
genotyping known and novel variation in graphs. Throughout my work I have supported
and worked with a growing group of researchers focused on these techniques, collaborating
in the development of graph sequence and haplotype indexing techniques, the evaluation
of diverse variation graph models, and the study of ancient DNA using variation graphs.

Graphical models are often regarded with apprehension by members of the bioin-
formatics community who are accustomed to working with linear reference genomes. I
show that arbitrary variation graphs may be consistently linearized for visualization and
analysis. Variation graphs built from related sequences tend to have a regional linear
property despite the frequent presence of large scale variation. I show that this holds
for graphs constructed from a variety of sources using alignment or assembly techniques.
They retain relatively linear structures locally, and as such can be used for efficient
alignment. The linearization of the graph suggests a projection of sequencing information
in the graph into a basis vector space defined by the graph itself. Such an approach may
greatly simplify genomic analyses by removing the complicated variant calling step. If
the variation we want to consider is already embedded in the graph, we do not need to
genotype novel variation or engage in filtering our results. As variation is now embedded
in the graph, we can perhaps avoid variant calling altogether where downstream it is
possible to work with a normalized coverage model across this graph basis vector. Doing
so practically will require the development of techniques that can scale genetic analyses
to the large matrix representations implied by such maps.

It is not clear how to build the best graph for a given analysis context. The results
I present show that the addition of variation to a graph does not necessarily improve
alignment performance in all contexts. Additional variation increases graph complexity,
and this can make results more ambiguous. One important step is likely to be the use of
haplotype information at the level of alignment. Ongoing work suggests that doing so
may mitigate scaling issues that will occur as we build graphs from tens and hundreds
of thousands of genomes, but there is still much work to be done. We can expect that,
with time, practices will arise that capture the ideal patterns for constructing variation
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graphs. I found a number of potential input sources unreliable in their current form,
and I hope to explore them as variation graph analysis techniques mature. Progressive
and multiple whole genome alignment algorithms look to be the most promising way to
merge haplotype resolved genome assemblies that new genome inference technologies are
enabling. However, as they have difficulty scaling to more than single human chromosomes,
I am interested in exploring ways of building variation graphs from networks of pairwise
alignments. Given improvement of the input alignment process, this technique could also
serve as a scalable way to construct variation graphs in any context where collections of
sequenced genomes exist.

I believe that reference genomes should be replaced with pangenomic structures.
This is the clearest way to resolve representational issues that arise as we collect large
collections of genomes in the species we examine. The variation graph is a natural
model with which to do this. Its adoption is now a social as well as a technical question.
Can the community generate a unified set of data structures that encapsulate the ideas
I have presented here? Large distributed projects like the 1000GP gave rise to the
current generation of genomic data formats. It seems natural that the next, graphical,
pangenomic phase will require the same. At present, it is not clear what project might
support this. Top-down approaches like that presented by the GA4GH have not proven
as capable of promoting standards as analysis-oriented projects like the 1000GP, although
they have served a coordinating role for the community of researchers interested in these
topics. One obvious target for the widespread introduction of variation graph data models
would be in the generation of a new reference genome system based on a collection of
fully-resolved genomes. Motivation for such an advance increases as evidence mounts
that a substantial and important fraction of genetic variation is neither small nor simple.
I am hopeful that my work may support such an effort, and that the ideas which arise
therein may follow at least in part from the generic graphical pangenomic models I have
proposed and demonstrated here.


