
Chapter 1

Introduction

All life on our planet is connected through a shared history recorded in its DNA. Over
time, the genomes of organisms are copied, sometimes with error or recombination. These
mutations give rise to genetic, and ultimately phenotypic diversity. Through isolation
and drift, genetic diversity enables and defines the generation of new species.

Although easily surmised, this basic process is often forgotten at the level of the most
common analyses in genomics. When considering the genomes of many individuals, we
frequently pluck a single related genome from the tree of life to use as a reference. Using
alignment, we express our sequencing data from the collection of samples in terms of
positions and edits to the reference sequence. We then use variant calling and phasing
algorithms to filter and structure these edits into a reconstruction of the underlying
haplotypes. We can then proceed to use the inferred genotypes and haplotypes to answer
biological questions of interest.

In this way, we have not fully sequenced the new genomes, but resequenced them
against the reference genome. Pieces of the new genomes which could not be mapped to
the reference will be left out of our analysis, which can distort our results.

Resequencing has arisen in response to the technical properties of the most commonly-
used DNA sequencing technologies. These “second generation” sequencing-by-synthesis
technologies produce abundant and inexpensive short reads of up to 250 base pairs, and
in the past decade have become the largest source of data in the DNA sequencing market.

Higher sequencing costs previously motivated the application of expensive computa-
tional approaches to analyze all the sequences of interest simultaneously. The decades
prior to the development of cheap sequencing saw the use of multiple sequence alignment
algorithms with high computational complexity. Analyzing hundreds or thousands of
sequences with such techniques is expensive but justifiable given the costs of acquiring
them.

2

ge
ne

ra
tio

ns

variation

genomes
variation graph

reference genome

Fig. 1.1 The tree of life, reference genomes, and variation graphs.
.

However, such approaches became too expensive as new sequencing technologies
allowed the generation of tens and then hundreds of gigabytes of data in a single run.
The new, low-cost techniques allowed joint analyses of thousands of genomes from a
single species. Resequencing provided a practical means to complete these analyses.
By relating data to a common linear reference system, the alignment phase could be
completed independently and in parallel, with each sample compared to the common
reference genome. Only in a final phase of analysis might all the genome data be collected
together for the inference of alleles at a given genetic locus.

In resequencing, the reference sequence shapes the observable space, resulting in an
effect known as reference bias. DNA sequencing reads that contain sequence which is
divergent from or not present in the reference sequence are likely to be unmapped or
mismapped. This results in lower coverage for non-reference alleles, in effect forcing new
samples to appear more similar to the reference than they actually are. Divergence itself
frustrates the genome inference process, as alignment may produce different descriptions
of diverged sequences depending on the relative position of the read. Alignment works
best when the sequences we are aligning are similar to the reference. Increasing divergence
requires greater computational expenditure to overcome reference bias.

3

We can avoid reference bias by working on pure assemblies generated only from the
sequencing data in our experiment and unguided by any prior information. Doing so can
be rigorous, but comes at a significant cost. Obtaining whole genome de novo assemblies
requires greater sequencing and computational costs than resequencing, putting this
approach out of reach for many study designs.

Genome assemblers frequently use a graphical transformation of their inputs that
supports algorithm steps used to infer contigs implied by the reads. These data structures
are typically bidirectional graphs in which nodes are labeled by sequences and edges
represent observed linkages between sequences. If constructed from a set of reads that
fully cover the genome, it can be shown that such a graph contains the genome which
has been sequenced. In effect, the assembler works to filter the edges from the graph and
un-collapse repeats in order to establish a sequence assembly.

In this work I repurpose the assembly graph data model to build a pangenomic
reference system. Assembly graphs are designed to represent the full set of genomic
information to which they are applied, so it is natural to use them to develop coherent
reference systems for unbiased sequence analysis. By building a conceptual framework
and data structures that enable resequencing against this structure, we can mirror the
patterns and workflows that have already been developed for resequencing. This allows
us to retain the benefits of parallel analysis even while we resolve the issue of reference
bias. By recording genomic sequences as paths through this graph, I provide anchors
for existing annotations and positional systems within the pangenome. I call these
bidirectional sequence graphs with paths variation graphs.

T

A

T

T

CA CTAAATTATAAAATGA

A

G

A

GGG TCAT

C

G

C

TTGCAACATG TCTCTCC

A

C T

A

CTACTGTCTTT

A

GG

C

ATTTGCTCACTGATTCAGCA G

A

Fig. 1.2 A fragment of a variation graph built from fully-assembled Saccharomyces
cerevisiae genomes. Colored paths represent genomes which traverse sequences (nodes).
Edges are implied by the path structure of the graph. The construction and properties
of the graph are described in section 3.1.2. This visualization was rendered using the
SequenceTubeMap https://github.com/vgteam/sequenceTubeMap.

.

https://github.com/vgteam/sequenceTubeMap

1.1 Genome inference 4

This chapter provides historical justification for the need for an integrative model for
sequence analysis like the variation graph. I contextualize my work within the history
of DNA sequencing (1.1), assembly algorithms (1.1.2), resequencing methods (1.2), and
pangenomic models (1.3). This deep introduction is meant to justify the need for an
integrative model like the variation graph to serve as a coordinating system in a research
setting characterized by increasing data scale and complexity. Readers who need no
further introduction to these issues should continue to section 1.4, which reviews recent
work on algorithms based on data models similar to variation graphs.

The remainder of the thesis builds on this foundation. In chapter 2, I describe data
structures and algorithms that allow the use of variation graphs as a reference system
for unbiased genome inference. Finally, in chapter 3, I demonstrate the benefits of this
approach with a series of experimental case studies.

1.1 Genome inference
Not two centuries have passed since the first experiments that demonstrated the existence
of genetic material [183]. In the first part of the twentieth century, these ideas about
heredity grew into the core of a modern synthesis linking biological micro- and macro-
evolutionary theory to the quantitative basis of genetics [116]. It was understood that
DNA encoded the information that gave rise to biological structures [11]. The discovery
of the structure of DNA in the 1950s [285] made clear the nature of that information
and the mechanism for its faithful transmission from generation to generation. This
knowledge, coupled with the sequencing and synthesis of proteins, which demonstrated
that they had distinct polymeric chemical identities [236] led to Crick’s postulation of
the “central dogma” of biology [50, 51]. Simply stated, the “dogma” argues that in
living systems information is transcribed from DNA to RNA and ultimately translated
into proteins, which guide and structure the cell and thus living organisms. The central
dogma clarifies the significance of the sequence of the genome, and over the following
decades a series of projects scaled up the throughput and fidelity of DNA sequencing
until genome inference became a practical and everyday reality in biology.

1.1.1 Reading DNA

The quest to sequence genomes began with arduous and sometimes dangerously radioac-
tive experimental techniques, in which years of researcher time could be spent in obtaining
sequences of tens of bases from partly-characterized sources. It has then progressed

1.1 Genome inference 5

through three distinct phases. In the first, these early laboratory techniques gave way
to automated sequencing using chain terminator chemistry, and related techniques were
ultimately used to generate genome sequences for human and a number of organisms,
albeit at high costs. In the second phase, multiplex sequencing reactions were used to
miniaturize the chain terminator reaction and observe its progression using fluorescent
imaging or electrical sensing, evoking a drop in cost per sequenced base of many orders of
magnitude, and simplifying library preparation steps dramatically by sequencing clones
of individual molecules. The third wave of development has been characterized by two
techniques which allow realtime observation of single DNA molecules. These produce
enormously long read lengths that are limited by the molecular weight of input DNA,
but produce readouts with high per-base error rates. Supporting the second and third
wave are methods that allow for haplotype-specific sequencing and the observation of
long range structures in the genome.

1.1.1.1 The old school

In the 1970s a group led by Walter Fiers published the first complete gene [125], and
then genome sequence [84] from the MS2 bacteriophage using laborious digestion and
2-dimensional gel electrophoresis techniques to sequence RNA based on work by Fredrick
Sanger and colleagues [234, 3]. To avoid the limitations of digestion based assays, Ray
Wu and colleagues developed a sequencing technique based on the partial blockage of
DNA polymerization with radiolabeled nucleotides [290, 208]. Subsequently, Sanger
developed a reliable DNA sequencing method based on the same DNA polymerization
chain-termination concept by dividing the sequencing reaction into four, one for each
base, and sorting the resulting DNA fragments in parallel on an acrylamide gel [238].
Optimized and implemented using fluorescent chemistry [264], this approach, now known
as Sanger sequencing, became the foundation of the first commercial sequencing machines
in the late 1980s.

Sanger sequencing was the workhorse standard of biology for nearly 30 years, from
the late 1970s until the mid 2000s. Its read length is limited by the reaction efficiency
required to obtain a fraction of terminations at every base in the sequence. In practice,
reads of 500 to 1000 base pairs can be obtained. With clonal DNA as input the per base
accuracy of the method is extremely high, as each base readout reflects the termination
of large numbers of molecules [33], a feature which has ensured it remains important
for validation of sequencing results [251]. However, heterogeneity in the input DNA
library can produce muddled signals that rapidly become uninterpretable. Insertions
and deletions (indels) will cause a loss of phase in the sequencing trace [271], a problem

1.1 Genome inference 6

which is still encouraging algorithm development [111]. In order to sequence whole
genomes, which are often heterozygous, laboratory techniques were developed to allow
the segregation of clonal DNA as a substrate for sequencing. These include bacterial
artificial chromosomes (BACs) and their equivalent in yeast (YACs) [189]. The effective
read length could be increased by using “mate pair” techniques, in which the ends of a
longer molecule would be sequenced [242]. To yield fully assembled genomes, these data
required the development of suitable computational techniques [198].

1.1.1.2 “Next generation” sequencing

In the late 1990s and early 2000s, several groups began exploring alternative sequencing
strategies. In the ultimately dominant one, DNA that has been clonally arrayed on a
surface is directly sequenced using fluorescent imaging. Sequencing progresses through
the synthesis of the second strand of each of the molecules, and so these techniques
are typically called “sequencing-by-synthesis.” This modality allowed for a massive
parallelization of the sequencing reaction, and has resulted in a dramatic reduction of
cost.

In 2003 George Church and colleagues demonstrated that individual sequences could
be read from polymerase colonies or “polonies” suspended in an acrylamide gel using
fluorescence microscopy [188]. This fluorescent imaging model became the basis for “next
generation” sequencing [246]. Contemporaneously, a sequencing-by-synthesis method
which is now known as Illumina dye sequencing, was implemented using laser fluorescent
imaging and reversible terminator technology developed by Shankar Balasubramanian and
David Klenerman at Solexa (later acquired by Illumina) [12, 16]. Rather than polymerase
colonies embedded in an emulsion or gel, Solexa’s technology relied on “bridging PCR”,
in which the polymerized clones of a particular fragment were locally hybridized to an
adapter-bearing surface of a flowcell. Controlled synthesis of the second strand, based on
reversible terminator chemistry [30] and fluorescently labeled dNTPs, is then used to
observe the sequence of the DNA molecule in each colony.

A diverse set of similar approaches were explored during this period, although few
saw more than limited success in the sequencing market. Church’s group focused on a
hybridization based sequencing protocol proceeded by an emulsion based polony PCR
step [247], and later attempted to commercialize an open source sequencing device (the
Polonator)1. In ion semiconductor sequencing direct observation of pH changes were used

1My interest in open source projects, developed while an undergraduate studying the social sciences,
led me to work on this device. The project introduced me to biology, bioinformatics, and DNA sequencing,
which have attracted my interest and effort ever since.

1.1 Genome inference 7

to determine DNA sequences [233]. 454 Life Sciences’ “pyrosequencing” implementation
used a luciferase reporter assay to track the progression of DNA synthesis [177], and it
was used to generate the first whole genome human sequence using “next generation”
techniques [288]. Helicos commercialized the first single-molecule sequencing system,
using a similar chemistry to Illumina’s but observing single molecules rather than pools,
which proved technically challenging and only saw use in its own development [108].

Illumina’s sequencing protocol provides greater throughput and a superior error profile
relative to these methods. Its low per base error rates and handful of context specific
error types simplify analysis [6]. It is unsurprising that the vast majority of sequencing
data produced in the 2010s comes from Illumina sequencers. Illumina’s sequencing
technology is characterized by short reads (<250bp) with per-base accuracy (≈ 99.5%)
comparable to that of Sanger sequencing. Although the read length has been increased
by optimization of the technology, the difficulty of achieving perfect per-base reaction
efficiency apparently prevents greater extension of the read length.

A number of methods extend the genome inference capacity of Illumina sequencing,
allowing it to be used to infer long haplotypes and genome organization. Moleculo, and
later 10X Genomics commercialized barcode-guided haplotype sequencing and assembly
[296]. The later has focused on providing raw tag information that could be used
downstream by an array of haplotype-resolution and assembly tools [191]. The single
template aspect of Illumina paired end sequencing allows longer contiguous DNA reads to
be obtained by merging partly-overlapping read pairs computationally [173]. Single-cell
DNA template strand sequencing (strand-seq) can be used to obtain reads from only
one half of the chromatids in a single cell [74] via bromodeoxyuridine (BrdU) treatment
and cleavage of the nascent strand, which can aid in haplotype reconstruction [219].
The Hi-C method [164] uses bisulfite treatment to generate read pairs that are likely to
physically co-locate in vivo, thus enabling the mapping of long range DNA and chromatin
interactions. It may be combined with other sequencing information to obtain estimates
of the syntenic ordering of contigs produced by assembly [93], which has already been
used to obtain de novo reference quality genomes in several difficult sequencing projects
including amaranth [165], Aedes aegypti [64], and the domestic goat [18].

1.1.1.3 Single molecules

All previously described sequencing techniques are dependent on the observation of pools
of molecules. These methods benefit from amplification of DNA, which increases signal,
but also adds and a potential source of error to DNA sequencing. They also suffer from
de-phasing resulting from imperfect stepwise reaction efficiency, which fundamentally

1.1 Genome inference 8

limit the maximum length of an accurate read. A method to sequence single molecules
accurately would theoretically allow longer read lengths, but this requires the difficult,
direct observation of DNA. Efforts to develop such a method have been continuously
underway throughout 2000s and 2010s. Two successful commercial sequencing platforms
based on this principle are rapidly defining a new technical phase of genome inference.

By utilizing zero-mode waveguides (ZMWs) to observe DNA polymerase in real time,
Pacific Biosciences (PacBio) generated the first successful commercial single-molecule
sequencing system [72]. In this platform, DNA polymerase is immobilized in sub-
diffraction size, picoliter detection volumes at the bottom of wells formed in aluminum
on a glass slide [142]. Single stranded DNA and fluorescently-labeled dNTPs are added
to the buffer above the ZMWs. As synthesis progresses, the fluorophore attached to
the DNA base that is being incorporated will tend to remain inside the ZMW longer
than would be expected due to random diffusion of the dNTPs, allowing a readout of
the sequence of incorporated bases as a series of fluorescent pulses. The base-level error
rate of sequencing is high, up to 15%. It is difficult to perfectly observe the series of
fluorophores pulled into the well, and random occupancy is often indistinguishable from
polymerization-mediated occupancy, which results in insertion errors. Although subtle
context dependent biases do exist [206], due to their genesis in Brownian motion, the
errors themselves may be considered as almost perfectly random in analysis [232, 195]. In
recent years PacBio’s system has become a foundational technology in genome sequencing,
with many recent genome assemblies completed using it [229].

The idea that electrophoresis of DNA through nanometer scale pores might allow
the direct sequencing of DNA was first postulated in the late 1980s by David Deamer
and others [58]. While the sequencing model itself is among the simplest ever proposed,
it would take twenty-five years of work [128, 221] before the technique was brought to
market by Oxford Nanopore (ONT) [185] and used to fully sequence genomes [171, 122].
In this approach, a DNA strand is pulled through a nanometer pore by electrophoresis.
The specific DNA bases in the pore effect characteristic changes in the electric current
density, and the DNA molecule can be read by measuring the changes in current over
time. Due to context and history-dependent effects that distort the signal, the measured
patterns in the current flux must be interpreted by sophisticated models that have been
trained to convert the traces to DNA sequences [54]. As with PacBio, its per-base error
rate approaches 15%. In practice nanopore sequencing has the highest error rate of any
commercially available method, which reflects the difficulty of mapping between the
observed signal and the underlying DNA sequence. Nanopore sequencing can also obtain

1.1 Genome inference 9

the longest reads of any sequencing technology, with megabase-scale reads reported by
some users.

1.1.2 Genome assembly

Due to technical limits that are unlikely to ever be fully eliminated, individual DNA
sequence reads are rarely able to cover the entire genome of an organism. This means
that in many cases, the best sequencing data possible is a set of random reads sampled
from fragments of the genome. In whole genome “shotgun” sequencing the genome is
fragmented, perhaps by sonication or enzymatic digestion, and the resulting fragments
are sequenced and then reassembled using computer programs [90, 235]. This process
necessitates a reconstructive step in which the information obtained from the sequenced
fragments is reassembled into the whole genome from which they arose. This process
is known as assembly, and computer algorithms implementing it have been used when
inferring genome sequences since the generation of the first whole genome sequence for
bacteriophage φX174 in 1977 [237, 262].

The earliest assembly algorithms have come to be known as “overlap-layout-consensus”
(OLC) algorithms, due to their three-phase strategy. They first establish a set of head
to tail overlaps between reads (overlap), an ≈ O(N2) order problem when all pairwise
relationships are considered between N sequence reads. However, given an efficient
method to find read pairs that are very likely to match together, the overlap step remains
tractable as the overall complexity of matching can be reduced to be approximately
quadratic in read depth and linear in genome size [114]. These overlaps are then used
to establish an estimate of the ordering of the reads (layout). The layout is then used
to generate a consensus sequence through heuristics or dynamic programming over the
layout [130]. This final phase is equivalent to the multiple sequence alignment (MSA)
problem, although instead of generating an MSA as output methods would typically take
the consensus sequence, as the objective is often to reconstruct a linear representation
of the input genome. Early assemblers committed frequent assembly errors, which
necessitated time-consuming manual “finishing” [96]. The OLC assembly approach was
utilized by genome projects for the following twenty-five years, including in the public
Human Genome Project (HGP), where BAC clones of 150kb fragments of the genome
were sequenced, initially assembled by algorithm and finally manually finished into the
“golden path” that would become the reference genome [48].

In principle, the assembly process could be fully automated, but as late as the early
1990s this frequently was not seen as feasible due to the lack of reliable algorithms [175].
The improvement of OLC algorithms eventually met the challenge, yielding methods such

1.1 Genome inference 10

as PHRAP [102] (a quality aware assembler that saw extensive use downstream of Sanger
sequencers), TIGR [267] (which was used in the generation of the first assembly of a free
living organism, the 1.8Mbp genome of Haemophilus influenzae [86]), GigAssembler [133]
(which was used by the HGP), and the Celera assembler [198, 186] (which saw extensive
use in the generation of early large whole genome assemblies in the late 1990s and early
2000s, including the privately funded genome project [281]2.) The process implemented
in the Celera assembler (including repeat masking) has remained essential to the genome
assembly problem until the present.

In 2005, Myers formalized an idealized version of the assembly problem in the string
graph data structure [194], which is a sequence graph induced from the overlaps in a set of
shotgun sequencing reads. This model demonstrates that repeats greater than the length
of a sequence read will collapse into single copies in the graph, while unique sequences
will form loops between different repeat classes that flank them. The string graph can be
shown to represent the full information available in the input sequence data, and successful
assembly algorithms are built around an induction of the string graph via the construction
of the FM-index [79] from Illumina read sets [253, 254, 155]. If not using compressed data
structures and low-error reads, the repeats are often irresolvable and may be masked from
the assembly process to improve performance on the tractable non-repetitive regions of
the genome, which is a strategy still promoted and employed by Myers [195]. Canu and
FALCON, which to some extent stand as contemporary implementations of the Celera
assembly process, are among the best-performing assemblers for noisy single-molecule
sequencing data that is the mainstay of current genome assembly projects [41, 141].
These and similar methods have shown that long reads can be used to fully assemble
genomes without human finishing [171, 122].

The repeat problem has been tackled in various ways, but one of the most enduring
solutions resolves the issue through the reduction of the assembly overlap graph to a
de Bruijn graph (DBG) [217]. In this approach, the read set is fragmented into all
subsequences of reads of a given length k, and a graph is constructed where k-mers
label nodes and overlaps of k − 1 between successive k-mers induce edges representing
linkages between them. The de Bruijn graph simplifies the representation of the read set,
providing a clean basis for assembly algorithms. It enabled the first [294, 255, 120], and
most memory-efficient assembly methods for short read sequencing data, with techniques
like bloom filters [39], succinct DBGs [23, 150], and minimizer partitioning [40] applied to
generate a compressed representation of the graph. DBG based assemblies suffer from the

2This project apparently still relied on data produced by the HGP [284], but the significance of this
reliance was disputed by researchers involved in the private project [199], who argued that the manner
in which they used the public sequences avoided contamination by manual finishing done by the HGP.

1.2 Reference genomes 11

loss of information induced through the k-merization of their input, causing a reduction
in assembly contiguity [67], although in practice this can be mitigated by reconsideration
of the input reads and read pairs [29]. They also are applicable only where the sequence
error rate is low enough for overlapping reads to be expected to have exact matching
k-mers of the appropriate size (typically, k ∈ [20 . . . 50] base pairs), and as such cannot
be applied to third generation single molecule sequencing due to its inherently high error
rate.

Many of the sequencing methods I have described above are still in use today. Each
popular method, as it fades from use, remains relevant in a niche area where its particular
properties provide it a comparative advantage. As a result, we are not presented today
with a single ideal sequencing method, but a menagerie of approaches, each with its own
limitations and benefits, and current assembly pipelines require thoughtful design to
incorporate these myriad sources of information. It would appear that in order to use
these many technologies to generate the best-possible assemblies we must bring them
together in a single model [34]. A current development in assembly focuses on the design
of a common interchange format for which to organize such assembly processes, which
has been implemented as the GFA v1 and v2 formats.3 This file format and the data
model it implies is an essential link between the work that I present later in this thesis
and the problem of genome inference.

1.2 Reference genomes
Obtaining a single genome sequence de novo is an arduous task, and remains a complex
problem. The result is a valuable object which can be used to lower the cost of subsequent
analyses and enable direct whole genome comparisons which provide a full perspective
on the genetic relationship between multiple individuals or species. The need for ref-
erence genomes is clear, and they are collected in open public databases to allow their
dissemination and use by researchers. NCBI’s RefSeq release 89 of July 13, 2018 contains
some 81,345 organisms4, although it should be noted that only a small fraction of these
genomes are eukaryotic. Recent developments in long read, single molecule sequencing
have enabled great decreases in the cost and complexity of generating high-quality genome
assemblies, supporting a recent project to generate reference quality genomes of ten
thousand vertebrates [205, 140].

3https://github.com/GFA-spec/GFA-spec
4https://www.ncbi.nlm.nih.gov/refseq/

https://github.com/GFA-spec/GFA-spec
https://www.ncbi.nlm.nih.gov/refseq/

1.2 Reference genomes 12

The reference genome serves as an anchor for annotations that describe sequences
and regions of interest within the genome, such as genes, exons, chromatin structures,
DNA interacting proteins, and genetic variation [248, 222, 47]. An established reference
genome can serve as a conceptual foundation for the communication and interpretation
of scientific results [134], and is seen as essential for collaboration and the development
of a genome research community in a particular organism [260, 38].

Reference genomes tend to represent only a single version of each genomic locus. This
conceptual simplicity is a core feature of their public use. Although the issue of genetic
diversity has always been appreciated by those who work with genomes, expediency has
encouraged the use of linear models for reference genomes. Within the HGP, members of
the consortium could observe diversity within the BAC clones that they had sequenced
from different human donors, and initiated a debate about the inclusion of heterozygosity
in the reference itself. Ultimately, a graphical model was seen as too complicated, and
practicality necessitated the publication of a linear reference based around what came
to be called the “golden path” through the assembly5. Since early releases, the human
reference genome has included alternative versions of some regions, with current releases
including alternates for around 200 loci [244, 42], but these are represented as linear
sequences without a unifying alignment between them, which complicates their use in
resequencing and annotation [121].

1.2.1 Resequencing

Due to the high cost of obtaining error-free, full length genomes, standard practice will
use the best genome assembly for a given organism as a reference genome when analyzing
the sequences of other organisms from the same species. To do so, the genomes of the
other individuals do not need to be fully assembled, and instead shotgun sequencing
libraries from these new individuals may be aligned back to the reference to find small
differences between the genomes. To distinguish it from whole genome sequencing and
assembly, this process is known as resequencing.

Resequencing has two phases. In the first phase, reads from the sample or samples
under study are aligned against an appropriate, genetically similar, reference genome. In
the second phase, the aligned reads (alignments) are processed together locus by locus to
determine allelic variation within the samples relative to the reference genome.

5Personal communication with David Haussler.

1.2 Reference genomes 13

1.2.2 Sequence alignment

An alignment expresses one sequence in terms of a set of positions, edits, and matches
to another. Algorithms to determine the most plausible alignment between a pair of
sequences have as long a history as sequencing itself. The first significant attempts
to algorithmically assess sequence homology and divergence between protein sequences
arose in the 1960s with Fitch’s method for homology detection [85]. To account for
insertions and deletions, this method required the comparison of many subsequences of two
sequences to be compared, resulting in poor computational bounds. In 1970, Needleman
and Wunsch responded with an O(NM) time algorithm for the global alignment of
sequences [200]. Given strings to compare of length N and M , the algorithm builds an
M ×N matrix in which any possible full length alignment between both sequences can
be expressed as a path through a series of cells. The matrix is designed such that a
match corresponds to the shortest (diagonal) path through the matrix, and insertions and
deletions correspond to horizontal or vertical movements. To determine the most-likely
path, Needleman and Wunsch apply a recurrence relation dependent on the characters
at each pair of positions in the strings and the values of the cells above and/or to the
left. This implements a dynamic programming (DP) method [15]. For each cell, the
score is given as the maximum of: the score of cell to the diagonal plus a bonus if the
corresponding sequence characters are the same and minus a penalty if they are different;
and the scores of the cells above and below minus a penalty corresponding to the weight
given to an insertion or deletion. Finally, we determine the optimal path beginning from
the opposite extreme cell of the matrix from where the scoring began, in which we walk
back through the successive maximum scores until reaching the opposite extreme corner
of the matrix. This “traceback” encodes the alignment, which is most-simply represented
as a vector of pairs of matched bases in each sequence. It can be shown that provided
full evaluation of the dynamic programming problem, the optimal alignment is obtained
given a set of scores parameterizing the recurrence relation.

This alignment algorithm is known as a “global” alignment algorithm, in that the
alignment covers all bases of both sequences. In practice, this type of comparison is not
always needed, and it can be advantageous to obtain only the optimal sub alignments
between sequences. Smith and Waterman provided a clean modification of the algorithm
of Needleman and Wunsch, altering it to prevent negative scores, which allowed it to
produce optimal “local” alignments [261], while ignoring regions unlikely to contain
significant homology. The algorithm, further refined by Gotoh [97] to enable affine

1.2 Reference genomes 14

gaps6 and computation in O(MN) time, is today one of the most important in genome
analysis. The amount of work on this topic is considerable, and the subsequent decade
yielded numerous modifications of the basic alignment concept, for instance reducing
the memory bounds to O(N) through a divide and conquer approach [196], and further
explorations of affine gap scoring schemes [8, 98]. Subsequent works have offered improved
implementations, using vectorized instructions to improve the runtime of the algorithm
[76] and heuristics to selectively evaluate only part of the DP matrix [268]. However,
such changes were not sufficient to enable alignment against large sequence databases.

O(MN) algorithms for sequence alignment are impractical when either M or N

becomes large. Naturally, as sequence databases grew and the size of sequenced genomes
increased, heuristic strategies to efficiently reduce the alignment problem size were
introduced. When aligning a short sequence against a large database we expect to obtain
a sensitive alignment, but provided sufficient homology between the sequence and the
database it is unlikely that we need to evaluate the full problem using an algorithm like
Smith-Waterman-Gotoh (SWG). By indexing either the query or target set of sequences
to efficiently obtain patterns of exact matches, candidate sub-regions of both can be
isolated and submitted for more sensitive alignment.

This strategy was implemented in the mid- to late-1980s in the FASTA [215] and
BLAST [9] alignment algorithms. FASTA first uses a seeding step that finds exact
matches between the query and target, using chains of short k-mer seeds to establish the
longest matching subsequences. A few of the best scoring candidates are enumerated
and evaluated using a banded SWG algorithm. In contrast, BLAST implements a fully
heuristic alignment process based solely on the k-mer seeds and ungapped alignment.
This is much faster than FASTA but can perform slightly worse with highly divergent
sequences. BLAST’s heuristic alignment is many orders of magnitude faster than full
DP based algorithms at a minor cost to accuracy. The popularity of BLAST in biology7

is clear evidence of the importance of the alignment problem to all kinds of genomic
analysis. It is also evidence that minor losses in accuracy are acceptable given the cost
of sequence analysis in large data sets. Jim Kent’s Blast-like alignment tool (BLAT)
indexes the target set with non-overlapping k-mers and queries all k-mers in the reads,
yielding a method that is less sensitive but several orders of magnitude faster again than
BLAST [132].

6In affine gap schemes the cost of a gap per base decreases as its length increases. Such a scheme
approximates the ζ-distributed excursions of a particle under Brownian motion, which structure the
length of insertions and deletion mutations observed in nature.

7The BLAST1 paper has been cited more than 70,000 times as of August 2018.

1.2 Reference genomes 15

As reliable commercial second-generation sequencing systems became available the
rate of sequence data acquisition growth rapidly outstripped the rate of improvement
in computing performance [149, 139]. This necessitated further improvements in the
computational cost of sequence alignment. The most-widely used of these methods
focused on the increasingly prevalent problem of aligning short reads to reference genome
type sequence databases. Due to the high quality of the reference sequence, low error rate
of the short (≤100bp) reads, and low nucleotide diversity of humans (where θ ≈ 10−3),
algorithms that focused on exact string matching had great success. Much like BLAST
and BLAT, the first wave of aligners capable of indexing the human reference genome and
aligning short reads to it utilized exact k-mer matching via hash tables followed by local
alignment [162, 148, 160]. Substantial improvements would be yielded by the development
of aligners based on contemporary developments in compressed data structures.

1.2.2.1 Compressed full text indexes

The suffix tree [287] encodes all suffixes of a sequence S in the structure of a tree such
that the suffixes may be enumerated by a depth first search (DFS) of the tree. This
structure can be used to determine if a given sequence q = c1c2 . . . c|q| is present in S in
O(|q|) time. Search begins at the root, progressing across the topology (edge or node)
of the tree which is labeled with the next character until no further matches may be
found. By labeling the tree with the sequence positions corresponding to each node, the
search may also yield the positions of the exact matches detected within S. Suffix trees
may be built in linear time and space relative to their input [278], and support diverse
algorithms for string comparison [10], such as whole genome alignment [61], but they
require relatively large amounts of memory per input base. They were superseded by
equivalent data structures with better memory bounds such as the suffix array, which
represents the lexicographically ordered suffixes as a vector of numbers [176], and its
compressible sibling the Burrows-Wheeler Transform (BWT) [28]. Compressed suffix
arrays (CSA) (equivalently, the “fast, minute” FM-index) are data structures which
combine a compressed representation of the BWT with auxiliary data structures that
support rank and select operations on it [77, 81, 103]. To support suffix array operations
in this compressed context, including pattern matching and positional queries, standard
implementations include additional auxiliary information, in particular a sampled subset
of the entries in the suffix array. See section 2.4.3.2 for a detailed review of the important
features of these data structures as they relate to string matching.

The FM-index is used in modern short-read aligners such as BWA [158] and BOWTIE
[145], which apply a backtracking search algorithm to directly align sequences to the

1.2 Reference genomes 16

suffix array encoded in the FM-index. This approach is fast, but has problems detecting
indels (as these require exponentially more backtracks to infer) and performs less well
with increasing read length. In response, the authors merged initial exact matching
with a final DP step to yield “long read” capable aligners like BWA-SW [159] and
BOWTIE2 [144]. Further refinements of this concept yielded BWA MEM [153], which
uses a heuristic algorithm to determine “supermaximal exact matches” (SMEMs) and
reseed “sub matches” within them using a bidirectional FM-index (the FMD index).
Due to its relative robustness to error and variation, the MEM concept has ultimately
prevailed and as of the time of this writing BWA MEM can be seen as the industry
standard method for aligning short reads to the genome.

Much of the second generation sequencing data has been generated for humans in
medically-motivated genome wide association studies [49] or population survey projects
like the 1000 Genomes Project (1000GP) [1, 45]. The development of these methods was
accelerated by an open, competitive spirit fostered during the 1000GP, whose primary
sequencing data remains the largest completely publicly available data set, with more
than 100TB of sequence data available for download from public URLs without any
authentication. There, project participants formalized the resequencing process by
generating a series of data formats linking the various stages of analysis, including the
sequence alignment/map format (SAM) and its binary equivalent (BAM) [161] that is
the standard output format for contemporary aligners.

1.2.3 Variant calling

DNA sequencing reads of all types contain errors, and genomes contain diversity. To
resolve these errors and infer the genome’s state, we aggregate information from many
reads mapping to each locus. In the context of resequencing, this process is known as
variant calling. The simplest methods resemble the consensus step in OLC assembly, and
are implemented as heuristic filters on the mutually gapped alignment matrix of a set of
homologous sequence reads [138]. A Bayesian model can incorporate prior expectations
about the genomic state with the available data to generate a posterior estimate of the
probability of polymorphism that can propagate uncertainty to downstream analyses.
It can use first principles to integrate various sources of information in addition to the
sequence of the reads themselves, including the base quality (BQ), or machine-estimated
probability of an erroneous base call, and mapping quality (MQ), which represents the
aligner’s estimate that the given alignment is a mismapping or ambiguous [151]. A
Bayesian approach also supports the joint analysis of many individuals from the same
population. For instance, in a panmictic population under neutral selection the pattern

1.2 Reference genomes 17

of observed genotypes should be consistent with Hardy-Weinberg Equilibrium (HWE),
and to have confidence in a given genotyping call, the evidence for variation should be
stronger than the prior odds of there being no genetic variation at the site.

The earliest implementations of Bayesian variant calling and genotyping were applied
to expressed sequence transcripts (ESTs) [178]. Competition fostered by the 1000GP
encouraged the development of variant calling algorithms based on a variety of principles.
The simplest methods would detect variation given pointwise SNP and indel descriptions
directly from the alignments [161, 62]. However, this technique was shown to be suscep-
tible to inconsistencies in the alignment process, and several groups developed methods
that would reevaluate the alignments in a reference-independent manner in order to ho-
mogenize the representation of small variation. These techniques became known as “local
assembly” variant detection algorithms, and include the windowed haplotype detection
implemented in freebayes [91] as well as full local de novo assembly based on de Bruijn
graphs as implemented in Dindel [4], Platypus [230] and the GATK’s HaplotypeCaller.
In parallel, several whole genome de novo assembly methods, including SGA and Cortex,
were applied to the full data set, yielding variant calls that minimized bias towards
the reference genome. The final project results were merged into a population genome
assembly using statistical phasing algorithms [27, 112, 60] guided by genotyping results
from sequencing and genotyping arrays [45]. Members of the 1000GP also developed a file
format for describing collections of resequenced genomes, including their genotypes and
inferred haplotypes, the variant call format (VCF) [53], which has become the standard
interchange format for sequencing-based variant and genotyping information.

Due to the absence of a reliable truth set, early variant calling method implemented
conceptually-derived inference methods rather than machine learning techniques. Subse-
quently, projects at Illumina (Platinum genomes) and NIST (Genome in a Bottle) have
generated “truth sets” for variant calls matched to cell lines for which large amounts
of sequencing data is publicly-available [69, 299]. These truth sets have then enabled
the development of “universal” variant callers using machine learning techniques [218]8.
It may be expected that this trend will continue as the number of highly accurate
independently sequenced genomes increases.

1.2.4 The reference bias problem

Short reads are insufficient to generate de novo assemblies of reference quality, and
this issue is exacerbated when they are used in resequencing, as the prior information

8Along with Nicolás Della Penna, I developed a similar but much simpler method based on a linear
learner: https://github.com/ekg/hhga

https://github.com/ekg/hhga

1.3 Pangenomes 18

provided by the reference is relatively strong and can distort our results [266]. Most
aligners operate on the principle of matching each sequence read to the linear reference,
and differences between the read and the reference induced by both error and variation
will tend to reduce the success of mapping. As I will demonstrate later in this work,
reference bias is most severe for larger variants. However, the bias towards the reference
is relevant even for SNPs, a fact which adds great complexity to experimental contexts
that are sensitive to slight changes in allele observation count, such as allele specific
expression (ASE) quantification from RNA sequencing [263], or in the context of short
and high error reads as are common in the sequencing of ancient DNA [297].

Advances in sequencing technology can reduce reference bias in some contexts where
long reads can be obtained. Long reads can overlap structural variants that would contain
shorter reads, allowing their direct discovery by alignment. However, costs of second
generation sequencing continue to drop, so it seems likely that there will continue to
be a cost advantage to resequencing with short reads for the near future. Nonetheless,
reference bias remains relevant even in a future in which all sequencing is completed with
long, low-error reads. As long as the reference is used as a basis space for analysis, it
will be impossible to develop unbiased representations of all sequences in a given cohort.
We cannot consistently describe variation in sequences which are not in the reference
unless we bring these sequences into communication with each other. It is non-trivial to
establish if structural variants independently described against the reference represent
the same allele [34]. We can use improvements in assembly methods, such as the linked
DBG [277], to build space-efficient joint assemblies of populations of genomes. But these
approaches are unlikely to improve in efficiency by the many orders of magnitude required
to consider applying them directly to sequencing from hundreds of thousands or millions
of genomes.

1.3 Pangenomes
Following the completion of the 1000GP, researchers have sought to use the population
reference established by that project as an input to genome inference processes. Rather
than establishing a single linear reference genome, these methods base their analysis
on a representation that contains some or all of the known variation in the species of
interest. In these approaches, the reference system becomes a pangenome9, or data
space representing all the genomes and their interrelationships. The term was first
used to describe the sequence information obtained from DNA and RNA for a cancer

9“pan-” from Greek παν−, meaning “all” or “every”

1.3 Pangenomes 19

sample [250], but later became an important concept in microbiology as results from
bacterial genome sequencing indicated extensive diversity between bacterial genomes
[272, 182]. Due to horizontal gene transfer (driven in large part by the permissive sex
lives of bacteria), mobile DNA in the form of viruses and transposable elements, and their
enormous population sizes, the genome diversity of many prokaryotes is much greater
than that seen in larger, complex organisms. In microbial pangenomic theory, the main
object of interest is the open reading frame (ORF) and its distribution across species in
a clade [282], with particular interest to classification of ORFs or genes into a gradient
between those that are essential and found in every species (the “core” pangenome) to
those that are found infrequently (the “dispensable” pangenome). The term “pangenome”
is by no means microbiology-specific, and has also seen use in species contexts where
small, homozygous genomes support practical direct whole genome comparison, such
as Arabidopsis thaliana [31]. With reducing sequencing costs, the levels of diversity in
eukaryotic genomes can be more easily appreciated, and in the 2010s evidence has rapidly
accumulated that significant levels of large-scale variation occur in the genomes of many
species, humans [163, 265, 266, 34], arabidopsis [7], brewer’s yeast [292], and the fruit fly
[35].

Evidence that non-reference genomic variation matters even in a human or medical
context motivated extensive discussion within a sub-project of the Global Alliance for
Genomics and Health (GA4GH)10. At the beginning of my studies I participated in the
GA4GH’s reference variation task team (RefVar), which was led by Benedict Paten,
David Haussler, and Richard Durbin. The group had regular meetings where its members
entertained proposals for new variation-aware genomic data models and discussed results
obtained with software implementations of them. By chance, a meeting of the GA4GH
in June 2015 in Leiden overlapped a conference held at the Lorentz Centre on “Future
Perspectives in Computational Pan-Genomics”11, whose participants were discussing
ways to apply the concept of pangenomics to many problems in genomics. Can Alkan,
who had been invited to both meetings, brought members of the GA4GH’s RefVar group
to the concurrent workshop, where both groups presented on their work and ultimately
joined efforts. This exchange motivated members of the RefVar group to consider
many alternative resequencing and genome modeling problems. For the consortium,
our software vg became a template for the pangenomic resequencing concept that it
would present in the paper resulting from the meeting [46] (figure 1.3). And in turn,
the consortium imagined the missing pieces that would be required to fully enable a

10The GA4GH is an international consortium of researchers and genomics professionals chartered with
the development of new genomics data formats and interchange systems https://www.ga4gh.org/.

11https://www.lorentzcenter.nl/lc/web/2015/698/info.php3?wsid=698&venue=Oort

https://www.ga4gh.org/
https://www.lorentzcenter.nl/lc/web/2015/698/info.php3?wsid=698&venue=Oort

1.3 Pangenomes 20

pangenomic reference system and support common genome inference patterns using it.
Much of the work I will present in chapters 2 and 3 of this thesis follows the design
presented by this group.

1.3.1 On pangenomic models

My own work builds on a particular model for encoding a pangenome. Here, I will briefly
describe alternative models and justify the use of the graphical one that I present, while
the remainder of the chapter will provide background on more-closely related graphical
approaches more closely related to my work.

Traditional techniques from microbial pangenomics have focused on cataloging the
distribution of ORFs across bacterial species [209]. In this sense the pangenome is not so
much a sequence-based object, but a matrix encoding the presence or absence of genes
across the species of a given clade.

If we want to use pangenomic principles to resolve issues with resequencing, then
we must take the concept of pangenome more literally, and build a representation that
losslessly encodes genomes together with a focus on their sequence content. In this
perspective, the classical bacterial pangenome becomes a derivative product that we can
produce using analyses based on a sequence-oriented pangenomic reference. I will mostly
focus on sequence-based pangenomic models. The main classes are described visually in
figure 1.4.

The simplest possible sequence-aware pangenome is just a set of whole genome se-
quences of many species or individuals, in which all sequence homologies and evolutionary
relationships are implicit (figure 1.4A). The unfolded pangenome resolves reference bias,
and can be extended with new data by simply including new genome sequences. This
model does not benefit from compression related to shared sequences in the pangenome, as
adding a new genome always adds all the sequence in that genome to our system. Without
additional information about homologies, an unfolded pangenome cannot represent new
sequences in terms of recombinants between known sequences.

An MSA (figure 1.4B) provides a matrix describing the relationships between the
sequences as well as the sequences themselves. We must introduce a concept of a gap
character to pad the matrix. The MSA is a linear object, and cannot represent structural
variation compactly. An MSA has an equivalent representation as a sequence DAG, as in
figure 1.4D.

Assembly graphs, in particular DBGs (figure 1.4C), provide a simple decomposition
of collections of genomes. However, a strict DBG without any labeling loses the mapping
back to the original genomes. Sequence graphs, as in figure 1.4E, when annotated with

1.3 Pangenomes 21

monotonic sequences of coordinates where possible and coord-
inates should be concise and interpretable.

Biological features and computational layers
Annotation of biological features should be coherently provided
across all individual genomes (see Figure 2, ‘Annotate’ oper-
ation). Computationally, these features represent additional
layers on top of pan-genomes. This includes information about
(1) genes, introns, transcription factor binding sites; (2)

epigenetic properties; (3) linkages, including haplotypes; (4)
gene regulation; (5) transcriptional units; (6) genomic 3D struc-
ture; and (7) taxonomy among individuals.

Data retrieval
A pan-genome data structure should provide positional access to
individual genome sequences, access to all variants and to the
corresponding allele frequencies (see Figure 2, ‘Retrieve’

Figure 2. Illustration of operations to be supported by a pan-genome data structure.

124 | Marschall et al.

Downloaded from https://academic.oup.com/bib/article-abstract/19/1/118/2566735
by guest
on 03 August 2018

Fig. 1.3 An overview of techniques required to support pangenome-based resequencing.
In vg, we have implemented virtually all the presented components and algorithms.
Reprinted from [46].

.

1.3 Pangenomes 22

Fig. 1.4 Various pangenomic models of a small collection of sequences. (A) shows an
unfolded pangenome, (B) provides an MSA encoding the same sequences, (C) shows the
DBG with k = 3, (D) is an acyclic version of the pangenome, akin to the alignment in
(B), and (E) represents a compressed alignment graph allowing cycles to represent copy
number variants. Reprinted from [46].

.

1.3 Pangenomes 23

the full set of input paths, provide a lossless representation of the input genomes. If
they are also bidirectional like DBGs (not shown in figure 1.4E) then they can directly
represent copy number variations and inversions.

1.3.2 The variation graph

In this thesis I employ a reference system that encodes genomes and the base-level
relationships between them. This model can be understood as a kind of all-versus-all
alignment between the sequences in the pangenome. If the data model is to allow
recombination between known sequences (a key contributor to genomic diversity) and
tandem repeat copy number variation (which occurs readily in genomes), then it can be
represented as a regular language encoded in a graphical model like a nondeterministic
finite automaton (NFA).

We can adjust the regular language model slightly so that it has properties similar to
those of DNA. NFAs are represented graphically with states (in our case, pangenomic
coordinates) as nodes connected by edges labeled by characters (e.g. DNA bases) in
the alphabet of strings that the language recognizes. In DNA the atomic element is the
DNA base, which is represented as a character. Graphical models with nodes (or edges)
labeled by sequences and edges (or nodes) representing allowed transitions between them
are a straightforward generalization of the linear string. Compression can be achieved by
allowing the labels on the nodes to have more than a single character on them. Because
DNA is double-stranded, any such a language implies a reverse complement language
which recognizes the reverse complement of any sequence in the first. Formalizing this
by allowing edges to transition between different strands of the graph allows the model
to directly represent sequence inversions.

If we combine these adjustments, we arrive at a kind of regular language model
that resembles DNA and allows the representation of collections of related sequences by
allowing us to represent homologous sequences and all kinds of natural polymorphism
between them. This structure is often referred to as a bidirectional DNA sequence graph,
indicating that the graph is sequence-centric, directed, stranded, and allows transitions
between strands. Sequence graph, then implies a simpler concept in which the graph is
meant to model sequences but only one strand is considered. Assembly and multiple
sequence alignment methods have employed sequence graphs of both types since the
earliest computational analyses of biosequences, and it is sensible that we might employ
them to represent collections of genomes.

The conceptual basis of the work I present here is the extension of the bidirectional
DNA sequence graph with paths that may be used to describe sequences as walks through

1.4 Graphical techniques in sequence analysis 24

the graph. In this way, the panel of reference genomes or sequences used to construct
the graph may be related to the graph itself, and the relationships between them made
evident in the structure of the graph. Existing knowledge expressed with respect to
known sequences may thus be projected into the graphical pangenome model. Similarly,
entities within the graph may be projected out into the space of a given path (as described
in section 2.5.10). These properties ensure that the pangenome fully encompasses existing
reference technologies. In addition, maintaining the sequences in the space of the graph
makes the graph lossless, in that it fully represents the input sequences without additional
information. Perhaps most importantly, this feature resolves the exponential decay in
mutual information which limits the applicability of Markovian models like the sequence
graph to modeling natural sequences [166]. I term this combination of a bidirectional
sequence graph and paths a variation graph, as it represents sequences and the variation
between them. In chapter 2 I will formalize the variation graph model and important
auxiliary data structures that enable its modification and use in resequencing.

1.4 Graphical techniques in sequence analysis
Many genome analysis algorithms employ sequence graphs. I introduced the alignment
algorithms described in 1.2.2 in terms of a matrix, but they may also be described as
algorithms on graphs, although the nodes in these graphs correspond to matrix cells and
thus alignment states rather than characters or sequences. Similarly, hidden Markov
models (HMMs) have a long history of use in bioinformatics [66], and these models
bear similarities to the bidirectional sequence graph model. Here, I will focus on those
methods that are most closely related to variation graphs, and upon which my work
draws most heavily. These include techniques for generating and encoding multiple
sequence alignments, genome assembly graphs, RNA splicing graphs, and the related
gene model graphs used in RNA sequence analysis, and the sequence DAG implied by
the VCF format.

1.4.1 (Multiple) sequence alignment

Optimal multiple sequence alignment generalizes the problem of pairwise sequence
alignment from a 2D matrix to an N -dimensional lattice, where the optimal mutual
alignment of N sequences of average length L can be determined in O(LN) time [32].
In the early days of sequencing, when only a handful of sequences might be considered
in one analysis, such costs were almost acceptable, even if they limited the number

1.4 Graphical techniques in sequence analysis 25

of sequences in the MSA to only 3. By pruning regions of the lattice in which no
optimal alignments could occur, the authors of the tool “MSA” increased the number of
sequences which could be optimally aligned into an MSA to 6 [168]. In contrast to the
optimal alignment approach, progressive multiple sequence aligners such as CLUSTAL
build a guide tree based on alignment of all sequences to all others in O(NL2) time,
and then generate the MSA progressively using the guide tree in O(L2 log N) time,
resulting in polynomial time algorithms capable of generating MSAs for hundreds of
sequences using contemporary computers [110]. In this form of progressive alignment,
the MSA is built recursively from the leaves to the root of the guide tree, with each
step combining pair of MSAs representing different branches of the tree using the best
pairwise alignment between the sequences they contain. The progressive approach is
fundamentally greedy, and susceptible to errors that propagate along the guide tree,
although such errors can be mitigated by structuring the alignment using biological priors
[273]. Further improvements to the quality of the MSA can be gained by guiding the
progressive alignment with a limited kind of global information about the relationships of
all the sequences, as in T-COFFEE [201], but this popular method exhibits a worst-case
computational complexity of O(N3L2).

The progressive alignment in MSA algorithms like CLUSTAL may be represented
graphically. In the late 1980s Eugene Myers and Webb Miller developed algorithms to
optimally align sequences to sequence graphs, and sequence graphs (in the form of regular
expressions) to each other in O(MN) time (where M and N are the sequence length of
the graphs) [197, 291]. Unfortunately, to my knowledge these were never implemented in
publicly available software for sequence analysis12. A recent implementation of sequence
to graph alignment [227] transforms a sequence graph into an alignable graph which is
acyclic and partially ordered, on which a bit-parallel alignment algorithm is applied to
achieve high performance when aligning long noisy reads to arbitrary sequence graphs.
This work is related to that of Wu, Manber and Myers [291], wherein the authors provide
an algorithm for the alignment of pairs of regular expressions using a transformation of
the regexes to NFAs and bit-parallel resolution of the final alignment. Later in chapter 2
I will present and evaluate a similar approach to align reads to arbitrary bidirectional
sequence graphs through transformation of the graph into an ordered graph against which
accelerated sequence to graph alignment may be run.

Christopher Lee later provided the first implementation of an MSA algorithm based on
sequence to graph alignment [147]. Apparently unaware of the work of Myers and Miller,
he instead built on the concept of “consistent equivalence relations” that DIALIGN used

12Myers was unable to provide related source code on request.

1.4 Graphical techniques in sequence analysis 26

to represent the MSA [190]. Where DIALIGN’s authors appear to consider the MSA
in the space of the N -dimensional lattice, Lee encoded the equivalence relations in a
partial order graph, which is often referred to as a directed acyclic graph (DAG). In
this DAG, characters label nodes and edges label observed linkages between them in
sequences embedded in the MSA. Lee demonstrated that a straightforward generalization
of the recurrence relations used in Smith-Waterman-Gotoh would allow the alignment of
sequences of length N to the DAG of sequence length M in approximately O(MN) time.
To determine the score at a given position, partial order alignment (POA) considers
matches and deletions relative to all the characters that immediately preceded the current
one in the partial order. Later, POA was extended to allow the direct alignment of pairs of
MSAs using partial order to partial order alignment (PO-POA) [100]. Like CLUSTAL-W
and other progressive methods, POA would build its MSA using pairwise alignments across
a guide tree. But, rather than aligning the last pair of sequences, PO-POA alignment
would be used to align the MSAs from each branch together. This resolved problems with
order dependence, yielding MSAs with nearly the same accuracy13 as T-COFFEE across
a range of problems. As PO-POA proceeds over a neighbor joining guide tree, it requires
N log N alignment steps. Given low sequence divergence, the cost of each step will
approximate L2. The algorithm thus has a lower bound of approximately O(L2N log N),
which the authors confirmed with experiments demonstrating subquadratic scaling in
the number of input sequences.

Despite its use of an algorithm that scales cubically with the number of input sequences,
T-COFFEE’s higher accuracy has resulted in it receiving ten times the citations of POA.
The low rate of use meant that the POA concept was “rediscovered” by participants in
the 1000GP who needed a computationally inexpensive method to align sequences to
VCF-based pangenomes.14

Lee’s POA model provides a simple pattern for thinking about pangenomes. However,
POA MSAs are linear objects which cannot capture many natural kinds of genetic
variation such as repeats or rearrangements without duplication of the rearranged
sequences. Several methods have extended the MSA concept to unordered graphs,
including the Threaded Blockset Aligner (TBA) [21], which models the MSA graph as
a set of partially ordered MSAs linked by unordered larger scale connections, and the
A-Bruijn Aligner (ABA), which models the MSA using a de Bruijn graph and represents

13Here goodness is quantified using a sum of pairs score (SPS) metric representing the goodness of the
alignment.

14Sequence to graph DAG alignment was one of Deniz Kural’s main PhD projects. I worked with him
in Gabor Marth’s laboratory, and we applied his implementation of POA to generate accurate genotype
likelihoods for indels and complex variation in the final phase of the 1000GP. We learned of the prior
work later, when a reviewer pointed out that the algorithm was roughly equivalent to POA.

1.4 Graphical techniques in sequence analysis 27

a solution to problems in MSA using techniques that later become important to short
read assembly [225]. Variation graphs generalize these models without the limitations of
order (as in POA and TBA) or k-mer based graph structures (as in ABA).

The POA model also inspired the development of a graphical model that supports the
comparison of various editions or versions of the same text in the field of textual criticism,
the variant graph [241, 106]. The variant graph can be understood as a POA DAG built
from a collection of texts, whose nodes are labeled by the input texts that traverse them.
Variant graphs are very similar to the variation graphs that I present in this thesis, but
while variant graphs are specialized for linear written texts, variation graphs aim to
model DNA and genomic variation. Although they have similar structure, these two
models are in fact an unusual instance of interdisciplinary convergent naming.15 Variant
graphs are used mostly to reduce the effort required to collate and manually review
different versions of texts. Recent work has focused on their visualization, resulting in
techniques that are very similar to those developed for variation graphs which I present
later in this thesis [124].

1.4.2 Assembly graphs

The problem of assembling large genomes is not dissimilar from that of multiple sequence
alignment. MSA algorithms tend to be applied to the alignment of a single coherent
genomic locus. Their input sequences might be expected to have approximately the
same length, and maintain synteny between them. In contrast, whole genome shotgun
assembly methods cannot rely on such assumptions, as reads of a large genome rarely
overlap, and both strands of DNA will be sampled, yielding ambiguity about relative
orientation. Thus, the graphical models used in assembly must maintain bidirectional
structure, which distinguishes them from those used in multiple sequence alignment.
Earlier in section 1.1.2 I gave a historical outline of the development of these methods in
response to changes in available sequencing technology. Here, I provide deeper technical
detail to describe these methods and illustrate their relationship to the variation graph
model.

15I developed the term “variation graph” without knowledge of this prior work. I first become aware
of it in the week before the initial submission of this thesis, when Daniel Bruder brought textual variant
graphs to my attention. In practice, some researchers use both terms to refer to the model I present in
this thesis.

1.4 Graphical techniques in sequence analysis 28

1.4.2.1 Overlap graphs

One interesting feature of overlap-based assembly graphs is that their efficient construction
tends to yield a representation in which sequences attached to nodes partially overlap
with the nodes in their neighborhood in the graph16. This follows from the fact that
the graph induction algorithms use a kind of pairwise alignment, retaining relationships
between sequences in a pairwise rather than compacted N-wise form. In the case of DBGs
and the FM-index based string graph assemblers, an iterative overlap-wise sequence
comparison where unitigs (unbranching sequences in the graph) are inferred from the
compressed sequence graph yields overlap graph. Given a node-labeled sequence graph,
it is common to think of the edges as representing the overlaps between the nodes they
connect. This represents an incomplete compression of the relational information in the
graph, but this is typically not important to the use of these methods. They are judged
by the quality of the set of contiguous sequences (contigs) they output rather than their
raw assembly graph. These methods will traverse linear portions of the graph to generate
contigs, after pruning or ignoring edges, which the uncompressed overlap representation
does not inhibit.

Due to its duplicated representation of sequences within overlaps, the overlap graph
model is more complex to use as a reference system (in which positions should be unique)
than a “bluntified” representation in which the overlaps are non-ambiguously reduced
into the nodes in the graph and its linkage topology. In their most general form, overlaps
are themselves alignments, and have a natural encoding in graph form (section 1.4.1).
However, assembly data models often encode alignments using several dissimilar data
structures, a fact which is reflected in the complexity and redundancy of the GFA version
2 specification17. In general this overlap representation makes it difficult to work directly
with such graphs using the algorithms we will introduce, and they must be reduced into
a “blunt-ended” bidirectional graph.

It is also possible to directly induce a bidirectional string graph from a set of pairwise
alignments, sidestepping the overlap issue. In section 2.2.6 I will present my design
and implementation of an external memory algorithm that transforms sets of pairwise
alignments into a variation graph using a transitive closure of the equivalencies implied
by the alignments.

16In many formulations, sequences in the overlap graph are attached to edges rather than nodes. This
model is equivalent to one in which sequences are attached to nodes, which I will use here for consistency.
The same convention is used in vg’s data model and in the GFA interchange format that it reads and
writes.

17https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md

https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md

1.4 Graphical techniques in sequence analysis 29

1.4.2.2 De Bruijn graphs

De Bruijn graphs [56] are graphs in which a set of k-mers are taken as the nodes of
the graph, and edges are added for each pair of k-mers k1 → k2 in which the last k − 1
bases of k1 are the same as the first k − 1 bases of k2. As discussed previously in section
1.1.2, this model simplifies the overlap graph structure, allowing efficient calculation and
representation of the graph. For instance, k-mer lengths may be chosen so that they
fit inside a machine word, allowing bitwise operations and integer math rather than
string comparison to be used to infer the graph structure directly implied by the k-mers
themselves.

In second generation sequencing, where per-base error rates are low and read lengths
are short, little information is lost by breaking the read set into k-mers of 1/3 or 1/5th the
length of the original reads, and so the de Bruijn graph model has been readily applied
to cheap short read sequence data since its introduction to genomics in the mid 1990s
and early 2000s [117, 217]. Velvet [294], which used a straightforward but memory-costly
hash table strategy to encode the DBG. Zamin Iqbal then extended the DBG model
to support various kinds of pangenomic analysis by labeling each k-mer with “colors”
representing read counts from different samples [120]. The colored DBG (cDBG) model
has seen application in RNA-seq transcript quantification, where the model is used as a
reference basis for the relation of known transcripts to pseudoalignments of reads to the
cDBG [25]. Later versions of the Cortex assembler have extended this to fully encode
long reads or contigs relative to the DBG [277]. Similarly, improvements in performance
have been yielded by linking read pairs in the DBG model [13].

The simplicity of the DBG has made it possible to develop very memory-efficient
data models to support its use in assembly. The DBG can be effectively encoded in the
FM-index of a read set [23], and this succinct DBG model underpins the most-scalable
assembly methods currently available [150]. Other techniques, such as bloom filter
encodings and minimizer partitioning schemes are also used to provide time and space
efficiency to DBG methods [39, 40].

In the compacted DBG generalization non-furcating regions of the graph are merged
into a single node with label length > k. The compacted DBG is now often a typical
output for DBG assemblers [40, 187]. The compressed nodes and their overlaps with
their neighbors comprise a set of unitigs that, together with their neighbor relations, are
often taken as the most-raw kind of assembly output. DBG assemblers like SPAdes and
Minia3 infer longer contigs by filtering and further contracting the unitig graph [13].

As with any overlap graph, DBGs must be made into blunt-ended sequence graphs
before they can be utilized by variation graph based algorithms. The basic method for

1.4 Graphical techniques in sequence analysis 30

doing so is simpler than for generic overlap graphs, as overlaps in DBGs are exact string
matches. In my work I have found this an important feature, as in addition to being
generated by efficient methods, it ensures that DBGs are universally convertible into
variation graphs.

1.4.2.3 String graphs

The string graph is a formalism that describes the full information represented by
a shotgun sequencing experiment and an all-against-all alignment between its reads
[193, 194]. Myers argued that the then-current paradigm of assembly, which attempted to
generate the shortest common superstring (SCS) incorporating all the N input sequence
reads, failed to reconstruct the genome correctly in the context of repeats in the genome
that are longer than the average read length L. He then posited the “chunk graph” (later,
string graph) as a graphical model of the overlap set, showing that the correct consensus
sequence would by definition exist as a walk through the graph, and that constraining
the collapse using coverage information would improve reconstruction of the genome read
in the shotgun sequencing experiment. In this graph nodes (or edges) represent sequence
reads and directed edges (or nodes) represented observed ϵ-approximate overlaps between
them. Repeat units in the genome that are longer than L will collapse in this graph,
provided errors in the reads can be corrected so such repeats become fully identical.

This idea was introduced at the same time as de Bruijn graphs, with Myers’ work
on string graphs and the first description of a genome assembly algorithm using de
Bruijn graphs both presented at the same workshop in 1995 [193, 117]. Myers’ 2005
formalization of the string graph [194] responds particularly to de Bruijn models, and he
points out that generating k-mers from the reads as the basis for the graph means that
the resulting graph is not “read coherent”, or in other words does not accurately represent
the information in the read set. Subsequent work has shown that the boundaries between
the two models are not so well-defined. As a specialization of the overlap string graph,
the de Bruijn model may be applied to certain complex subsets of a string graph, creating
a kind of hybrid assembler where the k-mer model is used to resolve the most-difficult
components, while the generic overlap model is used elsewhere [115]. Similarly, the high
cost of error and graphical complexity suffered by the string graph encourage the use of
k-mer based read correction methods, which could be seen as filtering the reads using a
DBG model.

String graphs are often described as “lossless” representations of the input read set
and the alignments between them [152]. Neither in practice, in Myers’ formalizations, nor
its implementations like the Celera assembler (CABOG) [186] is this strictly true. In the

1.4 Graphical techniques in sequence analysis 31

model, overlaps are assumed to be ϵ−correctable at approximately the raw sequencing
error rate. In practice, this filtering can result in a loss of input sequence from the string
graph. String graphs can consume very large amounts of memory when fully constructed
without filtering from a read set [156, 141]. Input filtering, mostly to reduce repeat
content, is used to mitigate this issue. If not aggressively corrected, repeats tend to
generate ultra-dense graph regions that are known as “hairballs” which can increase the
complexity of assembly by orders of magnitude.

To deal with repetitive sequences in the genome, one solution is to mask out repetitive
k-mer, minimizer, or alignment seeds used in generating the overlap set, as in CABOG,
FALCON, and miniasm [186, 41, 156]. Recently, the authors of Canu showed that alter-
native probabilistic seed filtering based on the tf-idf (term frequency, inverse document
frequency) metric can retain information about repeats and support their separation
rather than excision from the assembly string graph [141].

String graph methods related to the Celera assembler, such as FALCON and Canu,
implement error correction steps before overlap inference, as this reduces memory require-
ments during assembly. Similarly, methods that generate assemblies via a string graph
induction step from Illumina sequencing data (SGA, fermi, and fermikit) also apply an
error correction processes before the generation of the string graph [254, 252, 155], which
helps to reduce the graph complexity and improve contiguity of the resulting assembly.

Allelic diversity in either a string graph or de Bruijn graph will, if sufficiently separated
from repeats and other allelic variants, result in a bubble, or graph component connected
to the rest of the graph via single sources and sinks. Like de Bruijn graphs, string
graphs have been used to support variant calling, for instance finding heterozygotes
represented as bubbles in the assembly graph [152]. All methods that I am aware of
will establish variants relative to a reference sequence threaded through the graph. Also,
thus far no method has specifically merged the two concepts of variant calling and graph
based assembly finishing together, although assembly projects may use a variant caller
to establish variants in their contigs [122, 240].

With minimap and miniasm Heng Li took the approach of efficient all versus all
alignment and overlap graph generation without prior read correction [156]. With no
multiple alignment step, this generates an assembly in which the error rate in the contigs
approaches that of the input reads. Tools like racon [280] have been developed to
subsequently generate a consensus, but these work on the level of individual contigs
rather than an assembly graph. Li [156] also proposed to mix and match different
assembly components (for instance using DALIGNER [195] rather than minimap for the
overlap step, or swapping quiver for nanopolish for consensus generation) by establishing

1.4 Graphical techniques in sequence analysis 32

a set of standard data types including the pairwise alignment format (PAF) and the
graphical fragment assembly (GFA). These encode the results of the overlap step and a
graphical model for the assembly at any state of its progression. GFA is used in a wide
number of methods, but as of August 2018 it appears that very few tools both read and
write GFA18, and much of the assembly improvement steps are implemented on contigs
(encoded in FASTQ or FASTA format) rather than the string graph itself.

1.4.2.4 RNA sequencing graphs

While many approaches to transcript analysis consider each particular gene transcript
separately, a more compact representation would be as a splicing graph in which all
alternative splicing junctions are represented by edges connecting bases of the underlying
reference sequence [109, 147]. Transcript assembly has attracted many of the same
approaches as those used in genome inference, but their application must be adjusted
to account for variation in read coverage of several orders of magnitude caused by
large differences in expression of different genes [179], and in some cases they may
not be suitable as the ideal of a transcript assembly is not a linear sequence assembly,
but a splicing graph that models the combinatorial relationships in the transcriptome
[99]. Standard assemblers, parameterized or modified to better support RNA transcript
assembly have been applied to the problem since their development for genome assembly
[20, 231, 245]. But methods which are specifically design to meet the needs of the problem
have arguably been more popular [99, 37].

Direct use of the splicing graph concept is limited, with the most-popular workflow
involving “splice-aware” alignment to a reference transcript model followed by quantifi-
cation of expression versus the alignment and transcript model [274]. More recently,
probabilistic approaches have come into favor, and to support these assembly models
have been applied to transcript quantification via pseudoalignment to a colored DBG
annotated with reference transcripts [25]. In contrast, Daewan Kim’s HISAT2 aligns
RNA-seq reads to a whole genome splicing graph [136, 137], including SNP and indel
variation directly in the whole genome index.

1.4.2.5 Genome alignment graphs

The graphs used in genome alignment algorithms are the nearest in content and structure
to variation graphs, and it can be shown than a number them of nearly identical
representational capacities [131]. The alignment graph, first introduced in the context of

18https://github.com/GFA-spec/GFA-spec#gfa-1

https://github.com/GFA-spec/GFA-spec#gfa-1

1.4 Graphical techniques in sequence analysis 33

multiple sequence alignment [129, 226], represents a collection of alignments in graphical
form, supporting the induction of a sequence graph (or MSA when such a graph is
partially ordered). Vertices in the alignment graph Ga = (V, E) represent characters in
the input sequences S, and edges represent cases where characters in the input sequences
have been aligned, with an additional relation ≺ on V such that v ≺ w holds if and only
if v precedes w in S. As it contains both the sequences and their alignments, this graph
may then be contracted to produce a compressed graph that represents both. We can
then contract Ga into the base graph Gs, adding a node for each connected component
in Ga and labeling it with the corresponding character, while adding an edge for each
pair of nodes X and Y which represent a pair of input characters in Ga that satisfy ≺.
Each column of an MSA matrix or each base in a variation graph would correspond
to a particular connected component in Ga. It is worth noting that the equivalence is
not exact unless we generalize the alignment graph to represent alignments in both the
forward or reverse complement orientations, which has been explored in the A-Bruijn
model [225].

The Enredo graph model Ge = (V, E), used by Benedict Paten’s Enredo/Pecan
multiple genome aligner [210], generalizes the alignment graph model to be bidirectional
by representing each genome segment in the graph with two nodes, a head and tail.
The graph maintains two kinds of edges, Es which represent genome segments and are
equivalent to nodes in Gs, and Ea which represent breakpoints of adjacencies between
segments. To obtain a graph like Gs from the Enredo graph, the MSA resolver Pecan is
applied to sets of homologous Es connecting the same head and tail nodes.

Paten further refined multiple genome alignment by the development of the Cactus
graph Gc = (V, E) [211]. To construct the Cactus graph, we build a precursor graph
G′

c by adding a node for each adjacency-connected component in the Enredo graph Ge

and adding edges between nodes for each segment Es whose head and tail lie in both
adjacency components. To obtain the Cactus graph, we collapse three-edge connected
components in G′

c into single nodes, yielding an Eulerian graph with a tree like structure.
The nodes in the Cactus graph can be shown to correspond to a tree of ultrabubbles
(graph components connected to the rest of the graph by one or two head and tail nodes)
in the sequence graph from which it was constructed [213]. This forms the basis for the
development of genotype models on top of arbitrary graphs.

Without additional labeling, these graph models are insufficient to fully reproduce
their input, and although it may be implemented in corresponding software, existing
models to do not clarify how this labeling is accomplished [131]. Variation graphs respond

1.4 Graphical techniques in sequence analysis 34

to this issue by making the path embedding of the sequences in the graph explicit in the
model.

1.4.3 Pangenomic alignment

As the review presented in this chapter shows, the idea of using pangenomic models
as a reference basis is not new, and interest in the topic extends back to the earliest
explorations of the multiple sequence alignment problem. But it was only in the last
decade, as surveys of populations of genomes routinely produced sets of phased variant
calls [169, 286, 31, 1, 45] that the idea of scaling up alignment to enable the alignment
of short reads to populations of genomes gained traction. Numerous methods use some
form of pangenome aware alignment. These have helped me to understand the problem
and guided my work to a significant degree. Each has important limitations relative to
more generic problems. For instance, some operate on sequence DAGs, and cannot easily
be generalized to work on arbitrary bidirectional sequence graphs. Others implement a
limited form of alignment that prevents their use for every kind of sequencing technology.
Virtually all use the pangenome only as an additional source of information during
alignment, and do not use the pangenome as the reference system itself.

1.4.3.1 Alignment to unfolded pangenomic references

As discussed in section 1.3.1, the simplest pangenomic model stores each genome sequence
individually, without recording the implied homologies or relationships between the
sequences. Such a model grows linearly with the number of genomes included, and in this
way it does not benefit from compression provided by sequence relationships and shared
evolutionary histories. Annotations can be provided for each genome and interlinked at
a higher level of semantic relationships, as is done in major genome annotation catalogs
like Ensembl genomes [135]. This expedient approach provides almost all the benefits of
the kind of pangenomic models I present in this thesis, excepting that it cannot represent
base-level sequence relationships within the semantic model without significant effort.
Whenever a researcher uses BLAST or BLAT to search a large database of sequence they
are interrogating this “unfolded” pangenome. This pattern could be thought of as the
default in bioinformatics, and it is the starting place for many DNA-based analyses.

In terms of methods specifically designed to align large sequence read sets against an
unfolded pangenome, few are currently under development. Of note, the CHIC aligner
provides an initial implementation of such an idea [279] This method is based on an
indexing strategy which uses Lempel-Ziv (LZ77) [298] parsing of the pangenome to

1.4 Graphical techniques in sequence analysis 35

generate a “kernel” sequence encoding the pangenome that may be indexed and used
by a standard short read aligner (the authors use BOWTIE2). By using this kernel,
the seeding step is aware of alternative sequences embedded in the pangenome, but the
local alignment step is ultimately run against a linear reference. As this approach aligns
directly to the unfolded pangenome it is not able to correctly estimate mapping quality,
as the reference does not encode any model about the relationships between the genomes
that comprise the pangenome and consequently we cannot determine when multiple
alignments match to homologs in different genomes or paralagous copies dispersed across
one or many genomes. The linear growth in data scale can add algorithmic complexity
when sequencing many genomes, and so it is understandable that experiments using the
CHIC aligner only used up to 100 genomes at a time. By relying on the linear reference to
report alignments, CHIC gains the ability to hook into standard resequencing workflows,
but it loses the ability to describe variation in sequence that is not contained in the
reference.

1.4.3.2 Alignment to tiled pangenomic references

A near-approximation of the unfolded model is one in which genomes are broken into
small pieces in the construction of the model. These blocks or tiles can then be formed
into sequence DAG by the addition of edges showing linkages between successive blocks
[105]. These models present as a specialized kind of sequence DAGs19, and can represent
the whole set of sequences in a pangenome in a semi-compressed way using the same
principles as in POA, DBG, or string graph models. Each tile represents a known
haplotype in a given window of the pangenome. As new genomes are added to the
structure, new tiles only need to be added where we observe a new sequence in a given
window.

A tiled pangenome graph was employed by the pangenomic aligner, GenomeMapper
[243], which was produced in support of the Arabidopsis thaliana 1001 Genomes Project
(AT1001GP). As arabidopsis frequently selfs, individuals may have extremely low levels
of genomic diversity, which in turn simplifies the process of genome inference [31]. At
the same time, several percent of the reference genome is missing or highly divergent in
various accessions (strains) [43, 293]. These conditions break standard short-read aligners
developed for mapping Illumina sequencing data against low-diversity reference genomes.
GenomeMapper models the pangenome using 256 basepair tiles. A k-mer index is used
to seed local alignment of very short (<50bp) reads against the pangenome. The authors

19Known implementations appear to be unable to directly represent inversions and copy number
variants in their structures, instead encoding them as if they were indels.

1.4 Graphical techniques in sequence analysis 36

report an extension of the Needleman-Wunsch alignment algorithm that allows alignment
against the graph wherein the graph traversal is converted into a tree of alignments
by duplicating the alignment process at each furcation. This alignment algorithm is
exponential in the average number of forks per sequence base, which may contribute to
the observation that it runs hundreds of times slower than standard alignment methods
on 100bp reads [170]. GenomeMapper does not have a graph-specific alignment format,
and instead reports alignments against the genome to which each is most similar, which
the authors call “reference free”. So that the alignments may be used downstream in
standard approaches, they may be projected against another chosen reference genome.

1.4.3.3 Alignment to graphical assembly models

In order to report their results relative to the reference, assembly methods require the
ability to align the reference genome into the sequence graph they have generated de
novo [120, 254], although this can be achieved through the alignment of the assembly
graph’s unitigs to the reference genome [155], which results in greater sensitivity to small
variation but may also increase bias towards the reference genome. Aligning external
sequence to an assembly graph is equivalent to extending the assembly to include the
sequence and recording the path through the assembly graph that represents it.

The de Bruijn Graph Aligner (deBGA) inverts this approach by enabling the alignment
of short reads to a reference DBG (RdBG) [170]. An RdBG is a compacted DBG in which
one or more reference genomes have been embedded, and the authors of deBGA enable
alignment against it through a k-mer index that is used to drive a kind of MEM-based
seed and extend alignment. The alignment process itself attempts to link patterns
of k-mer hits in unitigs in the graph into larger alignments, finally producing a local
alignment by applying Smith-Waterman-Gotoh to the read and the particular reference
genome region to which it aligns. While deBGA uses a DBG to structure alignment,
it can output a BAM file against the linear reference genome for use in variant calling
or other analyses. The authors claim that deBGA is fast and, thanks to its use of a
DBG-based index, robust to alignment problems introduced by repeats. However, it is
not clear how the method develops mapping qualities, and due to its inability to represent
evolutionary homology or equivalence between regions of genomes, this would appear to
be is a significant limitation of the reference data structure they have chosen.

deBGA is the first published method specifically designed to align short reads against
arbitrarily-structured graph genomes. While deBGA was designed to work on collections
of linear references, the authors note that it would also be possible to apply the indexing
strategy to any sequence graph, as k-mer enumeration may be used to convert any

1.4 Graphical techniques in sequence analysis 37

sequence graph into a DBG20 The authors do not evaluate its operation on generic
DBGs, and instead compare it to linear reference based aligners on the same collections
of genomes.

1.4.3.4 Genotyping using a sequence DAG

Variant calls in the VCF format, when combined with the reference genome to which
they refer, form a sequence DAG that encodes all the genomes from which the calls were
derived as well as novel recombinations between them. As this feature of variant calls
was appreciated, it led to the development of several methods which first map reads
globally to a linear reference and then realign them locally to a variation-aware reference.
This can be shown to reduce reference bias, but it can only do so in a localized sense as
this form of graph resequencing cannot change the global placement of reads.

By the final phase of the 1000GP [45] it was apparent that indels and complex
variation were more difficult to genotype than SNPs. Their significance was appreciated
by 1000GP subprojects that examined the putative functional effects of such variants
[36], which motivated efforts to develop a high-quality variant set including them for the
final release. The best-performing methods for generating the SNP genotype likelihoods
(GLs) were only able to model biallelic SNPs [283], and additional methods would be
applied to derive GLs for non-SNP, non-biallelic variant types.

While participating in the project, Deniz Kural and I extended (as glia21) a POA
algorithm he had developed to realign poorly-mapped reads (such as those with softclips,
many mismatches, gaps, or unaligned fragments anchored by their pair mates) to a
sequence DAG created from the reference and candidate alleles in the region. By
projecting the alignment back into the reference space, we were able to generate a BAM
output from glia. I implemented improvements to freebayes that allowed it to genotype
alleles represented by observations in these alignments, as well as contamination estimates
that were essential to high-quality GLs in low-coverage data. This pipeline outperformed
alternatives, and was ultimately used to generate GLs for all non-SNP variation in the
project.

The indels were integrated into the phased scaffolds provided by the SNPs through two
cycles of genotyping. In the first, GLs generated by the method were given to MVNcall
[184], a multalleleic, site-independent phasing algorithm that can phase genotypes at
a given site onto a fixed background haplotype scaffold. The posterior genotype and

20Jouni Sirén and I had implemented an aligner based on a DBG transform of an arbitrary sequence
graph at the time of deBGA’s publication. The authors of deBGA were apparently as unaware of our
work as we were of theirs.

21https://github.com/ekg/glia

https://github.com/ekg/glia

1.4 Graphical techniques in sequence analysis 38

phasing quality estimates produced by MVNcall, along with a number of other metrics
related to indel sequencing error such as sequence entropy and homopolymer context,
were then used to establish a support vector machine (SVM) classification model which
was trained using data from high-quality genomes and applied to the full set of alleles to
remove likely errors. The final set of alleles were fed back through the glia, freebayes, and
MVNcall process to ultimately produce the set of indels in the 1000GP phase 3 release.

Hannes Eggertson’s GraphTyper [71] implements a similar workflow to the genotype
likelihood generation method applied to the 1000GP indels. In the GraphTyper pipeline,
Illumina reads are aligned against the reference genome using a standard short read
aligner. Those alignments with soft clips and apparent differences from the reference are
matched to a sequence DAG built from the reference and VCF in a window around the
read’s candidate mapping location. GraphTyper matches short k-mers between the read
and the sequence DAG using a k-mer index of the reference structure and 1bp-overlapping
k-mers from the read. This does not produce an alignment per se, but rather a list
of variant traversals supported by each read. This transformation provides sufficient
information to genotype the variants in the graph. The pipeline may update its reference
system so that it includes both known variation from other studies and new variation
discovered during analysis. GraphTyper uses the graph reference system internally to
improve algorithm performance, but results are projected into the linear reference and the
graph has no other representation than VCF. This prevents the representation of “nested”
variation or non-SNP or indel SVs. GraphTyper’s efficient and accurate performance on
exceptionally large resequencing problems supports the authors’ design decisions and
firmly asserts the utility of the graph realignment approach.

Sibbesen and colleagues generalize the genotyping problem to arbitrary variation
graphs with BayesTyper [249]. They adopt a kind of pseudoalignment model in which
exact k-mer matches between a read set and the reference are used to establish support for
paths across bubbles in the variation graph. These can then be used to build probabilistic
models of genotypes for any kind of variation represented in the graph, both small (SNPs
and indels), including nested variation.

1.4.3.5 Population reference graphs

Pangenomic references need not be used as a coordinate system in the same manner as
the linear reference genome. Instead, they can be used as a prior to infer most-likely
underlying haplotypes of a given individual. Further refinement can be achieved by
aligning the read set back to the inferred haplotypes. This approach makes sense if

1.4 Graphical techniques in sequence analysis 39

alignment against the pangenome is extremely costly, but efficient haplotype inference
patterns can be applied to the genome.

Population reference graphs (PRGs) [63] are POA-like graphs in which sequences
aligned by MSA are collapsed in the case of identity above a given k-mer size, which
embeds some information about local phasing into the graph. First assembled from
long sequences, the PRG is then augmented with local variation information, with SNPs
and indels added to all paths at appropriate positions. Dilthey and colleagues develop
a genome inference model based on the comparison of the PRG to a DBG built from
reads from a given individual. By comparison between these two structures, weighted
by k-mer frequency in the genome and PRG, they provide sufficient annotations to the
PRG to run an HMM on the graph to infer the most-likely underlying pair of haplotypes.
Short read alignment can be used to map the full reads back to these haplotypes in an
ad hoc manner in order to find new small variation against them and fully resolve their
sequences. The authors demonstrate that this method can be applied to the human
MHC, where high sequence diversity frustrates methods optimized for typical regions of
the human genome.

1.4.3.6 Succinct pangenomic sequence indexes

Generalizations of the FM-index to support indexing of sequence DAGs, or equivalently
regular languages, yielded a number of short read to sequence graph aligners. Such
methods enable pattern matching against pangenome graphs in much the same way as
done by FM-index based short read aligners.

The Generalized Compressed Suffix Array (GCSA) [257, 258] enables pattern matching
against arbitrary finite regular languages. It indexes a reverse-deterministic automaton22

that encodes the sequence DAG implied by a VCF and reference genome. To enable
path queries, it builds the BWT based on the sorted prefixes of the language encoded in
the automaton, adding support structures that allow pattern search as in an FM-index.
Additional support bitvectors akin to those used to encode and index labeled trees [82]
allow the traversal of the sequence DAG during query matching. Sirén constructs the
index using the prefix-doubling method used to construct sorted suffixes, wherein prefixes
and their starts and ends may be extended from length L to 2L through a sort and join
operation. Because it indexes a memoryless automaton and the construction requires the
enumeration of all the prefixes of the automaton, GCSA suffers from exponential costs in
index generation in the order of the number of possible recombinations represented in the

22Reverse determinization ensures that each prefix of this automaton can only have a single starting
position.

1.4 Graphical techniques in sequence analysis 40

sequence DAG. Careful curation of the pangenome allows the construction of the GCSA
for the entire human genome in the memory of an available computer (1TB), provided
the construction is broken into chromosomes and local complexity in the input sequence
DAG is reduced. Experiments with the GCSA used backtracking search as in BWA [158]
to directly align reads with differences from the indexed graph, but the method was not
developed into a full-featured short read alignment method.

Alternative schemes make no fundamental change to the CSA/FM-index model, but
rather embed information about particular kinds of pangenome graphs into the sequence
that is indexed. BWBBLE [113] encodes SNPs by extending the reference alphabet to
include ambiguity codes which match more than one DNA base. To encode indels, it
extends the reference by adding a sequence for each indel which includes the non-reference
allele and the surrounding 2l bases of the reference. The resulting index can support
queries of up to length l. A mapping between the positions in the extended reference and
the original reference sequence space is used to project alignments from the extended
reference to the base reference. This approach is simple and allows for a linear-time
indexing of the pangenome, but the added complexity of the extended reference and
larger alphabet required to represent SNPs yield a query time that is 100-fold slower
than the backtracking BWA method [113].

In gramtools [172], a particular kind of sequence DAG is indexed in a large-alphabet
CSA based on wavelet trees [104].23 Maciuca and colleagues develop an encoding for a
sequence DAG in which bubbles may not have any deeper internal structure, and any
traversal across a bubble is required to contain sequence. Effectively, bubbles contain a
number of alternate alleles that may be represented as linear sequences, and conveniently,
this kind of graph is exactly that which is used in VCF. To build its vBWT index of
the graph, gramtools linearizes the alt-bubble sequence DAG into an integer vector (the
“linear PRG”) in which DNA bases are represented normally while the structure of each
bubble is encoded as a series of alternate alleles delimited by i, flanked by delimiters i−1.
Each bubble gets a unique even integer i, requiring the use of alphabets with millions of
symbols. A CSA-based FM-index is then built from the linear PRG. The use of a unique
pair of integers for each bubble ensures that the alleles in the bubble will be sorted
together in the CSA of the linear PRG. To support direct matching to the sequence DAG,
the standard backwards search algorithm is augmented to consider the alternate alleles

23Wavelet trees reduce the representation of a large alphabet of size Σ into a tree of O(log Σ) bitvectors
that recursively partition the sequence space into each character. These bitvectors may be compressed
efficiently while maintaining accessibility, and by augmenting them with rank and select supports the
entire structure can be used to determine the number of each class of character before a given position,
or select the ith of a given character. This allows for the implementation of LF mapping on a CSA
represented in a large alphabet.

1.4 Graphical techniques in sequence analysis 41

when it encounters an odd integer greater than 4 (the alphabet space allocated to DNA
sequence encoding). On encountering a bubble, the search algorithm adds new suffix
array intervals for each alternate allele to a heap of intervals that are extended together
at each step. As this scheme results in an exponential increase in the number of suffix
array intervals as a query traverses multiple variants, the input set of alleles must be
structured in a way to reduce the density of bubbles. In their experiments the authors set
an allele frequency threshold and merge alleles within a certain window size into larger
haplotype alleles24. It is perhaps due to this exponential factor that gramtools’ query
performance is many times slower than BWBBLE and around 1000 times slower than
bwa mem on a linear version of the same reference [172]. In effect, the method trades
exponentially expensive construction for exponentially expensive queries. Gramtools does
not implement any local alignment model, and to demonstrate the method’s conceptual
utility, the authors apply it to infer the most-likely linear genome for a given query set,
to which the read set is ultimately mapped using a standard aligner.

HISAT2 implements variation-aware alignment against human genome scale graphs,
including alignment to RNA splicing junctions [137]. Its hierarchical GFM-index structure
allows seeding alignments against sequence DAGs. To find seeds globally, it uses an
implementation of the generalized compressed suffix array (GCSA) [257]. It builds
the global index including common short SNPs and indels. Then a set of local GCSA
indexes are used to allow fast search of the splice graph and determination of candidate
splicing junctions even when supported by minimal evidence in the read. HISAT2 is an
important point of reference as a scalable and mature implementation of sequence to
graph alignment, and is presently the only widely-used aligner based on the GCSA index.
Like other methods, HISAT2 writes BAM alignments resulting from the expression of
alignments to the sequence graph against the linear reference genome. Unlike the other
pangenomic aligners, HISAT2 can achieve very high throughput, and is competitive with
standard short read aligners even when considering splicing and small variants.

Sirén’s more recent work on this topic has produced GCSA2 [256]. This model
removes the automaton reverse-determinization step, allowing the index to be built on
top of any kind of graph. GCSA2 indexes a DBG generated from a bidirectional sequence
graph in which nodes retain both k-mer identity and their starting and ending positional
context in the graph. This positional information is used to drive the prefix doubling step
required to build the BWT of the DBG. The space requirements of GCSA are avoided
by terminating the prefix doubling at a length appropriate to accommodate queries

24The algorithm used to convert the input VCF into the haplotype bubble form appears to be similar
to vcfgeno2haplo in vcflib: https://github.com/vcflib/vcflib/blob/master/src/vcfgeno2haplo.cpp.

https://github.com/vcflib/vcflib/blob/master/src/vcfgeno2haplo.cpp

1.4 Graphical techniques in sequence analysis 42

of interest, which in practice is limited to 256bp. By computing the longest common
prefix array (LCP) of its sorted suffixes, GCSA2 encodes the implied suffix tree, which
supports MEM-based seed generation algorithms for efficient and sensitive alignment
against variation graphs.

1.4.3.7 Mapping to k-mer based pangenome indexes

A k-mer index is trivial to build from a graph: one just needs to be able to enumerate
or sample k-long walks through the graph and link the graph position to the k-mer in
an efficient hash table or other kind of index. The size of the index can be reduced
by sampling k-mers in some pattern. This indexing strategy was used in an early
version of vg, which supported experiments by the GA4GH-DWG [203] oriented at
understanding the utility of various graphs constructed for a set of loci where GRCh38
encoded alternative sequences. This same indexing technique is used by a proprietary
method developed by members of the GA4GH-DWG from Seven Bridges Genomics Inc.
(SBG) [223]. The SBG graph aligner’s (SBGA) input is constructed from higher-frequency
variants found in various public variation resources. It masks out regions of high allelic
complexity and builds a reference-rooted edge-labeled sequence DAG to serve as an
alignment target. To enable graph mapping it builds an index of spaced k-mers by
walking short segments of the graph. The k-mers and their locations are used as seeds to
establish mapping candidate loci. A local alignment is obtained for each candidate, and
the output is transformed into the reference space as BAM.

Curiously, to align the reads to the graph locally SBG’s aligner does not use a method
like POA, and instead uses a kind of local backtracking exact matching against the tree
of paths through the local graph which has exponential complexity with respect to the
density of variation. If the variant density and read error rates are kept low, this scheme
allows SBGA to achieve extremely high read throughput, equivalent to that of bwa mem
without any apparent loss in accuracy on the linear reference. In this context the authors
demonstrate their method can significantly (although slightly) improve sensitivity to
known indels. However, the method is not adaptable to other graph types or sequencing
contexts, with reports from users indicating high increases in runtime with increased read
error and variant density. Due to the fact that SBGA is closed source and proprietary it
is not possible to appreciate exactly why.

1.5 Overview and objectives 43

1.5 Overview and objectives
Resolving the genome of a sample de novo requires sequencing and assembly. Standard
approaches to assembly are built on graphical models that allow for ambiguity, and out
of this system they attempt to derive a set of contigs which represent the true haplotypes
of the genome. When we have already assembled a genome related to the one we wish to
infer, we can describe our new sample in terms of a reference genome, with ambiguity
and variation represented only in the alignments of the new sequences where they can
be mapped to the reference genome. This reduces the cost of sequencing, as we can
infer much of the genome using lower sequencing coverage and shorter reads, but it also
exposes resequencing based genome inference to reference bias, which is a distortion of
inferred genomes towards the sequence of the reference genome.

I posit that by extending the reference genome to be a pangenome with a graphical
representation, we can enable population aware resequencing that avoids reference bias
to any particular linear reference. The model I develop, the variation graph, extends
the bidirectional sequence graph models used in assembly to support the labeling of
paths through the graph, and allowing the representation and relation of linear reference
systems within itself.

Variation graphs are related to a wide array of graphical models used in bioinformatics.
They have similarity with string graphs, multiple sequence alignments, and whole genome
alignment graphs. This indicates that they could serve as a unifying basis for many
domains of sequence analysis which have traditionally been separated by methodological
differences, such as assembly and variant calling.

Recently, several methods have been published which provide variation-aware align-
ment or genotyping based on sequence DAGs built from population resequencing. These
methods demonstrate the difficulty of the problem of generalizing resequencing to graph-
ical reference systems at the multi-gigabase scale of vertebrate genomes. In virtually
all cases, they use a graph reference model internally, but express their results in terms
of a linear reference genome, producing BAM alignments or genotyping results in VCF
format. None implement a generic strategy to work with a graphical model equivalent
to the variation graph. The method I develop, vg, is not the first pangenomic aligner,
but it is the first that models its results in terms of the pangenome itself, enabling full
resequencing analyses to be completed within the graphical model.

In the following chapters I will precisely define the variation graph and associated
data models that allow representing all kinds of resequencing data types in the context of
a variation graph. Then I will describe the algorithms implemented in vg that enable the
use of variation graphs as a basis for genome analysis, including their construction from

1.5 Overview and objectives 44

many data sources, serialization and visualization. I will present indexing methods that
support the queries needed to enable resequencing, and I will provide algorithms that
implement efficient read alignment to large scale graphs. Finally, I will cover applications
of the method I developed. I will show that vg is applicable to a wide range of genomic
inference problems, with a particular focus on the quality of alignment of both short and
long sequence reads against variation graphs constructed from all kinds of sources.

Throughout this work I use the first person singular “I” to refer to work that I
completed alone, while the plural “we” where presenting work completed in collaboration
with others. Wherever possible, I clarify the nature of the collaboration and identify my
collaborators.

