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Abstract 

 

Streptococcus pneumoniae causes life-threatening diseases such as meningitis, 

sepsis and pneumonia. Over half a million children under 5 years die annually of 

pneumococcal disease. However, most of these deaths occur in resource-limited 

countries mostly in sub-Saharan Africa and Asia. Based on the antisera binding 

pattern of the capsules, the pneumococcus has almost 100 serotypes and the 

currently licensed vaccines are serotype specific and target only a subset of these 

serotypes. The 23-valent polysaccharide vaccine is not immunogenic in young 

children and the conjugate vaccines, which are immunogenic in young children cover 

only a small number of serotypes and are expensive to manufacture. Furthermore, 

there is serotype replacement with non-vaccine type serotypes in both carriage and 

disease.  

Consequently, there has been much interest in finding alternative vaccine candidates 

that are serotype independent, less expensive to produce and most importantly, can 

induce sufficient immune response. Several pneumococcal proteins have been 

evaluated for their potential as vaccine candidates with mixed results. 

Using reverse vaccinology, I have taken a holistic approach to look at the level of 

diversity and distribution of core (³90% presence in my dataset) pneumococcal 

surface lipoproteins and predicted their immunogenicity. First, I screened all the 

genomes for surface exposed lipoproteins using established patterns. The candidate 

proteins also underwent immunogenicity screening and these proteins were ranked 

based on their potential as vaccine candidates. 

The final candidate proteins include previously evaluated lipoproteins PsaA, AdcA, 

AdcAII, PiuA, PiaA as well as several new candidates that have not been evaluated in 

detail thus far, including YesO_2, TauA and PrsA. 
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1 Introduction 

 

1.1 The pneumococcus 
 

Streptococcus pneumoniae, or simply “the pneumococcus”, is a Gram-positive 

diplococci that colonizes the upper respiratory tract (nasopharynx) of many healthy 

individuals (up to 80% in some settings) without causing disease [1]. However, it is 

also a bacterial pathogen able to breach the host defences thus causing disease. The 

mechanisms by which S. pneumoniae causes disease are not fully understood but 

often occur secondary to another respiratory tract infection making it an opportunistic 

pathogen [2, 3]. The pneumococcus causes a wide range of diseases in its host 

including less serious but more frequent diseases such as otitis media and sinusitis to 

life-threatening diseases such as meningitis, bacteraemia and sepsis [4, 5]. It is 

therefore, a very important cause of mortality and morbidity globally especially in 

children under the age of 5, patients with cardiopulmonary disease, 

immunocompromised patients as well as elderly people [6, 7].  

 

S. pneumoniae has almost 100 known serotypes based on the antisera binding pattern 

[8]. The capsule is one of the most important virulence determinants of the 

pneumococcus and some capsular types are known to be more important than others 

in causing invasive disease [6]. Much of the diversity of these immunogenic capsules 

is believed to be caused by the selective pressure exerted by the host immune system 

[9]. It is on the basis of this knowledge that the currently licenced vaccines have been 

developed. These vaccines currently target only a subset of the most virulent 

capsules. This has now led to a reduction in carriage and disease of serotypes 

included in the vaccines (vaccine type (VT) serotypes) and an increase in carriage and 

disease of non-vaccine type (NVT) serotypes [10-12]. This phenomenon known as 

serotype replacement is apparent in many vaccinated populations including The 

Gambia [9, 12-15]. Further, serotype switching (strains acquiring a different set of 

capsule synthesis genes), has also been observed in vaccinated populations and 

vaccine pressure is thought to play some role in this [16, 17], since the currently 

licensed vaccines all target the capsule. Consistently, Croucher et al. [18] have shown 

that recombination hotspots seems to be concentrated around antibiotic resistant 
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genes (tetM) and surface exposed proteins, which are potential vaccine candidates 

such as pspA, psrP and pspC as well as the capsule locus. 

However, serotype switching is a natural part of pneumococcal evolution and has been 

known to have occurred decades before the introduction of vaccines [19]. Indeed, a 

study has revealed that the serotype switching event to serotype 19A, by a 23F lineage 

not previously found to have serotype 19A capsule, is thought to have occurred more 

than 10 years prior to the introduction of the PCV7 vaccine which targets 23F [20]. 

This shows that the 19A variants existed prior to PCV7 and have expanded to 

detectable levels after the selective reduction of VT serotypes by the vaccine. 

 

The pneumococcus has a single circular chromosome that is approximately 2.1Mb in 

size with a G + C content of about 40% [21, 22]. Genome annotations have identified 

over 2000 protein coding genes in both TIGR4 and the un-encapsulated R6 strain but 

only over 60% of these have been assigned a biological function, leaving a great 

number of genes that could have vital roles in both disease and colonisation yet to be 

discovered [21]. Non-coding RNAs are also present with both TIGR4 and R6 having 4 

rRNA operons and several other tRNAs [21, 22]. The pneumococcus has many 

insertion sequences (IS), which make up approximately 5% of the TIGR4 genome. 

Additionally, they possess a wide array of ATP-dependent transporters including the 

iron transporters, zinc transporters and manganese transporters. However, the most 

abundant transporters are the sugar transporters, which make up about 30% of all the 

transporters [21]. Some of these proteins are essential for full virulence of the 

pneumococcus therefore, they are being investigated as potential vaccine candidates 

[23, 24]. 

Also, the capsule synthesis genes, which determine the serotype are flanked by two 

conserved genes, aliA and dexB [25]. 

 

1.2 Pneumococcal colonisation 
 

Colonisation is a prerequisite for infection and is more prevalent in younger children 

(<5 years of age) and can be as high as 80% in some countries but reduces to less 

than 10% as they reach adulthood [1, 26]. Most children in developing countries, would 

have been colonised with the pneumococcus at some stage of their childhood [27]. 
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Carriage strains can be horizontally transferred from one individual to another and 

some of the risk factors for this include crowded areas such as day-care centres, 

hospitals, and prisons. Most of this horizontal transfer is believed to occur within 

children who are the main reservoirs of carriage [4]. Serotypes can be carried singly 

or simultaneously with other serotypes in the nasopharynx and this may last from a 

few weeks to months before being cleared and replaced by another type [1]. Although 

the length of carriage of different serotypes varies with some serotypes found much 

less often in carriage than others [28], this trait however does not affect a serotype’s 

invasiveness, with some serotypes rarely found in colonisation studies shown to be 

amongst the most invasive [28, 29]. Furthermore, strains do compete against one 

another for colonisation. Some pneumococci produce strain-specific pneumocins 

which are inhibitory to other pneumococcal strains thus out competing them during 

colonisation [30]. This is why, when these more prevalent strains are cleared out due 

to vaccination, they are replaced by the previously suppressed strains [31]. 

 

Even though the capsular polysaccharide is the main determinant of immunogenicity, 

it is less important during carriage, thus the observed prevalence of transparent strains 

(strains with less capsule expression) in carriage [1, 4]. Consequently, the 

pneumococcus is known to express an array of proteins beneath the capsule that are 

essential for adhesion and thus colonisation [4]. These proteins interact with the host 

epithelial cells and ensure that the bacteria are anchored sufficiently to prevent innate 

immune clearance by ciliary movement [32].  

Conversely, strains with increased expression of capsular polysaccharides are more 

often isolated in invasive disease because the capsule helps protect the 

pneumococcus against phagocytosis [1, 4]. The importance of capsule in invasive 

disease is further supported by the fact that un-encapsulated pneumococci are rarely 

if ever seen in invasive disease [1, 4].  

 

It is worth mentioning that even though colonisation precedes disease, most colonised 

individuals do not go on to develop disease. The reason for this is not fully understood 

but transition to disease often requires the generation of local inflammation factors 

including tissue necrotic factor F and interleukin 1 [33]. Subsequently, this increases 

the number of receptors on their target cell (host cells) including the platelet-activation 

factor (PAF) receptor. The pneumococcus takes advantage of this scenario to bind to 
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the PAF receptor which facilitates internalisation en route to causing invasive disease 

as depicted in Fig. 1.1 [1, 4, 33]. The host immune system may also play a role as 

disease burden is greatest among young children whose immune system hasn’t fully 

developed, the elderly and immunocompromised individuals [34]. 

  

 
 

Figure 1.1 Interaction of the pneumococcus with PAF receptor. 

The left illustrates PAF binding to the PAF receptor in a choline-depending fashion, 

thereby eliciting a G protein signal. The middle and the right diagram illustrate two 

proposed mechanisms of pneumococcal binding to the PAF receptor. The middle 

proposes that it engages both the PAF receptor and a carbohydrate on the PAF receptor 

or as depicted on the diagram on the right, it binds to the PAF receptor and another 

carbohydrate from an unidentified receptor that co-caps with the PAF receptor. 

Picture adapted from [33]. 

 

 

 

 

1.3 Natural immune response to pneumococcal colonisation 
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There is evidence that the cytokine IL17A, which activates neutrophils, plays a 

significant role as an effector of rapid pneumococcal clearance in mice when 

challenged with non-encapsulated pneumococcal cells [35]. This clearance is antibody 

independent and it has also been demonstrated in in vitro studies that human IL17A 

cytokines were independently sufficient to induce pneumococcal killing by neutrophils 

[36, 37]. Further, there is proof of the role of CD4+ T cells in providing protection 

against colonisation and invasive pneumococcal disease in mouse models [38, 39]. 

Malley et al. argued that CD4+ T cells are the main source of protection against 

recolonization rather than antibodies and that this protection is serotype independent 

[39]. They further disputed the absolute necessity of antibodies in protecting against 

colonisation due to the fact that children often build resistance against invasive 

pneumococcal disease (IPD) from all serotypes before the appearance of measurable 

levels of anti-capsular antibodies [39]. 

 

 

1.4 Epidemiology and Burden 
 

Pneumococcal diseases are a major problem worldwide but more so in resource 

limited countries. In 2000, the burden of serious pneumococcal diseases was 

estimated at 14.5 million cases worldwide which resulted in about 826,000 deaths in 

children between the ages of 1 and 59 months [40]. Furthermore, mortality due to 

pneumococcal diseases is estimated to account for about 11% of all deaths in HIV-

negative children under the age of 5 globally and unsurprisingly, more than 60% of 

deaths occurred in sub-Saharan Africa and south Asia [40]. Nasopharyngeal 

colonization precedes invasive disease and pneumococcal carriage in healthy 

Gambian children under the age of 5 was shown to be 80% [26]. However, other 

studies have shown that the prevalence of carriage can vary between countries or 

even between cities of the same country [41, 42]. 

The most prevalent IPD is pneumonia, accounting for over 95% of pneumococcal 

disease/cases with pneumococcal meningitis reported to account for only 0.7% of all 

IPD worldwide [40]. IPD is responsible for most of the mortality caused by the 

pneumococcus however, some serotypes have a higher propensity to cause invasive 

disease than others [43]. Before the introduction of conjugate vaccines, PCV-7 
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serotypes accounted for about 90% of IPD in American and Canadian young children 

and at least 60% in all other regions except Asia, where they account for only 45% of 

IPD [6]. Nevertheless, the contribution of these serotypes to IPD was significantly 

lower in Europe than in USA and Canada or in Oceania, perhaps due to the 

significantly higher prevalence of serotype 1 and 5 in Europe than in these other 

regions [6]. 

 

 

1.5 Clinical Disease 
 

As mentioned above, the pneumococcus causes a wide range of diseases, also 

depicted in Fig. 1.2. 

 
 

Figure 1.2 Pneumococcal diseases and their anatomic sites. 

Schematic diagram showing the diseases caused by the pneumococcus and their 

site of infection. 

Adapted from (https://www.slideshare.net/meningitis/human-28372932) 
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1.5.1 Pneumonia 

 

Pneumonia is an infection of the lower respiratory tract often caused by bacteria but 

also caused by viruses [44]. S. pneumoniae has been implicated as the leading 

bacterial cause of pneumonia and this may be accompanied with bacteraemia in some 

instances [45]. Clinically, the signs and symptoms of pneumonia include fever and 

chills, rapid or difficult breathing, coughs and chest pain [46].  

Pneumococcal pneumonia is by far the most common form of IPD globally [34]. Before 

the introduction of the PCVs, pneumococcal pneumonia was responsible for about 

53% of all IPD in the USA [7]. S. pneumoniae is also the leading bacterial cause of 

community acquired pneumonia in European adults [47]. Furthermore, etiological 

studies of lower respiratory tract infections done in Zimbabwe and The Gambia both 

showed S. pneumoniae to be the commonest bacterial cause of pneumonia with 

incidence rates of 46% and 61% of patients respectively [44, 48] 

 

1.5.2 Meningitis 

 

Meningitis, as the name implies is the inflammation of the meninges and S. 

pneumoniae was the second most prevalent bacterial cause of meningitis before the 

introduction of conjugate vaccines against Haemophilus influenzae type b. However, 

it is now the number 1 cause in many countries [49]. Pneumococcal meningitis is the 

most devastating IPD that leads to death in up to 50% of patients without treatment. 

Also, long term consequences such as hearing loss, learning difficulties, seizures as 

well as brain damage may occur [7, 50]. In a 2010 meningitis outbreak in a Ghanaian 

district, S. pneumoniae was the leading cause of meningitis accounting for almost half 

(49%) of all bacteria isolated in the study [50]. Indeed, similar observations have been 

made previously in Ghana and neighbouring Burkina Faso between 2000- 2003 and 

2002-2005 respectively, as well as in Malawi [51-53]. In all these studies, the case-

fatality rate was approximately 40% with serotype 1 being the most prevalent serotype 

[51, 52]. In a more recent meningitis outbreak in Ghana (2015-2016), S. pneumoniae 

was again the leading cause accounting for 77% of all bacterial isolates of which 80% 

were serotype 1 [51, 54]. This recent outbreak is cause for concern because it 

occurred three years post-PCV13 introduction in Ghana [54]. Nonetheless, less than 
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5% of cases occurred in children under 5 years, which is the vaccinated group [54]. It 

is interesting to note however that these outbreaks resemble meningococcal 

meningitis serogroup A outbreaks, showing high levels of seasonality with peak 

incidences occurring between March and April. The fact that these countries fall within 

the meningitis belt, which runs from Senegal in the West to part of Ethiopia in the East  

further suggests that climate may be a factor [51, 52, 55]. Unfortunately, in Burkina 

Faso, the current licensed conjugate vaccines are not adequate for most of the 

serotypes implicated in pneumococcal meningitis [55]. PCV7 would cover only 33% of 

paediatric meningitis serotypes and a meagre 10% of adult meningitis serotypes [55]. 

Together, these results further support the need for vaccines with broader serotype 

coverage because the serotypes implicated in meningitis might be different from those 

mostly found in pneumonia per se.  

 

 

1.5.3 Bacteraemia 

 

Bacteraemia in its simplest term means the isolation of bacteria from blood and it is 

often secondary bacteraemia as a consequence of severe pneumonia or meningitis 

as they progress to causing death [45, 56]. When bacteraemia occurs without a known 

anatomic source of the infecting bacteria, it is called primary bacteraemia [57]. 

Bacteraemia is a prominent cause of death especially in young children and has been 

implicated as the cause of death in one-third of infants (<60 days) and a quarter of 

children older than 1 year in sub-Saharan Africa [58]. Interestingly, in that study and 

another from the same region, S. pneumoniae was the most commonly isolated 

bacteria from the blood cultures [56, 58].  Additionally, S. pneumoniae was amongst 

the most important pathogens in bacteraemia in studies outside Africa including 

Australia, England, USA and Denmark, which consistently showed it to be amongst 

the top 5 most commonly isolated pathogens in each study and overall the third most 

common pathogen [57]. 

 

Host genetics have been recently implicated to play a role in susceptibility to 

pneumococcal bacteraemia.  Through genome-wide association studies (GWAS), an 
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association with polymorphisms in two neutrophil expressed long intergenic non-

coding RNA genes (lincRNA) was found in Kenyan children [56]. 

 

1.5.4 Otitis Media 

 

Furthermore, the pneumococcus also causes non-invasive diseases, including otitis 

media (OT), which is a middle ear infection. Although this infection is less severe than 

IPDs, it is much more prevalent causing high morbidity in children. Prolonged 

untreated OT may result in ear and development problems   [59, 60]. The burden of 

OT can be as high as 1.5 million annual cases in some regions of the world [61] and 

studies have shown S. pneumoniae to be the most important pathogen in otitis media 

[61, 62]. 

 

 

 

1.6 Antibiotic resistant pneumococcus 
 

Antibiotic resistance is a global problem with many pathogens acquiring resistance to 

various classes of antibiotics and threatening to lead us to a post-antibiotic era. The 

data on resistant pneumococcal strains varies between continents and indeed 

between countries on the same continent [27, 63, 64]. In the Pre-conjugate vaccine 

era, some countries observed an increase in antibiotic non-susceptible S. 

pneumoniae. In a study in South Africa, as much as 95% of their hospital-acquired 

strains were resistant to penicillin [64]. Also, this study reported that as much as 9%, 

12% and 4% of all their isolates were resistant to chloramphenicol, tetracycline, and 

erythromycin respectively [64]. An increase in cefotaxime resistance was also reported 

[64]. Of further concern is the observed increase in resistance to other antibiotics 

unrelated to penicillin such as vancomycin, which is the last line drug used in 

pneumococcal diseases [65]. In The Gambia, there was a slight but insignificant 

increase in penicillin, chloramphenicol or trimethoprim-sulfamethoxazole resistance 

amongst invasive pneumococcal isolates between 1996-2003 [66]. However, the 

increasing trend will most likely continue because of antibiotic abuse in many countries 

including The Gambia, where antibiotics can be obtained without prescription. 
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1.7 Licenced vaccines 
 

Because of the large disease burden caused by the pneumococcus coupled with its 

rapidly decreasing susceptibility to the available antibiotics, it is necessary to explore 

the benefits of vaccination. The current WHO-recommended vaccine schedule of the 

conjugate vaccines is either three primary doses (the 3+ 0 schedule) or the 2 + 1 

schedule, which includes two primary doses and a single booster dose [67]. The 

choice of schedule is completely dependent on the pneumococcal disease 

epidemiology of the population, the coverage as well as the timeliness of the vaccine 

doses [67].  

 

Initially, a 14-valent polysaccharide vaccine was used until it was replaced in 1983 by 

the still in use 23-valent polysaccharide vaccine. This vaccine contained 23 of the most 

common serotypes implicated in invasive disease, accounting for about 88% of 

invasive disease [68].  However, this vaccine is only about 60% efficacious and it is 

not immunogenic in children younger than 2 years and the elderly (>65 years) who 

comprise the main risk groups [69]. Consequently, in 2000, the first conjugate vaccine 

was introduced in the USA, which included 7 serotypes conjugated to a non-toxin form 

of the diphtheria toxin protein [69].  

Although this is more immunogenic in younger children and was licensed to be used 

in that age group, the conjugation to the protein meant that less serotypes could be 

incorporated in the vaccine. Nonetheless, this vaccine can induce a T-cell dependent 

immune response and studies including PCV-7, -9 and -11 have shown a disease risk 

reduction range between 62 and 89% in children less than 24 months old [68, 70]. 

Also, PCV13 has been shown to reach approximately 93% efficacy against VT 

invasive disease in children (<15 years) in Madrid in 2014-2015 [71]. 

To further improve vaccine coverage in all regions especially Asia, where PCV7 was 

less efficacious, another vaccine was formulated to include all the serotypes in PCV-

7 plus serotype 1 and 5 to make the 9-valent vaccine. Together these serotypes 

accounted for approximately 66% of all IPD in Asia and >82% of IPD in all the other 

regions [6]. Furthermore, another two serotypes (3 and 7F) were added to the 9-valent 

formulation to make the 11-valent vaccine and this further improved the vaccine 
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coverage of IPD in most regions by 2.6-6.5% and a substantial increase of 9% in Asia 

[6]. The 10-valent vaccine, which has eight serotypes conjugated to non- Haemophilus 

influenzae protein D and 2 other serotypes conjugated to either tetanus or diphtheria 

toxoids is also in use [72]. This vaccine has all the PCV9 serotypes plus serotype 7F 

[72].  

 

Most countries, including The Gambia, have now included the PCV13 to their national 

immunisation programmes because it improves serotype coverage even further with 

two additional serotypes (6A and 19A) added to the 11-valent formulation [73-75]. 

Studies carried in vaccinated populations have seen significant reductions in the rates 

of IPD incidence as well as a reduction in VT serotype carriage in both vaccinated and 

unvaccinated individuals [76, 77]. The reduction of VT-carriage in non-vaccinated 

individuals is due to herd immunity, however, this is masked by the increase in carriage 

of NVT serotypes thus keeping carriage rates fairly constant [76, 78, 79]. 

 

 

1.8 Limitations of the current licenced vaccines 
 

As indicated above, the currently licensed vaccines are limited in several ways 

including, low serotype coverage, serotype replacement and an increase in NVT IPD. 

All these limitations have prompted renewed efforts to identify conserved surface 

exposed proteins across all serotypes that are capable of inducing sufficient immune 

responses. Several identified proteins are in advanced stages of vaccine development 

[65, 68]  

Further, the expensive cost of the polysaccharide conjugate vaccines is also a 

hindrance especially for low-income countries who are most affected by 

pneumococcal diseases. This makes the development of cheaper vaccines even more 

important. In the conjugate vaccines, every serotype is conjugated separately to the 

protein and this is the reason these vaccines are costly and can contain only a limited 

number of serotypes in one formulation [68]. To circumvent this problem, it is essential 

to manufacture protein-based vaccines which are relatively cheaper to produce.  
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1.9 Surface Proteins 
 

Streptococcus pneumoniae like many other bacteria possess several surface exposed 

proteins that interact with host tissues and are believed to be essential for 

pathogenicity and survival in vivo by helping to conceal the bacterial surface from host 

defence mechanisms [69]. These proteins can be differentiated and grouped together 

based on their mechanism of attachment on to the cell surface. These groups include 

Choline Binding Proteins (CBP), proteins covalently bound to the peptidoglycan, 

histidine triad family macromolecules and those directly attached to lipids of the 

cytoplasmic membrane [80]. After sequencing the genome of TIGR4 by Tettelin et al., 

[21], they predicted a total of 36 lipoproteins in that genome. Generally, the 

pneumococcus possesses many lipoproteins performing many different roles with 

some expressed on the outer surface of membranes and others remain within the 

inner membrane [81]. Common to all lipoproteins are their identifiable signal peptides 

linked to their amino termini, which is essential for their transport through the cell 

membrane to the outer membrane but it does not exclusively determine which 

lipoproteins get to the outer membrane [69, 81]. Subsequent to its transport to the 

outer membrane, it undergoes further modification, which generally occurs in three 

steps. First, diacylglyceride is transferred to the cysteine sulphydryl group of the 

unmodified prolipoprotein. Second, signal peptidase II, which is specific for 

lipoproteins cleaves the signal peptide thus forming an apolipoprotein and finally, there 

is acetylation of the a-amino group of the conserved N-terminal cysteine residue 

(Fig.1.3)  [81, 82]. This leads to a highly hydrophobic amino terminus, believed to be 

firmly associated with the hydrophobic membrane [81]. 
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Figure 1.3 Post-translation modification of lipoproteins. 
Modification process of the lipoprotein post export to the outer membrane.  The 

signal peptide is to the left of the cysteine and the catalytic enzymes are written to 

the right of the reaction arrows. Adapted from Juncker et al. [82] 

 

 

1.10 Some Protein Vaccines in the pipeline 
 

As mentioned above, the limitations of the currently licenced vaccines have prompted 

research into finding alternative vaccine candidates. The most interesting candidates 

with such potential seem to be the pneumococcal proteins themselves. A number of 

these proteins have been promising as they have been shown to be essential for full 

virulence of the pneumococcus and vaccination with these proteins have been 

protective in mouse models of infection [23, 24, 83]. Two of these proteins were 

recently examined in a phase-II clinical trial in The Gambia to determine their efficacy 

against pneumococcal carriage but have been shown to be ineffective [84]. These 
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proteins, pneumococcal enzyme pneumolysin (Ply) and pneumococcal histidine triad 

protein D (PhtD) were given in two different doses (10µg or 30µg) alongside 

pneumococcal 10-valent vaccine conjugated to non-typable Haemophilus influenzae 

protein D (PHiD-CV). The efficacy was measured by the prevalence of non-PHiD-CV 

serotypes in the nasopharynx but rather than seeing a reduction in these serotypes, 

there was an increase due to the void left by the reduction of the 10-valent vaccine 

serotypes [84]. Contrariwise, prior studies involving these proteins in mouse models 

were very promising with a study showing that passively vaccinated mice with human 

antibodies raised against these two proteins conferred protection against 

nasopharyngeal colonisation [85] and vaccinating with recombinant proteins protected 

against pneumonia [86]. 

Another pneumococcal surface protein that has been studied extensively with great 

promise is the pneumococcal surface protein A (PspA) [87, 88]. Recently, mice 

vaccinated with recombinant PspA (rPspA) and genetically modified pneumolysin 

(PdT) with recombinant BCG as an adjuvant and subsequently giving a booster of 

rPspA-PdT has been shown to protect these mice against lethal challenges [87]. The 

antibodies raised against both proteins were sufficiently high with a favourable shift in 

antibody class from IgG1 to IgG2. Vaccination also enhanced complement deposition 

and nullified the cytotoxic effect of Ply [87]. However, it has to be mentioned that even 

though there have been no experimental data to support this, there is fear that anti-

PspA may react with myosin thus leading to an autoimmune disease [89]. 

Furthermore, pneumococcal choline-binding protein A (PcpA) has been studied for its 

immunogenicity and protection in animal models. Briefly, this candidate was shown to 

be protective against invasive pneumococcal diseases and has been shown to be both 

immunogenic and safe in a Phase I clinical trial when conjugated to PhTD or given 

alone (monovalent) [90, 91]. 

 

Together these are all encouraging steps towards finding an effective vaccine that is 

cost-effective, serotype independent and immunogenic in the main risk groups. Some 

candidates are shown to be more protective against colonisation [92], some more 

effective against systemic challenges [93] and some effective in both models [89]. 

Some are protective when used alone while some have shown synergistic effects 

when used in combination formulas [23, 89]. However, there remains a need to explore 
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other potential proteins that may offer better coverage and might be more 

immunogenic to use as vaccines.  

 

1.11 Application of Whole Genome Sequencing 

 

The decreasing cost of next generation sequencing has led to more whole genome 

sequencing (WGS) projects. WGS of pathogens has enabled us to do several 

simultaneous studies on the same pathogen thus increasing our capacity to answer 

many biological questions. Since the sequencing of the pneumococcal genome by 

Tettelin et al. [21] in 2001, many studies utilising WGS have been done to improve our 

understanding of this important pathogen. Studies focused on the evolution of this 

pathogen have enhanced our understanding of its interaction with its host and other 

bacteria in the same niche. Further, we have better understanding about the 

mechanisms that contribute to pneumococcal evolution. Random mutations through 

point mutations and recombination are the major contributors to evolution, which are 

then subject to mechanisms such as natural selection and genetic drift [18, 94]. The 

larger size of DNA involved in recombination means that recombination introduces 

more diversity than point mutations [95]. A classic example of recombination due to 

selective pressure is in the event of resistance to antibiotics as these loci have been 

identified as recombination hotspots [17, 96]. 

Furthermore, WGS has been utilised in comparative genomic studies to identify 

virulence determinants that contribute to the different invasive propensities observed 

between similar serotypes found in different geographical locations [29]. WGS has 

also been used extensively to study the mechanisms of antibiotic resistance through 

horizontal gene transfer from other successful bacteria in the same niche [97]. 

The use of WGS in reverse vaccinology has also been explored. Wizemann et al. [80] 

used surface exposed protein motifs to screen for pneumococcal surface proteins. 

The identified proteins were cloned and recombinant protein used to immunise mice 

before being challenged with lethal doses of S. pneumoniae to look for protective 

candidates. The limitation of this study however was the low number of isolates with 

every serotype represented by only one isolate. This makes it impossible to evaluate 

the level of conservation of these proteins or even the diversity within the same 

serotype or between serotypes. 
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Furthermore, another study used a similar approach to scan for proteins present in 

only S. pneumoniae and absent in other Streptococcus species [98]. Although they 

chose 13 proteins that were present in all their isolates (51) covering 29 serotypes, 

these were also found in other Streptococcus species. Similar to the earlier study, their 

sample size of 51 was too small for conservation studies and they may have missed 

a lot of potential candidates in their study [98].  

 

 

1.12 Thesis Aims and Objectives 
 

With the above in mind, I have designed my MPhil to make a holistic evaluation of a 

particular family of pneumococcal surface proteins, ‘the lipoproteins’, as potential 

vaccine candidates.  

 

The interest in lipoproteins is due to the many important roles they play such as in cell 

signalling, substrate binding and transport, antibiotic resistance as well as protein 

export and folding [99]. Some lipoproteins have been shown to play a role in both 

bacterial colonisation and pathogenesis. Pneumococcal lipoprotein PsaA has been 

shown to have an indirect role in colonisation and it is also essential for full virulence 

[100]. Furthermore, several other pneumococcal lipoproteins especially metal 

transporters have also been implicated in the virulence of this pathogen. These include 

the zinc transporters AdcAI and AdcAII and the ABC iron transporters PiuA and PiaA 

[23, 101]. Lipoproteins’ role in virulence have also been demonstrated in other Gram-

positive bacteria such as the LpK of Mycobacterium leprae, which induces human 

interleukin 12 during infection [102]. Also, their role in conjugation, protein secretion 

and localisation, sensing of their environment as well as their involvement in the spore 

cycle of Bacillus subtilis have also been speculated [103]. 

 

In this MPhil thesis, I will utilise the whole genome sequences of S. pneumoniae 

isolated from the Gambia through the Bill and Melinda Gates Foundation-funded 

Global Pneumococcal Sequencing (GPS) Project available to me at the Sanger 

Institute to evaluate lipoprotein genes. These samples include both invasive and 
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carriage samples therefore, this will give me a broader perspective of the protein 

distribution in both sets of data. The aims are to: 

1. Identify all the surface exposed lipoprotein genes in these genomes. 

2. Determine their level of conservation (prevalence) and diversity 

3. Determine if there is association between alleles of these genes and 

pathogenic potential (i.e. ratio of prevalence in disease vs. carriage) 

4. Use bioinformatics techniques to predict surface exposure and antigenicity of 

these proteins, which should aid in identifying those that have a greater 

potential to be successful vaccine candidates. 
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2 Methods 

 

2.1 Ethical Approval 
 

Written informed consent was sought and obtained from all adult study participants 

and from guardian/parent of all participants under the age of 18 in the form of a 

signature or a thumb-print from participants who could not write. This study (GPS) was 

approved by the joint MRC/Gambia government ethics committee under the study 

number SCC1188. 

 

 

2.2 Global Pneumococcal Sequencing Project 
 

GPS is a multi-site study which aims to understand the population genetics of the 

pneumococcus in response to vaccinations with a particular focus on developing 

countries. This study officially started in October 2011 and deep sampling was carried 

out in 12 developing countries in sub-Saharan Africa, Asia and South America.  

Publicly available pneumococcal genome datasets were also included in this study. 

The aim is to sequence 20, 000 genomes spread across about 50 countries and 

including isolates from pre-PCV, during vaccination and post-vaccination (Fig 2.1). 

The founding partners are Wellcome Trust Sanger Institute, Emory University, Bill and 

Melinda Gates Foundation, Centre for Disease Control and Prevention, MRC-The 

Gambia, National Institute for Communicable Diseases (NIDC, South Africa) and 

Malawi-Liverpool-Wellcome Clinical Research Programme, however, as mentioned 

above my project is only focused on those isolates isolated in The Gambia from MRC-

The Gambia. 
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Figure 2.1 GPS sample collection sites. 

The places from which the GPS samples are being obtained. USA is among the 

countries despite being a developed country because it was the first country to 

introduce a PCV vaccine.  

Adapted from: (http://www.pneumogen.net/gps/project_outline.html) 

 

 

 

2.3 Sampling 
 

The Gambia is a small West African state with a population of approximately 2 million 

people [104]. Nasopharyngeal swabs (NPS) were collected from healthy adults and 

children in Sibanor, located in the Western River Region of The Gambia (Fig. 2.2). 

This region shares borders with Casamance, southern Senegal. Most people in this 

area are of the Jola and Mandinka ethnic group who are mostly subsistence farmers. 

Most of the other samples were collected from Fajara and the remaining from the 

Sample	Allocation	of	the	GPS	study

Malawi USA Global	strain	bank

Gambia	and	West	Africa South	Africa Other	GAVI	eligible	countries
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Central and Upper river regions of the Gambia. There are only two seasons in the 

Gambia, a shorter rainy season that runs from late June to October and a dry season. 

The Gambia introduced PCV7 in its expanded programme of immunisation in August 

2009, applying WHO’s 3+0 protocol where vaccines are administered to babies at 2, 

3 and 4 months. PCV7 was later replaced with PCV13 in May 2011 [75].  

 

 

Figure 2.2 Partial map of The Gambia. 

Partial map of The Gambia showing the two main sample sites, Fajara and Sibanor 

in the Western River Region. Samples were also collected from Central and Upper 

river regions of The Gambia, which are the middle part and the east-most part of the 

country respectively (Not shown in the map).  

Adapted from Ceesay et al. [105] 

 

 

 

Because of sampling constraints, to meet the quota, all the isolates that were isolated 

in the Gambia were sent for sequencing. These samples were divided into three age 

groups including, children aged £2 years, those aged more than 2 years but £5 years 

and those children and adults aged more than 5 years.  
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For the carriage study, a cotton swab was inserted through the nostrils up to the 

nasopharynx of both participating adults and children. The swab is then gently 

swabbed against the walls of the nasopharynx and samples stored in vials containing 

Skim milk-Tryptone-Glucose-Glycerol (STGG) and transported on ice to a -80 degrees 

Celsius storage facility within 8 hours prior to microbiological culture and isolation of 

Streptococcus pneumoniae as per WHO protocol [106]. Additionally, all invasive 

isolates of Streptococcus pneumoniae recovered from the MRCG ward were also 

included in this study. 

Together with the swab samples, meta-data was also collected including the 

vaccination status of the individual, sex and age.  

 

2.4 Dataset 
 

The sample collection years in this dataset range from 1993 to 2014. They were all 

isolated from The Gambia and had passed post-sequencing quality control (QC). 

These include 1268 from carriage, 4 unknown and 497 isolates from invasive disease, 

which amounts to a total of 1769 genomes. The source of the invasive isolates is as 

follows; Ascetic fluid 2(0.4%), Blood 367 (73.8%), cerebrospinal fluid (CSF) 50 

(10.1%), Knee aspirate 2(0.4%), lung aspirate 62(12.5%), Pleural aspirate/fluid 5 

(1%), and 9(1.8%) are unknown. Although some isolates are missing data on gender, 

overall, there were more males than females in the study population with about 820 

(43%) males and 650 (35%) females and the rest had no data on gender as illustrated 

in Figure 2.3. 
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Figure 2.3 Gender distribution of the isolates in this dataset. 

 

 

 

2.5 Microbiological isolation, DNA extraction and Quantification  
 

All the genome samples sequenced in this dataset were isolated from MRC-The 

Gambia laboratories. S. pneumoniae was isolated from nasopharyngeal swab 

samples in the case of carriage and other sites including blood, CSF or lung aspirates 

for the invasive samples. The samples were isolated using conventional microbiology 

techniques as detailed in document identification code ASSAY-RML-123, version 1.0. 

Subsequently, a confluent growth of a sub-cultured single colony from each isolate 

was harvested and DNA extracted using QiaAmp DNA mini kit, also detailed in 

document number ASSAY-MML-003, version 4.0. The aim of the extraction is to 

isolate >1µg/mL of RNA free double stranded DNA. DNA quantification was performed 
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using the Pico green technique also detailed in version 1.0. of document code ASSAY-

MML-005. 

 

 

2.6 Sequencing and Assembly pipeline 
 

WGS was done on all the isolates at the Sanger Institute using the Illumina HiSeq 

platform. The mapping and assembly was automated using Sanger Institute 

customised pipelines [107]. 150bp short reads and paired-end reads were either 

mapped to ATCC 700669, serotype 23F (ST81) strain using BWA/SMALT or 

assembled de novo as illustrated in Fig 2.4 below. Initially, VelvetOptimiser 

(https://github.com/tseemann/VelvetOptimiser) was used to determine the kmer size 

prior to assembly by Velvet [108]. Scaffolding of the assembled contigs using paired-

end reads to assess the orientation, order and distance was then achieved by 

SSPACE [109] and then GapFiller [110], which also uses paired-end reads was used 

to fill the gaps within scaffolds. Next, the assemblies underwent automatic annotation 

using Prokka [111]. 

 

 

 

Figure 2.4 De novo assembly with the Sanger Institute pipeline. 

An overview of de novo assembly of the Sanger Institute assembly pipeline. 

VelvetOptimiser determines the optimal kmer size then Velvet assembles the 

contigs. Subsequently, SSPACE is used for Scaffolding the contigs and GapFiller to 

fill the gaps within scaffolds. 

Adapted from Page et al. [107] 
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2.7 Post-Sequencing Quality Control (QC) 
 

The parameters for QC were developed to prevent the exclusion of good quality data 

but also importantly, to avoid the inclusion of bad quality data in the final dataset. 

Accordingly, all sequenced data must fulfil all the following conditions to be considered 

to pass the QC; 

1. Sequence reads must map to >60% of the genome of pneumococcal reference 

strain ATCC 700669 

2. The average coverage depth must be greater than 20x 

3. Only <1% of reads assigned to another taxon other than the pneumococcus by 

Kraken [112] is allowed 

4. Assembly length must be between 1,900,000 and 2,300,000bp long and 

5. The reads must assemble to less than 500 contigs. 

 

 

2.8 In-silico MLST and Serotyping 
 

An in-silico MLST was performed using a script [113]. This script used seven house-

keeping genes (aroE, gdh, gki, recP, spi, xpt, and ddl) to assign sequence types (STs) 

to all the genomes. Furthermore, to confirm the serotyping done by conventional 

Quellung method, an in-silico serotyping was also performed using pneumoCAT [114]. 

PneumoCAT maps reads to 92 known pneumococcal capsule loci and an addition two 

subtypes. When the reads match >90% to a single locus then the call is made 

immediately and the run terminates, otherwise, a second step is undertaken when the 

reads match >90% to more than 1 locus using a capsular type variant database to 

distinguish serotypes between serogroups [114]. 

 

2.9 Bayesian Analysis of Population Structure (BAPS) clustering 
 

Further, hierBAPS [115] clustering was performed on a subset of all the GPS samples. 

This comprised of ~13,000 genome alignments and the cluster of the rest of the 

samples were inferred from their ST. The hierBAPS separates lineages in a dataset 

by clustering sequences of the same lineages together. 
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2.10 Whole genome phylogeny (FastTree) 
 

In this study, FastTree [116] was used for the reconstruction of the whole genome 

phylogeny. This was chosen especially because of its speed with many sequences 

and because it produces trees close enough to trees produced by other precise 

maximum-likelihood methods [116]. Prior to building the tree, all the sequence reads 

and the reads from a non-typable strain from USA as the outgroup were mapped to S. 

pneumoniae reference strain ATCC700669 to create aligned pseudogenomes. Then 

the SNP sites were extracted using SNP-sites [117] excluding the reference strain. 

Finally, the SNP alignment was used to reconstruct the phylogenetic tree in FastTree. 

 

 

2.11 Lipoprotein genes identification 
 

Since, lipoproteins are the main focus of my analysis, I developed a multi-step 

algorithm to extract my genes of interest from the genomes and also use further 

bioinformatics tools to verify true lipoproteins. These steps are illustrated in Fig. 2.5. 

Initially, Roary [118] was run with the option to not separate paralogs. Roary produces 

a pan-genome reference file in fasta format containing a reference sequence for every 

gene in the pan-genome and gene-presence/absence file for every genome in comma 

separated value (CSV) format. The sequences in the pan-genome file are produced 

as nucleotides and therefore was translated into amino acids to enable querying with 

my lipoprotein specific patterns. 
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Figure 2.5 Steps taken to select candidate lipoproteins. 

This diagram shows the steps that were taken to identify lipoprotein gene, extraction 

of the genes and visualisation and alignment of the genes. 

 

 

Subsequently, a Biopython [119] script was used to parse the translated pan-genome 

reference file, identifying lipoprotein genes using three different patterns. Briefly, the 

Prosite pattern PS52157 [120], the G+LPP[121] and the G+LPPv2[122] patterns were 

used (Table 2.1). The sensitivity and specificity of the G+LPPv2  have been showed 

to be 1.000 and 0.891  respectively when tested against a known Gram-positive 

lipoprotein dataset [122]. The G+LPP, G+LPPv2 and Prosite patterns produced 127, 

136 and 167 lipoprotein hits respectively which resulted into a total of 169 unique hits. 

For lineages that seem to be missing a particular protein, I built a local blast database 

using their assembled genomes and using the specific gene sequence from a 

reference genome (D39) as query for the blast search [123]. This added step was 

performed to verify if they really lacked the protein or have a more divergent protein to 

the others. A further mapping step was performed on all the genomes missing a gene 

of interest to ascertain true absences. The reads of the genomes were mapped on to 

a reference gene (D39) with about 100bp flanking regions. 

 

 

Roary

• Pan-genome
• Gene	presence/absence	file

Biopython

• Lipoprotein	gene	identification
• Gene	extraction	from	FFN	files

SeaView

• Viewing	gene	sequences
• Alignment	(MUSCLE	within	SeaView)
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Table 2.1 Patterns used for lipoprotein search. 

This table shows the patterns used to do the lipoprotein search with their pattern 

expressions. Adapted from Rahman et al. [122] 

 

Pattern Pattern Expression 

G+LPP <[MV]-X(0,13)-[RK]-[^DERKQ](6,20)-[LIVMFESTAG]-

[LVIAM]-[IVMSTAG]-[AG]-C 

G+LPPv2 <[MV]-X(0,13)-[RK]-[^DERK](6,20)-[LIVMFESTAGPC]-

[LVIAMFTG]-[IVMSTAGCP]-[AGS]-C 

Prosite (PS51257a) [^DERK](6)-[LIVMFWSTAG](2)-[LIVMFYSTAGCQ]-[AGS]-

C 
 

a The Prosite pattern has an additional rule that there must be a K or R in the first 7 

amino acids and the conserved cysteine must appear between amino acid position 15 

and 35. 

 

 

Only those present in ³90% of the genomes were selected for further testing. The 

selected lipoproteins were further investigated by using the online available 

bioinformatics tools; SignalP 4.0 a neural network-based method [124], Phobius, 

based on a hidden Markov model and predicts both transmembrane topology and the 

signal peptide of a protein [125], DOLOP [126, 127] and LipoP, which although 

developed for predicting lipoprotein of Gram-negative bacteria, still correctly predicts 

about 93% of Gram-positive lipoproteins [82]. It has also been described by Rahman 

et al. as being the single best performing tool for lipoprotein confirmation in their study 

[122].  

 

Furthermore, the LipoP prediction server also gives the residue at position +2 of the 

conserved cysteine residue. It has been shown that having aspartate (D) at that 

position is associated with lipoproteins attached to the inner membrane, therefore, not 

expressed on the outer surface of the cell. However, this is not entirely straightforward 

as other positions also seem to play a part in it [81, 128].  
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By combining the search results of the Prosite, G+LPP and G+LPPv2 patterns, and 

subsequently verifying them with the online tools mentioned above, the chances of 

missing any lipoprotein from this screening are low. 

 

2.12 Gene Extraction 
 

With a high level of certainty, I set out to extract the nucleotide sequences of the 

selected protein from all the genomes. First, the annotation ffn files from Prokka of all 

the genomes were concatenated to create a database. Then, I developed a Biopython 

script that used the gene-presence/absence file to get the unique gene identifiers and 

used that information to extract the genes from the database. 

 

2.13 Gene Visualisation, Alignment and Phylogenies 
 

All the gene sequences were visualised for insertions, deletions and polymorphisms 

using SeaView [129]. These sequences were all aligned using MUSCLE [130] within 

SeaView. 

The alignment files were subsequently used to build phylogenetic gene trees using 

Rapid Axelerated Maximum Likelihood (RAxML) [131]. This was run with the option to 

omit sequences less than 80% of the reference sequence length to avoid the addition 

of truncated genes in my tree. 

 

2.14 Gene Allele assignment 
 

Allele assignment was performed in two simple steps. First, the gene nucleotide 

sequences were translated to amino acids using SeaView [129]. This was done to 

exclude the effect of synonymous polymorphisms. Second, the amino acid sequence 

alignments of all the lipoprotein genes in this dataset were individually parsed using a 

script to assign alleles. This script takes the first sequence in the alignment and 

assigns it an allele number (i.e. 1), then iteratively, assigns a new allele number to any 

new allele variant found. 
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2.15 Tree Annotation 
 

The whole genome tree was annotation with the serotype, BAPS cluster, disease 

status and gene-presence/absence information of all the candidate proteins using 

Phandango [132]. Each protein tree was also annotated with their serotype 

information, BAPS clusters, disease status and allele information using both 

Phandango and interactive Tree of Life (iTOL) [132, 133].  

 

2.16 Protein Antigenicity 
 

For a successful vaccine design, proteins are selected that are capable of inducing 

sufficient immune response through their antibody binding sites called epitopes [134]. 

Epitopes are recognised by the immune system and hence causes B-cells of the 

immune system to produce antibodies against the protein [135]. Epitopes that are 

formed by different parts of the polypeptide but are within spatial proximity of each 

other due to protein folding are called discontinuous epitopes while epitopes which are 

from a single stretch of the polypeptide are known as continuous or linear epitopes 

[135]. Since a desirable quality of a potential protein vaccine will be the possession of 

both types of epitopes, I sought to identify these in my protein dataset, however, 

bearing in mind that possession of an epitope does not completely explain what will 

happen in vivo but a very important step in identifying those that are most likely to 

make a good vaccine candidate. 

 

I used four linear epitope prediction methods that make use of different propensity 

scales based on the physio-chemical properties of amino acids to assign them 

numerical values. Also, a sliding window rule is applied to determine the overall score 

of segments of the sequence at a time. A few groups used amino acid hydrophilicity 

to develop their propensity scale [136, 137], others used antigenicity [138], secondary 

structure [139], b-turn scale [140] as well as accessibility  to develop their propensity 

scales. The four prediction methods used here are the Bepipred, which is a 

combination of the Parker hydrophilicity scale and a hidden Markov model is the most 

sensitive amongst the tools used here, Parker hydrophilicity prediction, Chou and 
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Fasman Beta-Turn, and the Karplus and Schulz flexibility prediction method were also 

used [135, 136, 141, 142]. 

Additionally, due to the fact that only approximately 10% of epitopes are linear and 

that all the methods mentioned above are trained to detect linear epitopes, I went on 

to predict discontinuous epitopes in my protein dataset by using two defined tools 

called ElliPro and DiscoTope2 [134, 143]. DiscoTope is one of the first tools developed 

to predict discontinuous epitopes and it uses a combination of amino acid statistics, 

spatial information and surface accessibility to predict discontinuous epitopes [134]. 

Conversely, ElliPro  predicts epitopes using the concept of Thornton and colleagues 

[144], who showed correlation between regions protruding from a protein’s globular 

structure and known continuous epitopes in three different proteins. While the 

Thornton method is based on two steps including, predicting the ellipsoid structure of 

the protein, and calculating residue protrusion index (PI) using the a-C atom, ElliPro 

calculates PI using the residue’s centre of mass and added another step where it uses 

residue PI to cluster neighbouring residues [143, 144]. Both these prediction methods 

use the protein structure to predict discontinuous epitopes. Accordingly, I searched 

the protein data bank (PDB) [145], which has over 130,000 experimentally verified 

protein structures using the amino acid sequences of my proteins. However, when 

there wasn’t any appropriate structure (i.e. a structure with ³50% amino acid identity 

with my protein) in PDB, I used de novo protein structure modelling tools I-TASSER 

(Iterative Threading ASSEmbly Refinement) [146-148] or the Phyre2 (Protein 

Homology/AnalogY Recognition Engine) server [149] to model my proteins with high 

confidence. Initially, Phyre2 was used to model the proteins and when it fails to 

produce a model with >90% confidence then I went on to use I-TASSER, which has 

been shown to perform better than all the modellers in all aspects of the critical 

assessment of protein structure prediction (CASP) [149]. 

 

2.17 Protein 3D structure 
 

The idea behind using a protein model to predict discontinuous epitopes is due to the 

fact that despite low sequence identity (as low as 40%) of two proteins in the same 

protein family, their structures can still be similar. This is because protein structures 

are more conserved than their primary sequences in the family [150]. Nonetheless, 
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the higher the sequence identity and the lesser the alignment gaps between two 

proteins the more likely their structural similarity [150]. Even though most models will 

produce similar results at ~40% sequence similarity, I chose a more stringent cut-off 

of 50% identity to improve the quality of my models [150].  

 

2.18 Presence in other non-pneumococcal streptococci 
 

An ideal protein vaccine will be a vaccine that clears the S. pneumoniae without 

affecting non-pneumococcal streptococci. In that regard, I searched both the NCBI 

non-redundant protein database and UniProt to investigate if the proteins in this 

dataset are also present in other streptococcus species or not. 

 

2.19 Rank order 
 

Finally, I developed a simple algorithm to rank my candidates by order of their potential 

as vaccine candidate. I used simple criteria to assign them scores and used their 

overall score to rank them. The criteria used here are:  

1) Size of the protein, (i.e. bigger meaning better) 

2) Level of Diversity (less alleles scored higher) 

3) Proportion of protein predicted as immunogenic 

4) Number of protein chains and, 

5) Level of conservation (% presence in genomes)  

  

First, the proteins with sequence lengths between 100-150 amino acids were scored 

1 (the lowest), those between 151-200 were scored two and so on. Second, proteins 

with allele counts between 121-130 were scored 2, those between 111-120 were 

scored 4 and so on. Third, the proteins scored exactly as the percentage of the protein 

predicted to be an epitope by ElliPro. Fourth, they are scored double the number of 

chains they have. Finally, proteins are scored based on their level of conservation. 

100% scored a maximum 10 points, 99.9 scored 9.9, and 94% scored 4 points. The 

total scores were used to rank the lipoproteins with the lipoprotein with the highest 

overall score ranked first.   
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3.0 Results 

 

3.1 Serotyping 
 

The capsule of the pneumococcus is its single most important virulence determinant 

and it is the basis for assigning serotypes. The in-silico serotyping performed in this 

study yielded 68 serotypes including all the serotypes in the presently licensed 

vaccines. A recently described serotype 35 variant assigned serotype 35D was also 

seen in this dataset [151].  

In this study, serotype 1 and 5 were the leading causes of invasive disease for most 

years, however from 2011, serotype 12B/12F, which is not included in either PCV7 or 

PCV13 became a prominent cause of IPD. It was the commonest cause of IPD in 2011 

and 2013 and the second and third commonest cause of IPD in 2014 and 2012 

respectively. Serotype 1, which has been reported to be more common in disease than 

carriage [29] was seen 60 times in carriage and 132 times in disease making it the 

commonest cause of IPD. The second biggest contributor to IPD was serotype 5, 

which was isolated only once in carriage and 84 times in disease. One serotype 5 

isolate was from an unknown source.  

 

3.2 MLST and BAPS clustering 
 

MLST was performed on all the isolates and BAPS clustering on a subset of these as 

part of a larger global collection. The BAPS cluster for the rest of the strains was 

inferred from their MLST results. 43 BAPS clusters, representing distinct lineages 

were observed in this dataset. Although it was seen here that serotype 1 has two major 

Sequence Types (STs), ST3081 and ST618 belonging to BAPS clusters 21 and 31 

respectively, there were other less frequent STs such as ST303, 217, 10649, 3575 

which belong to BAPS 21 as well as STs 2084, 3581, 3579, and 618 which belong to 

BAPS 31. ST618 was the most common ST until 2005 with most of the isolates 

appearing in disease. However, ST3081 first appeared in 2004 and although not seen 

in 2005 and 2006, it overtook ST618 as the most common serotype 1 ST in 2007. This 

trend continued until 2014 with ST618 last isolated in 2011 (Table 3.1). Also, serotype 
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1 was seen only 58 times in carriage, ST3081 was responsible for approximately 72% 

(42/58) of those with ST618 isolated only 14 times (24%) in carriage. The other STs 

that contributed to carriage were ST217 and ST303, contributing ~3% each. When 

serotype 1 isolates were divided into two groups based on their area of isolation with 

those isolated in the Western region and Fajara forming one group and those isolated 

from either Central river region or Upper river region forming another group, not a 

single ST618 was isolated in either Central or Upper river region of The Gambia from 

2008-2014. Conversely, ST618 was last seen in the Western river region in 2011. 

 

 

Table 3.1 The distribution of serotype 1 lineages between 1996-2014. 

The columns represent the lineages and the rows represent the year of isolation. 

 

 ST3575 618  612 3579 3581 2084 217 3081 10649 303 

1996 1 6         

1997  2         

1998  1 1 1       

1999  1 1 1       

2000  1         

2001  1         

2002  7   2 2     

2003  5    1 5    

2004  1      1   

2005  2         

2006           

2007  14     2 22  2 

2008  1      23 1  

2009       2 16   

2010  6      13  1 

2011  3      8   

2012        13   

2013       1 7 1  

2014        13   
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Furthermore, the only serotype 5 isolated in carriage was an ST289, BAPS20 lineage. 

This same ST was also responsible for about 28% (24/84) of serotype 5 IPD. The 

other serotype 5 STs that contributed to IPD were 3398, 3404 and 9935, responsible 

for approximately 18%, 52% and 1% respectively. 

Interestingly, all the serotype 12B/12F isolates belong to ST989. The first appearance 

of this strain was in disease, in 2002. It was later isolated in carriage in 2007 and 

reappeared in disease in 2008. Although it increased in carriage in 2009 and 2010, it 

was from 2011 that it began to contribute significantly to invasive disease. 

 

 

3.3 Conserved lipoprotein genes 
 

The focus of the study is to identify pneumococcal lipoproteins, but most importantly, 

lipoproteins that are highly conserved across all serotypes. The lipoprotein pattern 

searches with the G+LPP, G+LPPv2 and the Prosite patterns produced 127, 136 and 

167 results respectively, which together converged into 169 predicted lipoproteins. 

However, looking at their prevalence and choosing only those present in at least 90% 

of genomes, a total of 40 genes were selected for further analysis. These genes and 

their prevalence in the genomes screened are summarised in Figure 3.1. Additionally, 

those genes predicted to be lipoproteins by the Roary output were also included in the 

downstream screening tests. Together 55 putative lipoproteins were tested using the 

four tools mentioned above (SignalP, LipoP, Phobius and DOLOP) and only the 

proteins predicted to be lipoproteins in at least 3 of the four tools were selected for 

further analyses. These proteins are 30 in total as shown in Table 3.2.
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Figure 3.1 This figure shows a subset of the lipoproteins from the pattern searches and their prevalence. 
These lipoproteins were arranged from left to right in order of decreasing prevalence. The x-axis has the gene names while the y-

axis is their prevalence in the genomes screened.	
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3.4 Whole Genome Phylogeny 
 

The whole genome phylogenetic tree was typical in that serotypes clustered together 

but also revealed potential serotype switching events, where a serotype is observed 

in multiple lineages on the tree such as serotype 6B(6E) (Fig. 3.2). The gene 

presence/absence information for the 30 candidate proteins were over-laid on this tree 

to reveal several interesting observations. Absence here means completely absent 

from the genome or truncated (less than 80% sequence length). First, iron transporter 

pitA was present in 1666 (94%) of genomes. It was mostly absent in two lineages that 

produce the same serotype, serotype 23B and genotype 23B+. It was also absent in 

7/16 (~43%) of serotype 17F isolates, two of which were recovered in disease. Further, 

pitA was absent in 5/34 (~15%) of serotype 16F isolates and again 2 of these isolates 

were disease isolates recovered from adult patients. A serotype 19A disease isolate 

from a child <2years old also lacked pitA as well as 2 serotype-4 disease isolates from 

adults. 
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Figure 3.2 Whole genome phylogenetic tree with candidate gene 
presence/absence profiles. 
The first three columns represent Serotypes, BAPS clusters and Disease status 

respectively. Black in the rest of the columns represents absence and any other colour 

represents presence. 
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The piaA gene, which encodes another iron transporter was found in ~98% of 

genomes covering all serotypes including some non-typables (NT). However, it was 

also missing in a subset of the NTs. All the genomes it was missing in belonged to 

BAPS cluster 47 (~95%) except 1 isolate, which belonged to BAPS cluster 56. This 

was also true for the recently identified iron transporter gene, SPD_1609, which was 

absent in 11 strains, all NTs within BAPS cluster 47. The overall prevalence of 

SPD_1609 in the genomes was approximately 99%. 

 

The zinc transporter lipoprotein encoding gene, adcA is also highly prevalent in the 

screened genomes with almost 100% of genomes possessing it. It is absent in only 5 

NTs, 4 of which belonged to BAPS 56 and the remaining one to BAPS 47. 

 

Further, aliA was present in approximately 99% of genomes and absent (truncated in 

this case) in 22 genomes, however, all the absences occurred in serotype 3. They 

occurred in serotype 3 within BAPS clusters 8, 12, 48, and 49. About 40% of the 

serotype 3 isolates were isolated from disease and all the BAPS clusters had 

representatives in this group.  

Another gene absent in more than 20 genomes was the livJ. This gene is absent in 

both disease and carriage strains covering several serotypes (12B/12F, 1, 3, 6A, 9V, 

23F, 23B1, 7F, 39, 10A and 22A). 10 of the 23 strains it was absent in were disease 

isolates. The disease isolates include 4/5 of serotype 12B/12F, which was the most 

prevalent serotype in the disease isolates, one serotype 9V, one of 6A, one 23F, one 

7F and a serotype 3 strain.  

 

The amiA gene was absent in only 3 strains, 1 serotype 9V belonged to BAPS 40 and 

isolated from disease and serotypes 11A and 23A both carriage strains and belonged 

to BAPS 18 and 63 respectively. malX was truncated or absent in 14 samples including 

both carriage and disease strains. The strains it was absent in include serotypes 9L 

(1), 12B/12F (1), 6B(6E) (1), 38 (2), 1 (2), 5 (1), 23F (1), 6A (1), 15A (1), 23B (1) and 

NT (2). The tcyA gene had an overall prevalence of approximately 100%. It was absent 

in only 5 genomes and these genomes belonged to serotypes, 14, 5, 6A, 11A, and 

6B(6E). However, only the serotype 5 strain was a disease isolate. 
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glnH was found in all the isolates but was found to be truncated in as many as 38 

isolates of which 20 were recovered from disease. These diseased strains include 

serotypes 1 (60%), 3 (25%), 5 (10%) and 19A (5%). 

 

Further, Group_2056 genes were absent in a total of 13 strains and all these strains 

were carriage strains. Serotype 6A strains accounted for about 70% of absences. One 

each of serotypes 23F, 11A, 19A, and 15A were also lacking this gene. Group_2298 

was absent in 31 samples, all of which were NTs. BAPS cluster 47 was represented 

~94% and one strain each of BAPS 56 and 2 also lacked the gene. 

Group_510 was one of the less prevalent genes in this data set as it was absent in 71 

genomes. 21 (~30%) of these genomes were found in disease. The disease isolates 

include several serotypes including 3, 38, 25F, 22F, 18C, 18A, 17F, 23A, and 6B. 

Group_953 is absent in only one strain belonging to serotype 9V and recovered in 

carriage. 

 

prsA_1 was also highly prevalent and was found to be absent in only 2 strains 

belonging to serotype 38 BAPS 37 and serotype 19A BAPS 65. Both strains were 

carriage strains. Gene tcyJ was almost 100% prevalent but it was absent in a single 

serotype 6B, BAPS 23 strain which was recovered from disease. Similarly, tmpC was 

also absent in only one serotype 7F carriage isolate belonging to BAPS cluster 11. 

Also, vanYb was absent in only 2 serotype 6A strains, both recovered from carriage. 

 

Twelve of the genes in this study were found in all the isolates, these genes include 

piuA, psaA, artP_1, lmb, metQ, pstS_2, tauA, yesO_2, Group_1655, Group_2005, 

Group_2074, and Group_6587. 

 

3.5 Gene Trees and annotation 
 

Using MUSCLE aligned nucleotide sequences, the gene trees were built using RAxML 

[131]. The number of SNP sites used to build each tree is summarised in Table 3.2. 

The trees are not rooted as I am only interested in their relationship to each other. All 

the gene trees were subsequently annotated with serotype information, BAPS cluster, 

disease status as well as the protein alleles. Prior to assigning alleles, the nucleotide 
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sequences were translated into protein sequences to exclude the effect of 

synonymous mutations. The amino acid length and number of alleles found for each 

protein is summarised in Table 3.3. 
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Table 3.2. This table summarises the number of taxa and SNP sites used to 
reconstruct each gene tree. 
Gene No. of taxa No. of SNP sites 
Group_1655 1769 55 

Group_2005 1769 150 

Group_2056 1756 75 

Group_2074 1769 34 

Group_2298 1738 32 

Group_510 1697 41 

Group_6587 1769 96 

Group_953 1768 74 

adcA 1764 190 

aliA 1747 362 

amiA 1766 60 

artP_1 1769 48 

glnH 1731 102 

livJ 1746 134 

lmb 1769 81 

malX 1755 55 

metQ 1769 68 

piaA 1747 38 

piuA 1769 60 

pitA 1666 33 

prsA 1767 51 

psaA 1769 67 

pstS_2 1769 45 

SPD_1609 1758 199 

tauA 1769 67 

tcyA 1764 95 

tcyJ 1768 145 

tmpC 1768 84 

vanYb 1767 256 

yesO_2 1769 68 
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In the phylogenetic maximum likelihood trees shown in Fig. 3.3 through to Fig. 3.32, 

specific serotypes, BAPS cluster and/or allele have been annotated only in special 

cases. The prefixes S-, B- and A- used in the annotations denote serotype, BAPS 

cluster and allele respectively.  
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Table 3.3 Summary of protein length and number of allele. 
Protein AA length No. of 

Alleles 

Group_1655 165 36 

Group_2005 503 26 

Group_2056 445 38 

Group_2074 188 11 

Group_2298 185 26 

Group_510 164 39 

Group_6587 268 31 

Group_953 292 28 

AdcA 501 82 

AliA 662 126 

AmiA 660 37 

artP_1 278 38 

GlnH 275 67 

LivJ 386 37 

Lmb 305 23 

MalX 423 51 

MetQ 284 28 

PiaA 342 31 

PiuA 322 60 

PitA 122 25 

PrsA 316 24 

PsaA 309 17 

PstS_2 291 23 

SPD_1609 357 101 

TauA 335 15 

TcyA 278 40 

TcyJ 266 48 

TmpC 350 21 

VanYb 238 53 

YesO_2 442 19 
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There were 38 SNP sites used for building the phylogeny of the piaA gene Fig. 3.3. 

Briefly, very few clustering by serotype can be seen from this tree. Even though this 

protein has 31 alleles, it is clear from the figure that one allele (assigned number 12 

here) is the dominant allele covering almost every lineage and serotype. However, 

serotype 19A, BAPS 70 strains seem to have a unique allele, 19. Serotype 19A, BAPS 

8 strains have allele 6. Serotype 6A, BAPS 27 strains have both the dominant allele 

12 and a few other strains possessed allele 11.
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Figure 3.3 Phylogenetic gene tree of piaA.  
This tree shows the nucleotide relationship of the genes extracted 

from the genomes.  

38 SNP sites used to reconstruct the phylogeny of the 
piaA gene 
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The piuA gene tree shows some clustering by lineage (Fig. 3.4). Allele 22 is the most prevalent, covering several serotypes and 

lineages including serotype 1, 13, 19A and 19F. Allele 19 has a strong association with disease, with almost 100% of isolates with 

this allele recovered in disease and these strains also belong to serotype 5, BAPS 20. Further, serotype 1 BAPS 31 strains also 

possess a unique allele, 52. 

  

Figure 3.4 Phylogenetic gene tree of piuA. 
This tree shows the nucleotide relationship of the genes extracted 

from the genomes.  

60 SNP sites used for the construction of 
this phylogenetic tree. 
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There is quite some clustering by lineage going on with the SPD_1609 gene tree as illustrated in Fig. 3.5. Serotype 1 and BAPS 31 

strains clustered with other serotypes including 6 and 11B and most of them had allele 65 although a few have allele 4. The rest of 

the serotype 1 strains belonging to BAPS 21 clustered together and had a unique allele (42) to them. Other clustering by serotype 

include serotypes 19A, 5, and 35B. 
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Figure 3.5 Phylogenetic gene tree of SPD_1609.  
This shows the nucleotide relationship of the genes extracted from 
the genomes.  

199 SNP sites were used to reconstruct this gene tree 
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pitA encodes an iron transporter lipoprotein, which had the shortest sequence (122AA) of the iron transporters. Consistently, it also 

had the smallest number of alleles with only 25 alleles. The phylogenetic tree has less clustering by serotype and it has few major 

alleles that cover most serotypes across all lineages (Fig 3.6). A few serotype 19A, BAPS 70 strains have a unique allele. 

  

Figure 3.6 Phylogenetic gene tree of pitA. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

33 SNP sites were used to reconstruct this gene tree. 
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psaA encodes a manganese transporter lipoprotein, PsaA, which had one of the fewest number of alleles (17). Also, there was only 

one dominant allele, 1 (Fig. 3.7). This allele was present in >90% of the genomes and the only serotype that had a unique allele was 

serotype 35B, BAPS 30, which has allele 4. 

  

Figure 3.7 Phylogenetic gene tree of psaA. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

67 SNP sites were used to reconstruct this gene tree. 

 

adcA encodes a zinc transporter lipoprotein. Some lineages had unique protein alleles to them (Fig. 3.8). The two serotype-1 lineages 

(21 and 31) clustered separately. Genes from lineage 31 clustered with other serotypes including 5, 14, 19A and 35B. Lineage 21 
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proteins clustered together and had the same allele with only serotype 25F proteins. Furthermore, a subset of serotype 5, BAPS 20 

proteins which were all recovered from disease also clustered together and had a unique allele (2). 

  

Figure 3.8 Phylogenetic gene tree of adcA. 
This gene tree shows the nucleotide relationship of the genes extracted 

from the genomes.  

190 SNP sites used to reconstruct this gene tree. 
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AliA is a big protein with a sequence length of 662AA. The gene tree shows a lot of clusters with many alleles unique to the serotype 

from which the protein was obtained from (Fig 3.9).  Some of these clusters include serotype 1 protein genes (both lineages) having 

allele 2 unique to them, serotype 19A (BAPS 45, 70, 37, 68 and 65) having allele 4 and some serotype 5 BAPS 20 isolates having 

allele 1. 

  

Figure 3.9 Phylogenetic gene tree of aliA. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

362 SNP sites used to reconstruct this gene tree. 
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AmiA, is a protein approximately the same size as AliA in terms of sequence length. It had two (2 & 3) main alleles which cover almost 

every serotype and several randomly occurring alleles across the tree. Only serotype 1 BAPS 31 and serotype 23F seem to have 

unique alleles (Fig. 3.10). 

 
 

Figure 3.10 Phylogenetic gene tree of amiA. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

60 SNP sites were used to reconstruct this gene tree. 
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The artP_1 phylogenetic tree shows less clustering by serotype except for serotype 1s. It had 38 alleles; however, a few alleles 

represent almost all the lineages (Fig 3.11). Allele 1 covers both lineages of serotype 1 as well as several other lineages representing 

many serotypes such as 19A, 5, 6A, 38, 35B, 25F etc. Alleles 2, 3, 4, 6 and 7 are also major alleles representing several lineages. 

  
Figure 3.11 Phylogenetic gene tree of artP_1. 
This tree shows the nucleotide relationship of the genes extracted 

from the genomes.  

48 SNP sites used to reconstruct this gene tree. 
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The GlnH protein is a 275AA with relatively many alleles (67) (Fig 3.12). Although there were alleles covering several lineages, there 

was also quite a few clustering by lineage in this protein. The two lineages of serotype 1 clustered separately, with each cluster having 

a unique allele. The same is true for serotype 5 BAPS 20 and serotype 19A BAPS 70 strains too. A similar observation is true for 

serotype 10A, 23B and some NTs. 

  

Figure 3.12 Phylogenetic gene tree of glnH. 
This gene tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

102 SNP sites were used to reconstruct this gene tree. 
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Group_510 encodes a short lipoprotein, which had 39 alleles. From the tree, it is clear that two alleles (1 & 2) are more dominant 

covering almost every lineage of every serotype (Fig. 3.13). However, BAPS 5 (serotype 6A and a few 15A), BAPS 63 (23A), and 

BAPS 37 (15B/C and 13) clustered together with a unique allele.  

 
 

Figure 3.13 Phylogenetic gene tree of Group_510. 
This gene tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

41 SNP sites used to reconstruct this gene tree. 

 



 48 

Group_1655 lipoproteins also have a short (165AA) sequence length. The most prominent alleles from the gene tree are alleles 2 

and 4. Additionally, allele 11, which covers BAPS 67 of serotype 12B/12F is also important as this group includes many disease 

strains (Fig. 3.14). 

 
 

Figure 3.14 Phylogenetic gene tree of Group_1655. 
This gene tree shows the nucleotide relationship of the genes extracted from 

the genomes. 

55 SNP sites used to reconstruct this gene tree 
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Group_953 lipoproteins have longer amino acid sequences than both Group_510 and Group_1655 lipoproteins (Table 3.3) and had 

28 alleles. More than 50% of the isolates belonged to allele 1, which includes almost all lineages. Lineages with unique alleles were 

seen only twice. BAPS 70 serotype 19A and BAPS 2 serotype 3 (Fig. 3.15). The latter group has only carriage strains. 

  

Figure 3.15 Phylogenetic gene tree of Group_953. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

74 SNP sites used to reconstruct this gene tree. 
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Analysis of Group_2005 lipoproteins revealed 26 alleles (Fig. 3.16). However, allele 1 represented approximately 90% of genomes 

including all the major lineages and serotypes. This allele also included almost all the disease isolates. The next allele with the most 

members was allele 11, which consists of BAPS 18 serotype 11A and BAPS 37 serotype 19F strains which were all carriage strains. 

 

 

Figure 3.16 Phylogenetic gene tree of Group_2005. 
This tree shows the nucleotide relationship of the genes extracted from the 

genomes. 

150 SNP sites used to reconstruct this gene tree. 
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Group_2056 encodes a long 445AA lipoprotein, which had 38 alleles (Fig. 3.17). Similar to Group_2005, allele 1 represented all the 

major lineages and serotypes. Allele 2 also had a few important lineages including BAPS 8 serotypes 23F and 19F strains as well as 

BAPS 67 serotype 46 strains, some of which were disease strains. 

 
 

Figure 3.17 Phylogenetic gene tree of Group_2056. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes. 

75 SNP sites used to reconstruct this gene tree 
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Further, Group_2074 encode lipoproteins with short sequence lengths (188AA) and hence a relatively small number of alleles (11). 

Alleles 1 and 2 were the only major alleles and together represented >90% of isolates. The NTs, mostly belonging to BAPS 47 and 

a few BAPS 57s were clustered together and had 2 alleles (allele 3 and 6) unique to them (Fig 3.18). Although in the minority, BAPS 

2 of serotype 11B also had a unique allele and this group included some disease strains. 

 

 

Figure 3.18 Phylogenetic gene tree of Group_2074. 
The tree shows the nucleotide relationship of the genes extracted 

from the genomes. 

34 SNP sites used for the reconstruction of this gene tree. 
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Although Group_2298 lipoproteins had a similar amino acid length to Group_2074 proteins (Table 3.3), their allele count of 26 was 

higher (Fig. 3.19). Most of the serotype 1 strains clustered together. Further, both lineage 31 and 21 had unique alleles (allele 5 and 

3 respectively). Allele 2 was the most prevalent and it covered several lineages and allele 6 also had broad coverage. Other alleles 

that were specific to certain lineages include allele 7, 13, and 23 which were unique to 6A BAPS 27, 23A BAPS 63 and 18A BAPS 2 

respectively. 

  

Figure 3.19 Phylogenetic gene tree of Group_2298. 
This tree shows the nucleotide relationship of the genes extracted 

from the genomes. 

32 SNP sites used for the reconstruction of this gene tree 
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31 alleles were found in Group_6587 proteins. Allele 1 and 4 were the dominant alleles covering many lineages including disease 

strains. Allele 21 was found in only serotype 23A BAPS 63 strains. Allele 3 represented both lineages of serotype 1 (21 &31) but was 

also present in serotype 19F BAPS 13 as well as BAPS 2 of serotype 40 and BAPS 5 of 6A, 9A and 9V (Fig. 3.20). 

  

Figure 3.20 Phylogenetic gene tree of Group_6587. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

96 SNP sites used for the reconstruction of this gene tree. 
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LivJ had 37 alleles in this study. Most of the major alleles including alleles 1, 2 and 4 covered several lineages and serotypes, 

however, allele 3 was confined to serotype 1 isolates, representing both lineages (BAPS 21 & 31). Allele 9 was also found in only 

BAPS 67 strains, which included serotypes 46 and 12B/12F strains (Fig. 3.21). 

  

Figure 3.21 Phylogenetic gene tree of livJ. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

134 SNP sites used to reconstruct this gene tree. 
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MalX is a 423AA lipoprotein and had 51 alleles. Despite the high number of alleles, only a few alleles were more prevalent. These 

alleles include 1, 7, 10 and 12. No evidence of an allele being present in only one lineage was apparent. 

  

Figure 3.22 Phylogenetic gene tree of malX. 
This tree shows the nucleotide relationship of the genes extracted from the 

genomes.  

55 SNP sites used to reconstruct this gene tree. 
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The lmb gene encodes a 305AA long lipoprotein, which had 23 alleles. Phylogenetic analysis showed serotype clustering of only 

serotype 1s and 5s. Allele 1 was the most prevalent allele and represented many lineages including BAPS 67 of serotype 12B/12F, 

which consisted of many disease isolates. Further, alleles 2 and 3 were very important as they covered the highly virulent serotype 

5 and 1 lineages respectively. 

 

 

Figure 3.23 Phylogenetic gene tree of lmb. 
This tree shows the nucleotide relationship of the genes extracted from the 

genomes. 

81 SNP sites used to reconstruct this gene 
tree. 
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The MetQ lipoprotein had 28 alleles. Allele 2 was clearly the most prevalent allele, but there were other alleles covering important 

lineages including disease strains. These include allele 5 and 7 as well as allele 1, which covered both lineages of serotype 1 and a 

few serotype-4 BAPS 9 and serotype 23F BAPS 60 & 68 strains. 

 
 

Figure 3.24 Phylogenetic gene tree of metQ.  68 SNP sites used to reconstruct this gene tree. 
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The PstS_2 lipoproteins are typically 291AA long and had 23 alleles here. From the phylogenetic gene tree analysis, it was clear that 

allele 1 was the predominant allele present in more than half the isolates. A few BAPS 21 isolates clustered with BAPS 31 strains as 

well as BAPS 18 (serotype 11A and 20), BAPS 2 (19F) and BAPS 56 (14 and NTs) strains, all having allele 4. However, most BAPS 

21 strains clustered away from these and had a unique allele, 2. 

  
Figure 3.25 Phylogenetic gene tree of pstS_2. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

45 SNP sites used to reconstruct this gene tree. 

 



 60 

PrsA is a 316AA protein with 24 alleles seen. Similar to some of the proteins already seen, one allele (allele 1) was present in more 

than half the genomes. The next two alleles prevalent in this protein were alleles 4 and 2. Allele 4 was present in more lineages than 

allele 2 but allele 2 was the prevalent allele in both lineages of serotype 1 except a few strains which possessed allele 10.  

 
 

Figure 3.26 Phylogenetic gene tree prsA. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

51 SNP sites used to reconstruct this gene tree 
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The tcyA gene encodes a 278AA protein with 40 alleles here. Allele 1 was predominant, present in many lineages including the 

serotype 1 lineages. Another allele also prevalent in several lineages was allele 6. Allele 2 was present in almost all serotype 5 BAPS 

20 strains. Furthermore, it was present in approximately all strains of serotype 14, some BAPS 37 serotype 19F strains and also 

BAPS 56 of NTs. 

  

Figure 3.27 Phylogenetic gene tree of tcyA. 
This tree shows the nucleotide relationship of the genes extracted 

from the genomes.  

95 SNP sites used to reconstruct this gene tree. 
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Predicted lipoprotein TcyJ is 266AA long with relatively many alleles (48). It had several alleles that were prevalent in several lineages 

including alleles, 1, 3, 9 and 10. Allele 3 was the predominant allele in both lineages of serotype 1. Another allele prevalent in an 

important lineage (BAPS 20, serotype 5) was allele 2. 

  

Figure 3.28 Phylogenetic gene tree of tcyJ. 
This tree shows the nucleotide relationship of the genes extracted from 

the genomes.  

145 SNP sites used for the reconstruction of this gene 
tree. 
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TmpC had only 21 alleles even though it is 350AA long. Allele 1 was the most abundant allele in this protein. Together with alleles 2, 

3, 5 and 7, they represented more than 90% of the genomes. All of these alleles covered several lineages but allele 7 had a higher 

prevalence in BAPS 67 serotype 12B/12F strains with a few other lineages including BAPS 12 & 2 (serotype 3), BAPS 13 (19F) and 

BAPS 47 (NTs). 

 
 

Figure 3.29 Phylogenetic gene tree of tmpC. 
This tree shows the nucleotide relationship of the genes 

extracted from the genomes.  

84 SNP sites used to reconstruct this gene tree. 
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VanYb is 238AA long with 53 alleles. More than 30% of genomes had allele 4, which was the most prevalent allele. Other major 

alleles included allele 1, 5, 14, 16 and 3. The latter was the predominant allele in serotype 5, BAPS 20 strains. 

  

Figure 3.30 Phylogenetic gene tree of vanYb. 
This tree shows the nucleotide relationship of the genes extracted from the 

genomes.  

256 SNP sites used to reconstruct this gene tree. 
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The YesO_2 protein was a large protein with 442AA. It had only 19 alleles here. More than 90% of the genomes had allele 1, which 

covered approximately all lineages. The next most prevalent allele was allele 4 seen in some 19A, 9V and serotype 13 isolates. 

 
 

Figure 3.31 Phylogenetic gene tree of yesO_2. 
This tree stars the nucleotide relationship of the genes extracted 

from the genomes.  

 

68 SNP sites used to reconstruct this gene tree. 
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TauA lipoprotein is an interesting protein which was 335AA long and has only 15 alleles. Like YesO_2, more than 90% of the genomes 

possessed allele 1. Some BAPS 47 NTs had a unique allele, 8. 

 
 

Figure 3.32 Phylogenetic gene tree of tauA. 
This gene tree shows the nucleotide relationship of the genes extracted from the 

genomes.  

67 SNP sites used to reconstruct this 
gene tree. 
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3.6 Protein Epitope Prediction 

 

The linear epitope prediction of all the proteins was performed using the four prediction 

methods mentioned earlier. Subsequently, their discontinuous epitopes were 

predicted by both DiscoTope2 and ElliPro. The proportion of the mature proteins 

predicted by each of the linear prediction as epitope is depicted in Figure 3.33. 

Consistent with being the most sensitive of all the linear prediction tools, the Bepipred 

method had predicted more regions as epitopes than any other method overall. This 

next method with the highest percentage of protein predicted as epitope is the Karplus 

and Schulz method followed by the Parker method. The Parker method is only slightly 

more sensitive than the Chou and Fasman method. The schematic representation of 

the predicted epitopes from the all four methods are also presented below. For all the 

linear prediction methods, the curves above the threshold (red line) are the predicted 

epitopes coloured yellow. 

 

Furthermore, the discontinuous epitope prediction by ElliPro also gives the actual 

number of both predicted linear and discontinuous epitopes and these are presented 

in Table 3.5. Both ElliPro and DiscoTope2 predicted discontinuous epitopes will be 

presented using Jmol [152]. For both prediction methods, yellow represents predicted 

sites. Proteins will be grouped according to function and only a few examples will be 

presented here and the rest would be in the appendix. Additionally, the proportion of 

the proteins predicted to be part of an epitope are presented in Fig. 3.32.  Based on 

this analysis, the most immunogenic proteins include TauA, GlnH, Group_2074, 

Group_2005 and VanYb.   All of these proteins except GlnH are ranked amongst the 

top 10 proteins in my ranking scheme (Table 3.6).
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Figure 3.33 Percentage of mature protein predicted as an Epitope 
The percentage of the mature protein predicted by each linear epitope prediction method is presented here. Green represents the Bepipred method, Red 
represents the Parker method, Black is the Chou and Fasman method and Blue is the Karplus and Schulz method. The height of the bars represents the 
percentage of the mature protein predicted as an epitope. Error bars are also placed on top of each bar.   The Bepipred method, which has shown to be the 
more sensitive of all the methods have been consistent in predicting a greater percentage of the proteins as epitopes except in two proteins. The Karplus and 
Schulz method has the second highest sensitivity overall followed by the Parker method, which is slightly more sensitive than the Chou and Fasman method.
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Figure 3.34 Percentage of proteins predicted as epitope by ElliPro 
The horizontal axis is labelled with the protein names and the vertical axis has the 
percentages. The height of the bars for each protein represents the percentage of 
the protein that is predicted by ElliPro to be a part of an Epitope. 
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Table 3.5 Epitope prediction results of ElliPro. 

This table includes the protein model used and the source of the model. 

Lipoprotein Protein Model 

and/or (Source) 

Chains No. of Linear 

Epitopes 

(ElliPro) 

No. of 

Discontinuous 

epitopes 

(ElliPro) 

Group_1655 (Phyre2) 1 7 7 

Group_2005 5MLT (PDB) 2 12 9 

Group_2056 (Phyre2) 1 13 5 

Group_2074 4EVM (PDB) 1 7 2 

Group_2298 4HQZ (PDB) 2 10 3 

Group_510 3GE2 (PDB) 1 4 4 

Group_6587 (Phyre2) 1 7 3 

Group_953 (I-TASSER) 1 7 7 

AdcA (Phyre) 1 12 5 

AliA (I-TASSER) 1 17 4 

AmiA (Phyre2) 1 13 11 

ArtP_1 4OHN (PDB) 1 9 4 

GlnH (I-TASSER) 1 11 7 

LivJ 4GNR(PDB) 1 11 4 

Lmb 3CX3 (PDB) 2 10 7 

MalX 2XD2 (PDB) 2 12 3 

MetQ 4Q5T (PDB) 1 8 6 

PiaA 4HMO (PDB) 1 10 3 

PiuA 4JCC (PDB) 1 7 5 

PitA (Phyre2) 1 3 4 

PrsA 5TVL (PDB) 4 14 5 

PsaA 4UTP (PDB) 2 14 4 

PstS_2 4H1X (PDB) 1 11 6 

SPD_1609 (I-TASSER) 1 11 4 

TauA (Phyre2) 1 11 6 

TcyA 4EQ9 (PDB) 1 7 6 
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TcyJ 5COR (PDB) 2 15 4 

TmpC (I-TASSER) 1 11 4 

VanYb 4NT9 (PDB) 3 16 3 

YesO_2 (Phyre2) 1 18 5 

 

 

PiaA, PiuA, PitA and SPD_1609 are iron transporter proteins. With the exception of 

PitA, the rest have similar sizes and the number of epitopes predicted for these 

proteins are presented in Table 3.4. Most of the major epitopes (higher peaks) of PiaA 

are predicted corrected by all four methods (Figure 3.35). The areas with the highest 

peaks predicted by most or all methods includes areas approximately between amino 

acid 20-40, 80-100, 180-200 and 240-260. For the discontinuous prediction, protein 

model 4HMO from PDB, which was 99% identical to my protein sequence was used. 

The ElliPro method (Fig. 3.36) predicted more sites as discontinuous epitopes than 

DiscoTope2 for PiaA (Fig. 3.37). This was also true for PiuA (Fig. A2 and A3) and 

SPD_1609 (Fig. A5 and A6) but DiscoTope2 predicted more sites as epitopes than 

ElliPro for PitA (Fig. A8 and A9). PiuA had 11 linear epitopes predicted by Bepipred. 

The four methods had their highest prediction peaks approximately between 20-40, 

80-100, 130-145 and 160-190. Protein model 4JCC, which had 94% identity to PiuA 

was used for the discontinuous prediction and ElliPro predicted 5 discontinuous 

epitopes. Also, SPD_1609 and PitA had 16 and 8 linear epitopes predicted by 

Bepipred respectively. PDB did not have a suitable model for either protein and Phyre2 

could not model SPD_1609 with a high level of confidence, so I-TASSER was used 

for the modelling. However, Phyre2 was used for modelling PitA. Using these models, 

ElliPro predicted 4 discontinuous epitopes for both proteins. DiscoTope2 had no sites 

predicted as epitope for SPD_1609 (Fig. A6). 
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Figure 3.35 Linear epitope predictions of the PiaA protein. 

This was predicted using Bepipred, Parker, Karplus and Schulz (K&S) and Chou 

and Fasman (C&F) methods. 

 

 

 

 

Figure 3.36 ElliPro predicted discontinuous epitopes for PiaA. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with one having the highest score. The yellow spheres represent 

residues part of the predicted epitope. 
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Figure 3.37 DiscoTope2 predicted discontinuous epitopes for PiaA. 

The parts coloured yellow are the predicted epitopes. 

 

AdcA and Lmb are both involved in zinc transport. However, these two lipoproteins 

are different in both their size and structure. Bepipred predicted 22 and 13 linear 

epitopes for AdcA and Lmb respectively. The epitopes for AdcA are spread evenly 

across the whole sequence for all the methods (Fig A10) while epitopes with the 

highest predictions in Lmb fall at the beginning, middle and end of the sequence. PDB 

model, 3CX3 was used for the discontinuous predictions of Lmb but AdcA was 

modelled using the Phyre2 server. ElliPro predicted 5 discontinuous epitopes for AdcA 

and the first two predictions cover the predicted sites by the DiscoTope2 method (Fig. 

A11-A12). Furthermore, both ElliPro and DiscoTope2 predictions for Lmb were in good 

concordance. 

 

AliA and AmiA are both involved in oligopeptide transport. Despite their structural 

difference, they have approximately the same sequence length. Both proteins have 

predicted epitopes spread evenly across their sequences by all the methods. With 35 

and 32 predicted linear epitopes by Bepipred for AliA and AmiA respectively, they had 

the first and second highest number of predicted linear epitopes in this dataset. 

Conversely, ElliPro predicted more discontinuous epitopes (11) for AmiA than AliA (4). 

The protein model used for the discontinuous predictions was modelled using the I-

TASSER server. For both proteins ElliPro predicted more discontinuous epitopes than 
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DiscoTope2, however, there was good concordance with the areas predicted by both 

methods (Fig. A17-A18 and Fig. A20-A21). 

 

PsaA had 14 linear epitopes predicted by Bepipred. A similar prediction pattern was 

observed with the other linear prediction methods. The 4UTP model was used for the 

discontinuous predictions. The two discontinuous prediction methods showed high 

concordance for both chains in this model as illustrated below. 

 

 

Figure 3.38 Linear epitope predictions of the PsaA protein. 

This was predicted using Bepipred, Parker, Karplus and Schulz (K&S) and Chou 

and Fasman (C&F) methods. 
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Figure 3.39 ElliPro predicted discontinuous epitopes for PsaA. 

The numbers represent the different epitopes predicted in the order of decreasing 

overall score with one having the highest score. The yellow spheres represent 

residues part of the predicted epitope. 

 

 

 

Figure 3.40 DiscoTope2 predicted discontinuous epitopes for PsaA. 

The parts coloured yellow are the predicted epitopes. A is the prediction for chain A 

and B for chain B. 
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MalX had 15 linear epitopes predicted by Bepipred. The epitopes are evenly spread 

across the protein sequence. Protein model 2XD2 was used for the discontinuous 

predictions. This model has two chains and the ElliPro prediction predicted 3 large 

epitopes. In contrast, DiscoTope2 predicted only a few small regions. However, most 

of these regions were also predicted by ElliPro. 

 

YesO_2 had 18 predicted linear epitopes by Bepipred. These are spread evenly 

across the sequence with several high peaks (Fig. A25). The protein was modelled 

using Phyre2 for the discontinuous predictions. The 5 epitopes predicted by ElliPro 

covers more sites than the DiscoTope2 prediction, however, the two methods 

concurred in almost all the DiscoTope2 predicted sites.  

 

PrsA_1 had 12 Bepipred predicted linear epitopes. The highest peaks predicted by all 

the methods are around the middle of the sequence and at the far end (Fig. 3.41). The 

5TVL model, which has 4 chains was used for the discontinuous predictions. ElliPro 

predicted 5 discontinuous epitopes (Fig. 3.42) and these covered the entire structure 

of this protein. DiscoTope2 also predicted many regions of this protein as epitopes 

(Figure 3.43). 
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Figure 3.41 Linear epitope predictions of the PrsA_1 protein. 

This was predicted using Bepipred, Parker, Karplus and Schulz (K&S) and Chou and 

Fasman (C&F) methods. 
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Figure 3.42 ElliPro predicted discontinuous epitopes for PrsA_1. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with one having the highest score. The number 6 in this figure is just 

the first prediction reoriented to illustrate the size of the protein and all the regions 

predicted as epitopes. The yellow spheres represent residues part of the predicted 

epitope. 
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Figure 3.43 DiscoTope2 predicted discontinuous epitopes for prsA_1. 

The parts coloured yellow are the predicted epitopes. 

 

Group_2005 and Group_2056 lipoproteins are carbohydrate transporters. 

Group_2005 are bigger than Group_2056 lipoproteins and they are structurally 

different. Bepipred predicted 31 linear epitopes for Group_2005 and 21 for 

Group_2056 proteins. All the methods predicted numerous epitopes over short 

sequence stretches. Group_2005 had a sufficient PDB protein model (5MLT) but 

Group_2056 had to be modelled de novo using the Phyre2 server. ElliPro predicted 

more discontinuous epitopes for Group_2005 (9) than Group_2056 (5) lipoproteins 

(Fig. A29 and A32). The ElliPro predictions for both proteins concurred with the 

epitopes predicted by DiscoTope2 (Fig. A30 and Fig. A33). 

 

TauA had 14 predicted linear epitopes by Bepipred. The linear prediction methods 

agreed mostly and the highest peaks can be seen around the start and middle regions 

of the sequence (Figure A34). Phyre2 was used to model the protein for the 

discontinuous predictions. The two discontinuous prediction methods agreed mostly 

but again ElliPro had more regions predicted. 

 

Bepipred predicted 14 linear epitopes for MetQ. All the linear prediction methods 

agreed especially in areas with the highest peaks (Fig. A37). Protein model 4Q5T was 

used to predict discontinuous epitopes. The 6 epitopes predicted by ElliPro are highly 

concordant with the DiscoTope2 predicted regions (Fig. A38 and A39).   

 



 80 

Bepipred predicted 10 linear epitopes for PstS_2. The epitopes with the highest scores 

can be seen around the start and end regions of the sequence but overall, the 

predicted epitopes are evenly spread across the sequence (Fig. A40). The regions 

predicted as discontinuous epitopes by DiscoTope2 (Fig. A42) are also predicted by 

ElliPro (Fig. A41) but ElliPro had more regions predicted. 

 

The pneumococcus has many amino acid transporters and quite a few are amongst 

the proteins in this dataset. GlnH, LivJ, ArtP_1, TcyA and TcyJ are all lipoproteins 

involved in this process. Although all of them have unique structures suggesting affinity 

for different amino acids, they are all relatively the same size. TcyJ is the smallest with 

2666AA and the largest is ArtP_1 with 278AA. The Bepipred predictions of these 

proteins are summarised in Table 3.4.  Also, the model used and the number of 

predicted epitopes by ElliPro for each protein is summarised in Table 3.5. While ElliPro 

predicted 7 discontinuous sites for GlnH (Fig. A47) covering many regions, 

DiscoTope2 predicted only a few sites (Fig. A48). Similarly, DiscoTope2 had predicted 

less sites as epitopes for all the proteins. It predicted only a few small regions as 

epitopes for both ArtP_1 (Fig. A45) and LivJ (Fig. A51) compared to ElliPro, which had 

4 predicted regions covering most of structure of each of these two proteins.  

Furthermore, TcyJ and TcyA had 2 and 6 predicted discontinuous epitopes by ElliPro 

respectively. These predictions were in high concordance with the DiscoTope2 

predicted sites.  

 

Group_2074 and Group_2298 are thioredoxin proteins. Their Bepipred predicted 

linear epitopes are summarised in Table 3.4. The protein models used for the 

discontinuous epitopes were 4EVM and 4HQZ for Group_2074 and Group_2298 

respectively. ElliPro predicted 2 discontinuous epitopes for Group_2074 (Fig. A59), 

however, DiscoTope2 predicted no epitopes for Group_2074 (Fig. A60). The ElliPro 

prediction for Group_2298 (Fig. A62) also covered the predicted sites by DiscoTope2 

(Fig. A63) for this protein.  

 

Bepipred predicted only 6 linear epitopes for VanYb. Although some of the methods 

seem to predict more epitopes, all the methods seem to be in concordance with the 

regions with the highest peaks (Fig. A64). Protein model 4NT9 was used for the 

discontinuous predictions. This protein has three chains and the 3 predicted epitopes 
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by ElliPro agreed well with the DiscoTope2 predictions for each of the chains (Fig. 

A65-A66). 

 

TmpC had 14 linear epitopes predicted by Bepipred. These are spread evenly across 

the sequence (Fig. A67). The I-TASSER server was used to model this protein for the 

discontinuous predictions. ElliPro had four epitopes predicted and DiscoTope2 has 

only small segments of the protein predicted as epitopes (Fig. A69). These segments 

are also covered by the first two predictions of ElliPro (Fig. A68). 

Group_510 had 6 epitopes predicted by Bepipred. The Bepipred prediction covered 

most parts between approximately residue 25 and 95, also between 105 and 120. The 

Parker and K&S methods are more in agreement, predicting most areas between 

approximately residue 25-75. The C&F method also predicted a similar area but 

starting around the 40th residue. PDB model 3GE2, which was 98% identical to my 

protein was used for the discontinuous epitope predictions. ElliPro predicted 4 

discontinuous epitopes (Fig. A71). Most of the ElliPro predicted epitopes agreed with 

those predicted by DiscoTope2, however, it seems as DiscoTope2 predicted more 

sites as epitopes. 

 

Bepipred predicted 8 epitopes for Group_6587. The predicted epitopes with the 

highest peaks for all methods are found approximately between residues 125 and 220. 

The sequence between 240-250 was also predicted as an epitope by all methods (Fig. 

A73). ElliPro predicted 3 discontinuous epitopes using a Phyre2 modelled protein (Fig. 

A74). Although it predicted more sites than the DiscoTope2 method, the regions 

predicted by DiscoTope2 (Fig. A75) were in concordance with those predicted by 

ElliPro. 

 

The linear epitope count from the Bepipred method for Group_953 was 12. The 

beginning and middle part of the sequence seems to have more predicted epitopes 

(Fig. A76). The protein model used for the discontinuous predictions was modelled de 

novo using the I-TASSER server. ElliPro had 7 predicted discontinuous epitopes (Fig. 

A77) and these were consistent with the sites predicted by DiscoTope2 (Fig. A78). 

 

The linear predictions for Group_1655 were similar for all the methods (Fig. A79). This 

protein had a good model from PDB (2MVB) with 99% identity, which has one chain. 
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The 7 predicted epitopes by ElliPro and the DiscoTope2 predictions are presented in 

Fig. A80 and Fig. A81 respectively. The second and third predictions of ElliPro seem 

to be in concordance with the DiscoTope2 predicted sites. 

 
 
3.7 Protein Rank 
 

After all these analyses, I set out to rank my proteins using a simple scoring algorithm 

as detailed in the methods section. The ElliPro prediction method was used for the 

proportion of each lipoprotein predicted as epitope. The number of chains for each 

protein was obtained from the PDB database were available or from the Phyre2 or I-

TASSER servers when modelled de novo. The results of this ranking are summarised 

in table 3.6 below. Briefly, proteins in the top 10 based on total points starting from 

number one are Group_2005, TauA, Group_2074, AmiA, PsaA, Lmb, vanYb, YesO_2, 

Group_953 and PrsA. 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



 83 

Table 3.6 Protein characteristics and point-based ranking. 
 

Lipoprotein Aa 

length 

Points(Pts) No. of 

Alleles 

Pts Percentage of 

protein predicted 

as an Epitopes 

(ElliPro) 

Pts Chains Pts Prevalence Pts Total Points Rank 

Group_1655 165 2 36 20 52.3% 52.3  1 2 100% 10 86.3 17 

Group_2005 503 9 26 22 53% 53 2 4 100% 10 98 1 

Group_2056 445 7 35 20 47.9% 47.9 1 2 99.4% 9.4 86.3 17 

Group_2074 188 2 11 24 58% 58 1 2 100% 10 96 3 

Group_2298 185 2 26 22 50.4% 50.4 2 4 98.2% 8.2 86.6 16 

Group_510 164 2 39 20 47.1% 47.1 1 2 95.9% 5.9 77 26 

Group_6587 268 4 31 20 55% 55 1 2 100% 10 91 12 

Group_953 292 4 28 22 54.1% 54.1 1 2 99.9 9.9 92 9 

adcA 501 9 82 10 52.3% 52.3 1 2 99.7% 9.7 83 23 

aliA 662 12 126 2 50.2% 50.2 1 2 98.5% 8.5 74.7 28 

amiA 660 10 37 20 54% 54 1 2 99.8 9.8 95.8 4 

artP_1 278 4 38 20 49.8% 49.8 1 2 100% 10 85.8 19 

glnH 275 4 67 14 57.4% 57.4 1 2 97.9% 7.9 85.3 21 

livJ 386 6 37 20 51.1% 51.1 1 2 98.8% 8.8 87.9 15 

Lmb 305 5 23 22 52.9% 52.9 2 4 100% 10 93.9 6 

malX 423 7 51 16 54.6% 54.6 2 4 99.6% 9.6 91.1 11 

metQ 284 4 28 22 47.8% 47.8 1 2 100% 10 85.8 19 

PiaA 342 5 31 20 54.9% 54.9 1 2 98% 8 89.9 13 

PiuA 322 5 60 14 50.4% 50.4 1 2 100% 10 81.4 25 

PitA 122 1 25 22 36.4% 36.4 1 2 94.1% 4.1 65.5 30 

prsA 316 5 24 22 47% 47 4 8 99.8% 9.8 91.8 10 

psaA 309 5 17 24 51.6% 51.6 2 4 100% 10 94.6 5 

pstS_2 291 4 23 22 51.1% 51.1 1 2 100% 10 89.1 14 

SPD_1609 357 6 101 6 53.7% 53.7 1 2 99% 9 76.7 27 

tauA 335 5 15 24 55.1% 55.1 1 2 100% 10 96.1 2 

tcyA 278 4 40 18 47.9% 47.9 1 2 99.7% 9.7 81.6 24 

tcyJ 266 4 48 18 47.8% 47.8 2 4 99.9% 9.9 83.7 22 

tmpC 350 5 21 22 34.3% 34.3 1 2 99.9% 9.9 73.2 29 

vanYb 238 3 53 16 58.2% 58.2 3 6 99.8% 9.8 93 7 

YesO_2 442 7 19 24 49.5% 49.5 1 2 100% 10 92.5 8 
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3.8 Presence in other streptococcal species 
 

Using a protein blast search against both NCBI non-redundant protein database and 

UniProt, all these candidate proteins were found in at least one streptococcus species 

other than S. pneumoniae with very high nucleotide identity across the entire length 

with the exception of PiaA. The results have been summarised in Table 3.7. 
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Table 3.7 Presence of candidate proteins in non-pneumococcal 

Streptococcus. 

The table also has the level of identity of these proteins in each non-pneumococcal 

streptococci. Only the top results for each species are presented. 

 
Gene Top Hit Non-pneumococcal 

Streptococcus 

Percent ID 

Group_1655 S. mitis/  

S. pseudopneumoniae 

97%/97.4 

Group_2005 S. pseudopneumoniae/ S. 

mitis/S. oralis 

98.8%/98.0%/96.1% 

Group_2056 S. mitis/ 

S. pseudopneumoniae 

99.3%/99.3% 

Group_2074 S. pseudopneumoniae 97% 

Group_2298 S. mitis/  

S. pseudopneumoniae 

97%/96% 

Group_510 S. mitis 77.3% 

Group_6587 S. mitis/ S. oralis/ 

S. pseudopneumoniae  

97%/96.3%/97% 

Group_953 S. mitis/ S. pseudopneumoniae 96%/ 96% 

AdcA S. mitis/ S. oralis/ 

S. pseudopneumoniae 

99%/ 96.0%/ 99.2% 

AliA S. mitis/  

S. psuedopneumoniae 

93.8%/ 92.6% 

AmiA S. pseudopneumoniae 98.3% 

ArtP_1 S. mitis/  

S. pseudopneumoniae 

98.6%/ 97.8% 

GlnH S. mitis/ 

S. pseudopneumoniae 

98.2%/97.8% 

LivJ S. pseudopneumoniae/  

S. mitis/ S. oralis 

99%/ 98.4%/96.1% 

Lmb S. mitis/  

S. pseudopneumoniae 

99%/99.3% 

MalX S. mitis/ S. oralis 96.5%/94.6% 

MetQ S. pseudopneumoniae/  

S. mitis 

99%/ 99% 

PiaA None None 

PiuA S. oralis/S. mitis 85%/86% 

PitA S. mitis/ S. oralis/  

S. pseudopneumoniae 

100%/ 100%/ 100% 

PrsA S. mitis/ S. oralis 

S. pseudopneumoniae / 

96%/ 88.2%/ 99% 
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PsaA S. pseudopneumoniae / 

S. mitis/ S. oralis 

98%/ 97%/ 100% 

PstS_2 S. pseudopneumoniae /  

S. dysgalactiae 

99.3%/ 89.3% 

SPD_1609 S. pseudopneumoniae 90% 

TauA S. pseudopneumoniae /  

S. mitis 

96%/96% 

TcyA S. pseudopneumoniae /  

S. mitis/ S. oralis 

96% /96% / 91% 

TcyJ S. mitis/  

S. pseudopneumoniae 

97.7%/ 98.1% 

TmpC S. mitis/ S. oralis 

S. pseudopneumoniae  

99%/ 95.7%/ 97.7% 

VanYb S. pseudopneumoniae /  

S. mitis / S. oralis 

99%/ 98%/ 97.1% 

YesO_2 S. mitis/ S. oralis 

S. pseudopneumoniae  

99%/ 95.2%/ 98%/ 
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4.0 Discussion 

 

Streptococcus pneumoniae continues to be an important cause of death especially 

amongst the very young and the elderly. These mortalities are mostly concentrated in 

low-income countries primarily in sub-Saharan Africa, and Asia [34]. The currently 

licensed vaccines have many limitations, including serotype specificity and the 

coverage of only a subset of serotypes. This leads to serotype replacement by non-

vaccine type serotypes in carriage and a subsequent increase in diseases caused by 

these serotypes [15]. Current vaccines are also relatively expensive making it difficult 

for resource-limited countries, who are most affected by S. pneumoniae disease, to 

purchase. As a result, a great deal of research into trying to find vaccine candidates 

that are well conserved across all serotypes, immunogenic and cheap to make has 

been undertaken.  

 

My research has looked at a specific class of S. pneumoniae proteins, the lipoproteins. 

Some of the lipoproteins in this dataset have already been mooted as vaccine 

candidates by various experimental methods [23, 153]. Here I have utilised both the 

largest sample collection of S. pneumoniae isolates as well as the highest number of 

serotypes of all the pneumococcal protein screening studies to date [80, 98]. Together, 

this dataset has enabled me to gain unprecedented insight into the conservation and 

level of diversity of these lipoproteins within different lineages of the pneumococcus. 

 

The scoring method explained in the methods section and illustrated in Table 3.6 was 

used to rank the proteins, where more weight was given to larger proteins, proteins 

with good immunogenicity results (percentage of protein predicted as epitope), and 

more conserved (prevalent) proteins.  

 

Lmb is highly ranked in this dataset. The gene encoding this protein has been 

identified recently to encode for a second zinc transporter lipoprotein called AdcAII 

and I will refer to it as AdcAII from now on [154]. Zinc has both catalytic and structural 

roles in many proteins but as it doesn’t passively traverse the cell wall, the 

pneumococcus has to utilise specific transporters to internalise the zinc especially 

during invasive disease, where zinc availability is restricted [155]. Indeed, both zinc 
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and manganese (transported by PsaA) are crucial to the bacteria but must be 

regulated to maintain homeostasis as both an excess or a lack of them is detrimental 

to the pneumococcus [156]. Even before the discovery of AdcAII as a zinc transporter, 

researchers speculated that there must be at least one other lipoprotein involved in 

zinc and/or manganese transport as in-vitro growth of an S. pneumoniae PsaA and 

AdcA (zinc transporter lipoprotein) double-mutant was restored with the addition of 

zinc and manganese in their right proportions [156, 157]. Here, I have evaluated both 

zinc transporters, AdcA and AdcAII as potential vaccine candidates. 

 

AdcAII has been predicted to be immunogenic with many linear and discontinuous 

epitopes predicted. The size of the protein and its relatively small number of alleles 

further enhances its potential as a vaccine candidate. The major alleles 1, 2 and 3 

(Fig. 3.23), cover almost all the disease lineages, however, unless the alleles can 

induce cross-protective antibodies, inclusion of at least these three alleles in a vaccine 

may be required.  

AdcA is also possess important qualities with overall score of 83. This protein is both 

immunogenic and is a larger protein than AdcAII with 501 residues. However, its allele 

count of 82 makes it a less attractive option. The fact that both AdcA and AdcAII are 

involved in zinc transport in the pneumococcus makes them functionally redundant 

and any successful vaccine must include both proteins as well as their disease 

associated alleles or cross-protective alleles where possible. If this can be achieved, 

these proteins will make interesting vaccine candidates since a study has shown a 

complete loss of virulence in an AdcA/AdcAII double mutant in mouse models of 

infection [158]. Intriguingly, single mutants of either of these genes have been shown 

to be significantly more invasive than wild-type T4R strain, meaning inclusion of only 

one of these proteins in a vaccine is not an option [159]. 

 

As previously mentioned, PsaA transports manganese and is essential for full 

virulence of the pneumococcus [157, 160]. PsaA was previously thought to be involved 

in adhesion because a psaA mutant S. pneumoniae had reduced adhesion to 

endothelial cells, hence affecting carriage. But reduced adhesion is now thought to be 

a secondary effect on surface adhesion molecules due to the ensuing manganese 

deficiency [68, 153]. Further, a recent study in mice has shown an increase in the IgG 

levels of 3 proteins including PsaA following colonisation to be partially protective 
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against non-invasive lung disease [161]. However, inconsistent results about its effect 

on sepsis have been reported [162, 163]. Consistent with previous findings, I found 

PsaA to be highly conserved across all serotypes in this study [164]. Also, it has one 

of the fewest number of alleles and is predicted to be immunogenic by several of the 

prediction methods used here. These findings and the fact that it is the only prominent 

manganese transporter in S. pneumoniae further supports its suitability as a protein 

vaccine candidate. However, it may have to be used in combination with other 

candidates to offer protection against certain serotypes (especially those producing a 

lot of capsule) in invasive disease, where it may be buried beneath the capsule. 

 

AmiA achieved the fourth highest overall score mainly because of its sequence length 

and the number of linear epitopes predicted. Due to the fastidious nature of the 

pneumococcus, it depends on external sources for various amino acids (used as 

nutrients) and AmiA plays an important role in amino acid uptake as well as in the 

recycling of cell wall peptides [165]. AmiA is encoded by a member of a five-gene 

operon, which comprised of genes encoding 2 transmembrane proteins, 2 ATP 

binding proteins and AmiA as the substrate binding protein [166]. Mutations to this 

locus have been shown to increase resistance to aminopterin, methotrexate and 

Celiptium, however, mutation of AmiA alone does not confer full resistance to these 

molecules suggesting that other factors may also be important in the resistance 

mechanisms [167]. Furthermore, it was shown that the ami permease comprised of 

two other lipoproteins (AliA and AliB) with high protein similarity to AmiA. These 

proteins are also involved in oligopeptide transport as oligopeptide deficiency was 

observed only when all three lipoproteins were mutated [168]. Consistently, in this 

study, both amiA and aliA were seen to be missing in S. pneumoniae isolates 

associated with disease. AmiA was missing in a serotype 9V strain recovered from 

CSF and AliA was missing in several serotype-3 disease isolates. This apparent 

functional redundancy for both AmiA and AliA has significant consequences for a 

vaccine candidate as it means that these proteins are dispensable to the 

pneumococcus and it can potentially lose either of them to evade any vaccine 

designed to target them. 

 

MalX is another important protein suggested to be involved in the uptake of 

maltodextrines such as maltotetraose but not in maltose transport itself [169]. Also, 
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among several proteins involved in a-glucan degradation and transport, MalX is one 

of 6 suggested to play a role in pneumococcal virulence [170, 171]. Inconsistently, this 

protein was found to be absent or truncated in 14 isolates in this dataset including 

disease isolates thus indicating that the pneumococcus can cause disease in its 

absence. This also indicates that another protein may also play a role in a-glucan 

degradation. If this is true, a vaccine targeted to MalX may result in the pneumococcus 

losing this protein to escape the vaccine and continue to cause disease. 

 

The pneumococcal lipoproteins involved in iron transport have been identified as 

pneumococcal iron uptake A (PiuA), pneumococcal iron acquisition A (PiaA), 

pneumococcal iron transport A (PitA) and the recently identified pneumococcal iron 

transporter, SPD_1609 [172, 173]. Interestingly, these lipoproteins were included for 

evaluation in my dataset. Although PitA has a low allele count, which is desirable, its 

short amino acid sequence length, low number of predicted linear and discontinuous 

epitopes have led to it scoring the lowest amongst all the lipoproteins in my dataset. 

This is consistent with the fact that a PitA mutant S. pneumoniae showed no difference 

in iron acquisition or virulence when compared to the wildtype [173]. The recently 

defined iron transporter SPD_1609 has a similar iron acquisition potential as PitA 

[172], therefore, an SPD_1609 mutant would likely have no effect on iron acquisition 

or virulence. This lipoprotein also has 103 alleles and an overall score of 76.7, which 

is one of the lowest scores in this dataset.  

Conversely, both PiaA and PiuA have been identified as the major iron acquisition 

lipoproteins and are essential for full virulence in mouse models of invasive 

pneumococcal disease. Mice were also protected against systemic and respiratory 

disease when immunized with recombinants of both PiaA and PiuA and these 

protections were serotype independent [23, 24, 174]. Interestingly, both lipoproteins 

achieved good overall scores in my ranking. Consistent with a previous study, PiuA 

was found in all the genomes I screened, but PiaA was missing in a few NTs [175]. 

Although these proteins are highlighted as potential candidates both in previous 

studies [23, 176] and this current study, the fact that they are functionally redundant 

means that unless all iron transporter lipoproteins are included in a vaccine, with time, 

the pneumococcus may lose them and evolve to use the other iron transporters more 

efficiently to evade vaccines targeting only these, PiaA and PiuA. 
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The YesO_2 protein is also one of the highly ranked lipoproteins in my dataset with 

an overall score of 92.5, which is the 8th best score. This protein belongs to the 

extracellular solute-binding protein family 1 and is involved in sugar transport [3]. It is 

100% present in my dataset suggesting its importance to the pneumococcus. Despite 

the seemingly long branches of the phylogenetic tree, this protein has only 19 alleles 

suggesting a lot of the variation is caused by synonymous mutations. Although it has 

19 alleles, allele 2 (Fig. 3.31) was found in the majority of the genomes screened, 

including almost all the disease isolates. Epitopes were predicted across the entire 

protein (Fig. A26). Even though it may be argued that some of these proteins may 

encounter immune cells because of their small size, which means the capsule will 

completely cover them, this protein is larger than PsaA, which has been shown to 

come into contact with the immune system [163]. Therefore, YesO_2 is also expected 

to come into contact with these immune cells especially during carriage, where most 

strains have been shown to express less capsule. 

 

PrsA_1 is a foldase protein annotated to be involved in protein folding and transport 

[177]. It has an overall score of 91.8 on my scoring algorithm thereby placing it 

amongst the top ten ranked proteins in this data set. This protein is expressed on the 

cell surface and, although its sequence length is similar to that of PsaA, it has 4 chains 

making it a very large protein perhaps capable of protruding through the cell wall. The 

protein has 24 alleles but like YesO_2, 3 alleles (1, 2 and 4) represent almost all the 

genomes screened. Allele 1 is the most prevalent of the three while allele 2 is only 

found in serotype 1 lineages Fig. 3.26. Allele 1 and 4 have a single amino acid 

substitution at position 50, from asparagine (N) to serine (S) both of which are 

hydrophilic [178]. Indeed, the same is true for allele 1 and 2, with valine (hydrophobic) 

at position 38 in allele 1 substituted by isoleucine (hydrophobic) in allele 2. Because 

both substitutions involve amino acids with similar properties, a subtle or no change 

to the protein folding is expected, hence it is highly likely that antibodies against one 

allele will cross-react with the other. In fact, the most divergent alleles only differed by 

6 amino acids (97.476% identical). The entire surface of PrsA_1 is predicted by ElliPro 

to be immunogenic (Fig. 3.42). To my knowledge, this is the first time this protein has 

been evaluated as a potential vaccine candidate and taking together its attributes, it 

has good potential especially if used alongside other proteins. 
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Group_2005 lipoproteins are carbohydrate substrate-binding proteins belonging to the 

newly classified sub-class G transport proteins [179]. Due to the pneumococcus’ 

dependence on carbohydrates as a source for carbon, approximately one-third of 

uptake systems are dedicated to carbohydrate transport, and 7 of these are ABC 

transporters hence, this lipoprotein is functionally redundant [179, 180]. Group_2005 

is a large protein found in both monomeric and dimeric states [179] with a relatively 

small allele count of 26. Nonetheless, there is only a single dominant allele (1) that is 

present in almost all the genomes and together the alleles are less than 3% divergent 

(12 amino acid substitutions) suggesting that they may produce cross-reactive 

antibodies. The epitope predictions gave strong indications that this lipoprotein is 

immunogenic and its size gives confidence that it encounters immune cells, at least 

during colonisation. These qualities enabled this protein to attain the highest score in 

my ranking. Taking these factors into account, this protein maybe considered for 

inclusion in a multi-protein vaccine, due to its functional redundancy. 

 

TauA is one of the most interesting proteins in this dataset with very short branch 

lengths aside from a group of NTs and a low number of alleles (15). This lipoprotein 

belongs to the periplasmic binding protein-like II family and functional family 84595 

[181]. It is 100% present in all the genomes screened and it has a bigger size than 

PsaA, suggesting contact with immune cells. Further, the epitope predictions also 

suggest that it is capable of inducing sufficient immune response. The divergence of 

this protein at the amino acid level is less than 2% (98.214%) driven by only 6 amino 

acid substitutions. This means that unless homologs can be found in other species, 

the only source of divergence will be SNPs. This lipoprotein therefore possesses most 

of the characteristics of a potentially successful vaccine and should be investigated 

further.  

 

Group_2056 lipoproteins have a large single chain and belong to the extracellular 

solute-binding family 1 functional family. Like Group_2005 proteins, they are also 

carbohydrate transporters [181]. With an overall score of 86.3, this is indicative of a 

good vaccine candidate. It has 35 alleles but it is clear that allele 1 is by far the most 

dominant allele (Fig. 3.17). Both the linear and discontinuous epitope counts are 

indicative of immunogenicity. Nonetheless, the fact that it is functionally redundant 
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means that it will most likely fail as a single vaccine antigen but, may be considered in 

a multiple-protein vaccine. 

 

MetQ is smaller than PsaA but also ranked high on my list. It is a D-methionine binding 

lipoprotein involved in the biosynthesis of phospholipids [177]. It is present in all the 

genomes indicating its importance to the pneumococcus and it has only 28 alleles. It 

has few dominant alleles with a serotype 1 specific allele (Fig. 3.24). Nevertheless, 

only a 7-amino-acid difference exists between the most divergent alleles (97.544% 

identical) suggesting that antibodies against one may protect against other alleles. 

 

PstS_2 is also a prospective candidate. It plays a role in phosphate ion transport by 

binding phosphate in the pstSCAB and phoU operon, although phoU does not play a 

role in phosphate transport [182]. It is present in all the genomes indicating the 

importance of phosphate to the pneumococcus. Interestingly, overexpression of this 

gene correlates with penicillin resistance while inactivation confers up to a two-fold 

susceptibility to penicillin [183]. This protein is also immunogenic based on the epitope 

predictions here and affinity of human sera in another study [176]. It also has few 

alleles, 23. The amino acid divergence is less than 3% (6 amino acid deletion). 

Together, these findings suggest that it is a promising candidate to be included in a 

vaccine. Otherwise, it may be a good drug target especially drugs used in combination 

with penicillin. 

 

TcyJ and TcyA are both substrate binding proteins predicted to be involved in amino 

acid transport [181]. Although TcyJ has relatively many alleles, 48, only a small 

number of alleles were found in the majority of genomes and the least identical alleles 

were only 11 amino acid dissimilar. TcyA had less alleles and a higher number of 

ElliPro predicted discontinuous epitopes than TcyJ. Both have good characteristics for 

a vaccine candidate including good immunogenicity predictions, TcyJ is also dimeric 

and both have high prevalence in the screened genomes (TcyJ was missing in a single 

serotype 6B strain and TcyA was missing in only 5 genomes). However, the fact that 

both are functionally redundant means that they can only be considered for inclusion 

in a multi-protein vaccine alongside other proteins with similar functions. 
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VanYb is the name given by Roary but this is 100% identical to DacB of the 

pneumococcus which encodes LD-carboxypeptidase and it shall be referred to as 

DacB henceforth [184]. This protein works in concert with another protein called DacA 

to preserve cell shape and also plays an important role in cell division [185]. Here, 

DacB is absent in only two carriage strains of serotype 6A. It has 3 chains and 3 

discontinuous epitopes predicted by ElliPro, which are very good qualities for any 

vaccine candidate. However, it also has a high allele count of 53, which are more than 

15% amino acid divergent. With so much diversity, the alleles may not induce cross-

reactive antibodies against each other meaning more than one allele must be included 

in a vaccine. Also, recombination between different alleles may drive vaccine escape. 

This makes VanYb a less attractive vaccine candidate. 

 

TmpC is a well-conserved lipoprotein, present in all but one serotype 7F carriage 

strain. For a 350AA protein, its allele count of 21 is relatively small. The alleles are 

less than 5% divergent and are distributed evenly with no allele found uniquely in one 

lineage (Fig. 3.29). Also, the epitope predictions suggest it is immunogenic (Fig. A68 

and A69). This protein is most likely involved in nucleoside transport because it has 

similar domain structure to purine nucleoside receptor A (PnrA), formerly called TmpC 

of Treponema pallidum [181, 186]. This protein is therefore a potential vaccine 

candidate especially if the alleles can induce cross-reactive antibodies. 

 

Although Group_953 lipoproteins have undefined function, they were present in all but 

a single serotype 9V isolate recovered from carriage. This protein has 28 alleles but 

allele 1 was found in approximately 70% of the genomes. The epitope prediction 

results and the size of the protein are also favourable. However, because the function 

of this protein is unknown, it may be functionally redundant meaning the 

pneumococcus could lose it to escape vaccines against it. Further investigations must 

be made to determine its role before it can be a genuine vaccine candidate. 

 

GlnH is an amino acid ABC transporter lipoprotein involved in glutamine transport 

[177]. Like many proteins in this dataset, it has interesting characteristics including a 

good immunogenicity prediction but a great many alleles (67), some of which are more 

than 5% divergent. Similarly, ArtP_1 proteins are also involved in glutamine transport 

[181]. Although both proteins have almost the same overall score, ArtP_1 had 
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significantly less alleles (38) and was present in all the genomes. Nonetheless, both 

proteins are functionally redundant so unless all the amino acid transporters are 

included in a vaccine, any vaccine targeting them singly will likely fail. 

 

Another lipoprotein involved in amino acid transport is LivJ, which has a high affinity 

for branched-chain amino acids [181]. Although this protein has good immunogenicity 

predictions both in this study and another [176], the fact that this protein was absent 

in more than 20 isolates including disease isolates suggests that it may not be 

essential for S. pneumoniae pathogenesis, and therefore an unlikely vaccine 

candidate.  

 

Group_6587 is ranked in amongst the upper half of proteins with an overall score of 

91. These are lipoproteins predicted to be involved in protein folding [181]. Despite its 

small size, its allele count of 28 and good immunogenicity predictions are good 

characteristics for a vaccine candidate. Furthermore, it was present in all the genomes 

screened. However, like many other proteins in this dataset, it may only be successful 

being part of a multi-protein vaccine because of its functional redundancy. 

 

Group_1655 lipoproteins have a short amino acid sequence (165) with a relatively 

high allele count of 36. Nonetheless it is 100% present in all the genomes and has 

very good immunogenicity results (Fig. A80-A81). It is an uncharacterised lipoprotein 

assigned functional family 247 [181]. Although it will be interesting to know its function, 

its relatively small size makes it a less attractive candidate. Group_2298, Group_2074 

and Group_510 all fall under the same category of small proteins with amino acid 

sequence lengths of 185, 188 and 164 respectively. Group_510 lipoproteins are even 

less attractive as vaccine candidates, missing in more than 4% of the genomes and 

having a high allele count of 36. Both Group_2074 and Group_2298 lipoproteins are 

thioredoxin proteins (called Etrx1 and Etrx2 respectively) involved in oxidative stress 

resistance and redox homeostasis. A loss of both proteins affects virulence [187]. They 

were both at least 98% present in the genomes. Etrx1 (Group_2074) has the lowest 

allele count (11) of all the proteins in this dataset and the linear epitope predictions as 

well as the ElliPro predictions are positive. DiscoTope2 however did not predict a 

single discontinuous epitope for this protein (Fig. A60). Since both proteins must be 

targeted to affect virulence, both must be included in an effective vaccine but their 
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small size and the fact that no discontinuous epitopes were predicted for Etrx1 by 

DiscoTope2, makes them less attractive candidates [187]. The possibility of using 

these two proteins as drug targets could be explored because they are well conserved 

and play a vital role in the pneumococcus. 

 

Although 30 proteins have been evaluated here, many of them have characteristics 

that make them less attractive candidates. That is not to say that the ones possessing 

better qualities are going to be any good in vivo. However, it is reassuring that this 

dataset includes previously studied lipoproteins. Immunization studies in mice have 

shown recombinant PiuA and PiaA to be protective against respiratory and systemic 

challenges [23, 24]. Antibodies to these two lipoproteins were also shown to promote 

opsonophagocytic removal of S. pneumoniae in human cell lines [83]. Furthermore, 

antibodies to these two proteins were recovered from convalescing septicaemia 

patients suggesting that they are both expressed in disease and also in healthy 

children suggesting immunogenicity in children as well [188].  

Interestingly, Wizemann et al [80] utilised reverse vaccinology to screen the genomes 

of S. pneumoniae isolates for potential vaccine candidates. Of the 108 cloned products 

of 97 unique genes, none was protective against S. pneumoniae N4 in a mouse sepsis 

model, however, 5 of the products were shown to be protective against serotype 6B 

and 4 of the 5 products were also protective against serotype 6A [80]. However, none 

of these protein products were from lipoproteins. 

Another study used a combination of genomics and human sera recovered from 

convalescing patients as well as healthy individuals exposed to pneumococcal 

infection. This study identified many epitopes belonging to many proteins including 

lipoproteins AmiA and MalX, however, only 6 (PspC, PspA, StkP, PcsB, SP0368 and 

SP0667) were identified as promising candidates [189]. None of these is a lipoprotein 

and StkP and PcsB showed the highest potential [189]. Furthermore, a study utilising 

reverse vaccinology, identified and analysed 13 conserved proteins initially thought to 

be unique to the pneumococcus for their potential as vaccine candidate [98]. These 

proteins included 4 lipoproteins including 2 thioredoxin family proteins, iron transporter 

PiuA, a glutamine ABC substrate binding protein and a lipoprotein of unknown function 

[98]. However, this study only evaluated these proteins for their conservation and 

diversity within different serotypes but no immunogenicity tests or predictions were 

performed. Also, some of the proteins identified as antibody binding targets in a study 
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utilising pan-genome wide immunological screening with human sera correlated very 

well with the candidate proteins in this dataset [176]. 208 antibody binding targets were 

identified based on their high affinity for adult human sera of which 16 were classified 

as substrate binding proteins. Of these 16, 10 are also present in my dataset, these 

include PsaA, PiuA, PiaA, PstS2, LivJ, GlnH, AmiA, MalX, PnrA (called TmpC here) 

and AliA [176]. Together, these experimental results support the fact that lipoproteins 

are immunogenic during disease and in carriage making lipoproteins interesting 

candidates for a protein vaccine. 

 

Limitations 

The limitations of this study include the fact that all the samples were retrieved from 

the Gambia, hence the findings may not be representative at the global scale. 

However, these findings will be relevant in the sub-Saharan context, where the burden 

of IPDs is enormous. Additionally, lipoproteins undergo post-translational lipidation of 

the conserved cysteine residue and this may extend to neighbouring residues to 

enable attachment to the cell membrane, therefore even though these regions may be 

predicted as epitopes, they would not be accessible to immune cells in-vivo meaning 

that they cannot be considered as true epitopes.  

 

 

Conclusions and Future work 

 

S. pneumoniae is an opportunistic bacterium that colonizes the nasopharynx of many 

people without causing disease. For its survival, it must obtain nutrients from its 

environment and it achieves this through various transporters, especially lipoproteins. 

Here, I have identified numerous vaccine candidates some of which could be further 

explored for inclusion in a protein vaccine. Some of these proteins have been 

previously studied, including iron transporters, PiuA and PiaA, manganese transporter 

PsaA, zinc transporters AdcA and AdcAII. Others including TauA, PrsA_1, and 

YesO_2, have not been evaluated until now. These proteins are serotype 

independent, which is an important characteristic of a prospective pneumococcal 

vaccine. An important caveat of most of these proteins, with the exception of PiaA, 
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however, is their presence in other non-pathogenic streptococci. An ideal vaccine 

candidate would target all pathogenic pneumococci and allow the non-pathogenic 

streptococci to fill the niche. Also, perhaps due to the importance of the nutrients 

transported by some of these proteins for pneumococcal survival and virulence, it has 

evolved to use several proteins to do the same job thus rendering some of them 

functionally redundant. This leaves PiaA as the single best candidate in this dataset 

but may be used with PiuA because of their synergistic effect on S. pneumoniae 

virulence. Therefore, for a successful protein vaccine, I believe multiple proteins 

especially of the same function must be included in the vaccine. 

 

Moving forward, it will be essential to evaluate the impact of a multi-protein vaccine 

using the proteins in this dataset in mouse models of infection and carriage. Proteins 

with similar roles must be included in such vaccines. Furthermore, a multi-protein 

vaccine targeting at least two sets of proteins with different functions may work even 

better. However, for these to work effectively, it is essential to verify and choose alleles 

capable of inducing cross-reactive antibodies from each protein. 

 

Furthermore, taking advantage of the wealth of genomes at our disposal, the 

techniques of evaluation described here could serve as a platform for future 

evaluations of other pneumococcal proteins as well as proteins of other bacterial 

pathogens. These will give valuable insight about the proteins with a better chance of 

making a good vaccine thus saving time and money doing animal studies on less 

suitable proteins. 
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Figure A1 Linear epitope predictions for PiuA. 

 

 

 

Figure A2 ElliPro predicted discontinuous epitopes for PiuA. 
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Figure A3 DiscoTope2 predicted discontinuous epitopes for PiuA. 

 

 

 

 

Figure A4 Linear epitope prediction of the SPD_1609 protein. 
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Figure A5 ElliPro predicted discontinuous epitopes for SPD_1609. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

part of the predicted epitope. 
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Figure A6 DiscoTope2 predicted discontinuous epitopes for SPD_1609. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

Figure A7 Linear epitope predictions of the PitA protein. 

 

 

 

Bepipred 

Parker 

K	&	S 

C	&	F 

PitA 



 115 

 

Figure A8 ElliPro predicted discontinuous epitopes for PitA. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with one having the highest score. The yellow spheres represent 

residues that are part of the predicted epitope. 
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Figure A9 DiscoTope2 predicted discontinuous epitopes for PitA. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

Figure A10 Linear epitope predictions of the AdcA protein. 
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Figure A11 ElliPro predicted discontinuous epitopes for AdcA. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

 

AdcA 
1 2 3 

4 5 



 118 

 

Figure A12 DiscoTope2 predicted discontinuous epitopes for AdcA. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

Figure A13 Linear epitope predictions of the Lmb protein. 
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Figure A14 ElliPro predicted discontinuous epitopes for Lmb. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

Figure A15 DiscoTope2 predicted discontinuous epitopes for Lmb. 

The parts coloured yellow are the predicted epitopes. 
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Figure A16 Linear epitope predictions of the AliA protein. 
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Figure A17 ElliPro predicted discontinuous epitopes for AliA. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A18 DiscoTope2 predicted discontinuous epitopes for AliA. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

Figure A19 Linear epitope predictions of the AmiA protein. 
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Figure A20 ElliPro predicted discontinuous epitopes for AmiA. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A21 DiscoTope2 predicted discontinuous epitopes for AmiA. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

 

Figure A22 Linear epitope predictions of the MalX protein. 
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Figure A23 ElliPro predicted discontinuous epitopes for MalX. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

Figure A24 DiscoTope2 predicted discontinuous epitopes for MalX. 

The parts coloured yellow are the predicted epitopes. 
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Figure A25 Linear epitope predictions of the YesO_2 protein. 
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Figure A26 ElliPro predicted discontinuous epitopes for YesO_2. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

Figure A27 DiscoTope2 predicted discontinuous epitopes for YesO_2. 

The parts coloured yellow are the predicted epitopes. 
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Figure A28 Linear epitope predictions of the Group_2005. 
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Figure A29 ElliPro predicted discontinuous epitopes for Group_2005. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A30 DiscoTope2 predicted discontinuous epitopes for Group_2005. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

Figure A31 Linear epitope predictions of the Group_2056. 
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Figure A32 ElliPro predicted discontinuous epitopes for Group_2056. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

Figure A33 DiscoTope2 predicted discontinuous epitopes for Group_2056. 

The parts coloured yellow are the predicted epitopes. 
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Figure A34 Linear epitope predictions of the TauA protein. 
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Figure A35 ElliPro predicted discontinuous epitopes for TauA. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A36 DiscoTope2 predicted discontinuous epitopes for TauA. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

 

Figure A37 Linear epitope predictions of the MetQ protein. 
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Figure A38 ElliPro predicted discontinuous epitopes for MetQ. 

The numbers represent the different epitopes predicted in the order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

Figure A39 DiscoTope2 predicted discontinuous epitopes for MetQ. 

The parts coloured yellow are the predicted epitopes. 
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Figure A40 Linear epitope predictions of the PstS_2 protein. 
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Figure A41 ElliPro predicted discontinuous epitopes for PstS_2. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

 

Figure A42 DiscoTope2 predicted discontinuous epitopes for PstS_2. 

The parts coloured yellow are the predicted epitopes. 
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Figure A43 Linear epitope predictions of the ArtP_1 protein. 
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Figure A44 ElliPro predicted discontinuous epitopes for ArtP_1. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A45 DiscoTope2 predicted discontinuous epitopes for ArtP_1. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

Figure A46 Linear epitope predictions of the GlnH protein. 
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Figure A47 ElliPro predicted discontinuous epitopes for GlnH. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

 

Figure A48 DiscoTope2 predicted discontinuous epitopes for GlnH. 

The parts coloured yellow are the predicted epitopes. 
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Figure A49 Linear epitope predictions of the LivJ protein. 
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Figure A50 ElliPro predicted discontinuous epitopes for LivJ. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A51 DiscoTope2 predicted discontinuous epitopes for LivJ.  

The parts coloured yellow are the predicted epitopes. 

 

 

 

Figure A52 Linear epitope predictions of the TcyA protein. 
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Figure A53 ElliPro predicted discontinuous epitopes for TcyA. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A54 DiscoTope2 predicted discontinuous epitopes for TcyA. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

Figure A55 Linear epitope predictions of the TcyJ protein. 
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Figure A56 ElliPro predicted discontinuous epitopes for TcyJ. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

 

Figure A57 DiscoTope2 predicted discontinuous epitopes for TcyJ. 

The parts coloured yellow are the predicted epitopes. 
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Figure A58 Linear epitope predictions of the Group_2074 protein. 

 

 

Figure A59 ElliPro predicted discontinuous epitopes for Group_2074. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A60 DiscoTope2 predicted discontinuous epitopes for Group_2074. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

Figure A61 Linear epitope predictions of the Group_2298 protein. 
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Figure A62 ElliPro predicted discontinuous epitopes for Group_2298. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

 

Figure A63 DiscoTope2 predicted discontinuous epitopes for Group_2298. 

The parts coloured yellow are the predicted epitopes. 
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Figure A64 Linear epitope predictions of the VanYb protein. 

 

 

 

Figure A65 ElliPro predicted discontinuous epitopes for VanYb. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A66 DiscoTope2 predicted discontinuous epitopes for VanYb. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

 

 

 

Figure A67 Linear epitope predictions of the TmpC protein. 
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Figure A68 ElliPro predicted discontinuous epitopes for TmpC. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A69 DiscoTope2 predicted discontinuous epitopes for TmpC. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

 

 

Figure A70 Linear epitope predictions of the Group_510 protein. 
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Figure A71 ElliPro predicted discontinuous epitopes for Group_510. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A72 DiscoTope2 predicted discontinuous epitopes for Group_510. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

 

Figure A73 Linear epitope predictions of the Group_6587 protein. 
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Figure A74 ElliPro predicted discontinuous epitopes for Group_6587. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

 

Figure A75 DiscoTope2 predicted discontinuous epitopes for Group_6587. 

The parts coloured yellow are the predicted epitopes. 
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Figure A76 Linear epitope predictions of the Group_953 protein. 

 

 

Figure A77 ElliPro predicted discontinuous epitopes for Group_953. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 
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Figure A78 DiscoTope2 predicted discontinuous epitopes for Group_953. 

The parts coloured yellow are the predicted epitopes. 

 

 

 

Figure A79 Linear epitope predictions of the Group_1655 protein. 
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Figure A80 ElliPro predicted discontinuous epitopes for Group_1655. 

The numbers represent the different epitopes predicted in order of decreasing 

overall score with 1 having the highest score. The yellow spheres represent residues 

that are part of the predicted epitope. 

 

 

 

Figure A81 DiscoTope2 predicted discontinuous epitopes for Group_1655. 

The parts coloured yellow are the predicted epitopes. 
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