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Abstract

Discovering overrepresented patterns in amino acid sequences is an

important step in protein functional annotation which includes the

identification of subcellular localisation. I adapted and extended Nest-

edMICA, an ab initio protein motif finder originally developed for

finding transcription binding site motifs, to find short protein signals,

and compared its performance with another popular protein motif

finder, MEME.

In order to assess NestedMICA as a protein motif finder, I have

tested it on synthetic datasets produced by spiking instances of known

motifs from protein databases into a randomly selected set of pro-

tein sequences. Apart from the artificially implanted motifs, Nested-

MICA also successfully recovered subcellular localisation signals from

biologically-authentic test sets. NestedMICA found most of the short

test protein motifs spiked into a test set of sequences at different fre-

quencies. In all the assessment experiments, its overall motif discovery

performance was better than that of MEME.

As a practical application of NestedMICA, I developed a novel Sup-

port Vector Machines based protein subcellular classification tool,



Lokum, for eukaryotic protein subcellular localisation prediction, cov-

ering all major localisation classes for animal, fungal and plant se-

quences. It uses targeting and retention signal motifs reported by

NestedMICA, and other protein features including transmembrane

topologies and amino acid composition. Additionally, in Lokum I use

bipartite nuclear localisation signals obtained by adding protein sup-

port to Eponine, a tool originally developed for transcription start site

modeling. Lokum does not use sequence similarity, or any other a pri-

ori knowledge such as known nuclear localisation signals by searching

databases.

I compared proteins targeted into the nuclei and nucleoli in terms of

the features used in Lokum, and also their predicted disorder regions.

I demonstrate that it is possible to computationally distinguish these

two sub-nuclear protein categories.

Finally, as an alternative to the transmembrane topology predictor

TMHMM that is used in Lokum, I designed and tested a new proto-

type program that is based on hidden Markov models (HMM). The

HMM has been trained by a novel, nested sampling based transition

probability optimisation procedure.
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Chapter 1

Introduction

1.1 General introduction

Proteins perform vital functions in all living organisms. After being synthesised

in the cytosol, most of the proteins are transferred to other places in the cell or

sent out to the extracellular space where they carry out their specialised tasks.

One of the important questions modern biology has been trying to address is how

new born proteins can find their ways in reaching their destinations. Throughout

their journey they come across many obstacles, including different organelle or cell

membranes, pores that have to be passed, and pathways that must be followed.

Studies on the structure of the secretory pathway by George Palade were awarded

with a Nobel prize in Physiology or Medicine in 1974. This and other pioneering

studies yielded the theory that proteins carry intrinsic signals that govern their

localisation, which sounds simple and natural to us now. This important discovery

brought Günter Blobel the 1999 Nobel prize in Physiology or Medicine, less than

a decade ago.

The identification of protein subcellular localisation has been the subject of

1



1.1 General introduction

numerous experimental and computational studies. However, despite the ad-

vances made in understanding the underlying mechanisms, this complicated pro-

cess has still not been fully explained. Most of the protein targeting mechanisms

have been identified and well studied, certain localisation-related protein signals

have been discovered, but it is still not possible to determine every proteins’ lo-

calisation by inspecting only their amino acid sequences. In automatic protein

localisation annotation, computational methods that rely on sequence and struc-

ture homology could be advantageous only if some other similar protein locali-

sations have already been fully characterised in experiments. Furthermore, these

methods, while performing well, cannot help much in explaining the underlying

biological processes and interactions involved in protein targeting.

In this study, in accordance with the general notion that “signals govern pro-

tein targeting”, my aim was to investigate whether an ab initio, signal-based com-

putational prediction system can adequately help us to predict and classify sub-

cellular localisation, without using any kind of sequence similarity, text-mining,

or any kind of database searches to check for known localisation signal matches.

Using known localisation signals, protein domain motifs etc., but no sequence

similarity could still be anticipated as a valid ab initio methodology, however, in

this work, in addition to predicting localisation, as a secondary goal I tried to di-

rectly discover potentially localisation-related amino acid sequence motifs as well,

by extending a robust, ab initio, probabilistic DNA motif discovery tool program,

NestedMICA (Down & Hubbard, 2005) to work on amino acid sequences.

As can be seen in the “thesis graph” (Figure 1.1), Chapter 2 is devoted to

motif finding using NestedMICA, which was originally developed for transcription
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factor binding site motif finding. This chapter is an extended version of our study,

published under the title “NestedMICA as an ab initio protein motif discovery

tool” (Doḡruel et al., 2008), where I added protein support to the program and

fine tuned it for optimal protein motif discovery. A comparison of the protein-

capable NestedMICA with another popular program, MEME (Bailey & Elkan,

1994), is also given in the same chapter.

In Chapter 3, I introduce Lokum, or localisation by using motifs, a novel

eukaryotic protein subcellular localisation prediction program which mainly uses

motifs discovered by the new NestedMICA. In addition to NestedMICA motifs

found from datasets of proteins with experimentally determined localisations, I

modified and used a hierarchical motif finder, Eponine (Down & Hubbard, 2002),

for discovering and modeling multi-component localisation motifs such as the bi-

partite nuclear localisation signals. I changed Eponine, originally developed for

finding transcription start site motif models, to work with amino acid sequence,

too. Lokum incorporates both mono and bipartite motifs along with amino acid

composition, and finally transmembrane topology statistics. In Lokum, predic-

tions based on these features are made by a Support Vector Machine (SVM), a

robust machine learning strategy.

The predicted eukaryotic localisation categories are:

1. Cytoplasmic

2. Nuclear

3. Plasma membrane

3
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Lokum:
localisation
predictor

NestedMICA:
protein “mono” 
motif discovery

Nested
Sampling

SVM

HMM

In - house
Transmembrane

predictor

TMHMM: 
External

transmembrane
predictor

ChapterChapter 2

Chapter 3

Chapter 5

Sub-nuclear
prediction

Chapter 4

Duration
HMM states

Eponine:
protein bipartite

motif
discovery

RONN:
Disordered

region prediction

Figure 1.1: The “thesis graph”. Main relations between the thesis chapters are
shown. Rectangular shapes indicate programs that can produce “deliverables”
such as a motif or a prediction, whereas elliptical shapes indicate the used in-
termediate computational methodologies or algorithms. Orange shapes represent
external tools used, while the others are developed, implemented or modified
programs.
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1.1 General introduction

4. Endoplasmic reticulum (ER)

5. Golgi

6. Extracellular / secretory

7. Mitochondrial

8. Peroxisomal

9. Lysosomal

10. Vacuolar

11. Chloroplast

The first nine localisations above represent the protein localisation categories

for animals. Another nine categories predicted for fungi are the first eight classes

with the addition of vacuolar proteins (instead of lysosomes). Finally, in addition

to the categories in the list of fungal localisations, proteins targeted into the

chloroplast are predicted, too, to have a total of ten categories for plants.

Chapter 4, which can be considered as an application of what is learned in

Chapters 2 and 3, discusses whether it is possible to fine tune predictions by

classifying some nuclear proteins in terms of their sub-localisation categories. I

chose nuclear proteins as an example, because it was possible to find a significant

number of protein sequences from databases, annotated as “nuclear” or “nucle-

olar”. As an addition to the features used in Lokum, here I also evaluate the

use of protein disordered regions as predicted by the RONN (Yang et al., 2005)

disorder predictor (Figure 1.1).
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Transmembrane topologies are predicted by an external program, TMHMM

(Krogh et al., 2001). As an alternative to this, I developed a hidden Markov

model (HMM)-based, prototype predictor (see Chapter 5) which can be plugged

into this system. The underlying HMM of this predictor was optimised for its

transition probabilities by using a novel procedure developed that relies on nested

sampling. This new approach is introduced in the same chapter along with the

prototype transmembrane topology predictor. For this HMM approach to work

more efficiently I also implemented “duration capable HMMs” which are defined

in this chapter.

The main chapters in the thesis have their own introduction sections that will

be useful while reading a particular chapter. In this general introduction, I sum-

marise the most popular subcellular localisation prediction programs, briefly de-

scribe three main computational techniques I used in the developed tools, namely

support vector machines, HMMs, and lastly motif finding by using sampling

strategies.

Finally, in the Conclusions (Chapter 6, page 165) I summarise the developed

computational tools and discuss their applications in biology, together with their

pros and cons. In the rest of this introductory chapter, I briefly mention previous

work done on automatic protein subcellular localisation prediction and the main

computational tools used.

1.1.1 Previous work on subcellular localisation prediction

Dozens of software applications are available that deal with particular aspects of

subcellular localisation prediction. Some of the popular ones are listed in Table
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1.1. I will first mention three widely used sets of prediction programs, before

discussing others: those developed at the Danish Technical University (DTU),

programs by the Rost group in Columbia University, and those developed by

Kenta Nakai of the University of Tokyo and his colleagues.

Predictor Architecture Features Original reference
TargetP ANN N-terminal sequence Emanuelsson et al. (2000)
SignalP HMM and ANN N-terminal sequence Nielsen et al. (1999)

Bendtsen et al. (2004b)
ChloroP ANN Presence of cTP Emanuelsson et al. (1999)
LipoP HMM N-terminal sequence Juncker et al. (2003)
PredictNLS Template based NLS look-up Cokol et al. (2000)
LOChom Database Sequence similarity Nair & Rost (2002b)
LOCkey Lexical analysis Sequence similarity Nair & Rost (2002a)
PSORT “If-then” rules PSORT features Nakai & Kanehisa (1991)
PSORT II kNN PSORT features Horton & Nakai (1997)

Nakai & Horton (1999)
iPSORT Rule based N-terminal patterns Bannai et al. (2002)
WolfPSORT kNN PSORT features, aa Horton et al. (2007)
PLOC SVM aa Park & Kanehisa (2003)
SubLoc SVM aa features Hua & Sun (2001)
CELLO SVM aa of k-words Yu et al. (2004)
ELSpred SVM aa, BLAST Bhasin & Raghava (2004)
Proteom Analyst Naive Bayes SwissProt keywords Lu et al. (2004)
pTarget SVM PFAM domains Guda & Subramaniam (2005)
MultiLoc SVM aa, motif DBs Höglund et al. (2006)
BaCelLo SVM aa, decision tree Pierleoni et al. (2006)

Table 1.1: A list of some popular eukaryotic localisation predictors. For
each prediction tool the main computational methodology and features used are
listed, along with related bibliographic reference(s). ANN stands for Artificial
Neural Networks, kNN represents the “k-Nearest Neighbours” algorithm, “aa”
indicates amino acid composition, SVM indicates support vector machines , cTP
is Chloroplast targeting peptide, and finally DB means database.

One of the most popular protein subcellular localisation predictors that use

N-terminal sorting signals is TargetP (Emanuelsson et al., 2000), developed at

the DTU. This program is limited to only three classes (signal peptides (SP),
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mitochondrial, and “other”) for non-plants, and four classes (SP, mitochondrial,

chloroplast, and “other”) for plants. The “other” class represents proteins that do

not have N-terminal signals, and consists of only nuclear and cytosolic proteins.

Until now, most of the novel programs that predict the presence of N-terminal

targeting signals still use TargetP datasets as a benchmark set and compare

their prediction performance with that of TargetP. Another popular tool, SignalP

(Bendtsen et al., 2004b; Nielsen et al., 1997b) from the same group, predicts the

presence and location of signal peptide cleavage sites, and can accept eukaryotic,

Gram-positive and Gram-negative bacteria input. SignalP has two different ar-

chitectures: one is based on artificial neural networks (ANN), while the other is an

HMM predictor. ChloroP (Emanuelsson et al., 1999) predicts chloroplast transit

peptides (cTP) and the possible cleavage site position. Similar to TargetP, it is

based on ANNs. LipoP (Juncker et al., 2003) predicts lipoprotein signal peptides

for Gram-negative bacteria, achieving a reported correct prediction rate of 96.8%.

LipoP is an HMM based prediction system. Programs developed in this group

are mainly specialised tools, and based on predicting certain localisation related

features in proteins. Last year, the group published a Nature Protocols article

(Emanuelsson et al., 2007) describing the use of several localisation predictors

that aim to detect N-terminal sorting signals, including TargetP, SignalP, and

ChloroP which are all hosted at DTU’s Centre for Biological Sequence Analysis.

Predictors developed in Rost’s group can possibly be shortened by LOC*,

with the exception of PredictNLS. PredictNLS (Cokol et al., 2000) uses NLSdb

(Nair et al., 2003), a database of nuclear localisation signals (NLS) containing

both experimentally verified and “extrapolated” NLSs, to predict nuclear pro-
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teins. LOChom (Nair & Rost, 2002b) is a sequence similarity based classifier,

and it is based on the findings of a large-scale analysis of the relation between

sequence similarity and identity in subcellular localisation. Another “LOC” pro-

gram, LOCkey, (Nair & Rost, 2002a) classifies proteins according to their locali-

sations by a lexical analysis of SWISS-PROT keywords that assigns sub-cellular

localisation. LOCtarget and LOCtree (Nair & Rost, 2004) are two programs that

combine and use the other LOC* predictors, with the latter being based on SVM

decision trees.

Predictors based on Prof. Nakai’s “localisation knowledge base” (Nakai &

Kanehisa, 1991, 1992) constitute the PSORT family of programs. This knowledge

base is a set of “if-then” rules that are either determined from experimental

observations or derived empirically. The first PSORT predictor was announced

together with the knowledge base publication by Nakai & Kanehisa in 1991.

This is an expert system which is based on detection of the compiled rules. An

improved version, PSORT II (Horton & Nakai, 1997; Nakai & Horton, 1999) works

by detecting the same PSORT features using a “k-nearest neighbours” classifier.

Bannai et al. extended the PSORT family by a new predictor, iPSORT (Bannai

et al., 2002), which is the “TargetP counterpart” of this group. It basically

has additional rules to check for some physiochemical patterns in signal peptide

sequences. This program did not perform as well as the neural network based

TargetP, nevertheless it directly used signals and signal properties for N-terminal

sorting sequence prediction. After the development of PSORT-b (Gardy et al.,

2003, 2005) to predict Gram-negative bacterial localisation, the newest predictor

of the PSORT family, WoLF PSORT (Horton et al., 2007) was released (more
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than one year before its publication). WoLF PSORT, a eukaryotic localisation

predictor, is an extension of PSORT II. It uses the PSORT “if-then” rules, but

additionally incorporates some of the iPSORT features. This program uses amino

acid composition as well as some functional motifs such as DNA-binding motifs

obtained from public protein databases. As in the previous version PSORT II, it

is based on the k-nearest neighbour algorithm with feature selection.

In addition to the above, there are many other, mostly support vector ma-

chine -based protein classification programs. Examples of SVM-based methods

using amino acid composition as their main feature to predict eukaryotic protein

localisation categories include: PLOC (Park & Kanehisa, 2003), SubLoc (Hua &

Sun, 2001), CELLO (Yu et al., 2004), and ELSpred (Bhasin & Raghava, 2004)

(also PLSpred (Bhasin et al., 2005) from the same authors for bacteria), and so

on. BaCelLo (Pierleoni et al., 2006) is another SVM-based prediction system

that can predict 4 localisation categories for non-plant and 5 for plant protein

sequences. BaCelLo does not distinguish between secretory pathway proteins. It

uses N- and C-terminal sequence features such as the composition rates of amino

acid chunks of different lengths from both termini.

In spite of the numerous available methods to predict protein localisation,

there are only a few programs that can predict all major eukaryotic localisation

categories. Apart from the WoLF-PSORT program mentioned above, Proteom

Analyst (Lu et al., 2004), pTarget (Guda & Subramaniam, 2005) and MultiLoc

(Höglund et al., 2006) are the notable multi-class predictors.

Proteom Analyst predicts protein localisations for animal, plant, fungi, Gram-

negative and Gram-positive bacteria with reported correct prediction rates of
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around 81% for fungi, and at rates ranging from 92 to 94% for the other four cat-

egories. These high prediction accuracies are not surprising because this method,

combined with some sequence features, looks up textual subcellular localisation

annotations of other homologous sequences in annotated databases to report lo-

calisation.

pTarget is a subcellular localisation predictor that searches for the presence of

over 2100 PFAM (Bateman et al., 2004) domains in sequences, and also uses N-

and C-terminal amino acid composition. It classifies mammalian proteins in nine

localisation classes. Sequences used in pTarget’s development and evaluation have

been filtered to remove highly homologous sequences. However, only sequences

having identity rates greater than 95% were eliminated in the localisation datasets

used for training and testing of the program, which possesses the danger that

sequences with too high identities will be ‘recognised’ by the program rather

than ‘predicted’.

MultiLoc (Höglund et al., 2006) is a new, SVM-based eukaryotic localisation

predictor which combines features such as N-terminal signals, amino acid compo-

sition, and protein motifs from databases including Prosite (Hulo et al., 2006) and

the nuclear localisation signals database NLSdb (Nair et al., 2003). It predicts

nine animal, nine fungal and ten plant subcellular localisation categories with

an accuracy of around 74%. It uses a total of 5959 non-homologous sequences

having a maximum identity rate of 80%.

Sprenger et al. (2006) compared five mammalian protein subcellular localisa-

tion programs including the multi-class predictors CELLO, MultiLoc, Proteom

Analyst, pTarget, and WoLF PSORT, although these are not equivalent pro-
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grams in terms of their methodology and training procedures in that some are

not ab initio, and that they were originally trained from datasets having different

sequence similarity rates. Nevertheless, all these prediction programs can predict

the nine major subcellular localisation categories, and they are publicly avail-

able for download or use as a web service that can accept large number of input

sequences. This comparative study showed that no individual method had a suffi-

cient level of sensitivity for the datasets used in the evaluation that would enable

reliable application to entirely new or different proteins. All methods showed

lower performance than reported in the original publications. The benchmarking

tests were performed with low-redundancy sequences from the LOCATE database

(Fink et al., 2006). However, the datasets were constructed such that two-thirds

of them consist of only nuclear and extracellular proteins, while the remaining

seven localisation categories make up the remaining portion.

Despite this, even when we judge from what these programs report as their

accuracies, there is still a need for true ab initio automatic classifiers that can

mimic the underlying biology and predict localisation with higher accuracies in

the protein annotation field.

1.2 Sequence identity thresholds

Protein subcellular localisation predictors (see the previous section on page 6)

use amino acid sequences from public protein databases such as SWISS-PROT

(Bairoch & Apweiler, 1996, 2000) for program training and prediction accuracy

assessment purposes. Highly homologous sequences present in datasets used in

program training and testing phases could result in misleading reported prediction

12
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accuracies, and therefore must be removed from sequence datasets prior to train-

ing and testing. Different programs allow different maximum mutual sequence

identity thresholds to reduce sequence redundancy. Specialised programs that

predict only a certain number of protein localisation categories tend to use non-

homologous sequences as determined by some homology reduction algorithms

(Hobohm et al., 1992), or empirically determined sequence identity thresholds

that could be as low as 30%. However, those covering the majority of protein

localisation categories (generally 9-11 classes) tend to use higher thresholds, as

demonstrated in Table 1.2.

Program Max allowed sequence identity
MultiLoc (Höglund et al., 2006) 80%
PLOC (Park & Kanehisa, 2003) 80%
pTarget (Guda & Subramaniam, 2005) 95%
PSORTb 2.0 (Gardy et al., 2005) 100%
Proteome Analyst (Szafron et al., 2004) 100%

Table 1.2: Maximum mutual sequence identity rates allowed in the dif-
ferent predictors. PSORTb datasets are not filtered to eliminate sequence
redundancy. Sequence homology-based programs such as Proteome Analyst tend
to use the entire protein sequence sets.

On the other hand, using very low sequence identity thresholds may dramat-

ically reduce the number of available sequences in training and testing datasets.

For example, the vacuolar sequence dataset used in MultiLoc (Höglund et al.,

2006) (see Chapter 3) normally contains 164 sequences with no redundancy re-

duction applied. In MultiLoc, the allowed maximum mutual sequence percent

identity was taken as 80%, which reduces the number of vacuolar protein se-

quences to 103 (Table 1.3).

Chothia & Lesk (1986) demonstrated the relation between the divergence of
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Max allowed sequence identity Number of vacuolar proteins
100% 164
80% 103
40% 36
30% 26
25% 23

Table 1.3: Several allowed maximum mutual sequence identity rates
versus the number of vacuolar sequences. The vacuolar sequences refer to
the same dataset used in MultiLoc and in Chapter 3. Generally, as the percent
identity decreases, sequence dataset size shrinks.

sequence and structure in proteins. Sander & Schneider (1991) later showed that

sequence identity does not correlate linearly with sequence homology. Namely,

to avoid homologous pairs in a protein sequence dataset, the maximum percent

sequence identity for long amino acid sequences must be smaller than that of

relatively shorter sequences. That is, even a pairwise alignment with only 30%

sequence similarity over a length of 60 residues may imply homology, but it

does not if the alignment length is around 40. Generally, 30% sequence identity

is regarded as a good threshold. However, as the percent identity threshold is

decreased, there is a danger that there won’t be sufficient number of sequences re-

quired for healthy training and testing. Therefore, whenever possible, I used 30%

(Chapter 4) and when the number of sequences was critically low, 40% sequence

identities (for instance, for the training and testing of Lokum: see Chapter 3).

Compared to the other sequence identity thresholds used by the other mentioned

multi-class predictors, the 40% maximum threshold used in Lokum is significantly

lower (Table 1.2).

I used the CD-HIT (Li & Godzik, 2006; Li et al., 2001, 2002) clustering algo-

rithm to eliminate the existince of homologous sequences in the various sequence
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datasets that are employed in Chapters 2, 3 and 4. As explained in Li et al.

(2002), CD-HIT, in principle, uses the same basic sequence clustering algorithm

originally developed by Hobohm et al. (1992) that guarantees the elimination of

homologous pairs, but also uses some alternative heuristic strategies instead of

directly performing pairwise alignments that could normally be quite CPU in-

tensive. In CD-HIT, the minimum number of identical short substrings, called

‘words’, such as dipeptides, tripeptides and so on, shared by two proteins is a

function of their sequence similarity (Li & Godzik, 2006).

1.3 Computational methodologies

Below I summarise and describe briefly the main computational methods I used

(See Figure 1.1). These are, primarily, hidden Markov Models (HMM), motif

finding by Nested Sampling, and SVMs. Motif finding and inference by Nested

Sampling is the topic of Chapter 2 and explained there in more detail in the

context of NestedMICA. Another area where Nested Sampling is used is Chapter

5 which introduces a prototype HMM based transmembrane topology predictor.

Nested Sampling in Chapter 5 is used for HMM parameter optimisation. SVMs

form the crux of Lokum, combining all the features used.

1.3.1 HMMs

HMMs are useful for characterising sequentially changing behaviour, including

signals such as speech or a string of amino acids, in a mathematically tractable

way. An HMM is a stochastic finite automaton consisting of finite states. Each

state in a model is associated with a probability distribution which usually has
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multiple dimensions. An outcome or observable is said to be emitted from a state

based on the emission probability distribution of that particular state. Transition

probabilities reflect the transition frequencies between the states of a given model.

They must be explicitly set in the model.

The three main problems HMMs can address are:

1. Computing likelihood (given a set of observables, find the corresponding

probability of having that sequence). This problem is solved by the forward

algorithm.

2. Viterbi decoding (given a model, find the most probable sequence of states

which might have yielded a certain set of observables)

3. Model learning (inferring the model parameters, mainly that of the transi-

tion probabilities, that would best describe a set of observables) Parameter

optimisation or learning can be achieved with the Baum-Welch algorithm

which is an expectation maximisation (EM) procedure.

HMMs have been widely used in bioinformatics (Durbin et al., 1999) par-

ticularly for computational gene prediction, secondary structure prediction, and

modeling of protein families and domains. For example, gene prediction using

HMMs involves the second and possibly the third tasks of the above HMM objec-

tives. In the case of motif finding with NestedMICA, we use all three canonical

objectives in Chapter 2, for tasks including sequence and background likelihood

calculation, model learning and fitting.

Duration HMMs (Rabiner, 1989), which were originally developed for allevi-

ating problems in speech recognition, have many benefits in most applications
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of HMMs in bioinformatics. Probability distributions of state occupancy can be

represented by continuous probability density functions. Duration HMMs may

utilise functions like Gaussian or Gamma distribution functions, instead of a de-

caying exponential in the case of classic HMMs. Thus, in practical terms, it

is possible to ‘set’ the minimum (and in certain circumstances the maximum)

number of times a model has to emit from within a certain state, once it en-

ters that state. Figure 1.2 shows an example state occupancy probability plot

for a duration-enabled HMM state with a pre-determined minimum number of

self-transitions.

Figure 1.2: Probability of staying in the same state in a minimum du-
ration capable HMM state. Normally the probability curve would be only a
decaying function (of the form ae−x) from a maximum probability towards zero.
However, in duration-enabled states, it has to spend at least a certain number of
emission times in the same state before it starts to decay (corresponding to the
horizontal part in the curve).

A profile HMM (Gribskov et al., 1987) consists of multiple states connected

in series, none of which has a self-transition but usually a single transition to the

17



1.3 Computational methodologies

Figure 1.3: Profile HMMs. In this thesis, in what I call a “profile HMM” each
state Si has a single transition to the next state Si+1 with a duly set probability of
1.0, which makes them a way of representating position weight matrices (PWMs)
in the context of HMMs.

next state. For instance, gapped multiple alignments can be represented as profile

HMMs, in which case there is a need to add a “delete” and an “insert” state along

with each “match” state (see Durbin et al. (1999) for use of HMMs in sequence

alignment). However, throughout the thesis I will use the term “profile HMM”

to indicate linearly constructed series of states, each of which has a transition

probability of 1.0 to go to the next state, excluding the last state (Figure 1.3). In

this regard, there is not much difference between such a construct and a sequence

motif represented as a position weight matrix (PWM) where each fixed column

has its own symbol distribution.

1.3.2 The general idea behind motif finding

Interesting motif regions and the remaining uninteresting parts of sequences can

be represented as HMMs. These types of models can be referred to as sequence

mixture models (SMM), as they contain states representing motifs as well as some

prior models. Example of an SMM is the zero-or-one occurrences per sequence

(ZOOPS) model which is the default strategy in most motif finders based on

expectation maximisation (Dempster et al., 1977), or Gibbs sampling (Smith,

1987), a typical example of which is the MEME (Bailey & Elkan, 1995) motif
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discovery program.

NestedMICA differs from other ZOOPS models in that it does not perform a

greedy search to discover the best single motif and then by masking it out focus

on the next motif (if necessary). Instead, it considers different motifs at the same

time and learns a model to best describe them based on independent compo-

nent analysis (ICA) (Comon, 1994). In signal processing, ICA is a computational

technique aiming to separate multivariate signals into independent subcompo-

nents that constitute a given (generally noisy) signal. In linear, noiseless ICA:

xi = ai,1s1 + . . . + ai,ksk + . . . + ai,nsn (1.1)

where x represents the observed components vector, i.e:

x = (x1, . . . , xm)T (1.2)

with the constituent components, each having a weight aik, being:

s = (s1, . . . , sn)T (1.3)

The task is to be able to write s in terms of x : s = Wx, where W is some

static transformation matrix. This situation is generally likened to the “cocktail

party problem” which involves different people talking simultaneously in a room,

and therefore one hears a constant random “noise”. If individual components of

the observed “noise” are independent, then using ICA one can try to map the

individuals in the room to what each person has said. In the case of motif ICA

(MICA), motifs correspond to the individual voices in this example.
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1.3.3 Inference by Nested Sampling

Inferring optimal parameters for probabilistic models is a difficult task, partic-

ularly when the number of model parameters becomes large. NestedMICA per-

forms inference using Nested Sampling (Skilling, 2004), a robust Bayesian sam-

pling method for model selection and parameter optimisation. Nested Sampling

is a Monte Carlo inference strategy which can find globally good solutions to high-

dimensional problems. Classical Monte Carlo methods work by moving a single

state (i.e. set of parameters) around the problem’s parameter space, accepting

or rejecting proposed moves depending on whether they increase or decrease the

likelihood of the observed data. Nested Sampling is always applied to an ensem-

ble of e different states, where the value of e is typically a few hundred. The

process starts with an ensemble of states sampled uniformly from the prior.

Having sampled the states, they are then sorted in order of likelihood, and the

least likely state is removed from the ensemble. To maintain the ensemble size,

a new state is sampled, subject to the constraint that the new state must have

a likelihood greater than that of the state it is replacing. Repeating this process

many times means that nested samplers progressively move towards a small sub-

set of the state space which contains high-likelihood states. This is somewhat

analogous to simulated annealing methods where a temperature parameter is re-

duced to bring the model progressively closer to the posterior distribution, but

nested sampling avoids the need to explicitly cool the model: progress towards

high-likelihood states occurs automatically.

For each step of Nested Sampling, a certain fraction of state space is removed
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from further consideration (since it contains states with likelihoods lower than

the threshold). Over many steps, the fraction of prior mass that is removed from

consideration at step t will tend towards 1

Wt =
1

e
(

e

e + 1
)t (1.4)

where e is the ensemble size. Since all the states which have been removed from

consideration will have a likelihood of approximately Lt, the likelihood of the

state which was removed at step t, the Bayesian evidence for the model, Z, can

be estimated as:

Z =
∞∑

t=1

WtLt (1.5)

Clearly, it is possibly to progressively accumulate an estimate of Z during the

Nested Sampling process. The final estimate of Z can be used for model com-

parison purposes (for example, finding optimal parameters for the NestedMICA

sequence model). NestedMICA also uses Zt, the online Z estimate up to step

t, to decide when to terminate the Nested Sampling process. Specifically, we

terminate when:

1

Zt

Lt(
e

e + 1
)t < 0.01 (1.6)

i.e. the likely increase of Z in future iterations is small compared to the current

value. Formally, this may lead to premature termination if L increases dramati-

1Derivation of this formula is explained in the 4-page Nested Sampling illustrations by David
MacKay at http://www.inference.phy.cam.ac.uk/bayesys/box/nested.ps (URL last visited in
2008)
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cally late in the training process, but in practice we find that this simple criterion

is effective for motif discovery.

1.3.4 Support vector machines

SVMs are one of the most popular classification and regression algorithms, and

are applied in a variety of disciplines for tasks including signal processing, pattern

and image recognition, and biological sequence analysis. The support vector (SV)

algorithm is a generalised, non-linear form of the “generalised portraits” concept

developed by Vapnik in the 1960s (Vapnik & Lerner, 1963).

SVMs can be thought of as classifiers that try to maximise the geometric

margin separating data points from different classes. Points are actually mul-

tidimensional feature or attribute vectors which are mapped by some selected

function into some other mathematical space, where it would be more convenient

to perform the required tasks such as classification or regression. This new space

usually has a larger number of dimensions than the actual feature space, which

in turn increases the separability of data.

This separability is determined by the VC (Vapnik-Chervonenkis) dimension

of the model, which can be considered an upper theoretical limit for the set of

points a classifier can “shatter” in that space. To “shatter” some given points be-

longing to different classes, SVMs “draw” hyperplanes near the support vectors of

each class. SVs are those that are near the class boundaries, and contribute more

than the other points in shaping the hyperplanes. Then, an optimal separating

hyperplane is selected such that it maximises the geometric distance between any

two drawn hyperplanes that define class zones. Although defining hyperplanes
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associated with each class can in principle solve the problem of correctly assign-

ing new, unseen data that is similar to the training data into one of the classes,

for more “difficult” test points that lie between any two zone-determining hyper-

planes, assignments can be done according to their distances to the maximum

margin hyperplane.

A dot-product function can be used in simple problems for data mapping,

but using kernel functions allows non-linear hyperplanes to be created. Apart

from linear kernels, the most commonly used kernels are polynomial (Eq 1.7),

radial-basis function (RBF)(Eq 1.8), and the sigmoid (Eq 1.9):

k(x,x′) = (x · x′)d (1.7)

k(x,x′) = exp(−γ‖x− x′‖2) (1.8)

k(x,x′) = tanh(κx · x′ + c) (1.9)

More information regarding SVMs can be found in the excellent tutorials of

Burges (1998) and Smola & Scholkopf (1998), and also from SVM-dedicated web

sites such as:

• http://www.support-vector.net/

• http://www.support-vector-machines.org/.

Examples of popular SVM implementations that are free for use in academic

studies are libsvm (Chang & Lin, 2001), SV M light (Joachims, 1999), and another
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libsvm derivative, BSVM (Hsu & Lin, 2002). In Lokum we used both the C and

Java implementations of libsvm (Chang & Lin, 2001), version 2.85 (see Sections

3.2.6 and 3.5).

Artificial Neural Networks (ANNs), similar to SVMs in terms of their goal and

function, are widely used classifiers. ANNs differ substantially from SVMs in that

their proposed solutions could correspond to some local maxima. As C. Burges

put it in his SVM tutorial (Burges, 1998), “They (SVMs) differ radically from

comparable approaches such as neural networks: SVM training always finds a

global minimum, and their simple geometric interpretation provides fertile ground

for further investigation”.
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Chapter 2

NestedMICA as an ab initio
protein motif finder

1

2.1 Background

Discovering linear sequence motifs common to a set of protein sequences has

long been an important problem in biology. It is possible to check if a set of

proteins contain a known sequence motif by searching protein motif or domain

databases. Databases including Pfam (Bateman et al., 2004), eukaryotic linear

motif database (ELM) (Puntervoll et al., 2003), Prosite (Hulo et al., 2006) and

ScanSite (Obenauer et al., 2003) contain sequence motifs and domains in the

form of regular expressions or profile HMMs. Obviously, one cannot use these

resources to discover a novel or unannotated sequence motif that is suspected to

be a common feature in a given protein set. While new protein domains such as

1This chapter was partly published in BMC Bioinformatics in January 2008 (Doḡruel et al.,
2008), by the author of this PhD thesis (MD), Dr. Thomas Down (TD), and finally my thesis
supervisor Dr. Tim Hubbard (TH). Authors’ contributions are as follows: TH and MD con-
ceived this work, MD and TD modified the NestedMICA code, MD performed the tests and
wrote the manuscript.
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those contained in Pfam can be defined from alignments of evolutionarily related

sequences, the identification of short sequence motifs, potentially shared between

proteins that appear evolutionarily unrelated, is much harder.

To tackle this problem, several multiple alignment approaches (Hertz & Stormo,

1999; Zaslavsky & Singh, 2006) have been proposed. One such tool, Dilimot (Ne-

duva & Russell, 2006), is a recent protein motif search tool aiming at finding

relatively short overrepresented motifs by aligning only sequence regions that are

likely to contain a linear motif. It filters out regions including globular domains

and coiled-coil regions which are reported or predicted by some other algorithm,

before searching for known motifs in several protein databases such as PFAM,

and finally uses a pattern search program, TEIRESIAS (Rigoutsos & Floratos,

1998) to find overrepresented matches. TEIRESIAS, an ab initio program that

is not based on database look-up, can list frequently repeating character-based

patterns that include gaps, from a given sequence set. Patterns can include one or

two events separated by wild-card characters, as in AT..G (Burgard et al., 2001).

Another similar and robust amino acid pattern search tool is SLIMFinder (Ed-

wards et al., 2007) in which short protein motifs are built by combining dimers

into longer patterns, retaining only those motifs occurring in a sufficient number

of unrelated proteins. Motifs with fixed amino acid positions are identified and

then combined to incorporate amino acid ambiguity and variable-length wildcard

spacers. Dilimot, TEIRESIAS and SLIMFinder report results as regular expres-

sions. There are also other algorithms in the non ab initio motif finding category,

using evolutionary or structural information, which are specifically designed to

predict DNA-binding regions in protein sequences (Ahmad & Sarai, 2005; Hwang
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et al., 2007; Kuznetsov et al., 2006). However since the MEME tool was developed

(Bailey & Elkan, 1995) and provided a way to carry out ab initio protein motif

finding, returning a set of Position Weight Matrices (PWMs) rather than regular

expressions, not many multi-purpose sequence-based probabilistic motif finders

have been developed, despite there being numerous tools for finding motifs in

DNA. Examples to other well known DNA motif discovery tools are SeSiMCMC

(Favorov et al., 2005), AlignACE (Hughes et al., 2000), ANN-Spec Workman &

Stormo (2000), Weeder (Pavesi et al., 2004), and YMF (Sinha & Tompa, 2003).

NestedMICA (Down & Hubbard, 2005) is a probabilistic motif discovery al-

gorithm which uses a new Monte Carlo inference strategy called Nested Sampling

(Skilling, 2004). Written in the Java programming language as an open source

application, NestedMICA uses Biojava libraries (BioJava, 2007). It has been

successfully used for transcription binding site and large-scale promoter motif

discovery (Down & Hubbard, 2002). In this manuscript, I extend the applica-

tion of NestedMICA to finding motifs in protein sequences and compared it with

the popular program MEME using both biologically-authentic and synthetic test

data sets. I chose to compare NestedMICA with MEME, because the output of

MEME is motifs in the form of PWMs, making comparison possible. MEME is

also an ab initio method and uses probabilistic models like NestedMICA.

To evaluate the performance of the two methods I have performed various

spiking tests in which some test motifs generated from protein domain alignments

were spiked into a set of protein sequences, as described in the Methods. This

assessment procedure is similar to the approach followed in a previous transcrip-

tion binding site motif discovery programs comparison by Tompa et al. (2005).
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NestedMICA has also been assessed by testing its ability to find a subcellular

localisation motif in datasets known to contain a specific localisation signal.

2.2 Materials and methods

2.2.1 NestedMICA

NestedMICA is a probabilistic motif inference method based on a generative se-

quence model. The model has three sets of parameters: firstly, a background

model which represents all the non-motif parts of the input sequences; second,

a set of position-weight matrices which represent the motifs themselves; finally,

a binary matrix (the occupancy matrix) whose elements specify whether a given

motif should be considered when modeling a given input sequence. The back-

ground model is built in advance and held constant during motif inference, while

the motifs and occupancy matrix are updated to fit the supplied data. Nested-

MICA uses the Nested Sampling strategy (Skilling, 2004) to update both of these

sets of parameters.

The implementation of NestedMICA’s nminfer program can be split into two

major parts: code that calculates the likelihood of some sequences under the

generative model, and code which implements the Nested Sampling process. The

Nested Sampling code makes few assumptions about the internal structure of

the model (and could potentially be used to perform inference of quite different

models), so I consider these two components separately.

NestedMICA was designed completely in an object oriented and modular man-

ner that allows one to plug in a very different model without touching the trainer

code: Similarly, the likelihood calculators do not know anything about Nested
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Sampling (and could potentially be used in another training framework). Be-

low, sequence models, likelihood calculation, nested sampling, and finally the

implemetation are discussed.

2.2.1.1 The NestedMICA sequence model

NestedMICA relaxes the constraints of the ZOOPS model (see 1.3.2) slightly by

allowing a given motif to appear multiple times in the same input sequence. To

calculate the likelihood of a given sequence, NestedMICA first consults to appro-

priate row of the occupancy matrix to determine a (possibly empty) subset, M ,

of the complete motif set which applies to this sequence. In the case where M

is empty, the likelihood of the sequence is simply its likelihood under the back-

ground model (see below). When M is non-empty, NestedMICA sums over all

possible configurations of motif occurrences along the sequence, filling in any gaps

using the background model. This is performed using a dynamic programming

recursion which gives the likelihood, Ln of all paths up to a given point in the

input sequence, n as:

Ln = (1− t)Bn−1Ln−1 +
t

|M |
∑
m∈M

m(Sn−1
n−|m|+1)Ln−|m| (2.1)

where |M | is the number of motifs selected by the occupancy matrix, |m| is the

length of weight matrix m, Bn is the probability that the sequence symbol at

position n was emitted by the background model, m(Sj
i ) is the probability that

the sequence from i to j was emitted by the weight matrix m, and t is a transition

probability specifying the estimated density of motifs in the sequence.

We initialise L0 = 1 then apply the above formula recursively along the length
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of the input sequence until the final position is reached, giving a likelihood for

the complete sequence.

In principle, any background model could be used with this formulation. In

practise, I choose to use a mosaic background (Down & Hubbard, 2005) which

admits the possibility of several different classes of background sequence, each

of which is modeled using a low-order Markov chain (i.e. within a given class,

the probability of observing a particular symbol at position n depends on the

symbols observed at a fixed number of previous positions). The mosaic model

is implemented as a fully connected HMM (transitions are allowed between any

pair of classes).

To calculate Bn, NestedMICA first applies the standard posterior decoding

algorithm (Durbin et al., 1999) to find Phn, the posterior probability that the

symbol at position n in the input sequence was generated by state h of the

background model H. We can then calculate Bn as:

Bn =
∑
h∈H

Phnh(Sn) (2.2)

(i.e. summing over any remaining uncertainty in which background class is used

at n). Note that when the Markov chain order, o is greater than zero, the prob-

ability of observing a given symbol, h(Sn), depends on o previous symbols in

the sequence. This means that is not possible to exactly calculate Bn where

n ≤ o. We choose to ignore the first o symbols in the input sequence (except for

background calculation purposes) in order to avoid any edge effects.
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2.2.1.2 Implementation of NestedMICA

The NestedMICA nminfer program is based around a fairly general implemen-

tation of the Nested Sampling strategy, which can be applied to any probabilistic

model. This code takes three inputs: a data set (i.e. a set of sequences), some

code to calculate the likelihood of the dataset given a model state (i.e. an im-

plementation of the likelihood function given above), plus a set of “sampling”

operations which perturb a state and can be used to move around state space.

Each state consists of two sets of parameters: a set of motif weight matrices,

and an occupancy matrix specifying whether the motifs appear in the input se-

quence set. Most of NestedMICA’s sampling moves are applied to one randomly

selected weight matrix (WM):

• making a small perturbation to one column of a weight matrix, by slightly

increasing or decreasing one of the weights, then renormalizing so they still

sum to 1.

• replacing a WM column with a new one, sampled from the prior.

• removing a column in one end of a WM while adding another one to the

other end.

• adjusting motif length, by adding or removing a column from either end.

In addition, it is necessary to resample the occupancy matrix. In principle, a

straightforward and valid sampling move would be to simply flip the state of one

randomly-selected element in the occupancy matrix. In practise, NestedMICA
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tests multiple occupancy matrix moves at the same time, since this improves

performance when running on multi-processor systems.

Finally, it is necessary to place a prior over the state space. NestedMICA uses

a simple non-informative prior for the Weight Matrix motif models: a uniform

prior over weight-matrix space with a constraint that extremely low weights are

forbidden. The lower limit is specified by the -minClip parameter and is typically

10−7 for amino acid, and of the order of 10−3 for dna input. We also place a

non-informative prior on the occupancy matrix, although if there is some prior

knowledge about the frequency of the target motif in the dataset, this can be

specified using the -expectedUsageFraction option.

The main challenge when implementing nested samplers is to sample uni-

formly from the prior while respecting the likelihood constraint. In practice, this

is usually solved by duplicating a randomly-selected state from the ensemble then

using classical (single-state) Monte Carlo strategies to move the duplicate state.

NestedMICA uses a straightforward Metropolis-Hastings approach for prior sam-

pling. Further information on the use of this strategy is available in the original

publication of NestedMICA (Down & Hubbard, 2005).

Rather than storing the weight matrix in its traditional form as a list of prob-

ability distributions over an alphabet, in NestedMICA it is stored as a circular

buffer of distributions that is slightly larger than the longest motif being modeled,

with the addition of an offset parameter (where the motif starts in the buffer)

and a length parameter. The nice thing about this representation of motifs is

that it is possible to extend the motif in either direction when length is needed

to be sampled, up to the size of the circular buffer.
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2.2.2 Adding protein support to NestedMICA

I made several changes to NestedMICA in order to support protein motif discov-

ery. Firstly, I added support for loading and analysing protein sequences (enabled

with the “-alphabet PROTEIN” switch). The inference strategy remains identical

to that previously described (Down & Hubbard, 2005). However, the dimension-

ality of the protein motif discovery problem is much higher than in nucleic acids:

a DNA motif model has three free parameters per position, while a protein motif

has 19. To compensate for this difference, I found that a rather larger ensemble

of models in the Nested Sampling process was required than for DNA. Having

found an optimal ensemble size by performing a systematic parameter sweep test,

I altered this to be the default ensemble size when running the program in pro-

tein mode. Unless set otherwise by the user, it is automatically set to either 4000

divided by number of target motifs, or set to a minimum of 1000, in case the

division would be less than 1000.

Another important difference between the protein-capable version and the

previous version of NestedMICA is the way distribution probability initialisa-

tion is performed in setting up the amino acid probability distributions for each

background mosaic class. Starting off with flat probability distributions in all the

mosaic classes of a given background as in the DNA case was not ideal for protein

sequences, as I observed a minimal learning rate with these equal initial states.

Instead, a semi random, semi actual input-based initialisation was preferred: the

distributions were initialised such that they directly reflect the amino acid dis-

tributions of the actual input data, except, these numbers were slightly changed
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randomly by a certain margin for the training to learn and converge faster.

Since the initial publication of NestedMICA (Down & Hubbard, 2005), an

important extra feature was added of automatically optimising a motif’s length

within a user-specified motif length range. NestedMICA treats the motif length

as another free parameter of the motif model, and optimises it using the same

Nested Sampling strategy as for all the other parameters. Another change in the

new version is that, if no background model is provided by the user, NestedMICA

uses a basic, zero-order background model which is trained on the fly from the

user supplied input sequences.

Further information regarding the parameters used in motif finding can be

found in the user manual at the NestedMICA web site:

http://www.sanger.ac.uk/Software/analysis/NestedMICA/

2.2.3 Program output and sequence logos

NestedMICA reports discovered motifs as PWMs which can be viewed as se-

quence logos by an accompanying motif-viewer tool. In a single NestedMICA

protein motif logo, each column has a maximum information content of 4.32 bits

(log220), and amino acid letters are coloured according to their general physical

and chemical properties, as depicted in Figure 2.2

As opposed to majority of motif finders, NestedMICA does not report any

significance measures such as E-values, or entropy scores, as these values could

be quite unreliable. All these scores are calculated based on the idea that a motif

finder has picked up a real motif, which obviously cannot always be true. The

recent publication by Ng et al. (2006), discusses in detail why using such scores
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could lead to undesirable results.

2.2.4 Background model training

Probabilistic motif finding tools usually employ background models to represent

sequence regions where ideally no motif of interest exists. In most cases, however,

these programs use a homogenous background model, assuming that all non-motif

portions of the sequence can be represented using a single amino acid frequency

distribution. In reality, protein sequences are generally composed of different

functional domains which can be chemically biased towards certain compositional

forms. In addition, protein sequences are very likely to carry different sequence

signals responsible for various molecule-recognition and binding related tasks.

NestedMICA uses non-homogenous (“mosaic”) background models which sub-

divide the background sequences into several classes. Each class is modelled as a

Markov chain. The order of the chain (i.e. the number of previous symbols on

which the probability distribution for the next observed symbol is conditioned)

can be set to an arbitrary value, but for protein sequence analysis I recommend

only using zeroth or first-order background models, since higher order models will

have an extremely high parameter count and will be hard, if not impossible, to

parametrise effectively.

A built-in background likelihood estimation procedure in NestedMICA (called

“nmevaluatebg”) allows an optimal background model architecture to be found

for a given set of sequences. A NestedMICA background model can be of any

order Markov chain and consist of an arbitrary number of mosaic classes. As a

good representative sequence set, I used the pTarget protein subcellular locali-
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sation dataset (Guda & Subramaniam, 2005) for background model parameter

optimisation (Figure 2.1). This is mainly because it includes different types of

proteins from different subcellular localisations, eliminating the chance of some

strong domain and localisation signals to dominate the background model train-

ing and evaluation. Furthermore, I reduced the sequence identity of the set from

95% down to a maximum of 40% by using the CD-HIT (Li & Godzik, 2006) clus-

tering software to have a total of 7437 eukaryotic proteins, which had an average

sequence length of 522. For evaluation purposes, 6000 of these were used to train

several different background models with different parameters, while the remain-

ing sequences were used to test how well a certain background model represented

them. As Figure 2.1 shows, using order-1 probabilities, where the compositional

probability of a certain residue depends only on a single adjacent residue, per-

forms better than a zero-order model. Moreover, likelihood for the test sequences

increased monotonically with the number of mosaic classes. Training a multi-class

higher-order background requires sufficient sequence data in order to prevent a

possible over-fitting of the background. For example, using a first order, 6-classes

model corresponds to having a total of 2400 different amino acid distributions.

2.2.5 Testing NestedMICA’s performance

In order to get a better understanding of NestedMICA’s protein motif finding

capabilities and limits, a number of motif spiking experiments were performed

using synthetic and biological motifs, similar to the approach previously used by

Down & Hubbard (2005). In a motif spiking test, a number of short amino acid

sequences are generated according to the weight matrix distribution probabilities
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Figure 2.1: Likelihood curve for different number of mosaic classes. The
x-axis represents the total number of mosaic classes in the tested background
model architecture. The logarithmic y-axis corresponds to a likelihood measure
that can take arbitrary values, of how well a background model represents the
given sequence set. The red line represents a zero-order while the green one
represents a first-order background model.
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of a given motif. These motif-resembling short peptides are then inserted at

random positions into a set of sequences. The program under test is then applied

to the set of sequences to predict a set of motifs. Finally, the predicted candidate

motif set is compared with the original test set to assess the performance of the

program in recovering the spiked motifs. MEME PWMs were converted into

NestedMICA sequence logos for easier comparison.

To evaluate how similar a reported motif is to the original one, I used Carte-

sian motif-motif distances. The Cartesian motif distance metric is the sum of

individual Cartesian distances calculated for each motif position, between corre-

sponding pairs of the 20 amino acid probabilities from both motifs. For a motif

to be considered as recovered with a reasonable precision, I used an empirically

set threshold for the maximum allowed Cartesian motif distance normalized for

the original motif length. Motifs showing an average deviation per position of

more than 0.3 of Cartesian motif distance were considered as false discoveries.

For each motif, in addition to reporting Cartesian motif distances, I calculated

sensitivity (Equation 2.3) and specificity (Equation 2.4) values:

SN =
TP

TP + FN
(2.3)

SP =
TP

TP + FP
(2.4)

Matthew’s Correlation Coefficient (MCC) (Matthews, 1975), shown in Equa-

tion 2.5, values were calculated, too, to show a PWM’s scanning power as in

Kiemer et al. (2005):
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MCC =
TP TN − FN FP√

(TN + FN)(TP + FN)(TN + FP )(TP + FP )
(2.5)

where TP, FP, FN, TN stand for true positives, false positives, false negatives

and true negatives, respectively.

One advantage of using MCC in a PWM evaluation is that for random motif

predictions MCC tends to be around zero, while for a perfect scanning perfor-

mance it will have a maximum value of 1. On the other hand, depending on the

choice of a score threshold, even for an irrelevant or weak motif one can get a

sensitivity of 1, for instance, while the corresponding specificity value could be as

low as 0.5, if the number of sequences in both datasets are equal. In such cases,

MCC will tend to be very low, reflecting the random prediction.

To calculate these measures of motif scanning performance, first, I spiked ev-

ery sequence in the test dataset with a particular motif, then I scanned a reported

motif both in the spiked and original datasets to see how many motif instances

would be correctly or falsely predicted in both datasets. For each individual test

case, I picked a threshold score that maximises the corresponding MCC value,

after trying a range of different score thresholds systematically incremented in

each iteration to compute sensitivity, specificity and MCC values. I calculated

these values not only for motifs reported by the programs I assessed, but also

for the original test motifs. I did this because values measuring the scanning

performances of recovered motifs should be considered relative to those of the

original motif. A more objective and absolute metric of motif recovery is the

Cartesian motif distance, which is the sum of probability differences in corre-

39



2.2 Materials and methods

sponding columns of any two compared motifs. For example, a test motif which

contains only a small number of strongly conserved residues cannot be expected

to have a good scanning performance in identifying all spiked motifs, because the

motif tolerates too much sequence variation. Therefore judging the performance

of a motif discovery tool based on only such sensitivity/specificity measures is

inadequate, since a motif tool should find a weak motif from a set of spiked

data, if the original motif is a weak one, too. The sensitivity/specificity of this

type of less conserved motifs would be relatively low, and not reflect or reward

a program’s ability to have discovered such a difficult motif. Therefore, I report

MCC of the original test motifs primarily as a measure indicating how difficult

a motif is to recover by a motif discovery program, and I report Cartesian motif

distances with the purpose of indicating how good the program is in that task.

For instance, even an MCC value of 0.65 would still be good for a motif found by

a program, if the corresponding real test motif did not have a much better MCC.

To generate test motifs for the program’s assessment, I used conserved blocks

of several ClustalW multiple alignments of sufficiently large number of Swiss-

Prot(Bairoch & Apweiler, 1996) proteins. These proteins feature arbitrarily cho-

sen Prosite (Hulo et al., 2006), or PFAM domain entries. Segments from these

domains’ alignments were converted into PWMs to obtain 3 sets of 7 test motifs

of varying lengths between 3 and 9. The 21 test motifs used in the evaluations

are available for download at the NestedMICA home page.

As a dataset to carry out the spiking tests on, I used 438 whole-length cy-

toplasmic protein sequences obtained from the redundancy-reduced non-plants

version of the TargetP (Emanuelsson et al., 2000) subcellular localisation dataset.
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Having an average sequence length of 582, this dataset does not include any ho-

mologous proteins, after a filtering process performed as suggested by Hobohm

et al. (1992). Both NestedMICA and MEME were run with the default options.

Note that, NestedMICA’s default parameters differ from those used in DNA mo-

tif finding. Both NestedMICA and MEME require a target motif length interval,

and no matter what the actual spiked motif’s length was, for all of our spiking

tests this was set to be between 3 and 15.

The background model used in the spiking tests was trained from the same cy-

toplasmic sequence dataset. The similar background likelihood analysis that was

performed on another set (Figure 2.1) suggested that there would be no significant

gain in likelihood when using a model with more than 4 mosaic classes for this

particular small dataset. Therefore, a first order background model containing 4

mosaic classes was used in the tests.

Finally, for the evaluation of the program’s assessment in subcellular locali-

sation motif recovery, which was performed using sequences of different lengths,

I used the ER dataset of a multi-class protein subcellular localisation predictor,

MultiLoc (Höglund et al., 2006). This dataset contains 198 homology-reduced,

eukaryotic ER proteins.

2.3 Results and discussions

2.3.1 Protein sequence background model

The first step in using NestedMICA is the generation of a background model to

represent the uninteresting parts of sequences that do not contain motifs of inter-

est (see methods). From a series of tests I concluded that different sets of protein
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sequences vary in complexity and composition too much to develop a generic

background model. Most of the time, training a dedicated background model for

each protein dataset is the best way to maximise performance and sensitivity.

Prior to motif finding, sequence likelihood analysis must be performed to test a

variety of background models and select the optimal one. Figure 2.1 shows one

such likelihood curve performed on a set of cytoplasmic proteins. Generally, if

there is sufficient data to perform a proper training, using order-1 background

models proved to be better than order-0 models for proteins. As far as the num-

ber of mosaic classes is concerned, a class number should be picked that falls on

the corresponding likelihood curve before it starts to saturate or drop, regardless

of whether it increases at a later stage.

2.3.2 Performance vs. motif abundance

I used 3 different motif sets each containing 7 motifs of lengths ranging from 3 to

9 amino acids. Instances of each of the motifs depicted in Figures 2.2, 2.3 and 2.4

(for motif sets 1, 2 and 3, respectively) were separately spiked into the cytoplasmic

dataset (see Section 2.2.5). The 21 motifs were inserted into the sequences at

different frequencies (10, 20 and 30%), allowing us to test motif discovery software

under different conditions of motif abundance. Generally, performance for both

NestedMICA and MEME increased with increasing abundance rate of the inserted

motif.

Each of these three figures shows a set of tests performed at different motif

abundance rates with the original test motifs, along with the corresponding motifs

found by both NestedMICA and MEME. For each motif reported by NestedMICA
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Figure 2.2: Motifs recovered by NestedMICA and MEME in the single-
motif spiking tests, for motif set1. Motifs in this set were obtained from
several Pfam domain entries. For each original test motif used in the motif
spiking tests, the 3 tested abundance rates are shown in the next column. For
motifs recovered by NestedMICA (fourth column) and MEME (sixth column) the
Cartesian distance to the original test motif and the MCC value obtained when
the motif is used for sequence scanning are shown. For comparison purposes,
the MCC values of the original test motifs are shown as well. In NestedMICA
protein sequence logos, hydrophobic residues are represented in orange, polar and
hydrophilic ones in green, acidic ones in pink, and finally basic amino acids are
depicted in blue.
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Original motif Abundance MCC for
original NestedMICA Distance & MCC

for NestedMICA MEME Distance & MCC
for MEME
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0.99  0.927
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Figure 2.3: Motifs recovered by NestedMICA and MEME in the single-
motif spiking tests, for motif set2. Motifs in this set were obtained from
several Prosite domain entries. For each original test motif used in the motif
spiking tests, the 3 tested abundance rates are shown in the next column. For
motifs recovered by NestedMICA (fourth column) and MEME (sixth column) the
Cartesian distance to the original test motif and the MCC value obtained when
the motif is used for sequence scanning are shown. For comparison purposes, the
MCC values of the original test motifs are shown as well.
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Original motif Abundance MCC for
original NestedMICA Distance & MCC

for NestedMICA MEME Distance & MCC
for MEME
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Figure 2.4: Motifs recovered by NestedMICA and MEME in the single-
motif spiking tests, for motif set3. Motifs in this set were obtained from
several Pfam domain entries. For each original test motif used in the motif
spiking tests, the 3 tested abundance rates are shown in the next column. For
motifs recovered by NestedMICA (fourth column) and MEME (sixth column) the
Cartesian distance to the original test motif and the MCC value obtained when
the motif is used for sequence scanning are shown. For comparison purposes, the
MCC values of the original test motifs are shown as well.
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and MEME, its Cartesian distance from the corresponding original motif is given.

As Tables 2.1 and 2.2 summarise, low abundance motifs and short motifs were

more difficult to recover for MEME, even if they had a high information content.

For example, out of the maximum 4.32 bits per position, the average information

content per position was 3.96 bits (91.5%) for motif of length 3 in set 2, while

it was 3.68 bits (85.2%) for motif of length 4 in the same motif set (Figure 2.3).

Both could not be recovered by MEME at the tested 10, 20 and 30% abundance

rates. The motif of length 3, for example, could only be recovered correctly by

MEME when it was present in at least 80% of the sequences (data not shown).

In contrast, the same motif was recovered by NestedMICA when present in only

10% of the sequences. NestedMICA did not miss any of the 21 motifs when they

were present at 30% abundance. It also correctly recovered 95.2% and 61.9% of

them when the motif abundance rate was 20%, and 10%, respectively (Table 2.2).

Spiked Set 1 Set 2 Set 3
in(%) NestedMICA MEME NestedMICA MEME NestedMICA MEME
10 3 0 4 0 6 2
20 6 1 7 4 7 3
30 7 3 7 5 7 4

Table 2.1: Motif recovery performance for NestedMICA and MEME
for individual test sets. Numbers shown correspond to the correctly recovered
number of motifs for each test set, each of which contains 7 motifs, for the single-
motif spiking tests. Motifs recovered for set 1, 2 and 3 can be seen on Figures
2.2, 2.3, and 2.4, respectively. A motif is considered as correctly recovered if the
average Cartesian distance per residue position between the recovered motif and
the original motif that was spiked is < 0.3 (see Section 2.2.5).

In addition to Cartesian motif distances, measuring the similarity between the

recovered motif and the original, the performance of the motifs in finding motif
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instances when scanning test sequences is indicated by Matthew’s Correlation

Coefficient (MCC) (Matthews, 1975) values (Figures 2.2, 2.3 and 2.4). The MCC

is a single measure that captures performance over a range of sensitivity and

specificity values (see methods). Raw sensitivity and specificity values are given

Tables 2.3, 2.4 and 2.5 for all three motifs sets. These measures have been used to

evaluate the scanning performances of the original and reported motifs, by testing

spiked datasets (independent of the spiked datasets used for training) where each

sequence contains an instance of a particular motif. I provide the MCC values for

the original test motifs, too, for better interpretation of the MCC values given

with the motifs reported by both programs. Having relatively lower sensitivity

/ specificity values, and hence a lower MCC, does not necessarily mean that a

program is not doing well in finding a certain motif, but in certain cases it can

indicate that the target motif is a weak one and therefore more difficult to recover.

MCC values for the original motifs were calculated in a similar way to the others,

i.e., by spiking every sequence in the background test dataset with the generated

instances of a particular motif, and then scanning the spiked dataset with the

original motif to see how many motif hits would be found using a range of score

Motif Total correct (%)
abundance(%) NestedMICA MEME
10 61.9 9.5
20 95.2 38.0
30 100.0 57.1

Table 2.2: Total motif recovery performance summary for NestedMICA
and MEME. Percentages of correctly recovered motifs are given for the 3 motif
abundance rates tested, considering all 21 test motifs from three of the sets.
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thresholds (see methods).

NestedMICA MEME
Length Abundance SN SP SN SP
3 10 0.988 0.855 0.995 0.501
3 20 0.988 0.855 0.995 0.501
3 30 0.988 0.855 0.995 0.501
4 10 0.811 0.545 0.197 0.506
4 20 0.995 0.501 0.197 0.506
4 30 0.847 0.728 0.197 0.506
5 10 0.487 0.914 0.592 0.507
5 20 0.753 0.921 0.592 0.507
5 30 0.782 0.921 0.592 0.507
6 10 0.950 0.501 0.978 0.501
6 20 0.849 0.808 0.978 0.501
6 30 0.703 0.913 0.978 0.501
7 10 0.995 0.501 0.995 0.501
7 20 0.890 0.923 0.995 0.501
7 30 0.823 0.958 0.818 0.950
8 10 0.957 0.968 0.856 0.507
8 20 0.959 0.976 0.959 0.976
8 30 0.971 0.964 0.964 0.969
9 10 0.974 0.514 0.990 0.502
9 20 0.835 0.938 0.995 0.501
9 30 0.875 0.915 0.851 0.939

Table 2.3: Sensitivity (SN) and specificity (SP) values for motifs of Set
1, reported by NestedMICA and MEME in the single-motif spiking
tests. Length refers to number of residue positions in motifs.

2.3.3 Performance with multiple motifs

Individual protein sequences may contain multiple different motif of interest.

For example, proteins targeted into the endoplasmic reticulum (ER) by an N-

terminal Signal Peptide (SP) sequence are maintained in the ER if they have also

a [KH]DEL retention signal on their C-terminus. After determining the ability of
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NestedMICA MEME
Length Abundance SN SP SN SP
3 10 0.770 0.933 0.990 0.502
3 20 0.770 0.933 0.990 0.502
3 30 0.950 0.904 0.995 0.501
4 10 0.930 0.503 0.942 0.504
4 20 0.664 0.986 0.988 0.501
4 30 0.842 0.850 0.988 0.501
5 10 0.978 0.953 0.995 0.501
5 20 0.954 0.980 0.995 0.501
5 30 0.974 0.914 0.986 0.895
6 10 0.921 0.987 0.935 0.502
6 20 0.866 0.984 0.918 0.958
6 30 0.914 0.969 0.871 0.976
7 10 0.947 0.990 0.866 0.503
7 20 0.942 0.995 0.952 0.978
7 30 0.962 0.985 0.957 0.964
8 10 0.959 0.501 0.974 0.504
8 20 0.873 0.931 0.861 0.940
8 30 0.873 0.933 0.851 0.947
9 10 0.995 0.501 0.998 0.501
9 20 0.940 0.985 0.935 0.975
9 30 0.938 0.992 0.957 0.980

Table 2.4: Sensitivity (SN) and specificity (SP) values for motifs of Set
2, reported by NestedMICA and MEME in the single-motif spiking
tests.
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NestedMICA MEME
Length Abundance SN SP SN SP
3 10 0.559 0.903 0.197 0.506
3 20 0.875 0.877 0.197 0.506
3 30 0.875 0.877 0.197 0.506
4 10 0.921 0.506 0.993 0.501
4 20 0.839 0.909 0.993 0.501
4 30 0.775 0.934 0.993 0.501
5 10 0.731 0.897 0.854 0.506
5 20 0.782 0.874 0.854 0.506
5 30 0.837 0.866 0.854 0.506
6 10 0.839 0.902 0.995 0.501
6 20 0.863 0.911 0.995 0.501
6 30 0.794 0.948 0.856 0.932
7 10 0.906 0.947 0.139 0.532
7 20 0.882 0.984 0.926 0.977
7 30 0.902 0.984 0.928 0.968
8 10 0.995 0.995 0.995 0.995
8 20 0.993 0.998 0.995 0.998
8 30 0.993 0.998 0.990 1.000
9 10 0.993 0.995 0.986 1.000
9 20 0.995 0.998 0.995 0.998
9 30 0.995 0.995 0.995 0.995

Table 2.5: Sensitivity (SN) and specificity (SP) values for motifs of Set
3, reported by NestedMICA and MEME in the single-motif spiking
tests.
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Name Motif MCC

m4

m7

m10

0.82

0.94

0.97

Figure 2.5: Inserting more than one different motif into the sequences.
Original motifs used in multiple motif test are shown. These were inserted into
the test sequences, at 40 and 20% total motif abundance rates. Resulting spiked
sequences contain either zero, one or multiple different instances of the shown
motifs, while sequences were not allowed to contain multiple instances of the
same motif. The MCC values of these original motifs are given for comparison
with the recovered motifs’ MCCs. Results for recovered motifs are presented in
Tables 2.6 and 2.7.

both NestedMICA and MEME to find single motifs, I assessed the two programs’

ability to recover multiple motifs from a single dataset.

I used 3 test motifs of length 4, 7 and 10 aa, in the multiple motif spiking tests

(Figure 2.5). Multiple motifs were spiked in such a way as to ensure an unbiased

distribution. For example, in the first multiple motif spiking test, corresponding

to a 40% abundance rate for each motif, it was ensured that 24% of the sequences

were spiked with only motif of length 7, 24% only with motif of length 10 and

16% with both motifs. This corresponds to the distribution of motifs that would

be expected by chance. The test was repeated by halving the total abundance

rate for each motif.

In a similar way, two other pair combinations of the motifs were tested, and
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finally, three motifs were spiked at the same time. When the abundance rate

for each spiked motif in the triple motif test was 40%, it was ensured that three

different groups of sequences, each corresponding to 14.4% of the total, contained

either motif of length 4, or 7 or 10; three different groups, each corresponding to

9.6% of the total contained two motif instances simultaneously (i.e. one group

had both motifs of length 4 and 7, another had both 7 and 10, and finally another

had both 4 and 10) and one group corresponding 6.4% contained all three motifs.

Tables 2.6 and 2.7 summarise the performances of NestedMICA and MEME,

respectively, for the multiple motif finding tasks performed under different con-

ditions. It shows the Cartesian distances and MCC values of the reported mo-

tifs (The corresponding sensitivity and specificity values are given in Table 2.8

for NestedMICA and Table 2.9 for MEME). In general, both NestedMICA and

MEME performed well, except MEME had a tendency not to recover shorter

motifs and instead report PWMs of maximum allowed length which did not cor-

respond to any of the spiked motifs.

Motifs Abundance Distances MCCs
m4 + m7 40 0.23, 0.45 0.74, 0.93

20 0.54, 0.62 0.71, 0.93
m4 + m10 40 0.44, 0.75 0.81, 0.95

20 0.34 0.73 0.75 , 0.96
m7 + m10 40 0.47, 1.11 0.95, 0.96

20 0.71, 0.75 0.93, 0.95
m4 + m7 + m10 40 0.42, 1.01, 1.00 0.75, 0.95, 0.97

20 0.64, 0.54, 0.57 0.71, 0.95, 0.97

Table 2.6: Performance summary for NestedMICA in the multiple motif
spiking tests. The “distances” columns refer to the Cartesian distances between
the reported motifs and the original ones which are shown in Figure 2.5. Motif
names indicate length. In addition to Cartesian distances, MCC values are given
for motifs recovered by NestedMICA.
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Motifs Abundance Distances MCCs
m4 + m7 40 11.73, 0.53 0.02, 0.92

20 11.73, 0.56 0.02, 0.94
m4 + m10 40 11.73, 0.46 0.02, 0.96

20 11.73, 0.75 0.02, 0.96
m7 + m10 40 0.38, 0.45 0.94, 0.95

20 0.70, 0.62 0.92, 0.95
m4 + m7 + m10 40 11.73, 0.44, 0.42 0.02, 0.93 ,0.96

20 11.73, 0.76, 0.82 0.02, 0.93, 0.95

Table 2.7: Performance summary for MEME in the multiple motif spik-
ing tests. The “distances” columns refer to the Cartesian distances between the
reported motifs and the original ones which are shown in Figure 2.5. Motif names
indicate length.

NestedMICA
Motifs Abundance (%) SN SP

m4 + m7 40 0.892, 0.949 0.855, 0.980
20 0.685, 0.947 0.986, 0.980

m4 + m10 40 0.973, 0.964 0.856, 0.985
20 0.745, 0.978 0.974, 0.980

m7 + m10 40 0.968, 0.976 0.982, 0.987
20 0.932, 0.971 0.994, 0.983

m4 + m7 + m10 40 0.978, 0.968, 0.976 0.798, 0.985, 0.990
20 0.685, 0.964, 0.978 0.986, 0.980, 0.987

Table 2.8: Sensitivity (SN) and specificity (SP) values for motifs re-
ported by NestedMICA in the multiple-motif spiking tests. Motif names
(m4, m7 etc.) refer to length and are shown in Figure 2.5. SN and SP values
are given for each of the motifs involved in a multiple motif spiking test, and are
seperated by commas.

2.3.4 Performance vs. protein length

Having performed the motif spiking tests, in order to evaluate the two programs in

a more natural situation, I observed the effects of varying sequence length on motif

finding in multiple protein sets expected to contain C-terminal motifs. To this

53



2.3 Results and discussions

end, I used 198 non-redundant ER proteins (see Methods), a high proportion of

which would be expected to contain the C-terminal ER retention signal mentioned

above. I created three datasets containing sequence chunks of 60, 80 and 100

amino acid letters, respectively, taken from the C-terminal regions of these ER

proteins.

Figure 2.6 depicts the motifs recovered from these three datasets by both

programs. While MEME could not find the [KH]DEL motif at the tested sequence

lengths of 80 and 100 amino acids, NestedMICA performed well, even when 100

amino acid long chunks were used. Apart from not looking similar at all to the

KDEL motif, there was no consistency between the motifs reported by MEME

when using the 80 and 100aa long sequences. Both programs were run with

default protein parameters with a target motif length set to between 3 and 15

amino acids.

To investigate whether NestedMICA would still find the motif when there are

MEME
Motifs Abundance (%) SN SP

m4 + m7 40 0.942, 0.947 0.503, 0.975
20 0.942, 0.959 0.503, 0.982

m4 + m10 40 0.942, 0.980 0.503, 0.985
20 0.942, 0.988 0.503, 0.978

m7 + m10 40 0.954, 0.980 0.982, 0.976
20 0.949, 0.978 0.975, 0.973

m4 + m7 + m10 40 0.942, 0.952, 0.978 0.503, 0.980, 0.985
20 0.942, 0.954, 0.976 0.503, 0.975, 0.978

Table 2.9: Sensitivity (SN) and specificity (SP) values for motifs re-
ported by MEME in the multiple-motif spiking tests. Motif names (m4,
m7 etc.) refer to length and are shown in Figure 2.5. SN and SP values are given
for each of the motifs involved in a multiple motif spiking test, and are seperated
by commas.
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Length (aa) NestedMICA MEME

60

80

100

Figure 2.6: Motif recovery performance against sequence length. The
figure shows recovered motifs using NestedMICA and MEME. “Length” refers to
how many amino acid letters from the right-most (C-terminal) part of sequences
were used in each dataset created. The 4 amino acid long ER retention signal
was recovered successfully by NestedMICA while MEME reported motifs of the
maximum allowed length (given by the user) when the sequences were longer than
80 residues.

more than 100 residues per sequence, I tested it using 120 residue long C-terminal

regions. The ER retention motif was found only when NestedMICA was asked

to find two motifs. Investigating the other reported motif, I found that it was

a thioredoxin family active site motif (Prosite id: PDOC00172) that is usually

found in ER proteins. MEME was also tested when forced to find two motifs from

the dataset containing the 80 amino acid long sequences. However, in addition

to the motifs shown in Figure 2.6, it reported a 15 residue long motif which I

could not locate in domain databases. Scanning this motif against the sequences,

I noticed that it exists in 8 of the 198 proteins in the dataset.

2.3.5 “Null test” and significance of motifs

For motif discovery assessment purposes, spiking motifs into a dataset of se-

quences that already contained strong motifs would be undesirable, as the method
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in question might report some of these intrinsic motifs instead of the artificially

implanted ones. On the other hand, evaluating a motif discovery tool using a

dataset of randomly generated sequences would be unfair, too, as this would be

relatively easy for the program to recover a test motif.

Given that even sequences having a low sequence identity can in theory share

some common sequential features, it is important to ensure that an unbiased set of

sequences is used in the tests. For this reason I used non-homologous cytoplasmic

sequences from the TargetP subcellular localisation dataset for these tests. This

dataset had been already filtered by the TargetP developers using a homology

reduction algorithm (Hobohm et al., 1992) that ensures no homologous sequences

exist in the set (Emanuelsson et al., 2000), before I filtered it again to further

reduce the maximum sequence identity between any of the sequences.

I ran both NestedMICA and MEME on this dataset, before it was spiked by

any test motifs, using different minimum target motif lengths for each program

tested. This “null test” was performed to confirm that the dataset I used in

performing motif spiking tests is a reasonably suitable one. This negative control

test also gives an idea about how well the trained background model represented

the sequences.

For this purpose, NestedMICA was run with the default parameters optimized

for protein sequences (for more details on the parameters, please see the program

manual). In this test, the minimum target length was initially set to 2, then

3, and finally 4, while the maximum length was always kept as 15, as in the

motif spiking tests. Motifs generated by NestedMICA from these runs were weak

(Figure 2.7), having average information bit scores per position not exceeding
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Motif Bits per position

1.29

1.17

1.16

Figure 2.7: NestedMICA’s “null motifs”. When the minimum length param-
eter was set to 2, 3, and 4, NestedMICA generated almost flat motifs with few
conserved positions, when no motif was inserted into the cytoplasmic test dataset.
Bits per position is the averaged out value for the total information content of a
motif, where it could be a maximum of 4.32 bits per position.

1.3 out of the possible 4.32 bits per position, which corresponds to roughly less

than one third of the maximum height in a sequence logo. This indicates that

NestedMICA does not generally report false positive motifs, and that the chosen

background model parameters are good enough to represent the test set. As we

have seen above, NestedMICA is sensitive enough to report even scarce motifs of

length 3 when present in only 10% of the sequences, as the examples in Figures

2.2 - 2.4 indicate. Therefore, the fact that NestedMICA only reports weak “null

test” motifs increases our confidence that the cytoplasmic sequence set that I use

to assess motif discovery performance is not likely to contain significant motifs

that a motif finder would prefer to report over any of our spiked motifs.

MEME, on the other hand, generally tended to report high-information con-

taining motifs of the maximum allowed length, corresponding to about 46 bits in
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total, and above 3 bits per residue position. To minimize any remaining common

patterns in the sequence set, I further reduced the maximum sequence identity

within the set to 30%. Furthermore, all sequence regions matching a Prosite

pattern were removed, based on hits reported by an annotated motif search tool

PPSearch (Quevillon et al., 2005). However, even with this extra filtered dataset,

MEME still reported strong and long motifs similar to the 15 amino acid long

ones in Figures 2.2 - 2.4.

When the user-specified number of target motifs exceeds the number of actual

motifs, NestedMICA has been observed to generate motifs that look like the null

motif of that particular dataset (data not shown). Similarly, MEME produced

the same type of long motifs it found in the null tests when it failed to find an

inserted motif in the spiking tests.

2.3.6 Testing non-ab initio motif finders

As mentioned in the introduction section of this chapter, there are protein dis-

covery tools which are not in the ab initio motif discovery category because they

either might be using database look-ups, or homology search etc. One such pro-

gram is Dilimot (Neduva & Russell, 2006). However, in addition to searching

databases including PFAM (Bateman et al., 2004) and SMART (Schultz et al.,

1998), it also utilises an ab inito tool, called TEIRESIAS (Rigoutsos & Floratos,

1998), which finds and lists frequently occuring patters that could even contain

gaps. Motifs are not reported as PWMs by this program. I normally compared

NestedMICA with another probabilistic, ab initio method, MEME, which out-

puts motifs as PWMs, too. In this section, I provide an example to show whether
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tools generating regular expressions for describing discovered patterns could be

used successfully as the other probabilistic methods.

The Dilimot web server was provided with one dataset of protein sequences,

30% of which were spiked with motif of length 3 from the motif set 1 that I used

to assess other programs (see Figure 2.2). The dataset contained 409 redundany-

reduced cytoplasmic sequences taken from the targetP (Emanuelsson et al., 2000)

subcellular localisation training set. After running a couple of days, the Dilimot

program produced a table of discovered patterns in the form of regular expressions

(Figure 2.8), however, none of the reported motifs were similar to the artificially

spiked motif.

One disadvantageous aspect of such programs is that they are not based on

probabilistic background models, which makes it very difficult for them to recover

less abundant and short functional motifs, if not merely impossible. Because of

this reason, they may report frequently repeating sequence regions instead, or

regions that could be related to compositional features, unless they use motif

databases having an entry for that particular motif.

2.4 Conclusions

I have added support for protein motif discovery in NestedMICA. It reports pro-

tein motifs in the form of PWMs. It has been optimized for better protein motif

discovery under stringent conditions, and automatic motif length adjustment. In

summary, our performance assessment tests show that NestedMICA performs

very well when finding single and multiple motifs even at low motif abundance

rates and different motif lengths, thus proving itself to be a robust and sensitive

59



2.4 Conclusions

Figure 2.8: A snapshot showing the regular expressions reported by the
Dilimot web service. Dilimot was run with the default options. It was allowed
both to use the ab initio program, TEIRESIAS, and to consult other public
protein pattern databases.
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protein motif finder. Judging fom the calculated sensitivity, specificity and MCC

values, there was no clear difference regarding the quality of motifs correctly

recovered by NestedMICA or MEME. However, when it comes to the number

of correctly recovered motifs, NestedMICA significantly outperformed MEME

in our protein motif finding tasks including finding low abundant motifs, finding

short motifs, and finally discovering motifs from amino acid sequences of different

lengths.

In addition to assessing its ability in finding true positive motifs, as shown

in the results section, by running it on a non-redundant dataset where no test

motif was inserted, I have shown that NestedMICA does not tend to report high-

information content motifs when there is no meaningful motif contained in the

dataset, i.e. that it tends not to report strong false negatives.

Considering that some protein signals such as subcellular localisation motifs

could be as short as 3 amino acids, this new protein motif finder is a promising

tool in functional sequence annotation.

2.5 Availability and requirements of NestedMICA

• Project Name: NestedMICA

• Project home page: http://www.sanger.ac.uk/Software/analysis/NestedMICA/

• Operating systems: Platform independent

• Programming language: Java

• Other requirements: Biojava1.4, WoodStox, StAX-compliant XML parser
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(all included within the NestedMICA package), ANT 1.7.0 (http://ant.apache.org)

to compile the project

• License: LGPL

• Any restrictions to use by non-academics: None
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Chapter 3

Lokum: ab initio protein
subcellular localisation prediction
for eukaryotes by using mono and
bipartite motifs, transmembrane
protein topologies, and amino
acid composition

3.1 Introduction

Protein sorting in eukaryotes is generally more complicated than in bacteria, sim-

ply because a typical eukaryotic cell contains a larger number of compartments.

Presence of different compartments defined by various internal membranes within

the cell mean different proteins must successfully pass through these internal

envelopes, which naturally involves a larger number of molecules and different

targeting and retention mechanisms. Identification of protein regions that are

involved in protein transport across a certain membrane is a key step in all pre-

diction efforts mimicking the underlying biological interactions. I try to address

this issue by using a new, probabilistic, ab initio protein motif discovery tool,
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NestedMICA (Down & Hubbard, 2005), which has been recently shown to work

better than another popular program MEME (Bailey & Elkan, 1995), particu-

larly for short proteins motifs that range in 3-9 amino acids (aa) (see Chapter 2

or Doḡruel et al. (2008)). This makes NestedMICA suitable for use in localisation

signal discovery, as targeting signals could be as short as 3 aa. NestedMICA, us-

ing a new Monte Carlo technique called Nested Sampling (Skilling, 2004), reports

motifs in Position Weight Matrices (PWMs).

One of the basic forms protein localisation signals could be characterised by

are multi-component probabilistic motifs, which most motif finders cannot deal

with. I use a combinatorial strategy involving both NestedMICA and the Eponine

tool (Down & Hubbard, 2002) that I have improved for protein sequence support.

3.1.1 Features used in Lokum

In this study, to predict protein localisation I used mono- and bipartite protein

localisation signals discovered by NestedMICA and Eponine, other NestedMICA

motifs that are not directly involved in localisation but that I show to be useful

in the computational predictions, amino acid frequency distributions, and finally

protein transmembrane topology statistics.

Apart from the difficulty of discovering genuine localisation signals, in signal-

based ab initio protein subcellular localisation prediction another complication

is the poor discriminative power of these motifs in the classification problem.

Proteins can share the same type of localisation motifs, not necessarily because

they are from the same cellular localisation, but because they could be involved

in a similar translocation pathway. Partly because of such common localisation
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signals, it is usually difficult to attain high prediction accuracies in automatic ab

initio classification methodologies (for a list of some popular automatic prediction

tools, see Section 1.1.1 in the introduction chapter). One possible way to reduce

the weaknesses of individual features is to use as many relevant protein properties

in combination as we can, where a pre-trained automatic prediction system will

evaluate possible relations among the features to make a final decision. I used

a popular classification method, Support Vector Machines (SVM), as they can

provide very good generalisation performance by finding optimal hyper-surfaces

that split data points of different classes in multi-dimensional spaces.

One general type of intrinsic signals proteins carry is targeting sequences.

They are usually found in the N-terminal regions of proteins, and some of them

are cleaved off from the nascent protein after the protein is translocated across a

membrane. There could also be targeting signals located on the far C-terminus,

like the Peroxisomal Targeting Signal 1 (PTS1) which is usually characterised by

the tripeptide sequence SKL (Gould et al., 1987, 1989). However, PTS1 is not

found in all proteins that are post-translationally transported to the peroxisome.

It is believed that peroxisomal proteins contain a weakly conserved N-terminal

signal of the form [RK][LVI].....[HQ][LA], named PTS2 for “Peroxisomal Tar-

geting Signal 2”, where the dots represent any amino acid (Osumi et al., 1991;

Swinkels et al., 1991). Certain mitochondrial targeting peptides are located in

the N-terminus, too, while these proteins can also have secondary signals which

are thought to be present possibly anywhere along the entire pre-protein sequence

(Endres et al., 1999; Wiedemann et al., 2001).

Not all secreted proteins have N-terminal targeting signals (Bendtsen et al.,
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2004a; Nickel, 2003), however the major type of proteins that have an N-terminal

targeting signal is the secretion pathway proteins, as they contain a conserved

signal peptide (SP) (Milstein et al., 1972) that can range in length between 20

and 30 amino acids in eukaryotes (Emanuelsson et al., 1999; von Heijne, 1990).

A usually cleavable N-terminal targeting peptide directs them into the ER by

penetrating through the ER membrane, while the rest of the nascent polychain

peptide is still being synthesised in ribosomes that are located near the ER. A

smaller number of them are maintained and employed by the ER if they con-

tain the tetrapeptide KDEL signal on their C-termini (Pelham, 1995). Most of

these proteins that pass several “quality control tests” of the ER are then sent to

the Golgi apparatus for further processing, but some of them, such as the mal-

folded or unassembled ones that failed those tests, are delivered by the ER to the

proteolytic system for degradation. This indicates there is some sort of back-and-

forth traffic between the ER and Golgi, but that there are no reported retention

or targeting motifs associated with the Golgi compartment. However, Yuan &

Teasdale (2002) showed that up to a certain extent it is possible to distinguish

Golgi Type II membrane proteins from the others, by using the hydrophobicity

values and frequencies of different residues within their transmembrane domains.

For most cargo molecules traversing through the “Golgi cisternae”, or multiple

ordered stacks of the Golgi apparatus, Golgi acts only as an intermediate place.

They eventually either end up in the plasma membrane, or are secreted out of

the cell.

N-linked glycosylation is a common type of post-translational protein modifi-

cation that takes place shortly after the nascent chain enters into the ER lumen
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(Kaplan et al., 1987; Machamer et al., 1985). Starting as early as 1985, some

previous studies have claimed glycosylation could have a role in cell transport

(Guan et al., 1985; Hannink & Donoghue, 1986; Kelley & Kinsella, 2003; Yan

et al., 2002) while others (Matsuda et al., 2004; Mohrmann et al., 2005) reported

that it is not specifically required in cell surface transport for the tested protein

molecules. A recent study demonstrated that N-linked glycosylation is required

for structural stabilisation but not for membrane localisation of a tested partic-

ular protein (Gao & Mehta, 2007). The generally accepted notion seems to be

that N-linked glycosylation is not directly involved in localisation. However, I

show in this chapter that it is enriched in secretory pathway proteins over the

other types, making it a potential secondary signal to aid in computational lo-

calisation prediction, just in a similar way to use the “secondary signal” coming

from protein composition.

Amino acid residues can have similar physical and chemical characteristics. It

is for this reason that protein signals such as the secretory pathway signal peptide

(SP) are described often in terms of their general characteristics like hydropho-

bicity, net charge etc., rather than in terms of their individual amino acid letters

which might not be conserved, as in the case of SP, for example. Individuals of

different generations can have protein sequences that are still functionally simi-

lar yet different in terms of the actual amino acid line up due to the associated

DNA-level mutations that take place in the process of evolution. Up to a cer-

tain extent, it is therefore possible to safely substitute certain amino acid residues

with other similar ones without much harming the function and thus affecting the

tertiary structure of a protein. The study of such functionally homologous blocks
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showing sequence variation has resulted in amino acid substitution matrices like

PAM (Eck & Dayhoff, 1966) and BLOSUM (Henikoff & Henikoff, 1992)

In Lokum, apart from the motifs discovered ab initio, I used the normalised

amino acid abundance rates in sequences. Amino acid composition has been

proven useful in localisation prediction (Klein et al., 1984; Nakai & Kanehisa,

1991; Reinhardt & Hubbard, 1998). There have been many machine learning

approaches incorporating amino acid frequency distributions alone or sometimes

accompanied with other features. Reinhardt & Hubbard (1998) suggested that

using amino acid composition would be advantageous over other signal-based

methods as it makes a protein less susceptible to possible annotation errors,

particularly in the 5’ regions where most targeting signals reside. However, by

using probabilistic representations such as Position Weight Matrices (PWMs) to

characterise such signals it is possible to tolerate slight sequential variations. This

argument becomes more valid especially for PWM positions having almost flat

distributions of amino acid probabilities, where any amino acid can be expected

to occupy those positions.

The third type of protein feature I used is predicted secondary transmembrane

structures. Amongst the transmembrane topology predicting programs such as

TopPred (Claros & von Heijne, 1994), SOSUI (Hirokawa et al., 1998), TMHMM

(Krogh et al., 2001) and HMMTOP (Tusnády & Simon, 2001), studies on evalu-

ation of these programs showed that TMHMM performed better than the rest of

the predictors. It has been reported that, in general all the tested programs can

easily misclassify the predominantly hydrophobic membrane spanning regions as

N-terminal signal peptides which also contain a similar strong hydrophobic re-
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gion (Lao et al., 2002; Müller et al., 2001). For the same reason, signal peptide

predictors may often misjudge transmembrane regions as signal peptides, too.

Chapter 5 summarises my efforts to develop a transmembrane topology predic-

tor that can be used in subcellular localisation prediction, but this HMM-based

tool didn’t perform as well as TMHMM. Therefore, in the end, in Lokum I used

transmembrane topology statistics based on TMHMM predictions.

3.1.2 Predicted classes

In this manuscript, I compare my ab initio method, Lokum (Localisation predic-

tion using motifs) with both PSORT and MultiLoc. Similarly to these programs,

Lokum predicts nine localisation categories for animal proteins: nucleus, cyto-

plasm, plasma membrane, extracellular space, mitochondrion, endoplasmic retic-

ulum, Golgi apparatus, lysosome, and peroxisome. Next, substituting lysosomes

with vacuolar proteins in the animal set, Lokum’s predictions are extended to

cover all major nine fungal protein localisations, and finally ten plant localisation

classes with the addition of chloroplast to the list of fungal classes.

3.2 Materials and methods

3.2.1 Localisation motif discovery with NestedMICA

I used NestedMICA, an ab initio DNA and protein motif discovery tool, to search

for localisation-specific motifs that can be used in classification. NestedMICA

employs a new Monte Carlo inference technique called nested sampling developed

by Skilling (see page 28). It was originally developed for finding DNA motifs, and

has been recently extended to find protein motifs (see Chapter 2 or Doḡruel et al.
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(2008)). It reports motifs in the form of Position Weight Matrices (PWMs) which

allow more flexibility for having alternative residues at certain positions than, for

example, motifs represented as regular expressions.

The target motif length interval parameter was given to be between 3 and

15 amino acids long in all the NestedMICA runs. Initially, the target motif

number was specified as 2, but I experimented with this program parameter for

each localisation class to cover as many potentially localisation-related motifs as

possible. NestedMICA was run on the full-length sequences, as well as 50 N- and

C-terminal amino acid chunks for each localisation dataset. The ER retention

signals (Figure 3.4f-g) and PTS1 (Figure 3.4j) were recovered when NestedMICA

was fed with the last (C-terminal) 50aa long regions.

For motif discovery purposes, I used nine datasets from pTarget (Guda &

Subramaniam, 2005), a subcellular localisation predictor based on searching more

than 2100 PFAM domains, after reducing the mutual sequence identities of the

datasets from 95% to a maximum of 40% by the CD-HIT algorithm (Li & Godzik,

2006). Table 3.1 lists the number of sequences before and after applying redun-

dancy reduction. For localisation categories that do not exist in pTarget, namely

for chloroplasts and vacuolar classes, I used the redundancy-reduced datasets of

MultiLoc (Höglund et al., 2006), a recent subcellular localisation prediction pro-

gram. The details for these two sequence sets can be seen in Table 3.4 where

Lokum predictions are compared with those of MultiLoc. I further decreased the

maximum mutual sequence identities of the MultiLoc datasets as well to 40%

before running NestedMICA.

NestedMICA uses complex background models which could be composed of
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Localisation Number of sequences Number of sequences
class in the original set after the filtering
Cytoplasmic 2062 946
ER 693 251
Extracellular 5688 1671
Golgi 221 141
Lysosome 174 66
Mitochondria 1698 711
Nuclear 3446 2014
Peroxisome 173 83
Plasma membrane 4162 1212

Table 3.1: Sequences used in the motif discovery phase. Each pTarget
(Guda & Subramaniam, 2005) dataset, originally having a sequence identity of
95%, was filtered to have a maximum mutual identity of 40% by using the CD-
HIT (Li & Godzik, 2006) clustering program. Vacuolar and chloroplast classes do
not exist in pTarget, so the corresponding datasets of MultiLoc (Höglund et al.,
2006) were used for these two categories (Table 3.4).

multiple subgroups of different amino acid probability distributions to better rep-

resent different sequence regions statistically inclined to feature certain amino acid

residues more frequently. As has been discussed in 2.3.1, training dedicated back-

ground models for each sequence dataset yields better performance than using a

generic background model. Therefore, for each type of localisation a specialised

NestedMICA background model was trained. The background model parameters

used for each localisation dataset are summarised in Table 3.2. NestedMICA was

run on each dataset with its default protein motif finding parameters.

3.2.2 Motif selection

NestedMICA does not report any significance measure. To decide if a reported

motif is significantly contributing to localisation classification, I scanned it across
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some test sequences to plot Receiver Operating Characteristic (ROC) curves, as

in Figures 3.7 and 3.9. A motif discovered from the plasma membrane set, for

example, was tested for its usefulness to discriminate between plasma membrane

sequences and every other class of sequences. By using equal number of sequences

of both types, in each binary classification based on only raw bit scores of a motif,

I classified sequences in two classes according to a range of motif score thresholds.

ROC curves were plotted using the sensitivity and specificity pairs obtained for

each threshold used. Motifs producing promising ROC curves in any possible

binary classification were then selected to be used in the general multi-class SVM.

Additionally, I performed a brute-force principle component analysis to assess

the contribution of each selected feature, or dimension of SVM vectors. I observed

Dataset MC-order Number of Mosaics
ER 0 5
Vacuolar 0 2
Lysosome 0 4
Golgi 0 5
Mitochondria 1 3
Chloroplast 0 5
Peroxisomal 0 6
Nuclear 1 4
Cytoplasmic 1 6
Extracellular 1 4
Plasma membrane 1 6

Table 3.2: Protein background parameters for datasets used in local-
isation motif discovery The table summarises the NestedMICA background
properties of the datasets where localisation related motifs were searched, in terms
of the used Markov-chain order and the number of mosaic classes in the back-
ground. These parameter values have been optimised after a systematic analysis
of each dataset as described in Chapter 2, Section 2.2.4.
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the effects of removing a single or multiple dimensions from the input vectors on

the overall performance. Features increasing the prediction performance upon

removal were not used in the final SVM. None of the amino acid frequency di-

mensions were necessary to remove. As an interesting example, PTS2 was among

the motifs I decided not to use in the end (see results).

3.2.3 Using Eponine with NestedMICA for multi-component
motif discovery

Some localisation signals can consist of multiple components separated by a dis-

tance. The best known such signal is the bipartite NLS (Dingwall & Laskey,

1991) which has been identified to have two core NLS parts that are separated by

at least 10 (Robbins et al., 1991) and around 12 (Schreiber et al., 1992) “spacer”

amino acids. NestedMICA currently does not deal with multi-component motifs.

I modified and extended the Eponine (Down & Hubbard, 2002) tool to discover

and represent such protein localisation signals.

Eponine was originally developed to find promoter models from mammalian

genomic DNA to represent multi-component, hiearchical motifs. Eponine de-

scribes these multi-component motifs as Eponine Anchored Sequence (EAS) mod-

els, where motifs are modeled around a fixed, or “anchor” point. It generates a

number of weight matrices corresponding to different sequence motifs which it

believes to be collectively involved in signaling a certain sequence characteristics.

Each motif within an Eponine motif set has a positional distribution relative to

a point of interest, such as a transcription start site (TSS) point. When scor-

ing sequences with an Eponine model, positional deviations of the best matching
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sub-motifs with respect to the means of the corresponding Gaussian distributions

are considered, too. Figure 3.1 shows an EAS which models mammalian TSS

regions, as reported by Down & Hubbard. It has been later shown in a PhD

dissertation that it can actually be used as a multi-purpose motif finder, where

it was specifically used in the detection of transcription termination sites (TTS)

(Ramadass, 2005). Figure 3.2 shows the discovered EAS model for mammalian

TTS regions.

Figure 3.1: Eponine TSS model. Blue triangle in Eponine Anchored Sequence
(EAS) models indicate the anchor point. Individual motif weight matrices are po-
sitioned with respect to the anchor. Gaussian distributions indicate the positional
distributions of the corresponding motif. This TSS model has been reproduced
from the original Eponine publication (Down & Hubbard, 2002).

Eponine was later extended for use in non-coding DNA region analysis with

the purpose of discovering overrepresented multi-component motifs conserved in

mouse and human intergenic regions Down & Hubbard (2004). This version

of Eponine describes motifs as Eponine Windowed Sequence (EWS) models, in

analogy to the previous model type. In EWS, unlike the first version, there
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Figure 3.2: Eponine TTS model. As in Figure 3.1, this mammalian tran-
scription termination site (TTS) model, too, is an example to EAS models, as
reported in Ramadass’s PhD thesis.

is no need to have a specific sequence position around which other sub motif

components are placed. Instead, this model classifies sequence regions based on

only their sequence contents within specific windows.

Eponine, which uses Biojava (BioJava, 2007) libraries, relies on a new machine

learning strategy called Relevance Vector Machines (RVMs) (Tipping, 2001) tak-

ing a set of suggested basis functions and then iteratively choosing certain com-

binations that would presumably yield a better performance at each step. To

this end, it optimises candidate PWMs and their parameters including width

and positional Gaussian distributions. It requires both a positive and a negative

training set to decide if the combination used at each step is better discriminating

the two classes. Because Eponine actually works by trying to discriminate data

points, it searches for motifs in the negative set, too. This can result in reported

models to have some “negative” motifs which have negative weights in the models

(they are drawn in blue colour in the graphical representations, as opposed to the

black “positive” motifs). Generally speaking, not having any negative motifs in

reported Eponine models trained using negative datasets that are obtained by
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shuffling the used positive samples indicates a successful training. More informa-

tion about how Eponine works can be found in the original Eponine publication

by Down & Hubbard (2002).

With the idea of employing Eponine to discover multi-component protein

motifs such as the bipartite nuclear motifs, I added protein sequence support

to Eponine. Having modified it to accept protein sequence input, I tested its

efficiency in the protein space. However, my tests generally indicated that the

parameter space was too large for Eponine to be directly used efficiently in multi-

component protein motif discovery (data not shown), which could be explained

by the fact that amino acid alphabet is 5 fold larger than the DNA one, having

high noise levels to be analysed with this tool. In most of these experiments, the

system never converged automatically, and it contained “negative” motifs (data

not shown).

In order to limit the problem size, I have come up with a hybrid, semi-guided,

two-step procedure involving the probabilistic motif discovery tool NestedMICA,

as well as the Eponine tool which can build multi-component hierarchical motif

models to describe complicated sequence structures with its machine learning

strategies. In the first step, I use NestedMICA to find some monopartite motifs,

then by expanding those sequence regions by around 20 amino acids from both

sides, where there is a significant match of a reported NestedMICA motif, I

construct a new dataset composed of sequence chunks that have an instance of

the used single-part motif. In the second phase, Eponine is run on this filtered

dataset containing the positive samples, and also a negative dataset which has

the same number of samples but not containing any motif hit.
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To preserve the general sequence characteristics of the positive set across the

negative set, sequence samples in the negative set are obtained from the same

protein dataset so as to prevent Eponine from finding motifs that could possibly

be reflecting potential compositional differences of the two sets.

Because I have sequence chunks with fixed lengths, each having a monopartite

motif at the middle, Eponine was run in the EAS mode. After all, the aim is

to find a multi-component motif model based on a reported NestedMICA motif

whose position is known. The anchor point was specified as the maximum scoring

point when scanned with the monopartite NestedMICA motif.

3.2.4 Using amino acid composition

It is possible to group amino acids according to their physical and chemical charac-

teristics. If there are similar amino acids, one question to ask is whether grouping

similar amino acid residues together, and then calculating the composition of the

‘labels’ of these groups rather than finding occurrence rates for each of the 20

amino acids could be a better approach or not. This brings two complications:

determining the optimal number of such groups, and deciding which amino acid

letters will be classified under which group. I used three amino acid groupings

suggested by Thomas & Dill (1996), found by an iterative procedure involving

“energy” scores calculated by iteration until they correctly discriminate a set of

known protein folds from decoy conformations. Table 3.3 shows two types of

amino acid groupings from Thomas & Dill (1996) and one grouping I formed

based on general amino acid characteristics.

In the SVM, I kept all other features, except that the composition values
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Group 1 Group 2 Group 3
1 VILMF VILMFWYA ILVM
2 HQN GPSTHQN TSNQ
3 C C EDKRH
4 ED ED WFYP
5 RK RK C
6 A GA
7 G
8 WY
9 P
10 ST

Table 3.3: Alternative amino acid groupings used in composition cal-
culation. Groups 1 & 2 are from Thomas & Dill (1996), while Group 3 was
constructed based on general amino acid properties.

were calculated according to these amino acid groups rather than using the 20

amino acids directly. The performances of the SVMs in the experiments were

evaluated by using 5-fold cross validation. All parameters of the kernel function

were optimised for each type of amino acid grouping I used, as in the optimisation

of the actual SVM I used (see the section below, 3.2.6).

It turned out that grouping amino acids according to their physical and chem-

ical properties is not particularly helpful (see page 95 in the Results section), so

instead, 20 values have been computed to demonstrate amino acid composition

statistics for each sequence.

3.2.5 Using transmembrane topology predictions

Apart from using amino acid composition and bit scores of motifs discovered

by NestedMICA and Eponine, predicted transmembrane topology statistics were

used as well to create Support Vector Machine feature vectors. Transmembrane
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region predictions were reported by the 2c version of the TMHMM transmem-

brane topology prediction program (Krogh et al., 2001). TMHMM was run in the

“short statistics” mode. Amongst the reported TMHMM statistics, I included

the following reported features:

• the number of predicted transmembrane helices

• the expected number of amino acids lying in transmembrane helices, con-

sidering the entire sequence

• the expected number of amino acids lying in transmembrane helices, con-

sidering only the first 60 N-terminal amino acids

Before using these reported numbers in the SVM, they were normalised with

respect to the length of the input sequence considered.

3.2.6 Training and testing of SVM

I used a popular open source implementation of SVM, libsvm (Chang & Lin,

2001), in the multi-class predictor Lokum. In the parameter optimisations carried

out to maximise the performance of each tried SVM application, libsvm performed

slightly better than the other popular SVM applications I tried, namely, SV M light

(Joachims, 1999) and BSVM (Hsu & Lin, 2002).

Eventually, a radial basis kernel function (RBF) was used in libsvm after

a systematic evaluation of a selection of kernel functions. In a similar way, I

performed a grid search to optimise the gamma (g) and cost (C) parameters of

this kernel function (Figure 3.3). The training and performance assessment of

the SVM involved a 5-fold cross validation procedure in which the data were
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divided into 5 portions; 4/5 of which were used for training and 1/5 for testing,

using a particular portion for testing at a time in each of the 5 cycles. All

protein scores coming from different features have been normalised to have a

minimum value of -1 and a maximum value of 1, before the SVM software was

run. The individual SVMs constructed to give an idea about the contributions

of motif scores, composition and structural information were trained with 4/5 of

the data. Kernel parameters of each SVM using a particular type of feature has

been optimised, too, before I tested the SVMs with the remaining 1/5 portion.

During kernel parameter optimisation, 3-fold cross validation was used for faster

analysis.

3.2.7 Evaluation of Lokum predictions

The reported overall accuracy is the arithmetic mean of the correctly classified

sequence percentage in each cross validation iteration. Sensitivity (SN), specificity

(SP) and Matthew’s Correlation Coefficient (MCC) (Matthews, 1975) values were

calculated for each predicted class according to the formulae given in Equations

2.3, 2.4 and 2.5, respectively.

3.3 Results

By using NestedMICA, I found many motifs from different localisation datasets

(see Appendix A for sequence logos of these motifs). Not all of these motifs ended

up being used in Lokum, however: discovered motifs were assessed for their dis-

criminative powers (see Section 3.2.2), and those not contributing to localisation

prediction were filtered out. Figure 3.4 shows some mono-partite localisation
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Figure 3.3: SVM kernel parameter optimisation. The plot shows an example
set of percent accuracy contours formed by different values of the gamma (g) and
cost (C) parameters (given in log2) during the optimisation of a radial-based
kernel function (RBF) used in the SVM. Different pairs of g and C may produce
similar percent accuracy rates, hence the countours. The specific example shown
is for the animal protein version of Lokum. Accuracies plotted have been rounded
to the nearest lower half values, i.e., an accuracy of 80.78% was considered in the
80.5% group of accuracies for plotting. Increasing the number of cross-validation
iterations can increase the perceived performance (see text for the actual percent
accuracies attained for different organisms using cross validation).
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signals I used in Lokum. These motifs, represented as sequence logos here, cor-

respond to some known localisation signals which are mostly characterised as

regular expressions in literature. Other longer, and probably mostly unanno-

tated, part-of-domain motifs that were used in Lokum can be found in Figure

3.5. Lokum prediction server is available online for public use at:

http://www.sanger.ac.uk/Software/analysis/lokum/

The discovered localisation related motifs that were used by Lokum can be

downloaded in NestedMICA’s XML format (.xms) from the same web page. See

Section 3.5 for more information on the Lokum web server.

3.3.1 Discovered monopartite motifs

As plasma membranes have a highly hydrophobic region within their transmem-

brane helices (Figure 3.4c), which is very similar to hydrophobic regions of signal

peptide sequences (Figure 3.4b), only the latter was used in the predictor. The

signal peptide (SP) that is found in most of the secretory pathway proteins can

be thought of consisting three parts: an N-terminal part (n-region) which can

vary in length and has a net positive charge, a central hydrophobic core (Figure

3.4b), and a c-region which features a “-3 -1” rule (von Heijne, 1986) indicating

the conserved positions with respect to the cleavage site (Figure 3.4a).

Figure 3.4k shows a good example of how NestedMICA can be efficiently

used in short functional protein site finding. The depicted 4-position PWM looks

quite similar to the cleavage site of a previously reported long chloroplast transit

peptide (cTP) sequence logo (Figure 3.6) which was obtained by aligning the

N-terminal regions of 62 chloroplast sequences with known cleavage site positions
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Name Motif

a) SP cleavage site

b) Hydrophobic part of SP

c) Transmembrane helix
    hydrophobic core

d) N-linked glycosylation (1)

e) N-linked glycosylation (2)

f) ER retention

g) C-terminal signal for
recycling into ER

h) Nuclear signals

i) Nuclear signals

j) Peroxisomal targeting
signal 1 (PTS1) 

k) Chloroplast transit peptide
(cTP) cleavage site

Figure 3.4: Some of the protein localisation related signals as recovered
by NestedMICA. Each motif has a maximum information content of 4.3 bits
per position. Amino acids are drawn in four colours: hydrophobic residues are
depicted in orange, hydrophilic and polar ones in green, acidic ones in pink, and
finally basic amino acids are in blue.
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# Dataset Motif Location
scanned

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

mitochondrial

plasma membrane

plasme membrane

lysosome

lysosome

golgi

peroxisomal

nuclear

vacuolar

vacuolar

vacuolar

vacuolar

vacuolar

vacuolar

vacuolar

chloroplast

chloroplast

chloroplast

Figure 3.5: Some of the unannotated signals, or part-of-domain motifs
reported by NestedMICA. These motifs were discovered from localisation
datasets given on the second column. Sometimes the motifs were scanned in
certain positions on protein sequences, rather than using the whole sequence
(last column).
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Figure 3.6: Manually constructed motifs that are used in the ChloroP
predictor. This figure has been reproduced from the chloroP paper by Emanuels-
son et al. (1999). The sequence logos were constructed from the 62 sequences used
in the cleavage site predictor (chloroP) development. The sequences are aligned
around their SWISS-PROT annotated cleavage site (top logo) and around the
predicted cleavage site (bottom logo). Note the similarity between the motif
shown in Figure 3.4k which is discovered automatically by NestedMICA and the
conserved cleavage region of the manually aligned ChloroP logo in this figure
(bottom).

that were kept fixed in the alignments (Emanuelsson et al., 1999).

3.3.1.1 Contribution of N-linked glycosylation signal

Investigating the 3-letter motifs reported (Figure 3.4d-e), I found that these mo-

tifs correspond to the N-linked glycosylation signal which is found in two forms:
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there is an Asparagine (N) residue in the first position followed by a non-conserved

position, while the third position, determining the sub-variant, is occupied by ei-

ther a Threonine (T) or a Serine (S) residue. Given that this is only a 3-letter

motif, the chances are a fraction of its contribution to predictions could be due

to some compositional effects. Namely, sequences having more number of the

amino acid letters N, T or S, for example, could get higher scores when scanned

with this motif, although, in reality they may not feature a glycosylation site.

To investigate if there is a significant contribution coming from this motif apart

from its compositional effects, I built artificial 3-letter motifs by inverting the

positions of residues in this motif. Figure 3.7 shows the ROC curves measur-

ing the classification power of the N-linked glycosylation motif, along with the

shuffled motifs which of course retain the same composition as the original. The

unshuffled original motif showed a better performance than all the other 5 possi-

ble variants, which indicates that using the N-linked glycosylation motifs is useful

in computational protein localisation predictions, although it may not be directly

involved in protein sorting processes as previous studies have demonstrated (see

introduction).

3.3.1.2 Alternative ER retrieval

When NestedMICA was run on a dataset containing C-terminal ER sequences of

length 20 aa, it reported the [KH]DEL motif shown in Figure 3.4f. When it was

asked to find two motifs from the same region, instead of reporting a different or

a weak motif (see the discussion on “null motifs” in Section 2.3.5), it reported

another motif that looks like the first one, with the first residue being quite weak.

86



3.3 Results

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S
p

e
c
if
ic

it
y

Sensitivity

’Nx[TS]’
’x[TS]N’
’[TS]Nx’
’[TS]xN’
’N[TS]x’
’xN[TS]’

Figure 3.7: ROC plots showing the contribution of the N-linked glycosy-
lation motif in binary classification between nonredundant 509 plasma
membrane and 509 mitochondrial protein sequences taken from the
Multiloc datasets. The curves correspond to the sensitivity (x-axis) and speci-
ficity (y-axis) values of multiple classifications performed by using a range of
threshold scores. Each sequence was scored according to the best hit of the gly-
cosylation motif and also the best hits of each of the derived PWMs obtained by
shuffling the original motif’s positions. This way I can evaluate a signal’s perfor-
mance with respect to the contribution of composition which is conserved in all
the derived motifs. The red solid line shows the ROC for the original motif, while
the dashed lines represent the shuffled PWMs’ ROCs. Each motif’s consensus
sequence is shown in the legend, where the [TS] notation means there is either a
T or S at that position, while ‘x’ indicates an unconserved position.
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Figure 3.8: The two C-terminal ER retention motifs reported. The two
motifs differed in their first residues, which may indicate that while some ER
sequences have either K or H at position 1 of their C-terminal ER retention
signals, some of them simply have not conserved the first position of this signal.

Figure 3.8 shows both motifs reported in this second run. This may suggest that

while some sequences have either K or H at position 1 of this signal, in the others

there is no preferred amino acid residue for this position, and that for them this

signal is practically three amino acid longs.

NestedMICA has a useful feature which enables the user to find motifs other

than a set of user-supplied motifs that are ignored during the program’s motif

search if they are found in the input sequence. When I run NestedMICA on a

set of 20 amino acid long C-terminal ER amino acid sequence chunks by masking

the [KH]DEL PWM found before, I came across an Arginine (R) and Lysine

(K) rich motif that is shown in Figure 3.4g. While investigating some possible

explanations to this motif in the literature, I found that Pelham (1995) had

previously demonstrated that [KH]DEL is not the only C-terminus signal ER

proteins might possess: a similar mechanism recycles escaped ER membrane

proteins that have a loosely defined lysine (K)-rich, 4 amino acid long signal.
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This reported NestedMICA PWM which does not have a clear consensus sequence

could possibly be linked with this second ER retrieval mechanism. Including this

motif in the SVM had a slight contribution (< 1%) in the overall prediction

performance.

3.3.1.3 Scanning motifs in certain positions

Some localisation signals have specific positions in sequences. The ER retention

signal (Figure 3.4f), for example, is located at the far C-terminal end. Therefore,

while scanning and scoring sequences for the presence of such motifs, only specific

regions have been considered. In the case of the ER retention signal, this was

the last four residues on the C-terminus. The SP cleavage motif (Figure 3.4a)

was scanned in a window of 50 N-terminal amino acid positions. Similarly, the

hydrophobic-residue rich motif of Figure 3.4b has been scored only within the 20

N-terminal sequences. Scanning PWMs in specific sequence regions where they

are more likely to be present has a significant advantage over scanning them in

the entire sequences. Figure 3.9 demonstrates one such example of how well motif

b of Figure 3.4 can discriminate between redundancy reduced 841 extracellular

and 841 cytoplasmic proteins, where two ROC curves are plotted using scores

obtained by scanning the motif in whole-length sequences, and only in the first

(N-terminal) 40 amino acid region, respectively.

3.3.1.4 Scoring multiple instances of motifs

In constructing the SVM vectors, in addition to using the maximum motif score

corresponding to the sequence position where the best match occurs, I used the

second best scores for the core NLSs (Figure 3.4h-i), and also for the N-linked
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Figure 3.9: A ROC curve showing the effect of scanning sequences with
PWMs in certain segments only. The plot shows different sensitivity (x-axis)
and specificity (y-axis) values obtained for a range of score thresholds, indicating
how well extracellular proteins can be discriminated from cytoplasmic proteins by
using motif b of Figure 3.4. The red line is obtained when sequences were scored
using only chunks of 40 N-terminal amino acids, while the green line represents
the reduced performance attained when full-length sequences were scanned to
obtain the maximum score.
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glycosylation motifs (3.4 d-e). With this addition, I observed a significant increase

in the overall classification accuracy, suggesting that some of the identified signals

can possibly exist in more than a single region across a sequence. Other motifs

did not even slighly increase the overall accuracy when I additionally used their

second best scores.

3.3.2 Bipartite motif models

3.3.2.1 Bipartite NLS

As described in the methods section, I used a semi-guided procedure where I used

both Eponine and NestedMICA to characterise such motifs. Figure 3.10 shows

one possible model to describe a bipartite NLS signal. Generally, individual mo-

tif components do not have to have fixed positions in Eponine models; instead

in Eponine’s EAS models they are attributed with positional distributions with

respect to an anchor point as described in Section 3.2.3. These Gaussian distri-

butions reflect a motif’s occurrence frequency within an optimal sequence range.

The variations in the distributions shown on Figure 3.10 are quite minimal, indi-

cating that relative sub-motif positions in this particular NLS model usually vary

at most by a couple of residues.

In “nuclear versus others” type binary predictions made to assess the contri-

bution of individual nuclear motifs, this bipartite NLS motif by its own classified

correctly 141 nuclear sequences that the other mono-partite motifs shown in Fig-

ure 3.4h-i could not predict alone. Raw motif score thresholds used in these two-

way classifications were chosen such that they maximise the corresponding MCC

values computed to measure correct classification rate. The “others” sequence
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Figure 3.10: Schematic representation of the Eponine bipartite NLS
model. The constraint distributions, the sequence logos and the relative po-
sitions of the individual components of the model are shown with respect to an
anchor point (blue triangle). The central parts of the two main branches in the
model are separated by 13aa’s as shown. The model tolerates each sub-PWM to
change position within the depicted probabilistic distribution width.

set in this particular experiment was compiled from the remaining 8 localisation

datasets contributing in roughly equal numbers, and contained the same number

of sequences in the tested nuclear set, 836.

3.3.2.2 Bipartite PTS2

To find a bipartite Eponine model for PTS2 (see Section 3.1.1), I followed the

same procedure in modeling the bipartite NLS. However, it was more difficult for

NestedMICA to discover the individual components of this weak bipartite motif,
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each consisting of only a couple of adjacent residues, to enable me to perform the

sequence filtering step in the multi-component model finding methodology (see

methods) before running Eponine.

To investigate why NestedMICA failed to identify this motif or its components,

I scanned the PTS2 regular expression “[RK][LVI].....[HQ][LA]” (Section 3.1.1) in

157 peroxisomal sequences I used. PTS2 is normally regarded as an N-terminal

signal, but surprisingly I could locate only 4 hits within the first 50 amino acid

N-terminal regions of these sequences. There were only a total of 31 matches

of this regular expression when it was scanned in the whole-length sequences.

This low abundance rate could explain why this weak motif, having two not well

conserved amino acids on either side separated by 5 “spacers”, could not be found

by NestedMICA.

As an alternative, I ran Eponine on a dataset consisting of amino acid chunks

matching the regular expression [RK][LVI].....[HQ][LA] of this motif. However,

neither plotting ROCs to assess the obtained model’s discriminative power from

other types of proteins, nor the principle component analyses (see methods) I

have performed suggested any performance gain from using this model. This

indicates that this particular less conserved motif could be found in other classes

of proteins by chance, and therefore it is not disjunctive enough in localisation

prediction.

On the other hand, although the C-terminal PTS1 motif (having the short

but conserved “SKL” form) that is shown in Figure 3.4j was not present in the

majority of peroxisomal proteins, whenever a motif hit was found in the far C-

terminal region, its selectivity was high, namely, it was most of the time capable
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of discriminating a peroxisomal protein from another type.

3.3.3 Golgi N-terminal transmembrane topology predic-
tion statistics help in localisation prediction

Knowing the transmembrane topology of a protein contributes to its localisation

determination, since most of the cytoplasmic proteins will not contain as many

membrane-spanning regions as plasma membrane proteins, for example. I found

that even for different proteins of the secretory pathway where transmembrane

regions are abundant, this could be used as a distinguishing feature.

Golgi does not have an apparent targeting or retention signal, but I observed

that TMHMM, which may not distinguish between a signal peptide (SP) and

a transmembrane (TM) helix, predicted at least one TM helix for 91% of the

sequences in the Golgi dataset, 86% of which were predicted to be crossing the

membrane once, while only approximately half of the ER sequences had at least

one predicted TM helix. An overwhelming majority (97%) of plasma membrane

sequences were predicted to possess at least one TM helix, too, but these were

distributed across the sequence unlike in the Golgi sequences. Figure 3.11 shows

the expected number of amino acids among the first 60 N-terminal residues that

fall within a transmembrane region as reported by TMHMM for different protein

classes. We know that these N-terminal transmembrane domain predictions are

most likely signal peptide (SP) sequences responsible for targeting the majority

of secretory pathway proteins into the ER after their synthesis. Unlike the other

types of secretory pathway proteins, most of the Golgi proteins have their pre-

dicted membrane-spanning regions containing between 15 and 25 amino acids,
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with a strong length preference of around 20 amino acid residues. This obser-

vation is justified by a previous study that showed that changing the length of

the transmembrane domain of Golgi or plasma membrane proteins affected their

protein localisation (Munro, 1995). In short, when incorporated into the SVM as

described in Section 3.2.4 structural properties, such as the number and length of

predicted TM structures in the N-termini and as well as in full-length sequences,

clearly help Lokum in identifying protein localisation.

3.3.4 Effect of amino acid composition

In this work, in addition to using other protein features I use amino acid com-

position, too. However, this is not associated with the intention of by-passing

possible annotation errors with this choice; instead, it is mostly to make advan-

tage of the biological fact that proteins in a certain compartment can possess

similar macroscopic properties such as composition, possibly for better interact-

ing with their environment. As mentioned in the introduction section of this

chapter, many previous studies have used amino acid composition as a strong

sequence-level attribute that can be used as a distinguishing feature in subcellu-

lar localisation prediction. I used normalised amino acid frequencies to convey

this macro-molecular characteristics that would presumably be similar in proteins

sharing a common compartment. Proteins in different localisations can bear dif-

ferent predilections for certain amino acid residues, as the plots in Appendix B

demonstrate.

Using the first type of amino acid grouping suggested by Thomas & Dill (1996)

(see page 77 in the Methods for more detail), instead of the 20 amino acid letters
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Figure 3.11: The expected number of amino acids in the first 60 N-
terminal residues to be part of a transmembrane region. Plotted using
a bin size of 5, the normalised histogram shows the predicted number of amino
acids in the first 60 N-terminal residues lying within a transmembrane region
as reported by TMHMM. Distributions for different types of secretory pathway
proteins are shown. Plasma membrane proteins generally have a larger number
of membrane-spanning regions spread across their entire amino acid sequence
(see text), whereas Golgi sequences tended to have a single predicted TM helix
in their N-termini, demonstrating a strong total length preference of around 20
amino acids.
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in the calculation of composition, I was able to get a maximum correct prediction

rate of 77.61% from the SVM using 5-fold cross validation, which is about 4%

less than the result obtained from using all the amino acids in classifying the

animal proteins. In addition to using composition, I also kept the other features

like motif scores and transmembrane topology that I use in the general classifier.

This group has 10 classes of amino acids (Table 3.3). Similarly, when I used

the second type of amino acid grouping (3.3) from Thomas & Dill, where amino

acids are categorised in 5 subgroups, the mean of the accuracy in the 5-fold cross

validation tests was 76.54%. Finally, using the third type of grouping, also shown

in Table 3.3, in which I mapped the 20 amino acids into 6 classes based on general

physical and chemical properties of amino acids, I obtained an average correct

prediction percentage of 75.81, in predicting the 9 animal protein localisation

sets. These obtained figures are about 3-4% smaller than what I obtained by

calculating the composition of each of the 20 amino acids without any grouping.

3.3.5 Lokum’s performance

Table 3.4 summarises the performance of Lokum, in terms of the program’s clas-

sification sensitivity (SN) and specificity (SP). Also, Matthew’s Correlation Co-

efficient (MCC) values are given for Lokum, MultiLoc and PSORT in Table 3.5.

SN, SP and MCC values were computed as explained in Section 3.2.7 on page

80. Individual cross validation sets used in the MultiLoc study were not available

to enable me to perform a direct comparison. However, since Lokum is trained

and evaluated using the same datasets of MultiLoc (Höglund et al., 2006), for

comparison I reproduced MCCs in the table for both MultiLoc and PSORT from
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the MultiLoc paper where the latter programs are compared. For the SN and SP

values of MultiLoc and PSORT please refer to the same article by Höglund et al.

(unfortunately, this paper does not mention SN, SP and MCC values for all plant

localisations).

3.3.6 Contributions of different features

To better understand the individual contributions of using motifs, composition

and structural information, I stratified the prediction system by using only a

particular type of feature at a time. I counted the number of correctly predicted

protein sequences by running 3 different SVM predictors that use only motifs, only

amino acid composition, and finally only transmembrane structure information.

Figure 3.12 shows the proteins that were independently classified correctly by a

single predictor, by any two, or by three of them. The Venn diagram tells us

that about a third of the correct predictions can be achieved by either using only

motifs or by composition alone. This indicates that the amino acid composition

can be thought of as partially representing some of the motif information and vice

versa. 13.7% of the predicted proteins can be said to be the easiest to predict,

because they could be classified by any of the SVMs. More than a quarter of the

proteins were predicted successfully only by the SVM using motif scores. The

SVM that was trained only with structural information had the least number of

correct predictions (3.8%) that the other predictors could not correctly classify.
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Version Localisation Total sequence Lokum performance
SN SP MCC

Animal plasma membrane 1238 0.85 0.95 0.86
mitochondrial 510 0.76 0.73 0.71
nuclear 837 0.79 0.74 0.72
cytoplasmic 1411 0.75 0.82 0.70
ER 198 0.79 0.68 0.72
extracellular 843 0.87 0.90 0.85
Golgi 150 0.86 0.71 0.77
lysosome 103 0.88 0.57 0.71
peroxisomal 157 0.77 0.30 0.46

Fungal plasma membrane 1238 0.86 0.95 0.86
mitochondrial 510 0.75 0.72 0.70
nuclear 837 0.77 0.75 0.70
cytoplasmic 1411 0.75 0.81 0.70
ER 198 0.82 0.68 0.73
extracellular 843 0.85 0.90 0.85
Golgi 150 0.84 0.71 0.77
vacuolar 63 0.86 0.24 0.45
peroxisomal 157 0.75 0.30 0.46

Plants chloroplast 449 0.76 0.56 0.62
cytoplasmic 1411 0.59 0.79 0.56
plasma membrane 1238 0.86 0.95 0.86
mitochondrial 510 0.69 0.66 0.63
nuclear 837 0.75 0.73 0.69
ER 198 0.81 0.67 0.73
extracellular 843 0.84 0.88 0.83
Golgi 150 0.83 0.72 0.77
vacuolar 63 0.86 0.24 0.45
peroxisomal 157 0.79 0.30 0.47

Table 3.4: Prediction performance summary for Lokum. Sensitivity (SN)
and specificity (SP) and Matthew’s Correlation Coefficient (MCC) values are
given for Lokum. Lokum was trained and evaluated by 5-fold cross validation
using the MultiLoc (Höglund et al., 2006) datasets.
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Version Localisation Lokum MultiLoc PSORT
MCC Correct% MCC Correct% MCC Correct%

Animal p. membrane 0.86 81.73 0.76 74.6 0.73 59.9
mitochondrial 0.71 0.83 0.58
nuclear 0.72 0.73 0.54
cytoplasmic 0.70 0.68 0.43
ER 0.72 0.60 0.11
extracellular 0.85 0.77 0.72
Golgi 0.77 0.53 0.04
lysosome 0.71 0.48 0.18
peroxisomal 0.46 0.44 0.25

Fungal p. membrane 0.86 81.67 0.86 74.9 0.78 53.9
mitochondrial 0.70 0.88 0.58
nuclear 0.70 0.73 0.54
cytoplasmic 0.70 0.69 0.43
ER 0.73 0.60 0.13
extracellular 0.85 0.73 0.68
Golgi 0.77 0.60 0.04
vacuolar 0.45 0.42 0.08
peroxisomal 0.46 0.43 0.25

Plants chloroplast 0.62 78.92 0.85 74.6 0.50 57.5
cytoplasmic 0.56 0.70 0.42
p. membrane 0.86
mitochondrial 0.63
nuclear 0.69
ER 0.73
extracellular 0.83
Golgi 0.77
vacuolar 0.45
peroxisomal 0.47

Table 3.5: MCCs and correct prediction rates for Lokum, MultiLoc and
PSORT. The shown MCCs for MultiLoc and PSORT were taken from Table 3
of the MultiLoc article (data not available for all plant classes).
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Figure 3.12: Individual contributions of features used in the SVM. This
Venn diagram shows the percentage of proteins that could be correctly predicted
by 3 individual SVM systems designed to use only motif scores, only amino acid
composition, or only transmembrane statistics, respectively. The provided figures
sum up to 100%, because only the distribution of proteins classified correctly
at least by one predictor is given. The overlapping region between “Motifs”
and “Composition” for example, indicates that amongst the proteins that could
be predicted by at least one predictor, 32.3% of the “labeled” proteins could
be successfully classified independently both by an SVM using only motif and
another one using only composition information.
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3.3.7 Contribution of disordered region predictions

Protein disorder regions are described and discussed in Chapter 4 (page 111)

where I evaluated the use of disorder region statistics for use in sub-organelle

localisation prediction. It has been suggested that inferring function improves

when using patterns of native disorder in proteins (Lobley et al., 2007). In order

to assess the possible contribution of disorder prediction: i) I scanned the dis-

covered localisation-related motifs in the predicted disorder regions to obtain a

second set of motif scores, and ii) I considered the predicted disorder scores of

sequence regions where a particular NestedMICA motif has a maximum score.

Disorder region predictions were made using the RONN (Yang et al., 2005) dis-

order prediction program (for the description of the software and methodology

please see the dedicated Chapter 4).

However, adding these extra score sets (both at the same time or individually)

to the SVM vectors resulted in no significant performance increase in the overall

localisation prediction. After trying individual scores from both categories in

different combinations, as performed by a systematic analysis, only a negligible

maximum gain of around 0.01% could be achieved.

Using protein disorder predictions did not improve the overall prediction for

the major localisation categories. This could be due to a number of reasons.

Proteins can use different means to reach the same destination. Targeting into

major cellular localisations can be achieved through general characteristics such

as having a certain tendency in amino acid composition, which makes the disorder

region statistics less effective for general localisation prediction. Nevertheless, as
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shown in Chapter 4, knowing disorder regions could be useful for distinguishing

proteins localised in different specific sub-organelle compartments.

3.4 Discussions

Computational prediction of protein localisation from amino acid sequence only

is a challenging task not only because of some possible limitations in the method-

ologies, or even because of the lack of enough knowledge about the underlying

biology. We know that proteins can migrate from a certain compartment to

another, which does not permit a “one protein one localisation” correlation to

always hold true. Besides, not all proteins have targeting signals, some are ‘piggy-

backed’ and transported by other proteins which have the necessary signals (Wu

et al., 2000). Also, not all proteins from the same localisation categories show

significant similarities in their general properties such as amino acid composi-

tion to enable one to make near-perfect predictions by only using these statistics.

Therefore, one key factor in getting reasonable prediction accuracies lies in using

as much relevant information as possible. When protein features such as locali-

sation motifs, amino acid composition, or structural information etc. are used in

combination, perhaps each bit would be characterising a certain number of pro-

tein classes better, but also their synergy would result in better overall prediction

quality by possibly reducing some of the false positive predictions that individual

feature components would otherwise produce.

Motifs like the N-linked glycosylation signal, one of the oldest known protein

signals (Prosite id: PDOC00001), could be of great help in localisation prediction,

even though they may not be directly involved in protein targeting. The N-
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linked glycosylation process which normally takes place in the ER lumen aids us

in predicting secretory pathway proteins when combined with the extra motifs

found.

Representing motifs as PWMs rather than regular expressions is advanta-

geous. As mentioned in the introduction, there are two major types of peroxiso-

mal targeting signals (PTS). The first identified PTS is the C-terminal SKL-type

signal. However, in some cases, it can take the form of a similar tripeptide, namely

“KKL” (Takada et al., 1990) and in some other eukaryotes it could be “SQL”

(Purdue et al., 1992), “NKL” (Lumb et al., 1994; Oda et al., 1987), or “SSL”

(Motley et al., 1995). Existence of many such possible variants clearly indicates

that localisation motifs represented in regular expressions cannot be as efficient

as probabilistic representations. PWMs, such as the PTS1 motif shown in Figure

3.4j, can potentially tolerate slightly differing forms by allowing a certain degree

of sequence variation due to their probabilistic construction.

Although the ab initio Lokum does not use any database look ups to detect

proteins matching a certain Prosite or NLSdb motif, its performance in assigning

eukaryotic proteins into the correct localisation category was better for most of the

localisation categories than the other multi-class predictors compared. I showed

that by combining features including motifs represented as PWMs, amino acid

composition and transmembrane topology statistics, one can get very reasonable

(as high as 81%) prediction accuracies. As I demonstrated with the glycosylation

motif example, protein motifs that are not directly involved in protein sorting

could be used as secondary signals, too. In some cases, composition can substitute

the information coming from a signal, but most of the time using direct biological

104



3.5 Availability

localisation signals along with composition and structure statistics proved to be

more efficient.

By leaving out one sequence at a time and training a dedicated model by using

the rest of the sequences to predict the localisation of that sequence, I was able to

get an average correct prediction rate of 81.77% after repeating this procedure for

each sequence in the entire dataset. This accuracy rate obtained by this “jack-

knifing” methodology, however, only marginally differs from the reported correct

prediction percentage of 81.73 (Table 3.5), which is obtained from the 5-cross

validation tests done for the animals category. On the other hand, the overall

performance was calculated to be 79.5%, 80.5%, and 81.1% when I used, 2, 3

and finally 4-fold cross validation, respectively. This indicates that using 5-cross

validation was adequate and that there is no need to further increase the number

of cross validation test sets.

3.5 Availability

The Lokum protein subcellular localisation predictor is available for public use

through a web server which can be reached at:

http://www.sanger.ac.uk/Software/analysis/lokum/

It allows users to either paste some sequences into a text box or upload a file

of protein sequences in fasta format. A screenshot of the server can be seen in

Figure 3.13. Users can specify the Lokum prediction mode (animals, plants or

fungi) that they want to use for their sequences.

I wrote the public Lokum predictor as a Java servlet. It runs on a “Resin”

dynamic web server on a Linux cluster, but it has been also tested on different
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Figure 3.13: Lokum prediction service hosted by the Wellcome Trust
Sanger Institute. Sequences must be uploaded either as a single fasta file, or
entered into the text box in fasta format. Predictions are displayed in a separate
page, following the submission of data.

platforms and using Tomcat, another popular web server. The servlet is based

on the same command line version of Lokum, and also the same trained SVM

classification model files. However, the prediction server works with a Java imple-

mentation of libsvm version 2.85, instead of the commonly used version written

in the C programming language. No significant difference was observed between

the predictions made by the two Lokum versions.

Interested users can download the protein motifs used in Lokum in Nested-

MICA’s XML format (XMS) from the Lokum home page.
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Chapter 4

Discriminating nucleolar proteins
from nuclear proteins: is it
possible?

4.1 Introduction

In Lokum (Chapter 3), I tried to predict the conventional eukaryotic protein local-

isation categories which usually fall into one of the general localisation groups of

cell organelles, cell membrane or extracellular space. Here, I investigate the pos-

sibility of fine tuning some of these predictions by trying to predict sub-organelle

categories. As an example, I consider nuclear proteins, and try to classify proteins

in this category under two labels: nuclear and nucleolar.

Proteins destined to the nucleus have to pass through the nuclear pores (Fig-

ure 4.1 1). Nuclear pores could be imagined as holes piercing the impenetrable,

hard nuclear envelope which, unlike the ER or plasma membrane, does not per-

mit proteins to cross the membrane of the organelle directly regardless of whether

1The image, originally designed by Mike Jones (http://en.wikipedia.org/wiki/User:Adenosine)
has been reproduced here under the “Attribution-Share Alike 2.5 Generic” license of Creative
Commons.
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4.1 Introduction

they contain membrane spanning regions. This makes the translocation of nu-

clear proteins different from secretory pathway proteins, including that they do

not contain any cleavable targeting signals. Nuclear localisation signals (NLS),

which mediate the import of proteins into the nucleus, could be anywhere on

the sequence, unlike the C-terminal ER retention signal (see Section 3.3.1.2 and

Figure 3.8), for instance. They comprise short sequences of basic amino acids

like Arginine (R) and Lysine (K) (see Figures 3.4h-i and A.1), and form short

binding sites for recognition by other molecules. In 1986, Goldfarb et al. showed

that mutations in the NLSs can impair nuclear localisation, but also, non-nuclear

proteins can be targeted into the nucleus if artificial NLSs were added to them.

Previously, other subnuclear localisation compartments have been proposed

for where RNA splicing related proteins (“nuclear speckles”) (Li & Bingham,

1991) accumulate, and also for small nuclear ribonucleoprotein (snRNP) com-

ponents (“foci”) (Chang & Lin, 2001), but the major and most studied subnu-

clear compartment is the nucleolus. There is experimental evidence suggesting

a sequence-dependent targeting into the nucleolus by means of Nucleolar Local-

isation Signals (NOSs) (Dang & Lee, 1989) which are similar in composition to

NLSs. Because nucleolar proteins have to first pass through the nuclear pores

just like any other nuclear proteins, it is quite reasonable to expect them to have

similar sort of signals that mediate their passages. Furthermore, having no mem-

brane around the nucleoli may suggest that localisation in nucleoli could actually

be achieved through mainly molecular binding. In fact, in an experimental study

some nucleolar proteins in mouse have been reported to carry only an NLS but

no identifiable NOS (Maeda et al., 1992). Therefore in addition to the presence
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Figure 4.1: Nuclear pore. This schematic representation shows the nucleus,
its nuclear envelope and a cross-section view of nuclear pores. Nuclear envelop
is made of double membranes enclosing the genetic material in eukaryotic cells.
Nuclear pores, crossing the nuclear envelop, allow water-soluble molecules to cross
the nuclear envelope. Labels shown represent: 1 - Nuclear Envelope, 2 - Outer
Ring, 3 - Spokes, 4 - Basket, and 5 - Filaments.
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of NOSs, general protein properties such as amino acid composition could be

important in nucleolar localisation.

The prediction of nuclear proteins is important because there are a lot of nu-

clear proteins in the cell, and difficult because the NLSs vary in sequence (Cokol

et al., 2000) and do not have specific positions. Prediction of nuclear proteins has

probably begun with the multi-class localisation predictor PSORT (Nakai & Hor-

ton, 1999) which is based on many “if-then” type rules that comprise many biolog-

ical features including discovered and known localisation signals (for a comparison

of PSORT with Lokum see page 97). One of the more recent nuclear sequence pre-

diction methods is PredictNLS (Cokol et al., 2000). It predicts nuclear proteins

by extrapolating from known NLSs which are listed in a specific database called

NLSdb (Nair et al., 2003). Initially, NLSdb had 114 experimentally determined

NLSs that were obtained through an extensive literature search, but using ‘in sil-

ico mutagenesis’ this set was extended to 308 experimental and potential NLSs.

PredictNLS is now part of a more general classifier, LOCtarget (Nair & Rost,

2004) that uses 4 specialised predictor programs: apart from NLSdb matches, it

uses sequence homology (LOChom), SWISS-PROT keywords that are strongly

correlated with localisation (LOCkey), and hierarchical support vector machines

(LOCnet). Another dedicated nuclear sequence predictor, NucPred (Brameier

et al., 2007), has been recently developed to predict proteins that spend at least

some time in the nucleus. NucPred is based on regular expression matching of

NLSs and multiple program classifiers induced by genetic programming, and has

similar overall prediction sensitivity and specificity with PSORT and PredictNLS.

Predictors involving nuclear proteins also include NetNES (la Cour et al., 2004)
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that predicts nuclear export signal containing proteins.

While there are several dedicated tools that can directly predict or help identi-

fying nuclear proteins, no particular prediction algorithm has been available that

can predict proteins destined into the nucleolus or that can distinguish nucleolar

proteins from nuclear proteins. Nevertheless, there has been studies to derive a

knowledge-base that could be useful in predicting nucleolar proteins (Leung et al.,

2003), which generally suggested the use of amino acid and peptide composition

and sequence homology information across different species.

4.1.1 Disordered protein regions

Natively unstructured regions are a common feature of eukaryotic proteins and

many proteins have such regions with no well-defined 3-D structures in their

native states (Dunker et al., 2000). These natively unfolded protein regions could

be involved in molecular recognition, and they can occasionally take regular forms

when functioning. The first evidence came from a study carried out by Alber

et al. in 1983, where it was concluded that the structure analysis of a complex,

triose phosphate isomerase-substrate, had shown that a mobile region of 10 amino

acids becomes ordered when an associated ligand binds. Disordered-to-ordered

transition patterns can allow natively unstructured, related proteins to make

formations (Weinreb et al., 1996). However, these type of interactions involving

disordered regions are not limited to only protein-protein interactions, and could

be observed in protein-dna, enzyme-DNA, receptor-ligand interactions as well

(Huber, 1979).
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Dunker et al. (2000); Wright & Dyson (1999) showed that intrinsically un-

structured protein regions are important regarding protein function. Lobley et al.

(2007) directly used predicted disorder patterns successfully to improve protein

function prediction. In Lokum, however, using disorder prediction did not im-

prove the prediction of general localisation categories (see 3.3.7), so in this chap-

ter, I try to address the potential contribution of protein disorder in distinguishing

proteins localisated in nucleoli from the rest of the other nuclear proteins, where

I also used the features used in Lokum (Chapter 3).

4.1.2 Protein disorder region prediction

PONDR R© is one of the best-known tools to predict disorder (Garner et al., 1999;

Li et al., 1999; Radivojac et al., 2003, 2004; Romero et al., 2004). It uses pattern

recognition techniques employing a set of attributes which are based on biological

knowledge. Examples of other disorder software are FoldIndex (Prilusky et al.,

2005), DisEMBL (Linding et al., 2003a), GlobPlot 2 (Linding et al., 2003b),

DISOPRED2 (Ward et al., 2004), and Prelink (Coeytaux & Poupon, 2005).

The protein disorder prediction category has been introduced in the fifth

“Critical assessment of methods of protein structure prediction” (CASP) com-

petition (Cozzetto et al., 2005, 2007; Soro & Tramontano, 2005; Valencia, 2005),

with the participation of the mentioned programs and several others.

A program developed in 2005, RONN, has been recently compared with most

of the notable CASP participants in the disorder category (Yang et al., 2005)

on an official CASP assessment dataset which contains 159 proteins sequences

with experimentally determined disorder regions. Table 4.1 summarises the per-
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formances of the 8 compared programs, with DisEMBL being compared using

three different versions of the program. In addition to the traditional assessment

measures sensitivity (Equation 2.3), specificity (Equation 2.4) and Matthew’s

Correlation Coefficient (Equation 2.5), in CASP, a new weighted score (CASP-S)

(Jin & Dunbrack, 2005) was used which was defined as:

CASP−S =
100(wTP TP + wFP FP + wTNTN + wFNFN)

TP + FP + TN + FN
(4.1)

where wTP stands for the number of disordered residues divided by the total

number of residues, and so on. (wFN was taken as −wTP and similarly, wFP =

−wTN).

Also, the developers of RONN added yet another measure in their performance

assessment, probability excess:

Prob. excess =
TN TP − FN FP

(FN + TP ) + (TN + FP )
(4.2)

Because of its reported reasonably good performance over the other predic-

tors and availability as a stand-alone application I chose RONN for performing

disordered protein region predictions.

4.2 Materials and methods

4.2.1 Datasets

The first proteins annotated as “nucleolar” came from mass-spectrometry stud-

ies (Andersen et al., 2002, 2005; Scherl et al., 2002). Recently, the list of nu-

cleolar proteins, which have been previously identified mainly through mass-
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spectromentry, has been extended by a protein-protein interactions approach

(Hinsby et al., 2006).

The nuclear and nucleolar protein sequences used in this study were down-

loaded from the LOCATE mouse protein sequence database (Fink et al., 2006).

LOCATE is a well curated, web-accessible database containing descriptions for

the membrane organisation and subcellular localisation of FANTOM proteins.

The FANTOM (Functional Annotation of the mouse) consortium (Carninci et al.,

2005; Maeda et al., 2006) aims at providing the ultimate characterization of the

mouse transcriptome. Only full length proteins from the FANTOM-3 project are

present in LOCATE.

In LOCATE, I only considered protein annotations that are verified either by

experiments or from literature. Among these, I picked nuclear (GO id:00056341)

1http://www.ebi.ac.uk/ego/GSearch?query=0005634&mode=id&ontology=component

Method SN SP MCC Casp-S Prob excess
RONN 0.603 0.878 0.395 9.33 0.481
DISOPRED2 0.405 0.972 0.470 7.81 0.377
PONDR R© 0.557 0.816 0.278 7.22 0.373
DisEMBL(hot) 0.492 0.840 0.260 6.43 0.332
DisEMBL(465) 0.334 0.981 0.437 6.10 0.315
FoldIndex 0.488 0.811 0.224 5.79 0.299
PreLink 0.237 0.947 0.219 3.55 0.183
GlobProt 0.372 0.811 0.140 3.54 0.183
DisEMBL(coils) 0.740 0.424 0.104 3.19 0.165

Table 4.1: Performance measures calculated from the blind testing of
nine disorder prediction methods against the main blind test set of 80
proteins of CASP 6. The performance measures are sensitivity (SN), specificity
(SP), Matthews correlation coefficient (MCC), CASP S-score and probability
excess (Prob. excess). This table is re-produced from Yang et al. (2005).
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and nucleolar (GO id:00057301) protein sequences. I removed sequences anno-

tated as both nuclear and cytoplasmic etc. to have two datasets at the end, one

consisting of nucleolar proteins and another one consisting of only nuclear pro-

teins. Some nucleolar proteins could also be annotated as nuclear, as they can

spend some time in the nucleus, too. The final list of protein IDs used in this

study can be found in Appendix C.

Using the CD-HIT (Li & Godzik, 2006) sequence clustering program to reduce

the maximum sequence identity between any two sequences to 30%, the nuclear

mouse protein dataset downloaded from LOCATE was reduced to 386 sequences

from an initial number of 715. Similarly, the nucleolar set which initially had

815 sequences was filtered to allow a maximum identity of 30% between any two

sequences at the end, which resulted in 397 sequences. One third of each dataset

was reserved for testing purposes, while the remaining sequences were used in

motif discovery.

Protein-capable NestedMICA (Doḡruel et al., 2008) was run on randomly cho-

sen 257 nuclear and 265 nucleolar sequences, leaving the rest of the sequences in

the datasets for test purposes. In order to detect possible motifs at both termini,

N-terminal amino acid chunks of length 20 were compiled from the nucleolar and

nuclear sequences. Similarly, two more datasets were produced which contained

20aa C-terminal sequences from both types. NestedMICA has been run on the

nucleolar and nuclear training datasets containing whole-length sequences, 20

N-terminal amino acid chunks, and finally 20 C-terminal peptides.

1http://www.ebi.ac.uk/ego/GSearch?query=0005730&mode=id&ontology=component
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4.2.2 Training background models for nucleolar and nu-
clear datasets

Two NestedMICA background models were trained using a similar strategy de-

scribed in the background model related sections on pages 35 and 41. However,

particularly the nuclear motifs (shown in Figure 4.2) obtained using these back-

ground models were quite short and surprisingly not rich in residues like Lysine

or Arginine which are expected to be abundant in the core parts of the NLSs.

Nucleolar motifs were quite short, too, and they only possessed strong Arginine

residues but no Lysines (Figure 4.2). This could have resulted because of using

relatively simple, zero order background models which are trained on the rela-

tively small number of sequences in these two datasets (in Chapter 2 I showed

that using order-1 background models would be better than using an order-0

background, but if there is enough data to train it).

An alternative, third background model was trained using 438 redundancy

reduced cytoplasmic sequences (see page 55). Nuclear proteins are transferred

into the nucleus by the means of some molecules binding to their NLSs. Therefore,

as previous studies have shown, for example by Goldfarb et al. (1986), if these

signals are altered it is likely that a protein will remain in the cytoplasm and

will not be able to be carried into the nucleus. Thus, the uninteresting, non-

localisation segments of nuclear and other sub-nuclear proteins could best be

represented by a cytoplasmic background. Indeed, when I ran NestedMICA with

this first order cytoplasmic background model consisting of 4 mosaic classes on

the individual nuclear and nucleolar protein datasets that have been created, the

results were much more promising. Motifs obtained from each background model
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Localisation Sequence
segment Motif 

a) Nucleolar

b) Nuclear

c) Nucleolar

d) Nuclear

e) Nucleolar

f) Nuclear

N-terminal

N-terminal

Entire

Entire

C-terminal

C-terminal

Figure 4.2: NestedMICA motifs discovered from nuclear and nucleolar
datasets. NestedMICA was run on two sets: nuclear and nucleolar datasets.
In each run, it used a dedicated background model trained with the correspond-
ing dataset. Figure 4.4 shows a set of “better motifs” discovered using another
(cytoplasmic) background model trained with more sequences.
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were assessed in terms of their performances to separate nuclear and cytoplasmic

proteins, and it was actually when I used this cytoplasmic background model

that they better discriminated the two classes, rather than when I tried the two

background models trained on nuclear and nucleolar sequences.

4.2.3 Running RONN

The RONN protein disordered prediction program (Yang et al., 2005) was run

with the “short output” command line options on a Linux server. BioJava scripts

were written to parse the output of the program and perform the statistics. A

score of greater than 0.5 was considered as a disordered prediction, as recom-

mended in the RONN manual. Figure 4.3 shows an example plot drawn according

to RONN predictions from a nuclear sequence, where RONN produces disorder

scores for each amino acid position. RONN version 3 was obtained by personal

communication with the program’s developers.

4.2.4 Training the SVM

As in previous chapters, a popular Support Vector Machine (SVM) implementa-

tion, libsvm (Chang & Lin, 2001), was used in the task of classifying nuclear and

nucleolar proteins. 10-fold cross validation was applied, and I used a radial-basis

kernel function whose gamma (g) and C penalty parameters were systematically

optimised.
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Figure 4.3: A protein disordered region plot based on RONN predic-
tions. The plot shows the disorder score of a nuclear sequence of length 459, as
an example. RONN produces a score between 0 and 1 for every single amino acid
position across a sequence. A score above 0.5 indicates a disordered residue or a
region. As the plot illustrates, a sequence can have multiple disordered regions
(5 in this example, with a strong disordered sequence chunk at the C-terminal
end).
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4.3 Results

Nucleolar proteins possess NOSs (Dang & Lee, 1989) to enter into the nucleus

from the cytoplasm. Figure 4.4 shows some of the nuclear and nucleolar protein

motifs reported by NestedMICA. NestedMICA was run on 3 datasets for each

localisation class: a dataset consisting of full-length sequences, and two datasets

of 20aa N- and C-terminal sequence chunks, respectively. The most striking

difference between the nuclear and nucleolar sequence motifs is how nucleolar

motifs are enriched with Arginine (R) and Lysine (K) amino acid letters over

the nuclear motifs discovered in the N- and C-terminal regions. NLSs have been

known not to have specific positions and can be located across the entire primary

structures of nuclear proteins; however, these results suggest the possibility that

nucleolar proteins, unlike nuclear proteins, have stronger NLS-like motifs (NOSs)

in their both N and C termini. We scanned and scored both the N- and C-terminal

nucleolar motifs (Figure 4.4) in the corresponding 20 aa N or C terminal regions

of both nucleolar and nuclear proteins to see if we can observe any difference in

the score distributions. The highest scores obtained from these nucleolar motifs

both in the nuclear and nucleolar sequences are plotted in Figure 4.5.

By using a simple SVM consisting of input vectors formed with only the scores

of the N- and C-terminal motifs (4 in total) shown in Figure 4.4, it was possible

to classify 65.4% of the proteins correctly into the two classes of nuclear and

nucleolar localisations. Adding amino acid composition to the four motif scores,

I was able to increase the performance up to 74.5%. Using only the 20-dimensional

amino acid composition rates was sufficient to predict 73.5% proteins correctly.
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Localisation Sequence
segment Motif 

a) Nucleolar

b) Nuclear

c) Nucleolar

d) Nuclear

e) Nucleolar

f) Nuclear

N-terminal

N-terminal

Entire

Entire

C-terminal

C-terminal

Figure 4.4: A selection of the protein motifs recovered by NestedMICA
from a set of nuclear and a set of nucleolar proteins, using a cyto-
plasmic background. N-terminal motifs shown were reported from the first 20
N-terminal amino acid regions. Similarly, the C-terminal motifs were searched
within the last 20 amino acid regions. Other motifs indicated by the “Entire”
segment were discovered when full length sequences were used.
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Figure 4.5: Score histograms for N- and C-terminal nucleolar motifs.
Both nuclear and nucleolar sequences were scanned using the N-terminal nucle-
olar motif (Figure 4.4a). Similarly, the C-terminal nucleolar motif (Figure 4.4e)
was scored in both types of datasets. Scores shown on the x-axis correspond to
the best matches within the relevant 20 amino acid long N or C terminal chunks.
The C-terminal motif generated Gaussian-like distributions when scored in the
last 20aa C-terminal regions, however, this motif is clearly more abundant in the
nucleolar C-termini. The other two curves indicate that the N-terminal regions
are less abundant in terms of the N-terminal nucleolar motif, but still, this mo-
tif was less frequent in the N-termini of nuclear proteins than the N-termini of
proteins localised in the nucleoli.
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Using transmembrane (TM) statistics reported by TMHMM (Krogh et al.,

2001) (reported “features” are summarised in 3.2.5) improved the prediction ac-

curacy in Lokum. Furthermore, nuclear proteins, in theory, should posses a larger

number of TM helices, compared to the nucleolar sequences which are confined

to the centre of the nucleus and less likely to have TM helices. In fact, running

THMMM on the entire sequences in both datasets to compare them in terms of

their number of predicted residues that possibly lie in a TM helix (Figure 4.6)

revealed that this feature can significantly improve predictions. With the addi-

tion of the two more types of predicted TM statistics mentioned in Section 3.2.5,

the correct prediction rate increased to 77.14%. When I used the three TMHMM

statistics alone, the correct prediction rate was 64.4%.

Finally, after adding the bipartite NLS motif (Figure 3.10, page 92) that

we obtained using the combinatorial approach involving both NestedMICA and

Eponine, the overall correct classification rate increased to as high as 78.42%.

Sequences used in the motif discovery were not used in training and testing of

the SVM. Due to the relatively low number of sequences in both datasets (783 in

total), this particular SVM was trained and tested using 10-fold cross validation

(see Methods).

That amino acid composition helped us in making more correct predictions

implies there is a certain degree of bias in composition even between the similar

classes of nuclear and nucleolar proteins, which could be associated with the

possibility that nucleolar proteins have slightly different compositional preferences

than the other proteins in the nucleus so as to allow them to be packed more

tightly to form the nucleolus. Figure 4.7 shows the compositional differences
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Figure 4.6: Distributions of amino acids predicted to be within TM
helices in nuclear and nucleolar proteins. TMHMM (Krogh et al., 2001)
was run on the entire nucleolar and nuclear protein sequences. The curves show
the total number of sequences (y-axis) having a certain, predicted total number of
amino acid residues in their sequences that fall in a membrane-spanning region,
for nucleolar (red), and nuclear (green) proteins. According to this plot, most
nuclear proteins have around 20 amino acids within their TM helices all together.
A bin size of 5 amino acids was used to plot the frequencies, and the curves were
smoothed by the “cubic splines” algorithm.
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Figure 4.7: Differences between nucleolar and nuclear proteins in terms
of their amino acid compositions. This statistics was obtained using the
nuclear sequences datasets consisting of 386 sequences and the nucleolar sequence
set having 397 sequences (see Materials and Methods). The most noticeable
difference is how nucleolar proteins are enriched with Lysine (K) over nuclear
proteins.

between the two types of proteins localised in nuclei and nucleoli. A similar figure

showing the comparison of nucleolar and nuclear proteins in terms of their amino

acid composition has been reported previosly by Leung et al. (2003). As seen

in Figure 4.7, the most notable difference is how nucleolar proteins are enriched

with Lysine (K) over nuclear proteins. While most other amino acid composition

rates were more or less identical, nuclear proteins had a larger number of the

nonpolar amino acids Leucine (L) and Proline (P), and the polar Serine (S) than

the nucleolar proteins.
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The fact that our motif finder discovered some motifs (Figure 4.4) from the

nucleolar protein set does not necessarily mean that these motifs can not be found

in the nuclear proteins, and vice versa. As can be seen in Figure 4.8, which, as

an example, shows the score distributions of motif c of Figure 4.4 for both types

of protein sequences, some nuclear proteins may also contain this particular K-

and R-rich motif despite that it was originally discovered in the nucleolar set.

However, the histogram plot suggests that mostly high scoring instances of this

motif are more abundant in nucleolar proteins compared to the best hits of the

motif in sequences localised in the nucleus.

In addition to demonstrating that terminal regions of nucleolar proteins could

be more biased towards positively charged residues, I investigated whether nu-

clear and nucleolar proteins differ in terms of their disordered region distribution.

41.99% of the amino acids in the nucleolar proteins set and 41.87% of the amino

acids in the nuclear proteins set were predicted as disordered by the RONN soft-

ware. This indicates that there is no significant difference in terms of the number

of residues falling into a disordered region between both types of proteins. How-

ever, there is a difference about what constitutes these disordered regions: it

turned out that these disordered regions are enriched more with charged residues

in proteins localised in the nucleolus over proteins of the nucleus after some tests

I performed with some of the motifs found.

Using motif c of Figure 4.4 to scan only both types of sequences, I observed

that a larger number of disordered regions in the nucleolar sequences contained

this motif than disordered regions in the nuclear proteins. Figure 4.9 shows

the normalised frequency distribution of strong hits of this charged-residue rich
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Figure 4.8: Score distribution of a core nucleolar motif within nuclear
and nucleolar proteins. Motif scores shown on the x-axis are given in infor-
mation bits, for the best match per sequence. The y-axis indicates the number of
sequences for nucleolar (red line) and nuclear (green dashed line) featuring this
motif with different scores. For plotting the histogram, 500 nucleolar and 500
nuclear sequences that were sampled randomly from the original datasets have
been used.
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motif within the predicted disordered regions for both types of sequence classes.

Sequence regions scoring less than an empirically chosen value of 1.8 were not

considered as true NLS matches (Figure 4.8). However, a second similar analysis

performed by using another motif, which was discovered from a general nuclear

localisation dataset in the previous chapter (Figure 3.4i), revealed that even when

we consider the entire range of scores without using any threshold it is still possible

to observe the same kind of tendency of finding more NLS motifs within disorder

regions (Figure 4.10).

Given that there is a tendency in nucleolar proteins to possess “K & R”-

rich motifs more abundantly within their disordered regions compared to nuclear

proteins, I investigated whether this bias could be used in a prediction system.

The SVM that was built initially to distinguish nuclear proteins from nucleolar

proteins was modified so as to allow us to test this phenomenon. To this end,

firstly, I added to the SVM the best scores of those core NLS signals (represented

as a PWM in part c of Figure 4.4) that fall into a disordered region, exclud-

ing other potential motif hits in the rest of the sequence regions. Secondly, I

added the predicted disordered scores of sequence regions featuring a core nucle-

olar motif, such as motif c of Figure 4.4. Unfortunately, both approaches, when

used separately or together, failed to provide a substantial increase in the SVM’s

performance, meaning that their potential contributions are somehow already

achieved by the other used features including NLS motif scores and amino acid

composition etc. Using general disordered statistics for each sequence, such as

the number of disordered blocks per residue and the ratio of amino acid residues

predicted as disordered to the total number of residues in a sequence, resulted
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Figure 4.9: A larger number of nucleolar localisation motif hits fall in
disordered regions, compared to the NLS motifs in disordered regions
of nuclear proteins. The y-axis corresponds to the normalised frequencies,
while the x-axis represents the disorder region scores as reported by RONN. A
score of greater than 0.5 indicates a predicted disorder region. The dashed green
curve represents nuclear proteins which show a normal distribution around a
score of 0.4, while the solid red curve shows the histogram for nucleolar sequences
having a tendency to contain more number of the NOS within their disordered
regions.
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Figure 4.10: Generally a larger number of NLS signal hits can be found in
disordered regions of nucleolar proteins compared to nuclear sequences.
The y-axis corresponds to the frequencies of motif hits, while the x-axis represents
the disordered score regions as reported by RONN. A score greater than 0.5
indicates a predicted disordered region.
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in the same maximum correct prediction percentage (78.42%) that I obtained

without using the disorder-related scores (see above). At the end, scores asso-

ciated with disorder were not included in the SVM, as this did not improve the

performance, although the nucleolar sequences showed a bias to possess a larger

number of “K & R”-rich motifs in their disordered regions.

4.4 Discussions and conclusions

Using the observation that nucleolar proteins tend to contain a larger number

of charged residues in their disordered regions was not particularly helpful in

automatic classification of nuclear and nucleolar proteins. Instead, using these

motifs directly without considering disordered regions to score proteins was more

effective. In addition to using the reported motifs found in the terminal regions

of nucleolar and nuclear sequences, incorporating amino acid composition in the

SVM proved useful, as in predicting major localisation categories (see previous

chapter). Thus, despite being confined by the nuclear membrane and sharing

similar characteristics, there are significant differences in amino acid compositions

between the members of these two types of proteins.

Loop regions and regions with no specific secondary structure in proteins

do not have to be disordered necessarily. A disordered region means that that

region has the capacity to change into an ordered state when needed, unlike,

for example, some loop regions which can not become “ordered”, that is, have a

certain structure and shape.

It is not very surprising to have observed that proteins forming the subnuclear

compartment nucleolus are rich in charged amino acids like K and R, and that
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they are more abundant in regions predicted to be disordered. It has been shown

that aromatic amino acids like Tryptophan (W), Tyrosine (Y) and Phenylala-

nine (F) are less likely to be found in long disordered regions (Kissinger et al.,

1995), because these amino acids usually have a strong interaction capability to

develop a structure, and thereby they inhibit disorder (Burley & Petsko, 1985).

It has also been observed by the same groups that charge imbalance in protein

sequences tends to favour disorder. But to find out that there are more of these

charged residues in disordered regions of nucleolar proteins compared to nuclear

proteins was surprising. This can be explained, to a certain extent, by the spec-

ulation that nucleolar proteins have to behave like any other nuclear proteins

while traversing the nuclear pore to enter into the nucleus, but after that point,

most probably their disordered regions which potentially convey the extra sig-

nals of nucleolar localisation signals (NOS) involved in their transport into their

subnuclear destination, become more ordered and functional.

Unfortunately, good quality and reliable localisation annotation is too limited

to satisfactorily study sub-localisation classes such as nucleolar or mitochondrial

membrane proteins. Also, there can always be annotation errors in the datasets

used. I tried to minimise these data related problems by choosing manually

annotated and well curated datasets. To avoid a potential bias in predictions,

sequence identity was lowered to a maximum of 30% by using a clustering algo-

rithm (see methods). Another problem stemming from the underlying biology is

that some proteins can be functioning in more than one compartment. However,

even if the datasets contain such protein sequences, statistically it should still be

possible to retrieve the general characteristics representing an individual group.
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In the case of motif finding, for example, a few sequences coming from differ-

ent types of protein localisations or those having multiple possible localisations

should not prevent NestedMICA from finding the overexpressed, representative

sequence motifs.

In spite of possible errors and data related limitations, I think the observa-

tion that disorder regions have more charged residues in nucleolar proteins, the

compositional differences between the two classes, and finally the motifs found

in the terminal sequence regions to distinguish nuclear and nucleolar proteins

are promising results that can be used for discriminating nucleolar proteins from

other nuclear proteins, as the tests indicated.
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Chapter 5

Predicting protein
transmembrane topology and
signal peptides: An HMM
approach with a new parameter
optimisation strategy

5.1 Introduction

5.1.1 The aim of this study

In Chapter 3, we have seen that using predicted protein transmembrane (TM)

topology statistics, such as the fraction of N-terminal amino acids lying in a TM

helix and the number of TM helices, improves subcellular localisation predic-

tion. In this chapter, I investigated the possibility of developing an alternative

to TMHMM (Krogh et al., 2001) that was used in Lokum.

In this chapter, I also introduce a new strategy to optimise hidden Markov

model (HMM) transition probabilities, based on nested sampling. This is an

alternative to the classical approach of Baum-Welch optimisation procedure (see

Section 1.3.1).
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5.1 Introduction

I tested this new methodology in optimising transition probabilities of an

HMM that tries to automatically annotate a set of given sequences with their

most probable TM topologies, and presence of SPs. This prediction is a mapping

procedure of the most probable state path (“annotations”) to best describe a

sequence, according to a pre-determined model (see the “second task of HMMs”,

on page 15). Thus we require a good HMM model to make predictions from.

Using our a priori knowledge about what sequence regions are preceded by what

other sequential features etc., it is possible to construct a finite, deterministic

state machine to describe this problem. We are also given a set of sequences from

which it is possible to directly determine the emission probabilities of the symbols

that a state can emit.

However, usually there is only a couple of available options to determine the

relations, or transition probabilities, between these states: the use of the Baum-

Welch algorithm to find a set of “optimal” probabilities by trying to find the

optimal ordering of states which will maximise the series multiplication of emitted

symbols’ probabilities, or to manually set them. If there are multiple states in the

HMM having the same emission probability distributions (like a loop state and

a globular-region state that are both trained with some cytoplasmic sequence),

the transition optimisation will be harder by the Baum-Welch algorithm which

already does not guarantee finding the best probability set.

With the method I will introduce I try to overcome these difficulties by:

• using nested sampling to search the whole parameter space and also par-

tially to steer Baum-Welch, which reduces the chance of getting stuck in a
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local maxima, and,

• following a fully supervised training that utilises known state labels of a

given set of training data.

5.1.2 Transmembrane topology and signal peptide predic-
tion

Membrane proteins span bilayer lipid phases. Membrane spanning regions of

these proteins are usually made up of transmembrane α-helices or antiparallel

β-sheets. Most of the membrane proteins have α-helices, although there are a

number of proteins containing β-barrel structures in the outer membrane regions

of bacteria, and in the organelles mitochondria and chloroplasts. Tight bundling

of these α-helical segments forms globular structures in membrane proteins. A

typical transmembrane α-helix contains around 20-25 predominantly hydrophobic

amino acid residues. This property forms the basis of computational methods in

identifying membrane proteins.

Like transmembrane α -helices, SPs are also rich in hydrophobic residues. SPs

typically range in length between 20 and 30 amino acids in eukaryotes (Emanuels-

son et al., 1999; von Heijne, 1990), however it is possible to have up to 70aa long

SPs (for example, the SP of a protein, P1383, “Ring-infected erythrocyte surface

antigen precurser” is 65aa long). They can be divided into three sections in terms

of their amino acid content (see Section 3.3.1), with the core hydrophobic region

and the cleavage site being more conserved (see Section 5.3.1 and Figure 5.5 in

Results, as an interesting note on how mRNAs of SPs look like). This tri-partite

structure is quite useful to predict SPs. Also, their cleavage sites feature a “-3,
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-1” rule (von Heijne, 1986), corresponding to the positions occupied by small,

conserved amino acids like G or A relative to the actual cleavage position (Figure

3.4a).

Membrane topology describes which regions of the polypeptide chain span

the membrane, and which portions lie on either of the watery sides of the lipid

bilayer. Membrane topology prediction is important in many ways, as it can

help biochemists design drugs or antibodies etc. which are bound to a membrane

protein. Many researchers have studied automatic transmembrane topology pre-

diction, and many predictors including TopPred (Claros & von Heijne, 1994),

SOSUI (Hirokawa et al., 1998), TMHMM (Krogh et al., 2001) and HMMTOP

(Tusnády & Simon, 2001) have been developed in recent years. In 2001 Müller

et al. showed that all transmembrane prediction methods available at that time

had a tendency to interpret hydrophobic parts of signal sequences and transit

peptides as membrane-spanning regions. A year after this study, Lao et al. eval-

uated 12 transmembrane topology prediction methods, including the popular ones

mentioned above, for their abilities to discriminate between signal peptides and

transmembrane regions. These review studies showed that there is still room

for improvement in the prediction performance of these programs. While it was

shown that TMHMM performed better than the rest of the predictors, in general

all the tested programs were badly affected by the presence of a signal peptide

in tested sequences. Examples for other TM predictors developed after 2001 are

ENSEMBLE (Martelli et al., 2003), Phobius (Käll et al., 2004), PONGO (Amico

et al., 2006), PRODIV-TMHMM (Viklund & Elofsson, 2004), and MEMSAT 3

(Jones, 2007).
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Käll et al. (2004) developed a hidden Markov model (HMM) based system

called Phobius, which combined the transmembrane protein topology predictor

TMHMM (Krogh et al., 2001) and the signal peptide (SP) predictor, SignalP

(Nielsen et al., 1997b) (SignalP is discussed in 1.1.1). This combinatorial design

of Phobius has been shown (Käll et al., 2007) to improve the performance of

TMHMM: By forcing the predictor to choose either of the two sub-models, they

increased the discrimination rate between transmembrane regions and N-terminal

signal peptides, which resulted in fewer false positives for transmembrane regions.

Unfortunately, the stand-alone version of the Phobius program, although it

is downloadable from the program’s prediction service web page, does not come

with the “model file” which contains the crucial program parameters. Academic

users who want to use this application on their local servers or computers are

required to sign a user license agreement. The “terms and conditions” of this

license restricts full ownership of even other independent programs that somehow

use Phobius or its modifications.1 In the Lokum localisation prediction system I

used TMHMM, because of the mentioned limitations in Phobius, and also because

TMHMM is available as a stand-alone application. However, because Phobius has

been shown to outperform TMHMM, I chose Phobius to be my sample model as

a transmembrane predictor. Thus, the developed prototype predictor is an HMM

system whose architecture is similar to that of Phobius.

1The LICENSOR retains ownership of the SOFTWARE delivered to the LICENSEE. Any
modifications or derivative works based on the SOFTWARE are considered part of the SOFT-
WARE and ownership thereof is retained by the LICENSOR, and are to be made available to
him upon request.
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5.2 Materials and methods

5.2.1 Architecture of the HMM

It is no surprise that most of the major transmembrane protein prediction pro-

grams use Hhidden Markov models (HMMs) to predict protein transmembrane

topology. The prototype predictor introduced in this chapter is also based on

HMMs (see Section 1.3.1 for a brief description of HMMs).

The architecture of the program introduced here (Figure 5.1) is similar to that

of Phobius (Käll et al., 2004). In this model, I used an SP cleavage site motif

by directly attaching it into the HMM as a “profile HMM” (Section 1.3.1) where

inner states have no self-transitions. This motif was discovered by NestedMICA

from a set of secretory protein sequences for the developed localisation prediction

program Lokum, and is shown in Figure 3.4.

There are two major possible routes a sequence can be “threaded” into the

shown HMM architecture: it could start by traversing through the SP states if

this is a more probable option as determined by the dynamic programming part

of the algorithm, or it can choose to go directly to the hub state.

In the first route, the SP is modeled as consisting of a three parts: An n-

part, a hydrophobic core part (h-part), and a c-part which includes the cleavage

site and connects it to the rest of the mature protein region. From here on,

it can either go into a short or a long non-cytoplasmic state. Note that, if a

sequence has an actual SP, it is not possible for the adjacent part to be in a

cytoplasmic region, as the SP will be pointing towards the ER and will drag

the rest of the mature part which remains behind it. However, if the N-terminal
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were a non-SP transmembrane region, it could penetrate into the membrane from

either direction. So the described HMM was designed to reflect this biological

phenomenon, by not allowing an SP signal to be followed by a cytoplasmic loop.

The second route that can be followed is to directly go to the hub state of

the HMM, from where it is possible to go to either a cytoplasmic or a non-

cytoplasmic region (the hub state serves as a symbolic state for better visualising

state connections and does not emit any symbols). Non-cytoplasmic loops have

been modeled as two states: one for modeling shorter ones, and one for the

relatively longer loops. Both loops can be followed by a globular region, although

this is not necessary. If a non-cytoplasmic globular state is visited from a non-

cytoplasmic state, the system has to go back through the same type of loop,

namely the same non-cytoplasmic state (the short or the long one). On the

contrary, cytoplasmic loops were not modeled as two separate states, as it has

been suggested that their length distributions show less variation (Krogh et al.,

2001). Similar to the loops on the other side, cytoplasmic loops can also be

proceeded by cytoplasmic globular regions.

Emission probabilities for the cytoplasmic and non-cytoplasmic globular states

in the HMM have been trained by using cytoplasmic and non-cytoplasmic amino

acid sequence chunks of a set of annotated proteins (see “Datasets” below, Section

5.2.2). Similarly, amino acid distributions of SP, transmembrane and loop states

were trained from the corresponding sequence chunks. As stated above, the

emission probability distributions for the cleavage site positions of SP states were

determined directly using the weights of the discovered cleavage site motif, instead

of using a single distribution to represent the entire signal. Unlike cytoplasmic
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Figure 5.1: The architecture of the developed transmembrane predictor
The “cyto” HMM states indicate those representing globular or loop protein re-
gions on the cytoplasmic side, while the “non-cyto” ones correspond to regions
lying outside of the cell. Globular and loop regions are represented in different
states, to better represent these structures by allowing different length distribu-
tions and amino acid distribution for each. The model can either follow the path
of a Signal Peptide (SP) or the alternative route where it may pass through trans-
membrane regions. ε represents the “hub state” which does not emit any symbol
but connects certain states. Cap columns are shown in the direction the HMM
moves (0 to 4, or 4 to 0), and “to membrane” caps correspond to the positions
shown in Tables 5.1 and 5.2, where “0” lies outside of the membrane. The system
can terminate while being in any of the states depicted in thicker circles.
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regions, for instance, symbol emission distributions at different positions of the

cleavage site vary significantly (see Section 3.3.1 for the “-3 -1” rule).

5.2.1.1 Representing helix caps in the HMM

Amino acid POS 0 POS 1 POS 2 POS 3 POS 4
TRP 0.012 0.034 0.040 0.026 0.030
SER 0.059 0.053 0.045 0.049 0.068
ASN 0.056 0.020 0.018 0.018 0.019
ALA 0.049 0.101 0.121 0.101 0.094
HIS 0.029 0.009 0.014 0.015 0.009
TYR 0.034 0.056 0.037 0.039 0.050
PHE 0.038 0.074 0.078 0.082 0.094
ARG 0.148 0.021 0.020 0.020 0.016
LEU 0.053 0.187 0.181 0.163 0.147
PRO 0.035 0.032 0.029 0.037 0.025
MET 0.015 0.052 0.044 0.046 0.040
GLU 0.041 0.011 0.016 0.011 0.011
ILE 0.025 0.098 0.099 0.113 0.114
VAL 0.041 0.104 0.097 0.097 0.104
GLY 0.070 0.059 0.065 0.074 0.077
LYS 0.136 0.016 0.017 0.018 0.014
GLN 0.031 0.010 0.016 0.016 0.019
THR 0.051 0.045 0.044 0.047 0.049
ASP 0.059 0.010 0.010 0.011 0.002
CYS 0.018 0.008 0.010 0.017 0.018

Table 5.1: Amino acid emission probabilities in the transmembrane helix
cytoplasmic side cap. POS 0 refers to the residue which falls in the cytoplasmic
part, while positions 1 to 4 are within the helix. POS0 also corresponds to
position-0 of the top and position-4 of the bottom “cyto” caps shown in Figure
5.1.

Transmembrane helices show different amino acid propensities in different po-

sitions, too, although these are not so obvious and consistent to be represented as

constant motifs. It has been suggested (Jones et al., 1994; Richardson & Richard-

son, 1988) that middle regions, parts closer to the cytoplasmic loops, and parts
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Amino acid POS 0 POS 1 POS 2 POS 3 POS 4
TRP 0.022 0.039 0.045 0.040 0.038
SER 0.079 0.040 0.059 0.062 0.054
ASN 0.053 0.026 0.024 0.023 0.015
ALA 0.053 0.103 0.099 0.087 0.110
HIS 0.031 0.016 0.015 0.018 0.015
TYR 0.039 0.051 0.048 0.048 0.050
PHE 0.033 0.096 0.090 0.093 0.077
ARG 0.069 0.014 0.011 0.010 0.012
LEU 0.063 0.162 0.156 0.145 0.164
PRO 0.051 0.046 0.041 0.034 0.028
MET 0.025 0.035 0.039 0.043 0.035
GLU 0.073 0.015 0.015 0.011 0.005
ILE 0.028 0.096 0.084 0.100 0.105
VAL 0.043 0.099 0.086 0.106 0.109
GLY 0.082 0.068 0.096 0.083 0.093
LYS 0.062 0.009 0.005 0.008 0.006
GLN 0.047 0.018 0.019 0.015 0.023
THR 0.062 0.046 0.046 0.051 0.041
ASP 0.073 0.017 0.013 0.011 0.008
CYS 0.013 0.005 0.009 0.010 0.011

Table 5.2: Amino acid emission probabilities in the transmembrane he-
lix non-cytoplasmic side cap. POS 0 refers to the non-cytoplasmic residue
position (outer cell), while positions 1 to 4 are within the helix. POS0 also cor-
responds to position-4 of the top and position-0 of the bottom “non-cyto” caps
shown in Figure 5.1.
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near the non-cytoplasmic regions of membrane spanning helices feature signifi-

cantly different amino acid composition. Consistent with this idea, I calculated

amino acid emission probabilities for helix middle regions and helix “cap” regions

independently. I extended both helix cap regions to overhang outside of the helix

by one residue, where a total of 5 amino acid positions are considered.

If the symbol “i” represents the “inner” cytoplasmic part, “M” the membrane,

and “o” the outer, non-cytoplasmic region residues, then one can write the pos-

sible two configurations that alpha helices can be in, in terms of these letters, as

follows:

1. ...iiiMMMMM...MMMMooo...

2. ...oooMMMMM...MMMMiii...

Residue KL Residue KL
TYR -0.0064 ASP -0.01727
MET -0.0110 ASP -0.01727
LEU -0.0134 PRO -0.01922
ILE -0.0043 TRP -0.01052
GLN -0.0188 CYS 0.00751
PHE 0.0080 SER -0.02420
THR -0.0142 HIS -0.00233
ALA -0.0056 GLU -0.03438
GLY -0.0157 ARG 0.16262
VAL -0.0024 LYS 0.15494

Table 5.3: KL deviations of cytoplasmic side helix termini from the
noncytoplasmic side helix termini in relative amino acid abundance
rates. Amongst the other amino acids, Arginine (ARG) and Lysine (LYS) differ
the most in terms of their relative KL deviations between the two first non-helical
positions on both sides (see text). That is, the first non-helix position of a helix
cap on the cytoplasmic side is more enriched in ARG and LYS than the first
non-helix position on the other side of the membrane.
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The so-called “cyto cap” of Figure 5.1 corresponds to the left-hand side of the

first helix topology, and the right-hand side of the second. Similarly, the “non-

cyto cap” regions overlap where M is either preceded or followed by “o”. Each

position in the caps was represented as an independent state as in a profile HMM,

and therefore, for each position a separate probability distribution was calculated,

rather than using a single, general distribution for the entire cap lengths. This

was done after reversing the order of residues in the second type topology. Tables

5.1 and 5.2 summarise the amino acid emission probabilities in the helix caps

near the cytoplasmic side, and non cytoplasmic side, respectively. Probability

distributions for amino acid position 0 in the tables indicate the first amino acid

residue outside of the helix on either side. A good statistical measure to evaluate

the difference between two distributions is to use Kullback Leibler (KL) deviation

which measures the relative entropy between two distributions:

DKL(P‖Q) =
∑

i

P (i) log
P (i)

Q(i)
(5.1)

where P is the “true” distribution from which we measure how another dis-

tribution “Q” deviates in terms of relative entropy. KL deviation is not a proper

distance measure as it is not symmetric, hence it is called a deviation, although

sometimes it may be referred to as “KL distance”. Its value is always positive,

but some of the individual terms summed up in the above equation could be

negative, due to the nature of the logarithmic part.

Amino acid probability distribution of the cytoplasmic cap at position 0 (Table

5.1) deviates from the non-cytoplasmic cap’s position zero distribution (5.2) by a
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KL value of 0.137 (as computed in logarithm base 2). This number does not make

much sense alone, but from the individual values contributing to the sum, which

are given in Table 5.3, one can easily spot the differences from the relative values

computed for the same pair of amino acid symbols. From Table 5.3 it can be

easily noticed that the primary difference between the two distributions is due to

the differing abundance rates of the Arginine (ARG or R) and Lysine (LYS or K)

residues. That is, we can safely conclude that the first amino acid position outside

of the helix that points to the cytoplasmic region is more enriched in ARG and

LYS than the first non-cytoplasmic position at the other end of the membrane,

protruding into the extracellular space. This is also evident by directly comparing

the raw probabilities of both distributions.

The other cap positions (1 to 4) obviously differ from the rest of the sequence

positions in that they tend to be rich in hydrophobic residues. However, com-

paring the corresponding positions in the cytoplasmic and non-cytoplasmic cap

regions in terms of KL deviation, we see that they are more similar to each other.

While position zero distributions of the caps deviate by a KL of 0.137 as men-

tioned above, the KL deviations (specifically, of the cyto-cap distributions from

the non-cyto cap ones) for the other positions are:

1. 0.037

2. 0.044

3. 0.030

4. 0.037
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Appendix D lists the individual KL distances between all corresponding pairs

of amino acid distributions within the cytoplasmic side, within the non-cytoplasmic

side, and finally amongst cytoplasmic and non-cytoplasmic helix cap positions.

The computed KL deviations implied that within the same helix cap, there is

not much difference among the different cap positions, except for when compared

with the ones in the edges. For example, the KL deviation for the distributions at

non-cytoplasmic side helix cap positions 3 and 4 is 0.013, which is pretty small.

For this reason, it may not be necessary to use separate distributions for such

similar two positions; however, this does not introduce any extra complication to

the algorithm in optimising their transition probabilities in the HMM, as they

have a fixed probability of moving to the adjacent state of 1. Furthermore, any

small distribution difference across the same position of different caps can be

more valuable than the possible differences within a particular cap’s positions in

figuring out the correct overall state path. That is why all cap positions were

modeled independently, while this does not increase the burden of the state path

optimiser.

5.2.1.2 Duration HMM states

Even though it will not be biologically possible to have a transmembrane helix of,

say length of 3aa, HMMs which are probabilistic methods, can generate predicted

state labels corresponding to biologically unfeasible lengths no matter how high

the self-transition probabilities of the associated states are. This can be prevented

by setting a “minimum number of self-visits” to the problematic states. As men-

tioned earlier in the Introduction chapter (page 15), such HMMs are referred to
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as “duration HMMs”. Unfortunately, the current version of Biojava (BioJava,

2007), the Java libraries collection which was used to implement this prediction

system, does not have such a duration concept. However, I implemented a du-

ration HMM package that allows users to create Markov models having states

with a certain number of minimum self-transitions. The probability of staying in

a certain “duration” state remains constant while the number of transitions are

less than the user-set minimum number, and then goes into an exponential decay

in accordance with its classical self-transition probability (see Figure 1.2).

The states representing the helical regions (see Figure 5.1) were not allowed to

be any shorter than 6 amino acids. This makes the minimum allowed length of a

transmembrane alpha helix 14 amino acids, when both cap regions are considered

(in Phobius this was taken as 15). Note that, although the cap regions were of

length 5aa each, only 4 positions are spanning helices in the designed model.

Minimum durations for all the states of the HMM are given in Table 5.4.

5.2.2 Datasets and training of the model

For training the emission probabilities of the HMM states, I used the same se-

quence sets used in Phobius. These sequences are provided in labelled fasta

format (Krogh, 2002) to indicate what type of region (i.e. α-helix, n-region of

signal peptide, loop protruding towards the extracellular space etc.) they fall

into. Table 5.5 lists the number of sequences from each category of sequences. As

the table shows, the HMM was trained using sequences that include both trans-

membrane regions and signal peptides, sequences having only one type of these

features, and finally sequences not having any of these structures. HMM state
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HMM State Minimum duration
n-region of SPs 6
h-region of SPs 6
c-region of SPs 5 (including cleavage site)
Non-cytoplasmic long loop 15
Non-cytoplasmic short loop 1
Cytoplasmic loop 1
Globular (cytoplasmic) 15
Globular (non-cytoplasmic) 15
Transmembrane alpha helices 6 (14, with both caps)

Table 5.4: Minimum allowed emission state occupancy numbers for the
transmembrane topology predicting HMM. The n, h, and c regions refer
to the sub-regions in N-terminal Signal Peptides (SP). The c-region includes the
cleavage site which is modeled as a profile HMM, based on a NestedMICA motif
for this region. Transmembrane alpha helices can hardly be shorter than 14, so the
corresponding helical states in the HMM allow a minimum of stay of 6 emissions
in these states, which is then added with durations of the N- and C-terminal helix
caps regions to yield a total length of 14 amino acids.

emission probabilities were determined from the amino acid frequency distribu-

tions of only the corresponding sequence segments. That is, the “membrane”

states shown in Figure 5.1, for example, have amino acid emission probabilities

calculated only from the transmembrane segments of sequences featuring those

regions.

Type of sequence Number of sequences
Transmembrane proteins with signal peptides 45
Transmembrane proteins without signal peptides 247
Non-transmembrane proteins with signal peptides 1773
Non-transmembrane proteins without signal peptides 1520

Table 5.5: Sequences used in the training of Phobius and of the program
developed.

The HMM was trained using 10-fold cross validation, with the new HMM tran-
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sition probability optimisation procedure that is introduced below. The dataset

(Table 5.5) was divided into 10 equal portions having more or less the same num-

ber of sequences from each type, 9 of which were used in the training while the

singled out one was used for testing performance.

5.2.3 Transition probability optimisation: a new approach

The optimisation of state transition probabilities was first performed using the

standard Biojava (BioJava, 2007) implementation of the Baum-Welch algorithm.

This semi-supervised learning method tries to find the best model parameters

by maximising the likelihood of the state path, given a set of “emittable” ob-

servables and their emission probabilities for each state. It can be considered as

semi-supervised, because it tries to optimise the transition probabilities without

using the true state labels of a given training data. If the number of parameters

to optimise is too large, this method may not produce a good set of parameters

at all, particularly for problems where different emission states have similar emis-

sion probability distributions. Also, it is often the case during any automatic

learning that overfitting of the model can occur, which makes determining the

number of iterations in the Baum-Welch algorithm somewhat tricky. Of course,

another laborious approach would be to set the model parameters empirically,

judging according to what set of parameters maximises performance at the end,

where performance would be the number of observables correctly assigned into

the associated state label. However, this trial-and-error approach would not be

practical for problems involving many emission states.

Here I introduce a new approach to optimise HMM transition probabilities.
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5.2 Materials and methods

It is based on finding a set of state transition probabilities learnt from a given

training set with known state labels, by using a probabilistic, generative sampling

strategy. “Labels” correspond to sequence annotations such as transmembrane

helix, cytoplasmic loop, globular region etc. for each amino acid position. At

each iteration of the method, a different set of transition probabilities is tried,

and a likelihood score corresponding to the fraction of correctly labelled amino

acids in the training dataset is calculated.

This procedure is analogous to other Monte Carlo techniques in that we either

accept or reject a proposed set of probabilities, but in order to eliminate the

possibility of getting stuck in some local maxima, I use Nested Sampling (see

Section 2.2.1 on page 28) that keeps an ensemble of fixed number of proposals, or

“probability vectors”. Because we sample typically hundreds of different vectors,

this ensures finding a globally optimal solution given enough time and a good

likelihood function. In the initialisation step, a likelihood score for each vector

in the ensemble is calculated. Transition probabilities of HMM states having

a single transition are automatically set to a value of 1.0, and these states are

omitted in the rest of the parameter optimisation.

Each step in this algorithm starts with the search for the vector generating

the least likelihood score. This “worst” vector is removed from the ensemble, and

replaced with a newly sampled one according to the following two rules:

1. The new probability vector is generated by modifying the probabilities of

the removed vector.

2. The new vector has to have a likelihood score that is greater than that of
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the removed. Another random vector is sampled until this condition is met,

or the algorithm is terminated under certain termination criteria.

Once an appropriate move is found the ensemble is updated. This ensures that

after each step we move into a better set of solutions, and that the total likelihood

increases after each accepted step as illustrated in the cumulative likelihood plot

in Figure 5.2. Figure 5.3 shows the likelihood curves of the worst and the replace-

ment states after each move, in an example optimisation problem. The overall

likelihood continues to get better monotonically until the system converges or

termination occurs as determined by some stopping criteria. Convergence slows

down when it becomes harder to find “better” moves than those in the current

ensemble (Figure 5.4).

In the sampling process, it is necessary to choose a good, relevant likelihood

function that will reflect the fact that we are optimising for the number of correct

labels in an HMM state path. To this end, I used a simple likelihood function

calculated in the log-space:

L(m) =
N∑

i=1

log (
1

|Si|

|Si|∑
j=1

ki
j) (5.2)

where |Si| is the length of sequence i, N is the total number of sequences,

and ki
j is a unit function that is non-zero if the jth amino acid position of the

ith sequence is correctly identified by the evaluated Markov model m. The total

likelihood function is the sum of accepted model likelihoods that constitute the

ensemble. It is this cumulative likelihood function that is ensured to increase at

each step before accepting a proposed Monte Carlo move. Similarly, the least
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Figure 5.2: Total likelihood function monotonically increases in nested
sampling. This plot illustrates how the likelihood function (y-axis) used in
the developed HMM transition probabilities optimisation technique varies over
accepted steps (x-axis).
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Figure 5.3: Transition probability set having the least likelihood is re-
placed by new better one. A suggested move has to have a likelihood that
is larger than the “worst” vector’s likelihood to be accepted. The red line repre-
sents the least likely probability vector of the ensemble at a particular step. It is
replaced by a “better” vector, shown in green colour.
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Figure 5.4: It becomes more difficult over time to find “acceptable”
states. The curve shows the ratio of accepted moves to the total number
of proposed moves, which is updated after each accepted move. This ac-
cepted/(accepted+rejected) ratio helps to determine whether an optimisation run
is close to convergence or not.
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likely state’s score Lw at each step will increase in parallel with the improving

overall goodness of the ensemble.

Increasing the ensemble size may result in better parameter sets. However,

the number of sampled vectors in the ensemble hugely affects the program speed

and convergence rate. At the end, I observed that setting the ensemble size to

around 10 times the number of HMM states being optimised in a particular prob-

lem proved to be sufficient for typical HMM transition probability optimisation

problems.

The individual probabilities forming the vectors are sampled according to

Gaussian functions associated with each of the probabilities. The sampling is

carried out using a Gaussian with a mean that is equal to the previous probability

value. The main sampled entity is, of course, probability distributions of HMM

states. This is achieved through multiple ways:

• All state probabilities at the same time, using a large Gaussian variance

• All state probabilities at the same time, using a small Gaussian variance

• A randomly picked state’s probabilities, using a large Gaussian variance

• A randomly picked state’s probabilities, using a small Gaussian variance

• All state probabilities at the same time, using a Gaussian variance dynam-

ically updated according to the number of rejected moves

• A randomly picked state’s probabilities, using a Gaussian variance dynam-

ically updated according to the number of rejected moves
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• All state probabilities at the same time, using a random Gaussian variance

• A Baum-Welch iteration of a model created based on the probabilities of a

randomly picked state

That is, the distributions are perturbed by using uniform Gaussian distribu-

tions with either pre-determined or dynamically updated standard deviations (see

below for how this is achieved). The mean of each Gaussian is equalised to the

previous selected probability value of a particular state transition. Two standard

deviations, one small and one large, are used. The one that will be utilised in

a particular step is determined by a random selection process. These variance

values can be later dynamically updated based on the number of accepted and

rejected proposals. This reduces the number of rejected proposals, and also allows

the system to explore different sets of solutions as much as possible. As the above

list shows, sampling could be applied on all states of an HMM simultaneously, or

by working on a single distribution in each proposed step. Another possibility is

to select a state randomly and then change its transition weights according to a

randomly picked variance value around the previous values of the probabilities.

Finally, a Baum-Welch move can be proposed, based on a certain probability

(for instance, 15% of the proposed steps are based on moves proposed by the

Baum Welch algorithm in the current implementation). In a Baum-Welch move,

the actual Markov model is updated with the transition weights of a randomly

chosen item from the ensemble. A certain number of Baum-Welch iterations

are run on the model characterised by the selected transition weights set, as

in a classical transition probability optimisation procedure. If this new model

157



5.2 Materials and methods

increases our likelihood function that measures the number of correctly assigned

labels, then this move is accepted, and the ensemble is updated with the transition

set that the Baum-Welch algorithm fine-tuned.

In the case of rejected Baum-Welch proposals for the same worst state, de-

pending on the number of recent rejections, the iteration number of the Baum-

Welch training is increased. This iteration number is randomly chosen from num-

bers up to a maximum value equal to the number of local rejections, provided

that it does not exceed an empirically set 20 iterations per move.

Whenever needed, the standard deviations that are allowed to change are

dynamically altered, as stated above (some remain fixed during the entire opti-

misation). This is performed by multiplying or dividing the previous standard

deviation value by e1.0/rejected, making sure it will be in the interval (0,1). This

way, when there is room for large gains in the total likelihood, this is achieved

faster by using a larger standard deviation, and when the system begins to reject

more and more proposals, the probability distributions are less perturbed when

sampling from the ensemble.

Individual transition probabilities for each state are sampled from their Gaus-

sians by using the “online” standard deviation divided by the number of total

transitions a state possesses. If a negative value is obtained from a particular

sampling of a state, all other transition probabilities in that state are shifted to

the positive side by an amount equal to the minimum probability obtained (plus

some very small number, to avoid absolute zero probabilities). The values sam-

pled from the Gaussians in each step are then re-normalised to obtain sensible

probabilities that will sum up to 1 for each state.
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5.3 Results

Tables 5.6 and 5.7 compare transmembrane (TM) predictors Phobius and the

developed prototype program, in terms of their performance in predicting TM

topology for i) proteins having both TM and signal peptides (SP), ii) proteins

having only TM helices, iii) proteins having only SPs, and finally, iv) proteins

having neither a TM nor an SP. For a prediction to be counted as correct, all

annotated individual TM helices and loop regions must be predicted correctly.

An overlap of at least 5 residues was considered a “correct” prediction for each

helix, as done in the CASP competitions (Cozzetto et al., 2005, 2007; Soro &

Tramontano, 2005; Valencia, 2005), or as in other studies reporting TM accuracies

(Jones, 2007; Käll et al., 2004). In the presence of a signal peptide (SP), whether

a program predicted the SP or not in a particular protein was not taken into

account in determining the overall correct TM topology.

SP prediction performance is evaluated separately, and the results for pre-

dictors that are capable of detecting SPs are summarised in Table 5.7. The

developed predictor was compared with two versions of SignalP, in addition to

Phobius which is both a TM and SP predictor. TMHMM is not designed to

predict SPs directly.

The results generally suggest that the developed HMM program is better in

predicting SPs than the other compared programs, although its architecture is

quite similar to that of Phobius. On the other hand, the prototype program

performs relatively badly in correct transmembrane (TM) topology prediction,

although it performs reasonably well in predicting individual TM helices.
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This predictor Phobius TMHMM2.0
TM and SP proteins
Correct topology 66.7% 91.1% 71.1%
Correct TMs 76.1%
Correct SPs 88.9%
False positive TMs 18.1%
TM-only proteins
Correct topology 36.0% 63.6% 65.2%
Correct TMs 76.1%
False positives 3.6% 7.7%
Non-SP and non-TM proteins
Correct topology 99.87% 98.2% 98.7%

Table 5.6: Prediction performance summary for “TM-and-SP”, “TM-
only” and “non-SP, non-TM” proteins. A prediction was taken as correct
when all the predicted Transmembrane (TM) helices overlap all the annotated
TM helices of the protein over at least 5 amino acids, and when the loops were
correct. In the evaluation of predictions for proteins having no TM helices, the
reported “correct topology” corresponds to not having any predicted TM helices
for that protein. Incorrect signal peptides (SPs) were not considered in determin-
ing correct topology prediction rates. The available prediction rates for Phobius
and TMHMM2.0 were taken as reported in Käll et al. (2004), where TMHMM
results were not cross validated.

This predictor Phobius SignalP-NN SignalP-HMM
Correct SPs 89.8% 96.5% 97.7% 98.6%

Table 5.7: Correct prediction rates for SP-only proteins. Correct SP
prediction rates are shown for the program developed, Phobius, Neural network
version of SignalP (Nielsen et al., 1997a) and the HMM version of SignalP (Nielsen
& Krogh, 1998). The available prediction rates for Phobius and the two version
of SignalP were taken as reported in Käll et al. (2004), where SignalP results
were not cross validated.
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Using a duration-enabled HMM which was trained by the new optimisation

procedure improved the results dramatically. When no minimum-durations were

set in the HMM model, the correctly predicted TM helices rate, for example,

decreased to 12.5% from 76.1% for the TM and SP containing protein dataset,

while it decreased to 19.6% from the same initial value of 71.6% for the TM-

only proteins. On the other hand, optimising transition probabilities by Baum-

Welch without using any initial “clever guesses” resulted in very poor TM helix

prediction accuracies (<1%), after letting it to run for about a dozen, 50 and

finally a few hundreds of cycles, even when it was trained using the entire protein

set.

5.3.1 Signal peptides at the DNA level

As mentioned in Section 3.1.1, most of the signal peptides are at least 20 aa long.

Inspecting the available annotated protein sequences having signal peptides, we

observed that this signal could stretch out to as long as 50 aa. One question that

arises for such long N-terminal sequence patterns is how their untranslated form

might look at the DNA level, given that their corresponding mRNAs would be

three times longer than the amino acid signal. Because NestedMICA is a DNA

discovery tool at the same time, using the motif finder in the DNA mode, I had a

chance to investigate how conserved the hydrophobic regions are at the genomic

level. Interestingly, as Figure 5.5 shows, only certain residues in the codons that

translate into this signal are conserved. The hydrophobic part of the signal is

generated from codons having a conserved second position which is usually a

“T”, while the cleavage site, having small residues like Alanine (A), Glycine (G)
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Figure 5.5: Signal peptide motif at the RNA level. Conservation of only
certain positions in the codons corresponding to the SP signal suffices to generate
hydrophobic amino acid chains, as the genetic code table above illustrates having
a ’T’ at the middle of a codon usually generates hydrophobic amino acid residues.
The sequence logo shows 10 residues before the actual cleavage residue position
which is indicated by an arrow. Codons beginning with the “GC” dinucleotides
correspond to the small amino acids of the “-3 and -1 positions ” rule (see text),
with respect to the cleave site. Numbers right below the sequence logo correspond
to the actual positions of amino acids within the codons in the associated correct
reading frame.

etc in the protein level, is dominated by Guanine and Cytosine at positions 3 and

1, respectively, at the DNA level.
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5.4 Discussions

In this chapter, I introduced a new, fully supervised methodology for training

HMM transition probabilities and applied it on TM topology prediction as an

example. While this method is open to further improvements and also to some

more testing, the essential idea behind it, the use of Monte Carlo strategies to

fine tune transitions, seems to be a promising approach. These kind of optimisa-

tion problems normally involve huge parameter landscapes where each optimised

parameter can take any probability value. Another hurdle in this type of search

heuristics is that, in principle it is not uncommon for a sampled property to move

towards some local maxima and get stuck there. However, with the use of nested

sampling, a fruitful strategy that has proven itself in biological sequence motif

discovery before, such possibilities can be avoided. With this approach multiple

possible solutions representing different maxima from the entire probability land-

scape are considered at the same time, instead of trying to make a single sample

better during the entire process. This is simply to eliminate the greediness of

sampling at each step that could possibly miss the real solution set at the end,

had it not moved to the locally “best”condition in previous steps. Removal of the

“weakest” state having the least likelihood probability from a large population,

and re-sampling from the “fitter” entities to replace the worst, is conceptually

nothing but a genetic algorithm way of optimising, with the exception that the

space is continuous here – entities are not simply of type that either exist or not.

Transmembrane topology prediction is a well established field for many years

now, and there are many good TM topology prediction programs. However, due
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to the similarities between N-terminal TM helices and SPs (see Sections 3.1.1 and

3.3.1), they tend to misclassify SPs as TMs and vice versa. Programs such as

Phobius have recently reduced this by using a combinatorial approach where SPs

and TMs are predicted in the same model. This resulted in a reduced number of

false positive predictions and cross-misclassifications (Käll et al., 2007).

As mentioned in the methods, this prototype program differs from Phobius

in that in the HMM I directly used a cleavage site motif that was discovered by

NestedMICA, and I use a new optimal transition probability estimisation method.

A relatively low correct topology prediction with respect to the correctly iden-

tified TM helices indicates that the program tends to invert the orientations of

the topologies it predicts. Apart from the difficulties inherent in the biology of

the problem, this could possibly be due to immature termination of the transi-

tion probability optimisation procedure, which has not been fully optimised for

termination criteria yet.

Both the parameter optimisation approach and the prototype TM topology

predictor that was developed to demonstrate that this approach can actually

be used successfully are promising. The optimisation method is open to fur-

ther development, which, in turn, can significantly improve the TM predictor’s

performance.
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Chapter 6

Conclusions

Motif discovery is an important step in protein functional annotation as it can

help to identify different protein properties in curation of protein annotation. I

adapted and extended NestedMICA for finding short protein signals, and com-

pared its performance with the MEME tool. NestedMICA was tested on synthetic

and biologically-authentic datasets produced by spiking instances of known mo-

tifs into a some random protein sequences. NestedMICA was also assessed at

various conditions including using different input sequence lengths, target motif

length, target motif number, and finally different motif abundance rates.

Generally NestedMICA recovered most of the short (3-9 amino acid long) test

protein motifs spiked into a test set of sequences at different frequencies. All

assessments experiments I performed showed that NestedMICA’s motif discovery

performance was better than MEME in terms of the number of correctly recovered

motifs, although generally there was no significant difference in terms of the

quality of recovered motifs by both of the compared programs. NestedMICA

performed clearly well even in the discovery of relatively short motifs that exist

in only a small fraction of sequences.
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Protein subcellular localisation identification is another concrete key step in

functional annotation. Most of the biologically inspired ab initio methods that

have been developed to tackle this problem had either a limited number of lo-

calisation categories, or low prediction accuracies, particularly for eukaryotic se-

quences. Similarity-based prediction methods could be more reliable than ab

initio predictors for sequences having annotated highly homologous counterparts

in databases. However, predicting localisation for unseen, different proteins be-

comes a more challenging task for this type of prediction program. Furthermore,

signal-based ab initio prediction efforts can give us more insight and clues about

the underlying biology in protein targeting.

I developed a novel computational ab initio classification tool, Lokum, for

protein subcellular localisation prediction, covering 9 major localisation classes

for animal, 9 for fungal and 10 for plant sequences. It uses targeting and retention

signal motifs reported by the probabilistic motif discovery tool NestedMICA, and

other protein features including transmembrane topologies and amino acid com-

position. Lokum does not use sequence similarity, or any other a priori knowledge

such as known nuclear localisation signals by searching databases. Additionally,

we propose a multi-component, probabilistic model tolerating positional shifts

for the bipartite nuclear localisation signals (NLS). To find the bipartite NLS, we

added protein support to Eponine, a tool originally written for mammalian tran-

scription start site modeling. We also show that using the N-linked glycosylation

motif, which was amongst the motifs detected by NestedMICA, can contribute

to localisation prediction.

Combining all these features in a Support Vector Machine (SVM), we get an
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average correct prediction rate of more than 80% for nine animal, nine fungal and

ten plant protein localisation classes in 5-fold cross-validated tests performed on

an eukaryotic dataset. Finally, a web service has been implemented for public

use.

In Chapter 3, I showed that including reported statistics from transmembrane

prediction programs can increase prediction accuracy in automatic ab initio clas-

sification of protein subcellular localisation. A large number of transmembrane

proteins follow the secretory pathway and end up in localisations such as ER,

Golgi, plasma membrane or extracellular space. Plasma membrane proteins have

a larger number of membrane-spanning regions than the other classes of pro-

teins, as shown in the same chapter. Therefore, it is actually not surprising that

transmembrane topology prediction can improve localisation.

Motifs reported by NestedMICA and Eponine have been more useful than any

other component in the prediction system. In addition to the reported motifs

that I could associate with known localisation signals, a couple of three-letter

PWMs were discovered from a set of plasma membrane sequences, which turned

out to be the two variants of the N-linked glycosylation site motifs. Some of

the discovered motifs, such as these glycosylation motifs that are known not to

be directly involved in localisation, also increased the prediction performance,

because of their differing abundance rates in different types of proteins.

In Chapter 4, I showed that it is reasonably possible to predict more spe-

cific, sub-compartmental localisation categories, by showing that proteins that

spend at least some time in nucleoli can be distinguished reasonably well from

the remaining nuclear proteins. In addition to the features used in Lokum, I used
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protein disorder region predictions. As summarised in Section 3.3.7, using dis-

order prediction did not contribute significantly to the prediction of the general

localisation categories. But I demonstrated that disorder prediction can be a use-

ful feature in discriminating between proteins targeted into different sub-nuclear

compartments. In fact, sub-dividing the main localisation categories to further

fine tune localisation prediction can be said to overlap with the field of ab initio

protein function identification, where disorder prediction has been shown to work

(Dunker et al., 2000; Lobley et al., 2007; Wright & Dyson, 1999). Interestingly,

the results obtained in Chapter 4 suggested that a larger number of nuclear local-

isation signals exist in the disordered regions of nucleolar proteins as compared

to the disordered regions of other proteins in the nucleus. It should be possible

to further exploit this phenomenon in the prediction of proteins localised in other

sub-compartments.

An interesting observation we can make from Chapters 3, 4, and 5 is that

there is a general tendency in protein amino acid composition to contain Lysine

(K) and Arginine (R) residues at larger proportions as we move from the ex-

tracellular space towards the cytoplasm, and finally into the nucleus and other

subnuclear compartments. If we consider the amino acid contents of extracellu-

lar, cytoplasmic and nuclear proteins, amino acids K (Figure B.12) and R (Figure

B.2) are least abundant in extracellular, followed by cytoplasmic and then nuclear

proteins, in this order. In Section 5.2.1.1 of Chapter 5, we saw that membrane

spanning regions towards the cytoplasm become richer in K and R content com-

pared to their parts on the opposite side, towards the extracellular space (Tables

5.1, 5.2 and 5.3). Finally, in Chapter 4, where I analysed the differences between
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nuclear and nucleolar protein sequences, it turned out that nuclear proteins, which

are confined in the sub-nuclear compartment of nucleolus, tend to contain a larger

number of K and R amino acid residues (Figure 4.7).

Finally, as demonstrated by its application on transmembrane topology pre-

diction, the introduced alternative transition probability optimisation method

that I developed (Chapter 5) is a promising approach for use in any prediction

program that utilises HMMs, including the classical problems of gene finding,

secondary structure prediction, and so on.
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Appendix A

Motifs discovered by

NestedMICA

Figures in this appendix shows the motifs discovered by NestedMICA (Chapter

2) in multiple runs on different eukaryotic localisation datasets (see 3.2.1). Nest-

edMICA was run using the entire sequences as well as chunks of certain length

from the N or C-terminal regions. Not all of these motifs, shown as sequence

logos here, have been used in the development of Lokum.

The “Notes” columns in the below figures imply the sequence region (N-

terminus, whole sequence, or C-terminus) a particular shown motif was discovered

from. “First 20aa”, for example, indicates that the corresponding motif has

been discovered within the first 20 N-terminal amino acid chunks of a particular

localisation dataset.
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Nuclear

Nuclear

Nuclear

Nuclear
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Nuclear

Figure A.1: “Nuclear motifs” discovered by NestedMICA
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# Dataset Motif Notes
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Plasma membrane

Plasma membrane

Plasma membrane

Plasma membrane

Plasma membrane

Plasma membrane

Plasma membrane

Plasma membrane

Plasma membrane

Plasma membrane

Plasma membrane

Figure A.2: “Plasma membrane motifs” discovered by NestedMICA
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# Dataset Motif Notes
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Figure A.3: “Cytoplasmic motifs” discovered by NestedMICA
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# Dataset Motif Notes
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Mitochondrial

Mitochondrial

Mitochondrial

Mitochondrial

Mitochondrial

Mitochondrial

Mitochondrial
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Mitochondrial

Figure A.4: “Mitochondrial motifs” discovered by NestedMICA
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Figure A.5: “Endoplasmic reticulum motifs” discovered by NestedMICA
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# Dataset Motif Notes
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Golgi
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Figure A.6: “Golgi motifs” discovered by NestedMICA
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# Dataset Motif Notes
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Extracellular
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Extracellular

Extracellular

Extracellular
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Extracellular

Extracellular

Figure A.7: “Extracellular motifs” discovered by NestedMICA
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# Dataset Motif Notes

1

2

4

4

5

6

7

8

9

Lysosome

Lysosome

Lysosome

Lysosome

Lysosome

Lysosome

Lysosome

Lysosome

Lysosome

Figure A.8: “Lysosome motifs” discovered by NestedMICA
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Peroxisomal

Peroxisomal
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Peroxisomal
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Figure A.9: “Peroxisomal motifs” discovered by NestedMICA
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# Dataset Motif Notes
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Vacuolar

Figure A.10: “Vacuolar motifs” discovered by NestedMICA
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Appendix B

Amino acid composition rates in

different localisations

Figures in this appendix show frequency distributions for each of the 20 amino

acids in 11 eukaryotic subcellular localisation classes. The provided amino acid

composition rates were obtained from the redundancy-reduced protein sequence

datasets used in the training and testing of Multiloc (Höglund et al., 2006), a

eukaryotic localisation predictor. All the given composition values sum up to 1.0

for each localisation class.
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Figure B.1: Amino acid composition for Alanine (ALA / A)

Figure B.2: Amino acid composition for Arginine (ARG / R)
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Figure B.3: Amino acid composition for Asparagine (ASN / N)

Figure B.4: Amino acid composition for Aspartic Acid (ASP / D)
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Figure B.5: Amino acid composition for Cysteine (CYS / C)

Figure B.6: Amino acid composition for Glutamine (GLN / Q)
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Figure B.7: Amino acid composition for Glutamic Acid (GLU / E)

Figure B.8: Amino acid composition for Alanine (GLY / G)
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Figure B.9: Amino acid composition for Histidine (HIS / H)

Figure B.10: Amino acid composition for Isoleucine (ILE / I)
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Figure B.11: Amino acid composition for Leucine (LEU / L)

Figure B.12: Amino acid composition for Lysine (LYS / K)
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Figure B.13: Amino acid composition for Methionine (MET / M)

Figure B.14: Amino acid composition for Phenylalanine (PHE / F)
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Figure B.15: Amino acid composition for Proline (PRO / P)

Figure B.16: Amino acid composition for Serine (SER / S)
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Figure B.17: Amino acid composition for Threonine (THR / T)

Figure B.18: Amino acid composition for Tryptophan (TRP / W)
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Figure B.19: Amino acid composition for Tyrosine (TYR / Y)

Figure B.20: Amino acid composition for Valine (VAL / V)
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Appendix C

Sequence IDs of nuclear and

nucleolar proteins filtered from

the LOCATE database

C.1 Proteins in nucleoli

5832447M01 8030477B02 AAH20037 B130024I17
0610007L03 9030008E11 AAH21402 B230113I11
0610010G24 9030015I21 AAH21438 B230341P13
0610010K23 9030404K10 AAH21497 B230345A13
0610010L07 9430023O10 AAH21646 B230384I08
0610012B16 9430042M18 AAH21922 B430205I06
0610037N12 9430068A02 AAH22656 B430304I01
0610041G09 9430070M15 AAH23108 BAA13139
0610043M01 9630032J03 AAH23495 BAA19479
0710005E17 9630058I18 AAH23755 BAA88301
1110007P10 9830141H16 AAH24049 BAA95050
1110017C15 9930013P05 AAH24718 BAB68541
1110017O22 9930036K22 AAH24730 C130053F21
1190002L16 A130086A08 AAH24881 C130060J12
1190005P17 A230078D05 AAH25074 C130087M08
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C.1 Proteins in nucleoli

1200003I18 A330071M14 AAH26492 C230037L02
1500005E20 A530027J07 AAH27220 C230071K24
1600021G09 A530056M01 AAH27223 C430045D17
1700010I21 A630008G24 AAH27357 C730016M05
1700020D05 A730016J17 AAH27399 C920029A19
1700026C17 A830025P17 AAH28246 CAA31278
1810029B16 AAA40067 AAH28305 CAA32372
1810063O22 AAA64248 AAH28640 CAA40012
1810073C22 AAB01504 AAH28860 CAA43091
2010206B19 AAB03664 AAH29834 CAA50196
2010300E13 AAB08894 AAH29892 CAA59260
2200007C21 AAB22970 AAH30169 CAB09797
2210401D21 AAB48630 AAH30493 CAD59182
2310002H12 AAB50013 AAH31127 CAE11688
2310039I18 AAB63526 AAH31531 D030042B21
2310040C05 AAB63915 AAH32932 D130027G07
2310057C03 AAB91426 AAH34506 D130070F09
2310057K05 AAB94491 AAH34516 D130072G11
2310061O04 AAB96870 AAH37634 D330049F08
2400004F19 AAC08435 AAH37681 D430026L04
2400011D10 AAC32982 AAH39185 D430043E23
2410041L12 AAC37664 AAH39648 D630003B12
2410089D17 AAC40061 AAH42502 D830050A13
2410115I17 AAC53171 AAH42708 E130104C03
2410130M07 AAC62511 AAH42940 E230013K19
2510038A11 AAC79683 AAH43014 E230019A18
2510039P04 AAD02877 AAH43017 E330001M23
2610204M17 AAD08676 AAH46977 E330016H10
2610507A14 AAD15718 AAH48190 E330019F09
2700027I18 AAD26855 AAH48412 E330028F04
2700052B17 AAD32094 AAH48685 E430003J02
2700066J21 AAF25951 AAH48709 E430005G16
2700067M10 AAF80246 AAH49118 E430008H02
2810004E23 AAH02004 AAH49166 E430012M21
2810012N22 AAH02014 AAH49245 E430014C08
2810017J07 AAH02025 AAH49565 E430014G22
2810026E11 AAH02027 AAH49928 E430014N21
2810037I08 AAH02044 AAH51673 E430019K12
2810453C09 AAH02079 AAH52386 E430020A18
2810473M21 AAH02108 AAH52401 E430031K14
2810486E17 AAH02306 AAH52482 E430031M22
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C.1 Proteins in nucleoli

2900001K19 AAH03244 AAH52790 E860029H08
3010025E17 AAH03261 AAH53333 F630017O19
3100001N19 AAH03709 AAH53404 F630021E13
3200001N24 AAH03775 AAH53453 F630048K01
4432409G09 AAH03885 AAH54085 F630105J12
4732414G15 AAH04028 AAH54541 F630222J08
4831429D18 AAH05547 AAH54723 F630223G06
4832420E07 AAH05734 AAH54778 F730043N02
4833436C12 AAH05776 AAH55393 F830044L17
4833442I16 AAH06631 AAH55484 F830213J22
4930408P03 AAH06684 AAH55787 G270004D20
4930417F03 AAH06805 AAH55860 G270124L20
4930429N24 AAH07174 AAH56232 G430020C23
4930512K19 AAH07487 AAH56383 G430046N16
4930528I04 AAH08161 AAH56650 G430074J02
4930558P17 AAH08270 AAH56992 G430138A13
4930563C04 AAH09100 AAH57033 G430146M18
4931421E07 AAH09142 AAH57054 G630007K23
4932409F19 AAH10987 AAH57156 G830049J11
4932434G09 AAH11213 AAH57342 G930019G02
4933403E10 AAH11248 AAH57645 G930027I02
4933431P07 AAH11484 AAH59089 I0C0003A04
5330437I08 AAH12276 AAH59822 I0C0030N23
5430425F10 AAH12281 AAH60072 I0C0040N18
5730405D16 AAH12433 AAH60147 I1C0027A21
5730406H19 AAH12641 AAH60375 I1C0031M12
5730419M09 AAH13165 AAH60959 I420019J01
5730436C18 AAH13618 AAH62146 I420024J09
5730470K22 AAH14688 AAH63100 I530003K08
5730563P06 AAH14703 AAH63748 I730026M06
5730589J07 AAH16194 AAH63755 I730039C23
5830405E04 AAH16489 AAH64712 I730045C06
5830465M17 AAH16569 AAK01204 I730051L04
6030446B09 AAH16676 AAK49787 I830034K17
6030461M12 AAH17637 AAK70403 I830055B02
6330401E03 AAH18321 AAL27006 I920011D05
6430407C24 AAH18373 AAL62331 I920020L14
6430528J02 AAH18399 AAL74402 I920030N07
6430603C09 AAH18545 AAO15605 I920037I11
6430628D06 AAH19218 AAO18683 I920056H18
6720463L11 AAH19418 AAR87796 I920065D03
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C.2 Proteins in nuclei

6720473C09 AAH19535 B020030J01 I920089B02
7330416M24 AAH19693 B130012H23 I920089E19

K530012F21
Table C.1: Nucleolar proteins. FANTOM3 IDs of
nucleolar proteins which are filtered from LOCATE
database (Chapter 4).

C.2 Proteins in nuclei

0610010G04 6430529J03 AAH19520 C330049H01
0710005K22 6430549H08 AAH20099 C430003H13
1110003H09 6430598F23 AAH20990 C730024K17
1110021J02 6820408J04 AAH21306 C920026J05
1110067L22 7120441D04 AAH21750 CAA31138
1110069I04 7120476M05 AAH21839 CAA31808
1200009L24 7420438E06 AAH22600 CAA31957
1300002I11 8430431N14 AAH22628 CAA32372
1500010M05 9130009B16 AAH22681 CAA33096
1500017I02 9130019G03 AAH22733 CAA33373
1600032G08 9130211K13 AAH23110 CAA43091
1700003P16 9130217P20 AAH23324 CAA43723
1700019E19 9330101O11 AAH23775 CAA55350
1700028K03 9330177B18 AAH23815 CAA56450
1700030B17 9430072B20 AAH23915 CAA63733
1700030G05 9530046I22 AAH23961 CAA70213
1700067K01 9630025P05 AAH24341 CAA72404
1810037C20 9630027H07 AAH24521 CAA76637
1810046K07 9630029K22 AAH25073 CAB60732
2010001O09 9630045G21 AAH25602 CAB86873
2010300P09 9630050P12 AAH26841 CAC83967
2210002J07 9630054L03 AAH28871 D030011P09
2310008J22 9830147C21 AAH29834 D030020D13
2310014B11 9830160I16 AAH30915 D030053M22
2310042K15 9830169A11 AAH31168 D030054H07
2310043K02 A030005M07 AAH31463 D130019F14
2310047L21 A230011H19 AAH31769 D130064J02
2400002C23 A230039L04 AAH34855 D130084E01
2400011D10 A230054A08 AAH35298 D230016D14
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C.2 Proteins in nuclei

2410003J06 A230057M07 AAH36287 D230040E22
2410012M07 A230078I01 AAH37187 D330006L06
2410046L22 A230084K08 AAH37695 D430003F23
2410089D17 A230106F01 AAH40370 D530036A19
2410141M05 A330080J22 AAH43086 D630039M16
2510005J23 A430043P11 AAH46286 D830005I23
2510049I19 A530086E13 AAH47152 D930007K17
2610021E10 A730013C09 AAH48503 D930030M14
2700099C19 A730020L03 AAH48779 D930033J18
2810004A21 A730063C17 AAH50803 E030029E20
2810021G24 A730096N15 AAH51049 E030029N02
2810039M17 A830038H15 AAH51261 E130012E07
2810417H13 A830097I09 AAH51631 E130013F06
2810457D07 A930007L12 AAH51967 E130118K14
2900074D10 A930041F19 AAH52030 E130303A03
3000002C10 A930104E21 AAH52173 E230001H19
3100002L24 AAA20039 AAH52468 E330032L15
3110007F17 AAA37184 AAH52672 E330034H06
3110030B08 AAA37291 AAH52856 E430001M22
3200002N09 AAA97500 AAH53409 E430007C11
3732413B21 AAA98977 AAH54456 E430007F09
4432404N24 AAB24330 AAH54768 E430014D12
4631408J24 AAB40892 AAH56922 E970008A17
4632401G08 AAB41327 AAH57096 F420011N06
4632404G05 AAB65839 AAH57165 F530014L05
4632415C14 AAB70094 AAH57205 F630011I01
4632417G13 AAB81245 AAH57453 F630205L24
4732403I07 AAC02226 AAH58103 F730014I05
4732424P06 AAC36358 AAH60072 F730216I21
4732458H05 AAC40148 AAH60234 F830002J06
4732467A04 AAC52994 AAH60613 F830007J16
4833406K08 AAD00238 AAH61493 F830017M05
4833413D08 AAD13139 AAH64018 F830022C10
4921510H08 AAD39396 AAH64757 F830108M10
4921531G14 AAF27311 AAH65165 F830211J08
4922501K05 AAF27551 AAK07621 G430032E03
4930433I11 AAF63757 AAK35053 G430037K05
4930538K15 AAF72874 AAK39099 G430090A08
4931400M17 AAF86375 AAK39438 G530118I12
4931400O07 AAG01633 AAK60496 G630048M14
4931408L03 AAG29950 AAL09305 G730014O11
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C.2 Proteins in nuclei

4931409I21 AAG34081 AAL40860 G730050K01
4932416N14 AAG34793 AAL47577 G830045E23
4932441K08 AAG40809 AAL67834 I0C0040N18
4933400A06 AAG50171 AAL69526 I0C0048H21
4933415E13 AAH03259 AAL71902 I0C0048J01
4933439J20 AAH03266 AAM33069 I0C0048L09
5330404L13 AAH03292 AAM64199 I1C0020M01
5330418E10 AAH03330 AAM77216 I1C0033H16
5430425F10 AAH04738 B020012J09 I420001D20
5430434J22 AAH05426 B130019L12 I420006B09
5530401L07 AAH05516 B230111C05 I420014I19
5730407F12 AAH05620 B230120H23 I420025C06
5730438N18 AAH05694 B230213G02 I420033H08
5730548J20 AAH05744 B230309O17 I530008I17
5730592N24 AAH06016 B230375D17 I530014J18
5930431H10 AAH06939 BAA05885 I530027I10
6330405E07 AAH09004 BAA21725 I530028C19
6330414C15 AAH10496 BAA23648 I830025I02
6330417C18 AAH10841 BAA95075 I830031G17
6330437A14 AAH11091 BAA96361 I830037L15
6330503C03 AAH11131 BAB79232 I830043E20
6330513G01 AAH12715 BAC53845 I830128O08
6330541F16 AAH12953 BAC75669 I920021I20
6330562H21 AAH13718 C130032B15 I920062F22
6430402E12 AAH14828 C130083B17 I920087J04
6430519P13 AAH19168 C230004D03 K230011N15
K230305H19 K230320F07

Table C.2: Nuclear proteins. FANTOM3 IDs of nu-
clear proteins which are filtered from LOCATE database
(Chapter 4).
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Appendix D

Kullback-Leibler divergence for

transmembrane helix cap

positions in terms of amino acid

composition

197



Amino acid 1 - 1 1 - 2 1 - 3 1 - 4 1 - 5
GLY -0.016 0.003 -0.031 -0.017 -0.028
PHE 0.008 -0.051 -0.047 -0.049 -0.039
SER -0.024 0.034 0.001 -0.004 0.009
PRO -0.019 -0.014 -0.008 0.001 0.012
TYR -0.006 -0.020 -0.017 -0.017 -0.019
ARG 0.163 0.505 0.544 0.575 0.531
TRP -0.011 -0.020 -0.023 -0.021 -0.020
ALA -0.006 -0.053 -0.050 -0.041 -0.057
LYS 0.155 0.530 0.636 0.547 0.610
ASN 0.004 0.061 0.068 0.071 0.103
GLN -0.019 0.024 0.022 0.032 0.014
CYS 0.008 0.034 0.016 0.014 0.012
MET -0.011 -0.018 -0.021 -0.023 -0.018
THR -0.014 0.008 0.008 0.000 0.017
VAL -0.002 -0.052 -0.044 -0.056 -0.058
ILE -0.004 -0.049 -0.044 -0.050 -0.052
ASP -0.017 0.108 0.130 0.141 0.167
LEU -0.013 -0.085 -0.082 -0.077 -0.086
HIS -0.002 0.025 0.029 0.019 0.027
GLU -0.034 0.062 0.062 0.076 0.121
TOTAL KL 0.137 1.032 1.148 1.122 1.245

Table D.1: KL deviations of cytoplasmic side helix positions from the
non-cytoplasmic side helix cap positions in relative amino acid abun-
dance rates. The “1-1” column lists the KL distances for the first position of
the cytoplasmic side cap and the first position of the non-cytoplasmic side, and
so on.
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Amino acid 2 - 1 2 - 2 2 - 3 2 - 4 2 - 5
GLY -0.027 -0.012 -0.041 -0.028 -0.038
PHE 0.086 -0.027 -0.021 -0.025 -0.005
SER -0.031 0.021 -0.009 -0.012 -0.001
PRO -0.022 -0.017 -0.012 -0.003 0.007
TYR 0.030 0.008 0.013 0.013 0.009
ARG -0.036 0.013 0.019 0.023 0.017
TRP 0.021 -0.006 -0.014 -0.007 -0.005
ALA 0.095 -0.003 0.004 0.022 -0.012
LYS -0.031 0.013 0.025 0.015 0.022
ASN -0.028 -0.008 -0.005 -0.004 0.007
GLN -0.022 -0.009 -0.009 -0.006 -0.012
CYS -0.006 0.006 -0.002 -0.003 -0.004
MET 0.054 0.029 0.021 0.014 0.029
THR -0.021 -0.001 -0.001 -0.009 0.007
VAL 0.134 0.008 0.028 -0.002 -0.007
ILE 0.176 0.003 0.022 -0.003 -0.009
ASP -0.028 -0.008 -0.004 -0.002 0.002
LEU 0.295 0.039 0.049 0.069 0.035
HIS -0.016 -0.007 -0.006 -0.009 -0.007
GLU -0.030 -0.005 -0.005 -0.001 0.011
TOTAL KL 0.594 0.037 0.052 0.040 0.045

Table D.2: KL deviations of cytoplasmic side helix positions from the
non-cytoplasmic side helix cap positions in relative amino acid abun-
dance rates. The “2-1” column lists the KL distances for the second position of
the cytoplasmic side cap and the first position of the non-cytoplasmic side, and
so on.
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Amino acid 3 - 1 3 - 2 3 - 3 3 - 4 3 - 5
GLY -0.021 -0.004 -0.036 -0.022 -0.033
PHE 0.098 -0.022 -0.016 -0.020 0.002
SER -0.036 0.008 -0.018 -0.021 -0.011
PRO -0.024 -0.019 -0.015 -0.007 0.002
TYR -0.003 -0.018 -0.015 -0.015 -0.017
ARG -0.036 0.010 0.016 0.020 0.014
TRP 0.033 0.001 -0.007 0.000 0.002
ALA 0.145 0.028 0.036 0.057 0.016
LYS -0.032 0.015 0.028 0.017 0.024
ASN -0.028 -0.010 -0.008 -0.007 0.003
GLN -0.025 -0.003 -0.004 0.001 -0.008
CYS -0.004 0.011 0.001 0.000 -0.001
MET 0.036 0.014 0.008 0.002 0.014
THR -0.022 -0.002 -0.002 -0.009 0.005
VAL 0.114 -0.003 0.016 -0.012 -0.017
ILE 0.179 0.004 0.023 -0.002 -0.008
ASP -0.028 -0.008 -0.004 -0.002 0.002
LEU 0.277 0.029 0.039 0.058 0.025
HIS -0.016 -0.002 0.000 -0.005 -0.001
GLU -0.035 0.002 0.002 0.008 0.025
TOTAL KL 0.572 0.031 0.044 0.040 0.040

Table D.3: KL deviations of cytoplasmic side helix positions from the
non-cytoplasmic side helix cap positions in relative amino acid abun-
dance rates. The “3-1” column lists the KL distances for the third position of
the cytoplasmic side cap and the first position of the non-cytoplasmic side, and
so on.
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Amino acid 4 - 1 4 - 2 4 - 3 4 - 4 4 - 5
GLY -0.011 0.009 -0.027 -0.012 -0.024
PHE 0.109 -0.018 -0.011 -0.015 0.007
SER -0.034 0.014 -0.013 -0.017 -0.007
PRO -0.017 -0.011 -0.005 0.004 0.016
TYR 0.000 -0.016 -0.012 -0.012 -0.015
ARG -0.036 0.010 0.016 0.020 0.014
TRP 0.006 -0.015 -0.021 -0.016 -0.015
ALA 0.095 -0.003 0.004 0.022 -0.012
LYS -0.032 0.018 0.032 0.020 0.029
ASN -0.028 -0.010 -0.008 -0.007 0.003
GLN -0.025 -0.003 -0.004 0.001 -0.008
CYS 0.006 0.031 0.015 0.013 0.011
MET 0.039 0.017 0.010 0.004 0.017
THR -0.019 0.002 0.002 -0.006 0.010
VAL 0.116 -0.002 0.017 -0.011 -0.016
ILE 0.227 0.027 0.049 0.020 0.013
ASP -0.030 -0.006 -0.002 0.000 0.005
LEU 0.224 0.001 0.010 0.027 -0.002
HIS -0.015 -0.001 0.001 -0.004 0.000
GLU -0.030 -0.005 -0.005 -0.001 0.011
TOTAL KL 0.545 0.040 0.047 0.030 0.038

Table D.4: KL deviations of cytoplasmic side helix positions from the
non-cytoplasmic side helix cap positions in relative amino acid abun-
dance rates. The “4-1” column lists the KL distances for the fourth position of
the cytoplasmic side cap and the first position of the non-cytoplasmic side, and
so on.
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Amino acid 5 - 1 5 - 2 5 - 3 5 - 4 5 - 5
GLY -0.007 0.014 -0.024 -0.008 -0.021
PHE 0.141 -0.003 0.005 0.000 0.026
SER -0.014 0.054 0.015 0.010 0.024
PRO -0.026 -0.022 -0.018 -0.011 -0.003
TYR 0.018 -0.001 0.003 0.003 0.000
ARG -0.034 0.003 0.008 0.011 0.006
TRP 0.012 -0.012 -0.018 -0.013 -0.011
ALA 0.079 -0.012 -0.006 0.011 -0.021
LYS -0.030 0.009 0.021 0.011 0.018
ASN -0.028 -0.009 -0.006 -0.005 0.006
GLN -0.025 0.001 0.000 0.006 -0.005
CYS 0.009 0.036 0.018 0.016 0.014
MET 0.027 0.008 0.002 -0.003 0.008
THR -0.017 0.004 0.004 -0.004 0.013
VAL 0.132 0.007 0.027 -0.003 -0.008
ILE 0.230 0.028 0.050 0.022 0.014
ASP -0.008 -0.005 -0.005 -0.004 -0.004
LEU 0.180 -0.021 -0.013 0.002 -0.024
HIS -0.016 -0.007 -0.006 -0.009 -0.007
GLU -0.030 -0.005 -0.005 -0.001 0.011
TOTAL KL 0.595 0.068 0.052 0.031 0.037

Table D.5: KL deviations of cytoplasmic side helix positions from the
non-cytoplasmic side helix cap positions in relative amino acid abun-
dance rates. The “5-1” column lists the KL distances for the fifth position of
the cytoplasmic side cap and the first position of the non-cytoplasmic side, and
so on.
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Amino acid 1 - 2 1 - 3 1 - 4 1 - 5
GLY 0.017 0.007 -0.005 -0.009
PHE -0.036 -0.040 -0.042 -0.049
SER 0.010 0.024 0.017 -0.012
PRO 0.005 0.010 -0.003 0.017
TYR -0.025 -0.003 -0.006 -0.019
SEC 0.000 0.000 0.000 0.000
ARG 0.412 0.428 0.428 0.474
TRP -0.018 -0.021 -0.013 -0.016
ALA -0.051 -0.064 -0.051 -0.046
LYS 0.421 0.412 0.395 0.441
ASN 0.083 0.093 0.093 0.086
GLN 0.052 0.030 0.030 0.022
CYS 0.021 0.014 0.001 -0.001
MET -0.027 -0.023 -0.024 -0.021
THR 0.009 0.011 0.006 0.003
VAL -0.055 -0.051 -0.051 -0.055
ILE -0.049 -0.050 -0.055 -0.055
ASP 0.153 0.153 0.141 0.314
LEU -0.096 -0.094 -0.086 -0.078
HIS 0.048 0.029 0.027 0.048
GLU 0.080 0.056 0.080 0.080
TOTAL KL 0.953 0.921 0.880 1.122

Table D.6: KL deviations of cytoplasmic side helix cap positions. The
“1-2” column lists the KL distances for the first position of the cytoplasmic side
cap and the second position of the cytoplasmic side, and so on.
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Amino acid 2 - 3 2 - 4 2 - 5 3 - 4 3 - 5 4 - 5
GLY -0.008 -0.019 -0.022 -0.011 -0.015 -0.004
PHE -0.006 -0.011 -0.025 -0.005 -0.020 -0.015
SER 0.012 0.006 -0.020 -0.005 -0.027 -0.024
PRO 0.005 -0.007 0.011 -0.011 0.006 0.021
TYR 0.035 0.030 0.009 -0.003 -0.017 -0.014
SEC 0.000 0.000 0.000 0.000 0.000 0.000
ARG 0.002 0.002 0.009 0.000 0.006 0.006
TRP -0.007 0.014 0.007 0.024 0.016 -0.005
ALA -0.026 0.000 0.010 0.031 0.043 0.010
LYS -0.001 -0.003 0.002 -0.002 0.004 0.006
ASN 0.003 0.003 0.001 0.000 -0.002 -0.002
GLN -0.007 -0.007 -0.009 0.000 -0.004 -0.004
CYS -0.003 -0.009 -0.010 -0.008 -0.009 -0.002
MET 0.012 0.009 0.019 -0.002 0.006 0.008
THR 0.001 -0.003 -0.005 -0.004 -0.006 -0.002
VAL 0.011 0.010 0.001 -0.001 -0.010 -0.009
ILE -0.001 -0.020 -0.021 -0.019 -0.020 -0.001
ASP 0.000 -0.002 0.027 -0.002 0.027 0.033
LEU 0.009 0.038 0.066 0.028 0.055 0.024
HIS -0.006 -0.007 0.000 -0.001 0.010 0.011
GLU -0.006 0.000 0.000 0.009 0.009 0.000
TOTAL KL 0.019 0.025 0.049 0.017 0.051 0.037

Table D.7: KL deviations of cytoplasmic side helix cap positions. The
“2-3” column lists the KL distances for the second position of the cytoplasmic
side cap and the third position of the cytoplasmic side, and so on.
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Amino acid 1 - 2 1 - 3 1 - 4 1 - 5
GLY 0.022 -0.018 -0.001 -0.015
PHE -0.051 -0.048 -0.049 -0.040
SER 0.078 0.033 0.027 0.044
PRO 0.008 0.016 0.029 0.046
TYR -0.015 -0.012 -0.012 -0.015
SEC 0.000 0.000 0.000 0.000
ARG 0.160 0.178 0.192 0.171
TRP -0.018 -0.023 -0.019 -0.017
ALA -0.051 -0.048 -0.038 -0.056
LYS 0.171 0.219 0.178 0.207
ASN 0.054 0.061 0.063 0.094
GLN 0.065 0.062 0.077 0.050
CYS 0.020 0.007 0.005 0.004
MET -0.012 -0.016 -0.019 -0.012
THR 0.027 0.027 0.017 0.038
VAL -0.052 -0.043 -0.056 -0.058
ILE -0.050 -0.044 -0.052 -0.053
ASP 0.153 0.180 0.193 0.226
LEU -0.086 -0.082 -0.076 -0.087
HIS 0.028 0.033 0.023 0.031
GLU 0.172 0.172 0.197 0.277
TOTAL KL 0.622 0.652 0.681 0.834

Table D.8: KL deviations of non-cytoplasmic side helix cap positions.
The “1-2” column lists the KL distances for the first position of the non-
cytoplasmic side cap and the second position of the non-cytoplasmic side, and so
on.
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Amino acid 2 - 3 2 - 4 2 - 5 3 - 4 3 - 5 4 - 5
GLY -0.033 -0.019 -0.030 0.020 0.004 -0.014
PHE 0.008 0.003 0.029 -0.004 0.020 0.025
SER -0.023 -0.025 -0.017 -0.004 0.008 0.013
PRO 0.007 0.019 0.034 0.011 0.024 0.011
TYR 0.005 0.005 0.001 0.000 -0.003 -0.003
SEC 0.000 0.000 0.000 0.000 0.000 0.000
ARG 0.004 0.006 0.002 0.002 -0.001 -0.003
TRP -0.008 -0.001 0.001 0.008 0.011 0.002
ALA 0.007 0.025 -0.010 0.018 -0.016 -0.029
LYS 0.007 0.001 0.005 -0.003 -0.001 0.004
ASN 0.003 0.005 0.020 0.001 0.015 0.013
GLN -0.001 0.005 -0.006 0.006 -0.005 -0.009
CYS -0.005 -0.005 -0.006 -0.001 -0.002 -0.001
MET -0.005 -0.010 0.000 -0.005 0.006 0.012
THR 0.000 -0.007 0.008 -0.007 0.008 0.017
VAL 0.019 -0.010 -0.015 -0.025 -0.029 -0.005
ILE 0.019 -0.005 -0.012 -0.021 -0.027 -0.006
ASP 0.006 0.009 0.017 0.002 0.008 0.005
LEU 0.009 0.026 -0.003 0.016 -0.012 -0.026
HIS 0.002 -0.003 0.001 -0.005 -0.001 0.005
GLU 0.000 0.005 0.021 0.005 0.021 0.013
TOTAL KL 0.021 0.023 0.042 0.013 0.029 0.024

Table D.9: KL deviations of non-cytoplasmic side helix cap positions.
The “2-3” column lists the KL distances for the second position of the non-
cytoplasmic side cap and the third position of the non-cytoplasmic side, and so
on.
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