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ABSTRACT 
Developmental disorders (DDs) are diseases of impaired childhood development and 

include congenital anomalies, neurodevelopmental disorders, and abnormalities in 

growth and behaviour. Determining the genetic causes underlying DD is a major goal of 

contemporary medical research and the recent entrance of exome sequencing data into 

the rare-disease field has been transformative in uncovering the importance of de novo 

point mutations as a major source of DD-associated mutations. Recent efforts have 

successfully harnessed exome sequencing data to detect constitutive copy-number 

variation, a form of large-scale structural abnormality. However, at the inception of my 

doctoral work, no software tools had yet been developed to identify, from exome 

sequencing data, uniparental disomy (UPD), a form of copy-neutral variation, nor large-

scale (‘structural’) abnormalities, which have long been implicated as important 

contributors to DD. The research underlying this work aimed to fill this void. 

 This dissertation addresses the development of new software tools, UPDio and 

MrMosaic, which have extended the diagnostic reach of sequencing data to identify 

UPD and structural mosaicism, and have been made freely available. Simulation 

analyses show that these tools can detect the large-scale abnormalities identified by 

karyotyping or microarray in standard clinical testing. Implementation on nearly 5,000 

children with undiagnosed diseases demonstrated that UPD and structural mosaicism 

are enriched in children with developmental disorders compared with healthy children 

and suggested that most of the detected abnormalities are likely to be pathogenic. 

Investigation of the clinical impact of the detected events identified several disease-

causing mechanisms, including UPD-associated imprinting and recessive diseases, and 

genomic disorders associated with large mosaic deletions and duplications. 

 The five chapters of this dissertation are: 1) an introduction, to describe the 

context of this doctoral work; 2) a description of UPDio, a new method for detecting 

uniparental disomy from exome trio data; 3) a burden analysis of mosaic structural 

variation and the clinical consequences of mosaic structural variants found in children 

with DD; 4) a description of MrMosaic, a new method for the detection of mosaic 

structural variation using next generation sequence data; and lastly, 5) a discussion that 

recapitulates the results of these analyses, describes their limitations, and considers 

future directions.  
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1 INTRODUCTION 

Developmental disorders (DDs) include congenital anomalies, neurodevelopmental 

disorders, and abnormalities in growth and behaviour (Figure 1-1)1. DD can be 

relatively mild, presenting, for example, as an isolated learning disability, or severe. 

Severe DD is generally characterised as one many rare, often neurodevelopmental 

diseases, usually appearing within the first few years of life2, and is the focus of this 

dissertation.  
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Figure 1-1 Prevalence distribution of phenotypes observed in a recent large study of severe DD3. 

Understanding the aetiology of DD in a child is crucial for management, prognosis, and 

family planning. In the absence of an identified environmental insult (e.g. teratogens, 

gestational problems, or child neglect), and especially in the presence of specific 

syndromic or familial features, the presumed cause is genetic. This dissertation 

addresses the detection and implication of uniparental disomy and mosaic forms of 

large-scale variation in DD genetics. To frame the context of this work this introduction 

describes the detection and implication of large-scale variation in DD, and the new 

methods I developed to enable detection of large-scale variation from DNA sequencing-

based assays.  
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 Several recent advances are improving the diagnostic yield of genetic testing: 

the increasing availability of exome sequence analysis as a assay platform in clinical 

diagnostic testing4, the application of proband-parent trio studies for the detection of 

autosomal dominant de novo and compound heterozygous mutations5, and the 

development and implementation of new algorithmic approaches. The Deciphering 

Developmental Disorders (DDD) study6, exemplifies this paradigm; it is a large trio-

based study of children with undiagnosed DDs that studies the genetic architecture of 

rare disease using primarily exome-sequencing data, with the implementation of 

existing and development of new algorithmic approaches.  

 Despite recent progress in delineating the genetic causes of DD, the detection 

of mutations that are definitively explanatory of the disorder (i.e. ‘causative’) is possible 

in fewer than half of children investigated postnatally for DD7. Identifying the 

underlying genetic basis of DD is challenging for many reasons, such as 1) extensive 

genetic heterogeneity, as over 1,000 genes are associated with DD8, and a substantial 

fraction of children with DD have one of thousands of rare monogenic diseases9; 2) the 

functional role for most genes in the genome is still not known10; and 3) clinical 

diagnostic testing in the UK is usually limited to the detection of non-mosaic 

(‘constitutive’) chromosomal abnormalities and mutations in specific genes of interest11, 

despite many additional classes of genomic variation also implicated in DD8,12. 

 Due to the many different mechanisms by which mutations are generated and 

detected, it can be useful to stratify how genomes vary between individuals by three 

criteria: 1) size of the genetic variant, from small-scale (point and insertions and 

deletions (indels)) variation to large-scale (structural) variation13; 2) copy number: 

distinguishing balanced (copy neutral; loss of heterozygosity (LOH), uniparental 

disomy14, translocation, inversion)15 and unbalanced (copy number; deletion or 

duplication)15; and 3) clonality, in which assayed cells exhibit genetic homogeneity 

(constitutive variation) or heterogeneity (mosaicism or chimerism)16. Decades of 

genetic analyses have yielded insights into the diversity of mutations underlying DD, 

implicating all combinations of constitutive and mosaic small-scale and large-scale 

abnormalities.  

 This dissertation will address the detection and impact of large-scale variation 

and mosaicism on children with DD. 
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1.1 Strategies for detecting structural variation 
The historical timeline of detecting large-scale variation in the genome can be classified 

into the following technological eras: optical cytogenetics, molecular cytogenetics, and 

next-generation sequencing. 

1.1.1 Optical cytogenetics 
Cytogenetics is the study of chromosome structure and function, and was originally 

performed optically, using light microscopy. In the first half of the 20th century, 

visualisation of the chromosomes was unreliable and the human chromosome number 

was thought to be 48, a belief sustained for nearly 40 years17. A cascade of discoveries 

in the mid 20th century revolutionised cytogenetics: the discovery of the Barr body in 

the interphase nuclei in females18, enabling cytological determination of sex18; the 

discovery of hypotonic solution for cell preparation19, allowing the separation of the 

chromosomes; advances in culture medium20, permitting cell survival for analysis; and 

the use of colchicine in condensing metaphase chromosomes, permitting karyotyping 

(Figure 1-2)21. As a result of these advances, the chromosome number was corrected to 

46 and numerical differences between chromosomes could be discriminated. 

  

Figure 1-2 The first human karyotype, adapted from Levan et al.21. 
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 The development of chromosome banding techniques, in which segments of 

euchromatin and heterochromatin are differentially stained, facilitated the delineation 

the chromosomes and enabled the identification of sub-chromosomal “structural” 

changes to the chromosomes (Figure 1-2). The most common chromosomal banding 

technique, G-banding, uses Giemsa staining (methylene blue, eosin, and Azure), 

originally used for microbial staining in 190422, to stain approximately 128 bands23 per 

genome, an average of one band per ~24 Mb. High resolution G-banding was invented 

by Yunis et al. in 197824 and enabled the detection one band per ~5-10 Mb, which 

remains today the typical resolution for optical genetics. Thus, optical cytogenetics can 

be used to identify structural changes to chromosomes that are at least 5-10 Mb in size 

and is used for clinical diagnostic testing in many centres. Additionally, cytogenetics 

can be used to detect large inversions and translocations, but copy neutral LOH is not 

visible. 

 

Figure 1-3 Banded karyotypes. In this case, a translocation of material between chromosomes 1 and 

X, adapted from Mattei et al.25. 

 Karyotyping through optical genetics can detect mosaic structural 

abnormalities by identifying a proportion of cells from the same individual with a 

distinct structural complement. However, this process is labour-intensive because, for 

example, 14 cells must be examined per individual to exclude 10% mosaicism with 

95% confidence26.  
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 Optical genetics established numerical and structural variation as important 

genetic components of DD. Nevertheless, banded karyotyping has several limitations: 

assay resolution is coarse at 5-10 Mb; results require subjective interpretation27; the 

preparation of chromosome banding and of multiple cells per sample to assay 

mosaicism is labour-intensive; cell culture is required and requires one week of 

preparation time, which delays diagnosis and is not always successful (in the case of 

macerated foetal tissue, for example); and, lastly, it is blind to copy neutral loss of 

heterozygosity. Many of these limitations would be overcome in the molecular 

cytogenetics era. 

1.1.2 Molecular cytogenetics 
Molecular cytogenetics is characterised by the adhesion (hybridisation) of DNA 

molecules (‘probes’) to a DNA sample using complementary base pairing. Probes can 

be constructed to hybridise to a specific region of interest. Resolving power is related to 

the size of the probes, which has substantially decreased with time, initially from 

hundreds of kb (yeast & bacterial artificial chromosomes), to tens of kb (fosmid 

probes), to hundreds of base pairs (synthesised oligonucleotides)28. 

 The first implementation of molecular cytogenetics was the extension of 

karyotyping with DNA hybridisation. This technology, in situ hybridisation (ISH), 

originally used probes with radioactive labels29 but fluorescent labels (FISH)30 are now 

mainstream. FISH offers improved resolution compared to karyotyping and interphase 

FISH can be performed without cultured cells. Metaphase FISH enables simultaneous 

visualisation of a structural abnormality and the chromosomes, but is culture-dependent. 

Interphase and metaphase FISH are still used today to detect unbalanced abnormalities, 

whilst metaphase FISH is used to examine suspected translocations. FISH is used in this 

dissertation to validate structural abnormalities detected by orthogonal methods. 

 The second implementation of molecular cytogenetics is hybridisation to 

microarrays. This involves a set of imaging techniques that, instead of visualising the 

chromosomes themselves, quantitate the intensity and frequency of light emitted by 

fluorescent probes hybridised to a DNA sample. Microarray cytogenetics has several 

advantages compared to karyotyping in that cell culture is not required, mosaicism is 

more easily identified because thousands of cells are assayed simultaneously, and 

quantitative data can be statistically analysed and objectively interpreted. DNA probes 



Strategies for detecting structural variation 

 

7 

can be designed to target loci throughout the genome, thus providing a high-throughput 

genome-wide molecular assay. 

 There are two formats of microarray commonly used today: 1) comparative 

genomic hybridisation (CGH), invented in the early 1990s31 for copy number analysis 

of tumours, which gave rise to modern array-based CGH (aCGH)32; and 2) single 

nucleotide polymorphism (SNP) microarray, also known as genotyping microarray33, 

designed as a high throughput assay of single nucleotide polymorphism but in recent 

years has also been used for the detection of large-scale abnormalities34. 

 There are advantages and disadvantages for both types of microarray in the 

detection of large-scale abnormalities. Traditionally, aCGH has been preferred in 

diagnostic labs for more sensitive CNV detection performance and design flexibility. 

However, SNP microarray additionally enables detection of runs of homozygosity 

(useful for finding loss of heterozygosity and consanguinity), and is more sensitive for 

mosaicism. SNP microarray has been increasingly used for diagnostic testing35,36 and 

recently, integrated microarray array chips combining both aCGH and SNP probes have 

been created to combine the benefits of both technologies37. Many of the analyses 

presented in this dissertation used SNP microarray as a detection platform. 

 SNP microarray methodology uses fluorescent tags (red and green) to label 

each allele, and an imaging system is used to detect the colour and signal intensity. The 

ratio of red to green light colour frequency reflects the sample’s allele frequency. The 

fraction of the less-common allele, the b allele frequency (BAF), is an important metric 

used for genotyping and mosaicism detection. The light intensity, ‘r value’, is compared 

to the light intensity seen for this SNP from a pool of reference samples, and is recorded 

as a log r ratio (LRR)38 (Figure 1-4).  
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Figure 1-4 Illumina BeadArray technology, adapted from Illumina documentation39. 

 Copy number data from aCGH is also measured using probe light intensity but 

in aCGH, the light intensity from both test and reference are measured in the experiment 

and they are compared using the log2 ratio. In aCGH, the log2 data provide signal for 

detection of copy number while in SNP data, both BAF and LRR probe metrics can be 

used for analysis. The detection of structural abnormalities can be cast as a 

segmentation problem with abnormalities as unusual segments in an otherwise normal 

chromosome. Several statistical methods can be used for detecting copy number 

analysis. While wavelets40, penalised-least squares41, and piecewise-constant vectors42, 

primarily identify segments different from the norm (reject the null hypothesis of no 

difference from their surroundings), other methods, such as Bayesian methods42,43, and 

hidden Markov models44,45 directly assess the null hypothesis and a strong expectation 

of an alternate (constitutive) hypothesis. In genome alteration detection analysis 

(GADA)42 segmentation is performed in three steps: genomic segments are represented 

in computationally-efficient piecewise constant vectors, then sparse Bayesian learning 

finds the most likely location of the breakpoints given a prior estimate of the number of 

segments, and lastly a backward elimination procedure adjusts the number of segments 

based upon a statistical threshold. Because of the speed and accuracy of GADA it has 
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become one of the most popular packages for the detection of copy number from 

aCGH data.  

 SNP microarray can additionally be used as a genome-wide screen for 

constitutive copy-neutral LOH. The first use of SNP data in this manner was for the 

detection of isodisomy in cancer research46. An important type of LOH in children is 

called uniparental disomy (UPD) and is canonicaly due to the inheritance of a 

chromosome in which both homologues originate from the same parent. The 

appreciation of UPD as a disease mechanism in children spurred the implementation of 

SNP microarray for clinical diagnostic testing of UPD47. In chapter 2 I describe the 

software tools available for detecting constitutive UPD and how their limitations 

motivated my development of a new UPD-detection algorithm. 

 Techniques differ in the use of SNP data for the detection of constitutive and 

mosaic abnormalities. In non-mosaic tissue, an allele is present in exactly 0, 1, or 2 

discrete copies (on the autosomes), which can be precisely recorded using one of three 

genotype categories (AA, AB, BB). In contrast, mosaicism represents a locus with a 

genetically heterogeneous cell population. BAF, as a quantitative measure, is an 

inherently more sensitive measure compared to genotype to denote the relative 

contribution of the underlying allele mixture. Therefore, whilst constitutive 

abnormalities may be identified using alteration of genotype, mosaic methods require 

more sensitive methods and frequently employ deviation in BAF, as described further 

below. 

 Compared to the detection of constitutive large-scale variation, fewer software 

tools exist for mosaic copy number and UPD from SNP data. Illumina states that its 

proprietary algorithm, cnvPartition, can detect mosaic copy number variation in tumour 

samples48, but does not specify how it does this. The open-source tool MAD49 identifies 

mosaic copy number and UPD by segmenting deviations in BAFs from SNP data with 

GADA segmentation (Figure 1-5). The MAD algorithm was recently chosen for the 

study of 50,000 samples with SNP chip data50. When SNP data are available from trios, 

a different software tool, triPOD51 can leverage haplotype structure and BAF deviation 

to identify strings of inheritance imbalance from the same parent, thereby increasing the 

sensitivity and specificity of mosaicism calls. 
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Figure 1-5 Illustration of the MAD method, adapted from Gonzalez et al. 49 Note that MAD begins 

by calculating the deviation in BAF from genotype-expected BAF (Bdev). 

 In chapter 3, I will demonstrate a comparative analysis of MAD and triPOD of 

mosaic copy number and copy neutral genomic variations in children with and without 

DD. 

1.1.3 DNA sequencing 
 DNA sequencing is the process of determining the identity and order of DNA 

nucleotides in a DNA molecule. The early sequencing technique used radioactively-

labelled52, later fluorescently-labelled53 nucleotides, incorporated into a DNA molecule. 

The DNA molecules were size-separated (typically by capillary electrophoresis) and the 

labelled bases were imaged. This process, called capillary or Sanger sequencing, has 
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been widely used and is still used as an inexpensive approach to assay targeted 

genetic variation.  

 Sanger sequencing can identify the DNA sequence of up to approximately 

1,000 bases from a single DNA molecule54. Next-generation (2nd generation) 

sequencing approaches entail sequencing numerous, typically shorter, DNA molecules 

in parallel to increase throughput. This has allowed for assessment of the ‘mappable’ 

genome, which is the accessible, non-repetitive, well-characterised regions of 

genomes55. Third generation sequencing56 involves the massively parallel sequencing 

using long ‘single-molecule’ sequence reads. These technologies are in development, 

and potentially offer benefits for the study of genomes where the reference is unknown 

or very repetitive56 but are not routinely used for rare disease studies in humans and are 

not considered further here. 

 The second-generation platform used for the analyses described below is that 

of Illumina®, mainly the HiSeq™ 2000 and HiSeq™ 2500 sequencing machines55. The 

Illumina sequencing approach begins with fragmentation of DNA and selection of 

fragments approximately 500 bp long. The sequencing procedure uses a glass substrate 

(‘flow-cell’55) with adhered oligonucleotides that bind fragments of DNA. Bound 

fragments undergo an amplification step (bridge amplification) that generates many 

clones of fragments. Fragments are denatured so they are single stranded and imaging 

techniques capture growing strands and record strings of bases, known as “reads”. Each 

sequence read contains bases from a location in the genome. 

 The Human Genome Project was an international collaboration that used first-

generation capillary and ‘shot-gun’ sequencing of large-insert clones to determine the 

sequence of DNA bases of the chromosomes of Homo sapiens. Subsequent 

‘resequencing’ of the genome uses the reference sequence determined by the HGP as a 

haploid scaffold, upon which short (~100bp) DNA sequence reads from next generation 

sequencing can be aligned (‘mapped’) to the reference, commonly performed using the 

Burrows-Wheeler Algorithm57. Sufficient sequencing coverage of the genome is 

essential to assess both chromosome homologues, to account for allelic sampling, errors 

in sequencing, and to produce accurate genotypes. A widely used genotyping approach, 

SAMtools, makes a prediction of the genotype based on which genotype is most likely 

given the bases and qualities of aligned reads58. The proportion of reads supporting each 

allele is a measurement of allele fraction, analogous to the theta value calculated from 



12 

Introduction 

 

SNP microarrays. Sequencing coverage at a given position is referred to as ‘read depth’ 

and is an analogous measure of the r value. 

 Whilst the cost of next-generation sequencing has declined precipitously59, it is 

still too expensive to sequence a whole-genome to high depth for most applications. The 

Human Genome Project observed that much of the genome appears to be repetitive, 

low-complexity sequence, and that only approximately 1-2% includes protein-coding 

(exon) sequence60. Therefore, in order to maximize the yield from limited sequencing 

resources, it has been a common strategy to restrict sequencing to all the known protein-

encoding exons (the ‘exome’) of the genome. Exome sequencing entails enrichment for 

DNA molecules overlapping the (approximately 180,000) exons of the genome, 

followed by sequencing of this enriched library of molecules. In 2009, the first exome 

paper demonstrating the clinical utility of exome sequencing was published, and 

correctly identified the known genetic cause of a rare autosomal dominant disorder, 

Freeman-Sheldon syndrome60. Since then, genetic causes of many rare diseases have 

been discovered using exome sequencing61.  

 Initially, exome analysis focused on the detection of smaller genetic variation 

but various efforts have been used recently to harness sequence reads to detect copy 

number variants. Estimating copy number from exome data can be challenging, as 

sequence read depth is sparsely clustered and non-evenly distributed across the genome, 

and because measured read depth is a biased estimate of the underlying sample copy 

number62 (since enrichment efficiency, sequencing efficiency and mapping efficiency 

vary considerably among targeted regions). Nevertheless, several approaches have been 

developed to calculate copy number from read depth by accounting for these biases. 

One approach is to consider these biases as covariates, and another is to normalise 

coverage to an empirical distribution of expected coverage based upon a pool of 

samples. Accordingly several software tools are available to detect copy number using 

read-depth coverage63-66. Additionally, other approaches have been used, including 

paired-end approaches67,68, and split-reads69,70. The DDD study has used Convex6; this 

software tool normalises sequence coverage in a proband exome based upon a pool of 

exomes and in addition accounts for biases in the enrichment capture (melting 

temperature, GC content, and delta free energy of hybridisation). These tools are not 

optimised for detecting mosaic copy-number variation as mosaicism leads to an 

intermediate deviation in log2r, which is difficult to distinguish from stochastic 



Structural variation in developmental disorders 

 

13 

sampling variation. Incidentally, compared to Bayesian and HMM approaches, which 

model discrete copy number states, Convex segmentation, based on the Smith-

Waterman algorithm71 may be less prone to problems with mosaicism.  

 Recent progress in detecting mosaic copy-number from sequence data has 

come from efforts to detect foetal aneuploidy prenatally using circulating placental 

foetal DNA by whole genome sequencing of maternal plasma-derived DNA. At one 

trimester of gestational age, approximately 10% of circulating cell-free DNA in 

maternal plasma is of foetal origin72. The detection of foetal aneuploidy from maternal 

plasma sequencing has been based on ‘relative chromosome dosage’, the concept that 

foetal trisomy will result in a statistically significant increase of sequence reads73,74. A 

recent theoretical framework to identify sub-chromosomal foetal de novo CNVs from 

maternal plasma uses whole genome sequencing to recover parental haplotypes, then 

combines information from parent-specific allele imbalance and depth of coverage as 

metrics of detection75. Whilst this introduces a framework for the detection of mosaic 

CNVs, the generation of whole genome sequence data is still expensive for practical 

widespread clinical application and this method requires the availability of paternal 

DNA.  

 The lack of an exome-based approach to detect mosaic copy-number is a major 

limitation given the popularity of exome-based analyses in rare-disease genetics. In 

addition, copy-neutral structural variation does not result in changes to read depth and 

cannot be detected this way. These limitations motivated the development of a 

sequencing-based mosaic structural variation tool capable of detecting mosaic copy-

number and LOH mosaicism from exome or whole-genome sequencing data, described 

in detail in chapter 4. 

1.2 Structural variation in developmental disorders 

1.2.1 Copy-number variation in DD 
Despite the resolution of optical cytogenetics, limited to only multi-megabase 

chromosomal abnormalities, this technology was revolutionary in improving our 

understanding of large CNVs as a cause of DD. Discovery of the first copy-number 

events was followed from the discovery of the Barr body, the inactive copy of the X-

chromosome in cells of females. Thus, the first copy-number abnormalities identified 

were gonosomal aneuploidies in individuals with syndromic sexual dysfunction: XXY, 
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Kleinfelter syndrome (Figure 1-6)76 and X0, Turner syndrome77. 

 

Figure 1-6 The first published aneuploidy, Kleinfelter syndrome, adopted from Jacobs et al.76 

 The breakthroughs of gonosomal disease and advances in karyotyping led 

quickly to insights of autosomal aneuploidy and DD, beginning with the trisomy 

syndromes: Down Syndrome in 195978, Patau Syndrome in 196079, and Edwards 

Syndrome in 196080. Studies from this period showed that aneuploidy occurs in 53% of 

spontaneous abortuses66,81, cementing the importance of aneuploidy in diseases of 

development.  

 In addition to numerical abnormalities, copy-number structural abnormalities 

were also associated with DD. The first association of a sub-chromosomal copy number 

event associated with DD was found in 196382, as a large chromosome 5 deletion in a 

child with cri du chat syndrome. Subsequent use of banded cytogenetics was used 

systematically in the 1980s and 1990s to study structural variation in prenatal 

diagnostics and postnatal incidence studies. These experiments showed that cytogenetic 

evaluation of children with developmental delay by karyotyping could identify 

numerical or structural abnormalities in 9.5% of children83. Studies of consecutive live-

births using cytogenetics identified abnormalities in 0.16%84 (without routine banding) 

and 0.63%85 (with banded chromosomes). The rate of mosaicism detected in live-births 

was 0.16% (3 in 1,830), the three detections including one mosaic chromosome 21, and 

two ‘supernumerary small metacentric marker chromosome with satellites on both ends’ 

whose origin chromosome was not specified84. 

 In the last 15 years, microarray technology has provided a higher-resolution 

assay of CNVs compared with karyotyping. Seminal papers in selected individuals86,87 

and across human populations88 have revolutionised our appreciation of constitutive 

CNVs as a common form of genomic variation, finding that CNVs are ubiquitous 

among humans and account for a nearly ten-fold greater proportion of variation in the 
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genome compared to SNPs89. CNVs account for about 18% of the genetic variation in 

gene expression90. Some CNVs are pathogenic, driven, for example, by disturbances in 

gene dosage91, imbalances in protein networks92, disrupting long range (regulatory) 

effects93, and by gene interruption or gene fusion products94. 

 Comparison of the performance of aCGH and karyotyping has shown that 

whilst aCGH misses some balanced rearrangements and triploidy, it yields a net 

increase of diagnoses compared to karyotyping because it can detect smaller unbalanced 

mutations that are missed by karyotyping95-98. Genetic evaluation of children with DD 

by microarray (using 50 kb median spacing) identified numerical or structural 

abnormalities in 19% of children99, approximately twice the rate of karyotyping. aCGH 

microarray has at least equivalent sensitivity for diagnosis of common aneuploidies, and 

has increased sensitivity for smaller diagnostic CNVs (but not balanced 

arrangements)100. A study of over 36,000 children with idiopathic mental retardation 

and multiple chromosomal abnormalities demonstrated that the rate of diagnoses by 

microarray is twice that of karyotyping, and that karyotyping would identify those 

balanced rearrangements to only yield an additional one percent of diagnoses99. As of 

2010, microarray is the recommended primary genetic test for children with DD101.  

 In 2011, Cooper et al. reported a copy-number variation DD burden analysis, 

comparing 15,767 children with intellectual disability and congenital anomalies to 

8,329 controls102 for copy-number anomalies using microarray with 300 kb resolution. 

The results of this study showed a 14% burden of CNVs at least 400 kb in size in 

children with DD compared to controls (25.7% of cases compared to 11.5%), that 

increases in CNV length correlate with a greater excess of CNV enrichment in children 

with DD, and that larger CNVs were more often associated with syndromic 

malformations.  
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Figure 1-7 Cooper 102 showed that larger CNVs were correlated with pathogenic burden and 

syndromic phenotypes 

 Whilst this study identified an overall aggregate burden of CNVs in children 

with DD, interpreting the pathogenicity of individual copy number variants is more 

challenging. A deductive understanding of CNVs and phenotype is difficult because it 

would require considerable knowledge about underlying gene function and the effect of 

dosage on gene function for the genetic region overlapped (and perhaps bordered) by 

the CNV. Therefore, the most common method of identifying disease association is 

empiric, based on observation of shared phenotypes among multiple children containing 

overlapping CNVs. As an aid for interpretation, various paper103 and electronic 

resources104 have compiled lists of regions recurrently mutated with CNVs and, when 

available, the phenotypes found in children with such CNVs. These techniques allowed 

for the association of multiple genomic disorders with unbalanced abnormalities. These 
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resources are used in this dissertation to assist interpretations of pathogenicity of 

structural abnormalities found in children with their phenotypes.  

1.2.2 Copy-neutral loss of heterozygosity (uniparental disomy) in DD 
Uniparental disomy (UPD) is a balanced chromosomal abnormality, generally resulting 

from a defect of inheritance, in which both chromosomes of a homologous chromosome 

pair originate from a single parent. The UPD chromosome can be characterized in four 

ways: 1) extent: affecting the whole chromosome (complete) or a portion of the 

chromosome (segmental), the latter a hallmark of post-zygotic (somatic) recombination; 

2) zygosity: affecting all cells (constitutive) or a proportion of cells (mosaic); 3) by 

homologue segregation: whether the centromeric regions are identical (isodisomy), 

resulting from an error in meiosis II or post-zygotic duplication, or represent both 

grandparental homologues (heterodisomy), resulting from an error in meiosis I; and 4) 

by parental-origin: maternal or paternal (Figure 1-8). 

 

Figure 1-8 Types of uniparental disomy 

 UPD has three important mechanisms of disease causation: 1) imprinting 

disease, by disrupting the inheritance of essential parent-specific epigenetic 

modifications105; 2) recessive disease, by converting deleterious alleles bequeathed from 

a heterozygous parent to a homozygous state106; and 3) residual trisomy mosaicism, by 

its relationship to incomplete trisomy rescue107. UPD contributes to rare genetic 

diseases and its identification is an important part of the search for disease-causing 

variations.  

 Uniparental disomy is a balanced chromosomal rearrangement imperceptible to 

karyotype analysis or to aCGH, and because genome-wide screening of zygosity was 

not possible until widespread utilisation of SNP microarray in the early 2000s, the 
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earliest cases of UPD were difficult to recognise. However, before they were identified 

in vivo, such events were predicted on a theoretical basis. 

 In the 1970s, karyotype screening of spontaneous abortuses showed that half of 

first trimester abortuses were aneuploid108. In a paper replete with foresight, Eric Engel 

in 1980 deducted that, given this frequency of aneuploidy, the rare but nonetheless 

‘statistically likely’ fusion of two aneuploid gametes, one nullisomic and one disomic 

for the same chromosome, might provide the compensatory complementation to rescue 

euploidy and result in a viable zygote; this zygote would have a homologous 

chromosome pair solely derived from a single parent, a phenomenon he neologised as 

uniparental disomy (UPD)109. Furthermore, he postulated several complications of 

UPD, suggesting, for example, the long regions of homozygosity created by isodisomy 

would predispose to recessive diseases, and that UPD could result in the unusual 

endowment of recessive disease from a single carrier parent. Engel calculated on the 

basis of per-chromosome aneuploidy frequency that the rate of uniparental disomy 

might be approximately 3 in 10,000. Indeed, these above predictions would be verified 

experimentally with time. Notably, however, imprinting (parent-specific inheritance of 

gene expression) disorders, were not yet discovered in humans and thus were not 

discussed as a complication of UPD in Engel’s earliest work, but are now recognised as 

an important clinical complication of UPD on some chromosomes. 

 The earliest detections of UPD in humans describe a loss of heterozygosity in 

cancer that is acquired post-zygotically, also called acquired UPD. Investigators in the 

early 1980s, using polymorphic enzyme phenotypes, observed that cultured cancer cell 

lines had less heterozygosity than the general population, a phenomenon called ‘loss of 

heterozygosity’110. In 1987, Yokota et al., using the newly developed restriction 

fragment length polymorphism (RFLP) assay on fresh tumour samples found that LOH 

was ubiquitous in lung cancers, and suggested that such events may be ‘critical in the 

genesis of tumour rather than a secondary event’111. These findings were of great 

interest to the cancer community because they provided an explanation for loss of 

tumour suppressor genes and further evidence of the ubiquity of structural variation in 

cancer.  

 The first published example of UPD in a child with DD appears to be the 1984 

finding of loss of heterozygosity on chromosome 11 in three children with unusual, rare 

cancers and Beckwith-Wiedemann syndrome112. Nevertheless, it does not appear that 
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this study alerted interest in the DD community, as UPD as the genetic basis of 

imprinting disorders was not discussed until 1989. The first clinical report of UPD was 

by Spence et al. in 1988, in which a child with cystic fibrosis was found to have 

homozygosity of a pathogenic maternal mutation due to maternal isodisomy113. Shortly 

after, Nicholls et al. reported the first case of clinical heterodisomy in Prader-Willi 

syndrome114 and suggested that Angelman and Prader-Willi syndrome may be due to 

disruption of different parental alleles, a conjecture substantiated by Schinzel et al.115, 

thereby giving rise to the field of imprinting disorders in humans. That same year, 

Vidaud et al.116 reported transmission of haemophilia, a sex-linked-recessive condition, 

from the child’s father, due to uniparental heterodisomy of the gonosomes.  

 In 1991, Engel suggested117, based upon the finding of segmental UPD in 

Drosophila, that the distribution of UPD events across the chromosomes in humans 

could locate imprinting vulnerability regions that cause disease when disrupted. The 

first effort to derive an imprinting map in humans was made in 1995118 and provided 

definitive evidence for imprinting on four chromosomes.  

 In 1992, Robinson et al. showed that among 120 children with maternal 

UPD15 (causing Prader-Willi syndrome), the most common cause was due to meiosis I 

errors (71%), while post-zygotic duplication (16%) and meiosis II errors (13%) were 

less frequent119. An early UPD study found that there was an exponential increase of the 

frequency of UPD15 with maternal age119. Two years later, Field et al. presented 

several reports of UPD on chromosome 1 with no apparent effects, which suggested “in 

the absence of isodisomy for recessive deleterious genes, UPD for chromosomes that do 

not harbour imprinted loci may be quite harmless120”. Two years later, Robinson et al. 

calculated, based on the frequency of UPD15 (1/80,000), the frequency of UPD in live 

births to 1 in 3,500121, close to Engel’s original estimate of 3 in 10,000.  

 In 2001, the first guidelines from the American College of Medical Genetics on 

diagnostic testing for UPD were published122 and specified that RFLP analysis should 

be used on child, mother, and father, when prenatally-detected mosaicism for 

imprinting-susceptible chromosomes was found or if the patients had features of known 

imprinting disorders. Similar to the interpretation of specific CNVs in children, 

understanding the pathogenesis of UPD events in children has been advanced from 

empiric findings. Using paper123 and online catalogues124, collections of UPD regions 

can be compiled, enabling identification of recurrent phenotypes among children with 

UPD, from which new UPD disease associations can be established. By these means, 
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instances of all but three of the 44 possible uniparental autosomal pairs have been 

reported, with imprinting disorders resulting from maternal disomy of chromosomes 7, 

14, and 15 and from paternal disomy of chromosomes 6, 11, 14, and 15122.  

 

Figure 1-9 Summary of UPD disorders, from Eggermann et al.125. Imprinting syndromes are 

caused by defects in methylation. For some imprinting syndromes, such as Temple syndrome, UPD 

is the most common imprinting-disruption mechanism. For others, such as Angelman syndrome, 

other mechanisms are more common. 

 Isodisomy can be detected by identifying long strings of homozygous 

genotypes in probands. Collectively, more than 10,000 children have been studied 

across three experiments and identified a rate of isodisomy of approximately 

0.2%35,37,126. Unlike the identification of isodisomy, detecting heterodisomy directly 

requires trio data. Due to the dearth of large research studies with trio SNP data, very 

little was known regarding the prevalence of heterodisomy in children with DD. In 

addition, the absence of software to detect UPD directly from exome sequence data, 

which are now routinely generated in rare disease genetics, motivated my development 

of UPDio, a sequence-based UPD detection tool. I applied UPDio on exome data from 

several thousand trios recruited for developmental disorder to detect isodisomy and 

heterodisomy in children with DD and this analysis is described in chapter 2. 
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1.2.3 Mosaic structural rearrangements and DD 
Mosaic abnormalities are more difficult to detect than constitutive abnormalities 

because mosaic events are present in only a proportion of cells. As explored in detail in 

chapters 3 and 4, mosaicism can only be detected if the abnormality is present in the 

tissue type assayed and in sufficient clonality to be perceptible to the platform used. 

 The first example of mosaic aneuploidy was discovered in the very early years 

of cytogenetics in a patient with Klinefelter syndrome and XY/XXY mosaicism127. 

However, large-scale study of structural mosaicism during the cytogenetics era was 

immature, as the detection resolution was limited and prenatal screening rarely assayed 

sufficient numbers of metaphases to make reliable data on mosaic frequency. Even so, 

attempts have been made to aggregate data for mosaicism from cytogenetics. Meta-

analysis of nearly 180,000 prenatal diagnostic cases for the assessment of mosaic 

structural abnormalities has observed a rate of 0.3%128. 

 Instead of attempting to measure multiple metaphases, SNP microarray 

provides a platform to assay multiple cells simultaneously using techniques discussed in 

detail in chapter 3. Several recent studies have studied SNP microarray to better 

understand the frequency and consequence of structural mosaicism. The timing and 

origin of UPD was reviewed extensively in reviews by Kotzot in 2001 and 2008, 

highlighting several important insights: mosaic aneuploidy and UPD frequently co-

occur; trisomy often precedes UPD; incomplete monosomy and trisomy rescue could 

result in combinations of aneuploidy and UPD; the origin of UPD often includes 

meiotic nondisjunction followed by a mitotic rescue event129, but crossing-over of 

homologues, mis-segregation of translocated chromosomes, association with marker 

chromosomes, and other complex events, are possible107 (Figure 1-10). 
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Figure 1-10 Some common mechanisms of UPD formation (adapted from Kotzot 2001129). More 

complex mechanisms of UPD formation are also possible, see Kotzot 2008107. 

Several studies have investigated the rate of structural mosaicism in children ascertained 

for genetic testing. In 2010, Conlin et al. examined blood from 2,019 children with 

pervasive developmental delay or congenital abnormalities, identifying 12 with mosaic 

aneuploidy (0.6%) and eight with UPD. Of these eight UPD events, four were from 

trisomy rescue, two were from monosomy rescue, and two were mitotic in origin. 

Mosaicism was only detected in the two mitotic cases. The origin of the other six UPD 

events was inferred from the allele fraction patterns. Of the 12 aneuploidies, 9 were 

monosomies, and all of these monosomies arose from mitotic non-disjunction (and 

therefore post-zygotically), suggesting that early stage (inherited) monosomy is lethal, 

whilst half of the trisomies arose by meiotic non-disjunction. In addition, one of the 

children with a mosaic abnormality was chimeric. Chimerism is similar to mosaicism in 

that it represents a mixture of genetically distinct cells in an organism, but unlike 

mosaicism in which the genetic divergence originates post-zygotically, the cells lines in 

chimerism originate from two zygotes that then fuse into one organism. In the chimeric 

identified in the Conlin et al. study, the heterogeneity of genetic components was best 

explained by the early fusion of an XY cell line with a parthenogenic, diploid XX cell 

line36. Other studies include Bruno et al. which investigated 5,000 children referred for 
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clinical diagnostic testing and identified 12 with mosaicism (0.24%) and Pham et al. 

which examined 10,362 children recruited for diagnostic testing with high-resolution 

aCGH and identified mosaicism in 57 (0.55%), of which 12 were smaller events 

detected by exon-focussed probes.  

 Studies of structural mosaicism using SNP data in adults50,130,131 have shown 

that mosaicism increases with age and predisposes to haematological cancer. However, 

the incidence and burden of structural mosaicism in children is not well ascertained 

because of the limited number of generally healthy children analysed by SNP 

microarray for the detection of mosaicism. Additionally, the absence of large studies of 

tissue other than blood-derived tissue, for example, of buccal epithelium, hinders 

assessment of tissue-limited mosaicism, a concept revisited in chapters 3 and 4.  

 Estimating the pathogenic potential of mosaic structural variation can be 

difficult. Whilst resources like DECIPHER104 and the Liehr UPD database132 assist the 

interpretation of constitutive CNV and UPD, less is known about the pathogenic impact 

of mutations across the continuum of clonality, across different cell types. Additionally, 

unlike the burden analysis performed by Cooper et al. for constitutive CNV in DD, the 

lack of studies investigating the rates of UPD and structural mosaicism in healthy 

children (indeed, of multiple cell types from healthy children) hinders the assessment of 

mosaic burden, undermining attribution of mosaicism as a pathogenic class of genetic 

variation. These deficits motivated the third chapter of this dissertation, in which pre-

existing software tools are used to calculate the rate of structural mosaicism from SNP 

chip data in healthy children. The lack of software tools to identify structural mosaic 

abnormalities from exome or whole-genome sequencing data, motivated the fourth 

chapter of this dissertation. 

1.3 Clinical diagnostic testing of developmental disorders 
Developmental abnormalities may present at any stage of development. Common 

indications that trigger diagnostic evaluation include abnormal prenatal screening 

results, dysmorphic features observed post-partum, failure to attain developmental 

milestones, and learning disabilities observed during school-age years. The assessment 

of a child with the features above is performed by a paediatrician and often in 

collaboration with a clinical geneticist. Assessment of the child will vary depending on 

the age of the child but often includes family history, gestational history, patient history, 
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physical examination with anthropometrics, neurological examination, behavioural 

examination, and genetic testing.  

 The genetic tools available to clinicians for clinical diagnostic testing vary by 

local institution. Historically, (and in many centres today) genetic diagnosis has been 

performed using karyotyping. Indeed, as seen above, cytogenetics has a long history of 

detecting DD and the large number of children studied by karyotyping has left a legacy 

on our current understanding of aneuploidy and structural variation in DD. However, 

despite prior investigation with karyotype, telomeric FISH, and targeted gene testing, 

the discovery of the underlying genetic cause is successful in only half of children with 

cognitive delay7. 

 Current guidelines for genetic diagnostic testing of “patients with intellectual 

disabilities, autism and/or congenital anomalies” now recommend microarray, and 

ideally, a combined aCGH and SNP microarray, as the first-tier test133. In the UK, 

standard genetic tests available in most referral centres include karyotypic analysis, 

microarray, and targeted gene testing. These tests can identify aneuploidy, structural 

mutations, and mutations in specific disease genes of interest based on the child’s 

phenotype. Genetic diagnosis of children with non-monogenic, non-syndromic 

disorders, like ADHD or autism is even more challenging134.  

 In the last few years, DNA sequencing of the patient’s exonic (protein coding) 

regions, so-called exome sequencing, has yielded unprecedented throughput and 

resolution to the genomes of children with DD. Whilst pedigree study designs have 

proven helpful in elucidating the genetic causes of many recessive diseases, the trio 

study design has yielded important contributions of de novo variation to rare disease and 

has enabled the identification of previously unknown disease-causing genes. A 

framework integrating high-throughput sequencing, trio sample recruitment, and 

computational development requires substantial resources. A collaborative paradigm 

combining patient recruitment in hospitals with the technical analysis in research 

institutions has enabled patient access to state-of-the-art genetic analysis. In the UK, 

whilst exome sequencing is not yet available for diagnostic testing of DD as a local test 

in most hospitals, it is possible through participation in the Deciphering Developmental 

Disorders study. 
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1.3.1 Deciphering Developmental Disorders study 
The DDD study is an on-going collaborative medical research project aimed to 

determine the underlying genetic basis of disease in children with severe DD (Table 

1-1) in the UK, for whom prior investigation has yielded no definitive diagnosis. The 

study consists of approximately 12,000 patient-parent trios, who have been recruited by 

physicians at hospitals across the UK and Ireland. Several data are collected, including a 

gestational history, prenatal and postnatal history. Each child is given a thorough 

examination, including an assessment of developmental milestones, with phenotypic 

abnormalities recorded using a standardised vocabulary, the Human Phenotype 

Ontology (HPO)135. DNA is extracted from sampled saliva & blood from probands and 

from the saliva of parents. Genetic assays and computational tool development and 

analysis are primarily performed at the Wellcome Trust Sanger Institute (WTSI). 

Clinical geneticists at WTSI, led by Helen Firth, perform clinical assessment of the 

predicted pathogenic potential of discovered genetic variation. Their findings are 

relayed to the clinical geneticist who recruited the child into the study. Variants of 

interest are presented using a strength of confidence ontology developed by Plon, et 

al.136. In this 5-tiered scheme, class 3 variants are considered to be pathogenic with 5% - 

94.9% probability (‘uncertain’), class 4 variants have 95% – 99% probability (‘likely 

pathogenic’), and class 5 variants have above 99% probability (‘definitely pathogenic’).  

 

Table 1-1 DDD Inclusion Criteria, adapted from Firth at al.1 

 The genetic assays conducted include exome sequencing for all three members 

of each trio, high-resolution aCGH for each proband, and SNP microarray analysis for 

4,000 trios. Genetic results are agglomerated across probands to identify genetic 
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similarities among patients that may indicate a shared underlying disease. Likely 

diagnostic findings from the study are returned to clinicians who confer diagnostic 

interpretation to the families.  

 Analysis of the first 1,133 trios3,6 has recently been completed and yielded new 

monogenic disease associations for 12 genes, based on enrichment of de novo 

mutations. These associations enabled a 10% relative increase in the fraction of children 

for whom the molecular diagnosis could now be identified, yielding a total of 

approximately 350 new diagnoses in this set. The most common mutational category 

underlying new diagnoses was de novo point mutations followed by de novo CNVs. In 

addition, other large-scale abnormalities, including constitutive UPD and mosaic 

structural variants, were also identified using analytical approaches and software tools I 

developed. This dissertation will describe in detail the detection and discovery of these 

elements. 

1.4 Summary 
This dissertation presents an analysis of non-inherited structural variation among the 

first 5,000 trios from the DDD study. The main components of this work are 

descriptions of: a new method for detecting uniparental disomy from exome trio data 

(chapter 2); a burden analysis of mosaic structural variation and the clinical 

consequences of mosaic structural variation in children with DD (chapter 3); a new 

method for the detection of mosaic structural variation using next generation sequence 

data (chapter 4); a recapitulation of the main findings and a discussion of this research 

in broader context (chapter 5).  
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2 UNIPARENTAL DISOMY 

2.1 Publication Note 
Most of the work described in this chapter was previously published in 2014137. 

Sections describing the second stage of analysis contain unpublished results. Unless 

explicitly stated otherwise, the analysis described herein is the work I performed 

myself, under the supervision of Matthew Hurles. 

2.2 Introduction 
A review of definitions: uniparental disomy (UPD) is a type of copy-neutral structural 

variation, characterised as the same-parent origin of both chromosomes of a 

homologous chromosome pair. Isodisomy reflects a single parental homologue 

transmitted in duplicate, resulting in homozygosity, whilst heterodisomy reflects both 

chromosome homologues from a single parent. Due to meiotic recombination, the 

inherited UPD chromosome often contains a mixture of heterodisomic and isodisomic 

regions (mixed UPD). UPD can be constitutive or mosaic. Constitutive UPD is evident 

using genotype data and is the subject of this chapter. In contrast, mosaic UPD is not 

easily detected from genotype and alternative methods to detect mosaic UPD will be 

addressed in chapters 3 and 4. 

 As stated in the previous chapter, UPD is a known contributor to DD. The 

three pathogenic mechanisms of UPD are imprinting disorders, residual trisomy 

mosaicism, and recessive diseases. With regard to the last, isodisomy, like the 

autozygosity (identity by descent) resulting from consanguineous unions, provides a 

rich source of candidate recessive variants. For example, complete isodisomy of 
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chromosome 4 (191 Mb) in a proband reflects homozygosity of 6.4% of the 3 Gb-

genome, which is a nearly the same proportion of homozygosity expected among 

offspring of first-cousin marriages (1/16, ~6.3%). Multiple mechanisms may act 

simultaneously; for example, isodisomy of an imprinted chromosome may lead to an 

imprinting disorder as well as a recessive disease. In children with DD, isodisomy is 

found in 0.2% of children with DD35,37,126, whilst the frequency of heterodisomy is not 

well ascertained. 

 Isodisomy and autozygosity result in large regions of homozygosity, but the 

former is usually present on only a single chromosome and in a region of homozygosity 

larger than 10 Mb138 or 13.5126 Mb. Early attempts at detecting isodisomy relied on the 

detection of a large stretch of homozygosity in probands; however, analysing proband 

data in isolation may misclassify autozygosity as isodisomy, may misclassify segmental 

UPD as complete mixed UPD, and is blind to heterodisomy (as this type of UPD does 

not produce homozygous genotypes). Therefore, comprehensive and accurate UPD 

detection requires a different approach than using proband genotypes alone. 

 Alternatively, UPD can be detected from genotypes in a proband and both 

parents, a parent-offspring trio, by searching for an enrichment of genotypes that are 

only compatible with uniparental inheritance. Important advantages of this approach 

include the discrimination of isodisomy from inherited homozygosity, greater resolution 

of UPD detection, and detection of heterodisomy. Software tools have been developed 

for detecting UPD from SNP microarray trio data. SNPtrio is a webtool published in 

2007 that accepts as input Illumina® BeadStudio or Affymetrix® CNAT SNP data and 

uses a test to identify statistically unlikely runs of contiguous UPD-informative 

genotypes139. A different software, UPDtool, detects non-Mendelian errors from tab-

separated-value custom genotype files and classifies chromosomes with a given number 

of UPD-identifying genotypes as UPD chromosomes140. These tools share similar 

drawbacks: they requires inputs limited to SNP microarray software outputs or custom 

TSV files, they do not avoid copy number deleted regions in the proband (hemizygosity 

is a frequent source of false segmental isodisomy), and they use statistical approaches 

inherently sensitive to platform genotyping density and quality. 

 The genotype data used for trio genotypes can derive from SNP microarray 

array or sequencing data. Exome sequencing is becoming routine in rare disease studies 

and the variant call format (VCF141) is the de facto standard for storing sequence-
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derived genotype data. Genotyping data can be stored in single-sample format, which 

generally records only the genomic loci that differ from the reference (‘variants’), while 

the multi-sample format records genotypes for all samples in which any one sample 

varies from the reference. Combining single-sample VCF files into a multi-sample VCF 

file, necessary for assaying trio genotypes, can be problematic, in that a locus absent in 

one file but present in others may reflect a position where 1) read-data are absent (no 

data) or 2) read-data are available but the genotype matched the reference, and thus may 

be informative for UPD detection. Thus, combining single-sample VCFs requires 

additional data to support the inference that absence from the VCF file implies 

homozygous reference data (and not absence of read-data), such as accepting this 

inference at 1) loci overlapping target regions, which are more likely to have adequate 

read-coverage and 2) polymorphic positions, which have a higher prior probability for 

being variant in the sample. Multi-sample VCFs should theoretically be higher in 

genotyping accuracy as multi-sampling genotype prediction avoids the inference step 

(and the potential of inference errors), and may gain additional accuracy from multi-

sample genotype prediction. 

 The sensitivity and resolution of UPD detection is inherently determined by the 

density, distribution, and accuracy of genotyped sites. The trio-based strategy of using 

informative genotypes as a signal for uniparental disomy can be polluted by 

hemizygous or erroneous genotypes that mimic uniparental signatures. Thus, the 

removal of regions overlapped by copy-number deletions could improve detection 

power by reducing the number of hemizygous genotypes. Maps of copy-number 

polymorphisms are available142 and software tools now exist to detect CNVs from SNP 

microarray and exome data6,62,143-145 for sample-specific CNV detection. Therefore, it 

should be possible to include CNV data to reduce the noise floor of inaccurate genotype 

combinations. 

 In order to determine whether children with DD have a burden of UPD events, 

a frequency estimate of UPD in generally healthy children is needed. However, the best 

estimate available for this rate, 1 in 3500, is based on extrapolation from the rate 

calculated at a single locus121 and had not been measured empirically. In addition, 

knowledge of UPD frequency in children with DD is sparse because no large trio-based 

studied had yet been undertaken to measure both isodisomy and heterodisomy 

accurately in children. These considerations, as well as the hope of detecting pathogenic 



30 

Uniparental Disomy 

 

UPD events that could lead to diagnosis in children in DDD motivated the development 

of a new UPD detection tool, UPDio.  

 UPDio accepts VCF-formatted trio genotypes and compares the allelic 

composition of proband genotypes with parental genotypes. Unlike the previously 

developed methods that identify consecutive runs of UPD-genotypes, this method 

aggregates UPD signatures on a whole-chromosomal basis, with subsequent inspection 

to refine the extent of the UPD. This per-chromosome binomial test can detect UPD 

events accurately from genotyping platforms of variable density, such as WES data, 

SNP data, and WGS data, without extensive platform-specific parameter manipulation. 

This method also avoids copy-number regions via the filtering of common CNV and 

sample-specific (when such data are available) CNVs, to increase statistical power. I 

applied UPDio on exome data from several thousand trios recruited for developmental 

disorders, in two stages. The first stage consisted of a simulation-based evaluation of 

the method, an implementation on 1,057 trios, and a burden analysis of UPD frequency 

in children with DD compared to children in the WTCCC study lacking imprinting 

disorders and used here as a control group. Simulations of SNP and exome data at the 

default p value threshold demonstrated high accuracy at detecting whole-chromosomal 

UPD and segmental UPD above 1 Mb for SNP data and 10 Mb for exome data. The 

UPD detection rate in the first stage was 0.57% (6 in 1,057; 5 complete and 1 

segmental), a significant burden compared to the frequency (~0.04%) measured in 

healthy children. The second stage consisted of UPD detection implemented in a 

separate and larger set of children with DD and the detection rate in this analysis was 

0.46% (15 in 3,263; 13 complete and 2 segmental). Phenotypic interpretation of the 

detected UPD events for each child from both stages identified UPD-associated 

imprinting disorders, recessive diseases, and pathogenic rearrangements. 

 !
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2.3 Methods  

2.3.1 Genotype segregation and statistical analysis 
A site genotyped in parents and proband is considered ‘informative’ if it is diagnostic 

for uniparental or biparental inheritance.  

 

Parent'1' Parent'2' Child' I'Inheritance'Type' Symbol'

AA" BB" AB" Biparental" BPI"

AA" BB" AA"or"BB" Uniparental"–"Ambiguous" UA"

AA" AB" BB" Uniparental"–"Isodisomic"" UI"

Table 2-1 Informative genotypes for UPD analyses. Sites at which parents are opposing 

homozygotes and the child is heterozygous are diagnostic of biparental inheritance. Uniparental 

inheritance combinations include those that result only from isodisomy (UI), and those that may 

result from either heterodisomy or isodisomy (UA) as the proband alleles may have arisen from a 

duplication of one parental homologue, or may present both homologues.  

Some genotype configurations supporting UPD are definitive for isodisomy 

(uniparental–isodisomic, i.e. UI), while others could reflect isodisomy or heterodisomy 

(uniparental–ambiguous, i.e. UA). That is, one class of uniparental genotype 

configuration is specifically informative for isodisomy (UI, uniparental–isodisomic), 

and the other class does not distinguish heterodisomy from isodisomy (UA uniparental–

ambiguous). Heterodisomic events contain only UA genotypes and lack UI genotypes, 

while isodisomic events contain mixtures of UA and UI genotypes. These 

configurations can be further classified by maternal or paternal inheritance, reflecting a 

total of four uniparentally inherited signatures: ∈ = {UI_M, UI_P, UA_M, UA_P}. 

Genotype configurations may also be supportive only of eudisomy, i.e., normal 

biparental inheritance (BPI). Note that genotyping errors can raise the ‘noise-floor’ by 

creating apparent UA and UI configurations in non-UPD chromosomes, and can 

obfuscate real UPD by creating BPI configurations within UPD. Additionally, copy-

number deletions create blocks of hemizygosity and genotype prediction programs 

genotype such regions as homozygous; this results in genotype configurations that 

mimic UPD, and segments of such configurations can result in false UPD detections. 

The method filters hemizygous regions using copy number data. 

 The number of informative genotypes arising from maternal or paternal origin 

was counted for each chromosome. A binomial test was used to compare the proportion 
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of genotypes supporting each of the four types of UPD on each chromosome to the 

genome-wide average proportion for that UPD type. Those chromosomes harbouring an 

enrichment of UPD-type proportions were classified as UPD if they were statistically 

unlikely. The threshold of statistical significance used (p value of 0.000568) was based 

on a Bonferroni correction of an initial 0.05 alpha based on 88 tests (four different types 

of UPD event possible on each of 22 autosomes), a threshold demonstrated through 

simulation to be a sensitive and specific calibration. 

2.3.2 Samples analysed 
In the DDD study, proband DNA and parental DNA are genotyped genome-wide using 

SNP microarray and/or exome sequencing, and copy-number profiled in the proband 

using aCGH. The data in the first stage consisted of 1,057 trios for which all probands 

had aCGH CNV data available and the vast majority had genome-wide genotype data 

available both from SNP microarrays and exome sequencing. The second data freeze 

was exclusive of the first; it consisted of trio exome data for an additional 3,263 

samples, and 3,196 samples had CNV data available. The samples with UPD events 

were recruited and phenotyped by Drs. Yanick Crow, Emma Hobson, Tessa Homfray, 

Sahar Mansour, Sarju G. Mehta, Mohammed Shehla, Susan E. Tomkins, and Pradeep 

C. Vasudevan. 

2.3.3 Exome processing  
Exome capture was performed as described fully elsewhere6. In the first stage analysis, 

exome sequencing genotypes were available for 937 (of 1,057; 89%) of trios. The target 

regions defining the exome regions, were the set from the Agilent® SureSelect v.3 50-

Mb bait design and augmented with 5 Mb of custom regulatory sequences (DDD v3 

Plus). Di-allelic, autosomal SNVs and indels passing quality-control filters (genotype 

quality at least 5, variant depth below 1,200, strand bias below 10.0) were used.  

 In the first stage analysis, genotype prediction was executed separately for each 

sample. This ‘single-sample genotype calling’ procedure outputted single-sample VCF 

files, which, as mentioned previously, do not contain positions that are homozygous for 

the reference base. To include these homozygous positions (required for deducting 

inheritance patterns), the assumption was made that common polymorphisms in well-

covered exome-targeted regions were homozygous for the reference allele if no 

alternate allele was genotyped at that position. Accordingly, homozygous-reference 
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genotypes were annotated to positions in our VCF files if the position was contained 

within the inner 80% of highly covered (30 median average sequence read depth) 

exome-targeted regions and the minor allele frequency (MAF, based on the 1000 

Genomes Project Consortium146) of the variant was between 0.05 and 0.95. The ‘noise 

floor’ of genotyping errors was measured by calculating the median number of the four 

categories of uniparental informative event types and was consistently one per 

chromosome. During UPD detection from SNP data, a proband with a UPD event for 

which no exome data had been generated was observed; exome analysis was performed 

for this trio post hoc to enable confirmatory validation of this event from exome data. 

 In the second stage analysis, trio VCFs were extracted from a large (13,000+) 

multi-sample VCF file, thus avoiding the homozygous-reference imputation procedure 

described in the previous paragraph. Position quality-control was conducted by 

selecting positions in which all trio members had a read depth of at least 8 reads, and 

the position was present in dbSNP147, to exclude extremely rare variants, which are 

enriched for artefacts. SNP microarray chip data were not used in the second stage 

analysis.  

2.3.4 SNP microarray data processing 
Genome-wide SNP array genotypes were available for 1,041 trios analysed in the first 

stage. The SNP microarray platform used was a custom genotyping chip, using a 

backbone of 733,059 HumanOmniExpress-12v1_A-b37 positions and the addition of 

94,840 selected positions. Autosomal SNPs (695,829) were used. The Sanger SNP 

Genotyping Core performed the genotyping, using Illuminus148, recorded in PLINK 

format149, and I converted the PLINK data to VCF format using plinkseq version 0.08. 

Samples were rejected on the basis of a high proportion of missing genotypes, but not 

due to unusually high levels of genome-wide heterozygosity, to prevent exclusion of 

samples that may contain UPD chromosomes. Among the 1,041 trios available, 1,035 

SNP trios passed sample QC and were analyzed in this study. After UPD detection was 

performed in exome data, it was determined that one of these QC-failed samples in the 

SNP data was the father of a proband with a UPD event; this trio was processed post 

hoc to enable confirmatory validation of the UPD event in the SNP data.  

2.3.5 Avoiding positions in copy-number variant regions 
The diploid human genome can vary locally in copy-number, through deletions and 

duplications of chromosomal segments. The majority of genotype prediction software, 
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including the one used in this study, are ignorant to changes in copy number, i.e., they 

assume diploidy, and interpret hemizygosity as diploid homozygosity, which can be 

problematic because as single-copy loci may be spuriously identified as UPD. 

Therefore, the software includes a copy-number filter that avoids genotyped sites 

present in or near (within 10 kb) deletions common in the population or present in the 

sample (using user-specified CNV data encoded in VCF or tab-separated-value format). 

 The list of common deletions was acquired by selecting copy number variable 

regions of greater than 1.0% population frequency from a composite of multiple 

studies150,151. Sample-specific CNV data were generated using a custom, exome-

focused, 2 million probe Agilent aCGH array and the CNV prediction software tool 

CNsolidate6.  

2.3.6 Simulation testing 
A variety of data sets were generated to evaluate the detection accuracy of UPDio and 

to compare its accuracy with two other trio-based UPD detection methods. 

 To evaluate sensitivity, a maternal UPD event was introduced using maternal 

genotypes introduced into a single chromosome of a simulated proband. Then, the three 

methods were implemented using each tool’s default parameters to detect maternal UPD 

events in a trio consisting of the original parents and the modified proband.  

 For simulating heterodisomy, proband genotypes were substituted for both 

alleles of maternal genotypes in the selected regions. For simulating isodisomy, proband 

genotypes were substituted for homozygosity of one of the maternal alleles, chosen at 

random. Complete UPD as well as segmental UPD were simulated at various sizes: 1, 2, 

5, 10, and 20 Mb. Simulated regions of the required length were randomly placed across 

autosomes and selected unless the region overhung the edge of the chromosome or 

greater than 25% of its length overlapped known GRC-defined ‘gap’ regions. For each 

permutation of UPD size, class, and platform, 100 trio data sets were generated. 

Sensitivity was defined as the proportion of these trios with detection of the simulated 

maternal event by the algorithm. 

 For assessing specificity, empirical genotype SNP and exome data were 

selected from trios in which the probands had no obvious UPD events at Bonferroni-

corrected p values, nor contained any large (longer than 10 Mb) regions of 

homozygosity. The rationale for doing so was that only genotyping errors and rare 
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undetected CNVs would lead to false UPD detections. Specificity was then defined as 

the proportion of trios lacking any maternal UPD. 

 The procedure described above was used to calculate UPDio sensitivity and 

specificity at various p value stringencies to construct receiver operator characteristic 

(ROC; true positive vs. 1-false positive rate) curves. In addition, the sensitivity and 

specificity of all three methods using default parameters was calculated. For UPDio, a 

Bonferroni-corrected p value threshold was used. For UPDtool, the following defaults 

settings were used: min_mes (300), window_size (10 kb), min_mes_fraction (1%), 

min_hetero (90%), min_iso (85%), min_mes_paternal (80%), and max_mes_ paternal 

(20%). Although SNPtrio is supported as a webtool, the investigators kindly provided 

the source code, which I adapted to run locally. The webtool outputs and plots all 

events, regardless of p value significance, and, likewise, a threshold was not imposed 

when running this tool. 

2.3.7 Assessing pathogenic variation in samples with UPD events 
The survey of candidate mutations came from four sources: 1) the UPD event itself and 

association with imprinting disorders14; 2) de novo, recessive and compound-

heterozygous variants provided by the DDD clinical reporting pipeline (‘ClinFilt’) 

developed by Dr. Jeremy McRae and others; and for isodisomic regions, detailed 

inspection of 3) copy number variation data, detected from the aCGH platform and 4) 

rare and homozygous single-nucleotide and indel variants (‘RareHomIso’) contained 

within the VCF file for each child. The last step was required because many variants in 

isodisomic regions fail a ClinFilt QC-check mandating Mendelian-inheritance. In 

addition, heightened inspection of variants in isodisomic regions was warranted, given 

the enrichment of UPD events observed this study as an indication of pathogenic 

burden.  

 For the RareHomIso analysis, Variant Effect Predictor (VEP)152 version 2.6 

was used to classify mutations into the categories ‘functional’ (missense variant, 

regulatory, or splice region, inframe insertion, inframe deletion) or ‘loss-of function’ 

(splice donor variant, splice acceptor variant, stop gained, frameshift variant, stop lost). 

Loss of function variants in all genes and functional variants in genes implicated in DD 

(‘DDG2P genes’, https://twitter.com/ddg2p) were included for analysis.  

 CNV data were generated by Dr. Tomas Fitzgerald and were derived from 

aCGH. CNVs overlapping isodisomic regions were analysed if they represented 
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homozygous deletions, at least 50 kb, overlapped at least one gene, and if they passed a 

QC-threshold (MEANLR2 / MADL2R above 10) recommended to me by Tom. The de 

novo variants in the clinical reporting pipeline were detected by DeNovoGear153, 

executed by the DDD informatics team, and subjected to stringent algorithmic filtering 

and experimental validation6.  

2.3.8 Using WTCCC data to estimate UPD in the general population 
The Wellcome Trust Case Control Consortium (WTCCC) is a group of research studies 

in the UK that investigate the genetic basis for common diseases. The WTCCC1 was a 

study composed of 14,000 individuals having one of seven diseases, and an additional 

3,000 individuals in control groups; the data were used in this study to estimate the 

epidemiology of UPD in a generally healthy population of children. Genotyping was 

conducted by Affymetrix® using their 500K-probe SNP microarray chip 

(http://www.wtccc.org.uk/ccc1/overview.html). Jeffrey Barrett kindly distributed the 

PLINK data to me. I used a ‘missing genotype’ quality-control metric to remove 

samples with more than 10% missing genotypes. Since isodisomy is expected to affect 

the average rate of genomic heterozygosity, samples were not filtered based on 

abnormal rates of heterozygosity. A total of 16,881 individuals were included for 

analysis. I used PLINK (v1.07)149 to calculate runs of homozygosity that contained at 

least 50 homozygous positions and spanned at least 500 kb in size. I used Perl scripts to 

select samples with large (larger that 10 Mb) stretches of homozygosity and identify 

those samples containing large regions of homozygosity affecting only one 

chromosome. 

2.3.9 Computational performance 
The UPDio calling method uses iterators to scan VCFs line-by-line, resulting in a low 

memory footprint (30 Mb of RAM per trio), regardless of genotyping density. The 

calling speed is reasonably quick (3 min for a SNP trio), and scales linearly with 

number of probes. Each trio can be run independently; therefore, the number of trios 

that can be analyzed simultaneously is only limited by the capacity of the data centre 

used to drive the tool. I wrote the UPD code using Perl v5.10.0 All required Perl 

modules are available on CPAN. A plotting tool is included that allows the visual 

display of aberrant genotypes and zygosity of the proband. Plotting scripts are adapted 

from the R library ‘quantsmooth’154. 



Methods 

 

37 

2.3.10  Software availability 
Software for UPD detection in trios, UPDio, is freely available at 

https://github.com/findingdan/UPDio. Instructions and pre-processing scripts are 

included to enable users to prepare VCF input files from custom exome capture designs.  

 !
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2.4 Results 
The approach to identify pathogenic UPD events is composed of three steps: 1) 

genotype preparation, 2) UPD detection, and 3) candidate variant selection. 

 

Figure 2-1 Study workflow. The study consisted of three main steps: data preparation, UPD 

detection, and candidate variant analysis. In the data preparation stage, informative genotypes 

were collected in all members of each trio. Either a multi-sample trio VCF or three single-sample 

VCFs can be used as input; the latter requires the annotation of homozygous reference genotypes, 

not usually encoded in single-sample VCF files. In the UPD detection stage, trios were selected 

containing a proband chromosome with an enrichment of UPD-informative genotypes. Exomes 

available for samples with a detected UPD event were selected for the candidate workup analysis, 

in which rare protein-altering variants were reported that may manifest in the proband’s 

phenotypes. 

 Genotype preparation begins with pre-processing the genotype data from SNP 

microarray or exome sequencing data. Data pre-processing is critical and includes three 

steps: 1) creating trio VCF files; 2) removal of low-quality genotypes; 3) removal of 

genotyped sites within CNVs.  

 For the exome data analysed in the first stage analysis, trio VCF files were 

created from single-sample VCF files, and homozygous reference genotypes were 

imputed (see Methods Section 2.3.3). To assess imputation accuracy I assessed the 

correlation in genotype dosage among 1,369,049 QC-passed sites from 50 samples 

genotyped by SNP and exome platforms and the correlation was extremely high (r = 

0.9958), suggesting the imputation procedure was robust to error. Among the 937 trios 

Trio Multi-Sample VCF 

Filter Low Quality Genotypes and Deletion CNV Regions 

Count Informative Genotypes 

Identify Chromosomes with Enrichment of UPD Signals 

Curate UPD Deletions 

Select Rare, Functional Variants in Proband Exomes 

Identify Candidate Variants 

Genotype Preparation 

UPD Detection 

Variant Analysis 

Annotate HomRefs 

Three Single-Sample VCFs 
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analyzed by exome, the per-trio average of genotype positions in which all members 

of the trio were jointly genotyped was 54,394 positions, of which 3,619, on average, 

were informative, yielding an average density of informative exome sites per megabase 

of 1.2 (3,619 * 1e6 / 3e9). In the SNP microarray data, an average of 42,490 sites per 

trio were informative. Thus, the average density of informative SNP genotypes across 

one megabase was 14.2 (42,490 * 1e6 / 3e9). The median number of the four categories 

of uniparental informative event types was consistently zero per chromosome. 

 The exome trios in the second-stage analysis were generated from a large 

multi-sample VCF file so the homozygous reference imputation step was not required. 

Based on a calculation involving 100 trios, the per-trio average number of informative 

positions was 4,923, yielding an average density of informative exome sites per 

megabase of 1.6 (4,923 * 1e6 / 3e9). The median number of the four categories of 

uniparental informative event types was 1.5 per chromosome, a low noise-floor. The 

density of informative sites was 50% higher in trios extracted from the multi-sample 

VCF compared to combining single-sample VCFs. Thus, even though imputation was 

robust to accuracy, avoiding imputation recovered 50% more sites.  

 After pre-processing, the proband genotypes diagnostic of uniparental or 

biparental inheritance were counted on each chromosome. Uniparental genotypes could 

be quantitatively distinguished from one another by the relative proportions of the two 

different classes of genotype configurations that were diagnostic for uniparental 

inheritance (Table 2-1), or qualitatively by visualization.  

2.4.1 Simulations 
Simulations were used to assess the accuracy of UPD calling in UPDio (see Methods). 

The sensitivity of UPD detection was measured at a range of sizes (1, 2, 5, 10, and 20 

Mb) to test detection rates of segmental UPD and chromosome-wide, to test detection of 

complete UPD. Simulations were performed for heterodisomy and isodisomy from data 

generated by exome and SNP microarray platforms (Figure 2-2). 

 The method was more sensitive for detecting isodisomy than heterodisomy; 

this was expected given that the former generates more informative sites (both UA and 

UI combinations). Also, the method was more sensitive at a given size using SNP 

microarray data than using exome data, primarily due to both the greater density of 

genotyped sites, with a possible minor contribution from the likely higher genotype 

accuracy in SNP microarrays. At Bonferroni-adjusted significance threshold (light-blue 
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line, p value of 0.000568), near perfect sensitivity in SNP microarrays data was 

observed for detecting either class of UPD event (heterodisomy or isodisomy) at 5 Mb. 

At 2 Mb, 98% of isodisomy and 91% of heterodisomy could be detected. Sensitivity of 

isodisomy detection from exome data was 99% for isodisomy and 75% for 

heterodisomy at 10 Mb. 

 

Figure 2-2 Sensitivity of UPD detection simulations. Simulations to assess sensitivity of UPD 

detections at different sizes, from different data sources. (iUPD) isodisomy; (hUPD) heterodisomy 

 Specificity was defined as the proportion of tested non-UPD trios that lacked 

maternal UPD calls. At the Bonferroni-adjusted p value of 0.000568, specificity was 

99% for exome data and 100% for SNP data. The cause of the single false-positive UPD 

event was found to be due to a slight excess of genotype errors resulting in an event 

called with a significant p value (p value of 0.00044, close to the Bonferroni-adjusted p 

value cut-off). 

 Given that a size threshold for suspecting UPD in clinical molecular 

diagnostics is typically near 10 Mb36, the successful detection of UPD of this size is of 
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practical utility. Indeed, even 2 Mb isodisomic events were detected accurately from 

SNP microarray data, a result likely due to low genotyping error rates and relatively 

uniform genotyping density; although at this size, the accuracy of detection of 

heterodisomy from SNP microarray data, and isodisomy and heterodisomy from exome 

data, was appreciably lower. 

2.4.2 Comparing UPD detection software tools 
I compared the strengths and limitations of three trio-based UPD detection tools, 

SNPtrio, UPDtool, and UPDio (Table 2-2).  

! SNPtrio' UPDtool' UPDio'

Platform"Source" SNP"only" Cross"platform" Cross"platform"

Genotype"Input"Format" TSV"from"SNP"software" Custom"TSV" VCF"

Integrated"CNV"filtering" No" No" Yes"

Statistical"Method" Binomial"test"per"block"

Sliding" window" over"

blocks" of" Mendelian"

errors"

Binomial"test"per"chromosome"

Statistical" Confidence"

Measure"
p"value" Fractions"of"event"types" p"value"

Dynamic" Platform"

Independent"Calibration"
No" No" Yes"

Visualization" UPD"&"CNVs" Event"fractions" Yes,"UPD"&"zygosity"

Accepts"compressed"files" No" No" Yes"

Language" Perl,"R" C#" Perl,"R"

Run"Environment" Webtool" Windows"&"Linux" Linux"

Performance" 51"seconds"/"265"Mb"" 15"seconds"/"65"Mb"" 151"seconds*"/"21"Mb""

Table 2-2 Software comparisons. Comparing three trio-based UPD software tools. TSV (tab 

separated value). *total run time including parsing input files, CNV filtering, and UPD detection. 

 There are substantial differences in the interface, statistical methods, 

calibrations, and outputs of these three tools. One notable difference is the input format 

requirements. UPDtool requires the construction of custom tab-separated-value 

genotype files, while SNPtrio processes SNP-genotyping software output files, and 

UPDio reads VCF files, which is a platform-independent standard file format for 

genotype data. The underlying statistical methods vary as well. UPDio is the only tool 

that integrates CNV filtering during genotype parsing, which occurs before statistical 
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analysis. In terms of calling confidence, UPDio and SNPtrio provide a p value output 

measurement, while UPDtool does not provide a confidence score for its UPD 

detections. For threshold calibration, the webtool SNPtrio accepts a parameter 

‘minimum number of SNPs in an event region’; UPDtool has a list of seven adjustable 

parameters (min_mes, window size, min_mes_fraction, min_hetero, min_iso, 

min_mes_paternal and max_mes_paternal); and lastly, UPDio allows for user control of 

the p value threshold as a single parameter. Neither SNPtrio nor UPDtool parameters 

are recalibrated dynamically based on input data but are tuned for platforms resembling 

the density and noise characteristics of high-density SNP trios. In contrast, UPDio 

calculates a per-chromosome proportion-based statistic, which is innately normalized 

for input data of different global density and genotyping error rates. 

 Simulations assessed the comparative accuracy of three trio based UPD 

detection tools: SNPtrio, UPDtool, and UPDio (Figure 2-3). All three platforms were 

run using default parameters, on the same simulated data sets (reformatted to 

accommodate each tool’s input requirements). Sensitivity results were tabulated as the 

proportion of tested samples with maternal UPD detection on the chromosome 

containing the simulated event.  
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Figure 2-3 Sensitivity comparisons. Simulations were performed to measure the sensitivity of 

detecting introduced UPD events from SNP and exome data, ranging in size from 1 Mb to 

chromosomal. 

 Specificity was calculated as the proportion of samples not containing maternal UPD 

events in samples without obvious UPD events (Figure 2-4). 

 

Figure 2-4 Specificity comparisons. Simulations on normal SNP and exome samples were compared 

to measure the proportion of samples without UPD detections. 

 Simulation results demonstrated that SNPtrio was the least specific algorithm 

(31% for SNP data and ~0% for exome data), and UPDtool was the least sensitive tool, 

capable of detecting only the very largest UPD events. Unsurprisingly, specificity and 

sensitivity were inversely related. UPDtool was 100% specific, and made no false UPD 

assignments in normal samples from either SNP or exome data. UPDio was nearly as 

specific as UPDtool. SNPtrio was the most sensitive, which was most evident in the 

detection of smaller heterodisomic events from exome data. UPDio was only very 
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slightly less sensitive than SNPtrio for events 10 Mb and greater in size in exome data 

and for events 1 Mb and greater in size in SNP data. 

 Receiver operator characteristic (ROC) curves were used to evaluate the 

calling performance of UPDio at various p value thresholds (Figure 2-5). 
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Figure 2-5 Receiver operator characteristic curve comparing UPD detection accuracy at different 

simulated UPD sizes. (dio) UPDio, (tool) UPDtool, (trio) SNPtrio. 
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The UPDio curves demonstrated excellent classification of UPD events from SNP 

platform at 5 Mb and 10 Mb. The classification of UPD events from exome data was 

noticeably weaker, especially for detection of heterodisomy at a size of 5 Mb. The 

Bonferroni corrected p value of 0.000568 represented a good balance of sensitivity and 

specificity for both data types and both classes of UPD event. Thus, this p value was 

used as a default parameter for UPD calling in UPDio. 

 For the two ROC curves the classification performances of UPDtool (‘tool’) 

and SNPtrio (‘trio’) were plotted for the calculated sensitivity and specificity of these 

programs at their default parameter settings. While most SNPtrio classifications 

demonstrated high true-positive rates, these came at the expense of very high false-

positive rates that would require substantial additional downstream manual filtering 

such that large-scale application is inherently limited. On the other hand, UPDtool 

performance was characterized by low true-positive rates, near zero for most event 

types and platforms, with the notable exception of isodisomy from SNP data at a size of 

10 Mb. In contrast, UPDio, using the default p value threshold, detected a substantially 

higher ratio of true to false events compared with the other programs under all 

conditions. These differences are likely to be accentuated when implementing these 

tools for whole-genome sequence data sets.  

 UPDio was tested on WGS HapMap child-mother-father trio (NA12878, 

NA12891, NA12892) and CNV data155. Whole-genome analysis counted an average of 

278 informative genotypes per Mb, 20x greater density than our SNP platform, required 

9 min and 27 Mb of memory and detected no UPD events beyond marginal 

significance. 

2.4.3 Implementing quality control of UPD detections 
In the first stage analysis, UPD detection was implemented on 1,057 unique DDD 

parent-offspring trios. The majority (915) of these trios were analyzed by both SNP and 

exome data, with slightly more trios available from SNP data (1,035) compared with 

exome data (937). A p value of 0.000568 was used as a statistical threshold (see section 

‘Genotype Segregation and Statistical Analysis’ in Methods) for identifying putative 

UPD events for further investigation. The putative UPD events had calculated p values 

that were bimodal in distribution (Figure 2-6). 
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Figure 2-6 DDD UPD p value distributions. Distribution of the –log10 p values for UPD detections 

from different data sources, with or without CNV data. Presence of sample-specific CNV data 

increases the proportion of extremely significant events and decreases the proportion of events with 

p values less significant than 1e-10. significant events. p value minimum truncated to 1e-100. 

The extremely significant events were considered authentic UPD detections on the basis 

of having consistent UPD signatures on a single chromosome; these were selected for 

further analysis, and validated, as described below.  

 I investigated the less-significant group of detections and observed differences 

between the two platforms regarding the number and underlying cause of these spurious 

events. The SNP data had 133 such events while the exome data had 70 such events. 

The underlying cause of these false detections in the SNP data usually (80% of the time) 

was due to misattribution of undetected (and thus unfiltered) CNV regions as 

isodisomy. This was especially true for the most significant events of this category; for 

example, a 1 Mb deletion (which escaped detection by aCGH due to low-quality array 

data) resulted in false signals of high significance (UI_P at 1e-31 and UA_P of 1e-22). 

In contrast, the underlying cause in the exome data in most (85%) cases was due to 

stochastic fluctuations of genotyping errors. The disparity between SNP-detected and 

exome-detected spurious events likely reflects underlying platform differences, namely 
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that the SNP platform has far greater genotyping density, especially in noncoding 

regions, thus is more prone to detecting hemizygous genotypes within small deletions 

than the exome data, while the exome data (from single sample calling) has a slightly 

higher genotyping error rate, and is therefore more susceptible to the random 

aggregation of genotyping errors.  

 Large UPD events have substantial numbers of both UI and UA events. 

Consequently, binomial tests assessing the enrichment of both event types often 

redundantly detect these large UPD events by both signatures. I developed a 

visualization tool to illustrate the distribution of informative sites along each 

chromosome in a trio to clarify the type and extent of these events, which may include 

both isodisomy and heterodisomic regions (Figure 2-7). 
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Figure 2-7 Example of a UPD plot. A plot of QC-passing proband genotypes on each autosome. The 

position and colour reflect zygosity (homozygous, heterozygous) and informative state (biparental 

inheritance, maternal isodisomy, maternal heterodisomy or isodisomy, paternal isodisomy, paternal 

heterodisomy or isodisomy). The figure displays each chromosome ideogram. Each chromosome 

has an x-axis (chromosome position) and y-axis (zygosity, and informative event type). In this case, 

the UPD event for chromosome 2 is depicted with a mixture of dark-green points (maternal 

isodisomy) and light-green points (maternal isodisomy or maternal heterodisomy). The zygosity 

row demonstrates homozygosity along the entirety of the chromosome, reflecting the complete 

isodisomy. 

In addition, the method provides additional output files to specify all informative 

genotype events comprising the UPD region. 

 The p values of the putative UPD detections in the second stage analysis were 

plotted and the shape of the distribution was bimodal, as seen in the first stage analysis 

(Figure 2-8). Inspection of events less significant than 1e-10 identified similar artefacts 

as seen in the first stage analysis. Inspection of all events with p values more significant 

than 1e-10 identified a small number of spurious UPD events (chance aggregation of 

uniparental sites on a chromosome along with BPI probes) and a single event with a p 

value of 1e-24, which was due to hemizygosity (an undetected deletion). All events 

more significant than 1e-24 were real UPD events. 
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Figure 2-8 Distribution of –log10 p values for UPD detections in the second stage analysis. p value 

minimum truncated to 1e-100. The vast majority of candidate UPD calls are at low significance and 

cluster below 1e-10. The second graph depicts the events more significant than 1e-20.  
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2.4.4 UPD detections 
UPD detection was executed in two stages and the results from both stages are provided 

below (Table 2-3). 

 In the first stage, there were six probands with UPD events. All events were 

cross-validated, that is, detected using both SNP data and exome sequence data. The six 

events comprised a variety of UPD events.  

 In the second stage, there were 16 probands with at least one extremely 

significant (more significant than 1e-12) putative event type. One event passing this 

level of significance, with a p value of 1e-24, was found to reflect a copy number 

deletion event undetected by CNV calling. The remaining 15 probands each had a 

single chromosome with a UPD event of 1e-40 or more significant.  

 The majority (16 of 21) of the detected UPD events were maternally derived. 

Eighteen of 21 were complete UPD. There were 11 isodisomies, 3 heterodisomies, and 

7 mixed events. In 7 of 21 cases, the UPD chromosome appeared on a chromosome that 

has been associated with imprinting disorders and in two cases, appears on maternal 

chromosome 16, which is controversially associated with imprinting125. Of the eight 

UPD events detected in this study that were entirely or mostly heterodisomic, 7 of 8 

were on a chromosome associated with imprinting disorders.  
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ID' ';log10'p'val' UPDchr' size' homologue;pattern' origin'

258308*" 323" 17" complete" isodisomy" maternal"

260453*" 323" 9" complete" isodisomy" maternal"

259010*" 323" 2" complete" isodisomy" maternal"

261229*" 323" 14" complete" mixed"(80/20"h/i)" maternal"

258370*" 323" 1" complete" isodisomy" paternal"

257814*" 313" 1" segmental"12Mb" isodisomy" maternal"

270667" 162" 1" complete" isodisomy" paternal"

273472" 49" 1" segmental"8Mb" isodisomy" maternal"

277020" 179" 2" complete" mixed"(50/50"h/i)" maternal"

266581" 136" 4" complete" mixed"(30/70"h/i)" maternal"

273401" 162" 7" complete" isodisomy" maternal"

271037" 67" 11" segmental"_6Mb" isodisomy" maternal"

265596" 248" 14" complete" heterodisomy" maternal"

265472" 216" 15" complete" heterodisomy" maternal"

277316" 289" 15" complete" mixed"(75/25"h/i)" paternal"

271552" 314" 15" complete" mixed"(75/25"h/i)" paternal"

264527" 226" 16" complete" mixed"(75/25"h/i)" maternal"

271631" 297" 16" complete" mixed"(75/25"h/i)" maternal"

266931" 119" 17" complete" isodisomy" paternal"

271839" 154" 22" complete" heterodisomy" maternal"

264255" 102" 22" complete" isodisomy" maternal"

Table 2-3 Summary table of first stage (samples with a *) and second stage detections. h/i: 

heterodisomy/isodisomy.  

2.4.5 Investigating UPD frequency 
Compared with the widely quoted birth prevalence of UPD (1/3,500)121 the proportion 

of UPD events detected in the trio analyses (21/4,032) is significantly higher (binomial 

test p value 1.21e-19). The UPD rate at birth in the general population has been 

estimated on extrapolation from clinically relevant UPD events at a single locus, and 

thus is potentially susceptible to variation among chromosomes in UPD rate. To 

generate an empirical estimate of the population prevalence of all classes of UPD would 

require dense genome-wide genotypes for tens of thousands of parent–offspring trios 
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sampled randomly from the population; such data are not currently available. However, 

it is possible to estimate the rate of uniparental isodisomy from dense genome-wide 

genotypes on unrelated individuals since isodisomy manifests with an easily detectable 

signature: a long region of homozygosity. Identity by descent processes, such as 

consanguinity156 or cryptic relatedness157 similarly generate long regions of 

homozygosity, but are distinguishable from isodisomy because these other processes 

often involve multiple chromosomes and are rarely longer than 20 Mb156. 

 A total of 16,881 samples from the Wellcome Trust Case Control Consortium 

(WTCCC) data set were used to develop an empirical estimate of the rate of complete 

uniparental isodisomy by observing the number of samples containing a single 

chromosome burden of large regions of homozygosity. First, PLINK149 was used to 

identify large (>10 Mb) tracts of homozygosity for each sample, and retained samples 

with a large homozygous region or regions confined to a single chromosome. There 

were many (103) samples, which satisfied this criterion. Of these, only a single sample 

appeared to have whole-chromosomal isodisomy, but a further five samples had 

significant homozygosity that extended over at least half of the chromosome. These five 

samples comprised four telomeric events on chromosomes 4, 21, 22, 22, and one on 

chromosome 4 with two large interstitial regions of homozygosity. As the 

homozygosity of these events covered the majority of the chromosome and represents 

the only major tract of homozygosity in these genomes, these events were considered 

likely to reflect mixtures of isodisomy and heterodisomy and less unlikely to reflect 

inherited homozygosity. Under the conservative assumption that all these chromosomes 

reflect complete uniparental disomy of a chromosome in these individuals, this 

represents a frequency of 6 uniparental disomy events in 16,881 (0.036%) individuals, 

which is not significantly different from the reported frequency of 1 in 3,500 (0.029%, 

binomial test p value of 0.4934). Notably, by enforcing the same criteria to define a 

UPD event (the majority of the chromosome homozygous and large homozygosity 

confined to a single chromosome), there were twelve such UPD detections in DDD. 

This reflects a proportion ten times greater and significantly enriched compared with the 

population estimate (binomial test p value of 4e-9); additionally, this proportion is 

significantly enriched compared with the WTCCC data (Fisher exact test, p value of 

1.5e-5). 
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 The WTCCC data were used to investigate the prevalence of segmental 

UPD, however, despite stringent filtering of sub-chromosomal segments of 

homozygosity, the expected pattern of terminal segmental UPD events was not 

detected132. Therefore, most of the regions of segmental homozygosity in the WTCCC 

were not likely reflective of segmental UPD events and estimating prevalence of 

segmental UPD events from this data set was not undertaken. Analyses of segmental 

UPD, which are typically mosaic131, are better suited to algorithms that interrogate the b 

allele frequency, rather than genotype data. 

2.4.6 Investigating pathogenicity in children with UPD events 
A fully comprehensive understanding of pathogenic variation in each child with a 

detected UPD event requires an in-depth analysis that is well beyond the scope of this 

dissertation. The genetic basis of disease in children with detected UPD events may be 

fully, partially, or not explained by the UPD event. Still, the enrichment of UPD 

observed in this study suggests that most of these UPD events are pathogenic, providing 

a target to focus candidate variant assessment. I analysed the UPD chromosome as a 

source of pathogenic variation and also included variants that were identified in the 

DDD clinical reporting pipeline (see Methods 2.3.7). Note that residual trisomy 

represents an additional source of UPD-associated pathogenicity and whilst the UPD 

events presented in this chapter were not later associated with mosaicism, the possibility 

of hidden residual mosaicism cannot be excluded. Mosaic structural variation is 

addressed in detail in chapters 3 and 4. 

 To summarise the results detailed below (Table 2-4, Table 2-5), of 4,320 

children investigated, a UPD event was discovered in 21 children. In 14 cases, the UPD 

chromosome provided the best source of pathogenic candidates, including seven UPD 

events associated with imprinting syndromes. In one case, the best candidate variant 

was a de novo mutation not located on the UPD chromosome. In the remaining cases, 

no strong candidate variants were detected. I now describe in greater detail the 

genotype-phenotype associations for these 21 child patients. 

2.4.6.1 UPD chromosome is the dominant source of candidate variant(s) 
In three patients (1-3), UPD detection identified UPD events on imprinting-associated 

chromosomes for which NHS-investigation had already uncovered the UPD events and 

provided diagnosis. Patient 1 (ID273401) had Silver-Russel Syndrome, patient 2 
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(ID277316) had Angelman Syndrome, and patient 3 (ID265472) had Prader-Willi 

Syndrome. 

 For patients 4-6, the child’s phenotypes were most consistent with imprinting 

syndromes but the child had not yet been diagnosed. Patient 4 (ID265596) had a 

maternal UPD of chromosome 14, a UPD event that causes Temple Syndrome. Most of 

the listed phenotypes listed in DECIPHER for this individual – intrauterine growth 

retardation (IUGR), generalised hypotonia, feeding difficulties in infancy, motor delay 

and frontal bossing – are consistent with Temple Syndrome158. There were no other 

genetic abnormalities detected in the child. 

 Patient 5 (ID261229) had maternal UPD of chromosome 14. Temple Syndrome 

(maternal UPD14) is the primary source for most of the child’s phenotypes, including 

truncal obesity (weight 99th centile), moderately short stature (height first centile), and 

mild intellectual disability158, while the diabetes mellitus phenotype is likely attributed 

to the metabolic consequences of the disorder (BMI 38; class II obesity). In addition, 

the child has sensorineural hearing impairment, which has not been reported as a sign of 

Temple Syndrome. This proband had novel compound heterozygous variants - a 

missense substitution inherited from the mother and a stop gained mutation inherited 

from the father - in the TECTA gene. TECTA encodes an extracellular matrix protein 

(tectorin alpha) of the tectorial membrane, the surface of the sensory epithelium of the 

cochlea159, and is a well known cause of autosomal dominant (OMIM 601543) and 

autosomal recessive (OMIM 603629) hearing loss. Neither parent has a documented 

hearing disability, suggesting that the compound heterozygosity has resulted in the 

recessive form of hearing loss in the child. Recently, a hearing-impaired proband with 

normal-hearing parents was found to contain compound heterozygous variants 

(missense and splicing mutation leading to truncated protein) in the TECTA gene, which 

was indicated to be definitely pathogenic through in vitro functional characterisation160. 

Thus the phenotypes in this child are best explained by considering both the imprinting 

syndrome on the UPD chromosome in addition to the recessive-mediated hearing loss 

caused by a mutation on a different chromosome.  

 Patient 6 (ID271552) had a paternal UPD of chromosome 15, a UPD event 

causing an imprinting syndrome called Angelman syndrome. Most of the child’s 

features -- sleep disturbance, severe developmental delay, and characteristic dysmorphic 

features -- are consistent with Angelman syndrome. In addition, the child has a rare 
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(MAF of 0.00028) homozygous splice-acceptor variant in gene DUOX2, a gene for 

which homozygous stop mutations have been associated with congenital 

hypothyroidism (CH)161. Abnormal sleep patterns and intellectual disability are seen in 

Angelman syndrome as well as in CH, so it is possible that CH may explain some of the 

child’s signs. It is not clear if the child was screened for CH; if not, clinical 

investigation of thyroid hormone level may be warranted, and any disturbances 

medically treated. 

 For the remaining patients, the UPD events are not closely associated with 

imprinting syndromes. For patient 7, the UPD chromosome is related to a pathogenic 

rearrangement, and for patients 8-14, the best candidate mutations are recessive 

candidates in isodisomic regions. 

 Patient 7 (ID257814) had a maternal segmental UPD on chromosome 1. 

Investigation of copy number abnormalities in this sample identified a 12-Mb de novo 

triplication event flanking the UPD event. In collaboration with Carvalho et. al, we 

showed that the UPD and flanking triplication resulted from a replication-induced DNA 

repair mechanism, microhomology-mediated break-induced replication (MMBIR)162. 

This large rearrangement was considered definitely pathogenic and the finding returned 

to the patient and family. 

 For the following patients, the UPD event is considered likely pathogenic 

through conversion to homozygosity by isodisomy of a variant inherited from a parent 

who was heterozygous as this locus (a carrier). Patient 8 (ID266581) had maternal UPD 

of chromosome 4 with dysmorphic features and cardiac abnormalities: flat occiput, low-

set ears, short philtrum, impaired ocular abduction, bilateral ptosis, overlapping fingers, 

deep palmer creases, short thumb, pulmonary artery stenosis, and abnormalities of the 

heart valves. The child had two rare homozygous mutations at isodisomic regions on the 

UPD chromosome, a suspected loss-of-function splice acceptor variant in the IDUA 

gene with MAF of 0.00056 and a missense variant in the IGFBP7 gene. Hurler 

syndrome is a recessive disease due to loss-of-function mutations in IDUA and causes a 

severe disease, with some features that are consistent with the child’s presentation 

although the child does not appear to have hepatosplenomegaly, which is common in 

this syndrome. This variants was considered uncertainly pathogenic nevertheless merits 

additional investiation. A biochemical assay for excess mucopolysaccharides in urine is 

diagnostic and may be warranted for this child pending further clinical evaluation. 
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Enzyme replacement therapies are currently in use for Hurler syndrome so clinical 

assessment should be pursued. 

 Patient 9 (ID258308) had UPD of chromosome 17. This child had delayed 

developmental milestones, growth retardation, microcephaly, and suffers from seizures 

intractable to medical intervention. She was found to have decreased serum magnesium 

and renal magnesium wasting but genetic testing for diseases of renal hypomagnesium 

wasting (TRPM6 and SCN1A gene testing) was normal. Her seizures did not resolve 

after intravenous magnesium infusion and resulting restoration of blood magnesium to 

normal range, suggesting that hypomagnesaemia alone is not the cause of her seizures. 

An MRI showed grossly normal cerebral architecture. The child has three variants in 

DDG2P disease genes (PGAP3, SCN4A, CCDC40), all in isodisomic regions of 

chromosome 17. Two of these genes are strong candidates for follow-up. Recessive 

mutations in PGAP3 result in ‘hyperphosphatasia with mental retardation syndrome 

1163’ and the child has a very rare (0.0006 MAF) missense mutation in this gene. The 

child also has a very rare (0.0012 MAF) missense SNV in SCN4A, a gene that encodes a 

subunit of a voltage-gated sodium channel. This sodium channel is implicated in a 

diversity of neuromuscular disorders, such as periodic paralysis and myotonia 

congenita, diseases that mimic seizure disorders164,165. While channelopathies often 

follow a dominant mode of inheritance166, recessive modes have been seen as well167, 

and several genes encoding channel proteins are known to underlie severe seizure 

disorders, such as KCNQ2 (Ohtahara syndrome)168 and prologues of SCN4A, such as 

SCN1A169, SCN2A170, and SCN9A171. These two mutations are the best candidates in this 

child. In addition the child has homozygous stop-gained mutations in CCDC40, a gene 

associated with ciliary dyskinesia, but the child’s phenotypes do not match this disease.  

 Patient 10 (ID264255) is a male patient with dyslexia and progressive pes 

cavus. The UPD chromosome is 22, maternally inherited, and the isodisomic interval 

contains a homozygous rare (MAF of 0.00012) stop-gained mutation in the SBF1 gene. 

This gene is associated with a recessive form of Charcot-Marie-Tooth syndrome, type 

4B3, a disease associated with pes cavus and distal neuropathy. However, this gene is 

not in the DDG2P set, presumably because most forms of Charcot-Marie Tooth do not 

appear until early adulthood. Family history reports pes cavus in the father, suggesting 

that the child’s pes cavus may be related to an inherited paternal variant, however, the 

mutation was maternally inherited. Suspicion that a sample swap between parents may 
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have occurred was disabused after inspection of the number of mapped reads to 

chromosome Y showed that the labelled father and labelled mother were male and 

female, respectively (data not shown). The inconsistency between shared phenotypes 

and the origin of the SBF1 variant raises doubt to the pathogenicity of the mutation. 

 Patient 11 (ID271037) has a 16.2 Mb telomeric segmental UPD of 

chromosome 11, of maternal disomy. The child has several abnormalities, including 

nystagmus and developmental delay. No known imprinting disorder arises from 3’ 

telomeric disomy of chromosome 11. However, in the isodisomic region of 

chromosome 11, the child has a homozygous, rare (MAF of 0.00012) missense variant 

in ROBO3. Homozygous missense variants of this gene have been implicated in ‘gaze 

palsy with progressive scoliosis’, a condition that may be consistent with the child’s 

nystagmus. However the child has other phenotypes, such as vesicouteral reflux, 

hypotelorism, joint hypermobility, and posteriorly rotated ears, which appear to 

represent syndromic dysmophology; therefore, the variant has uncertain pathogenicity. 

 The best disease candidates for patients 12 through 14 were in isodisomic 

intervals but the relationship between these mutations and each child’s phenotypes is 

more tenuous. Patient 12 (ID266931) has paternally inherited disomy of chromosome 

17. His phenotypes include ID, oral dysmorphology and obesity. The child “may have 

had 1 or 2 words at 1 year old, now none”. In the isodisomic UPD region, the child has 

a homozygous rare (MAF of 0.0048) missense variant in NAGS, a gene in which 

frameshift mutations have been associated with N-acetylglutamate deficiency172, a urea 

cycle disorder, which results in regressive phenotypes. Nevertheless, the effect of 

missense mutations on this gene is not well known and the variant was considered of 

uncertain pathogenicity. 

 Patient 13 (ID270667) has a uniparentally inherited disomy of chromosome 1. 

The child has aganglionic megacolon, microcephaly, ID, ventricular septal defect and 

pulmonic stenosis, and short stature. The child has several (9) homozygous missense 

and loss of function variants on the UPD chromosome. Notable variants include a rare 

(MAF of 0.00098) homozygous missense variant in CAMTA1, a gene which has been 

associated with DD and constipation, the latter, a phenotype which may be reflective of 

abnormalities in peristalsis. The child has a rare (MAF of 0.0002) homozygous splice 

region variant in FLG, a gene associated with a ichthyosis vulgaris, and a rare (0.003) 

homozygous missense variant in ASPM, a gene associated with microcephaly, a rare 
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(0.006) homozygous missense variant in PARP1, a gene associated with mental 

retardation. These variants have uncertain pathogenicity. 

 Patient 14 (ID260453) had complete isodisomy of chromosome 9. This is a 15-

yr-old male patient with developmental delay and intellectual disability, recruited 

following noninformative aCGH CNV analysis. His family history was notable for 

having several second-degree family members with similar phenotypes. The child also 

has a congenital heart defect. As the clinical features were relatively common among 

children with congenital disorders, it was more challenging to use phenotypic matching 

to identify specific genetic candidates in this patient. The child has rare functional 

variants in four DDG2P disease genes (CDK5RAP2, LAMC3, HNRNPU, ROBO3), two 

of which (CDK5RAP2 and LAMC3), lie in isodisomic regions. CDK5RAP2 is 

associated with recessive microcephaly, but the child’s head circumference is not 

grossly abnormal (5th centile). LAMC3 is associated with cortical malformations; the 

child had a normal MRI. Another candidate is the de novo missense mutation in 

HNRNPU, a gene on chromosome 1 listed in DDG2P as a ‘possible DD gene’. This de 

novo variant is well supported by sequencing data (11 of 22 sequence reads in proband 

and absent in well-covered parents). The variant has never been seen before in the DDD 

study; it is exceedingly rare. 

2.4.6.2 Non-UPD chromosome is the dominant source of candidate variant(s) 

 Patients 15 (ID277020) had a UPD event detected on chromosome 2. She 

exhibited short stature, microcephaly, moderate global developmental delay, delayed 

skeletal maturation. The child had heterozygous missense variants in five DDG2P genes 

(GRHL3, POGZ, FLNB, ELN, SCN8A), which were in the DDG2P gene list and were 

very rare. The best candidate mutation is the FLNB gene173, a gene on chromosome 3 in 

which missense mutations are associated with a dominant disease of skeletal 

development, Larsen syndrome. According to DECIPHER, parents share a similar 

phenotype but it is not listed which phenotype is shared. 

2.4.6.3 Variants with uncertain pathogenicity 
Patient 16 (ID259010) had maternal UPD of chromosome 2. This is a 7-yr-old male 

patient, with a complex phenotype profile including global developmental delay, 

glandular hypospadias, overriding toe and bicuspid aortic valve. Recently, a female 

child, also with maternal UPD of chromosome 2 and complex phenotype, distinct from 

our patient, had been exome sequenced and many (18) candidate variants were 
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identified on the UPD chromosome, none reported to be likely pathogenic174. None of 

that girl’s phenotypes is coincident with this patient, suggesting that an imprinting 

disease is not the likely cause of the diseases in these children. There were no strong 

candidates in this child. There were three variants in DDG2P disease genes (EIF2AK3, 

AGXT, ALMS1), all on the isodisomic UPD chromosome, were observed. EIF2AK3 is 

the cause of Wolcott-Rallison Syndrome, which is not consistent with this child’s 

phenotypes. AGXT is the cause of hyperoxaluria but this child does not have kidney 

stones. Defects in ALMS1 are a cause of Alstrom Syndrome, but this child does not 

have multiorgan dysfunction.  

 There were two children, patients 17 (ID271631) and 18 (ID264527), with 

maternal UPD of chromosome 16. Both UPD events had relatively small regions of 

isodisomy (only about 25% of the chromosomes), and no candidate mutations were 

present in these isodisomic regions, which may suggest that the UPD event is 

pathogenic but not through recessive causation. Maternal UPD of chromosome 16 is 

inconsistently associated with abnormalities, although intrauterine growth retardation 

may be common, children with UPD maternal 16 have “variable outcome from almost 

normal to only growth retardation and rarely to malformation and/or mental 

retardation”175. Given the inconsistency of the phenotypes between these children and 

the tenuous association of imprinting abnormalities with chromosome 16, these UPD 

detections have uncertain pathogenicity; additionally, there were no strong recessive or 

de novo candidates in these children. Female patient 17 (ID271631) exhibited IUGR, 

pulmonic stenosis, GERD, drooling, talipes equinovarus, overfriendliness, and 

coordination abnormalities and has a de novo frameshift mutation in the DDX3X gene 

on the X chromosome, a gene associated with X-linked recessive mechanism of DD in 

males; however the consequences of a heterozygous mutation in this gene in females is 

not documented. Male patient 18 (ID264527) had a low birth weight (-2.14 standard 

deviations) suggestive of intrauterine growth retardation but had several severe 

phenotyepes (including autism, aphasia, global developmental delay) suggesting an 

underlying genetic syndrome not explained solely by the UPD event. 

 Patient 19 (ID271839) had a UPD on chromosome 20. He had an arachnoid 

cyst, clinodactyly of the 5th finger, conductive hearing impairment, epicanthus, global 

developmental delay, hypertelorism, rhizomelic short stature, tetralogy of fallot, 

triangular mouth, uplifted earlobe. The child has a de novo ‘splice region’ mutation in 

SCRAP a gene causing very rare Floating-Harbor syndrome, which also causes 
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clinodactyly, short stature, and some similar facial phenotypes. However, pictures were 

not available on DECIPHER to assess phenotypic concordance and the ‘splice region’ 

variant was considered as a variant of uncertain pathogenicity. 

 Patients 20 (ID273472) and 21 (ID258370) had UPD events on chromosomes 

not associated with imprinting disorders, had no homozygous variants in DDG2P genes 

that remained after clinical filtering, and no isodisomic variants. 
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ID' mut_type' chr' pos' gene' ' maf' gt' cq' fun

c?'270667" UPDchr:1" " " " " " " "

270667" RareHomIso" 1" 7798367" CAMTA1_yes" 0.000976" 1/1" missense" fn"

270667" RareHomIso" 1" 68564392" GNG12_AS1_no,WLS_no" 0.000488" 1/1" frameshift" lof"

270667" RareHomIso" 1" 92756989" GLMN_yes" 0.002483" 1/1" missense" fn"

270667" RareHomIso" 1" 152287956" FLG_yes,FLG_AS1_no" 0.000244" 1/1" splice_region" fn"

270667" RareHomIso" 1" 156693150" ISG20L2_no" 0.000122" 1/1" frameshift" lof"

270667" RareHomIso" 1" 197060077" ASPM_yes" 0.002897" 1/1" missense" fn"

270667" RareHomIso" 1" 226550829" PARP1_yes" 0.006468" 1/1" missense" fn"

270667" RareHomIso" 1" 227152761" ADCK3_yes" 0.001655" 1/1" missense" fn"

270667" RareHomIso" 1" 227152778" ADCK3_yes" 0.003586" 1/1" missense" fn"

258370" UPDchr:1" " " " " " " "

273472" UPDchr:1" " " " " " " "

259010" UPDchr:2" " " " " " " "

259010" RareHomIso" 2" 73786275" ALMS1_yes" 0.000122" 1/1" splice_region" fn"

259010" RareHomIso" 2" 88883014" EIF2AK3_yes" 0.005793" 1/1" missense" fn"

259010" RareHomIso" 2" 241817472" AGXT_yes" 0.000488" 1/1" missense" fn"

277020" UPDchr:2" " " " " " " "

277020" ClinFilt" 1" 24673119" GRHL3_yes" 0.000854" 1,0,1" missense" fn"

277020" ClinFilt" 1" 151400289" POGZ_yes" 0.000414" 1,1,0" missense" fn"

277020" ClinFilt" 3" 58118639" FLNB_yes" 0.000732" 1,1,0" missense" fn"

277020" ClinFilt" 7" 73474862" ELN_yes" ." 1,1,0" missense" fn"

277020" ClinFilt" 12" 52099216" SCN8A_yes" ." 1,1,0" missense" fn"

266581" UPDchr:4" " " " " " " "

266581" RareHomIso" 4" 994668" IDUA_yes" 0.000552" 1/1" splice_acceptor" lof"

266581" RareHomIso" 4" 57976289" IGFBP7_yes" 0.000138" 1/1" missense" fn"

260453" UPDchr:9" " " " " " " "

260453" RareHomIso" 9" 123171581" CDK5RAP2_yes" 0.000122" 1/1" missense" fn"

260453" RareHomIso" 9" 133932355" LAMC3_yes" 0.000138" 1/1" missense" fn"

260453" ClinFilt" 11" 124745468" ROBO3_yes" 0.001655" 1,0,1" missense" fn"

260453" ClinFilt" 11" 124746198" ROBO3_yes" 0.007811" 1,1,0" missense" fn"

260453" DeNovo" 1" 245027192" HNRNPU_yes" 0" 0/1" missense" fn"

271037" UPDchr:11" imprinting" " " " " " "

271037" RareHomIso" 11" 124739427" ROBO3_yes" 0.000122" 1/1" missense" fn"

264527" UPDchr:16" imprinting" " " " " " "

271631" UPDchr:16" imprinting" " " " " " "

271631" ClinFilt" X" 41205794" DDX3X_yes" ." 1,0,0" frameshift" lof"

271631" CNVs" 16" 28326710" 28391016" 64306" del" " "

271631" DeNovo" 11" 6652911" DCHS1_yes" 0" 0/1" missense" fn"

271631" DeNovo" X" 41205794" DDX3X_yes" 0" 0/1" frameshift" lof"

258308" UPDchr:17" " " " " " " "

258308" RareHomIso" 17" 37824754" PGAP3_yes" 0.000552" 1/1" missense" fn"

258308" RareHomIso" 17" 62018952" SCN4A_yes" 0.001655" 1/1" missense" fn"

258308" RareHomIso" 17" 78021155" CCDC40_yes" 0.006345" 1/1" stop_gained" lof"

266931" UPDchr:17" " " " " " " "

266931" RareHomIso" 17" 42082405" NAGS_yes" 0.004828" 1/1" missense" fn"

271839" UPDchr:22" " " " " " " "

271839" DeNovo" 16" 30745810" SRCAP_yes" 0" 0/1" splice_region" fn"

264255" UPDchr:22" " " " " " " "

264255" RareHomIso" 22" 50903104" SBF1_no" 0.000122" 1/1" stop_gained" lof"
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265472" UPDchr:15" imprinting" " " " " " "

265472" ClinFilt" 8" 6372298" ANGPT2_no" 0.004393" 2,1,1" missense" fn"

257814" UPDchr:1" " " " " " " "

257814" CNVs" 1" 11860126" 20573006" 8712880" dup" " "

277316" UPDchr:15" imprinting" " " " " " "

277316" DeNovo" 4" 159627433" ETFDH_yes" 0" 0/1" missense" fn"

273401" UPDchr:7" imprinting" " " " " " "

261229" UPDchr:14" imprinting" " " " " " "

261229" ClinFilt" 11" 121000407" TECTA_yes" 0.000122" 1,0,1" stop_gained" Lof"

261229" ClinFilt" 11" 121008311" TECTA_yes" 0.000122" 1,1,0" missense" Fn"

271552" UPDchr:15" imprinting" " " " " " "

271552" RareHomIso" 15" 45392428" DUOX2_no" 0.000276" 1/1" splice_acceptor" lof"

271552" ClinFilt" 8" 144994508" PLEC_yes" 0.000138" 1,0,1" missense" fn"

271552" ClinFilt" 8" 144999571" PLEC_yes" 0.000414" 1,1,0" missense" Fn"

265596" UPDchr:14" imprinting" " " " " " "

Table 2-4 Investigating candidate variants, including UPD events, de novo variants, variants 

passing clinical filtering, recessive variants and CNVs. Fn: functional, lof: loss-of-function. _yes and 

_no suffix refers to presence or absence in DDG2P gene set. 
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Decipher'ID' Phenotypes'from'Decipher'

257814"

Cutaneous"finger"syndactyly,"2_3"toe"syndactyly,"Short"nose,"Epicanthus,"Bilateral"single"transverse"palmar"

creases," Wide" intermamillary" distance," Abnormality" of" the" skin," Delayed" speech" and" language"

development"

258308"
Seizures," Seizures," Bruxism," Global" developmental" delay," Delayed" speech" and" language" development,"

Delayed"gross"motor"development,"Renal"magnesium"wasting,"Hypomagnesemia"

258370"

Short" attention" span," Moderately" short" stature," Joint" hypermobility," Impaired" T" cell" function," IgG"

deficiency," Slow_growing" hair," High" anterior" hairline," Abnormality" of" the" nasal" tip," Abnormality" of" the"

skeletal"system,"Hypermetropia"

259010"
Glandular" hypospadias," Overlapping" toe," Bicuspid" aortic" valve," Global" developmental" delay," Meckel"

diverticulum,"Eczema,"Gastroesophageal"reflux"

260453"
Abnormality"of"the"heart,"Global"developmental"delay,"Specific"learning"disability,"Abnormality"of"prenatal"

development"or"birth"

261229"
Abnormality"of"macular"pigmentation,"Truncal"obesity," Intellectual"disability" "mild,"Sensorineural"hearing"

impairment,"Moderately"short"stature,"Diabetes"mellitus,"Abnormality"of"the"toenails"

264255"

Periventricular" gray" matter" heterotopia," Microcephaly," Pes" cavus," Abnormality" of" the" skeletal" system,"

Delayed" speech" and" language" development," Myopia," Specific" learning" disability," Generalized" keratosis"

follicularis,"Achilles"tendon"contracture"

264527"
Hemihypertrophy" of" lower" limb," Deeply" set" eye,"Moderate" global" developmental" delay," Absent" speech,"

Autism"spectrum"disorder,"Hypospadias"

265472"
Delayed" speech" and" language" development," Generalized" neonatal" hypotonia," Moderate" global"

developmental"delay"

265596"
Intrauterine" growth" retardation," Cryptorchidism," Generalized" hypotonia," Oligohydramnios," Feeding"

difficulties"in"infancy,"Large"fontanelles,"Relative"macrocephaly,"Motor"delay"

266581"

Flat" occiput," Sparse" scalp" hair," Low_set" ears," Bilateral" ptosis," Broad" lateral" eyebrow," Short" philtrum,"

Abnormality" of" the" nose," Abnormality" of" the" lip," Infantile" muscular" hypotonia," Wide" intermamillary"

distance,"Deep"palmar"creases,"Deep"plantar"creases,"Abnormality"of"the"heart"valves,"Overlapping"fingers,"

Neonatal" respiratory" distress," Global" developmental" delay," Short" thumb," Congenital" laryngeal" stridor,"

Asymmetry" of" the" thorax," Peripheral" pulmonary" artery" stenosis," Bicuspid" aortic" valve," 11" pairs" of" ribs,"

Impaired"ocular"abduction"

266931"
Intellectual"disability,"Aplasia"cutis"congenita"of"midline"scalp"vertex,"Low"hanging"columella,"Downturned"

corners"of"mouth,"Obesity"

270667"
Aganglionic" megacolon," Microcephaly," Intellectual" disability" " moderate," Low" anterior" hairline," Broad"

thumb,"Synophrys,"Ventricular"septal"defect,"Pulmonic"stenosis,"Proportionate"short"stature"

271037" Vesicoureteral" reflux," Nystagmus," Moderate" global" developmental" delay," Hypotelorism," Plagiocephaly,"
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Broad"forehead,"Sacral"dimple,"Joint"hypermobility,"Low_set""posteriorly"rotated"ears"

271552"
Severe" global" developmental" delay," Sleep" disturbance," Horizontal" eyebrow," Deeply" set" eye," Prominent"

nose,"Clinodactyly"of"the"5th"finger"

271631"
Pulmonic" stenosis," Intrauterine" growth" retardation," Gastroesophageal" reflux," Drooling," Talipes"

equinovarus,"Abnormality"of"coordination,"Overfriendliness"

271839"

Rhizomelic"short"stature,"Tetralogy"of"fallot,"Arachnoid"cyst,"Global"developmental"delay,"Periauricular"skin"

pits," Clinodactyly" of" the" 5th" finger," Preauricular" skin" tag," Nevus" flammeus," Hypertelorism," Epicanthus,"

Uplifted"earlobe,"Abnormality"of"the"helix,"Triangular"mouth,"Conductive"hearing"impairment"

273401"
Intrauterine" growth" retardation," Postnatal" growth" retardation," Broad" forehead," Asymmetric" growth,"

Global"developmental"delay,"Small"face"

273472"

Jaundice," Global" developmental" delay," Tall" stature," Truncal" obesity," Brachycephaly," Abnormality" of" skin"

pigmentation," Hypotelorism," Abnormal" number" of" incisors," Joint" hypermobility," Pes" cavus," Specific"

learning"disability"

277020" Short"stature,"Microcephaly,"Moderate"global"developmental"delay,"Delayed"skeletal"maturation"

277316"
Umbilical" hernia," Mild" global" developmental" delay," Protruding" tongue," Uplifted" earlobe," Drooling,"

Brachycephaly,"Tall"stature"

Table 2-5 Phenotypes recorded in Decipher for each of the children with detected UPD events. 
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2.5 Discussion 
In this chapter I described the development and implementation of UPDio, a new 

software tool to detect uniparental disomy from exome sequence data. UPDio has 

unique advantages compared with existing trio-based UPD detection programs for 

mitigating the effect of genotype errors and heterozygous deletions. First, genotype 

errors have the potential to over-segment UPD calling in SNPtrio and UPDtool, tools 

that detect runs or blocks of UPD, but have little effect on disrupting the per 

chromosome rate of informative genotypes, the metric used by UPDio. Second, SNPtrio 

and UPDtool are vulnerable to false isodisomy created by hemizygous regions in the 

proband, while UPDio has an integrated CNV filter to avoid common CNV and user-

specified sample-specific CNV regions before the binomial test is applied. Since 

deletions generate genotypic signatures identical to isodisomy, this step is essential to 

prevent the unintentional ascription of deletions as UPD. UPDio enables users to 

remove these erroneous signatures from UPD analyses using data from a single 

platform, by providing sample-specific CNVs in BED176 or VCF format. In addition, 

the statistical test applied in UPDio intrinsically adjusts for differences in platform 

genotyping density, which varies in orders of magnitude between exome data, SNP 

data, and whole-genome data. Also, only UPDio outputs a measure of statistical 

confidence, a p value that can be calibrated by the user to achieve the desired sensitivity 

and specificity. Only UPDio can read single-sample and multi-sample VCF files, the 

modern genotype file standard, and thus can be more easily assimilated as a module into 

existing pipelines. While UPDtool was the fastest method of the three tested, UPDio 

performs additional processing to cleanse poor-quality genotypes and avoid copy 

number regions; nevertheless, it completes UPD calling on high-density SNP trio data 

in under three minutes, and is the least memory intensive of the three methods for 

detecting UPD events. In fact, memory efficient iterator functions enabled UPDio to 

process a whole-genome trio using less memory than either of the competing programs 

used to process a SNP microarray trio. 

 The relative accuracy of the three trio-based UPD calling software was 

compared using each tool’s default parameter settings on the same set of simulated data. 

Marked differences in the sensitivity and specificity of these three software tools were 

observed. The practical utility of SNPtrio is greatly hampered by its lack of specificity, 

whereas UPDtool exhibited very low sensitivity, was only capable of detecting the very 
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largest of simulated UPD events, and would miss most small UPD events. In contrast, 

using default parameters, UPDio was sensitive and specific for simulated UPD events at 

1 Mb from SNP data and 10 Mb from exome data, with broadly equivalent sensitivity to 

SNPtrio. There are several factors that likely account for these dramatic differences in 

calling accuracy. Probably the most important factor is due to the need to finely 

calibrate SNPtrio and UPDtool, which use statistical approaches that are more 

vulnerable than is UPDio to platform differences in genotype density and genotype 

error rates. Unfortunately, unlike UPDio, SNPtrio and UPDtool do not offer a 

convenient user-adjustable threshold of statistical threshold, such a p value. 

 In this study, the sensitivity for detecting smaller UPD events was lower for 

trios in exome data primarily because the number of informative sites genotyped was 

approximately 10x fewer, although other factors, such as less even distribution and 

slightly higher genotyping error rate may have been contributory. The use of multi-

sample VCF files in stage two of the analysis increased the number of assayed sites, by 

50% on average, compared with the use of single-sample VCFs, which was likely in 

part to the recovery of rare variants in the proband, which had been excluded, in the first 

stage analysis. Nevertheless, the detection sensitivity measured by simulations was 

100% for whole-chromosomal UPD events, and was sensitive for most simulated 

segmental events at the 1 Mb level in SNP data and the 10-Mb size for exome data. This 

size is clinically relevant as non-trio-based studies of UPD typically only investigate 

potential UPD when regions of homozygosity exceed 10 Mb36. 

 Smaller UPD events, such as those affecting 1 Mb in size, are challenging to 

detect due to a paucity of informative genotypes. For example, SNP microarray data 

contain on average only 14 informative genotypes per megabase window. Still, with 

high-quality genotypes, the occurrence by chance of 14 contiguous UPD characteristic 

genotypes is a very unlikely event, and the previously developed contiguous runs of 

informative genotypes method may be marginally more sensitive than the proposed 

method at detecting events at this size. However, the contiguous runs method is also 

more likely to be sensitive to small runs of UPD-mimicking genotypes occurring by 

chance across the whole genome, lowering specificity. Moreover, smaller UPD events 

are less likely to be pathogenic and are much more likely to be mosaic107, implying that 

alternative UPD detection approaches, based on BAF of proband genotypes, would be 

more appropriate for segmental UPD events. 
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 I implemented UPD detection with UPDio on 1,057 unique trios in the first 

stage of analysis and UPD was detected in six probands. Using UPDio, all six UPD 

events were easily called from both platforms yielding highly significant p values in 

both SNP and exome data. Given this finding and the simulation results, this suggests 

that exome-based trio designs are appropriate to detect UPD, without the requirement to 

run SNP microarrays specifically for this purpose. In the second stage of analysis, 15 

UPD events were detected among 3,263 children. Among all UPD events, eight were at 

least 75% heterodisomic, and would have likely escaped detection using a proband-only 

homozygosity approach for detection.  

 All segmental UPD cases were isodisomic, consistent with mitotic loss of one 

allele and reduplication of the remaining allele. The most common reported mechanism 

underlying UPD is trisomy rescue122, which suggests that that meiotic non-disjunction is 

the most common generating mechanism of UPD. Meiotic non-disjunction most often 

occurs in maternal meiosis I177. The association of trisomy rescue and maternal non-

disjunction predicts that the majority of heterodisomic and mixed UPD events should be 

maternal in origin; concordant with this prediction, 8 of 10 such events were maternally 

derived. Complete isodisomy can originate from a monosomy compensated for by 

reduplication, or by a trisomy rescue event of chromosomes that had not undergone 

recombination. In this study, 3 of 11 complete isodisomies were paternally derived and 

8 of 11 were maternally derived. Given that meiotic non-disjunction is more common in 

females, the former may likely reflect monosomic eggs rescued by reduplication, while 

the latter may likely represent trisomic eggs with non-recombinant chromosomes which 

underwent trisomy rescue.  

 The rate of UPD abnormalities in the studied children was 0.5%, a statistically 

increased rate (p value of 10-19), and represents a 20-fold enrichment compared to 

population prevalence estimates. There are several explanations that could cause the 

high rate seen in this study: 1) a high false-positive rate in UPD detection in DDD, 2) 

the estimation of UPD prevalence in the population is an underestimate and the DDD 

study has higher prevalence of benign UPD by chance alone, 3) some of the UPD 

events are disease causing. There is over-whelming statistical evidence of UPD in the 

six cases from two independent platforms, suggesting that 1) is not the explanation. To 

address the question of whether UPD prevalence in the population has been 

underestimated an empirical estimate the rate of UPD using SNP microarray data on 

unrelated individuals from the Wellcome Trust Case Control Consortium was 
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performed. There are limitations to this approach, mainly that it is indirect (only can 

identify UPD by observing single-chromosome large runs of homozygosity, not directly 

from the inheritance patterns of individual genotypes), and confounded by other causes 

of large runs of homozygosity, such as identity by descent, identity by state, or loss of 

heterozygosity. Notwithstanding these limitations, previous prevalence estimates about 

uniparental disomy in the human population are compatible with these observations. 

Therefore, the suggestion that some individuals with UPD in our study may have UPD-

related disorders warrants further investigation. 

 I examined several sources of genetic variation to identify the basis of disease 

in children with detected UPD events. In 14 of 21 cases, the UPD chromosome 

provided the best source of candidate pathogenic variants. These included seven UPD 

events associated with imprinting syndromes. One UPD event was associated 

mechanistically with a pathogenic 10 Mb triplication. In at least one case, disease was 

best explained by the contribution of both a UPD event (causing the imprinting 

syndrome Temple Syndrome) and a mutation elsewhere on the chromosome (a 

compound heterozygous mutation causing deafness). Exome analysis provided a rich 

source of plausible candidate variants for a follow-up investigation, especially in 

isodisomic regions, as such regions convert to homozygosity an allele inherited from a 

carrier parent, a precarious genetic phenomenon prone to cause recessive diseases. For 

seven patients (8-14), the best candidates were located in isodisomic regions of UPD 

chromosomes. In two cases, strong candidate de novo mutations, not located on the 

UPD chromosome, were identified. Previous analysis has found that de novo SNV 

mutations are the most common mutations causing disease in undiagnosed DDs; 

therefore, it would not be surprising if mutations of this class were identified in some of 

the isodisomic UPD cases. Experimental follow-up is required to definitively implicate 

these novel variants with disease causation.  

 The ascertainment of patients in this study, whom are only recruited once 

clinical genetics services have failed to obtain a diagnosis, may bias against the 

discovery of UPD events that result in a well-recognized imprinting or recessive 

disorders for which routine diagnostic assays are available. Given the broad range of 

recessive and imprinted phenotypes associated with UPD, its detection should be a part 

of the genetic analysis for disease studies more broadly, as it is a small, but important 

piece of the puzzle of pathogenic genomic variation. 
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 As sequencing technologies continue to increase the cost-effectiveness of 

genome-wide sequencing data, the ability to interrogate UPD will improve. The tool 

presented here efficiently scales as files are read line-by-line without storing large data 

hashes, thus making efficient use of memory. Although UPD detection is fundamentally 

limited to a resolution on the scale of tens of kilobases, defined by the density of 

informative genotype configurations in the parents. In addition, the availability of 

sequence data enables the exploration of sequenced-based methods as an orthogonal 

approach for the detection of mosaic UPD, and mosaic structural rearrangements, 

which, due to incomplete aneuploidy rescue and mitotic recombination, are closely 

associated. Chapter 4 presents the investigation of using exome and whole-genome 

sequence data for the detection of large mosaic abnormalities. But first, mosaic 

structural variation using SNP microarray is discussed in chapter 3. 
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3 MOSAIC STRUCTURAL 
VARIATION FROM SNP 
MICROARRAY 

3.1 Publication Note 
Most of the work described in this chapter was previously published earlier this year178. 

Unless explicitly stated otherwise, the analysis described herein is the work I performed 

myself, under the supervision of Matthew Hurles. 

3.2 Introduction 
Rearrangements of genomic structure, termed structural variation, consist of copy-

number and copy-neutral events. Pathogenic structural variation is the cause of genomic 

disorders179. As discussed in chapter 2, constitutive copy-neutral UPD is enriched in 

children with DD and can be detected from trio genotypes but mosaicism distorts allele 

fraction, which confounds genotype prediction and hinders the detection of mosaic 

copy-neutral variation from predicted genotypes. In addition, mosaic copy-number 

variation is not typically detected using genotypes but results in deviation of allele 

fraction. SNP microarray data enable access to a quantitative measure of allele fraction, 

the b allele frequency, which, compared to categorical genotype data, defines with more 

granularity the mixture of alleles underlying mosaic structural abnormalities. This 

chapter discusses the use of SNP microarray data in identifying mosaic copy-number 

and copy-neutral abnormalities, primarily using deviation in allele fraction. 
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 The detection sensitivity for mosaic abnormalities is a function of several 

parameters, some of which are intrinsic to the mosaic event – including event size, 

clonality, type (i.e. loss, gain, LOH); others which are technology dependent – including 

platform (e.g. karyotyping or microarray), number of molecular probes, signal to noise 

ratio of molecular probes; and others which are algorithmic (e.g. single-sample vs. trio-

based tests). 

 Mosaicism can involve multicellular clonality for mutations of any size180,181. 

Reliable detection of small-scale mosaicism requires sequencing data of very high 

depth. Generating such data may be feasible to interrogate specific genes for mutations 

suspected in rare disease and cancer182,183 but it is prohibitively expensive for genome-

wide screening. In contrast, large-scale genomic variation can be detected using 

karyotyping and microarray analysis. In this study, I focussed on mosaic events of at 

least 2 Mb in size, a generally accepted threshold for large structural alterations184, 

allowing a fair basis of comparison for the different chip designs I analysed, and 

concordant with a recent study that used a SNP microarray design and algorithmic 

protocol similar the platform used in the DDD study50. Henceforth in this chapter, the 

term mosaicism will refer to mosaic events of at least 2 Mb in size.  

 Mosaicism of low clonality is difficult to detect because there is a low 

proportion of abnormal cells, reducing the mosaic signal. While karyotyping is still 

widely used in many clinical centres, this approach is insensitive to sub-microscopic 

rearrangements and small supernumerary marker chromosomes185, and is labour-

intensive, since, for example, 30 cells must be counted to exclude 10% mosaicism with 

95% confidence26. Compared to karyotyping, SNP microarray offers a higher-

resolution, higher-throughput assay and has been proposed as a standard of care for 

clinical diagnostics in children with developmental disabilities101. The resolution of 

SNP microarray for mosaicism detection is influenced by probe density and the signal 

to noise ratio of the experiment and the type of mosaic abnormality.  

 The SNP platform generates quantitative measures of summed allelic intensity, 

the log R ratio (LRR), and of allele balance, the B-allele frequency (BAF). When 

genetic heterogeneity exists in assayed cell populations, the BAF deviates from 

expected diploid frequencies (Bdev) and algorithmic approaches translate Bdev into 

mosaic detections. These approaches generally calculate Bdev, then cluster Bdev values 

using a segmentation step, and then use a quality-control step to identify deviations that 

are significant. For example, in the analyses recently presented by Laurie et al.130 and 
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Jacobs et al.50, Bdev is calculated, segmentation is performed by CBS186 or GADA187, 

and quality control is performed by a automated curation (filtering of constitutive 

abnormalities based on the bivariate distribution of BAF and LRR in putative segments) 

and manual curation of remaining putative detections. A similar approach has been used 

to detect structural variation in tumour-normal admixture using ASCAT188, a mosaic 

detection tool for tumours, which uses a tumour-normal sampling approach to identify 

informative mosaic loci, uses piecewise constant fitting189 for segmentation, and then 

uses a grid search to identify the most likely tumour ploidy and clonality that fit the 

data. Mosaic Alteration Detection49 (MAD), introduced in chapter 1 of this dissertation 

is the software tool that was used by Jacobs et al. as the primary engine for mosaic 

detection. As a review, MAD is a popular software tool that identifies segments as 

described above and then uses the average LRR value in each segment to classify 

segments into mosaic type: loss, gain, or loss of heterozygosity. The detection 

sensitivity for MAD on SNP microarrays with approximately 1 million probes for 

events at least 2 Mb in size has been estimated to be limited to loss or LOH events in 

about 10%-90% of cells and gain events in about 20%-80% of cells49,50.  

 The Bdev calculation is based on the absolute value of the difference of BAF 

from expected allele fraction. However, detection power can be improved if phased 

genotype data are available, since it can then be shown that BAF consistently deviates 

towards one parental haplotype, which is less likely to occur by chance alone. Phasing 

can be imputed based on reference haplotypes when dense (high resolution SNP 

microarray) genotyping data are available. For example, a haplotype-aware upgrade of 

ASCAT (the ‘Battenberg’ algorithm) was recently reported190, and J-LOH, an HMM-

based approach also for tumour-normal SNP data, was recently published191. When 

proband-parent trio data are available, proband genotypes can be phased directly, an 

approach avoiding imputation error, and yielding higher quality haplotype prediction. 

triPOD51 is a trio-based mosaic detection tool that leverages parental genotype data to 

phase child genotypes, and has been shown to have increased sensitivity, compared to 

MAD, for detecting events below approximately 10% clonality, but this trio-based 

method requires parent genotype data, which are not always available.  

 Recent investigation using MAD in 60,000 adults who lacked rare genetic 

diseases showed a positive correlation between mosaic frequency and sample age, with 

frequency of mosaic events rising after the age of 4550. In children with DD, the 
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frequency of LOH mosaicism was estimated at 0.26%35, while the frequency of CNV 

mosaicism, based on an average of three studies, was estimated at 0.56%192-194. 

Combining these rates yields a frequency of 0.82%. Conlin et al. detected a higher rate, 

1.1%36 (Table 3-1). One plausible explanation for this higher rate is that one third (8 of 

23) of the events detected in the Conlin et al. study were XX/X0 mosaics, the cause of 

Turner syndrome195, a disease causing short stature and amenorrhoea, phenotypes which 

may not be appreciated until children reach adolescence. Such children are unlikely to 

have been enrolled in the other studies or DDD study, which typically assess children 

with more severe diseases and congenital abnormalities. 

' Platform'

Variation'

type'

No.' of'

Probes' Tissue'

No.' of'

Samples'

No.' of'

Mosaics'

Frequency'

(%)'

Bruno35"
Illumina"

HumanCytoSNP_12"
LOH" 220k"

blood," skin"

biopsy,"saliva"
5,000" 13" 0.26"

Ballif192" SignatureChip"CGH" CNV"" 969"BACs" blood" 3,600" 18" 0.5"

Cheung193" CGH" CNV" 853"BACs"" blood" 2,585" 18" 0.5"

Pham194"
BCM" V8" OLIGO"

(aCGH)"
CNV" 180k"" blood" 10,362" 57" 0.55"

Conlin36"
IlluminaQuad610"

(SNP)"
LOH,"CNV" 620k"

blood,"

fibroblasts"
2,019"

23" (1"

chimera)"
1.1""

Table 3-1 Example. Clinical diagnostic microarray studies investigating mosaicism in children with 

congenital or developmental abnormalities. SNP: Single nucleotide polymorphism. (aCGH) Array 

comparative genomic hybridisation; (BACs) Bacterial artificial chromosomes 

 In comparison to studies of clinically ascertained children with DD, the 

prevalence of mosaicism among children without DD is less well established, although 

evidence suggests that the frequency is extremely low50,130. In the cohort studies 

analysed by Laurie et al., no mosaicism was detected in any of 1,600 individuals aged 

10–19 years old. While 13 mosaic events were found among 6,810 children aged 0-4, a 

frequency of 0.19%, this may reflect ascertainment bias, as the youngest stratum of 

children in this study included children from a cohort study of oral clefts, a potential 

manifestation of pathogenic mosaicism. Thus, the frequency of mosaicism in children 

without DD remained an open question. 

 In this study, to quantify the burden of pathogenic structural mosaicism in 

children with developmental disorders, I determined the frequency of structural 

mosaicism in thousands of children with and without developmental disorders, using 
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both single-sample (MAD), and trio-based (triPOD) detection of structural mosaicism 

from SNP microarray data. Both clinical review of the specific variants and a statistical 

analysis of enrichment of structural mosaicism in cases indicated that the majority of the 

mosaic events detected in probands were pathogenic. 
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3.3 Materials & Methods 

3.3.1 Description of studies 
SNP microarray data from four studies were used in this analysis. 

 The first study was DDD, designed to study children with undiagnosed DD. 

SNP microarray data were available for 3,669 samples, which included 1,303 probands 

and most of their parents. Of the 3,669 total, 3,419 (93%) were derived from saliva and 

the remainder from blood, and of the 1,303 probands, 1,057 (81%) were derived from 

saliva and the remainder from blood. A clinical geneticist prepared a detailed family 

history, documented complications during the pre-natal, peri-natal, and neonatal 

periods, assessed development milestones, recorded phenotypic features in Human 

Phenotype Ontology format (HPO format), and uploaded clinical photographs with 

parental consent3. 

 The second study was the Scottish Family Health Study (SFHS), designed to 

study the genetics of complex traits. Like DDD, this is a trio study, but the main 

subjects are young adults who lacked delays in development. This study was included in 

this experiment as a control study. SNP microarray data were produced primarily from 

blood (84.5% of samples) and the remainder from saliva196.  

 Both the DDD and SFHS cohorts were processed on the same custom 

Illumina® SNP genotyping chip, a design combining 733,059 HumanOmniExpress-

12v1_A-b37 positions and 94,840 additional selected positions. DNA was sourced from 

saliva using Oragene® OG-500 (parent) or OG-575 (child) collection tubes (DNA 

Genotek Inc.). The Sanger Genomics core performed genotyping using Illuminus 148, 

and recorded the results in PLINK format149. I converted these data to VCF format141 

using plinkseq version 0.08. Probe-level quality control measures selected polymorphic, 

well-covered positions that were absent from copy number regions of at least 1% 

frequency (as calculated from a composite of multiple CNV studies)150,151. This resulted 

in 679,891 assayed positions (Table 3-2). Samples were not excluded on outlier levels 

of BAFs or LRRs since large (especially genome-wide) mosaicism will skew these 

measures and I wanted to prevent unintentional filtering of real mosaicism. 

 The third and fourth studies included for analysis were two prospective, 

longitudinal, birth cohort studies: TEDS and ALSPAC. The child participants from 

Avon Longitudinal Study of Parents and Children (ALSPAC), a cohort called “Children 

of the 90s”, consisted of approximately 15,000 children. Illumina SNP microarray data 
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were available for 8,970 unique samples. BAF and LRR metrics were derived by Tom 

Gaunt and Hashem Shihab from the ALSPAC group using raw data and published 

guidelines38. For 5,667 samples, DNA was sourced from cell line material, 3,290 from 

blood or tissue, and 13 had unknown origin. The SNP genotyping chip assayed 478,184 

sites on autosomes and chromosome X aligning to GRCh37 and absent from copy 

number regions of at least 1% frequency (Table 3-2). I excluded samples as controls if 

the child had phenotypes suggesting developmental problems; the exclusion criteria 

were: child has ever had developmental delay (sa032a): ‘Yes’; parent worries over 

development (kd075): greater than zero. The ALSPAC study website contains details of 

all the data that is available through a fully searchable data dictionary: Ethical approval 

for the study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees. 

 The Twins Early Development Study (TEDS) includes approximately 13,000 

unrelated twin pairs from England and Wales. A main aim of the study is the 

investigation of genes and environment on cognitive and behavioural development in 

children. SNP genotype data were derived from buccal swab sampling using Affymetrix 

6® chips. This genotyping chip assayed 695,017 sites on autosomes and chromosome X 

aligning to GRCh19 and absent from common copy number regions (Table 3-2). 

Samples were excluded from selection as controls if the child had phenotypes 

suggesting perinatal or developmental problems at four years were noted: Perinatal 

outlier overall exclusion ‘YES’, medical exclusion ‘YES’, talking problem (dhtalk1) 

‘YES’, or above 90th centile for total behaviour problems (dbhbeht1 and dsdbeht1). 

 

DDD'&'SFHS'SNP'Probe'Quality'Control'

#Positions" Filtering"Step"

810110" all"designed"positions"

793968" removing"non_SNV"or"non"{A,T,C,G}"positions"

695516" removing"maf"<"0.01,"hwe">"0.001,"missingness">"0.1"

679891" removing"positions"in"common"CNV"regions"

"
ALSPAC'SNP'Probe'Quality'Control'
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#"Positions" Filtering"Step"

610259" provided"QC"polymorphic"hg18"positions"

500527" Passed"ALSPAC"QC"

488199" Mapping"to"GRCh37"

478164" Outside"common"CNVs"

"
TEDS'SNP'Probe'Quality'Control'

#"Positions" Filtering"Step"

723257" provided"QC"polymorphic"NCBI36"positions"

710992" Mapping"to"GRCh37"

695017" Outside"common"CNVs"

Table 3-2 SNP Probe Selection 

3.3.2 Mosaic event detection 
I used MAD and triPOD to detect structural mosaicism from probands and proband-

trios. The advantage of triPOD is increased sensitivity compared with MAD for 

detecting events of low clonality, however triPOD additionally requires parental 

genotype data, which are not available in all studies.  

 I ran MAD using the following default parameter values: aAlpha = 0.8, T = 9, 

and MinSegLen = 75. Because the published version of MAD processes samples in 

series and the score of this analysis required implementation on several thousand 

samples, I modified the MAD code to more easily process samples in parallel. These 

modifications did not alter the statistical approach used by MAD. I ran triPOD using 

default settings (alpha = 0.1, nc_thresh = 0.03) but changed ‘genome build’ to ‘hg19’.  

3.3.3 Methods of evaluating of clinical significance 
I evaluated the clinical significance of copy-number and copy-neutral mosaic events 

differently.  

 For mosaic copy-number events, I assessed whether online genomic disorder 

databases, DECIPHER104 and OMIM10, reported CNVs overlapping in location and 

consistent in direction (losses or gains) with the mosaic copy number detections. If a 

genomic disorder was identified, I assessed whether the child’s phenotypes were 
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concordant with the genomic disorder, and if so considered the mosaic CNV likely 

pathogenic.  

 For mosaic copy-neutral (aUPD) events, I investigated whether these events 

caused imprinting syndromes or recessive diseases. To evaluate the first possibility, I 

assessed whether the abnormality was present on a chromosome associated with 

imprinting syndromes, based on the frequently updated Liehr UPD online database132. 

LOH-mediated recessive disease occurs when LOH in mosaic tissue results in 

homozygosity of a pathogenic allele. To detect candidate pathogenic alleles underlying 

recessive disease I interrogated the exome data for rare (below 0.5% MAF) functional 

and loss-of-function variants in the LOH interval. To ensure that the candidate allele 

was homozygous in the mosaic tissue, I only included for analysis variants for which 

the allele fraction of the rare allele was greater than 0.5, i.e. skewed toward 

homozygous non-reference. With the collaboration of clinical geneticist Dr. Helen Firth, 

I assessed whether detected candidate variants were pathogenic based on her clinical 

expertise and my literature review. 

3.3.4 Exome sequencing 
Exome sequencing was performed by the Sanger sequencing core and DDD informatics 

team, as fully described elsewhere6. In brief, the exome capture design was Agilent® 

SureSelect v.3 50-Mb baits and augmented with 5 Mb of custom regulatory sequences. 

Sequencing was performed using Illumina® HiSeq 2000 platform to greater than 50x 

mean coverage using paired-end 75-bp read-length sequence reads. Alignment to the 

genome reference GRCh37, version hs37d5 (a version of the human reference genome 

used by the 1000G Project146 that includes decoy sequences aimed to improve the 

fidelity of single nucleotide polymorphism detection), used the Burrows-Wheeler 

Algorithm57 version 0.5.9. Quality control filters (genotype quality below 30.0, 

homopolymer runs above 5, variant quality by depth below 5.0, read depth below 4 or 

above 1200, strand bias above 10.0) were applied. Genotype data were stored in VCF 

files. 
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3.4 Results 
The main analysis goal was the assessment of mosaic burden in children with DD 

compared to children without DD. This analysis involved the execution of MAD and 

triPOD in a case-control setting.  

 Initial attempts running MAD and triPOD yielded thousands of putative 

detections. Inspection of a subset of these ‘calls’ demonstrated that the vast majority 

were false-positives. I identified systematic classes of detection-error, and, as described 

in more detail below, I evaluated different approaches to best account for these failure 

modes, finally selecting a strategy based on the number of peaks in the BAF distribution 

and the percentage of genotypes that were homozygous, to reduce the number of 

putative detections for manual curation. 

 There were two case-control analyses performed using SNP microarray data. 

First, I ran MAD on child cases in the Deciphering Developmental Disorders study 

(DDD, N=1,303)1 and on controls derived from two UK birth cohort studies: the Avon 

Longitudinal Study of Parents and Children (ALSPAC, N=2,168) 197 and the Twins 

Early Development Study (TEDS, N=3,588)198. The second case-control analysis used 

trio data, in the hope of including lower-clonality mosaicism; here the trio analysis was 

performed using the triPOD method on DDD trios and on a control group from the 

Scottish Family Health Study, a study of young adult healthy controls and their parents 

(SFHS, N=478)196. 

3.4.1 Filtering Strategies for MAD output from DDD & SFHS samples 
Initial testing of MAD on all 5,103 DDD and SFHS samples produced 2,299 putative 

mosaic detections, orders of magnitude higher than expected. Manual inspection 

quickly identified recurrent sources of error (listed in order of descending observation 

frequency): (1) incorrect classification of long tracts of constitutive homozygosity as 

mosaic (Figure 3-1); (2) over-segmentation of single contiguous regions (Figure 3-2) 

(3) unimodal skews of heterozygous BAFs (Figure 3-3); (4) incorrect classification of 

constitutive copy number events, mainly duplications, as mosaic.  
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Figure 3-1 Four tracks of constitutive homozgygosity classified (incorrectly) as mosaic. 

 

 

Figure 3-2 An example of over-segmentation. The single mosaic duplication is broken into many 

smaller duplications. 
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Figure 3-3 An example of unimodal skew, in this case, BAFs systematically depressed slightly below 

0.5. This results in an increase in Bdev, which then results in a false mosaic detection. 

3.4.1.1 Managing over-segmentation 

Of these sources of error, it was most straightforward to manage over-segmentation. 

This is an artefact characterised by imperfect delineation of event boundaries and is a 

common pitfall for segmentation algorithms. To reduce over-segmentation I merged 

nearby (within 1 Mb) putative detection sub-segments representing the same event type 

(loss, gain, or loss of heterozygosity). The LRR and Bdev values for the final merged 

segment were calculated using a weighted-average (based on the number of probes in 

segments) of the LRR and Bdev values among the sub-segments. Segments beyond 2 Mb 

in size after merging were retained for analysis. 

3.4.1.2 Managing constitutive homozygosity & unimodal BAF deflection 

Tracks of constitutive homozygosity are relatively frequently observed in the DDD 

study as families often have familial relatedness3, which results in large blocks of 

inherited homozygosity (identity by descent). Due to imperfect measurement of BAF, 

some homozygous genotypes have BAF values different from 0 or 1. This results in 

non-zero Bdev, although rarely sufficiently displaced to result in heterozygous 

genotypes. Thus, I devised a strategy to manage constitutive homozygosity based on the 

ratio of heterozygous to homozygous genotypes in the putative detection.! 

 Secondly, real mosaic events have heterozygous genotypes with bilateral 

departures from 0.5, but I found that one recurrent error mode was characterised as 

putative detections with unilateral (usually downward) deflection from 0.5 from an 

unknown cause. To!distinguish!unilateral!and!bilateral!BAF!deflections,!I evaluated 
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several peak-finding software tools on a training set of positive and negative events but 

found superior performance (data not shown) using a simple, heuristic strategy using 

the R!density!function,!based!on!the!difference!in!height!of!the!tallest!peak!of!the!

BAF! density! function! to! the! nextCtallest! height.! Segments! with! one! prominent!

single!peak!reflected!unimodal!distributions,!while!density!functions!with!at!least!

one!additional!large!peak!was!characterised!as!bimodal.!!

 Real mosaic events should have high proportions of heterozygous genotypes 

and an obvious bimodal distribution, whilst constitutive homozygosity events are likely 

to have low proportions of heterozygous genotypes, and segments with unilateral BAF 

deflections are likely to appear unimodal. Therefore, I suspected that segments 

underlying these three possibilities should segregate well in a bivariate plot of het:hom 

ratio and peak:next-peak ratio (Figure 3-4).  
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Figure 3-4 Filtering unimodal BAF deflections and constitutive homozygosity using the het:hom 

ratio and peak:next-peak ratio. grey dots: putative detections, yellow dots: unimodal deflections, 

black dots: constitutive LOH, red dots: suspected real events 

 I plotted the location of segments I had classified as constitutive LOH or 

unimodal during initial manual review, and found that, according to expectation, the 

constitutive LOH events fell on the left side of the graph, and the unimodal segments 

fell on the bottom-right. I calibrated thresholds for het:hom ratio and peak:next-peak 

ratio based on the distribution of segments belonging to the constitutive homozygosity 

cluster and unimodal cluster and manually inspected all putative detections in the upper-

right quadrant. Among the putative detections in the upper-right quadrant I found 36 

putative detections (red dots) that appeared to represent real mosaic events, and false-

segments representing stochastic fluctuations in the data. Of the 36 putative events, 

some were found to be constitutive duplications (next section) and others required 

further merging to consolidate sub-segments into final mosaic detections. 

 In addition to the filtering strategies listed above, I also manually reviewed all 

putative segments on chromosome X to prevent exclusion of segments in males with 

aberrant BAF characteristics due to mosaicism in the context of hemizygosity.  

3.4.1.3 Managing constitutive CNVs 
Ten putative mosaic detections among DDD and SFHS samples had a large magnitude 

of upward deviation of LRRs and wide separation of BAFs. Jacobs et al.50 identified a 

similar signature in their study and concluded that such events represented constitutive 

CNVs detected as mosaic. Two of these ten events were found in probands and parental 

data were available that showed the same CNV present in at least one parent, 

substantiating the constitutive nature of these two proband events and suggesing that the 

remaining eight were also likely constitutive. 

 To further assess whether these remaining events were constitutive, I gathered 

known constitutive duplications in the DDD study and calibrated thresholds of LRR and 

BAFs based on the distribution cluster of these constitutive events. The list of known 

constitutive duplications came from Dr. Tomas Fitzgerald who used trio data to identify 

as inherited (and thus constitutive) 1,813 CNVs in the DDD study. I manually curated 

this list to a high-quality set of 148 CNVs at least 200 kb in size and plotted the Bdev and 

LRR for each CNV. I observed that all ten suspicious duplications overlapped with the 

cluster of inherited duplications; thus were all very likely constitutive, and I removed 
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these from further analysis. The curated mosaic and constitutive events for DDD and 

SFHS are discussed in greater detail and plotted below (Figure 3-5). 

3.4.1.4 Inclusion of aberrant standard deviation of BAFs rescues one mosaic event 

A commonly employed QC criterion used in GWAS studies is exclusion of samples on 

the basis of high average standard deviation of heterozygous BAFs. However, to avoid 

unintentional exclusion of mosaicism, I did not employ this filter. As a result, I found 

eight samples with a consistent multi-band skew of BAFs across all chromosomes, a 

signature of contamination, and removed these from analysis. However, this strategy 

also retained one sample with a high BAF standard deviation of 0.06, which reflected a 

real mosaic structural event (see patient ID259709 in section 3.4.6).  

3.4.1.5 Filtering strategies for TEDS and ALSPAC 

The MAD results for the TEDS and ALSPAC cohort were merged and filtered as 

above, and events of 2 Mb size or greater in samples passing phenotypic exclusion 

criteria were included for analysis. There were 87 putative events at this size or greater; 

these included 7 events with large skews in LRRs and BAFs, 30 that reflected two 

sibling contamination events, and the remaining were due to spurious X chromosome 

deviations in males, and small peri-centromeric events. Four of seven events were 

deletion events, with BAFs not strictly at 0 and 1, but skewed inwards. These events 

had consistent levels of LRR and BAFs and clustered together, suggesting they were 

constitutive events, but skewed due to a noisy background. The remaining three of the 

seven were gains, and surprisingly, two of these three represented trisomy chromosome 

X. Extended phenotypic data of these two individuals, including school maths, reading 

and anxiety levels were scrutinised, but neither child was an outlier in any of these 

measurements, suggesting their trisomy X was benign or subclinical.  

 In ALSPAC, there were 347 putative mosaic events at least 2 Mb in size and I 

manually reviewed all of them. Of these, 47 appeared real, and filtering of constitutive 

duplications using the method described above identified four mosaic events. 

 The curated mosaic and constitutive segments from MAD analysis for all SNP-

based cohorts are provided here (Figure 3-5).  
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Figure 3-5 Characterisation of mosaic events and constitutive duplications in the DDD, SFHS, 

ALSPAC and TEDS studies. 

3.4.2 Assessing the accuracy of filtering strategies 
To assess the accuracy of this MAD-based workflow, I compared the frequency of 

mosaic events detected among the parents of the DDD and SFHS trio studies with 

established estimates of mosaicism frequency for individuals of these ages. The median 

age at sampling of DDD parents was 39 years old and of SFHS parents was 59 years old 

(Figure 3-6). 
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Figure 3-6 The (A) sample number and (B) ages corresponding to the analysed studies. 
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 I identified 6 mosaic events among 955 parents of SHFS controls, a 

frequency of 0.6%, and 4 among 2,356 parents of DDD probands, a frequency of 0.1%, 

which are within the confidence interval estimates for these ages50 (Figure 3-7). This 

suggested that the method, filtering strategy and manual curation used were consistent 

with expectations based on the published studies, and I next used this workflow to 

detect mosaicism in the child samples. 

 

Figure 3-7 The frequency of mosaicism detected in the parents of the trio cohorts was within the 

confidence intervals of the frequency detected for samples of this age range. 

3.4.3 Mosaicism Frequency in Cases & Controls using MAD 
I assessed mosaicism frequency using MAD, described in this section, and using 

triPOD, described in section 3.4.4, and then I assessed the clinical consequences of 

detected mosaicism in section 3.4.6. These steps are summarised in Figure 3-8. 
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Figure 3-8 Overview. A MAD-based workflow was used to detect mosaicism. This workflow 

identified an enrichment of mosaicism in cases compared with controls, and triPOD detected two 

additional mosaic events not detected by MAD. Clinical assessment was performed on all 12 

probands of the DDD study with mosaicism. 

 I ran MAD on children from the DDD study and used the filtering strategies 

listed above (section 3.4.1) to curate putative events. This resulted in the detection of 10 

mosaic detections among 1,303 children analysed, a rate of 0.77% (Figure 3-9, A and 

B). The range of cellular fraction (clonality) of the detected abnormalities was 24% to 

66%. Compared to the frequency of mosaicism derived by combining studies of LOH 

and CNV mosaicism, 0.82%, the frequency observed in this study was not significantly 

different (binomial test p value 1.0). A more conservative comparison, based on the 

frequency observed among children ascertained for genetic testing in Conlin et al., 

1.1%, also yielded no significant difference (Fisher exact test p value 0.37).  

 With respect to distribution of mosaicism across tissue, all 10 of the detections 

were among the 1,057 samples derived from saliva, while no mosaicism was detected 

among the 247 samples derived from blood. The tissue-specific frequency difference 

was not significant (binomial test p value 0.096) but there was little power to detect a 

difference given the rarity of mosaic events.  
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Figure 3-9 All proband detections: The detections made by (A) MAD & triPOD, (B) by MAD alone 

and (C) by triPOD alone. 

 I ran MAD on TEDS and ALSPAC to include frequency comparison to these 

children lacking DD. There were 3,588 children in the TEDS cohort with genotype data 

from blood-derived DNA available. Analysis was performed on 2,926 samples for 

which phenotypic data were available and samples were not medically excluded nor had 

developmental problems. There were zero mosaic events retained after accounting for 

seven constitutive duplications. There were 8,970 children in ALSPAC with genotype 

data available from DNA derived from blood or cell-lines. An initial attempt at 

detecting mosaicism in data from both DNA sources detected more mosaicism in 

samples derived from cell-lines (two-sided Fisher’s exact test p value 5e-5), suggesting 

the presence of cell-line induced chromosomal rearrangements199,200, which would 

overestimate in vivo mosaicism. To assess frequency in children accurately, I analysed 

the 3,290 DNA samples sourced from blood or saliva (but not cell-lines). Of 2,538 

children with phenotypic data available, 2,168 (85%) lacked developmental disorders or 
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major developmental problems. One sample contained a mosaic LOH, representing a 

frequency of 0.05%.  

 I also investigated a collection of 478 individuals from the Scottish Family 

Health Service (SFHS). These were samples without DD recruited in early adulthood, 

median age 31. There were zero mosaic events remaining after automated filtering and 

manual curation of 28 possible mosaic events. 

 Compared to the fraction of mosaic detections among all child control samples 

(2 in 5,345), the frequency of mosaicism in DDD probands (10 in 1,303) was highly 

statistically significant (odds ratio 20.66, one-sided Fisher’s exact test p value 3.627e-

6). A meta-analysis additionally incorporating 7,119 samples from two previous 

studies35,36 strongly supports a statistical enrichment of mosaicism in children with 

developmental disorders (p value 9.919e-11).  

.

 

Figure 3-10 (A) The percentage of samples with mosaic events in the case and control cohorts. (B) A 

depiction of each mosaic event, where the line segments represent the ideal location of mosaicism 

for gains (blue), LOH (orange) and losses (red). 

3.4.4 Additional detections using triPOD 
triPOD leverages haplotype information in trio data to yield improved sensitivity to 

detect lower-clonality mosaic events compared with MAD51. I implemented this tool on 

DDD trio data to improve detection of mosaic events of lower clonality.  
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 Complete trio genotypes were available for 1,082 of 1,303 (83%) probands, 

and these were processed with triPOD. There were a vast number (4,920) of putative 

detections, of which 148 were at least 5 Mb and 876 were at least 2 Mb. All putative 

detections at least 5 Mb were manually reviewed. I also reviewed 200 randomly 

selected events at least 2 Mb or greater, which identified two error modes: no deflection 

in BAFs (spurious), or CNV present in parent (inherited). Due to the large number of 

detections, and the rationale to use triPOD mainly for the detection of low clonality 

events, computational filtering was implemented to select segments at least 2 Mb and 

having a median BAFs below 0.70 (as segments with very higher BAFs appeared to 

reflect constitutive events). Several hundred events with BAF values of “NA” or 0.50 

(no BAF shift) were observed, which on the basis of no visually apparent mosaicism 

appeared spurious, so a 0.51 minimum threshold cut-off was used. triPOD identified 11 

events with highly skewed BAFs and LRRs that were suggestive of inherited CNVs; 10 

of 11 CNVs were also present in a parent, substantiating the constitutive nature of the 

event, and the remaining event clustered with the inherited events, so it too was 

considered likely constitutive.  

 Detections at the 2 Mb size or greater identified 7 of the 10 mosaic events that 

had been detected in single-sample analysis by MAD. Two of the three remaining 

events lacked complete trio data so they could not be analysed by triPOD. The third 

remaining undetected event was a mosaic duplication characterised by an additional 

haplotype not present in the diploid cell line (Figure 3-9 part C); this third event had a 

lower clonality (26%), lower than all but one of the abnormalities detected by MAD. 

 Two events were identified among the 148 putative events greater than 5 Mb 

detected by triPOD that were each reviewed manually. One event appeared to have a 

chromosome-wide elevation of LRR and a BAF pattern reflecting meiotic crossover, 

perhaps resulting from incomplete trisomy rescue.  

 The second event was extraordinary for a genome-wide pattern of large 

segments of consistently aberrant BAF interspersed with segments of normal BAF. 

These segments of aberrant BAF were present on most chromosomes in three or fewer 

large segments per chromosome. The clonality of this abnormality was approximately 

17%, the lowest of all detected abnormalities. I investigated the parental origin of the 

aberrant BAF segments by plotting the proband BAFs within these segments separately 

for each configuration of parental genotypes. The sites with aberrant BAF were only 

observed where the father was heterozygous, suggesting that the aberrant BAF was due 
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to the presence of both paternal chromosomes. In addition, the BAF at obligate 

heterozygous sites in the proband (parents homozygous for different alleles) was always 

skewed toward a greater contribution from the inherited paternal allele, suggesting a 

second paternal haplotype, while only a single maternal haplotype (Figure 3-11 

Interrogating possible haplotype combinations to determine the alleles present and their 

origin in the chimeric sample.  

 These observations are potentially compatible with a triploid cell line, 

however, karyotypic analysis failed to identify any triploid cells. An alternative 

explanation is “androgenetic / bipaternal mosaicism or chimerism”201,202, which has 

been hypothesised to occur from one or two zygotes (Figure 3-12)201. The homozygous 

BAF skews had BAF deviations consistent with approximately 15% clonality, which is 

a smaller cellular burden than any event detected by MAD. 
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Figure 3-11 Interrogating possible haplotype combinations to determine the alleles present and 

their origin in the chimeric sample. 
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Figure 3-12 An illustration of two possibilities hypothesised by Robinson et al.201 underlying 

androgenetic /bipaternal mosaicism or chimerism. In A) a one zygte mechanism, an ovum is 

fertilised by two sperm (dispermy), while in B) a two zygote mechanism, a fertilised zygote fuses 

with an endoreduplicated sperm cell-line. 

 triPOD was also applied to detect structural mosaicism in the 475 SFHS 

control trios. There were 26 putative events, of which 3 were constitutive and 23 were 

spurious, all but two in a narrow peri-centromeric region of chromosome 11; therefore 

there were zero mosaic detections uncovered. 

3.4.5 Validation experiments to explore tissue distribution 
Combining the results of MAD and triPOD, there were twelve children with mosaic 

abnormalities. Working with clinical centres and the DDD lab team, I attempted to 

validate each mosaic event in at least one tissue by aCGH or FISH and was able to 

determine whether the nine CNV events were distributed in both or either of epithelium-

derived (saliva or buccal) and mesoderm-derived (blood) tissue. Of the nine children 

with CNV events, seven exhibited tissue-limited mosaicism. In all seven cases, the 

mosaicism was observed in epithelium-derived but not in blood, while two were 

observed in both tissues.  

3.4.6 Clinical Interpretation of Probands with Mosaicism 
Phenotypic data for the perinatal period for each proband were collected by clinical 

geneticists, who assessed developmental milestones and recorded phenotypes at time of 

recruitment using a standardised nomenclature called the Human Phenotype 

Ontology135.  
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 Mosaicism was detected in twelve individuals with developmental disorders 

(Table 3-3). 

 



 

!!
!

birth!records! measurements!at!time!of!recruitment! mosaic!abnormality! validation!

sample! sex!

gestatio

n!

(weeks)!

birth!

weight!

(kg)!

required!

NICU!

(days)!

age!
height!

(cm)!

weight!

(kg)!
OFC!(cm)! ID! type! chr!

start!

(GRCh37)!
end!(GRCh37)!

size!

(Mb)!
BJDev! clonality!

aCGH!results! FISH!results!

tissue!

limited?!blood! saliva! blood! saliva!

260462! F! 37! 2.6!(35)! no! 5!yr! 89!(3)! 10.86!(1)! 45.5!(1)! GDD!

loss! 18! 650816! 2804129! 2.2! 0.14! 0.44!

no!deviation! downward! not!detected! 56%!(buccal)! Yes:E!gain! 18! 13422042! 15265500! 1.8! 0.1! 0.5!

loss! 18! 48362664! 78015180! 29.7! 0.1! 0.46!

261240! F! 37! 1.9!(25)! 7! 16!yr! 152!(7)! 52!(48)! 53!(7)! moderate! gain! 5! 123828524! 145717285! 21.9! 0.08! 0.38! not!done! upward! !double!ring! not!done! No!

258956! F! 38! 2.6!(17)! 10! 4!wk! 73.5!(26)! 7.58!(1)! 43.8!(1)! moderate! gain! 3! 153567441! 197148984! 43.6! 0.11! 0.56! no!deviation! upward! failed!QC! not!done! Yes:!E!

261373! F! 38! 2.0!(1)! no! 4!yr! 96!(7)! 14!(10)! 50!(17)! moderate! gain! 12! 193818! 38453531! 38.3! 0.09! 0.44! no!deviation! upward! not!done!

12%!

tetrasomy!

(buccal)!

Yes:!E!

11! M! 32! 2.2!(90)! 19! 7!yr! 100!(14)! 14!(6)! 47!(1)! GDD! gain! 16! 27183151! 31888684! 4.7! 0.07! 0.33! no!deviation! not!done! not!detected! 50%!(buccal)! Yes:!E!

259003! M! 40! 4.6!(98)! no! 3!yr! NA! 15!(59)! 51!(33)! GDD! loss! 22! 47182944! 51666786! 4.5! 0.184! 0.54! downward!! downward! 43%! failed!QC! No!

260108! F! 40! 3.6!(80)! ?! 19!wk! 60!(1)! 5.1!(1)! 38!(1)! GDD! gain! 17! 66922993! 81006629! 14.1! 0.092! 0.451! no!deviation! upward! failed!QC! failed!QC! Yes:!E!

263708! F! 38! 2.8!(27)!
yes,! ?!

days!
16!yr! 157!(14)! 59!(67)! 56!(75)! moderate!

GWp

UPD!
all! n/a! n/a! N/A! 0.0477! 0.174! no!deviation! no!deviation! not!detected!

results!

pending!
NA!

258190! M! 38! 5.9!(99)! 7! 6!yr! 113!(7)! 22.8!(60)! 55!(cm)! GDD! gain! 20! 1! 63025520! 63! 0.0578! 0.261! no!deviation! not!done! not!detected! 30%!(buccal)! yes:!E!

259709! M! 34! 2.9!(98)! 31! 10!yr! 132!(64)! 28!(67)! ?! moderate! loh! 14! 20432664! 107287663! 86.9! 0.33! 0.66! no!deviation! not!done! N/A! N/A! NA!

257978! F! 40! 4.2!(95)! no! 15!yr! ?! ?! 50!(4)! severe! loh! 5! 101118483! 180710763! 79.6! 0.12! 0.24! no!deviation! not!done! N/A! N/A! NA!

259029! F! 40! 3.3!(41)! no! 5!yr! 109!(77)! 18!(60)! 50!(11)! moderate! gain! 11! 42322518! 45512054! 3.2! 0.051! 0.227! no!deviation!
results!

pending!

results!

pending!

results!

pending!

yes:E!

(SNP,!

saliva)!

Table 3-3 Mosaic events detected among 1,303 DDD probands. (NICU) Neonatal Intensive Care Unit. (GWpUPD) Genome-wide paternal Uniparental 

Disomy. (LOH) loss of heterozygosity. (ID) Intellectual Disability. (GDD) Global Developmental Delay. (OFC) Occipital Frontal (head) Circumference; (E) 

epithelium. Numbers in parentheses in the ‘birth weight’, ‘height’, ‘weight’ and ‘OFC’ reflect population centiles given child age and sex. 



 

 Each mosaic event was assessed for overlap with regions previously implicated 

in specific genomic disorders, and if so, whether the patient phenotypes were 

concordant with the manifestations of these genomic syndromes. To identify a 

relationship between the mosaic copy-number events found in probands to online 

databases of pathogenic CNVs required the assumptions that: 1) pathogenicity is due to 

disruption of overlapped regions, not due to disruption of long-range regulatory 

elements; and 2) constitutive CNVs that are pathogenic produce phenotypes which are 

similar in character, if perhaps larger in magnitude, than the corresponding CNV in 

mosaic state. Mosaic UPD mutations can be pathogenic by multiple mechanisms, such 

as imprinting syndromes, by disrupting differentially methylated regions203 or by 

manifesting recessive diseases, by converting a single inherited deleterious allele to 

homozygosity. To investigate these possibilities, I assessed whether the UPD event is 

implicated in an imprinting syndrome, the paternal origin of the mosaic allele, and 

whether homozygous alleles in mosaic tissue may be implicated in recessive disorders. 

 Patient ID260462 had global developmental delay, intermittent horizontal 

nystagumus with alternating abnormal head position and bilateral, symmetric large optic 

nerves. Magnetic resonance imaging of the brain showed cortical atrophy, generalised 

delay in myelination, moderate sized left middle cranial fossa, arachnoid cyst and 

deficiency of the rostrum of corpus callosum and atrophic splenium. Copy number 

analysis by karyotype and aCGH, genetic testing for Pitt-Hopkins, Fragile X syndrome, 

MECP2 gene test, spinal muscular atrophy, and Angelman syndrome were all normal. 

Upon recruitment to the DDD study, aCGH was performed on blood and saliva by the 

DDD laboratory and no large (>500kb) CNVs were reported by the DDD informatics 

team. Mosaic analysis on SNP microarray data from a salivary sample identified three 

mosaic events on chromosome 18, two deletions and one duplication in approximately 

50% of cells. Results from triPOD showed that the deletions resulted from loss of the 

maternal allele, while the duplication was of the paternal allele (Figure 3-13). 
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Figure 3-13 triPOD shows that the deletions and duplications arose from different alleles. 

 Fluorescent in situ hybridisation (FISH) analysis, performed by the local 

cytogenetics department on cells from a buccal sample, confirmed these events in 56 of 

100 inspected cells. Retrospective scrutiny by the local cytogenetics department of the 

salivary CGH array identified deviations in aCGH probes but insufficient to be detected 

by the standard copy number detection pipeline. No deviation in blood aCGH probes 

was noted, suggesting the mosaicism was not present in all tissue types, and providing a 

likely explanation as why genetic testing, performed on blood, was negative. The 

mosaic deletion on chromosome 18 contains the gene TCF4, mutations in which cause 

Pitt-Hopkins syndrome204, a diagnosis previously considered in this child. The SV was 

considered definitely pathogenic and the diagnosis was conveyed from the clinical 

geneticist to the family. 

 Female patient ID261240 required seven days in neonatal intensive care, and 

two weeks with nasogastric feeding. She had developmental delay, seizures, and short 

stature (154 cm, 3rd centile at 16 years). Before enrolment into DDD, clinical 

karyotyping was performed by the local centre on blood and showed a marker 

chromosome originating from chromosome 5; local inspection by aCGH did not detect 

any CNVs and the marker chromosome was classified as a balanced rearrangement. 

Local genetic testing for Fragile X syndrome was normal. At Sanger, mosaicism 
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analysis was performed on a saliva sample and identified a 22 Mb duplication on 

chromosome 5, present in approximately 40% of assayed salivary cells. Review of the 

interphase by the clinical cytogenetics team of karyotypic data noted that the suspected 

marker chromosome contained a double-ring chromosome. Retrospective manual 

review by the local cytogenetics team of the array CGH data on saliva identified 

stretches of raised LRR probes. Therefore, this event was classified as present in both 

blood and saliva. Duplications in this region, 5q23.2 to 5q32, have been previously 

implicated in seizure disorders (p.252)205 and shared phenotypes and short stature are 

seen in a different patient with a overlapping duplication in the DECIPHER database 

(ID255372). Therefore, this mosaic aberration was considered likely pathogenic. 

 Female patient ID258956 had a number of congenital abnormalities, including 

a sacral meningocele, polydactyly, bilateral talipes, atrial and ventricular septal defects, 

pulmonary stenosis, EEG epileptiform activity, facial asymmetry, hirsuitism, 

hypomelanosis of Ito. At birth, she required neonatal intensive care for apnea and 

nasogastric feeding for 10 days. Clinical aCGH (Agilent 8 x 60K oligoarray) testing 

performed on blood by the local cytogenetics team was normal. Mosaicism analysis on 

saliva identified a 44 Mb duplication on chromosome 3q in approximately 55% of 

assayed cells. The DDD aCGH results from blood and saliva showed upward deviation 

in the data from assayed saliva tissue, only. Thus, it is likely this event is tissue limited. 

Duplications of 3q are associated with joint contractures, talipes, feeding difficulties, 

hirsuitism, and heart defects, including ASD and VSD206. There are several patients also 

present in the DECIPHER database who have duplications overlapping this large 

duplication in the child, including 280551, with hirsuitism, feeding difficulties, and 

global developmental delay; 283584, with sacral dimple, low set ears; and 1561, with 

frontal bossing, sacral dimple. Several examples of duplications of 3q have meningocele 

(p.145)205. Given the consistency of phenotypes with the proband and these patients, the 

mosaic mutation was considered likely pathogenic. 

 Female patient ID261373 had intrauterine growth retardation with a birth 

weight of 2.0 kg (1st centile). She had moderate developmental delay, severe speech 

delay, a high-arched palate and prognathism. An array on blood lymphocytes was 

performed at the local hospital and identified no abnormalities. Our SNP mosaicism 

analysis on saliva identified a gain of 12p in an estimated 44% of assayed cells, 

suggesting tissue-specific mosaicism as the cause. The event was detected also by 

confirmatory aCGH from saliva, and interphase FISH on buccal DNA of 100 cells 
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identified a triplication of 12p in 12% of cells. Triplications of 12p (tetrasomy 12p) are 

the cause of the clinical syndrome known as Pallister-Killian mosaic syndrome207, 

which is consistent with many of her phenotypic features. The variant was considered 

definitely pathogenic and the diagnosis was conveyed from the clinical geneticist to the 

family.  

 Patient ID263654 required 19 days of neonatal intensive care to manage 

respiratory distress, jaundice and hypoglycemia. His speech and language were delayed 

and an MRI identified inferior vermis hypoplasia. Fragile X testing performed locally 

was normal. At Sanger, aCGH was performed by the DDD laboratory on blood and was 

normal. SNP mosaicism analysis identified a 4 Mb duplication in approximately 33% of 

salivary cells. The BAF pattern of the duplication was consistent with a meiotic origin 

of the duplication in the trisomic cell line. FISH was performed on blood and buccal 

tissues by the local cytogeneticist, and the event was detected in buccal tissue only, in 

25 of 50 examined cells. As only interphase FISH was available for buccal tissue, 

positional information for the additional allele was not possible. The implicated region 

overlaps most of 16p11.2, a cytogenetic region in which duplications are well known to 

cause disruption of speech and language development 208 and this event was considered 

likely pathogenic.  

 Patient ID259003 had global developmental delay, no speech, and generalized 

hypotonia. Clinical aCGH (6K BAC array) and testing for Angelman syndrome were 

performed at the local hospital and were normal. At Sanger, SNP mosaic analysis on 

salivary cells identified a 5 Mb deletion in 54% of cells at chromosome 22q, from 

22q13.31 to 22qter. Array CGH results showed a slight negative deviation in both blood 

and saliva probe data but not detected by the aCGH algorithm. FISH on blood 

lymphocytes performed by the local cytogenetics department identified the event in 43 

of 100 of blood cells. This region overlaps with the well-characterised 22q13 Deletion 

syndrome, also known as Phelan-McDermid syndrome, which has as its main 

characteristics global developmental delay, absent or severely delayed speech and 

hypotonia; these manifestations are consistent with child phenotypes209 and the mosaic 

event was considered definitely pathogenic.  

 Patient ID260108 had truncus arteriosis, hypertelorism, and feeding difficulties 

at birth. She demonstrated global developmental delay and required nasogastric feeding. 

An MRI performed at the local hospital was abnormal and showed possible arterial 
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shunting. Clinical testing performed locally for mutations in SALL1, SALL4, CHD7, 

and for Prader-Willi syndrome were normal. At Sanger, aCGH data in blood showed no 

abnormalities. SNP mosaic analysis identified a 14 Mb duplication on chr17 in 

approximately 45% of assayed saliva cells, confirmed by aCGH on saliva (6K BAC 

array). This mutation appears to be tissue-limited. FISH validation was not possible. 

Mosaic trisomies of chromosome 17 are associated with substantial heart defects, 

including truncus arteriosus and Tetralogy of Fallot, as well as speech delay210, 

consistent with phenotypes in the proband, and considered likely pathogenic. 

 Patient ID263708 required neonatal intensive care with nasogastric feeding. At 

delivery, the placenta was hypertrophic, and numerous hemangiomata were noted. She 

had macroglosia, macrocephaly, and hepatic hemangiomata; as well as episodic 

hypoglycaemia, oligodontia, esotropia, and gynecomastia. The patient had pigmentary 

mosaicism following Blashko’s lines. Clinical karyotype performed locally was normal. 

Beckwith-Wiedemann syndrome was suspected but clinical testing performed locally 

was negative. At Sanger, analysis of SNP microarray data for mosaicism identified 

genome-wide skews of BAFs, believed to reflect a cell-line with unipaternal disomy 

(Figure 3-9). Some ten or so examples of genome-wide unipaternal disomy have now 

been reported, with different underlying mechanisms201. The dominant manifestation of 

unipaternal disomic mosaicism is Beckwith-Wiedemann disorder, which is consistent 

with the majority of the phenotypes in this case. In addition, since Beckwith-

Wiedemann is associated with increased tumour risk, this diagnosis can help increase 

surveillance of tumour development through increased screening211. Given the overlap 

of phenotypes known in genome-wide paternal UPD and the child’s phenotypes, the 

variant was considered likely pathogenic. 

 Patient ID258190 required seven days neonatal intensive care due to 

hypoglycaemia and macrosomia (birth weight and head circumference > 99th centile).  

Congenital muscular torticollis, partial cryptorchidism, and vertebral abnormalities 

(joint fusions in cervical spine) were noted. He had global developmental delay, and 

autism. At Sanger, aCGH assay was performed by the DDD informatics team on blood 

and was negative and mosaic SNP analysis on saliva using MAD was negative. 

Analysis using triPOD on saliva detected a low level trisomy on chromosome 20. FISH 

confirmed trisomy in 30% of cells from buccal sampling but absent in cells from 

lymphocytes, suggesting the mutation is likely tissue limited. Mosaic trisomy 20 

syndrome includes head tilt, developmental delay, autistic features, spinal and genital 
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abnormalities212, all phenotypes consistent with those observed in this patient; therefore, 

the mosaic event was considered likely pathogenic. 

 Patient ID259709 required neonatal intensive care for 31 days with enteral 

feeding. Developmental milestones were delayed: sitting independently was achieved at 

23 months and walking independently began at 3 years. At recruitment, recorded 

phenotypes included joint laxity, hyper-extensible skin, anterior ‘beaking’ of lumbar 

vertebrae and delayed speech and language development. Our analysis of SNP 

microarray data identified a chromosome-wide loss of heterozygosity (acquired UPD) 

on chromosome 14 in approximately 65% of assayed salivary tissue. Informative 

parental genotypes overlapping the mosaic region identified that the UPD resulted from 

a mosaic loss of the maternal allele (Figure 3-14).  
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Figure 3-14 aUPD due to loss of maternal allele. 

UPD may be pathogenic by causing imprinting disorders or by inheritance of a 

deleterious variant, present from a carrier parent, to homozygosity. Constitutive UPD 14 

maternal is known to cause Temple syndrome, for which feeding difficulties at birth, 

joint laxity and developmental delay are present158. These features are consistent with 

the child’s phenotypes and considered likely pathogenic. 

 Patient ID257978 had thoracolumbar scoliosis, seizures, somnolence and 

abnormality of neuronal migration. She demonstrated profound intellectual disability 

and achieved no developmental milestones. Clinical karyotyping and telomeric MLPA 

performed locally were normal. At Sanger, SNP mosaicism analysis identified an 80 

Mb loss-of-heterozygosity (acquired UPD) region on chromosome 5 in 24% of assayed 
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salivary cells. Conversion to homozygosity of a deleterious variant in the UPD was 

suspected to underlie the pathogenicity. Of seven such variants, the most interesting 

candidate was a missense variant in N4BP3, a gene recently reported to be required for 

normal neuronal axonal branching213. The sequencing reads of this variant were 

inspected to test whether the deleterious allele was skewed toward homozygosity and it 

was observed that of the sequencing reads overlapping this variant position, 46 

supported the alternate alleles, while only 28 supported the reference allele, suggesting 

that the alternate allele is homozygous in the mosaic cell line. Nevertheless, this gene 

has not previously been implicated in developmental disorders; therefore, a definitive 

relationship between this variant and the phenotype in the child was difficult to assess, 

and the variant as considered of uncertain pathogenicity. 

 Patient ID259029 was born at 40 weeks gestation with a birth weight of 3.3 kg 

(41st centile). The child has dysmorphic facies including severe hypertelorism and local 

clinical testing for craniofrontonasal dysplasia was negative. At Sanger aCGH 

performed by the DDD laboratory and informatics team on saliva was not obviously 

abnormal. Mosaic analysis detected a low-clonality (23%) 3 Mb mosaic event on 

chromosome 11, with a small elevation of LRR (0.09). Intellectual disability and 

hypertelorism are shared phenotypes with patient 255428 in the DECIPHER database 

with an overlapping duplication. This region contains ALX4, a gene implicated in skull 

ossification defects, which may be consistent with hypertelorism214. However, this 

region has not been consistently identified with other specific phenotypic features in the 

child and therefore the variant was considered of uncertain pathogenicity. 
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3.5 Discussion 
The main aim of this experiment was to investigate whether children with 

developmental disorders have a significant burden of mosaic structural abnormalities 

relative to age-matched controls. A ~40-fold enrichment of mosaicism in cases 

compared to controls was observed. Using single-sample and trio-based approaches, 

0.9% of DDD probands were found to have large-scale mosaicism. The substantial 

burden in cases suggests that many of these events were pathogenic. The phenotypes in 

each child were assessed for consistency with the known consequences of the 

underlying mosaic mutations and clinical evaluation assessed that 10 of 12 were highly 

likely to be pathogenic. 

 One component of this study explored the relative performance of single-

sample vs. trio-based mosaic detection methods. Both methods discovered a majority of 

the total detections and neither software tool was clearly advantageous compared to the 

other. triPOD identified two events of lower-clonality not found by MAD. While MAD 

has diminished sensitivity to lower clonality events, it does not require complete trio 

data, a resource not always available; in this analysis, two real mosaic events detected 

by MAD lacked complete trio data and were not analysed by triPOD. Also, one third-

haplotype gain was not found by triPOD and the false positive rate of triPOD was 

higher than MAD. These findings suggest that employing either tool can identify the 

majority of mosaic events but that maximal sensitivity can be gained by leveraging the 

complementary strategies of both tools if trio data are available. 

 Assessing the pathogenicity of mosaic copy-number and copy-neutral events 

requires several assumptions, primarily, that events present in mosaic form cause 

phenotypes similar in character, if perhaps less severe, than events present in 

constitutive form. The majority of events detected were copy-number variable 

mosaicism, which is consistent with previous studies, such as Conlin et al.36. However, 

in contrast to that study of mosaic aneuploidy, much lower levels of gonosomal 

aneuploidy were observed (0 in 1,303, compared with 9 of 2,019), and only a single 

event affected the whole chromosome. This may be due to differences in ascertainment, 

as nearly 80% of DDD probands were pre-screened by clinical aCGH testing performed 

locally, which would have high sensitivity to detect chromosome-size CNVs present in 

a majority of cells. In addition, gonosomal aneuploidy results in distinctive phenotypes, 

which are likely to trigger specific genetic investigations; this may compound the bias 

against recruiting such patients to a research study focusing on undiagnosed patients. 
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For these reasons, the observed estimate of mosaic frequency in children with 

undiagnosed disorders is likely an underestimate of frequency among all children with 

DD. 

 Mosaic copy-number events were typically not detected by standard aCGH 

analysis. The detection of mosaicism requires two conditions: the event must be present 

in the assayed tissue, and the detection tool must be sufficiently sensitive to identify 

minimal skews in intensity or allele fraction. No large mosaic copy-number events were 

identified in healthy controls, supporting prior evidence that large copy-number events 

are highly pathogenic. On the other hand, one LOH-type event, a category of mutation 

imperceptible by aCGH, was detected in healthy controls. While constitutive LOH has 

been identified in 1%-1.5% of children with developmental disorders37,137, a significant 

burden compared to the population-level rate (1 in 3,500), the cases studied here did not 

have a statistically significant enrichment of LOH mosaicism (p greater than 0.05). It 

remains to be seen whether with increased sample sizes, a burden may become 

apparent, especially with respect to chromosomes sensitive to imprinting disorders.   

 The filtering strategy used to identify structural mosaic events was tuned to 

identify mosaicism 2 Mb or larger, a size threshold that allowed fair comparison across 

data sets given the variability in SNP density. Intuitively, larger events are more likely 

to be associated with pathogenicity and empirical observation demonstrates that larger 

constitutive CNVs are rarely found in healthy children102. More powerful genetic 

assays, such as high-depth whole-genome sequencing will enable a higher-resolution 

comparison of mosaic events at smaller sizes and allow improved detection of 

pathogenic mosaicism215. 

 The strategy of using inherited duplications to characterise BAF and LRR 

properties of constitutive duplications for exclusion of putative detections with similar 

BAF and LRR profiles may have inadvertently filtered some mosaic duplications of 

very high-clonality. Since the TEDS dataset had SNP microarray data with a higher 

noise level compared with DDD, this effect may have been more pronounced in the 

TEDS analysis, which could potentially result in an underestimate of mosaicism in this 

control group. Nevertheless, the data quality from TEDS was sufficient to detect the 

size and clonality of mosaic events that were detected in the other cohorts. 

 The SNP microarray data in the DDD study were mostly derived from salivary 

DNA extraction. While salivary sampling is non-invasive and represents a mixture of 
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two tissue types (epiderm via buccal tissue epithelium, and mesoderm via 

lymphocytes)216 saliva-derived DNA may have limited sensitivity to low-clonality 

events confined to a single tissue type. Because ALSPAC and TEDS data were derived 

from only one tissue type (blood) and the distribution of mosaic events may differ 

across tissue types, it is possible that our frequency comparison of mosaicism between 

cases and controls may have been partially confounded by hidden stratification, and 

indeed some mosaic abnormalities (such as the 12p tetrasomy leading to Pallister 

Killian syndrome) are rarely detected in blood. Indeed, the observation that the majority 

of mosaicism detected in DDD was present in epithelial-derived but not mesoderm-

derived tissue calls for a future analysis of saliva from healthy children. In addition, this 

may provide some evidence that mosaicism underlying DD need not propagate into all 

germ layers to result in syndromic dysfunction. However, our assessment of tissue 

distribution was limited, as endoderm-derived tissue was not available, and factors that 

hinder the extrapolation of germ-layer distribution from assayed tissue distribution, 

such as purifying selection against deleterious mosaicism and sampling error, may have 

played a role. The subject of tissue distribution is revisited in greater detail in chapters 4 

and 5. 

 Detection of mosaicism in probands and subsequent genetic diagnosis offers 

reassurances to parents that a subsequent child is not at increased risk of developing the 

same mutation. Nevertheless, the majority of children with previously undiagnosed 

genetic disorders still receive no genetic diagnosis after extensive interrogation, 

including aCGH, exome and SNP-based analyses. Improved detection of all forms of 

mosaicism is needed, including smaller mosaic abnormalities, such as indels and point 

mutations. This will require further reductions in sequencing cost and the development 

of accurate sequence-based mosaicism detection algorithms.  

 Chapter 4 of this dissertation addresses the development and implementation of 

a new software tool that analyses targeted and whole-genome sequencing data to detect 

structural mosaicism. 
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4 MOSAIC STRUCTURAL 
VARIATION FROM TARGETED 
AND WHOLE-GENOME 
SEQUENCING  

4.1 Publication Note 
Most of the work described in this chapter has been described in a manuscript and is 

now under editorial review. Unless explicitly stated otherwise, the analysis described 

herein is the work I performed myself, under the supervision of Matthew Hurles. 

4.2 Introduction 
Chapter 3 discussed the detection of structural mosaicism in children with DD using 

SNP microarray data. The metrics and methods used to detect mosaicism from SNP 

microarray data influenced the mechanics of the sequencing-based tool I developed and 

describe in this chapter.  

 Modern SNP microarray technology is well suited for detecting mosaicism 

because probe density is high (often above 1 million sites per genome) and probes 

generate allele ratio data with high signal to noise ratio. SNP microarray platforms 

generate two metrics useful for detecting mosaicism: 1) b allele frequency (BAF): the 

fraction of the alleles at a locus representing the less-common allele and 2) log R ratio 
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(LRR): a measure of copy-number, based on the log ratio of signal intensity 

compared to a reference. These metrics are perturbed differently depending on the 

nature of the structural abnormality: whereas copy-neutral (loss of heterozygosity; 

LOH) mosaicism results in a deviation of BAF alone, copy-number (gain or loss) 

mosaicism additionally alters the LRR. Absolute deviation from the BAF expected for 

constitutive genotypes (e.g. the expected BAF for a heterozygous genotype is 0.5), 

called B-deviation (Bdev), occurs in mosaic regions when the locus has a mixture of 

genotypes from wild-type and mosaic tissue. Several software tools (Partek® Genomics 

Suite, Illumina® cnvPartition, BAFsegmentation217, and Mosaic Alteration Detection 

(MAD)49) harness this deviation as a signal of mosaicism. As reviewed in chapter 3, the 

MAD algorithm is open source and has been recently used in several large SNP 

microarray-based projects50,218,219; it identifies mosaic segments using aberrations in 

Bdev and then labels aberrant segments as copy-loss, copy-gain, or copy-neutral events 

based on the alteration of the LRR from baseline, a deviation referred to here as copy-

deviation, or Cdev.  

 Most DDs are caused by rare, small (SNV and indel) variants that are rarely 

assayed on microarrays137. Therefore, to achieve more comprehensive assessment of 

pathogenic mutations, rare disease studies rely heavily on targeted sequencing of the 

protein-coding regions (‘exons’) of the genome, an approach called whole-exome 

sequencing (WES)220. Indeed, sequencing of the whole genome (WGS) offers several 

advantages compared to WES, including greater breadth of the genome and more 

consistent coverage of exons221. Due to high cost, WGS is currently used in a minority 

of rare disease studies, but it will likely become more popular as costs decrease.  

 In addition to small-scale variation, forms of large-scale structural variation, 

including copy-number222 and copy-neutral variation (uniparental disomy (UPD))105, are 

also important causes of DD. CNV burden analysis of nearly 16,000 children with 

DD102 demonstrated that nearly all CNVs greater than 2 Mb are likely pathogenic (odds 

ratios for CNVs of 1.5 Mb and 3 Mb were 20 and 50, respectively), and that, for a given 

size, deletion events are more often pathogenic than duplication events. UPD has been 

estimated to occur in about 1 in 3,500 healthy individuals121, but is enriched in children 

with DD137, and may result in highly penetrant imprinting disorders, recessive diseases, 

or may be associated with chromosomal mosaicism125. Low-clonality mosaicism is 

difficult to observe by karyotyping, as inspection of at least 10 cells is required to 

exclude 26% mosaicism with 95% confidence26, and is also difficult to observe in 
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microarray, as the detection sensitivity of mosaic duplications by SNP microarray with 

about 1 million probes for events of at least 2 Mb in size is limited to events of at least 

20% clonality49. The median average clonality in recent SNP-based studies of DD for 

mosaic aneuploidy was 40%36, and for mosaic structural variation (2 Mb and greater) 

was 44%178. Among children investigated with clinical diagnostic testing, the frequency 

of autosomal mosaic copy-neutral events was 0.24% (12 in 5,000)35 and the frequency 

of autosomal mosaic copy-number events was 0.35% (36 in 10,362)194. Combining 

these frequencies yields a combined frequency of 0.59% of mosaic structural variation 

in children with DD. 

 The detection of large-scale mutations from WES data is challenging because 

the input data typically represent a sparse sampling of the genome, as the targeted 

regions typically cover only about 2% of the genome221, and sequence read-depth at 

exons is biased by enrichment efficiency and other factors223. Despite these limitations, 

exome-based software tools have been successfully engineered to detect large-scale 

constitutive mutations, including copy-number variation62,224-227 and copy-neutral 

variation (bcftools roh (in preparation) and UPDio137). These tools are insensitive to 

mosaic abnormalities, however, because they typically rely on single metrics, such as 

copy-number change (rather than copy-number and allele-fraction), or on genotype, 

which is not well assessed in mosaic state. Specialised methods have been developed 

for the analysis of cancer exomes where tumour and normal tissue can be isolated228,229 

or, in the context of a parent-foetus trio, for foetal DNA in maternal plasma75. However, 

a method to detect copy-number and copy-neutral mosaicism from an individual’s 

exome (or genome) is lacking, but if available, could further extend the range of 

sequence-based analyses. 

 I developed MrMosaic, a method that detects structural mosaicism using joint 

analysis of Bdev and Cdev in targeted or whole-genome sequencing data. Simulations 

demonstrated superior performance of MrMosaic compared to the MAD algorithm. 

Using MrMosaic, I analysed WE data from 4,911 children with developmental disorders 

and identified 11 structural mosaic events in 9 individuals, 6 of whom exhibited tissue-

specific mosaicism.  
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4.3 Materials & Methods 

4.3.1 MrMosaic 
I worked with Alejandro Sifrim, Ph.D., a post-doctoral researcher in Matt Hurles’ 

group, to create MrMosaic. Alejandro introduced me to the tricube distance as a decay 

function and the use of the Fisher’s Omnibus method to combine p values from 

statistical tests. The other statistical steps in the algorithm were developed in 

collaboration with Drs. Sifrim and Hurles. I integrated multi-threaded support to 

provide faster implementation on a multi-core CPU, developed ‘wrapper’ functions to 

facilitate implementation in a ‘pipeline’ environment, executed MrMosaic on DDD data 

and analysed and interpreted the results. 

 The algorithm consisted of several steps: statistical testing, segmentation, 

filtering, and results visualisation. ‘BAF’ is used below as shorthand for ‘non-reference 

proportion’. 

 The input data for MrMosaic consist of genomic loci with measured Bdev 

values, Cdev values, and genotypes, stored in a tab-delimited file. 

 The loci selected for inclusion in the input data were di-allelic, single-

nucleotide, polymorphic (1% - 99% MAFs among European individuals in the 

UK10K230 project), autosomal positions. For exome analysis, only loci overlapping 

targeted regions of the exome design were used. At these loci, Bdev and Cdev values were 

calculated as described in the following two paragraphs. 

 Bdev values were generated using the following method: the identity of the 

alleles at each locus was extracted using fast_pileup function in the perl module 

Bio::DB::Sam (https://github.com/GMOD/GBrowse-Adaptors/tree/master/Bio-SamTools), using high-

quality reads (removal criteria: below base quality Q10, below mapping quality Q10, 

improper pairs, soft- or hard-clipped reads) and BAF was calculated as the number of 

reference bases divided by the number of reference bases and non-reference bases. 

Heterozygous sites were defined as loci with a BAF between 0.06 and 0.94, inclusive, 

instead of defining heterozygous sites based on a genotype caller, as this static threshold 

range is more lenient of sites with small numbers of alternate reads, and I wanted to be 

sensitive to detect low clonality mosaicism. The Bdev was calculated at heterozygous 

sites as the absolute difference between the BAF and 0.5. Only loci with sufficient read 

coverage (at least 7 reads) were used for analysis. 
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 Cdev values were generated using the following method: the average read-depth 

for each target region was counted, the log2 ratio for that target region was calculated by 

comparing its read-depth to a reference read-depth, where the reference value was 

defined as the median read-depth among the distribution of read-depths at that target 

region from dozens of highly correlated samples. This log2 ratio was normalised based 

on several covariates pertaining to each target region (covariates included were: GC-

content, hybridisation melting temperature, delta free energy), a process used in an 

exome-based CNV detection algorithm called Convex6. Lastly, I generated the Cdev 

value using the Aberration Detection Algorithm v2 (ADM2) method by Agilent® 

(p.496 of http://www.chem.agilent.com/library/usermanuals/public/g3800-90042_cgh_interactive.pdf), which 

produces a value from the normalised log2 ratio that is error-weighted to reflect higher 

confidence in regions with more depth. 

 The statistical testing step of the MrMosaic algorithm began by data 

smoothing, using a rolling median (width of 5) across heterozygous and homozygous 

sites, so as to utilize the depth information in homozygous sites to reduce variance. 

From this point forward, only heterozygote sites were considered, as mosaic 

abnormalities do not affect Bdev of homozygous loci. Statistical testing assesses whether 

a given locus is significantly deviated from the Bdev and Cdev means given the null 

hypothesis of no chromosomal abnormality. At every heterozygote site I computed two 

Mann Whitney U tests, one for Bdev and one for Cdev, testing the alternative hypothesis 

that the distribution of the metric in the neighborhood of the chosen site was greater 

(has a higher median rank) than the distribution of the background. I used 10,000 

randomly selected sites, from all autosomes excluding the current chromosome, as the 

background population. In order to account for non-uniform spacing of the data points 

when generating the neighbourhood metric I applied a distance-weighted resampling 

scheme, to down-weight more distant points from the chosen site. The tricube distance, 

inspired by Loess smoothing, was chosen as a decay function for the resampling 

weights and considered data points up to 0.5 Mb upstream and downstream of the given 

position. An equal number of data points was then sampled around the chosen site and 

from the background (n=100) and the Mann-Whitney U test was performed. Finally, I 

combined the p values of the two statistical tests (one for Bdev and Cdev) for every 

position using Fisher’s Omnibus method.  



Materials & Methods 

 

115 

 The segmentation step operated on the combined p value generated above. 

Segmentation was performed using the GADA42 algorithm, using the parameters values 

as follows: SBL step: maxit of 1e7; Backward Elimination step: T value of 10 and 

MinSegLen value of 15. This step generated contiguous segments of putative 

chromosomal abnormalities. Segments in close proximity (within 1Mb) that showed the 

same signal direction (loss, gain, LOH) were merged during post-processing to reduce 

over-segmentation. 

 The filtering step was required to enrich the segments generated above for 

those that were likely reflective of true mosaicism. Whilst testing MrMosaic in exome 

simulation analyses, I observed that true-positive detections (those overlapping 

simulated events) tended to be larger (had greater number of probes) and had stronger 

evidence of deviation (had higher GADA amplification values) than putative segments 

that did not overlap with simulated regions (i.e. false-positive, spurious calls) (Figure 

4-1).  

 

Figure 4-1 Distribution of size and signal-strength of false positives. The histograms of probe-

number and GADAamp values both show long tails, with the majority of putative events being 

smaller and weak. The cumulative distribution functions from the data (right column) showed that 

events with greater than about 100 probes or about 25 GADAamp were very rare in the false 

positive events; true events (shown in the next figure) had far larger and have stronger signals.  

I integrated these two observations into a single scoring metric calculated from the 

empirical cumulative distribution functions for ‘number of probes’ and ‘GADA 

amplification value’ of false-positive segments, and assessed the composite probability 
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that a given segment comes from these distributions, such that: Mscore = abs(-log2(x) + 

-log2(y)) where x and y refer to these empirical cumulative distribution functions. Thus, 

the Mscore is a quality-control metric derived by combining the size and signal-strength 

of detections. I then used the Mscore to filter out those events most likely to represent 

false positives. I selected events with an Mscore of 8 or greater for analysis because I 

observed that this appeared to provide a good balance between sensitivity and 

specificity Figure 4-2 and Figure 4-3).  
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Figure 4-2 Comparing Mscores of true positives and false positives. The Mscore distributions for all 

simulated false positive events (first graph) and for a random subselection of false positive events 

equal to the number of true positive events (second graph) demonstrated that the true positive 

events in general have higher Mscores. The accumulation of true positive events at ~40 was an 

artefact of assigning a maximum cut-off to an R “-Inf” value. 
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Figure 4-3 Stratifying Mscore by simulation clonality, type, and size. I stratified the true positive 

events by Mscore to better define the relationship between Mscore thresholds and simulated mosaic 

events. The mosaic events with the lowest Mscore were those at the lowest clonality (left side of left 

graph). 
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 The visualisation step generates a detection table and detection plots. The 

detection table consists of mosaic abnormalities detected and contains the following 

data: chromosome, start_position, end_position, log2ratio_of_segment, 

bdev_of_segment, clonality, type, number_of_probes, GADA_amplification, 

p_val_nprobes, p_val_GADA_amplification, Mscore. Event clonality was calculated by 

assessing the type of mosaic event based on LRR and converting the Bdev value to 

clonality based on the type of event (Table 4-1). The detection plots are showing the 

loci and BAF and Cdev data for each chromosome in which a mosaic abnormality is 

detected, as well as a genome-wide lattice plot using the data for all chromosomes. 

Simulation*metrics* Normal* Loss* Gain* LOH*

LRR# 0# !"#2(2 −!2 )# !"#2(2 +!2 )# 0#

Simulated#Read#Depth#(SDP)#
!! = !"! ∙ !#

!"#!~!!"#$$(!!)#

!! = !"!
2 −!
2 !#

!"#!~!!"#$$(!!)#

!! = !"!
2 +!
2 !#

!"#!~!!"#$$(!!)#

!! = !"! ∙ !#

!"#!~!!"#$$(!!)#

B5allele#frequency#

(Bdev)#

! = 0.5#

!!"#,!~!!"#$%(!"#! , !!)#

! = 0.5 ± !
2(2 −!)#

!!"#,!~!!"#$%(!"#! , !!)#

! = 0.5 ± !
2(2 +!)#

!!"#,!~!!"#$%(!"#! , !!)#

! = 0.5 ±!2 #

!!"#,!~!!"#$%(!"#! , !!)#

Table 4-1 Functions to Prepare Simulations. ! : Clonality as in proportion of cells with 

abnormality; !"!: Median read depth (after quality filtering) at position I; S: Scaling factor so that 

!"#$%&!!"#$%&#!!"#$!!"#$%! = !!".!!×!!  ; SDPi : Simulated Read Depth at position I; p: 

Proportion of reads with alternative allele at position i 

 MrMosaic is primarily written in the R language, available as an open-source 

tool at https://github.com/findingdan/MrMosaic. The algorithm can be used in multi-

threaded mode to facilitate whole genome analysis. Analysis of a single whole-exome 

using a single thread was completed in 15 minutes when tested using a single core of an 

Intel Xeon 2.67Ghz processor and 500 Mb of RAM. Whole-genome analysis using 24 

cores required 30 Gb of RAM and 7 hours. Whole-genome analysis can be substantially 

shortened if the number of sliding windows is reduced or the window size is increased.  

4.3.2 Simulating Mosaicism 
I devised a series of simulation experiments to assess MrMosaic performance for 

various events, across type (LOH, gains, losses), clonalities, sequencing depths, 

platforms (whole-exome (WE) and whole-genome (WG)) and to compare performance 
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to the MAD method. I compared performance to a modified version of MAD I adapted 

to enable more flexible execution in a parallel-computing environment, but identical 

with respect to statistical methods.  

 The simulation method consisted of these steps: (1) loci selection, (2) 

calculating depth at these loci, (3) parameter space and number of trials, (4) adjusting 

read depth in simulated regions, (5) calculating final real depth, (6) selecting sites based 

on minimum depth, (7) calculating relative copy-number, (8) assigning genotypes, (9) 

calculating the BAF for each site, (10) calculating performance. Steps 1-3 differed 

between the WE and WG simulations and are described first below. The remaining 

steps 4-10 were executed consistently for WE and WG simulations. 

 For WE simulations, loci selection (1) was based on di-allelic single nucleotide 

polymorphic positions (between 1% and 99% UK10K230 European minor allele 

frequency) in the V3 version of the target-region design (Agilent® Human All Exon 

V3+). To calculate depth at these loci (2), at each locus i, baseline sequence read depth 

(!"!) for these sites was defined as the median of the read depth distribution among 100 

parental exomes for each site, considering only high-quality reads (mapQ at least 10, 

baseQ at least 10, properly mapped read-pairs), where parental exomes had a mean 

average sequencing output of 67x (calculated where x was the number of QC-passed & 

mapped reads without read-duplicates * 75 bp read length / 96 Mb targeted bp). The 

parameter space (3) consisted of the following: target average sequencing coverage (in 

fold coverage) {50, 75, 100}, event clonality ! ∈ {0.25, 0.375, 0.5, 0.75}, type {loss, 

gain, LOH}, and size {2e6, 5e6, 1e7, 2e7}. Two hundred trials (4) were conducted per 

parameter combination for a total of 36,000 simulations.  

 For WG simulations, the loci selection (1) was based on di-allelic single 

nucleotide polymorphic (1% - 99% European MAFs from 1000G146 May-2013 release) 

autosomal positions. To calculate expected depth at these loci (2), I calculated a scaling 

factor for each locus based on the median read depth of the first two median absolute 

deviations of the distribution of coverage for that site seen across 2,500 low-coverage 

samples in the 1000Genomes146 project. A site-specific scaling factor was calculated as 

the deviation of each site’s read depth from the average read depth across all 

polymorphic positions. Simulation depth was defined at each site as the desired 

simulation coverage multiplied by site-specific scaling factor. The parameter space (3) 

consisted of two experiments: 1) average genome coverage of 25x, event clonality ! ∈ 
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{0.25, 0.375, 0.5, 0.75}, type {loss, gain, LOH}, and size (Mb) {1e5, 2e6, 5e6}; and 

2) 5 Mb 50% clonality event captured at average genome coverages (in x) {30, 40, 50, 

60} for the three mosaic types {loss, gain, LOH}. One hundred trials (4) were 

conducted per WG simulation.  

 The remaining simulation steps 4-10 described below were performed 

consistently for WE and WG simulations. For each simulation a single mosaic event 

was introduced into each simulation trial. The adjustment of read-depth in simulated 

regions (4) was performed using a scaling factor based on the type and clonality of the 

simulated event, !, while sites not overlapping copy-number simulated events would 

not undergo this scaling step. To calculate the final simulated read depth (5) for each 

site ! (!"#!), I sampled from a Poisson distribution with !! !equal to the scaled read 

depth (Table 4-1). Only positions with a final read depth (6) of at least 7 reads were 

included for analysis. Relative copy-number (7) was defined as log2 of the ratio of the 

final read depth to the baseline read depth.  

 The simulation of genotypes (8) (AA, AB, or BB) at each position i was 

determined based on the site’s minor allele frequency, which was used in a multinomial 

function with probabilities corresponding to Hardy Weinberg-assumed genotype 

proportions (p2, 2pq, q2). To calculating the BAF for each heterozygote at site i (9), I 

adjusted the expected heterozygote proportion of 0.5 with respect to the chosen event 

type and clonality, and sampled from a binomial distribution given this adjusted 

proportion and the simulated read depth at i. BAFs for homozygote reference (AA) and 

non-reference (BB) sites were chosen by sampling from a binomial distribution with 

p=0.01 or p=0.99 respectively and the simulated read depth at i. 

 MrMosaic and MAD were applied on the simulated WE and WG samples 

generated by the above procedure and performance was measured using precision-recall 

metrics (10). A ‘success’ in a trial was considered a detection overlapping the simulated 

mosaic event. Precision was calculated as the number of successes divided by the 

number of detections. Recall was defined as the proportion of trials with a success. 

4.3.3 Description of Samples & Sequencing 
The samples used in this analysis derived from the DDD study. DNA was extracted 

from blood and saliva by local clinical teams and was processed at the Wellcome Trust 

Sanger Institute.  The array CGH and exome sequencing were performed by the Sanger 

Institute array and sequencing cores. There were 4,926 DNA samples analysed in this 
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study from 4,911 children, as some children were analysed using both blood and saliva. 

The majority, 3,260 of 4,926 (66%) of the DNA samples were extracted from saliva.  

 Exome sequencing was performed by the Sanger Institute sequencing core as 

fully described elsewhere137. In brief, DNA was enriched using a Agilent® exome kit, 

based on the Agilent Sanger Exome V3 or V5 backbone and augmented with 5 Mb of 

additional custom content (Agilent Human All Exon V3+/ V5+, ELID # C0338371). An 

‘extended target region’ workspace was defined by padding the 5’ and 3’ termini of 

each target region by 100-bp yielding a total analyzed genome size of approximately 90 

Mb. Sequencing was performed by the sequencing core using the Illumina® HiSeq 

2500 platform with a target of at least 50x mean coverage using paired-end sequence 

reads of 75-bp read-length. Measured exome coverage ranged from 14x to 155x with a 

mean of 69x (Figure 4-4).  

 

Figure 4-4 The distribution of average coverage of exomes used in this study. 
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Alignment to the reference genome GRCh37-hs37d5 was performed by the Human 

Genetics informatics team using bwa57 version 0.5.9 and saved in BAM-format58 files.  

 Additionally, I processed two exome samples post hoc from saliva after SNP 

genotyping chip analysis showed mosaicism was present in saliva but absent in blood. 

These two exome samples and the exome sample with suspected revertant mosaicism 

were processed separately from the exome experiment described in the previous 

paragraph. For these three exomes, the Agilent Sanger Exome V5 target kit was used, 

and sequence depth ranged from 387x - 455x coverage (reads = {465,522,627, 

483,098,826, 549,766,632} * 75bp read-length / 90e6 target-region-size). The sample 

with suspected underlying mosaic reversion had 549,224,891 QC-passed & mapped 

reads, and 57,165,328 duplicates, and therefore had a mapped read coverage of 410x 

((549,224,891-57,165,328)) * 75 / 90e6).  

 For the sample for which whole genome sequencing data were generated, 

sequencing was performed by the Sanger Institute sequencing core using an Illumina® 

X-Ten sequencing machine. Library fragments of 450-bp insert-size were used and 

paired-end 151-bp read-length sequence reads were generated. Alignment to the 

reference genome GRCh37-hs37d5 was performed by the Human Genetics informatics 

team using bwa mem57 version 0.7.12. I calculated average coverage using samtools 

flagstat as the number of QC-passed mapped-reads without duplicates using 151 bp 

read-lengths in a 3Gb genome: (616,151,282 –124,325,581) * 151 / 3e9 = 24.8x. 

Rearrangement analysis was carried out using Breakdancer231 v1.0. 

4.3.4 Additional filtering implemented in addition to Mscore quality score 
Some events with very high Mscores appeared to represent real, but constitutive, 

abnormalities. I identified two failure modes: constitutive duplications and 

homozygosity by descent (HBD). Constitutive duplications genuinely produce strong 

Bdev signals in MrMosaic, but also constitutive deletions and large regions of 

homozygosity (ROH) may potentially produce putative detections if individual probes 

have mapping artefacts that resulted in spurious signals. I used bcftools roh (developed 

by Vagheesh Narasimhan, manuscript in preparation) to identify and filter HBD regions 

and flagged as suspicious events with greater that 25% reciprocal overlap with CNVs 

detected through constitutive copy-number detection. In addition, I observed several 

recurrent putative detections, especially prevalent in pericentromeric and acrocentric 

regions that appeared spurious on the basis of inconsistencies between BAF and LRR, 
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and I filtered such events by filtering putative mosaic events seen in more than 2.5% of 

samples.  

4.3.5 SNP genotyping chip validation 
The Sanger Institute genotyping core used Illumina® HumanOmniExpress-24 

Beadchips (713,014 markers) for SNP genotyping, Illumina® GenomeStudio to 

generate log R ratio and BAF metrics, and Illumina® Gencall software to calculate 

genotypes. I performed structural mosaic detection using MAD49. Initial mosaic events 

were merged if events were within 1 Mb, and were the same type (loss, gain, or LOH) 

of mosaic event. Results were plotted using custom R code. 
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4.4 Results 
I developed a new computational method, MrMosaic, to detect structural mosaic 

abnormalities from high-throughput sequence data (Methods). In summary, this method 

identifies chromosomal segments with clustered deviations in allelic proportion and 

copy number, relative to randomly selected sites on other chromosomes from the same 

data. Initially, measures of deviation of allelic proportion (Bdev) and copy number (Cdev) 

are computed from the WE/WG data at well-covered known polymorphic SNVs. 

Whereas Bdev is only assessed at heterozygous sites, Cdev integrates information from 

flanking non-heterozygous sites to reduce noise. The statistical significance of the 

observed Bdev and Cdev are assessed separately, using non-parametric testing, and the 

resultant p values are subsequently combined and then segmented using the GADA 

algorithm42. I devised a confidence score, the Mscore, to curate putative detections of 

mosaic segments by integrating metrics that discriminate between true positive and false 

positive mosaic detections (Figure 4-5).  
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Figure 4-5 Detecting structural mosaicism using MrMosaic. a) Exome data are stored in a BAM file 

from which allele fraction (left column) and coverage (right column) are measured at polymorphic 

positions within or near target regions. b) A simulated mosaic deletion is depicted and the raw data, 

consisting of BAFs and normalized coverage are plotted for a simulated mosaic deletion. c) 

Absolute deviation of BAF (Bdev) and normalized coverage (Cdev) at heterozygous sites are analyzed. 

d) Mann Whitney U Tests are performed separately for Bdev and Cdev, comparing the signal 

detected in sliding windows in this chromosome, compared with a randomly selected chromosome 

for background. The test statistics are depicted on the log scale. e) The p values of the Mann 

Whitney U Tests are combined and segmented (black lines). Segments passing the Mscore 

significance threshold are plotted in blue. 

4.4.1 Simulations 
I performed simulations (Methods) to explore the performance of MrMosaic for three 

different classes of structural mosaicism: gains, losses and LOH, in several contexts. 
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The performance results across mosaicism of different sizes, clonalities and 

sequencing coverage are summarised in Figure 4-6 or both WE and WG data. 

 Across all measured categories, mosaic duplications were more difficult to 

identify than deletion or LOH events, especially at lower (25%) clonality (Figure 4-6).  

 

Figure 4-6 WE performance of MAD and MrMosaic algorithms. In this grid of precision-recall 

graphs, the performance of MAD and MrMosaic is compared at 75x average coverage for a range 
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of sizes (columns), clonalities (rows), and for the three types of mosaic abnormalities (colors) run 

with either MAD or MrMosaic (shades). Performance of both algorithms improves with increasing 

simulated event size (due to more assayed informative points) and at higher clonalities (due to a 

stronger deflection of non-reference proportion (Bdev) and coverage (Cdev)). MrMosaic performs 

favorably compared to MAD in all measured categories. This effect is especially apparent for 

mosaic gains, which is the type of mosaicism that generates the smallest deviations in Bdev; unlike 

MrMosaic, which analyses Bdev and Cdev, MAD analyses Bdev alone.  

The most likely explanation for this relative weakness is that duplications result in the 

smallest deviation of Bdev, compared with deletion and LOH events and that the Cdev 

signal does not overcome sampling noise at low clonality. Figure 4-7 shows the 

relationship between clonality and Cdev and Bdev for the three classes of mosaicism. 

 

Figure 4-7 Relationship between Clonality and Metrics. The relationship between clonality and 

measured metrics (Cdev and Bdev) indicates that while LOH events result in no deviation of Cdev, 

gains have the smallest deflection of Bdev, compared to other events of a given clonality. 

To further explore the effect of including Cdev in addition to Bdev, I investigated the 

performance of MrMosaic using Bdev alone compared with joint analysis of Bdev and 

Cdev. This analysis showed that incorporation of Cdev substantially improved detection 

of copy-number events above lower clonality, while only a marginally decreased 

performance of LOH detection (Figure 4-8), consistent with the intuition that Cdev yields 

a valuable net signal when clonality is above the Cdev noise floor.  
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Figure 4-8 WE MrMosaic, Cdev & Bdev vs Bdev-alone. MrMosaic combines the statistical 

deviation from differences in coverage (Cdev) and non-reference proportion (Bdev) while the MAD 

approach uses Bdev alone. I ran MrMosaic in standard joint-mode and also using Bdev alone. The 

results demonstrate improved detection when considering joint calling, especially for copy number 

events above 0.25 clonality. LOH-type mosaicism does not affect copy number (Cdev), so considering 

Cdev adds no additional information and has the potential to add noise to the calculation, which may 
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explain the slightly lower performance of LOH calling in the low-clonality (0.25), large (20 Mb) 

category. 

 Simulations showed detection performance increased with larger event size 

(Figure 4-9). WE simulation analysis demonstrated high area under the precision-recall 

curve (AUC) for all events at least 10 Mb in size and at least 50% in clonality; and, for 

deletion and loss of heterozygosity (LOH) events at least 5 Mb in size. MrMosaic 

performed favourably compared to MAD in all measured categories. For WG data 

simulations demonstrated an AUC of about 0.9 for 100 kb LOH and loss events, and 

greater than 0.95 for all megabase-size events. WG analyses interrogated nearly 50-fold 

more sites than exome data (Table 4-2). In the WE simulations, the number of 

informative sites increased with increasing coverage, a finding driven primarily from an 

increasing number of sites passing the minimal depth threshold. Whilst the number of 

sites assayed did not differ in WG simulations, because sequencing coverage is more 

uniform and at the levels of coverage simulated here (20x minimum), sites always had 

sufficient coverage. Incidentally, the number of informative sites actually decreased 

very slightly in the WG simulations at higher coverage, with more sites classified as 

homozygous (non-informative) because of sampling artefacts, but this effect was small, 

and far outweighed by the benefit of assaying far greater number of sites compared to 

WE simulations. 
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Figure 4-9 Simulation performance summarised by AUC. I measured the average precision (area 

under the precision recall curve) for MrMosaic implemented on whole-genome (WG) simulations, 

and MrMosaic & MAD implemented on whole-exome (WE) simulations. The depth, size, and 

coverage measured for WG and WE simulations were selected to accentuate informative 

differences in performance. The first column of figures measures AUC across size. Simulated 

events of 50% clonality were studied for WG (a) and WE (b) simulations. Whereas for WE 

simulations, simulated exome depth was 75x depth, for WG simulations it was 30x depth. 

MrMosaic on whole-genome data (WG-MrM) outperformed MrMosaic on exome data (WE-MrM), 

which outperformed MAD on exome data (WE-MAD). The second column of figures measures 

AUC across clonality. Whereas for WE (c) simulations the simulated size and coverage was 5 Mb & 

75x, for WG (d) simulations it was 100 kb & 30x. The third column of figures measures AUC across 

average coverage. Simulated events of 50% were studied for both WE (E) and WG (F) simulations. 

Whereas for WE simulations, simulated event size was 5 Mb, for WG simulations it was 100 kb. 

Depth&

(in&x)&
Platform&

Mean& #&

Assayed&

Positions&

Mean& #&

Informative&

Positions&

Median&

Distance&

between&

Informative&

Positions&

Mean&

sampling&

variance&

20# WG# 7858070# 2014409# 1503# 0.130282#

30# WG# 7866967# 1949467# 1554# 0.129219#

40# WG# 7867003# 1932357# 1568# 0.128347#

50# WG# 7867003# 1924407# 1574# 0.128340#

50# WE# 163521# 39382# 59719# 0.12264#

75# WE# 181053# 43131# 54581# 0.12247#

100# WE# 191104# 45233# 52046# 0.12213#

Table 4-2 Number of assayed positions in WE and WG simulations. This table lists the mean 

number of assayed positions, the number of informative (heterozygous) sites, the average distance 

between informative sites and the mean sampling variance for each simulated coverage. Average 

distance between was calculated using sites on the p arm of chr1. All averages were calculated using 

50 simulated samples per depth. There was a positive correlation between increasing depth and 

number of assayed sites, with a more pronounced effect in WE compared with WG. The interprobe 

distance is higher in the exome compared with the genome. This is due to having fewer sites and 

more variable distance between sites in WE compared with WG. The variance of the b allele 

frequency for heterozygous sites decreases with increasing sampling depth. 
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 Detection performance in simulations increased between 25% and 75% 

clonality (Figure 4-9). The WE and WG clonality performance results were measured at 

5 Mb and 100 kb sizes, respectively, as events at these sizes were most sensitive to 

changes in clonality. Previous studies of children with DD have reported a median 

mosaicism of approximately 40% clonality and at the event sizes studied detection 

performance is strong at this level of clonality. As clonality increases, the mosaicism is 

present in a greater proportion of cells, resulting in a greater signal to detect. 

 Simulation performance increases with respect to sequencing coverage (Figure 

4-9). The WE and WG performance with respect to sequencing coverage were assessed 

for events of 50% clonality, using 5 Mb events for the WE simulations, and 100 kb 

events for the WG simulations. WE simulations demonstrated a marginal improvement 

of detection performance across a range of coverage from 50-100x, which was notable 

for mid-clonality gains (Figure 4-10).  
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Figure 4-10 WE performance of MrMosaic across 50-100x. I generated simulated exomes of 50x, 

75x, and 100x depths and measured MrMosaic detection performance across coverage. Detection 
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was measured at events of 50% clonality. Simulated event size and coverage (in ‘x’) are denoted 

in column and row headers, respectively. Increasing coverage is positively correlated with higher 

performance. This is likely due to a greater number of events passing minimum depth threshold 

(more signals) and a more precise estimate of non-reference discrepancy (better signal:noise ratio).  

Previous work has suggested that 75x average coverage in WE data enables high 

resolution constitutive copy-number analysis8 and these coverage simulations 

demonstrated that this exome coverage is also sufficient for the detection of mosaic 

structural abnormalities.  

 Increasing coverage has an effect on the number of assayed sites (number of 

signals) if some simulated sites fail to meet the minimum depth criterion, and has an 

effect on sampling variance (‘noise’) (see Figure 4-14 below). In WE data, both of these 

characteristics operate, whilst WG data have a much more even coverage distribution (it 

is not vulnerable to the enrichment biases of WE data) and increased simulation 

performance at higher coverage is likely primarily driven by decreased sampling noise. 

 In the WG results, AUC rose dramatically between 15x and 20x coverage for 

LOH and loss events and between 25x and 30x for gains. AUC was above about 0.9 for 

LOH and loss events at 30x depth, the standard sequencing depth generated by 

Illumina® X-TenTM sequencing system. Nearly all structural mosaic events of 100 kb 

and 50% clonality were detected (Figure 4-11). 
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Figure 4-11 WG performance of MrMosaic and MAD. The performance of MAD and 

MrMosaic is compared at 30x WG average coverage for a range of sizes, clonalities, and for the 

three types of mosaic abnormalities simulations. The performance of MrMosaic detection is 

extremely high (high recall, high precision) at the same size ranges (2 Mb to 20 Mb) tested in exome 

simulations. In addition, detection performance is high at small-sized (100,000 bp) medium-

clonality (0.5) events.  

Average coverage of 20x was sufficient to detect nearly all 50% clonality deletion and 

LOH events at 100 kb. Detection performance of gains improved at 30x and 40x (Figure 

4-12). 
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Figure 4-12 WG MrMosaic performance across 5-50x. I generated simulated genomes of 5x-50x 

depths and measured MrMosaic detection performance across coverage. Performance was 

measured of simulated events of 50% clonality. Simulated event size and coverage (in X) are 

denoted in column and row headers, respectively. Increasing coverage is positively correlated with 

higher performance. Events at 1Mb were detected easily at standard X-Ten coverage (30x) 

(http://www.illumina.com/systems/hiseq-x-sequencing-system/system.html). 

4.4.2 Detections in Exome Data 
DNA for WES data were derived from saliva (66%) or blood sampling (34%), for 4,911 

children with undiagnosed DDs. Analysis for structural mosaicism identified 11 mosaic 

abnormalities among 9 individuals, a frequency of 0.18%. The detections consisted of 

five losses (median size: 13 Mb, median clonality: 46%), four gains (median size: 25 

Mb, median clonality: 55%), and two LOHs (median size: 50 Mb, median clonality: 

26%) (Figure 4-13, Table 4-6 at end of chapter).  
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Figure 4-13 Structural mosaicism detected by MrMosaic from exome data in nine DDD 

samples, grouped into four categories. Black and red dots represent copy-number and allele 

fraction, respectively. Cdev and Bdev are plotted in black and red trend lines. The blue line represents 

statistically significant segmented detections passing a threshold. a) mosaic gains;  b) mosaic losses; 

c) mixed copy-number; d) loss-of-heterozygosity events  

 In chapter 3, I presented analysis results for a subset (1,226 of 4,911) of these 

samples which had been analysed using SNP microarray178 and among the samples in 

this subset, the SNP microarray approach had identified 10 events (in 8 samples), whilst 

exome analysis performed here yielded 8 events (in 6 samples). Of the two (missed) 

events not detected by exome but detected by SNP microarray, one of these events was 

a 4 Mb duplication below 25% clonality. The other missed event was an LOH event 

with low sequencing depth (33x, one of the lowest of our study, Figure 4-4). Low depth 

results in lower statistical significance of deviations in allelic proportion and copy 

number and higher sampling variance. Variance was much higher in WE samples with 

lower coverage (Figure 4-14).  

 

Figure 4-14 Observed BAF variance at heterozygous sites in WE data across samples with different 

sequencing depth. 
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Given the high clonality (about 75%) of this missed LOH event, it may have been 

detected using constitutive (genotype-based) UPD analysis (although, as paternal data 

were not available for this sample, it was not analysed by trio-based UPD137 detection).  

 The frequency of mosaicism detected in this study, 0.18%, is lower and 

significantly different (p < 10-4, binomial test) from the 0.59% estimate of structural 

mosaicism frequency calculated above (in §§§§§21Section 4.2). One likely explanation 

for the discrepancy in these frequencies is ascertainment bias, as 11 of the 36 events 

underlying the copy number frequency estimate were mosaic trisomies and children 

with trisomy are likely to have been diagnosed by clinical karyotype or microarray and 

not enrolled into the DDD study. Another component of this discrepancy may be due to 

decreased sensitivity, as mosaicism smaller than 2 Mb is challenging to detect by exome 

and 9 of the 36 events underlying the 0.59% frequency estimate were smaller than 2 

Mb. The rate of mosaic events detected in the first 1,226 samples, 0.41%, is higher than 

the rate detected in the remaining 3,685 samples, 0.24%. This may suggest that the 

detection of mosaicism in real data is less sensitive than I estimated from simulations, 

or that clinical ascertainment has changed over the course of the project, which may be 

due in part to the increasing use of microarray over karyotyping by clinical centres in 

the last few years. 

 Validation data were generated using SNP microarrays for each of the 11 

mosaic abnormalities assaying both blood and saliva derived DNA for   individual. 

In these data I detected all abnormalities in at least one tissue (Table 4-6). Notably, six 

of the seven mosaic copy-number mutations detected by MrMosaic in exome data had 

been undetected by both clinical and high-resolution aCGH investigation of the same 

tissue, despite most events being at least 5 Mb in size and exhibiting 50% clonality 

(Table 4-3).  
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ID* tissue* chr* aCGH_appearance* clonality_by_SNP* detected_in_aCGH?*

265800# Blood# 12# no_deviation# absent# na#

265800# Saliva# 12# no_data# 0.68# na#

261373# Saliva# 12# no_data# 0.45# na#

261373# Blood# 12# no_deviation# absent# na#

273553# Blood# 18# no_deviation# absent# na#

273553# Saliva# 18# no_data# 0.6# na#

259003# Saliva# 22# deviation_but_no_call# 0.54# no#

259003# Blood# 22# deviation_but_no_call# 0.34# no#

274013# Blood# 10# no_deviation# absent# na#

274013# Saliva# 10# no_data# 0.44# na#

274600# Saliva# 18# no_data# 0.49# na#

274600# Blood# 18# no_deviation# absent# na#

260462# Saliva# 18# deviation_no_call# 0.5# all5three5missed#

260462# Blood# 18# no_deviation# absent# na#

258956# Blood# 3# failed_QC# absent# na#

258956# Saliva# 3# partially_detected# 0.94# yes#

261240# Blood# 5# no_data# absent# na#

261240# Saliva# 5# partially_detected# 0.39# partially_seen_escaped_review#

Table 4-3 Validation results of all structural mosaic events in blood and saliva. Most mosaic copy 

number events escape detection by aCGH.  

Examination of the raw aCGH data in one case (Figure 4-15) showed that only small 

fragments of one of the events were detected but these called segments were 

individually much smaller than the actual event and escaped review. 
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Figure 4-15 Detection of 261240 was post hoc in that originally, DNA from blood was analysed and 

no event was detected, although SNP microarray data data which had been previously analysed 

identified an abnormality in saliva, suggesting that either the event was missed by exome in blood, 

or that the mosaic event is not present in blood. I generated SNP microarray data for blood, which 

showed no evidence for the mosaic event in blood. And, I generated exome data from saliva, and 

MrMosaic detected the mosaic abnormality, with an Mscore of 12. Note that array CGH of saliva 

identified small segments of elevation but none was sufficiently large to pass size filtering. 

 Both of the mosaic events initially observed in blood-derived DNA were also 

observed in saliva, however, only one out of the eight events observed in saliva-derived 

DNA was also detected in blood (Table 4-6). There were 2 abnormalities detected from 

1,036 blood samples and 9 detected from 3,260 saliva samples, a non-significant 

proportional difference (p > 0.05, Fisher’s exact test). One of the mosaic events detected 

in both blood and saliva was an LOH-type event, remarkable for having a gradient of 

increasing clonality toward the telomere (Figure 4-16 and Figure 4-17).  
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Figure 4-16 SNP Validation of 274396. A gradient of clonality present on chromosome 11, 

extending to the 3’ end of the chromosome. 

 

 

Figure 4-17 Investigating the mosaic reversion event. I examined SNP microarray data to help 

localise the cause of the suspected reversion. These plot displays heterozygous BAFs (BAFs above 

0.5 are reflected below the 0.5 line) from SNP microarray data on the 3’ end of chromosome 11, 

with a median trend line included. The bottom plot is a zoomed-in version of the top plot. Just 5’ to 

the 100 Mb position there is a sudden increase in mosaic clonality (arrow), followed by a plateau of 
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clonality toward the 3’ end. I investigated the rare (below 1%) variants present in the region from 

90 Mb – 105 Mb.  

 This gradient of increasing clonality along the chromosome is compatible with 

incomplete LOH-mediated mosaic reversion. Reversion is the somatic recovery of a 

functional allele. The genotype data present here are consistent with distinct cell 

populations carrying partially overlapping independent LOH events (Figure 4-18), a 

mechanism reported elsewhere recently232.  

 

 

Figure 4-18 The revertant mosaic event detected in this study, and below, a schematic depicting the 

hypothesised mechanism, with black lines representing segments of LOH in independent revertant 

clones, while the gray represent wild-type. This reversion is ‘incomplete’ in the sense that, at least 

at the time of sampling, some clones still contain the wild-type allele. 

I scrutinised the genomic interval in the most proximal (5’) portion of this LOH 

segment (just distal to the arrow in Figure 4-17), suspected to contain a pathogenic 

allele and present the variants in the following table (Table 4-4).  
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chr* pos* ref* alt* af* gene* ddg2p?* consequence*

11# 92087959# G# A# 0.005931# FAT3# no# missense_variant#

11# 93170909# T# TCC# none# CCDC67# no# 3_prime_UTR_variant#

11# 94039561# G# A# 0.008177# IZUMO1R# no# intron_variant#

11# 94564757# G# A# 0.000276# AMOTL1# no# intron_variant#

11# 94696714# T# C# 0.000366# CWC15# no# intron_variant#

11# 95569170# T# G# 0.007078# CEP57# yes# intron_variant#

11# 100665791# C# T# 0.000414# ARHGAP42_no# intron_variant# 11#

Table 4-4 Rare variants in the most proximal region of the smallest LOH region.  

Nevertheless, despite generation and analysis of high-depth (~400x) WES data for this 

sample, and the identification of several strong candidate genes, including CEP57 (the 

cause of mosaic aneuploidy syndrome233) in the reversion-localised region, no plausibly 

pathogenic de novo or rare (below 1% minor allele frequency) coding sequence variants 

were identified. Another possibility is that the suspected mutation responsible for 

driving the reversion may be absent from the exonic regions, i.e. is a regulatory 

mutation, or be a class of mutation not well detected in exome data. Deep sequencing of 

this entire genomic region may be warranted for further study. 

4.4.3 Empirical evaluation of detection of mosaicism from WGS data 
I selected one sample with three mosaic abnormalities detected on a single chromosome 

to demonstrate MrMosaic performance on whole-genome sequence data and to 

investigate the structure of the mosaic rearrangement. MrMosaic easily detected these 

multi-megabase mosaic events, found with very high Mscores of 36, 117, and 32. The 

presence of three mosaic events of similar clonality on the same chromosome is 

suggestive of a complex chromosomal rearrangement. I analysed the read -pair WGS 

data using Breakdancer231, which identified read-pairs mapping across the centromere 

and evidence of a breakpoint spanning from the q-arm deletion to the centromere. Ring 

chromosomes are associated with bi-terminal deletions234 and inverted duplications235 

and I suspected that the underlying abnormality in this child is a ring chromosome, 

although the cellular material required to generate the cytogenetic data to test this 

hypothesis was not available for study (Figure 4-19). 
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Figure 4-19 WGS analysis of Decipher 260462. Measurement of copy number (left, top) was 

generated using CNVnator236, using bins of 10k reads and normalizing by GC content. The allele 

fraction plot (left, bottom) shows slight more variance in BAFs at the termini of the chromosomes. 

MrMosaic detection (Tgada of 20, minSegLen of 30) identified the three mosaic abnormalities (blue 

lines). 

 The BAF signal is ‘noiser’ here than in the exome analysis because 

measurement of BAF is sensitive to sampling variance, which is related to read 

coverage, and coverage is much lower in the WGS (25x) compared to the WES data 

(75x).  

4.5 Clinical assessment 
I investigated the clinical impact of the detected mosaic mutations to determine whether 

each was diagnostic, that is, providing the likely explanation of the child’s phenotype 

(Table 4-7). In chapter 3, I presented the clinical evaluation of four (Decipher IDs: 

261373, 259003, 260462, and 257978) of the nine mutations presented here and the 

clinicians and I assessed that in three of the four children the mutations were definitely 

pathogenic and considered diagnostic of the child’s disease (three multi-megabase 

mosaic CNVs causing genomic disorders) whilst one child (257978) with a mosaic 

LOH mutation, had absence of neuronal migration, seizures, somnolence, scoliosis, but 

no loss of function variants or functional variants in known DD genes in the LOH 

region, and the mosaic LOH was considered of uncertain pathogenicity. I investigated 

the phenotypic profile of the remaining five patients and present the results from that 

analysis here; the clinicians and I assessed that the mosaic mutation is the likely 

explanation for disease in each of these children. I summarise the diagnostic results in 

the following table (Table 4-5) and discuss each patient in detail below. 
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DecipherID& Diagnosis&

265800# Pallister#Killian#syndrome#

273553# 18p#mosaic#tetrasomy#

274013# distal#10q#deletion#syndrome#

274600# Pitt#Hopkins#syndrome#

274396# mosaic#reversion#of#unknown#de#novo#mutation##

Table 4-5 Diagnoses resulting from mosaic abnormalities 

 Female patient 265800 had feeding problems, hypotonia, moderate 

developmental delay, severe speech delay, joint laxity, macroglossia, meningocele, 

delayed closure of the anterior fontanelle with short stature (2nd centile). An array CGH 

was performed on blood lymphocytes but no copy number events were detected. 

Additionally, testing for mucopolysaccharidosis, SMARCA2, Fragile X, and FISH for 

17p11.2 were negative. The exome analysis on saliva detected a gain of 12p. Mosaic 

tetrasomy 12p is the genetic basis of Pallister Killian syndrome207, a well known cause 

of developmental delay. Simultaneous skin biopsy confirmed mosaicism for 

isochromosome 12p, considered definitely pathogenic. The child’s clinical features are 

consistent with Pallister-Killian syndrome and the diagnosis was conferred to the 

family. 

 Male patient 273553 has moderate developmental delay, proportionate short 

stature, mild dysmorphism, significant behavior problems, undescended testes, 

strabismus, hypermetropia, joint laxity, indistinct speech, palatal insufficiency and 

communication difficulties. He had surgical correction of a patent ductus arteriosis. 

Multiple clinical array CGH investigations were performed on blood and all were 

negative. Exome analysis of saliva detected a mosaic abnormality of 18p, and the 

abnormality was validated using SNP analysis of saliva (clinical aCGH of the saliva is 

pending). The variant was considered definitely pathogenic. The gain in chromosome 

18 appears to have two extra haplotypes, which may be consistent with a mosaic 

trisomy condition. Tetrasomy 18p is a recognized genomic disorder, responsible for 

causing a variety of clinical symptoms. The mosaic form, mosaic tetrasomy 18 presents 

with milder phenotypes237. In this case, the phenotypes present in the child were 
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considered likely to be due to this mosaic chromosomal abnormality and the 

diagnosis was conferred to the family.  

 Male patient 274013 required 35 days of neonatal medical intensive care for 

feeding difficulties. The child developed with severely restricted growth (1st centile, 

below -3.5 standard deviations of height, weight, and head circumference) and 

developmental delay, characterized by severe expressive language disorder and 

dyspraxia. The child had an abnormal facial shape, abnormal facial musculature, joint 

stiffness, brachydactyly, short stature, and was mildly dysmorphic. Testing was 

performed for acroosteolysis and was negative. Clinical array CGH performed in blood 

was negative. Exome analysis of saliva detected a 13 Mb mosaic deletion affecting the 

nearly all of 10q26 (10q26.12-10qter). Deletions of 10q26 are responsible for a variety 

of phenotypes, most commonly pre- and post-natal growth restriction, mental 

retardation, and abnormal facial facies (broad ‘beak-like’ nose)238. This mosaic 

abnormality was considered definitely pathongenic, diagnostic of the child’s disease, 

and returned to the family. 

 Female patient 274600 had severe global developmental delay, with absent 

speech at 5 years of age, severe and progressive microcephaly (below -3.5 standard 

deviations), muscular hypotonia, hypotelorism, brachycephaly, narrow palate, apneas as 

a baby, abnormal extensor posturing, beaked nose, bow-shaped upper lip, broad 

terminal phalanges, and lack of intracranial myelination. Pitt Hopkins was suspected but 

clinical testing for mutations in the TCF4 gene, the cause of Pitt Hopkins204 were 

normal. Additionally, tests for mutations in UBE3A, and for abnormalities in 15q 

methylation were performed and were normal.  Exome analysis of saliva detected a 28 

Mb mosaic deletion in 18q, overlapping the TCF4 gene, considered definitely 

pathogenic. The child’s phenotypes are suggestive of Pitt Hopkins disorder and the 

diagnosis was conferred to the family. 

 Male patient 274396 had mild global developmental delay with severe growth 

restriction, including substantial microcephaly (below 7 standard deviations), restricted 

height (below -3.5 standard deviations) and restricted weight (below -5 standard 

deviations). The child had several abnormalities including progressive hypo- and hyper-

pigmentation of the skin especially in the axilla, groin and neck. Skin wrinkling on 

dorsum of the hands, sparse & fine hair and a wide mouth were also noted. Dyskeratosis 

congenita was suspected, premature chromosome condensation testing was performed 
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and showed no abnormalities. This is the child discussed earlier with the suspected 

revertant mosaic mutation.  

 In summary, combining the results for the nine children with mosaic 

abnormalities, seven of nine mosaic events were considered definitely pathogenic on the 

basis of being multi-megabase CNVs that overlap known genomic-disorder regions. 

The reversion mosaic event was considered indicative of a likely pathogenic mutation 

as the presence of multiple overlapping mosaic clones suggests strong and on-going 

negative selection against a deleterious allele. One LOH event was of uncertain 

pathogenicity as no rare loss-of-function or functional variants were detected. 
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4.6 Discussion 
Structural mosaic abnormalities are multi-megabase, post-zygotic mutations and are 

well recognised in developmental disorders36,178. This work introduces a novel method 

to detect these mutations from next generation sequencing data.  

 In an extensive simulation study, I observed adequate power to detect 

abnormalities in WES and WGS data across a large, clinically relevant range of size and 

clonality in different types of mosaic structural variation. I compared this method to the 

popular array-based mosaic detection method, MAD, and showed a substantial boost in 

performance, which derives primarily from the joint analysis of allelic proportion and 

copy-number deviations. Simulation results suggested that exome sequencing data can 

be used to identify many of the known clinical mosaic duplication syndromes involving 

chromosome-arm events, such as 12p and 18p mosaic tetrasomy as MrMosaic easily 

detected events of this size. 

 I hoped to use MrMosaic to uncover pathogenic structural mosaicism as an 

explanation for disease for children with undiagnosed DD. Applying this method to a 

set of 4,911 exomes from children with undiagnosed developmental disorders, I 

identified nine individuals with structural mosaicism and the majority of these 

mutations were considered pathogenic. In this WES-based analysis I recovered 8 of 10 

abnormalities previously detected in a subset of 1,226 samples previously analysed with 

SNP genotyping chip data. One of the missed abnormalities was likely undetected 

because the exome data were of low depth, which increases the variance of measured 

Bdev and Cdev. Most of the detected mosaic copy number abnormalities had escaped 

detection by previous aCGH analysis. This demonstrates that detection of mosaic events 

requires assay of tissue containing the abnormality and tailored methods with sufficient 

sensitivity for mosaicism. 

 In one sample I observed a gradient of mosaicism, a phenomenon likely 

associated with mosaic reversion of a de novo mutation inducing genome instability. 

Analysis of the mosaic LOH region with high-depth exome data identified a strong 

candidate gene and investigation for the suspected de novo mutation is on-going. Whole 

genome sequencing data were generated for one individual with three mosaic 

abnormalities on the same chromosome. Analysis of these data recapitulated the mosaic 

events and analysis of read pair analysis identified a pericentromeric inversion and 

supported the hypothesis of an underlying complex chromosomal rearrangement, likely 

a ring chromosome. 
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 Whole genome analysis had superior performance compared to exome 

analysis, which was likely due to a combination of advantages of whole-genome data, 

including higher density of assayed sites (by nearly 50 fold) and more consistent 

coverage across sites, compared to exome coverage, which is subject to exome bait 

hybridisation biases. Nevertheless, even detection from whole genome data is difficult 

at low depth. Compared to whole genome data, the exome data had higher average 

coverage (75x to 25x) for sites within targeted regions compared to the whole genome 

data and whilst simulation results showed increasing performance with higher depth 

sequence data, this effect was outweighed by the greater density of sites in whole 

genome data.  

 Although the general performance of the method is adequate in many clinically 

relevant cases, some classes of event proved more difficult to detect. For example, low 

clonality mosaic gains generate the smallest deviation in Bdev and Cdev compared to 

other types of events, explaining their comparatively poor detection sensitivity in 

simulations, and the failure to detect one mosaic duplication found using SNP data but 

not in exome data. More lenient detection thresholds may be preferred to increase 

detection sensitivity if clinical suspicion of mosaic duplication exists. Increasing the 

clonality of mosaicism by the biopsy of affected tissue, as is performed when 

pigmentary mosaicism provides evidence of underlying mosaicism, should also 

theoretically improve detection. Given the size and clonality of the two missed events 

and the simulation results from whole genome sequencing, both events would likely 

have been detected had they been analysed using higher depth exome sequencing or 

whole genome sequencing, which are likely to become more common in the future. 

 The majority of the mosaic events I observed were in saliva-derived DNA but 

not in blood-derived DNA. The samples with these abnormalities were recruited into 

our study because they remained undiagnosed after assessment by clinical laboratories 

of blood-derived DNA failed to detect the mosaic abnormalities detected in saliva. DNA 

derived from saliva has a mixed origin, mainly lymphocytes (derived from mesoderm) 

and epithelium (derived from epiderm)216; therefore the events detected in saliva, but 

not blood, are believed to reflect epithelial mosaicism. There are two possible 

explanations for the disparity in tissue distribution we observed: first, that the 

epithelium-derived mutational events occurred late, i.e. after the differentiation of 

lymphocytes and epithelial cells, or second, that these events occurred early, i.e. prior to 
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the split between lymphocytes and epithelial cells with subsequent removal from 

blood cell lineages by purifying selection. Several lines of evidence suggest the second 

explanation is more likely: 1) existing precedent, as the second phenomenon has been 

directly observed in Pallister-Killian syndrome, where the percentage of abnormal cells 

decreases with age in blood but not fibroblasts239, and tissue-limited mosaicism has 

been observed in mosaic tetrasomies of chromosomes 5p, 8p, 9p and 18p240; 2) the 

clonality of events observed in both blood and saliva is not greater than the clonality of 

events in only saliva, which would be expected if events seen across tissue arose earlier 

in development; 3) both observed LOH events are shared between tissues but only 1 of 

9 CNV events are shared between tissues, perhaps suggesting increased pathogenicity 

of CNV events compared to copy-neutral events, thus more likely to be negatively 

selected in blood. Given these considerations underlying the disparity in tissue-type, 

and the observation that the majority of observed abnormalities were detected in saliva 

but not blood, it is possible that, compared to the sampling of saliva, the sampling of 

blood could lead to a substantial loss of power, possibly less than 50% power, to detect 

pathogenic mosaic events, resulting in missed diagnoses.  

 Additional work is required to investigate for which developmental disorders 

tissue-limited mosaicism is common. Another intriguing question regarding tissue 

distribution is the relationship between clonality and pathogenicity. While mosaicism 

limited to a small number of cells is unlikely to cause developmental disorders, it is 

conceivable that low-level mosaicism present in a vulnerable tissue, such as white 

matter neurons, may have clinical consequences. More work is needed to address this 

question, including more extensive analysis of the tissue distribution of mosaicism, for 

example, by analysing diverse tissues sampled from all three germ layers, and assays 

with improved resolution, allowing single or oligo-cell sequencing. The availability of 

more sensitive detection methods will improve the detection of a larger fraction of 

events limited to a single tissue.  

 Next generation sequencing, in the form of exome and genome sequencing, can 

be harnessed to detect a wide range of mutations, including, as presented here, mosaic 

structural abnormalities. Given that sequencing costs continue to decline and the 

multifaceted detection capabilities of exome data, it may be that exome sequencing will 

supersede microarray technology as a first-line test for developmental disorders. 

Widespread incorporation of high-depth exome and whole-genome sequencing will 
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revolutionise our understanding of the extent of mosaicism in the body and better define 

the relationship of mosaicism and disease. 

 In the next chapter, I will review the main findings of this dissertation, discuss 

its limitations, suggest future improvements, and predict the relevance of UPD, 

mosaicism, and sequencing in the future of genomics. 

 

 



 

 

Table 4-6 Detections by exome and validation by SNP microarray 

The 11 mosaic abnormalities detected in the 9 samples with exome data were validated using SNP microarray chips. All exome detections 

were validated in at least one tissue. In the majority of cases (8 of 11), the mutation was detected in only one of two assayed tissues, and in 

all such cases, the mutation was detected in saliva but not in blood.  

 Clonality was calculated from Bdev using Table 4-1 and ranged from 17% to 68%. This calculation is based on the assumption that 

the mosaic event is an alteration of a single allele. However, this calculated clonality is an overestimate for one of the events which was 

Exome&Detections& SNP&Validation&

DecipherID) chr) type) start)(GRCh37))
end))

(GRCh37))
bdev) l2r) tissue) clonality)

clonality) in)

saliva)
clonality)in)blood)

265800) 12) gain) 988894) 33535510) 0.201) 0.140) saliva) 1.34) 0.68@) absent)

261373) 12) gain) 283642) 33535289) 0.131) 0.262) saliva) 0.72) 0.45@) absent)

273553) 18) gain) 670541) 18534702) 0.186) 0.185) saliva) 1.18) 0.6@) absent)

259003) 22) loss) 42912136) 50717129) 0.131) G0.129) blood) 0.42) 0.54) 0.34)

274013) 10) loss) 121717932) 134916366) 0.159) G0.324) saliva) 0.48) 0.44) absent)

274600) 18) loss) 48458662) 76870586) 0.190) G0.434) saliva) 0.55) 0.49) absent)

260462) 18) loss) 662103) 2740714) 0.171) G0.339) saliva) 0.51) 0.46) absent)

260462*) 18) gain) 12702610) 15323214) 0.118) 0.263) saliva) 0.41) 0.5) absent)

260462) 18) loss) 48466843) 74962645) 0.153) G0.3455) saliva) 0.47) 0.45) absent)

257978) 5) LOH) 146077526) 179731635) 0.167) G0.0020) blood) 0.33) 0.24) 0.26)

274396) 11) LOH) 66834252) 134126612) 0.255) G0.0047) saliva) 0.51) 0.28) 0.17)
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found (by previous FISH analysis178) to be a mosaic tetrasomy, and two others were are suspected to also be rearrangements of multiple 

alleles (another gain of chromosome 12p and one gain of chromosome 18p, thought to reflect mosaic tetrasomy 18). @adjusted tetrasomy 

clonality. *located in peri-centromeric region and detected during post hoc analysis. 
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Decipher(ID( Phenotypes(

257978& Intellectual) disability) ) profound,) Seizures,) Somnolence,) Thoracolumbar) scoliosis,)

Gastroesophageal)reflux,)Abnormality)of)neuronal)migration)

259003& Generalized)hypotonia,)Global)developmental)delay)

260462& Microcephaly,)Muscular)hypotonia,)Short)philtrum,)Upslanted)palpebral)fissure)

261373& Moderate)global)developmental)delay)

265800&
Global) developmental) delay,) Meningocele,) Delayed) closure) of) the) anterior) fontanelle,)

Macroglossia,) Sparse) scalp) hair,) Ligamentous) laxity,) Delayed) speech) and) language)

development,)Coarse)facial)features)

273553& Global)developmental)delay,)Joint)laxity,)Hypermetropia,)Strabismus)

274013&
Severe) expressive) language) delay,) Global) developmental) delay,) Abnormal) facial) shape,)

Brachydactyly)syndrome,)Thick)hair,)Coarse)facial)features,)Abnormality)of)facial)musculature,)

Joint)stiffness)

274396&

Congenital) hypothyroidism,) Congenital) microcephaly,) Moderately) short) stature,) Mild) global)

developmental)delay,)Premature)anterior) fontanel) closure,) Fine)hair,) Sparse) scalp)hair,) Long)

palpebral) fissure,) Wide) mouth,) Short) broad) hands,) Excessive) wrinkling) of) palmar) skin,)

Excessive) skin) wrinkling) on) dorsum) of) hands) and) fingers,) Strabismus,) Generalized)

hypopigmentation) of) hair,) Progressive) hyperpigmentation,) Mixed) hypoL) and)

hyperpigmentation)of)the)skin,)Axillary)and)groin)hyperpigmentation)and)hypopigmentation)

274600&
Microcephaly,) Progressive) microcephaly,) Severe) global) developmental) delay,) Abnormal)

posturing,) Brachycephaly,) Epicanthus,) Muscular) hypotonia,) Narrow) palate,) Hypotelorism,)

Broad)distal)phalanx)of)finger)

Table 4-7 Phenotypes listed in Decipher for children with identified structural mosaicism. 
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5 DISCUSSION 

5.1 Summary of Findings 
Understanding the genetic causes of DD is a priority of contemporary medical research. 

Modern rare disease studies rely heavily on exome sequencing, yet prior to the research 

described in this dissertation, software tools to detect uniparental disomy or structural 

mosaicism from sequencing data were lacking. This limitation led to the development of 

UPDio and MrMosaic, software tools which have extended the diagnostic reach of 

sequencing data and have been made freely available. Simulation studies have shown 

that these tools can detect the large-scale abnormalities identified by karyotyping or 

microarray in standard clinical testing. Implementation on nearly 5,000 children with 

undiagnosed diseases has shown that UPD and structural mosaicism are enriched in 

children with developmental disorders compared with healthy children. The estimated 

odds ratios compared to apparently healthy population controls suggested that most of 

the detected abnormalities are likely to be pathogenic. Assessment of the clinical impact 

of the detected events identified several disease-causing mechanisms, including UPD-

associated imprinting and recessive diseases, and genomic disorders associated with 

large mosaic deletions and duplications. Some pathogenic mechanisms were unexpected 

and opened new research opportunities, such as UPD associated with triplication and 

mosaic reversion. The results of the analyses presented here have enabled genetic 

diagnoses for about 25 children, ending for them and their families, their quest for 

diagnosis.  
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5.2 Implications 
The new methods described in this dissertation detected abnormalities and enabled 

diagnoses in approximately 1% and 0.5%, respectively, of the probands enrolled in 

DDD. The implication of this finding is that UPD and mosaic structural variation are 

small but important parts of genetic diagnosis in rare disease studies.  

 Heterodisomy is difficult to detect without genome-wide trio data and no large 

trio dataset had existed prior to the DDD study. Therefore, some of the outstanding 

questions in the field related to heterodisomy, such as the prevalence and diagnostic rate 

of heterodisomy in children with DD, could now be answered. For instance, of the 21 

UPD events detected among 4,320 samples, 8 (38%) were entirely heterodisomic and 

likely to have escaped detection by non-trio-based screening. The implication of this 

finding is that trio-based methods increase UPD detection by about 50%. About half of 

the all-heterodisomy UPD chromosomes appear to be diagnostic, suggesting that trio-

based analysis increases UPD diagnostic yield by 25%. The 0.49% UPD detection rate 

(21 of 4,320 samples) is, given assessment of both isodisomy and heterodisomy in this 

large trio study, and not withstanding the ascertainment bias of children selected for 

DDD recruitment, the best estimate of UPD frequency in children with DD to date.  

 Investigation of structural mosaicism identified a disparity in the tissue-

distribution of mosaicism since in 8 of 11 cases, mosaicism was not observed in blood 

but was observed in saliva (likely from buccal epithelium). This tissue-difference may 

reflect greater negative selection against pathogenic mosaicism in lymphocytes, as 

suggested in Pallister-Killian syndrome240. An alternative possibility is differential rate 

of generation, but this is less likely, as studies of cadavers have shown that non-

pathologic somatic CNVs are commonly found in many tissue types241,242. The tissue 

disparity observed in this study lends support for the assessment of saliva in disease 

studies, as, other factors equal, this tissue yielded greater numbers of mosaic diagnoses. 

There are several additional arguments supporting the collection of DNA from saliva 

rather than blood for high-throughput analysis, including that it is less invasive, less 

expensive243, easier to store and ship244, and genotyped equally well as blood243. 

Arguments against the use of saliva may include the absence of biomarkers present in 

blood that may also be of interest245, lower DNA yield compared to blood243, increased 

contamination of foreign (i.e. bacterial) DNA246, or that higher rates of mosaicism in 

saliva may make it theoretically more challenging to assess genotype. However, for the 

purpose of high-throughput genetic analysis in studies of rare disease, DNA extraction 
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is the primary concern over biomarkers and mosaicism, and can increase diagnostic 

yield. Therefore, saliva sampling may become more popular for future research studies, 

and diagnostic testing.  

 An implication of high-throughput assays, such as WES and WGS, in 

connection with variant detection software, such as the algorithmic techniques 

developed in this work, is that the discovery of genomic variation has outpaced its 

interpretation. In the near term, the interpretation gap is likely to widen as WGS 

provides the resolution to detect smaller structural variants, whose significance will be 

unknown, and may add diagnostic anxiety247. This pressure highlights the importance of 

collaborative efforts, such as DECIPHER, and continued aggregation of genomic 

variation across centres to facilitate pathological assessment of structural mosaicism and 

UPD. 

 The most common trisomy in pregnancy is trisomy 16248, and the most 

common UPD-generating mechanism is trisomy rescue124; but UPD 16 is observed less 

often than UPD of chromosomes 15, 11, 7, and 14 (descending order of observed 

frequency)124. Ascertainment bias almost certainly plays a role in this discrepancy, as 

these higher-frequency UPD chromosomes are involved in imprinting disorders, and are 

observed following scrutiny from characteristic phenotypes in children. While UPD 16 

is controversially implicated in imprinting disorders, it is known that constitutive 16 

trisomy is lethal, and that trisomy rescue is often incomplete, resulting in mosaic 

trisomy; perhaps lower levels of UPD16 reflects the fact that trisomy rescue is often 

incomplete and children with mosaic 16 rarely survive. 

5.3 Limitations 

5.3.1 Estimates of prevalence 
Only about one third of the full DDD sample set was available for the work presented in 

this dissertation. Therefore, the assessment of UPD and mosaicism frequency is less 

precise than will be possible when the study is complete. Nevertheless, UPD frequency 

in the first-stage 1,000 trios was not significantly different from either the second-stage 

3,000 trios or from estimates of UPD frequency in other DD studies; these pieces of 

evidence suggest limited benefit of acquiring additional samples for the purpose of 

improving the genome-wide estimate of UPD frequency in DD children. There was a 

non-significant lower frequency of mosaicism from nearly 4,000 additional children 
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beyond the first analysed 1,000 trios so it is conceivable that collecting greater 

number of samples will lower our frequency estimate of structural mosaicism. The trio 

set available in DDD enabled frequency estimates of heterodisomy, but the lack of trio 

data in the WTCCC dataset hindered heterodisomy frequency estimates in that dataset 

and relied on extrapolation from the identification of UPD with mixed heterodisomic 

and isodisomic regions. 

 The DDD population is not representative of all children with DD but reflects a 

pre-screened population as recruitment is generally only offered to children for which 

prior investigation of genetic abormalities failed to yield diagnostic abnormalities. Since 

many UPD and mosaic structural variants lead to phenotypically evident, syndromic 

manifestations, some children with such abnormalities and DD may be excluded from 

recruitment. Therefore, DDD likely has an ascertainment bias that lowers the estimate 

of UPD and mosaicism compared to the full population of children with DD. Children 

in DDD are unlikely to have large high-clonality mosaic events, unless perhaps, if such 

mosaicism is limited to tissue not analysed. Thus, it likely that the frequency estimates 

made in this work of UPD and structural mosaicism are underestimates compared to 

children in the general DD population. 

 DDD is primarily an exome-driven study. Exome read-coverage varies 

substantially across the genome by design, to maximize limited sequence resources for 

the genomic locations most likely to disrupt genes. However, whilst such exonic read-

coverage enrichment is desired for identifying genic point mutations, it is not 

necessarily optimal for the detection of large-scale abnormalities. Abnormalities may be 

harder to detect in genes with widely spaced exons or genes with fewer exons, although, 

this limitation is mitigated by the target size of event detection (2 Mb and greater). 

Indeed, analysis for mosaicism of approximately one thousand samples by SNP and 

exome platforms showed that exome analysis missed two of ten events detected by the 

SNP platform. Thus, it is likely that exome-based calculation of frequency would 

produce a slight underestimate because of platform differences.  

5.3.2 Algorithmic 
Uniparental disomy describes two homologous alleles originating from the same parent 

and reflects an inheritance aberration. UPDio detects abnormal inheritance as an 

enrichment of uniparental trio genotype configurations on a single chromosome and 

data for proband and both parents are required to assess inheritance. There are two 
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failure modes that disrupt UPD detection: 1) missing genotypes and 2) missing parental 

samples.  

 Extending the method to account for the first failure mode is fairly 

straightforward. This approach could work by phasing parental haplotypes and then 

imputing the genotypes that have failed genotyping. On a practical level, this would 

likely make little difference for UPD detection because the genotyping error rate is low 

and UPD events are sufficiently large to be detected even in the context of missing 

genotypes. 

 However, for DDD probands now not analysed for UPD because full trio data 

are not available, the development of a proband single-parent UPD software tool should 

be possible. The approach might first phase the child’s haplotypes and the known 

parent’s haplotypes, and then determine which known parental haplotype the child has 

inherited. Based on the child’s genotypes and the available haplotypes in the population, 

the other parent’s haplotypes could be assessed. Each of the child’s haplotypes should 

derive from a different parent and a discrepancy could reflect UPD or inheritance by 

descent, the latter distinguished by occurrence on multiple chromosomes. 

 MrMosaic uses a backbone of autosomal polymorphic di-allelic point 

mutations from which heterozygous sites are extracted for Bdev and Cdev calculations. 

There are three ways to improve the number of assayed sites: first, the number of 

assayed sites could be increased by adding to this backbone rare and private 

polymorphisms in each patient; second, the Cdev information from non-heterozygous 

(i.e. homozygous) sites can still be used in detecting deviation in copy number, even 

though the Bdev is not informative; third, gonosomal sites can be included. 

 MrMosaic has not been tested on the gonosomes but this extension should be 

possible. Mosaicism of chromosome X will detect the genetic aneuploidies associated 

with mosaic Klinefelter Syndrome and Turner Syndrome, diseases identified with high 

frequency in the Conlin et al36 study. Implementing MrMosaic on gonosomes requires 

an ADM score generated on a sex-specific pool of samples. Mosaicism of the 

chromosome Y may be less useful, as the XYY karyotype in itself does not result in 

abnormal phenotypes249, although mosaicism involving Y may signal other pathogenic 

events, such as complex aneuploidy involving multiple chromosomes, or chimerism. 
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 Interpreting the output of MrMosaic is fairly labour-intensive because at the 

Mscore cut-off (8) chosen to be sensitive to mosaic events of 2 Mb and despite filtering 

based on event detection frequency and exclusion of peri-centromeric regions, 

approximately one putative detection is made per sample. In this large experiment 

presented of 4,911 probands, manual curation of 4,643 putative detections was 

undertaken, which required approximately 12 hours. The full data set will involve 

approximately three times the number of samples. The number of putative detections for 

review can be reduced by increasing the Mscore threshold, but is likely to lower the 

sensitivity of detecting smaller events. 

5.3.3 Number of diagnoses 
In about half of the cases for which a UPD or mosaic structural event was detected, a 

direct association between that event and the child’s pathology could not be determined. 

UPD has a prevalence in the general population of about 1 in 3,500 and should therefore 

appear at least once among the nearly 5,000 studied children here in a benign form. 

However, given the enrichment of UPD and mosaicism in children with DD compared 

to generally healthy children, it is reasonable to suspect that the majority of the detected 

events are pathogenic, although diagnosis has only yet been possible for about half of 

those with detected abnormalities.  

 The diagnostic workup differs for UPD events compared with large mosaic 

abnormalities. For UPD events, the main pathological mechanisms are imprinting 

disorders, recessive diseases, and incomplete trisomy. The detection of UPD events on 

imprinting chromosomes in children with manifestations of known imprinting disorders 

provides definitive diagnosis. The majority of UPD events detected in this study did not 

lie on chromosomes vulnerable to imprinting, nor were they implicated in incomplete 

trisomy rescue. Instead, many resulted in regions of isodisomy, which can result in 

conversion to homozygosity of a deleterious allele inherited from a carrier parent. 

Assigning pathology to such homozygous variants is challenging and requires at least 

three broad categories of evidence: the variant causes disruption in the gene, pathology 

results when the gene is disrupted, and that this pathology matches the phenotypes in 

the child. This is fairly straightforward when the identified homozygous variant is 

predicted to be loss-of-function (such as a nonsense mutation), loss-of-function 

mutations in that gene have been closely associated in a specific disease, and the child’s 

phenotypes match the manifestations of that disease. Knowledge gaps in gene function 
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and disease-gene associations hinder pathogenic analysis and require further investment 

in gene function.  

 The diagnostic workup for structural mosaicism is similar to the assessment of 

structural variation as a cause of genomic disorders and relies heavily on disease 

databases. Genetic diagnosis is fairly straightforward if the copy-number event in the 

child has been observed in other children who share the same phenotypes as the 

proband. Partially clouding diagnostic assignment in mosaic structural abnormalities is 

the effect of clonality on physiological disruption; this requires the assumption that an 

abnormality in mosaic state causes phenotypes similar in quality (but perhaps less 

severe) than the corresponding constitutive state. The assessment of mosaic UPD is 

slightly more complicated because incomplete aneuploidy often coexists with 

imprinting or recessive defects. 

 UPD and mosaicism are only detected in about 1% of children in the DDD 

study, and even after comprehensive assessment of constitutive copy-number analysis 

and other genetic abnormalities detected in the exome, genetic diagnosis still lacks for 

the majority (69%) of children in DDD. Improvements in understanding of gene 

function and variant ascertainment are essential and will hopefully lead to substantial 

reductions in the number of undiagnosed children. 

5.4  Future work 
Given the limitations above and the increasing trend for larger datasets, there are 

exciting opportunities for improved methods, which invariably will expand our 

understanding of DD. 

 Future trends may benefit from increasing integration of datasets and 

algorithms. With respect to integration of data, many of the analyses presented in this 

dissertation have made direct comparisons of the use, suitability, and performance of 

SNP vs. exome array. However, studies often use multiple platforms to assay genetic 

variation given unique advantages offered by each platform. In DDD, SNP, exome and 

aCGH data were generated for thousands of probands. Therefore, it is reasonable to 

consider the development of a tool that can integrate data gathered by multiple 

platforms. For example, mosaic analysis using SNP and exome platforms could increase 

the number of sites by including both common and rare variation, inside and outside of 

coding regions. Trio data facilitate the possibility of a haplotype-aware version of 
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MrMosaic, which is challenging given the sparse distribution of exome data, but 

should be possible for WGS analyses. 

 With respect to integration of algorithms, UPDio and MrMosaic were designed 

to detect constitutive UPD and structural mosaicism but it may be possible to integrate 

these two functions into one software tool as subroutines or “plug-ins” that function in a 

larger part of pipeline. Next-generation sequencing technology provides a substrate for 

simultaneously assaying a wealth of genomic variation, including structural variation, 

uniparental disomy, and mosaicism. In addition, there are likely statistical methods that 

can be learnt from transcriptomics, as this field must deconvolute signals of expression 

or transcript-assembly from heterogenous collections of tissue-types. Joint analysis of 

mosaicism and disruptions in expression could yield fascinating insight. 

 One of the limitations of MrMosaic is the number of putative detections that 

require manual review and future work could better automate the filtering strategy. A 

hurdle in such an approach is the lack of a strong positive-control training set, relative 

to the negative-control dataset. It may suffice to create the positive-control dataset using 

simulations, and then real mosaic events could be incorporated dynamically as they are 

discovered. Approximate Bayesian Computation is a Bayesian statistical technique that 

can be used in the absence of a known underlying likelihood model but when the 

sampling distributions of parameters are available; this approach may be useful for this 

automated filtering application as simulation analyses can generate the sampling 

distributions needed for multiple parameters (number of probes, strength of signal, 

event frequency, distance to centromere) underlying putative detections. 

 Regions of heterodisomy on non-imprinted chromosomes without evidence of 

mosaic aneuploidy are not predicted to be damaging. Despite this, eight examples of 

such heterodisomic chromosomes were found in this dataset. This invites speculation 

that many of these heterodisomic events may be pathogenic, perhaps by mechanisms 

already known, such as hidden trisomy-rescue, or by entirely new mechanisms. Maybe 

UPD is incompletely penetrant for some chromosomes, or results in highly variable 

phenotypes, as suspected for chromosome 16. Experiments that investigate the effect of 

heterodisomy on expression may yield interesting insights.  

 Decreasing sequencing costs have enabled acceleration in DNA sequencing 

data availability. Whilst whole-genome sequence data is still expensive to generate and 

were not available for analysis, such data are likely to be available in future studies of 

children with DD. Such data will enable unprecedented discovery of smaller mosaicism.  
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 The somatic point mutation rate is approximately 0.3e-9 per site per cell 

division250; therefore mosaicism arises de novo with nearly every cell division. Despite 

this ubiquity, mosaicism is elusive, only detected when present in at least approximately 

3,000 cells (based on: standard microarray input requirements require 200 ng (about 

30,000 ‘genomes-worth’ of DNA assuming 6 pg per cell) and mosaicism minimal 

detection threshold is 10% clonality). Future work will benefit from the use of single-

cell sequencing or high-depth sequencing to detect mosaicism of lower levels of 

clonality tissue-specific mosaicism. Intuition suggests that mosaic abnormalities may 

often result in an intermediate phenotype (i.e. are less severe) than constitutive 

abnormalities and that mosaic events with greater tissue involvement are more 

pathogenic. These assumptions are difficult to assess empirically because tissue-

sampling resolution is poor, often limited to blood or saliva. Study of mosaic trisomy 21 

has found that mosaicism was more frequent in epithelial-derived tissue compared to 

lymphocytes and that phenotypic severity is linked to mosaic clonality in a tissue-

specific manner251. These findings highlight the importance of developing a greater 

understanding of the distribution of mosaicism for diagnostics (identifying the 

mutation) and prognostics (interpreting its severity and outcome). 

 Analysis of one structural mosaic abnormality predicted that the most likely 

generative mechanism was LOH-mediated mosaic reversion, a mechanism previously 

reported252. Recently, chromothripsis has been implicated as an additional reversion 

mechanism253 and it is reasonable to hypothesise that additional reversion mechanisms 

may be uncovered. It is speculative but interesting to consider that reversion may be 

fairly common; the disconnect between the theoretically-predicted commonality of 

mosaicism and the poor ascertainment of such events lends credence to this possibility. 

Several questions for reversion remain for future study: How common is reversion? Are 

most reversion events triggered by genomic instability? Are reversion events ‘in 

response’ to an underlying physiological disruption or an indication that stochastic 

genomic instability is commonplace? Do other reversion mechanisms, such as single 

codon deletions, exist? Do reversion clones have a common ancestor? Is the age-related 

dissipation of epidermal neoplasms (skin moles) immunologic or genetic (reversion)? 

Nature uses LOH and chromothripsis as reversion mechanisms; can man harness these 

mutational events therapeutically? 
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5.5 And then... 
Forecasting the future of genomics is a useful exercise for planning but can be 

challenging. James Crow stated about prediction, “for the near future, I can follow the 

principle...that tomorrow’s weather is best predicted by today’s...for a somewhat longer 

future we can extend current trends. But for the long-term future, we can only guess”254.  

5.5.1 Achieving a higher fidelity genome 
There is tremendous societal investment in genomics with an estimated 796 billion US 

dollars investigated in genomics between 1988 and 2010255. Such investment has 

empowered technological innovation, leading to a 100-fold decrease in sequencing costs 

within the period between 1991 and 2001256, and an accelerated 1000-fold decrease 

between 2008 and 2014257. Yet, the cost of sequencing a human genome by WGS today 

is still expensive, more than $1,000257, which also does not account for ancillary costs, 

such as data storage and interpretation258. Illumina® “has essentially monopolized the 

high-throughput sequencing market”259, controlling 75% of the general genomics 

market share and 90% of high-throughput sequencing. It is reasonable to predict that 

continuing investment in genomics will spur industry competition, which will continue 

to drive down sequencing costs. Additional sequencing methods, such as those that 

measure changes in electrical current260 or pH261 avoid the overhead of optics, are 

extremely fast, and seem likely to rise in popularity. Inevitably, sequencing costs and 

technological advances will produce a portable, inexpensive, fast, high-fidelity whole-

genome & whole-epigenome sequencing tool, perhaps within 15 years.  

 The technical implications of this new sequencing era will be profound: 1) long 

read-length sequencing will enable de novo assembly as the primary form of genome 

reconstitution; 2) reduction of mapping artefacts and sequencing errors will identify 

genomic variation with greater confidence and will reduce the computational 

complexity of assembly; 3) high-confidence genotyping will lead to more efficient 

storage262, as less intermediate data need to be stored; improved knowledge of 

population haplotypes will enable an even more compressed haplotype-reference 

version of storage; re-sequencing a sample will be sufficiently inexpensive if long-term 

storage is not possible.  

5.5.2 Having achieved a higher fidelity genome 
The development of third generation (long-read single-molecule) sequencing56 will 

especially have important consequences on the assessment of structural variation. Long 
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read-lengths will greatly facilitate the detection of structural variation via de novo 

reconstruction of the genome263. The resulting genome-wide frequency-map of 

structural variation will provide an empirical catalogue of all haploinsufficient genes 

and greatly reduce the number of CNVs of unknown clinical significance. More 

broadly, as sequencing becomes routine, catalogues of all forms of genomic variation 

will begin to saturate with all possible combinations of non-lethal mutations; this will 

identify which gene knock-outs are tolerated142 and improved allele frequency data will 

facilitate interpretation of mutations in children with DD. 

 In contrast to constitutive structural variation, the detection of mosaic structural 

variation may prove challenging for some time to come because of sampling 

difficulties. The detection of mosaicism requires increasing read- and tissue- sampling, 

but low error rates may reduce the impetus to sequence the genome to high-depth, and 

accessing multiple tissue types is invasive and therefore not likely to become 

commonplace. High-depth sequencing is likely to be a continued priority of the cancer 

genetics community and may yield important insights of distribution of mosaicism 

throughout the body. Perhaps, sequencing can one day be performed non-invasively, as 

seen with in vivo magnetic resonance spectroscopy264 for metabolomics, which would 

profoundly improve the ease of tissue sampling.  

 Large collections of WGS data are likely to come from healthcare settings, and 

eventually from domestic and municipal sources. In the Cold Spring Harbor Laboratory 

Biology of Genomes conference in 2013, Dr. Mike Snyder presented research (a lecture 

entitled “Integrative personal omics profiling for monitoring healthy and disease 

states”) demonstrating that the distribution of his microflora fluctuated in a consistent 

and characteristic pattern each time he had ‘a cold’. Toilet sensors, in the form of ‘smart 

plumbing’, may provide a method to detect early infections (microbiome sequencing) 

and cancer (detection of new mutations previously characterised as cancer driver 

mutations). Analysis of sewage microbiota can demonstrate the viruses circulating in 

the community and inform on community diet265 (some viruses are endemic to certain 

types of plants only, for example). Analogous to telemetry used in the clinical setting to 

identify arrthymias remotely, it may be in the public interest to screen municipal sewers 

to identify epidemics, for example. 

 The majority of detected genetic variation today has unknown biological 

significance. Yet, complex disease studies operate with the assumption that a great 
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number of variants exhibit low-level effects on phenotype. Higher resolution 

phenotyping is needed to better understand low-effect variants with better granularity. 

Currently phenotyping is largely restricted to external traits and standardised human 

terms266 but phenotyping is likely to become increasingly molecular, quantitative, and 

comprehensive (‘phenomics’). Computational interpretation of facial dysmorphology is 

beginning to overtake human performance267 and the integrated analysis of deep 

phenotyping data, such as transcriptomics and metabolomics, is likely to exacerbate this 

gap. The detection of UPD events may one day more appropriately be detected directly, 

using disruptions in epigenetics and alterations in expression, than indirectly by 

genotype. It also may be the case that detection of altered transcription or metabolic 

products will trigger the investigation of low-clonality mosaicism in children with DD.  

 Further ahead, widespread use of genomics and phenomics perhaps may mean 

that computational representation of each person’s genome and phenome is recorded. 

Family studies could be performed quickly, entirely using stored data. Social media 

may allow contact with others who are most genetically similar (yielding interesting 

implications in genealogy, such as tracing ancestry or finding relatives), or 

metabolically similar, perhaps finding those who share similar disease states. 

5.5.3 Challenges further ahead 
Despite the battle cry of exuberant contemporary research papers268, determining the 

genetic cause of Mendelian disease is not the same as solving Mendelian disease. 

Recent advances have treated some metabolic deficiencies using enzyme replacement 

and gene therapy269, and others suggest that reversion of phenotype in children with 

Rett syndrome and Down syndrome may indeed be possible270,271. Nevertheless, a cure 

for the vast majority of DD has not been found. 

 Some treatments for DD may require intervention during early embryonic life. 

Non-invasive prenatal testing (NIPT) is now widely used in the United States, with 90% 

of pre-natal genetic counsellors having integrated NIPT into their clinical practice272. 

Currently NIPT is limited to detection of foetal aneuploidy and large structural variation 

but advances in genomics will inevitably lead to the incorporation of whole-genome 

sequencing in NIPT and the detection of pathogenic variation.  

 Many of the challenges in medical genetics ahead will be ethical. Intervention 

on human embryos has already generated substantial ethical debate, with respect to 

selective abortion273,274, the right to access a child’s genome275, and whether gene 
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editing of human embryos276 should be allowed277. It seems inevitable that genomic 

editing will be eventually welcomed, even by pro-life activists, as a method to cure a 

child’s disease, in a way that preserves the child’s life. The privacy implications of 

databasing and reporting of personal genomics are certain to become contentious but 

likely to become adopted given the potential impact on medicine and health. 

 Challenging questions ahead relate to analysis, thorough space and time, of 

transient and tissue-dynamic components of genomic activity, such as transcriptomics, 

metabolomics, and 3-dimensional chromatin architecture. The new concept that the 3D 

layout of the genome is informative278 is exciting and throws dirt over the grave to the 

concept that non-exonic genomic regions are ‘junk’279 (although I sympathise with the 

somewhat unpopular view that much of the genome probably has little biological 

function280, despite the widely publicised claim to the contrary281). Notwithstanding 

technical limitations to High-C technology282, the field now appreciates that intergenic 

regions hold regulatory value283 and the way chromatin is spaced is important284. It 

should be possible to quantify how important each DNA base is in terms of the spacing 

and positioning of regulatory elements beside their targets, a ‘white-space’ metric of the 

genome. For aneuploidy, in addition to disruption of gene dose, what proportion of 

pathogenesis is contributed by the disruption of long-range interactions and regulatory 

spacing? 

 DNA, like the heavens, once had complexity seemingly beyond reach. A 

breakthrough in cosmology research, the construction of a three-dimensional map of our 

local galactic neighbourhood, has just been completed285. Efforts to create a 3D map of 

the genome may benefit from a cross-disciplinary collaboration involving the mapping 

techniques of astronomers, the expertise of physicists in electrostatic interactions, and 

the biological experience held by genomicists. Eventually such maps of our genome 

will be available and if fortune grants me the opportunity, I would be eager to explore 

them. 
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