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Abstract 

 

The most common lymphoma in adults, Diffuse Large B Cell Lymphoma (DLBCL) 

accounts for 30-35% of all non-Hodgkin lymphoma (NHL) cases. Even though DLBCL is 

curable in advanced stages, up to one-third of patients will not achieve a cure with their initial 

therapy. Today, there is no effective way to predict which patients will or will not be cured 

by first-line chemotherapeutic treatment. Patients who are not initially cured relapse, develop 

chemoresistance, and ultimately die of their disease. 

Current classification and prognostication schemes do not account for much of the 

genetic and molecular heterogeneity of DLBCL. Indeed, the gold standard WHO 

classification uses clinical data, morphology, phenotype, cytogenetics, and molecular 

characteristics to demarcate DLBCL subtypes. However, it does not incorporate many of the 

genetic lesions that both cause DLBCL and make it heterogeneous. As a result, the most 

common WHO subtype of DLBCL – DLBCL, not otherwise specified (DLBCL NOS)–likely 

encapsulates multiple disease subtypes for which conventional diagnostic approaches have 

not yet yielded clear methods of discrimination.  

The prognostication and treatment guidelines for DLBCL are similarly uniform, again 

not reflecting the heterogeneity inherent to DLBCL. The gold standard clinical prognostic 

tool, the Revised International Prognostic Index (R-IPI), sorts patients into three risk groups 

based on factors such as age and whether their lactate dehydrogenase level is elevated. None 

of the R-IPI factors, however, accounts for the genetic basis of DLBCL and cannot therefore 

incorporate prognostic information from genetic variability between patients within the same 

risk group. Virtually all DLBCL patients receive the same first-line therapy, R-CHOP, 

despite the probability that the genetic and biological heterogeneity will result in 

heterogeneous response to the potential treatments available. Up to one third of patients will 

not be cured by R-CHOP and their prognosis suffers significantly in the case of relapse.  

In this study, we propose a novel, purely genomic classification for DLBCL and other 

B-cell non-Hodgkin lymphoma (B-NHLs) that incorporates the genetic heterogeneity 

inherent to the disease. By analysing the genetic lesions of 1607 B-NHL patients over 15 

years and then performing a machine-learning based clustering, we identify seven distinct 

classes with characteristic genetic lesions and patterns of co-mutation. These classes aptly 

distinguish Follicular Lymphoma (FL) and Burkitt Lymphoma (BL) samples from DLBCL 

samples while simultaneously resolving the heterogeneity of DLBCL. Class 5, for example, 

shows hallmark mutations of Splenic Marginal Zone Lymphoma (NOTCH2, BCL10, SPEN), 
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suggesting these DLBCL patients represent transformed lymphomas. Such a conclusion 

could not have been drawn from histology alone and importantly, suggests these patients may 

respond differently to novel therapies compared to other DLBCL subtypes. We also present a 

genomic landscape analysis more complete and powerful than prior work since our study is 

nearly 10X larger than the largest prior B-NHL genetics study. We present mutation profiles 

at the gene level for nearly 200 genes implicated in lymphoma, identifying previously 

unreported mutations such as the aberrant splicing of a single exon in SGK1. Future work 

adding copy number, gene expression, and translocation data will enhance the robustness and 

resolution of our classification scheme and landscape analysis. 
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development with gene expression driving transitions between stages. (c) Transcriptional 
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Driver mutations identified in FL, coloured by effect of mutation. (e) Driver mutations 
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in the coding sequence, (2) protein domains from UniProtKB, and (3) bubbles. Bottom half 

of plots show bubbles sized according to the number of mutations found in COSMIC. (a) 
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(FDR < 0.1). Upper triangle depicts absolute occurrences of co-mutation for each pair, 
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1. Introduction 

 

1.1. Classifying cancer, a deeply heterogeneous disease 

Cancer is an extremely heterogeneous disease, showing distinct clinical and biological 

manifestations between cancer types, within subtypes, and even between patients with the 

same subtype. Such heterogeneity results from the pathogenesis of cancer: as somatic 

mutations accumulate over time, in a myriad of genes and tissues, a variety of pathways are 

dysregulated leading to cell proliferation. Patients of the same cancer type may carry distinct 

causative mutations. Indeed, different tumour cells within a patient may also carry distinct 

causative mutations. Overall, the myriad combinations of genetic mutations targeting distinct 

genes, cells, and tissues generate different clinical courses, survival likelihoods, and 

treatment responses between patients.  

To deal with such heterogeneity, classification schemes have been developed. By 

grouping patients according to common characteristics, broad patterns emerge with patients 

sorted according to common prognoses and responses to treatments. Historically, such 

classification has relied on histological, morphological, and immunohistochemical 

examination of the patient’s tumour cells. Such an approach, however, is lacking in a few 

respects. First, different cancer types have been shown to share similar histological, 

morphological, and immunohistochemical characteristics in spite of having distinct genetic 

causes and treatment responses. As a result, traditional classification systems often fail to 

resolve categories at a high enough level precisely because they do not incorporate the 

causative genetic changes leading to disease. Second, resulting classes are often difficult to 

interpret in the context of the pathways distinguishing diseases, making translation to therapy 

more challenging. Indeed, a distinct morphological profile does not immediately suggest a 

new therapeutic target. Thus, even when a new class is demarcated, it is often challenging to 

directly improve its clinical course. Finally, the clinical insights of some distinct classes have 

struggled with widespread relevance and reproducibility. For example, DLBCL was 

traditionally classified according to centroblastic, immunoblastic, and anaplastic subtypes 

with distinct clinical courses. Such clinical differences, however, have struggled with 

reproducibility. Additionally, the morphological subtype with the worst clinical course 

(anaplastic) has shown to occur in only 7.4% of cases, making widespread clinical relevance 

poor1. 

With the advent of more readily available patient samples and cheap sequencing, 

classification schemes have been shifting toward resolving cancer on the basis of molecular 
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and genetic differences. Throughout, blood cancers have led the way. Indeed, Chronic 

Myeloid Leukemia began with morphological characterization2–4 which then gave way to the 

Philadelphia Chromosome and the BCR-ABL mutation as the primary classification 

characteristics5. Acute Myeloid Leukaemia then followed with the first identification of a 

specific genetic subtype: Acute Promyelocytic Leukaemia6–9. Both of these categories of 

disease, defined by their canonical genetic lesion, now have specific targeted therapies 

against this genetic change, radically improving treatment outcomes for those patients. In 

solid tumours, Ewing’s Sarcoma was defined by a t(11;22) translocation10; breast cancer 

became defined by ERBB211,12; and non small cell lung cancers are increasingly defined by 

specific kinase mutations13.  

Broadly, genetic and molecular classification approaches share a series of advantages 

over traditional approaches. First, these classifications rely on the causative genetic and 

molecular changes that underlie cancer. As a result, they are more likely to be clinically 

relevant, durable, and reproducible. Even as treatments change, for example, the underlying 

genetic structure of cancers are likely to remain the same. Second, genetic classifications 

group patients on the basis of pathways rather than morphology, leading to improved 

biological insights. By extracting the unique pathways that distinguish patient groups, the 

pathogenesis of distinct cancers become clearer. Finally, genetic classifications can improve 

clinical prognostication and suggest therapeutic targets. Targeted therapies inhibiting a 

specific gene that defines a genetic class can be reserved exclusively for patients of that class, 

improving treatment selection. Similarly, when a new patient class emerges that is resistant to 

traditional therapies, the pathway dysregulations allowing such resistance can be examined 

and new target combinations can be suggested. 

 

1.2. A purely genetic classification for DLBCL 

While an effective classification scheme could benefit all cancers, it could especially 

benefit DLBCL. Compared to other cancers, DLBCL exhibits a higher degree of genetic 

heterogeneity since it derives from Germinal Centre B cells which often have unstable 

genomes. Additionally, an effective classification could immediately help clinical outcomes. 

30% of DLBCL patients today are not cured by R-CHOP, the front line chemotherapeutic 

treatment. These patients subsequently relapse upon which their prognosis suffers 

significantly. At present, there is no way to pre-emptively identify these patients in spite of 

the fact that they likely exhibit genomic differences that prevent effective R-CHOP treatment. 

A classification system that identifies these patients would enable physicians to move them 
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toward more aggressive clinical regimens such as stem cell transplantation or experimental 

therapies. It could also help develop more targeted clinical trial protocols, in which only 

those patients likely to relapse are recruited. 

In this study, we propose a novel classification scheme for B-NHLs and DLBCL 

based purely on genetic changes. By conducting targeted deep sequencing of 1607 B-NHL 

patients and subsequently classifying these patients on the basis of genetics alone, we: (1) 

identify novel mutation patterns such as the aberrant splicing of an exon in SGK1, (2) 

produce the first ever purely genetic classification of B-NHLs broadly and DLBCL in 

particular, (3) unlock previously unknown patterns of co-mutation which shed light on unique 

pathogenesis mechanisms, (4) identify novel subclasses of DLBCL, including one with 

hallmark SMZL mutations, revealing new insights regarding DLBCL pathogenesis, and (5) 

set the stage for a follow up clinical study examining the unique lesions that give 30% of 

DLBCL patients poor R-CHOP responses14, thus shedding light on the critical clinical 

question of DLBCL. 

Our study occurs in three main stages (Figure 1a). First, we identify driver mutations 

in 292 genes implicated in lymphoid and myeloid malignancies across 1607 patients. Second, 

we conduct mutational analysis at the landscape level and at the gene-level for DLBCL, FL, 

and BL – the primary B-NHLs included in our study. Finally, we utilize Bayesian Dirichlet 

Processes – a machine learning classification approach – to classify our samples on the basis 

of genetics alone. 

Our study draws its effectiveness from its depth and size. We sequence 1607 total 

patients spread across a range of B-NHL subtypes, with the largest patient populations for 

DLBCL and FL (Figure 1b). Our study is one of only two studies of such scope15 and is 

roughly 10X larger than all other previous DLBCL and B-NHL genetic sequencing studies, 

allowing us to consider more B-NHL subtypes. Additionally, our targeted sequencing 

approach allows us to sequence at greater depth, thus identifying rarer and clinically useful 

variants previously missed. Combined, such scope and scale finally allows us to use Bayesian 

Dirichlet Processes – a machine learning approach that can effectively delineate co-mutation 

patterns with a sufficiently large dataset. While we apply this approach to DLBCL and B-

NHLs in this study, the broad methodology should hold equally for other cancers. As a result, 

we see this as a foundational study for a new paradigm in cancer classification. Additionally, 

upon further work which will incorporate gene expression data, copy number changes, and 

translocation data, we will be able to (1) compare our classification robustly with the cell of 
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origin classification based on gene-expression profiling, potentially providing a surrogate and 

(2) present the most integrative classification scheme to date. 
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Figure 1 Overview of Study. (a) Process Overview. Targeted Sequencing of 292 genes was conducted on 1607 
lymphoma samples. Subsequently, variants were called, filtered into somatic mutations, and annotated as drivers 
or passengers. Finally, three analyses were conducted investigating the genomic landscape of B-NHLs, 
examining the mutation profiles of crucial lymphoma genes, and creating the first ever purely genetic 
classification of B-NHLs and DLBCL in particular. (b) Patient Cohort Overview. 
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Figure 1. O
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2. Background 

 

Before diving into our study, we explain the relevant prior work as it relates to the 

biological and genomic pathogenesis, clinical characteristics, and classification of B-NHLs. 

 

2.1. Biological and Genomic Pathogenesis of B-NHLs 
 

2.1.1. B-Cell lymphomagenesis occurs in germinal centres where transcriptional 

changes regulate B-cell development 

The majority of B cell lymphomas originate in the Germinal Centres (GCs). The GCs 

are histological structures whose goal is to proliferate naïve B cells and enable their 

differentiation into Memory B cells and Plasma Cells 16–18(Figure 2a). Functionally, the 

Germinal Centre reaction takes three steps19. First, naïve B cells become activated upon 

encounter with an antigen and interaction with CD4+ T cells in T cell-rich areas of secondary 

lymphoid organs. They subsequently aggregate into follicles to form GCs. In the dark zone of 

the GC, B cells proliferate rapidly, and use immunoglobulin somatic hypermutation to 

produce a high diversity of antibodies. Second, B cells move into the light zone where they 

are selected on the basis of antigen affinity. Finally, B cells either differentiate into Memory 

B cells, differentiate into a Plasma Cells, re-enter the dark zone, or undergo apoptosis.  

Crucially, the GC reaction is regulated by a complex transcriptional network whose 

dysregulation produces various lymphomas 20,21(Figure 2b). The first phase of the GC 

reaction—initiation, B cell proliferation, and somatic hypermutation—is regulated by three 

major transcriptional events. First, the MYC gene is induced to initiate dark zone formation 

and encourage B cell proliferation. Although the exact molecular mechanisms are unknown, 

MYC generally stimulates proliferation by increasing DNA replication, metabolism, and 

telomerase activity22. Second, BCL6 is induced as the master regulator of GC maintenance 

and formation (Figure 2c). BCL6 encourages somatic hypermutation of immunoglobulin loci 

by inhibiting differentiation, B cell activation, and the DNA damage response23–26. Third, 

EZH2-mediated epigenetic silencing occurs to further promote proliferation and prevent 

differentiation27.  

The second phase and third phases of the GC reaction – selection for high affinity 

antigens; and differentiation, dark zone re-entry, or apoptosis – are regulated by four 

transcriptional events. First, the induction of MYC allows for dark zone re-entry25,26. Second, 
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the activation of NF-KB promotes selection of high affinity antibodies and differentiation of 

corresponding B cells28–33. Third, the downregulation of BCL6 leads to GC exit and 

differentiation34. Finally, the induction of PRDM1 allows plasma cell differentiation35–38. 

 

2.1.2. Dysregulation of the GC Reaction defines the characteristic genomic alterations of 

B-NHLs 

Dysregulation of the GC reaction described above is the source of the majority of B-

NHLs. Indeed, BL, FL, and DLBCL jointly comprise 80% of B-NHLs and result from 

dysregulation of different steps of the GC reaction39. These B-NHLs contain mutations 

standard to most tumours: deletions, amplifications, and nonsynonymous point mutations 

with loss-of-function or gain-of-function. More importantly, B-NHLs share a series of 

characteristic genomic alterations stemming from GC dysregulation. Owing to the 

immunoglobulin remodelling function of the GC, B-NHLs carry lesions from aberrant 

somatic hyper mutation and chromosomal translocation that are less common in other 

cancers. Moreover, translocations in B-NHLs generally pair the coding element of a gene 

with a heterologous promoter, leading to dysregulated expression of an oncogene19. By 

contrast, translocations in other cancers, like Acute Leukemia, generally result in fusion 

genes and chimeric proteins. Translocations in B-NHLs can be grouped into three categories 

based on the source of the error. First, translocations such as t(14;18) involving IGH and 

BCL2 in FL result from mistakes in the RAG-mediated V(D)J recombination process. 

Second, translocations such as immunoglobulin-MYC translocations in sporadic BL result 

from mistakes in the AID-dependent class switch recombination process. Third, 

translocations such as immunoglobulin-MYC translocations in endemic BL result from errors 

in the AID-mediated somatic hypermutation mechanism which may lead to DNA breaks19. 

In addition to these characteristic genomic alterations, each B-NHL has a set of 

uniquely defining genetic characteristics (Figure 2a). 

 

2.1.2.1. BL is defined by MYC translocation, mutations in TCF3 and ID3 

BL samples have gene expression patterns similar to dark zone B cells and represent 

aggressive malignancies40,41. Three main genetic changes characterize BL. Occurring in 

100% of cases, the hallmark genetic lesion of BL is MYC translocation into the 

immunoglobulin locus42,43. Translocation causes ectopic MYC expression which promotes 

replication, causing replication stress in proliferative dark zone B cells and thus 

lymphomagenesis26,40,44. Second, 70% of BL mutations have mutations of TCF3 or ID3 
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which promote “tonic” BCR signalling to occur in an antigen-independent way. By contrast, 

cells without this mutation, for example ABC-DLBCL samples (described below), rely on 

chronic activation of BCR45. Third, the Ga13-dependent pathway is dysregulated, thus 

causing GC B cell migration and preventing confinement46. This mutation also occurs in 

GCB-DLBCL (described below). 

 

2.1.2.2. FL is defined by t(14;18) translocation and KMT2D inactivation 

FL results from the clonal expansion of follicles containing GCs with high SHM 

activity47. These samples often have gene expression patterns similar to B cells arrested in the  

light zone40,48. Though an indolent disease, FL can transform into DLBCL49,50. Two main 

genetic events distinguish FL. First, 80% of FL samples have a t(14; 18) translocation, 

juxtaposing the BCL2 gene with the IGH locus and causing ectopic expression51,52. The 

dysregulation of BCL2 leads to an anti-apoptosis response. Second, >80% of FL cases exhibit 

the genetic inactivation of KMT2D53,54. The exact consequences of this inactivation are 

currently unknown. 

 

2.1.2.3. DLBCL is defined by BCL6 dysregulation, inactivation of chromatin modifiers 

(EP300, CREBBP, KMT2D), and disruption of immune surveillance 

Comprising 40% of all B-NHL, DLBCL represents the most common form of B-NHL 

lymphoma. While some DLBCL cases arise de novo, other cases arise from transformation of 

less aggressive B-NHLs (chronic lymphocytic leukaemia and FL)50,55. DLBCL samples have 

gene expression profiles that map into two broad categories: activated B cell-like DLBCL 

(ABC-DLBCL) and GC B cell-like DLBCL (GCB-DLBCL). GCB-DLBCL samples’ gene 

expression profiles match those of light zone B cells40,48. ABC-DLBCL samples’ gene 

expression profiles match those of GC cells arrested during early stages of post-GC plasma 

cell differentiation (plasmablasts)40,48. While some mutations occur across DLBCL subtypes, 

each DLBCL subtype (ABC-DLBCL or GCB-DLBCL) has specific genomic lesions 

characterizing it. 

Three broad types of genomic lesions are shared across DLBCL subtypes. First, many 

DLBCL patients have inactivation of EP300 or CREBBP (40%) and/or KMT2D (30%), 

chromatin modifiers crucial to epigenetic regulation53,54,56,57. Second, 30% of DLBCL cases 

and 15% of FL cases exhibit BCL6 dysregulation, thereby suppressing the DNA damage 

response and inhibiting differentiation58. BCL6 dysregulation can occur either via disruption 

of BCL6’s autoinhibitory circuit or through chromosomal translocations with promoters of 
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other genes or the IGH locus59–61. Finally, >60% of DLBCL cases exhibit immune escape 

through various mechanisms. Diminished expression of MHC-I allows DLBCL cells to evade 

cytotoxic T lymphocytes. CD58 Inactivation or disrupted transport similarly allows evasion 

of natural killer cells61. Combined, these mutations allow DLBCL samples to evade both 

cytotoxic T lymphocytes and natural killer cells. 

 

2.1.2.3.1. GCB-DLBCL, the first DLBCL subtype, is characterized by EZH2 activation 

and altered GC B cell migration 

GCB-DLBCL samples share some genetic overlap with BL and FL. In particular, 

10% of GCB-DLBCL samples exhibit MYC translocation; 40% exhibit BCL2 translocation; 

and samples exhibiting both (i.e. double hit cases) show worse clinical outcomes63,64. 

Beyond the similarities, two additional genetic alterations characterize GCB-DLBCL. 

First, 21% of GCB-DLBCL cases have a gain of function mutation in EZH2, thereby 

promoting GC proliferation and inhibiting post-GC differentiation65,66. Second, 30% of GCB-

DLBCL cases and 15% of BL cases exhibit mutations in S1PR2, GNA13, ARHGEF1, or 

PR2Y8 which disrupt the Ga13-dependent pathway, thus allowing B cells to migrate from the 

GC into lymph and blood circulation67. In spite of knowledge of these alterations, the precise 

pathogenesis of GCB-DLBCL is not well understood.  

 

2.1.2.3.2. ABC-DLBCL, the second DLBCL subtype, is characterized by constitutive 

NF-KB signalling and inhibition of terminal differentiation 

Two main genetic alterations characterize ABC-DLBCL. First, NF-KB is 

constitutively activated. Such activation can occur through multiple mechanisms. In 20% of 

cases, CD79A and/or CD79B mutations generate chronic BCR signalling68. In 10% of cases, 

CARD11 activating mutations constitutively activate NF-KB. In 35% of cases, MYD88 

mutations constitutively activate MYD88 and affect JAK/STAT3 signalling69. In 30% of 

cases, TNFAIP3 inactivating mutations inhibit the stoppage of NF-KB responses70. Finally, 

antigens or autoantigens can chronically stimulate BCR. Second, the negative regulation of 

PRDM1, the plasma cell master regulator, blocks terminal differentiation to plasma cells. 

This negative regulation occurs through either bi-allelic activation of PRDM1 (30% of cases), 

SPIB gain of function which increases inhibition of PRDM1 transcription (25% of cases), or 

BCL6 translocations, which cause constitutive repression of PRDM171–75. Combined, these 

genomic lesions grant ABC-DLBCL a worse clinical course and outcome than GCB-

DLBCL48,76. 
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Figure 2 B-Cell Lymphomagenesis originates in the Germinal Centres. (a) B-NHLs correspond to 
dysregulation of different stages of B-Cell development. Each carry hallmark mutations disrupting a specific 
transition. (b) Transcriptional activity drives normal B cell development with gene expression driving 
transitions between stages. (c) Transcriptional networks work jointly to create major transitions such as GC 
initiation and GC exit, with BCL6 as a master regulator. Adapted from Basso et al. 2015. 
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2.2. Clinical Characteristics of B-NHLs 

B-NHLs share a set of clinical characteristics although they differ in their distinctive 

features, all reviewed below. Survival outcomes vary, but in all cases, prognostication and 

treatment lag behind recently acquired understanding of the molecular and genetic 

heterogeneity of B-NHLs. All citations from this section are taken from Pathophysiology of 

Blood Disorders, Volume 2 by H. Franklin Bunn and Jon Aster77. 

 

2.2.1. B-NHLs share symptoms of immune dysregulation and are measured by a 

common staging system 

Generally, B-NHLs share a set of common clinical features. B-NHLs usually present 

as a mass in the lymph nodes or secondary lymphoid tissues, though they can also present in 

virtually any organ in the body. Once presented, symptoms associated with immune 

dysregulation result, namely: B symptoms (weight loss, night sweats, fever), 

immunosuppression, and breakdown of immune tolerance. Additionally, B-NHLs generally 

have infectious agents as cofactors in development (Helicobacter pylori, HTLV-1, HHV-8, 

HIV, and EBV).  

All B-NHLs share the same staging system: the Ann Arbor Staging for Lymphomas. 

Four stages exist consistent with increasing progression of the disease that are based on the 

number and location of nodes. Stage I corresponds to the involvement of a single lymph node 

group (I) or a single extralymphatic organ or site (IE). Stage II corresponds to the 

involvement of two or more lymph node groups on the same side of the diaphragm without 

(II) or with localized involvement of an extralymphatic organ or site (IIE).  Stage III 

corresponds to the involvement of lymph node groups on both sides of the diaphragm without 

(III) or with localized involvement of an extralymphatic organ or site (IIIE). Stage IV 

corresponds to the extensive involvement of one or more extralymphatic organs or sites (i.e. 

bone marrow) with or without lymphatic involvement. In spite of the consistent staging 

system, however, the clinical course for each B-NHL is distinct: FL is indolent, DLBCL is 

aggressive, and BL is very aggressive. Moreover, this staging system lacks the resolution 

necessary to account for patient heterogeneity, particularly in DLBCL. 

 

2.2.2. FL is an indolent lymphoma with a passive clinical course 

FL is the most common indolent lymphoma, representing 20,000 new cases per year 

in the US. Upon presentation, FL is usually asymptomatic with painless lymphadenopathy. 

Patients are diagnosed via a biopsy of the lymph node and fall into two categories. The first 
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category of patient (20%) have spontaneous and transient remissions. The second category of 

patients have local symptoms due to FL progression: cytopenias from bone marrow 

involvement, hypersplenism, B symptoms, symptomatic extranodal disease (i.e. pleural 

effusions), and/or compromised organ function. Stage I patients generally are cured by local 

radiation. Patients in more advanced stages receive chemotherapy and rituximab whereupon 

>90% show excellent responses over five years with resistance being common afterwards. 

Finally, 2% of patients transform to more aggressive lymphomas per year. Overall, FL now 

shows a median survival of >10 years. 

 

2.2.3. BL is a rare but highly aggressive lymphoma 

BL is a highly aggressive lymphoma accounting for less than 2% of adult lymphomas. 

BL occurs in three clinical settings: (1) in subequatorial Africa where BL is latently infected 

with EBV and/or malaria as a cofactor, (2) in the US where BL presents in a sporadic form 

and 30% of cases occur with EBV, and (3) in patients with immunodeficiency, often resulting 

from HIV and/or EBV. Regardless of the clinical setting, BL arises in extranodal sites often 

in the abdomen as a rapidly growing tumour mass with a “starry sky” appearance. 

Immunohistochemistry shows pan-B-cell (i.e. CD20) and GC B-cell (i.e. CD10 and BCL6) 

markers but no BCL2. Additionally Ki-67 is seen as a marker of active growth and MYC 

rearrangements are common. 

 The prognosis and treatment of BL depend on stage, gender, age, and clinical setting. 

Endemic BL is localized and responds to chemotherapy. Sporadic and HIV-associated BL 

generally spreads to the Central Nervous System, thus requiring prophylactic treatment. 

Sporadic BL is treated with intensive combination therapies and rituximab regimens coupled 

with intrathecal therapy to prevent disease in the CNS.  

 

2.2.4. DLBCL is a common and aggressive lymphoma in which 30% of patients are not 

cured by first line treatment 

DLBCL is the most common lymphoma, accounting for 30,000 new cases per year in 

the US. Most DLBCL presents in older adults with a median presentation age of 65. Most 

DLBCL presents in lymph nodes (2/3) though some (1/3) presents in extranodal sites, 

generally in the gastrointestinal tract. Almost any organ can be involved in DLBCL. 

Regardless of subtype, DLBCL is a rapidly expanding mass with B symptoms that mark it as 

an aggressive disease. Diagnosis is made by tissue biopsy and immunophenotyping which 

reveal pan-B-cells markers (i.e. CD20), BCL6 expression, and variable expression of CD10, 



 36 

BCL2, and surface immunoglobulins. Additionally, serum lactate dehydrogenase (LDH) 

levels are elevated in over half of DLBCL patients unlike in indolent lymphomas.  

DLBCL patients are prognosticated based on the Revised International Prognostic 

Index (R-IPI). The R-IPI considers negative prognostic factors at the time of diagnosis (stage 

III/IV of the disease, age > 60 years, elevated lactate dehydrogenase (LDH) levels, Eastern 

Cooperative Oncology Group (ECOG) performance status >=2, and >1 extranodal sites of 

disease) to sort patients into three risk categories. Patients with zero risk factors have >90% 

chance of 4-year progression-free survival. Patients with 1 or 2 risk factors have an 80% 

chance of 4-year progression-free survival. Finally, patients with 3, 4, or 5 risk factors have a 

50% chance of 4-year progression-free survival78. 

Regardless of prognostication, all patients today are treated with R-CHOP. Up to one-

third of patients do not achieve a cure with their initial therapy. Relapse and non-responsive 

patients have a poor prognosis. These patients may undergo more aggressive therapies such 

as stem cell transplantation; however, only 25% of such patients survive > 5 years. Today, 

there are no effective methods to distinguish up-front which patients will not be cured by 

first-line chemotherapeutic treatment. Identifying these patients up-front would allow doctors 

to move them toward more aggressive clinical regimens sooner or potentially toward 

experimental therapies.   
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2.3. Classification of B-NHLs 

Although recent studies have uncovered the genetic heterogeneity inherent to 

DLBCL, current classification schemes have not yet fully incorporated this heterogeneity. 

Similarly, these classifications have done little to change clinical practice: the same frontline 

treatment is given to all patients although 30% of patients are not cured by R-CHOP. Our 

primary goal, therefore, is to improve upon known classification systems with the hope of 

discovering distinctive pathogenic and clinical characteristics that can guide treatments.  

The primary goals of any classification system are three-fold. First, to delineate 

subcategories of the disease with interpretable differences that generate biological insights 

related to pathogenesis. Second, harness those insights to create targeted therapies for each 

class. Third, to then administer the optimal treatments for patients based upon which class of 

the disease they express.  

Consistent with these goals, classification system schemes have been increasingly 

shifting towards molecular and genetic classification. As an example, some high grade B-cell 

lymphomas are now defined on the basis of whether they exhibit MYC and BCL2 and/or 

BCL6 rearrrangements.  

Below, we describe the three current classification systems for DLBCL and B-NHLs: 

the WHO classification, cell-of-origin classification, and consensus clustering.  

 

2.3.1. WHO Classification relies primarily on morphologic, biologic, 

immunophenotypic, and clinical parameters  

The primary classification for lymphoid neoplasms including DLBCL is the WHO 

classification. The WHO classification primarily uses morphologic, biologic, 

immunophenotypic, and clinical parameters to separate lymphoid neoplasms into subgroups. 

Each subtype, described below, carries unique characteristics that often translate into distinct 

clinical courses.  

 

2.3.1.1. DLBCL NOS 

Accounting for 25-30% of NHL, DLBCL NOS is the most common WHO subtype. 

Crucially, DLBCL NOS is primarily an exclusion category: rather than having positive 

defining characteristics, DLBCL NOS samples are defined by not fitting the characteristics of 

other categories.  
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DLBCL NOS can originate de novo or as a result of transformation from FL or CLL. 

The most common genetic aberrations of DLBCL NOS include BCL6 mutations (30% of 

cases29), MYC translocations (10% of cases79), and BCL2 mutations in GCB-DLBCL.  

Historically, DLBCL was resolved on the basis of morphological features. In 

particular, the recognition of centroblastic, immunoblastic, and anaplastic subtypes enabled 

classification and corresponded with clinical differences: centroblast tumours exhibited better 

prognostic outcomes than immunoblast tumours1. Major issues exist with this approach 

however. First, reproducibility of clinical differences is poor. Additionally, relatively small 

numbers of patients show immunoblastic morphology (only 7.4% of nearly 1000 patients in a 

clinical trial) showing that such morphological based classification had limited clinical 

applicability80. More recently, resolution of DLBCL NOS subgroups has been accomplished 

through gene expression studies delineating the cell of origin, described above.  

 

2.3.1.2. DLBCL in specific subtypes 

Other subtypes of DLBCL affect specific sites of the body: intravascular large B-cell 

lymphoma (IV-LBCL), primary cutaneous DLBCL, leg-type, and primary CNS DLBCL. Of 

those subtypes, only IV-LBCL was present within our study. IV-LBCL is rare and 

characterized by large B-cells occurring in the lumen of small blood vessels. The majority of 

IV-LBCL shows a gene-expression profile consistent with ABC-DLBCL and expresses the 

CD5 surface marker81. However in the absence of definitive radiological or clinical evidence 

and diverse symptoms, the disease is rarely diagnosed until autopsy. 

 

2.3.1.3. High Grade B-Cell Lymphoma, with MYC and BCL2 and/or BCL6 

rearrangements 

This category includes all large B cell lymphomas with MYC and BCL2 and/or BCL6 

rearrangements except those that fulfil criteria corresponding to follicular or lymphoblastic 

lymphoma82. These double hit and triple hit lymphomas correspond to a set of very 

aggressive tumours that generally exhibit chemoimmunotherapy refractoriness and high 

relapse rates. Substantial research is now being conducted to improve treatment for these 

patients83,84.  

 

2.3.1.4. B-Cell Lymphoma, unclassifiable with features intermediate between DLCBL 

and Hodgkin Lymphoma 



 39 

This category, also known as grey zone lymphoma (GZL) contains samples 

intermediate between classical Hodgkin’s lymphoma (cHL) and DLBCL (especially PMBL) 

in terms of clinical, morphologic, and immunophenotypic characteristics. Defining 

characteristics of GZL include: mediastinal involvement85, diversity in cytologic 

appearance85, and more cytogenetic aberrations than cHL, PMBL, and GZL85,87,88. The gene 

expression profile of this subcategory has not been examined. Additionally, the optimal 

treatment is unknown and cHL and NHL treatments have both been ineffective89–91. A more 

refined genetic profile and understanding of the pathogenesis of GZL could therefore inform 

treatment approaches.  

For consistency with figures, we have used BCL, Int. as the abbreviation for this 

class. 

 

2.3.1.5. T-Cell/Histiocyte Rich Large B-Cell Lymphoma 

THR-LBCL is characterized by tumour cells high in reactive T cell or histiocyte 

content. THR-LBCL has distinct clinical features from other DLBCL subtypes: it presents 

predominantly in males in their fourth decade; includes spleen, liver, and bone marrow 

involvement; and follows an aggressive clinical course92–94. Generally, THR-LBCL is closely 

pathologically related to lymphocyte predominant Hodgkin lymphoma but differs in a few 

respects: the absence of small B-cells, the lack of a follicular structure, and the absence of T-

cell rosettes around atypical B-cells. 

 

2.3.1.6. Plasmablastic lymphoma 

PB-LBCL results when immune surveillance declines due to advanced age and/or 

iatrogenic immunosuppression95. PB-LBCL occurs primarily in males with a median age of 

50, with most cases being EBV-positive. Additionally, PB-LBCL patients generally have 

MYC translocations89,96. In terms of treatment, PB-LCBL show early responses to therapy but 

a poor overall prognosis including high likelihood of relapse90. 

 

2.3.1.7. Additional WHO subtypes not included within our study 

In addition to the subtypes in our study, described above, additional subtypes exist 

and are discussed in the corresponding references. Two subtypes of DLBCL relate to the 

presence of EBV. First, EBV+ DLBCL, NOS has an aggressive clinical course97. Second, 

DLBCL associated with chronic inflammation98 primarily presents in males between age 65 

and 70 with an aggressive clinical course99,100. An additional three subtypes of DLBCL 
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exhibit a plasmablastic phenotype (i.e. acquisition of plasma cell markers like CD38/CD138 

with loss of or weak B-cell markers and MUM-1 positivity: ALK+ large B-cell lymphoma101–

106, plasmablastic lymphoma89–91,95,96,107–109, and primary effusion lymphoma110–117). For 

additional rare subtypes, we refer to the official WHO classification82. 

 

2.3.1.8. Follicular Lymphoma, Large Cell  

In addition to the WHO classification presented above, one additional subtype 

(Follicular Lymphoma Large Cell or FL-LC) was present within our study. Generally, FL-LC 

is a subset of FL that is distinct from indolent follicular lymphomas. FL-LC is an aggressive 

lymphoma that presents with favourable prognostic features compared to FL. Both the 

clinical features and treatment response in FL-LC are similar to those in DLBCL118.  

 

2.3.1.9. Splenic Marginal Zone Lymphoma  

While we didn’t have any samples explicitly diagnosed as SMZL cases, our later 

classification analysis uncovered patients with genetic profiles consistent with SMZL. 

Clinically, SMZL is a low grade B-cell lymphoma showing splenomegaly, moderate 

lymphocytosis, and autoimmune thrombocytopaenia or anemia119–121. The immunophenotype 

of SMZL is similar to splenic marginal zone B-cells (CD27+, IgM+, IgD+119,120,122), 

however, the cell of origin is ultimately unknown. Indeed, ~90% of cases include multiple 

somatic mutations at variable degrees, suggesting the possibility for multiple cells of origin.  

Genetically, SMZL manifests mutations in various pathways, all affecting marginal 

zone B-cell development: KLF2 (20-42%), NOTCH2 (6.5-25%), NF-KB (CARD11 ~7%, 

IKBKB ~7%, TNFAIP3 ~7-13%, TRAF3 ~5%, BIRC3 6.3%). Marginal zone B-cell 

development, however, is not broadly well understood making the exact pathogenesis of 

SMZL unclear. Additionally, most SMZL shows recurrent gains and losses (7q32 deletion in 

18-44% of cases) and translocations resulting in somatic hypermutation (IGHV1-2 in 90% of 

cases123–128). Overall, the most common changes in SMZL are 7q deletion, KLF2 mutation, 

NOTCH2 mutation, and IGHV1-2 usage129. The presence of these together implies that 

oncogenic cooperation may occur. For example, KLF2 and TRAF3 mutations may work 

together to activate the NF-KB pathway. 

 

2.3.2. Gene expression profiling has classified DLBCL on the basis of cell of origin, yet 

issues remain  
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More recently, DLBCL categorization has moved toward the identification of distinct 

genetic and epigenetic changes. Gene expression profiling has resolved the DLBCL NOS 

group of the WHO classification into two subcategories: ABC-DLCBL and GCB-DLBCL. 

These subgroups, whose genomic and pathogenetic differences are described above, are 

based upon a “cell of origin” interpretation of DLBCL. Additionally, ABC-DLBCL and 

GCB-DLBCL have been shown to follow distinct pathways toward transformation and 

oncogenesis.  

Consistent with this, targeted therapies affecting pathways responsible in the 

pathogenesis of only one subtype have helped patients primarily of that subtype. As an 

example, Bortezomib, a protease inhibitor blocking NF-KB signalling improves survival for 

ABC-DLBCL but not GCB-DLBCL patients.77 Other studies have specifically suggested 

downregulating the BCR pathway through inhibition of BTK, PI3K, STK, MTOR, and SRC 

kinases in order to improve ABC-DLBCL survival.77  

Issues exist with the gene expression profiling based classification, however. Gene 

expression profiling is technically difficult to perform and has limited availability in 

laboratory settings. As a result, immunohistochemistry has been proposed as an alternative 

way to identify ABC-DLBCL and GCB-DLBCL subtypes. Immunohistochemistry, however, 

(1) does not correspond directly to ABC-DLBCL and GCB-DLBCL distinctions although 

correlations exist, (2) produces unclassifiable cases, (3) uses the Hans algorithm which shows 

reproducibility and reliability issues.77 If an alternative and more reliable way to identify cell 

of origin could be created, for example through the identification of specific mutations that 

correlate with these outcomes, the ABC-DLBCL and GCB-DLBCL classification would gain 

substantial clinical impact. Such a question could potentially be answered by a follow-up to 

our present study including gene expression data. 

 

2.3.3. Alternatively, consensus clustering strives to classify DLBCL on the basis of 

metabolic pathway regulation 

Finally, an independent classification has arisen based on consensus clustering which 

separates DLCBL samples by the up and down regulation of metabolic pathways.130 The first 

cluster, the OxPhos consensus cluster, expresses genes important to mitochondrial 

metabolism and oxidative phosphorylation. The second cluster, the BCR consensus cluster, 

expresses genes critical to B-cell receptor signalling, regulation of the cell cycle, DNA repair, 

and B-cell transcription factors. The final cluster, the host response consensus cluster, 

expresses genes involved in the immune inflammatory response, the classic component 
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pathway, and the T-cell mediated immune response. Overall, OxPhos clustering has little 

overlap with the gene-expression cluster subtypes (ABC-GLBCL, GBC-DLBCL) and WHO 

classification above. As such, it is difficult to compare with the prior classification schemes 

and lies largely tangential to the classification presented in this paper. 
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3. Methods 

 

Two phases composed this study. First, driver variants were extracted from genetic calls 

and merged with relevant clinical data. Second, this joint clinical and genetic data was 

harnessed to create a novel genetic classification of DLBCL.  

 

3.1. Dataset  

 

3.1.1. Patient Cohort  

Patient samples came from the Haematological Malignancy Research Network 

(HMRN), a UK population-based registry whose methods have been previously 

described131,132. In short, fresh frozen or formalin-fixed, paraffin-embedded (FFPE) tissue 

samples were collected from 1607 lymphoma patients over 15 years. All samples collected 

were diagnostic biopsies. DNA was subsequently extracted for sequencing. Patient 

characteristics are available in Figure 1b.  

Since patient samples were collected over 15 years, around 90% of curatively treated 

patients received rituximab. At the time of this manuscript, the information relating which 

patients did and did not receive rituximab was not yet processed and transferred to us by our 

collaborators. This will primarily affect the survival analysis at the end of this study, which is 

marked as being preliminary and will be heavily revised in future versions of this work. The 

11% of DLBCL NOS patients marked as “not treated” were treated with palliative intent. 

 

3.1.2. Library Preparation and Sequencing  

Genetic sequencing targeted the exon region of 292 genes, specific SNPs in 

noncoding regions to facilitate copy number analysis, and known hot spot mutations outside 

of exon regions. Custom RNA baits were designed according to manufacturer guidelines 

(Agilent). Genomic DNA (125uL, 40ng/uL) was fragmented and prepared for Illumina DNA 

library sequencing via a Bravo automated liquid handler. Prepared samples were then 

indexed to a unique DNA barcode with 6 cycles of PCR. Next, the Agilent SureSelect 

protocol was used to prepare and hybridize 16 equimolar pools of libraries to custom RNA 

baits. RNA baits were designed to target the exons of 292 genes implicated in lymphomas 

and myeloid cancers. Additionally, baits targeted a series of SNPs in non-coding regions to 

allow later extraction of copy number changes. Finally, an Illumina HiSeq machine with a 

75-base pair paired-end protocol was used to sequence enriched pools of 96 cases.  
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3.1.3. Clinical Data  

The following clinical data was collected for all patients: sex; age at diagnosis, WHO 

Diagnostic Group: Diffuse large B-cell lymphoma, Follicular lymphoma, Burkitt lymphoma, 

B-cell lymphoma (intermediate between DLBCL and classical HL; Diagnostic Subtype 

ICDO3: Diffuse large B-cell lymphoma (NOS); Follicular lymphoma, Burkitt lymphoma, 

Intravascular large B-cell lymphoma, Follicular lymphoma: large cell, Plasmablastic large B-

cell lymphoma, T-cell/histiocyte-rich large B-cell lymphoma, B-cell lymphoma (intermediate 

between DLBCL and classical HL); overall survival: days since pathology report; survival 

status; and treatment: treated, not known, watch and wait. Additional clinical variables were 

also collected and are currently being processed by our collaborators. 
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3.2. Genetic Data Preparation  

 

3.2.1. Sequencing Alignment  

To align raw sequencing data to the human genome (NCBI Build 37), the BWA 

algorithm133 was used. The coverage depth at each base-pair position was determined 

utilizing Bedtools® v2.15.0134. Sequencing was performed to an average target depth of 500x 

reads per base, although there was inevitably patient-to-patient and gene-to-gene variation 

around this target.  

 

3.2.2. Variant Calling  

DLBCL includes a spectrum of genetic mutations including indels, complex 

rearrangements, and point mutations. We utilized two approaches to call relevant variants. 

First, point mutations were called using a modified version of the CaVEMan 135algorithm 

with a single cord blood sample designated as the normal (Cancer Variants through 

Expectation Maximisation, https://github.com/cancerit/CaVEMan). CaVEMan calls variants 

by comparing sequencing data from each tumour sample with a designated normal sample 

and then calculating the likelihood of a mutation at each base-pair position locus. Thereby, 

CaVEMan identifies point mutations. Second, indel mutations were called using a modified 

version of the Pindel algorithm136. Third, Samtools mpileup was utilized to specifically 

identify mutations in known hotspot regions137 like the TERT promoter. Finally, we manually 

reviewed all remaining variants using a genome browser (Gbrowse®)138.  

 

3.2.3. Variant Filtering  

After calling the full set of variants, we removed off-target variants and variants that 

were suspected errors. These variants were removed based on (1) their presence in an off-

target region, (2) a set of standard CaVEMan filters, (3) a set of standard Pindel filters, (4) a 

manually implemented set of additional filters, and (5) manual review.  

First, we removed unmapped reads, PCR duplicates, and variants in off-target regions. 

Off-target variants were removed using Bedtools v2.15.0134.  

Second, variants were removed based on the CaVEMan filters below: 

1. DTH: Less than 1/3 of mutant alleles were >= 25 base quality 

2. RP: Coverage was less than 8 and no mutant alleles were found in the first 2/3 

of a read (shifted 0.08 from the start and extended 0.08 more than 2/3 of the 

read length) 
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3. MN: More than 0.03 of mutant alleles that were >= 15 base quality found in 

the matched normal 

4. PT: mutant alleles all on one direction of read (1 read allowed on opposite 

strand) and in second half of the read. Second half of read contains the motif 

GGC[AT]G in sequenced orientation and the mean base quality of all bases 

after the motif was less than 20 

5. MQ: Mean mapping quality of the mutant allele was <21 

6. SR: Position falls within a simple repeat using the supplied bed file 

7. CR: Position falls within a centromeric repeat using the supplied bed file 

8. PH: Mutant reads were on one strand (permitted proportion on other strand: 

0.04) and mean mutant base quality was less than 21 

9. TL: More than 10 percent of reads covering this position contained an indel 

according to mapping 

10. SRP: More than 80 percent of reads contain the mutant allele at the same read 

position 

11. HSD: Position falls within a high sequencing depth region using the supplied 

bed file 

12. AN: Position could not be annotated against a transcript using the supplied 

bed file 

13. VUM: Position has >= 3 mutant alleles present in at least 1 percent unmatched 

normal samples in the unmatched VCF 

14. SE: Coverage is >= 10 on each strand but mutant allele is only present on one 

strand 

15. MNP: Tumour sample mutant allele proportion – normal sample mutant allele 

proportion < 0.2 

Third, indel variants were removed based on the filters built into Pindel136. 

Fourth, we removed additional variants based on manual filters. To remove variants 

within the error limits of CaVEMan and Pindel, we removed: variants with a read depth less 

than 10, variants with less than 3 reads, and variants with a variant allele fraction less than 

0.05. To remove variants due to polymerase slippage in homopolymeric regions of the 

genome, we removed variants with a repeat length greater than 4 that also occurred in over 

10% of individuals. Finally, we removed variants with insufficient read depth (<10). For 

reference, the average read depth across our study was ~500x reads per base.  
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3.2.4. Driver Identification  

In order to identify driver mutations within the set of mutant calls, we first removed 

suspected germline polymorphisms. Next, we executed a pipeline for automated driver 

annotation. Finally and crucially, we reviewed all annotations manually before marking 

variants as Drivers, Passengers, or Variants of Unknown Significance.  

First, we removed suspected germline polymorphisms by annotating the variants 

according to their population frequency in ExAC non-TCGA v0.3139. Any variants with a 

population frequency in ExAC non-TCGA > 0.001 were considered likely germline 

polymorphisms. While ExAC non-TCGA is contaminated with some relatively common 

somatic driver mutations, we reduced the risk of mistakenly removing common drivers by 

keeping a whitelist of common driver mutations and also examining suspected somatic 

mutations during the manual review step.  

Next, we executed a pipeline for automated driver annotation. In order to be 

considered a driver, a variant must:  

 

1. Not have a Vagrent 140annotated mutation effect of the following type: 

THREE_PRIME_UTR, FIVE_PRIME_UTR, FIVE_PRIME_FLANK, 

THREE_PRIME_FLANK, INTRONIC, SPLICE_REGION, SILENT. 

2. While also fulfilling any of the four conditions below: 

a. In a whitelist of well known driver mutations; 

b. Recurrence in COSMIC v82141 > 3; 

c. Recurrence in COSMIC subsetted to hametopoetic and lymphoid 

diseases > 3; 

d. Likely to be a driver mutation based on it’s effect and presence in a 

known tumour suppressor gene or known oncogene. As an example, a 

truncating mutation in a tumour suppressor gene would be considered 

a likely driver via this process.  

 

Finally, a manual review process triaged suspected passengers and suspected 

passengers into two final categories of drivers and passengers. Beyond manually reviewing 

all annotations, this step was particularly important for removing missense variants that were 

only recurrent because of Somatic Hyper Mutation and not otherwise expected to be drivers.  
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3.3. Classification  

 

3.3.1. Classification Techniques  

To separate DLBCL patients into maximal, non-overlapping clusters, we utilized 

Bayesian Dirichlet Processes142. Bayesian Dirichlet Processes utilize a mixture model with an 

infinite prior distribution for the proportion and number of clusters. A Markov chain Monte 

Carlo method is then used learn the number, proportion, and assignments of the clusters. 

Analysis relied on the R package https://github.com/nicolaroberts/hdp which implements the 

non-hierarchical Dirichlet process we used. To fit the data, we used 100,000 burn-in 

iterations and 20,000 samples at 60 iterations between samples. After fitting the data, we 

merged clusters more than 5% similar on a cosine similarity metric and requested that only 

99% of the data require explanation. Relevant code was adapted from a prior AML study by 

Papaemmanuil et al.143 

 

3.3.2. Statistical Analysis  

R version 3.3.3 was used for all statistical analysis and visualization. 
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4. Driver Identification and Genomic Analysis 

 

Our study first sought to understand the landscape of genomic lesions underlying B-

NHLs. To accomplish this goal, we began by identifying driver variants within our list of raw 

sequencing variants. Subsequently, we conducted a genomic landscape analysis and gene-

level mutational profiling.  

 

4.1. The Driver Annotation Pipeline 

 

4.1.1. Methodology 

We began our analysis by extracting a list of somatic driver variants from our raw 

sequencing reads. Broadly, our driver identification pipeline consists of three automated steps 

with a final manual review step to check all variants (Figure 3). Our pipeline first removes 

errors from the list of all sequencing variants (VCF file) to construct a list of all real variants. 

Second, our pipeline identifies somatic variants by annotating polymorphisms. Third, our 

pipeline annotates somatic variants as drivers, passengers, or variants of unknown 

significance. Finally, all variants are manually curated, taking into account the flags set by 

the pipeline.  

First, we removed errors from the list of sequencing variants. We removed errors 

resulting from DNA polymerase slippage by discarding variants that were (1) in 

homopolymeric regions of length greater than 4 and (2) in >10% of individuals. We removed 

variants near the noise thresholds of the CaVEMan and Pindel algorithms by discarding 

variants with a read depth less than 10, less than three reads, or a VAF less than 0.05. For 

context, our study had an average depth of 500x reads per base. Our filters are consistent with 

those used in prior studies143. Nonetheless, we also inspected both the remaining and 

discarded variants with GBrowse. By removing errors in this fashion, we pruned our list of 

sequencing variants to the set of all real variants in our study.  

Second, we identified somatic mutations by flagging polymorphisms within our list of 

variants. Since our tumour samples lacked matched normals, we identified likely 

polymorphisms by flagging variants with a population frequency in ExAC non-TCGA greater 

than 0.001. Since ExAC non-TCGA includes some lymphoid drivers with a high population 

frequency, we kept a whitelist of drivers that would not be annotated as polymorphisms via 

this approach. No variants were removed via this step. The annotation, however, proved 
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helpful for manually curating drivers. Upon completion of this step, we arrived at a list of 

variants, some flagged as likely polymorphisms.  

Third, we annotated driver mutations. We utilized a few computational approaches 

described below. Ultimately, however, all variants were inspected and given a final 

annotation manually. Three independent computational approaches were helpful in flagging 

potential drivers. First, we flagged all mutations that were in a whitelist of known driver 

mutations manually curated from COSMIC and the literature. Second, we flagged variants as 

potential drivers if they were highly recurrent within COSMIC (>3). Finally, we flagged 

variants as potential drivers if their effect in a gene of known function was likely to make 

them drivers. For example, a frameshift or nonsense mutation in a well-characterized tumour 

suppressor gene would be marked as a likely driver. Since this approach requires a functional 

annotation for each gene, it was only applied to a subset of the variants. 

Finally, with a list of potential driver mutations we conducted an extensive manual 

curation to provide a final annotation to variants. In general, we annotated variants 

conservatively, preferring to err on the side of marking a variant as a “Variant of Unknown 

Significance” rather than a driver. Conservative annotation would reduce later errors in 

classification since the Bayesian Dirichlet Process, our classification algorithm, is more 

robust to false negatives (i.e. missing drivers) than to false positives (i.e. passenger mutations 

annotated as drivers). 

 

4.1.2. Limitations of the Driver Annotation Pipeline and Mutations Underrepresented in 

DLBCL NOS  

In general, the driver variants produced via our driver annotation pipeline matched 

expectations from the literature (Sections 4.2, 4.2.1). However, mutations in some DLBCL 

genes were underrepresented (BCL2, BCL6, CIITA, CD79B, PIM1, HIST1H1E, CD58, 

GNA13). Limitations of the data, the driver annotation pipeline, or the sequencing and 

assembly algorithms can account for these discrepancies. 

First, some genes had low mutation levels based on the lack of translocation data or 

copy number analysis. BCL2, for example, was present at a lower proportion than expected 

(34-45% of patients in literature144). However, the majority of BCL2 changes in DLBCL 

result from translocation; therefore, the lower prevalence of BCL2 driver mutations in our 

sans translocation dataset can be explained. The same is true for BCL6 and CIITA (33% and 

38% of patients in literature, respectively144). The addition of translocation and copy number 

analysis to future versions of this study should resolve the above issues.  



 53 

Second, other genes had low mutation levels due to limitations of the computational 

pipeline which will be improved in future iterations. Note that for all genes below, the 

relevant variants were indeed present within our list of real variants but were not flagged as 

drivers. CD79B had a hotspot within our list of real variants at Y197 that was not flagged as a 

driver. Our computational pipeline failed to annotate this hotspot because (1) it was not 

present within our driver whitelist and (2) our sequencing aligned to a distinct transcript of 

CD79B than that used in COSMIC; therefore, our hotspot was present at Y197 rather than 

COSMIC’s hotspot at Y196, meaning the COSMIC recurrence flag did not call it as a 

hotspot. To ensure inclusion of this hotspot in the future, we plan to update the driver 

whitelist, ensure consistency of transcripts between our sequencing pipeline and COSMIC, 

and additionally flag any variants that are highly recurrent within our dataset as likely drivers.  

Two other genes, PIM1 and HISTIH1E, had numbers of total driver mutations lower 

than expected based on the literature. HIST1H1E has been reported to have a large number of 

missense mutations spread throughout the coding sequence of the gene without any obvious 

hotspots. PIM1 is similar, except a few codons show recurrence > 10 in COSMIC (S97 – 14; 

E79 – 11; and L2 – 10). Our list of real variants indeed contained missense mutations spread 

throughout the coding sequence of these genes consistent with previously reported patterns. 

Since it is unclear, however, which of these specific missense mutations are the driver 

mutations and which are passenger mutations, our pipeline marked these as variants of 

unknown significance with the exception of the recurrently mutated codons (PIM1 S97, E79, 

and L2). By comparison, other studies15 often include these missense mutations which 

explains the disparity in mutation frequency. Annotating missense variants that are not in 

hotspots and lack biological validation as drivers remains a challenge. 

Finally, our variant caller CaVEMan has a statistical limit at calling variants with 

VAF <5%135 which can miss subclonal mutations. A future solution to this problem would 

involve utilizing DeepSNV145, a relatively new variant caller which effectively calls variants 

at VAF < 5% without introducing significant errors. The variant calls resulting from both 

algorithms could then be manually reviewed and merged to create a more accurate set of 

variant calls.  

Any remaining low mutation levels not due to the factors described above are likely 

due to other inherent limitations of our pipeline. The biological effects method requires a 

functional annotation (i.e. oncogene or tumour suppressor gene) which is not always present. 

Manual curation can be challenging, especially for missense variants with low recurrence in 

genes that have not had extensive previous characterization. Overall, however, since multiple 
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independent methods are used to annotate a driver, our results are generally accurate. With 

the exception of the genes described above, the genomic landscape of DLBCL NOS was 

consistent with expectations from the literature. We suspect that future versions of this work 

implementing the changes above will make the genomic landscape fully consistent. 

 

4.1.3. Limitations of the Dataset 

Before proceeding further, it is worth noting the limitations of our genomic landscape 

analysis and gene-level mutational profiling described below. First, the data analysed for this 

manuscript does not incorporate translocations fundamental to the pathogenesis of DLBCL, 

FL, and BL; namely translocations in IGH/BCL2, BCL6, and MYC19. Second, the data did not 

include any copy number analysis. As a result, amplifications and copy number gains that are 

well characterized and important to the pathogenesis of DLBCL were missing: iR-17~92, 

2p16.1, BCL2, and SPIB19. While our targeted sequencing analysis was designed to detect 

changes in copy number, the targeted and unmatched nature of the sequencing data meant 

that traditional copy number analysis algorithms like Ascat146 would not work. At present, a 

custom algorithm is being designed and implemented to detect copy number changes in this 

dataset. Finally, gene expression data was not provided for these samples. As a result, the 

samples could not be clustered into cell of origin clusters (i.e. ABC-DLBCL, GCB-DLBCL) 

which would then have enabled an analysis of genomic landscape differences between these 

subtypes, potentially enabling further resolution and highlighting similarities.  

All of the above data are either present within or can be extracted from our 

collaborators’ full dataset. However, it was either not received or not processed in time for 

this publication. A final analysis of this lymphoma dataset is currently being conducted with 

the aim of incorporating the translocation, copy number, and gene expression data. We 

expect some important changes to result from the addition of this data. For example, all BL 

samples should exhibit a MYC translocation—the hallmark genetic change of the disease19. 

Nonetheless, the broad genetic changes shown within this publication to underlie DLBCL, 

FL, and BL should not change and meaningful conclusions can thus still be drawn. 
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Figure 3 The driver annotation pipeline. The driver annotation pipeline annotates drivers 

from sequencing variants in three steps.   
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4.2. Genomic Landscape of Lymphoma 

After identifying the driver mutations present within each dataset, we sought to gain 

an understanding of the genomic landscape of the B-NHLs within our dataset and of the 

DLBCL NOS subtype more specifically. 

 

4.2.1. The Genomic Landscape of DLBCL NOS 

Looking at the genomic landscape of drivers in just DLBCL NOS (Figure 5c), we 

note that driver mutations generally matched expectations consistent with the literature with a 

few exceptions discussed in Section 4.1.2. At a high level, the genomic landscape of DLBCL 

NOS exhibited a classic long tail distribution, with a small number of genes containing the 

majority of genetic lesions and a large number of genes more rarely mutated but collectively 

responsible for a large proportion of mutations. 

At the gene level, the most prevalent mutations expected from DLBCL were present: 

chromatin modifications (CREBBP, EP300, KMT2D), immune escape (B2M), deregulated 

BCL6 activity (MEF2B), proliferation and apoptosis (MYC), signalling (TNFRSF14, SGK1, 

PTEN), constitutive NF-KB/BCR activity (TNFAIP3, MYD88, CARD11), terminal 

differentiation (PRDM1), the cell cycle checkpoint (CDKN2A), and JAK/STAT activation 

(SOCS1).  

 
4.2.2. Comparative Genomic Landscapes of DLBCL NOS, FL, and BL  

To understand how the genomic landscapes of DLBCL NOS, FL, and BL differed, we 

plotted driver mutations across all genes and highlighted which fraction of driver mutations 

within each gene came from which diagnostic subtype (Figure 5a).  
 

4.2.2.1. DLBCL NOS vs. FL  

Comparing the genomic landscape of DLBCL NOS with that of FL (Figure 5c, d) 

reveals telling differences and similarities in the genomic causes of the diseases.  

First at a high level, both FL and DLBCL NOS exhibited classic long tail 

distributions. A small number of genes (KMT2D, CREBBP, TNFRSF14, EZH2, ARID1A) 

accounted for a large proportion of driver mutations found in patients. A high number of 

genes then individually had fewer drivers present yet still accounted for a large proportion of 

drivers when taken collectively. While the broad long-tail profile matches that of DLBCL 

NOS, FL had a “tighter tail”: more driver mutations concentrated in a smaller number of 

genes (KMT2D, CREBBP, TNFRSF14, EZH2, ARID1A). Collectively, these observations 
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point to the increased genetic heterogeneity of DLBCL compared to FL, a result consistent 

with expectations in the literature19.  

Second, strong similarities occur at the gene level between the DLBCL NOS and FL 

subtypes. Note that for both DLBCL NOS (n=925) and FL (n=566), a small number of genes 

contain the majority of driver mutations: KMT2D, CREBBP, TNFRSF14, TP53, SOCS1, 

B2M, ARID1A, CCND3, TNFAIP3 (constitutive NF-KB activity), and IRF8. This strong 

overlap points to the strong genomic similarities present between DLBCL NOS and FL and 

thus similar mechanistic deregulations that enable the progression of cancer. For example, the 

commonalities in KMT2D, CREBBP, and EZH2 point to the importance of epigenetic 

dysregulation in both FL and DLBCL NOS through similar mechanisms. Similarly, the 

prevalence of driver mutation in SOCS1, TNFRSF14, and TNFAIP3 enable aberrant 

signalling leading to proliferation via the JAK/STAT and NF-KB pathways respectively.  

Third, the prevalence of B2M mutations demonstrate the importance of immune 

escape.  While at a population level, similar genes are mutated in DLBCL NOS and FL, it’s 

worth noting that individual patients within each subtype can still have distinct combinations 

of mutations that distinguish the diseases. Patients of both FL and DLBCL NOS have, on 

average, multiple driver mutations (Figure 4). Therefore, even if two patients share a single 

driver mutation they may differ in the additional driver mutations they have acquired: a 

DLBCL NOS patient could, for example, have driver mutations in KMT2D and CREBBP 

while a FL patient could have driver mutations in KMT2D and TNFRSF14. Because these 

diseases rely on multiple driver mutations and the dysregulation of multiple pathways, 

substantial differences in pathogenesis and treatment response can result. Overall, this result 

reinforces the need for multifactorial classification. While it’s unlikely that most mutations in 

specific genes can be assigned exclusively to DLBCL NOS or FL, it still may be the case that 

specific combinations of mutations occur uniquely in DLBCL NOS vs. FL. Therefore, a 

multifactorial classification system such as the Bayesian Dirichlet Process is needed.  

Finally, important differences between DLBCL NOS and FL nonetheless persist. For 

DLBCL NOS patients, mutations in MYD88, TET2, BTG2, NOTCH2, IRF4, and RHOA 

appear to happen at a higher proportion than for patients with any another subtype. For FL 

patients, mutations in MEF2B and STAT6 appear to happen at a higher proportion than for 

patients with any another subtype. The high prevalence of these mutations within their 

corresponding subtypes point to the importance of those mutations to the unique pathogenesis 

mechanisms inherent to that particular subtype. MYD88, for example, has a well known 

L265P hotspot unique to DLBCL although the precise clinical and pathological significance 
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is unknown147. Similarly, activating mutations in the STAT6 transcription factor are known to 

improve B-cell survival in FL148. From a classification perspective, therefore, we expect 

mutations in these genes to become “class defining” lesions that enable us to distinguish such 

subtypes.  

4.2.2.2. DLBCL NOS vs. BL  

While DLBCL NOS and FL are largely similar with a few distinct class defining 

lesions, BL (Figure 5e) appears to have strong genetic differences with the DLBCL NOS and 

FL subtypes. Note that the genes which contained a high proportion of the driver mutations in 

FL and DLBCL NOS (KMT2D, CREBBP, TNFRSF14, EZH2, TP53, SOCS1, B2M, ARID1A, 

CCND3, TNFAIP3, IRF8) contain a far lower proportion of driver mutations in BL. 

Conversely, individual genes that were rarely mutated in FL and DLBCL NOS such as ID3 

and TCF3, now contain high proportions of the driver mutations in BL. From a mechanistic 

level, ID3 and TCF3 are well known mutations specific to the pathogenesis of BL that often 

work in conjunction with the MYC translocation – the hallmark of BL149,150. Combined, these 

observations point to a substantially distinct genetic landscape of BL as compared to DLBCL 

NOS and FL. Therefore, we expect the classification to draw a distinct and separate category 

for BL as separate from DLBCL NOS and FL that is more easily distinguishable than the 

categories drawn between DLBCL NOS and BL. 
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Figure 4 B-NHLs exhibit 3-4 driver mutations/patient. Average number of somatic driver mutation per 
patient across different diagnostic subtypes in this study. (a) Boxplot. Line represents median; hinges represents 
first and third quartile; whiskers represent furthest data point from quartile within 1.5X the interquartile range. 
Individual points represent outliers beyond that range. (b) Violin plot. 
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Figure 4. Genomic Landscape of Lymphoma 
b. Mutations by Diagnostic Subtype: All
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Figure 4. Genomic Landscape of Lymphoma 
c. Mutations by Effect: All
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Figure 4. Genomic Landscape of Diagnostic Subtypes 
c. Mutations by Effect: DLBCL, NOS
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Figure 4. Genomic Landscape of Diagnostic Subtypes 
c. Mutations by Effect: FL
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Figure 4. Genomic Landscape of Diagnostic Subtypes 
c. Mutations by Effect: BL
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Figure 5 B-NHL Diagnostic subtypes comprise distinct genomic landscapes. (a) Driver mutations identified 
in all B-NHL subtypes, coloured by diagnostic subtype in which they are identified. (b) Driver mutations 
identified in all B-NHL subtypes, coloured by effect of mutation. (c) Driver mutations identified in DLBCL 
NOS, coloured by effect of mutation. (d) Driver mutations identified in FL, coloured by effect of mutation. (e) 
Driver mutations identified in BL, coloured by effect of mutation.  
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4.3. Gene-Level Mutational Profiling 

 

After analysing the genomic landscape of BL, FL, and DLBCL at a population level, 

we analysed the genetic lesions incurred on each gene within our bait set. Overall, we were 

able to reproduce expected mutation patterns in well-characterized oncogenes and tumour 

suppressor genes. Additionally, we identified new patterns of recurrence and novel driver 

mutations of biological interest.  

 

4.3.1. Recreation of Expected Mutational Profiles  

First, we accurately reproduced expected genetic mutation profiles for key genes in 

DLBCL, FL, and BL.  

 

4.3.1.1. Well-Characterized Tumour Suppressor Genes  

As expected, well-characterized tumour suppressor genes exhibit a range of disrupting 

mutations (frameshift, missense, and nonsense) spread throughout the coding sequence of a 

given gene (Figure 6). The diversity in both type of disrupting mutation and residue targeted 

result from the fact that truncating a protein along its primary sequence, shifting the frame of 

large regions, or even disrupting an amino acid can cause a loss-of-function, regardless of the 

specific residue within which such a change occurs (Figure 6a). Broadly therefore, these 

patterns of disrupting mutation spread throughout the coding sequence of a gene correspond 

to tumour suppressor genes and were identified within our study.  

We identified the following tumour suppressor genes within in our cohort: EP300, 

ARID1A, KTM2D, MGA, PTEN, PTPN6, PTPRC, PTPRD, RB1, TET2, TNFAIP3, ZFP36L1. 

All have been previously characterized as tumour suppressor genes, either in lymphoma or in 

other cancer types. Therefore, our ability to reproduce the genetic mutation profiles for these 

tumour suppressor genes provided a partial validation of the effectiveness of our variant 

calling methodology.  

Additionally, a few tumour suppressor genes demonstrated a small number of highly 

recurrent mutations (Figure 6b). These mutations are likely disrupting critical residues, 

consistent with tumour suppressor activity. First, TBLXR1 exhibited an in-frame deletion 

(S324delS) whose function is unclear. A follow up study determining the function of this 

specific residue could illuminate TBLXR1 activity. Second, SOCS1 exhibited a missense 

mutation at S116 in its SH2 domain which binds JAKs and inhibits their catalytic activity, a 

critical function of the SOCS1 protein151. Finally, SMARCA4 exhibited various recurrent 
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missense mutations in its helicase, superfamily 1/2, ATP-binding domain (T910, P913) and a 

recurrent missense mutation in its helicase, C-terminal domain (R1192). None had been 

previously reported in DLCBL although alternate mutations had been reported in small cell 

carcinoma of the ovary152. SMARCA4 is an ATP-dependent transcriptional activator that 

often acts through the SWI/SNF nucleosome remodelling complex153. Therefore, we suspect 

the T910 and P913 mutations are interfering with phosphorylation/dephosphorylation while 

the R1192 mutations are interfering with specific binding to the transcriptional targets of 

SMARCA4.  

Finally, two tumour suppressor genes (TNFRSF14 and BTG2) exhibited highly 

recurrent frameshift, nonsense, and nonstop mutations of interest. In addition to showing a 

general genomic landscape of frameshift and nonsense mutations spread throughout the 

coding sequence of the genome, TNFRSF14 exhibited a highly recurrent nonstop mutation at 

W12 and a highly recurrent frameshift mutation at T169fs*65 (Figure 6c). Similarly, BTG2 

displayed a highly recurrent nonsense mutation at Q33 (Figure 6d). While these mutations 

align with the broad theme of disrupting the tumour suppressor activity of TNFRSF14 and 

BTG2, their high recurrence sets them apart from other similar disrupting mutations. We 

suspect the high recurrence of these mutations could either point to regions of the coding 

sequence that are more exposed to mutation generally or these mutations could result from 

unique mutational processes that disproportionately target them. The exact function of both 

of these recurrent mutations, however, is unknown.  
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Figure 6 Gene-level analysis demonstrates tumour suppressor gene mutational profiles and reveals 
recurrent disruptive mutations. Each gene plot shows driver mutations found in the coding sequence, (2) 
protein domains from UniProtKB, and (3) bubbles. Bottom half of plots show bubbles sized according to the 
number of mutations found in COSMIC. (a) Tumour suppressor genes exhibit disrupting mutations spread 
throughout the coding sequence of the gene. ARID1A is shown as a representative example. (b) Highly recurrent 
missense mutations may disrupt a key residue. SOCS1 is shown as a representative example. (c, d) TNFRSF14 
and BTG2 exhibited recurrent nonsense, frameshift, and nonstop mutations.  
 

 

4.3.1.2. Well-Characterized Oncogenes  

Figure 5. Tumour Suppressor
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Similarly, we were able to recreate expected genomic profiles for well-characterized 

oncogenes: strong hotspots of missense mutations that likely cause a gain in function (Figure 

7). Unlike disrupting mutations in tumour suppressor genes, gain of function mutations in 

oncogenes often require more specificity: inactivating a specific self-regulatory domain for 

example or increasing the affinity of a protein for its target, causing constitutive binding. 

Therefore, activating mutations in oncogenes generally occur at specific residues, appearing 

as “hotspots” with significant mutational recurrence within genes. Within our dataset, we 

successfully recreated major hotspots within DLBCL, FL, and BL.  

Broadly, oncogenes within our cohort generated genetic mutation profiles that either 

(1) matched known hotspots and offered no new hotspots, (2) matched known hotspots and 

offered new hotspots, or (3) elucidated mutation profiles not previously described. We 

discuss each sequentially.  

The first category of oncogenes exhibited genetic profiles that recreated their known 

hotspots and did not reveal any new hotspots (Figure 7a): EZH2 (Y646); BRAF (G466, G469, 

N581, D594, L597, V600, K601); WHSC1 (E1099, TT1150)154; XPO1 (E571)155; MEF2B 

(D83)156; STAT6 (D419)148. Broadly, these genes tend to be among the most well 

characterized and in some cases, the most frequently mutated genes in lymphoma. As a 

result, it was unlikely that a study with a larger patient sample size and more coverage depth 

would be likely to uncover new additional hotspots. Regardless, our ability to recreate the 

genomic profiles for these known genes largely validate our approach.  

The second category of oncogenes exhibited genetic profiles that, in addition to 

recreating known hotspots, also revealed new hotspots (Figure 7b). First, the CARD11 gene 

recreated known hotspots at D230, D357, D401, and L251151 while also exhibiting a new 

mutation at Q249. The CARD11 mutations shown above all occur within the coiled domain 

of the protein, the disruption of which is known to cause constitutive NF-KB activation and 

enhanced NF-KB activity, hallmarks of DLBCL158. Second, the MAP2K1 gene recreated 

known hotspots at G203, P124, F53, C121160, while revealing a new recurrent mutation at 

D67. While the above mutations had been reported for melanoma159 and pediatric type 

follicular lymphoma160, we show their presence here in B-NHL samples, previously 

unreported. We suspect the D67 mutation functions through the same mechanism: causing 

constitutive ERK phosphorylation and activity. Third, the MYD88 gene recreated known 

hotspots at L265P, S219C, and V217F while also revealing a new recurrent mutation at 

S251N.69 All mutations are believed to cause constitutive NF-KB and JAK signalling 

although the exact mechanism for such dysregulation is unknown. Fourth, CCND3, 
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previously reported as an oncogene, exhibited missense hot spots at I290 and P284 and 

recurrent frameshift/nonsense mutations at R271 and Q276. While these recurrent mutations 

had been reported before, the degree of recurrence had not been analysed at scale and these 

mutations had not yet been considered strong hot spots. All mutations appear to disrupt the 

Cyclin D domain at the end of the CCND3 protein. Such mutations have been previously 

reported to increase the stability of the CCND3 protein and lead to CCND3 accumulation 

within the cell.20  

Finally, the third category of oncogenes exhibited genetic profiles that had previously 

been undescribed. One oncogene, STAT3, was present within this category (Figure 7c). 

STAT3 is a transcription factor, shown to be constitutively activated in many cancers, with a 

variety of downstream targets which regulate cell proliferation. Crucially, the activation of 

STAT3 relies on phosphorylation of Y705 which in turn requires docking with tyrosine 

kinases which is modulated by the SH2 domain161. This SH2 domain similarly affects the 

interaction of STAT3 with its transcriptional targets, thus affecting its ability to effectively 

regulate their expression. We found two recurrent mutations in STAT3: a E616 in-frame 

deletion and a Y640 missense mutation, both within the SH2 domain. We believe that by 

modulating the activation of STAT3 and the ability of STAT3 to repress or activate its 

transcriptional targets, these mutations are generating a cancerous phenotype. As an example, 

STAT3 has also been shown to activate the expression of matrix metalloproteinase-2 

(MMP2), a crucial protein which shows elevated levels in cases of tumour invasion, 

angiogenesis, and metastasis162. The E616 and Y640 mutations therefore could either be 

keeping STAT3 in a constitutively activated form or within STAT3 proteins that are 

transiently activated, activating MMP2 transcription more effectively.  

Crucially, the above mechanisms are new within the context of B-NHL and DLBCL 

in particular. Indeed, the only reported mechanism for STAT3-based pathogenesis in ABC-

DLBCL involves the dysregulation of STAT3 by BCL6 which directly represses STAT3. In 

this scenario, dysregulation of the BCL6 pathway leads to elevated STAT3 levels. The 

reported mechanism here, if biologically validated, would provide an alternative mechanism 

for STAT3-based pathogenesis. 
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Figure 7 Gene-level analysis demonstrates known and novel oncogene hot spots. (a) Oncogenes exhibit 
missense hot spots. XPO1 is shown as a representative example. (b) We additionally identified novel hotspots in 
known oncogenes. CARD11 is shown as a representative example. (c) We created the mutational profile for 
STAT3, a known but uncharacterized oncogene.  
 

 

4.3.1.3. Oncogene/Tumour Suppressor Genes  

While most genes exhibited mutation profiles consistent with oncogenes and tumour 

suppressor genes, a set of genes (TP53, CREBBP, and FOXO1) exhibited mutational profiles 

with characteristics of both: disrupting mutations spread across the coding sequence of the 

genome with a few missense hotspots (Figure 8). We suspect that these genes are acting as 

tumour suppressor genes in a subset of the patients shown here but oncogenes in another 

subset of patients. The ability of these genes to function as both oncogenes and tumour 

suppressors had been previously described for other malignancies but not for B-NHLs.  

Figure 6. Oncogene
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Figure 8 Gene-level analysis shows the potential for genes to serve as both tumour suppressors and 
oncogenes. TP53 is shown as a representative example.  
 

 

4.3.2. Mutational Patterns 

 

4.3.2.1. Targets of Aberrant Somatic Hypermutation 

The role of aberrant somatic hypermutation (SHM) is well documented as 

contributing to DLBCL pathogenesis by either causing gain of function mutations in 

oncogenes or contributing to genome instability163. Crucially, SHM generally targets a 2kb 

region downstream of the transcriptional start site163. Therefore, genes targeted by SHM tend 

to display a high proportion of mutations near the N-terminal end of the gene’s coding 

sequence. Other criteria also exist to identify SHM within a gene, namely considering the 

percentage of single nucleotide variants (SNVs) within specific hot spots and the ratio of C:G 

mutations to A:T mutations163. Based on these rules, roughly 44 genes have been identified as 

SHM targets. While we have not yet applied this full rule set to identify all SHM-targeted 

genes within our cohort and thus characterize a more extensive set of SHM targets, we did 

indeed find evidence of SHM causing mutation within our study.  

B2M, RHOA, and MYC all demonstrated a proclivity toward missense mutations near 

the N-terminal end of the gene’s coding sequence (Figure 9). Additionally, these missense 

Figure 7. TSG/Oncogene
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mutations showed great variety in the residue targeted and the resulting change. While the 

mechanism of SHM in MYC is well-defined as resulting from translocation of MYC with the 

IGH locus, the mechanism of SHM in B2M and RHOA may result from either translocation 

or simply aberrant targeting of non-IGV loci. The specific mechanism is currently unknown. 

 

 
Figure 9 Gene-level analysis shows patterns of aberrant somatic hypermutation. B2M is shown as a 

representative example. 
 

 

4.3.2.2. Disrupting Mutations Clustered in Specific Domains 

Finally, we observed a set of genes with disrupting mutations clustered in specific 

domains (Figure 10). We suspect such mutations may be working to inactivate specific 

domains, such as regulatory or binding domains, that thereby cause a gain of function of the 

gene.  

 

4.3.2.2.1. BCL10 

BCL10 is a well-characterized oncogene primarily prevalent in SMZL and FL164,165. 

Rather than presenting a standard oncogene genomic profile, however, with a hotspot of 

missense mutations, BCL10 instead exhibits a cluster of frameshift and nonsense mutations 

primarily toward the C-terminal end of the gene (Figure 10a). In previous studies, in-frame 

Figure 8. Somatic hypermutation
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deletions near the C-terminal end of the BCL10 gene had been previously reported in a small 

subset of FL and DLBCL patients and postulated to contribute to the function of BCL10 in 

lymphomagenesis165. Our cohort, however, did not replicate these in-frame deletions. The 

specific pattern of frameshift and nonsense deletions clusters we present here have not been 

previously reported.  

We suspect these mutations are causing lymphomagenesis by leading to an activation 

of the NF-KB pathway by dysregulation of the CARD11-MALT1-BCL10 signalling 

complex. Generally, BCL10 forms a complex with CARD11, and MALT1 in order to 

activate NF-KB as a result of either an upstream CD40 or BCR stimulus166. An upstream 

stimulus is thought to phosphorylate CARD11, causing a conformational change which 

allows recruitment of BCL10-MALT1 which are believed to be constitutively 

associated166,167. Subsequently, CARD11 is thought to cause BCL10 to oligomerize into 

helical filamentous structures, and BCL10 and MALT1 are then ubiquitinated, ultimately 

allowing the translocation of NF-KB dimers from the cytoplasm to the nucleosome where 

they induce transcription. The BCL10 mutations reported here near the C-terminal end of the 

gene could therefore either (1) increase the affinity of BCL10-MALT1 for CARD11, 

bypassing the CARD11 conformational change usually necessary for association and thus 

activation of the NF-KB pathway, (2) cause BCL10 to oligomerize in the absence of 

CARD11, thus encouraging ubiquitination of the BCL10-MALT1 complex and allowing for 

NF-KB translocation to the nucleus in the absence of a stimulus, or (3) interfere with de-

phosphorylation and de-ubiquitination events necessary to reduce the response inherent to the 

prior pathways.  

We also suspect an independent mechanism could be acting. In particular, the C-

terminal end of BCL10 is also thought to enable the interaction between BCL10 and MALT1. 

Disruption of the C-terminal end of BCL10 could therefore lead to a CARD11-BCL10 

complex assembling without MALT1. It is additionally known that MALT1 is a caspase 

which generally cleaves BCL10. Therefore, these mutations could prevent effective cleavage 

of BCL10. The downstream pathogenetic effects of such a chain are uncertain; BCL10 

cleavage by MALT1 has not been shown to activate KF-KB though it has been shown to 

allow T-cells to adhere to fibronectin168. Ultimately, the effect of such a change on the 
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pathogenesis of FL and SMZL is unclear.  

 
Figure 10 Gene-level analysis reveals disrupting mutations clustered in highly specific domains. (a) 
BCL10, (b) IRF8, (c) FAS, (d) ARID1B, (e) NOTCH1, (f) NOTCH2, (g) KLF2, (h) TCF3, (i) SMARCB1. 

 

 

4.3.2.2.2. IRF8 

IRF8 exhibits a high number of frameshift and nonsense mutations at the C-terminal 

end of the gene, primarily in the SMAD/FHA domain (Figure 10b). Previous studies have 

postulated that overexpression of IRF8 in lymphoma via an IGH-IRF8 gene fusion could lead 

to oncogenesis through various pathways169. However, to our knowledge, we are the first to 

report specific frameshift and nonsense mutations in the C-terminal end of the IRF8 gene 

which potentially confer gain of function. This independent mechanism for oncogenic 

activity of IRF8 could provide an alternative target for therapies.  

Historically, IRF8 has been considered a tumour suppressor gene in both DLBCL and 

FL170 however more recent studies have considered it an oncogene169. Based on our results, 

the high clustering of disrupting mutations in the SMAD/FHA domain suggests that IRF8 is 

an oncogene in which the disruption of the SMAD/FHA domain confers a gain of function. 

In DLBCL, knockdown of IRF8 has been shown to decrease phosphorylation of p38 and 

ERK MAP, proteins critical to B lymphocyte proliferation169. Therefore, a gain of function in 

IRF8 via these mutations may instead stimulate B lymphocyte proliferation. Additionally, 

IRF8 has been shown to regulate MDM2 and TP53 in germinal center B cells, thus 

Figure 9. Disrupting
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preventing apoptosis169. Therefore, gain of function in IRF8 could additionally allow DLBCL 

and FL to evade apoptosis. 

 

 

 

4.3.2.2.3. FAS 

FAS exhibits a pattern of frameshift and missense mutations once again clustered near 

the C-terminal end of the gene, in the Death and Death-like domains (Figure 10c). FAS has 

been identified as a tumour suppressor gene in FL, DLBCL, and BL171. Biologically, FAS 

serves as a membrane receptor in the tumour necrosis factor receptor (TNFR) super family. 

FAS molecules on the cell surface spontaneously preassociate into homotrimers. Upon 

activation via ligand binding, interaction between the death domains of FAS lead to the 

recruitment of CASP8, a procaspase which activates the caspase cascade eventually leading 

to apoptosis172. The high proportion of frameshift and missense mutations in the death 

domain of FAS therefore are likely preventing homotypic interaction between death domains 

in the FAS homotrimer. Thereby, CD95-based apoptosis of B cells via FAS is being inhibited 

and cells with these mutations are allowed to proliferate.  

Overall, while hot spot mutations in the intracellular signalling domains of FAS have 

been identified previously172, frameshift and missense mutations affecting the death domains 

have not been previously identified. Specifically, mutations involving the SP, CRD1, CRD2, 

CRD3, and TM domains of FAS have been identified as important to the pathogenesis of T-

Figure 9. Disrupting
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cell lymphoblastic lymphoma172. However, to our knowledge, the specific disrupting 

mutations in the death domain for FL, BL, and DLBCL patients in our cohort have not been 

identified. Moreover, the absence of the SP, CRD1, CRD2, CRD3, and TM mutations 

identified for T-cell lymphoblastic lymphoma in our cohort suggest that the FAS gene could 

be functioning via distinct oncogenic mechanisms depending on the condition. Overall, our 

mutational profile suggests an independent and previously unreported mechanism for FAS 

mutations to induce cancerous proliferation in B-NHL.  

 

 

 

4.3.2.2.4. ARID1B 

ARID1B is a member of the SWI/SNF chromatin remodelling complex and is 

involved in cell cycle regulation. Broadly, ARID1B mutations in B-NHLs have not been 

previously characterized though mutations distinct from those mentioned here have been 

found for other diseases173–177. In our study, ARID1B exhibited a tight cluster of disrupting 

mutations (frameshift mutations, nonsense mutations, and proline insertion mutations) 

between amino acids 176-274 and 410-488 (Figure 10d). The clustering of these mutations 

near the N-terminal end of the coding sequence implies aberrant somatic hypermutation as a 

potential mechanism for the introduction of these mutations. The exact functions of these 

regions are currently unknown for ARID1B, however, they are likely breaking the alpha-
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helices crucial to ARID1B folding and thus disrupting overall activity.  

 

 

 

4.3.2.2.5. NOTCH1/NOTCH2 

NOTCH1 and NOTCH2 are Type I transmembrane proteins that transduce signals 

across the cellular membrane. Both NOTCH1 and NOTCH2 exhibit clusters of frameshift and 

nonsense mutations at the C-terminal end of their gene in the same domain (DUF3545) 

(Figure 10e, f). Both mutations imply loss of function in the DUF3545 domain, which is an 

intracellular domain. While the exact effects of these losses on NOTCH-based signalling are 

unclear, we suspect they are removing the site of recognition for the E3 ligase FBW7 that 

targets NOTCH1 for ubiquitin-mediated proteasomal degradation178. Indeed in mantle cell 

lymphoma, disrupting and truncating mutations near the C-terminal end of the NOTCH gene 

have been shown to dysregulate NOTCH signalling through such a mechanism.  
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4.3.2.2.6. KLF2  

KLF2 is a zinc finger protein that plays a transcriptional activation role. Additionally, 

KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma179. 

KLF2 exhibited a series of missense mutations near the C-terminal end of its gene in or near 

its zinc finger domains (Figure 10g). Such mutations are likely inhibiting the ability of KLF2 
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to accurately recognize its transcriptional targets and are therefore disrupting mutations. Such 

inactivating mutations likely have a pathogenic role: in SMZL, for example, KLF2 deficiency 

causes follicular B cells to migrate to the splenic marginal zone180. For DLBCL, however, the 

exact pathogenesis mechanism of KLF2 is unknown.  

 

 

 

 

4.3.2.2.7. TCF3 

TCF3 is a helix-loop-helix transcription factor critical to B cell development whose 

dysregulation is implicated in BL pathogenesis. In our study, TCF3 exhibited missense 

mutations clustered in the Myc-type, basic helix-loop-helix (bHLH) domain, replicating those 

seen previously in BL samples20 (Figure 10h). Here, as in the previously reported BL cases, 

we suspect these mutations are disrupting the bHLH domain and thereby disrupting TCF3 

function and tonic B-cell receptor signalling more broadly20.  
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4.3.2.2.8. SMARCB1 

SMARCB1 is part of the SWI/SNF complex, enabling transcriptional machinery to 

access its targets. In our B-NHL cohort, we found a cluster of frameshift, nonsense, and 

missense mutations near the C-terminal end of the SMARCB1 gene (Figure 10i). SMARCB1 

mutations have been primarily found in multiple meningiomas181 and epitheloid sarcomas153, 

where the gene is present as a tumour suppressor gene. Indeed, knockouts have been shown 

to generate tumour growth153. Unfortunately, it is unclear whether these mutations are 

ultimately activating or disruptive. However if they are indeed disruptive, then a key question 

arises surrounding why disrupting mutations are found only in the C-terminal end of the gene 

but not in earlier parts of the coding sequence. 
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4.3.2.2.9. SGK1 

SGK1 carried a very specific set of mutations that affected essential splice sites. 

Twelve essential splice site mutations were found at Chr6:134495648 and thirty-four 

essential splice site mutations were found at Chr6:134495725. These two mutations flanked 

the 5’ and 3’ end of a single exon within SGK1 and thus likely cause aberrant splicing of that 

exon. Previous studies have suggested SGK1 is a tumour suppressor gene on the basis of the 

splice site mutations53, but the high degree of clustering of these at a single exon (not 

previously evident due to the small numbers of patients), coupled with the absence of 

nonsense and frameshift mutations, suggests these might be gain-of-function mutations. 
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5. Classification Analysis 

 

With all drivers identified, we then proceeded to classify our dataset by identifying 

patterns of co-mutation within the set of drivers. We classified samples of all diagnostic 

subtypes together with the aims of (1) ensuring we could successfully differentiate known 

diagnostic subtypes and (2) utilizing the known classifications to generate a granular and 

accurate classification for DLBCL samples. In particular, we strived to produce a genetic 

classification that could add granularity and accuracy to the classifications already built by 

the WHO and the gene expression based, cell of origin classification for DLBCL.  

We chose to classify all samples at once as opposed to dividing them by subtype and 

then classifying them as such an approach would increase our ability to differentiate between 

DLBCL subtypes. Crucially, DLBCL can either arise de novo or as the transformation of 

various indolent lymphomas. Therefore, the genetic patterns present within a given DLBCL 

cohort are a mixture of the patterns which underlie DLBCL de novo and the patterns which 

underlie various indolent lymphoma. By including both DLBCL samples and samples of 

other lymphomas in the same classification, the Bayesian Dirichlet processes were able to 

robustly extract the genomic patterns of FL and BL more effectively based on those samples 

and then apply those patterns to differentiate among samples marked as DLBCL samples. 

Had DLBCL samples been including in isolation, it would have been substantially more 

difficult to differentiate the genomic patterns of DLBCL samples that had transformed from 

other types.  

Compared to prior classification studies, our project primarily derives its power from 

its scope. First, 1607 B-NHL lymphoma patients were analysed. By comparison, only one 

prior DLBCL study had 1,001 DLBCL samples whereas other prior B-NHL studies were 

about 10X smaller15. Similarly, the depth of our targeted coverage (~500x) substantially 

exceeded that of prior studies, enabling the identification of rarer variants. Combined, such 

scope and power enable the use of powerful classification technologies that would otherwise 

be ineffective.  

Two important features distinguish a genetic classification of DLBCL NOS and 

cancer more broadly. First, while the treatments and clinical course of DLBCL and B-NHL 

patients will change over time as new therapies are introduced, we suspect that the underlying 

genomic patterns that contribute to the pathogenesis of these diseases will remain the same. 

Thereby, a genetic classification is likely to be stable and lasting, simply gaining refinement 

as more driver variants and genetic datasets are added. Second because genomic changes 
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have been well characterized as the cause of various cancer types, classifying cancers on a 

genetic basis reveals the co-mutation patterns that fundamentally cause pathogenesis. 

Thereby, genetic classifications grant unique insight into the mechanistic onset and 

progression of disease which can then ideally be utilized to design new treatments. Overall, 

therefore, we believe that a genetic based classification for DLBCL NOS, and for other 

cancers more generally, is both causal and stable.  

As with the genomic landscape section, this classification section will similarly be 

substantially improved over the next few months via the addition of copy number and 

translocation data. Given the well-characterized importance of copy number alterations and 

translocations in various types of B-NHL lymphoma, we suspect the classification may 

change substantially. While the underlying driver mutations will not change, we suspect class 

defining lesions may be present in the copy number alteration and translocation data that will 

substantially change the grouping. For example, the MYC translocation is a well-known 

hallmark lesion for BL that will likely become class defining once added to our dataset. 

Similarly, BCL2 and MYC double hit patients are known to have a substantially more 

aggressive clinical course182 and we suspect these patients may also form their own cluster. In 

the absence of this data, however, initial conclusions about mutation patterns underlying 

DLBCL and B-NHLs can be drawn.  

 

5.1. Bayesian Dirichlet Processes  

In order to classify the dataset, we used Bayesian Dirichlet Processes, a 

nonparametric and hierarchical clustering approach142. Bayesian Dirichlet Processes work in 

a fashion similar to Mixture Models. Mixture Models operate by creating a fixed set n of 

multivariate distributions, seeing how well these distributions explain the data at present, 

modifying the distributions to explain the data more effectively, and repeating until 

convergence is met. Bayesian Dirichlet Processes function similarly except the number n of 

multivariate distributions is not fixed. In other words, in Bayesian Dirichlet Processes the 

algorithm must learn both the optimal shape and parameters of each distribution as well as 

the optimal number n of distributions that can describe the dataset overall. Bayesian Dirichlet 

Processes accomplish this task by cycling each data point and either assigning the data point 

to (1) an existing cluster or (2) a newly created cluster. The probability of being assigned to 

an existing cluster scales with the number of data points already assigned to that cluster. 

Thereby, the algorithm prevents overfitting: if too many clusters are created that have too few 

points, then in subsequent iterations, the data points in small clusters are likely to be 
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reassigned to larger clusters, thus eliminating the smaller clusters and reducing the number of 

overall clusters.  

By utilizing this nonparametric clustering approach, we can remove bias inherent to 

the classification methodology. Had we instead use a parametric approach, such as the 

mixture models mentioned above, we would have had to define the number of clusters which 

would have artificially biased the classification. By instead leaving the optimal number of 

clusters to be learned, we can produce a classification more representative of the underlying 

dataset.  

 

5.2. Classification on All Subtypes  

Overall, our classification yielded 8 distinct classes within our cohort of B-NHLs. 

(Figure 11). All eight classes within our classification are well defined and meaningfully 

distinct from each other. The genes which denote each class are strongly co-mutated with 

each other but mutually exclusive with mutations in driver genes that define other classes. 

Statistically, this appears as strong patterns of correlation between genes in a given genomic 

class and anti-correlation between genes in different genomic classes. The strength and 

distinctness of these co-mutation patterns give us confidence in the accuracy of our 

classification, even in the absence of incorporating translocation data and copy number 

analysis.  

  



 

 
Figure 11 Co-mutation and mutual exclusivity patterns generate eight distinct classes in FL, BL, and DLBCL. Lower triangle 
depicts pairwise association between lesions in genetic classes. The colour of each tile corresponds to the odds ratio for each pair, 
with brown representing mutual exclusivity and blue indicating co-mutation. Odds ratios are computed by observed co-mutation rates 
compared to expected co-mutation based on each lesion’s gene frequency. Coloured tiles represent significant relationships (p < 0.05), 
asterisks show significant family wise error rates (FWER < 0.05), boxes show false discovery rates < 0.1 (FDR < 0.1). Upper triangle 
depicts absolute occurrences of co-mutation for each pair, coloured on a gradient.
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5.2.1. Class 0 (TET2, TP53) 

Class 0 (TET2; TP53) is an “error” class designated by the Bayesian Dirichlet 

Classification algorithm for outliers (Figure 12b). This class contained 8% of patients, 

emphasizing the heterogeneity of B-NHLs and DLBCL and the challenge that heterogeneity 

poses to effective classification methods. 

 

5.2.2. Class 1 (KMT2D, CREBBP, TNFRSF14, EZH2, ARID1A) 

Class 1 (KMT2D, CREBBP, TNFRSF14, EZH2, and ARID1A) showed a mutational 

pattern consistent with FL, reinforcing the distinctness of the FL genomic landscape and the 

capacity for our Bayesian Dirichlet clustering to extract distinct genomic patterns (Figure 

12c). Most FL lymphoma patients clustered into Class 1 (Figure 13a), and indeed upon 

examination, the predominant lesions defining Class 1 are hallmark lesions of FL. The role of 

KMT2D, CREBBP, EZH2, and EP300 in chromatin remodelling and the pathogenesis of FL 

have been well-described and are present in significant proportions of the Class 1 patient 

population. Some hallmark mutations of FL were indeed missing, namely the t(14;18) 

translocation leading to ectopic expression of BCL219. However, this lesion was missing 

simply because translocation data was not incorporated within the classification analysis 

rather than due to a flaw in analysis or a discrepancy within the dataset. 

Not all Class 1 patients were diagnosed as FL patients, however. Indeed, substantial 

proportions of BL patients and DLBCL patients were also assigned to Class 1 (Figure 13a). 

First, we suspect that the DLBCL patients assigned to Class 1 are likely DLBCL whose 

lymphoma initiated as a FL and subsequently transformed to the more aggressive DLBCL. 

Similarly, we suspect that the BL patients within Class 1 may similarly have transformed 

from FL. Although FL generally transforms into DLBCL, cases of transformation into BL 

have also been reported183. Such an explanation is supported by the class composition of BL. 

Indeed the majority of BL samples in our study classified into Class 3 (TP53; CCND3) 

which, as described below, contained the hallmark mutations of BL and could thus represent 

de novo BL. The second major proportion of BL samples classified into Class 1, which may 

have resulted from FL transformation. Future work incorporating MYC translocation data will 

likely resolve this question.  

For both Class 1 DLBCL patients and Class 1 BL patients, the benefits of a genetic 

classification approach are clear: even though these patients have histological characteristics 

consistent with DLBCL and BL, the underlying genetics driving their pathogenesis are 

similar to FL. As a result, these patients may respond differently to current and novel 
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treatments compared to other DLBCL and BL patients. We hope to investigate these 

treatment responses moving forward in the hope of generating novel clinical insights. 

 

5.2.3. Class 2 (MYD88, BTG2, TBL1XR1, CDKN2A, PRDM1, IRF4, NF1, and KDM6A)  

Class 2 (MYD88; BTG2; TBL1XR1; CDKN2A; PRDM1; IRF4; NF1; and KDM6A) 

showed a genomic profile broadly consistent with ABC-DLBCL (Figure 12d). MYD88 

(constitutive NF-KB/BCR activity), CDKN2A (cell cycle checkpoint), and PRDM1 (terminal 

differentiation block) are mutations with well-known pathogenetic functions specific to 

ABC-DLBCL. The clustering of these mutations within Class 2 thereby make it likely to 

contain the majority of ABC-DLBCL cases. Importantly, such a clustering was accomplished 

with mutation data alone. Thereby, both epigenetic and genetic causes could differentiate 

ABC-DLBCL and GCB-DLBCL classes within the cell of origin classification, which up 

until now has predominantly relied on epigenetics to distinguish cell types via gene 

expression patterns.  

The remaining genes mutated within Class 2, though numerous, were mutated in 

substantially smaller proportions than the aforementioned genes. Driver mutations in these 

genes could yield additional heterogeneity within the ABC-DLBCL category, although the 

broad causative drivers remain equivalent.  

Some mutations which define the ABC-DLBCL category were found within other 

classes. Namely, TNFAIP3 (Class 5), CD79A and CD79B (Class 6), and CARD11 (Class 1). 

However these genes, though important to ABC-DLBCL pathogenesis may similarly be 

important to the pathogenesis of other classes. Therefore, although prevalent, they may not be 

class-defining in the same way as MYD88, CDKN2A, and PRDM1. Indeed, these mutations 

provide the unique elements of ABC-DLBCL pathogenesis as distinct from the pathogenesis 

of other subtypes.  

Consistent with the explanation of Class 2 as ABC-DLBCL, the majority of Class 2 

patients were DLBCL patients (Figure 13a).  

 

5.2.4. Class 3 (TP53, CCND3, ID3, TCF3) 

Class 3 (TP53, CCND3, ID3, TCF3, PTEN) displayed a genomic profile largely 

consistent with BL (Figure 12e). The ID3, TCF3, and PTEN mutations in BL are well 

characterized hallmarks which prevent effective regulation of PI3K, thus leading to cell 

proliferation19. The presence of these mutations in Class 3, therefore, indicate a genomic 

landscape consistent with BL. Note, the most important hallmark mutation of BL, the MYC 
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translocation, was missing simply because translocation data was not present within our 

dataset. However, it is also worth noting that the most two prevalently mutated driver genes 

of Class 3 (TP53 and CCND3) have, in the literature, been indicated in lymphomas beyond 

just BL (FL and DLBCL). TP53 is prevalent among various classes (3, 4, 7) and is thus 

discussed below. CCND3, however, is predominantly expressed only in Class 3. In contrast 

with literature which denotes the importance of CCND3 across FL, BL, and DLBCL – and 

similarly in contrast with Figure 13a which points to CCND3 mutations being distributed 

across all three histologies, our classification shows the unique contribution of CCND3 to this 

classification. Class 3 also includes a range of other genes mutated at substantially lower 

rates; these genes could add additional heterogeneity.  

Consistent with the explanation of Class 3 as characteristic of BL, the majority of BL 

patients were classified into Class 3. The second largest proportion of patients were classified 

into Class 1 (Figure 13a); we suspect these patients initially manifested FL which then 

transformed into BL. While their histology would be consistent with BL, their genomic 

landscape would be more similar to FL, thus classifying them into Class 2. 

 

5.2.5. Class 4 (B2M, SOCS1, ZFP36L1, NFKBIE, SGK1, STAT3, IRF1) 

Class 4 (B2M, SOCS1, ZFP36L1, NFKBIE, SGK1, STAT3, and IRF1) denotes a class 

of mutations not previously described (Figure 12f). Indeed, each gene has been independently 

implicated in a variety of lymphoma diseases, however no patterns arise that are consistent 

with any of the subtypes mentioned previously. Interestingly, some of the most prevalent 

mutations within Class 4 are also prevalent in other classes (TP53, TNFAIP3) whereas others 

are prevalent primarily within Class 4 (B2M, SOCS1, NFKBIE, and KLF2). TP53 and 

TNFAIP3 could thus be mutations fundamental to the initiation and progression of various 

lymphomas while the B2M, SOCS1, NFKBIE, and KLF2 mutations could be the mutations 

driving the unique pathogenesis of Class 4. Overall, Class 4 is a relatively rare class, 

accounting for only 6% of the patients, primarily those who did not receive a WHO 

histological classification (Figure 13a). Nonetheless, it’s strong patterns of co-mutation of 

genes within Class 4 and mutual exclusivity between genes of Class 4 and genes of other 

classes mark it as a separate category.  

 

5.2.6. Class 5 (TNFAIP3, FAS, NOTCH2, BCL10, KLF2, SPEN, XPO1, 1KZF1, CXCR4) 

Class 5 (TNFAIP3, FAS, NOTCH2, BCL10, KLF2, SPEN, XPO1, 1KZF1, CXCR4) 

shows a genomic profile consistent with Splenic Marginal Zone Lymphoma (SMZL) (Figure 
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12g). In particular, three hallmark mutations of SMZL (NOTCH2, BCL10, SPEN) were all 

present in Class 5, marking it as a SMZL class184. Conversely, three common SMZL 

mutations were either in different classes or not present within our analysis. NOTCH1 was 

present primarily in Class 6, NFKBIE was present primarily in Class 4, and KLF2 was 

present primarily in Class 2. All three of these lesions, though prevalent in other classes, were 

not the defining or most prevalent genetic lesions of those classes. Moreover, the total 

number of samples attributed to Class 5 (n = 102) was relatively small. Combined, therefore, 

we believe the NOTCH1, KLF2, and NFKBIE mutations are still important to the 

pathogenesis of SMZL and a higher sample size of SMZL patients may have shifted those 

mutations into Class 5.  

The majority of Class 5 patients were considered either DLBCL or BCL Int. patients 

on the basis of histology (Figure 13a). Therefore, we suspect that these patients likely 

originated with undiagnosed SMZL that had transformed into DLBCL by the time of 

histological diagnosis. Crucially, SMZL has both a distinct clinical course and distinct 

treatment options than DLBCL. A substantial proportion of SMZL patients display few 

symptoms and are thus handled as “watch and wait cases” at a higher proportion than the 

more aggressive DLBCL counterpart184. Similarly, SMZL offers a wider variety of treatment 

options (splenectomy, &c.) than DLBCL184. We suspect, therefore, that Class 5 patients may 

respond to different types of novel therapeutic compared to other DLBCL subtypes. 

 

5.2.7. Class 6 (58 distinguishing genes) 

Class 6 contains 58 distinguishing genes, all mutated in a relatively low proportion of 

the patients (Figure 12h). Additionally, Class 6 had the weakest co-mutation and mutual 

exclusivity patterns among all classes in our classification analysis. Finally, the 58 genes that 

compose Class 6 are among the rarest genes mutated in lymphomas. Overall, the weak 

patterns of co-mutation and large size of Class 6 indicate that it is likely composed of 

multiple classes that could not be resolved by our study. However, resolution of these classes 

would likely require a substantially higher sample size due to the rare nature of mutations 

within these genes and also the rare assignments of patients to this class.  

Class 6 samples came from BL, DLBCL, and FL lymphoma subtypes. We suspect 

these samples, in practice, reflect a variety of rare mechanisms that can cause the 

pathogenesis of each disease. Importantly, the distinct genome profiles of Class 6 DLBCL 

and Class 6 BL patients compared to DLCBL patients in other classes and Class 3 BL 
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patients suggest that Class 6 patients could have their lymphoma arise de novo as opposed to 

resulting from the transformation of an indolent lymphoma.  

 

5.2.8. Class 7 (DNMT3A, MGA) 

Class 7 (DNMT3A, MGA) exhibits a genomic profile not previously described (Figure 

12i). Drivers in the DNMT3A gene have been implicated in AML, AITL, and T-ALL. Drivers 

in the MGA gene have been implicated in CLL. No immediate pattern emerges tying these 

two genes together, however, the high comutation between these genes and mutual 

exclusivity with mutations in other genes renders them an important. Overall, however, this 

class is extremely rare (1% of patients).  
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Figure 12 Each class shows a distinct mutational signature profile. (a) Number of driver mutations across all 
classes, coloured by proposed class assignment for patient with that mutation. (b-i) Mutational signature of each 
class. Numbers next to class show number and fraction of patients assigned to that class. Each bar shows the 
median posterior probability of a given lesion with error bars corresponding to the 2.5 and 97.5 quantiles.  
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5.3. Classification of Histological Subtypes 

Concurrent with the co-mutation based classification analysis, we analysed what 

proportion of samples from each histological subtype were assigned to each class (Figure 

13a). While FL was primarily assigned to Class 1, BL was assigned primarily to Class 1 and 

Class 3. Interpretations for both of these are discussed in the Class 1 and Class 3 sections 

above. DLBCL had patients split across all seven classes. Crucially, this result highlights the 

heterogeneity inherent to DLBCL demonstrating that even within the established WHO 

histological classification, substantially more granularity can be resolved which represents 

unique and distinct pathogenesis mechanisms. Similarly, this analysis sheds light on the 

mechanisms that likely cause DLBCL pathogenesis de novo rather than as a result of 

transformation from an indolent lymphoma. While DLBCL patients assigned to Classes 1, 3, 

and 5 may have DLBCL that transformed from FL, BL, and SMZL respectively, DLBCL 

patients assigned to classes 2, 4, 6, and 7 may have either de novo DLBCL or DLBCL 

transforming from indolent lymphomas whose genomic landscapes have either not been 

adequately characterized or were not identified within this study. 

 

5.4. Comparison with Gene Expression, Cell of Origin Classification 

While we lack the gene expression data to definitively assign patient samples 

according to the cell of origin classification and then compare those assignments with our 

classification, we can nonetheless draw conclusions about the genomic characteristics of 

suspected ABC-DLBCL and GCB-DLBCL patients. 

First, note that Class 2 shared genetic characteristics largely consistent with those 

expected from ABC-DLBCL. Upon incorporation of gene expression data, therefore, we will 

hopefully be able to – on the basis of genetic mutation alone – identify the cell of origin of 

these lymphomas. 

Second, the genetic lesions that characterize GCB-DLBCL were spread across 

multiple classes, suggesting that GCB-DLBCL can likely be broken into further 

subcategories with distinct pathogenesis mechanisms. Lesions common to GCB-DLBCL 

were found in Class 1 (TNFRSF14, EZH2), Class 3 (PTEN), Class 4 (SGK1), and Class 6 

(GNAS). While the mutations in Class 1 and 3 (TNFRSF14, EZH2, and PTEN) are common 

across a range of lymphomas, the mutations in Class 4 and Class 6 (SGK1 and GNAS) are 

found with less prevalence. We suspect therefore, that GCB-DLCBL patients may have been 

split across Classes 4 and 6 which would then form subclasses of the GCB-DLBCL category. 
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Ultimately, however, gene expression and translocation data will need to be 

incorporated to generate a definite cell of origin classification that can then be superimposed 

on this classification to understand the patterns inherent to ABC-DLBCL and GCB-DLBCL. 

Such an analysis would yield valuable insights into the precise pathogenesis of GCB-DLBCL 

which is, at present, not well-understood.  

 

5.5. Preliminary Survival Analysis 

After classifying patients according to their genetic profiles, we also conducted a 

preliminary survival analysis (Figure 13b). Due to time constraints, this analysis is 

incomplete and has not accounted for confounding factors. In particular, the contributions of 

age, treatment, date of diagnosis, and centre of treatment to overall survival have not been 

accounted for. Individually, each of these factors could skew the survival curves of any class. 

For example, if Class 1 had a disproportionately younger set of patients compared to the 

other classes, we would expect an improved survival outlook. A full survival analysis 

accounting for the above factors will be completed after submission of this publication. 

Nonetheless, preliminary results are presented here. 

Overall, the survival analysis generated survival outlooks consistent with our prior 

interpretations of the genetic classes. As expected, Class 1 which is primarily composed of 

FL showed the most favourable survival outlook. FL is generally an indolent disease and has 

the least aggressive clinical course19 of the subtypes represented; therefore, the result was 

consistent with expectation. Conversely, Class 2 suffered the worst overall survival outlook. 

As discussed above, we suspect Class 2 is primarily composed of ABC-DLBCL samples 

which are known to have a more aggressive clinical course than GCB-DLBCL samples19. 

Therefore, this result was also consistent with expectation. Finally, BL showed a survival 

outlook intermediate between DLBCL and FL, again consistent with expectation.  

Upon completion of a more robust survival analysis, accounting for the confounding 

factors above, additional insights will be drawn about the categories specified above. In 

particular if any class shows a particularly aggressive clinical course that is previously 

unknown or a lack of response to R-CHOP, patients within this class could potentially be put 

on an experimental clinical trial with more aggressive treatments. Similarly, discovery of 

such a class would then allow us to identify the specific pathogenesis mechanisms unique to 

that class which made it more aggressive than other classes. Thereby, meaningful biological 

insight into the progression of lymphoma would result. Additionally, novel targets for 

potential drugs could be discovered. 
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Figure 13 Classes show distinct subtype compositions and survival outlooks. (a, b) Patient assignment to 

WHO diagnostic groups or subtypes compared to patient assignment to proposed classes. (c) Kaplan-Meier plot 

for proposed classes. 

13a 13b 
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6. Discussion 

 

Here, we have provided the largest sequencing study on B-NHLs to date, proposing a 

novel genetics-based classification and profiling the mutational landscapes of FL, BL, and 

DLBCL with greater resolution than previously described. 

 

6.1. Genomic Landscape and Gene Level Analysis 

Our genomic landscape analysis for DLBCL NOS, FL, and BL was largely consistent 

with literature expectations but provided additional resolution due to the size and depth of our 

study. DLBCL NOS, FL, and BL all exhibited classic long tail distributions although DLBCL 

NOS in particular showed the greatest heterogeneity: the most recurrently mutated genes in 

DLBCL NOS accounted for a lower fraction of the overall mutations than those in FL and 

BL. Such a result was consistent with our later classification finding in which Class 5 

contained 85 distinguishing genes all rarely mutated, indicating high heterogeneity. Because 

of the scope of our study, we also identified a variety of novel driver mutations, some rare, 

occurring across the 292 genes in our study.  

Additionally, our landscape analysis found a small number of genes that showed a 

high mutation frequency across DLBCL NOS, FL, and BL (i.e. KMT2D, CREBBP, 

TNFRSF14, TP53, SOCS1, B2M, ARID1A, CCND3, TNFAIP3, IRF8). These mutational 

similarities initially pointed to the need for similar pathway dysregulations for B-NHLs to 

progress. By contrast, however, the only gene that was commonly mutated across all classes 

in our classification analysis was TP53. The difference in these results demonstrates that 

genetic classification can more accurately distinguish classes than histology; and importantly, 

can resolve pathway differences that demarcate patients into classes that have consistent 

pathway mutations that are largely non-overlapping.  

Our mutation analysis demonstrated that patients, regardless of B-NHL condition, 

generally have 3-4 driver mutations. This insight, combined with the later classification 

description of co-mutation within classes, shows that multiple pathways tend to be 

dysregulated within B-NHLs and DLBCL. As a result, oncogenic cooperation may be 

occurring to, for example, increase proliferation while also evading the immune system. The 

presence of multiple driver mutations increases the complexity of pathogenesis and also 

classification. Rather than single genes demarcating novel classes, combinations of genetic 

mutations distinguish patients. As a result, far more possibilities exist and heterogeneity 

similarly increases.  
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At the gene level, we found genes broadly falling into oncogenic and tumour 

suppressor mutation profiles as expected and identified the presence of expected mutational 

processes such as aberrant somatic hypermutation. More interestingly, we identified clusters 

of disrupting mutations in specific gene domains that we suspect caused gains in function and 

thus allowed oncogenic activity. The specific mechanisms and mutations had not, to our 

knowledge, been previously reported for B-NHLs. For example, we observed a high 

proportion of frameshift and missense mutations in the death domain of the FAS gene, which 

generally initiates a caspase cascade leading to apoptosis. We suspect the inactivation of the 

FAS domain improves tumour cell survival. Similarly, we found a high number of frameshift 

and nonsense mutations in the SMAD/FHA domain of IRF8 which we suspect could cause a 

gain in function that prevents apoptosis. In SGK1, we found a series of essential splice site 

mutations affecting a single exon, causing a likely gain in function and flagging that exon’s 

importance in SGK1 regulation. None of the above mechanisms, to our knowledge, had been 

previously reported in the context of DLBCL or B-NHLs.  

 

6.2. Classification 

Our classification system resolved seven distinct categories of B-NHLs, successfully 

separating FL, BL, and DLBCL while simultaneously highlighting the inherent heterogeneity 

of DLBCL. Compared to the WHO classification, we demonstrated significant heterogeneity 

and potential for further resolution within given subtypes. Indeed, patients marked as DLBCL 

NOS patients by the WHO classification were present in all seven classes identified here, 

indicating the necessity for further resolution.  

We cannot directly compare our work to the cell of origin classification due to the 

absence of gene expression data from our dataset, however, Class 2 shared genetic 

characteristics largely consistent with ABC-DLBCL. The future addition of gene expression 

data to our study will allow us to directly compare our classification with the cell of origin 

classification. Crucially, we will be able to answer whether or not cell of origin can be 

distinguished on the basis of genetic mutations alone. If so, our approach could become an 

important surrogate for gene expression profiling as a way of determining cell of origin, 

which has already shown clinical relevance with the ABC-DLBCL group responding 

differently to targeted treatments than the GCB-DLBCL group.  

Overall, DLBCL shows a high heterogeneity compared to other cancers. Unlike 

similar genetic classification schemes, such as that for AML, DLBCL presented a category 

with a larger number of rarely mutated genes (Class 6). The separation of these rarely 
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mutated genes into their own class rather than their presence within other classes points to the 

increased heterogeneity of DLBCL compared to other cancers. Indeed, the large number of 

potential driver lesions that can cause cancer within this category point to the potential for 

pathogenesis in a variety of different ways. Each likely follow distinct mechanisms and 

effective resolution of this class would require substantially higher sample sizes in order to 

create additional subcategories. Such heterogeneity reinforces the distinct clinical responses 

to treatments and the need for classification to resolve such differences.  

Our classification approach additionally demonstrated its ability to resolve patients 

who had likely transformed. The first example was the identification of Class 1 patients, a 

class with hallmark mutations for FL, that were diagnosed by our clinicians as having 

DLBCL. Since the transformation of FL into DLBCL is well documented, such a result was 

expected and consistent with the literature. More surprising, however, was the fact that Class 

5, consisting primarily of DLBCL and BCL, Int. patients demonstrated hallmark mutations of 

SMZL, likely corresponding to patients that had transformed from SMZL. Crucially, only a 

genetic classification approach of this sort – not histology alone – could identify the root 

disease from which DLBCL had transformed. Biologically, our result reinforces the 

possibility of SMZL to transform into DLBCL, which had been previously reported but 

rarely185. Clinically, it could suggest that Class 5 Patients have a distinct pathogenesis and 

thus may respond differently to novel treatments compared to other DLBCL subtypes.  

Overall for aggressive diseases such as DLBCL which often transform from indolent 

cancers, the ability to distinguish the original genetic mutations that led to cancer could 

substantially affect patient outcomes. We expect our approach, therefore, to generalize across 

other cancers, identify additional indolent diseases and their transformation pathways, and 

flag patients which may respond more effectively to distinct regimens.  

Our classification is based on causal genetic changes, and as a result, is likely to be 

durable, reproducible, and clinically relevant. We note that while treatments and clinical 

practices may change over time, improving the survival of DLBCL and B-NHL patients, the 

underlying genomic changes causing B-NHLs will remain consistent. Therefore, our 

classification represents fundamentally different pathogenesis mechanisms inherent to 

DLBCL and captures lasting biological information. With the addition of translocation, copy 

number, and gene expression data in a follow up study, this classification will additionally 

gain resolution, accuracy, reproducibility, and clinical relevance.  

 

6.3. Comparison to Recent Large Scale DLBCL Genomics Study 
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Recently, Reddy et al. published an integrative analysis of 1,001 DLBCL samples that 

complements the results of this manuscript15. Whole exome sequencing, transcriptomics, 

copy number analysis, and FISH tests were conducted . Additionally, 400 of the samples had 

paired normals. In comparison, our study conducted targeted sequencing, transcriptomics, 

copy number analysis, and FISH tests on 962 DLBCL samples without paired normals. The 

targeted sequencing has been completed, and the outcomes of the remaining analyses are 

being processed by collaborators. The complementarities between our studies enable 

synergies to refine genomic analysis and classification of DLBCL.   

First, Reddy et al.’s genomic analysis is generally consistent with this work. The genes in 

our study with the highest number of driver mutations were generally consistent with Reddy 

et al.’s list of frequently mutated genes with a few exceptions discussed in Section 4.1.2. A 

few other notable differences exist. Reddy et al. conducted whole exome sequencing rather 

than targeted sequencing of genes. Whole Exome Sequencing allows Reddy et al. to identify 

driver genes with previously unreported pattern of mutations, something not possible through 

our targeted study. Indeed, a few of the 150 genes identified as drivers are not present within 

our bait set (DUSP2, ZNF608, and BIRC6) and we thus do not report variants in these genes. 

Conversely, our targeted sequencing study also uncovered genes and specific mutations not 

present in Reddy et al.’s study. For example, we found splicing errors in SGK1 which were 

not reported by Reddy et al.’s work. Therefore, we see these studies as complementary. A 

meta-analysis involving both sets of variants would prove helpful to fully understanding the 

genomic changes underlying DLBCL.  

Second, Reddy et al. take a distinct approach to DLBCL classification. Reddy et al. 

classify patients on the basis of gene expression patterns. As a result, they can identify 

functional signatures based on gene expression such as the Monti Host Response signature. 

Conversely, our study classifies DLBCL on the basis of genetic lesions. Therefore, we can 

identify patterns at the genetic level such as our Class 5 which is suspected to contain SMZL 

patients. Ultimately, future work could seek to simultaneously incorporate both gene 

expression patterns and genetic lesions as the basis for classification. Therefore, both types of 

findings could be drawn out from the clusters. Note that this is distinct from Reddy et al.’s 

work which first generated a classification based on gene expression and subsequently 

identified the genetic alterations associated with each cluster.  

In spite of the distinct approach to classification, some commonalities were observed. 

Namely, our genetic classification identified MYD88 and CDKN2A as defining Class 2 which 

we suspect to be primarily composed of ABC-DLBCL. Both of these genes had more 
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genomic alterations in the ABC-DLBCL expression cluster of Reddy et al.’s work than in 

other clusters.  

Third, Reddy et al.’s study also conducted a functional CRISPR screen and created a 

prognostication model with implications for our study. First, the CRISPR screen only 

identified 35 of the 150 driver genes Reddy et al. had initially flagged as having functional 

relevant to DLBCL cell lines. This result reinforces the need to biologically validate the 

driver variants we have discovered. Second, Reddy et al. created a prognostication model that 

outperformed the R-IPI by using only genetic and molecular features. The prognostication 

first enumerates all combinations involving up to 4 distinct genetic and molecular features 

and affecting at least 20 patients. These 313 combinatorial features are then fed into an 

Elastic regression. We hope to make two improvements when developing a similar 

prognostication model for our dataset. First, we hope to use a more robust feature selection 

method such as bootstrapping or stepwise regression. Second, we hope to include additional 

clinical characteristics into the set of regression features. Indeed prior work for AML143 has 

shown that clinical variables often have even more predictive power than genetics143,186. A 

regression model incorporating both may provide more accurate classification.  

Finally, the union of these works could provide validation for both studies. 

Comparison of genomic variants could validate pipelines and drivers in both studies. Testing 

whether Reddy et al.’s cohort classifies into similar genetic clusters as ours could validate our 

genetic classification. Finally, testing Reddy et al.’s prognostication tool on our cohort could 

validate its generalizability. 

 

6.4. Future Work 

While the aforementioned project describes the genetic landscape and provides a genetic 

classification of various B-NHL malignancies, substantial additional potential exists.  

 

6.4.1. Incorporating Copy Number Analysis, Gene Expression, and Translocation Data 

First, the incorporation of copy number analysis, gene expression, and translocation 

information will add to both the pathogenesis insights derived from this project as well as the 

resolution of classification. Crucially, both copy number amplifications/deletions and 

translocations are well known to affect progression of B-NHLs while also providing subtype-

differentiating lesions. Current work is underway implementing a custom algorithm to extract 

copy number from this targeted, unmatched dataset. Similarly, translocation data from 

collaborators is currently being processed and will be added. Once incorporated, our study 
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will be one of the two largest and most complete genetic analyses of B-NHL, and DLBCL in 

particular, ever conducted, thereby enabling new insights regarding causality, molecular 

progression, and differentiating feature of each disease. Moreover because specific copy 

number and translocation changes are known to predominantly present in specific subtypes 

(i.e. MYC translocation in BL), the incorporation of such data will draw sharper divisions 

between classes of our classification and potentially define entirely new classes.  

Second, the incorporation of gene expression data in particular will allow us to 

compare our classification to the cell-of-origin classification currently leading the literature. 

By providing additional differentiating information (i.e. genetic mutations, copy number 

changes, and translocations), our dataset will be able to refine the cell-of-origin categories 

currently based purely on gene expression. Importantly, our study may also be able to define 

whether ABC and GCB DLBCL are indeed distinct entities or whether information inherent 

to genetic mutations rather than gene expression provide more convincing differentiation 

among DLBCL subtypes. Finally, by adding additional genetic information to the samples 

classified via the cell-of-origin classification, our analysis will provide mechanistic insight 

into the pathogenesis of GCB-DLBCL in particular whose pathogenesis is presently 

unknown19.  

 

6.4.2. Survival Analysis for Classification 

Only a preliminary survival analysis was conducted to understand the distinct clinical 

courses of the identified classes within this study. A full survival analysis would additionally 

correct here for age, date of diagnosis, centre, treatment, and a variety of other variables. 

Such corrections are especially critical because our study incorporates samples taken over 15 

years. The introduction of CHOP and subsequently R-CHOP therefore occurred within the 

time window of our study and the substantially improved outcomes for patients receiving 

these treatments versus previous ones must be accounted for. Similarly, improvement in 

general clinical treatment must also be accounted for.  

Such a survival analysis could generate crucial clinical insights. By distinguishing 

which subclasses of DLBCL and the other B-NHL malignancies presented here both (1) 

exhibit the worst clinical course and (2) are the least likely to respond to treatment, we may 

be able to identify the subset of patients which should be moved toward more aggressive 

treatments such as stem cell transplantations and considered for experimental therapies. 

Moreover, by specifically conducting this analysis on the subset of DLBCL patients that 

respond poorly to an R-CHOP regimen vs. those that respond well to an R-CHOP regimen, 
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we will hopefully be able to delineate the causative genetic and molecular differences that 

prevent cure in 30% of DLBCL cases. If we are able to sufficiently distinguish these patients, 

additional studies could then fully characterize their distinct pathogenesis, leading to 

suggestions for new treatments and therapies that will help them. Additionally, such a 

survival analysis could be coupled with a survival analysis for the specific genetic lesions 

that are most deleterious. By identifying such lesions, both within given classes and across all 

classes, we would be able to more effectively identify the patients with the most aggressive 

clinical course and subsequently shift them onto more intensive therapies and potentially 

experimental clinical trials.  

 

6.4.3. Validation of M7-FLIPI Prognostication Tool for FL 

Our dataset could validate the M7-FLIPI prognostication tool for FL. M7-FLIPI seeks 

to risk stratify FL patients receiving first-line immunochemotherapy by considering their 

mutations in seven genes (EZH2, ARID1A, MEF2B, EP300, CREBBP, and CARD11), their 

Follicular Lymphoma International Prognostic Index (FLIPI), and their Eastern Cooperative 

Oncology Group performance status (ECOG)187,188. Our dataset contains 337 FL patients 

which were treated and 222 which were placed under a “watch and wait” regimen (Figure 

1b). All samples were diagnostic biopsies, and all of these FL patients have the relevant 

genetic, clinical, and survival data required to utilize the M7-FLIPI prognostication tool. 

Once the appropriate clinical data is processed to subset treated patients based on the 

treatments they receive, we believe our dataset will be sufficiently large to validate the M7-

FLIPI prognostication tool. 

 

6.4.4. Prediction of Treatment Outcomes Based on Genetics 

Finally, future work will focus on providing a machine learning based approach to 

improve the prognostication of DLBCL patients. The gold standard clinical prognostic tool, 

the Revised International Prognostic Index (R-IPI), sorts patients into three risk groups based 

on factors such as age and whether their lactate dehydrogenase level is elevated.14 None of 

the R-IPI factors, however, account for the genetic basis of DLBCL and cannot therefore 

incorporate prognostic information from genetic variability between patients within the same 

risk group. Virtually all DLBCL patients receive the same first-line therapy, R-CHOP, 

despite the probability that the genetic and biological heterogeneity will result in 

heterogeneous response to the potential treatments available.189 By utilizing a machine 

learning based approach that considers all possible lesions as well as clinical variables, we 
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may be able to more effectively predict which patients are likely to respond well to R-CHOP 

and which are not. If such an identification is possible, the patients at greater risk may be 

moved toward more aggressive treatments or experimental therapies. 
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8. Appendix 1: Classification Code 



tmp.html

AML classification using Dirichlet Processes

# /lustre/scratch117/casm/team154/cr8/DLBCL_study/annovar_transfer/reference/bsub_farm yesterday visualize_classification_v3 100000 R CMD BATCH --no-restore /lustre/scratch117/casm/team154/cr8/DLBCL_study/cleaning_and_annotation/code/visualize_classification_v3.R

# /lustre/scratch117/casm/team154/cr8/DLBCL_study/annovar_transfer/reference/bsub_farm yesterday visualize_classification_v2 10000 R CMD BATCH --no-restore /lustre/scratch117/casm/team154/cr8/DLBCL_study/cleaning_and_annotation/code/visualize_classification_v2.R

Code run on

options(markdown.HTML.header = "tmp.html")

system("hostname -f", intern=TRUE)

## [1] "bc-29-2-08.internal.sanger.ac.uk"

Sys.time()

## [1] "2017-08-27 17:03:27 BST"

getwd()

## [1] "/lustre/scratch117/casm/team154/cr8/DLBCL_study/annovar_transfer/full_study/synthesized_results/classification/experiments/2017.08.26_Clustering_Run_2/all_subtypes"

using

library(knitr)

Libraries and data

source("/lustre/scratch117/casm/team154/cr8/DLBCL_study/cleaning_and_annotation/code/global_source.R"

load_global_packages()

library(CoxHD) # library(devtools); install_github("mg14/CoxHD/CoxHD")

library(mg14) # library(devtools); install_github("mg14/mg14")

library(hdp)

library(lattice)

set1 <- brewer.pal(8, "Set1")

# If running from classification_workspace.Rdata instead of from scratch

load("classification_workspace.Rdata")

spin("/lustre/scratch117/casm/team154/cr8/DLBCL_study/cleaning_and_annotation/code/visualize_classification_v3.R"

## 

## 

## processing file: /lustre/scratch117/casm/team154/cr8/DLBCL_study/cleaning_and_annotation/code/visualize_classification_v3.Rmd



## Error in parse_block(g[-1], g[1], params.src): duplicate label 'run'

plot(output$lik, type='l'); abline(v=burnin, lty=3)

plot(output$numclass, type='l')



AML classes

posteriorMerged <- hdp_extract_signatures(output, prop.explained=0.99, cos.merge=0.95)

#posteriorMeans <- Reduce("+",posteriorMerged$sigs_qq)/length(posteriorMerged$sigs_qq)

posteriorSamples <- array(unlist(posteriorMerged$sigs_qq), dim=c(dim(posteriorMerged$sigs_qq[[1

rownames(posteriorSamples) <- colnames(genotypesImputed)

colnames(posteriorSamples) <- 1:ncol(posteriorSamples) -1

posteriorMeans <- rowMeans(posteriorSamples, dim=2)

posteriorQuantiles <- apply(posteriorSamples, 1:2, quantile, c(0.025,.5,0.975))

posteriorMode <- apply(posteriorSamples, 1:2, function(x) {t <- table(x); as.numeric(names(t)[which.max

kable(posteriorQuantiles[2,,], "html", table.attr = 'id="posteriorMedian"') # Posterior median

0 1 2 3 4 5 6 7

SOCS1 0 0 0 0 80 0 1 0

FOXO1 0 77 0 0 0 0 0 0

BTG2 0 0 55 0 0 0 1 0

FAS 0 0 0 0 16 31 0 0

ARID1A 0 115 0 0 0 0 0 0

KMT2D 0 607 0 0 0 0 0 0

CREBBP 0 363 0 0 0 0 0 0

TNFRSF14 0 312 0 0 0 0 0 0

ID3 0 0 0 0 0 0 0 0



ZFP36L1 0 0 0 0 4 0 4 0

ASXL2 0 0 0 0 0 0 3 0

NOTCH2 0 0 0 0 0 65 0 0

WT1 0 0 0 0 0 0 3 0

IRF4 0 0 23 0 0 0 0 0

CDKN2A 0 0 50 0 0 0 0 0

PTPRC 0 0 0 0 0 0 0 0

MYC 0 0 0 0 0 0 10 0

B2M 0 2 0 0 57 47 0 0

TP53 0 37 0 73 49 0 4 30

TBL1XR1 0 0 48 0 0 0 1 0

TET2 0 0 0 0 0 0 2 0

TNFAIP3 0 0 0 0 38 56 0 0

ASXL1 0 0 0 0 0 0 1 0

NFKBIE 0 0 0 0 39 0 0 0

NOTCH1 0 0 0 0 0 0 3 0

STAT3 0 0 0 0 0 0 0 0

IRF8 0 110 0 0 0 0 0 0

SMARCB1 0 0 0 0 0 0 13 0

BCL10 0 0 0 0 0 48 0 0

SRSF2 0 0 0 0 0 0 5 0

PDS5B 0 0 0 0 0 0 5 0

MEF2B 0 49 0 0 0 0 0 0

BTK 0 0 0 0 0 0 0 0

POU2AF1 0 34 0 0 0 0 0 0

ARID1B 0 42 0 0 0 0 0 0

MGA 0 0 0 0 0 0 1 0

CARD11 0 97 0 0 0 0 0 0

EP300 0 46 0 0 0 0 0 0

SPEN 0 0 0 0 0 35 3 0

ATRX 0 0 0 0 0 0 7 0

DNMT3A 0 0 0 0 0 0 0 0

NF1 0 0 18 0 0 0 1 0

PIK3R1 0 19 0 0 0 0 0 0

FBXO11 0 0 0 0 0 0 0 0

PRDM1 0 0 41 0 0 0 0 0

IKZF1 0 0 0 0 0 0 0 0

TRAF3 0 0 0 0 0 0 6 0

SMARCA4 0 0 0 0 0 0 0 0

PTEN 0 0 0 0 0 0 0 0

CDKN1B 0 0 0 0 0 0 8 0

BCORL1 0 0 0 0 0 0 4 0

0 1 2 3 4 5 6 7



MSH2 0 0 0 0 0 0 5 0

MYD88 0 0 149 0 0 0 1 0

RB1 0 0 0 0 0 0 1 0

EZH2 0 290 0 0 0 0 0 0

ATM 0 0 0 0 0 0 6 0

BCL11A 0 0 0 0 0 0 1 0

BCOR 0 0 0 0 0 0 3 0

KMT2C 0 0 0 0 0 0 2 0

RASA2 0 0 0 0 0 0 8 0

CHD2 0 0 0 0 0 0 4 0

NFKB1 0 0 0 0 0 0 2 0

PHF6 0 0 0 0 0 0 0 0

MAP2K1 0 0 0 0 0 0 0 0

CASP8 0 0 0 0 0 0 10 0

CCND3 0 0 0 35 0 0 0 0

BCL7A 0 0 0 0 0 0 3 0

KDM6A 0 0 0 0 0 0 1 0

XPO1 0 0 0 0 0 0 0 0

PAX5 0 0 0 0 0 0 0 0

DDX3X 0 0 0 0 0 0 0 0

FAM46C 0 0 0 0 0 0 1 0

ARID2 0 0 0 0 0 0 4 0

CD79B 0 0 0 0 0 0 2 0

FBXW7 0 0 0 0 0 0 0 0

PTPN6 0 0 0 0 0 0 1 0

FAT1 0 0 0 0 0 0 13 0

MSH6 0 0 0 0 0 0 12 0

BIRC3 0 0 0 0 0 0 4 0

BLM 0 0 0 0 0 0 2 0

CD79A 0 0 0 0 0 0 2 0

PPM1D 0 0 0 0 0 0 1 0

BCL6 0 0 0 0 0 0 5 0

SETD2 0 0 0 0 0 0 6 0

HIST1H3B 0 0 0 0 0 0 3 0

CUX1 0 0 0 0 0 0 2 0

PMS2 0 0 0 0 0 0 5 0

CYLD 0 0 0 0 0 0 4 0

IRF1 0 0 0 0 0 0 0 0

CDKN2B 0 0 0 0 0 0 1 0

CBFB 0 0 0 0 0 0 1 0

CTCF 0 0 0 0 0 0 4 0

MTOR 0 0 0 0 0 0 5 0

0 1 2 3 4 5 6 7



PTPRD 0 0 0 0 0 0 2 0
STAT6 0 35 0 0 0 0 0 0

SGK1 0 0 0 0 26 0 0 0

BRAF 0 0 0 0 0 0 0 0

WHSC1 0 0 0 0 0 0 1 0

RHOA 0 0 0 0 0 0 0 0

KRAS 0 0 0 0 0 0 3 0

CXCR4 0 0 0 0 0 0 0 0

SF3B1 0 0 0 0 0 0 6 0

CD58 0 0 0 0 0 0 3 0

NF2 0 0 0 0 0 0 3 0

PIK3CA 0 0 0 0 0 0 2 0

U2AF1 0 0 0 0 0 0 3 0

IDH2 0 0 0 0 0 0 1 0

NRAS 0 0 0 0 0 0 4 0

ARAF 0 0 0 0 0 0 2 0

JAK3 0 0 0 0 0 0 4 0

CDKN2C 0 0 0 0 0 0 1 0

IDH1 0 0 0 0 0 0 1 0

MLH1 0 0 0 0 0 0 2 0

GNAS 0 0 0 0 0 0 1 0

JAK2 0 0 0 0 0 0 1 0

TCF3 0 0 0 0 0 0 0 0

KLF2 0 0 4 0 0 23 1 0

TERT 0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7

Most prevalent lesions

genes <- apply(posteriorMeans, 2, function(x) paste(ifelse(x>10,rownames(posteriorMeans),"")[order

genes <- gsub(";+$","",genes)

genes

##                                   0                                   1 

##                         "TET2;TP53" "KMT2D;CREBBP;TNFRSF14;EZH2;ARID1A" 

##                                   2                                   3 

##  "KMT2D;MYD88;CREBBP;TNFRSF14;EZH2"         "TP53;SOCS1;TET2;B2M;CCND3" 

##                                   4                                   5 

##       "SOCS1;B2M;TP53;TET2;TNFAIP3"    "TNFAIP3;NOTCH2;B2M;BCL10;MYD88" 

##                                   6                                   7 

##                     "TP53;MYC;FAT1"                   "TP53;TET2;KMT2D"

Assignment from posterior samples



library(RColorBrewer)

col <- c(brewer.pal(9,"Set1")[c(9,1:8)], brewer.pal(8,"Dark2"))

posteriorProbability <- apply(sapply(posteriorMerged$sigs_nd_by_dp, colMeans)[,-1],2,function(x

o <- order(apply(posteriorProbability,2,which.max))

barplot(posteriorProbability[,o], col=col, border=NA, ylab="Probability", xlab="Patient")

data.frame(Prob=rowMeans(posteriorProbability), genes)

##         Prob                             genes

## 0 0.03245091                         TET2;TP53

## 1 0.35612484 KMT2D;CREBBP;TNFRSF14;EZH2;ARID1A

## 2 0.18731913  KMT2D;MYD88;CREBBP;TNFRSF14;EZH2

## 3 0.11346064         TP53;SOCS1;TET2;B2M;CCND3

## 4 0.10614709       SOCS1;B2M;TP53;TET2;TNFAIP3

## 5 0.08139741    TNFAIP3;NOTCH2;B2M;BCL10;MYD88

## 6 0.07549752                     TP53;MYC;FAT1

## 7 0.04760247                   TP53;TET2;KMT2D

Classes

dpClass <- factor(apply(posteriorProbability, 2, which.max)-1)

table(dpClass)

## dpClass

##   0   1   2   3   4   5   6   7 

## 118 890 190 126  90 102  80  11

plot(seq(0,1,l=ncol(posteriorProbability)),sort(apply(posteriorProbability,2,max)), type='l', ylim



boxplot(apply(posteriorProbability,2,max) ~ dpClass, col=col, ylab="Probability", xlab="Class")



par(mar=c(6,3,1,1)+.1, cex=.8)

o <- order(colSums(genotypesImputed), decreasing=TRUE)

driverPrevalence <- t(sapply(split(as.data.frame(as.matrix(genotypesImputed)), dpClass), colSums

b <- barplot(driverPrevalence, col=col, las=2, legend=TRUE, border=NA, args.legend=list(border=

abline(h=seq(100,500,100), col="white")

rotatedLabel(b, labels=colnames(genotypesImputed)[o])

Driver signatures



par(mar=c(6,3,1,1)+.1, cex=.8)

t <- table(dpClass)

i <- 0; for(c in levels(dpClass)){i <- 1+i

b <- barplot(posteriorQuantiles[2,o,c]/t[i], col=col[i], las=2, legend=FALSE, border=NA,  names.arg

segments(b, posteriorQuantiles[1,o,c]/t[i], b, posteriorQuantiles[2,o,c]/t[i], col="white")

segments(b, posteriorQuantiles[2,o,c]/t[i], b, posteriorQuantiles[3,o,c]/t[i], col=col[i])

rotatedLabel(b, labels=colnames(genotypesImputed)[o])

}



Clinical associations

# Numerical

boxplot(clinical_information$AgeAtDiagnosis ~ factor(dpClass), xlab = "Class", ylab = "AgeAtDiagnosis"



boxplot(clinical_information$OS ~ factor(dpClass), xlab = "Class", ylab = "OS", col=col)



boxplot(rowSums(genotypesImputed) ~ factor(dpClass), xlab="Class",ylab="# Mutations", col=col)



boxplot(clinical_information$OS ~ factor(dpClass), xlab = "Class", ylab = "OS", col=col)



# Categorical

categorical_df <- cbind(clinical_information, dpClass = factor(dpClass))

# First, see results incorporating total counts

ggplot(categorical_df, aes(x = DiagnosticGroupWHO, fill = dpClass)) + geom_bar() + scale_fill_manual



ggplot(categorical_df, aes(x = DiagnosticSubtypeICDO3, fill = dpClass)) + geom_bar() + scale_fill_manual



ggplot(categorical_df, aes(x = Sex, fill = dpClass)) + geom_bar() + scale_fill_manual(values = 



# Next, see results just looking at percentages

x_labels_rotation_angle <- 15

ggplot(categorical_df, aes(x = DiagnosticGroupWHO, fill = dpClass)) + geom_bar(position="fill")



ggplot(categorical_df, aes(x = DiagnosticSubtypeICDO3, fill = dpClass)) + geom_bar(position="fill"



ggplot(categorical_df, aes(x = Sex, fill = dpClass)) + geom_bar(position="fill") + scale_fill_manual



Survival

Simple coxph

# Actual survival code 

os <- Surv(time = clinical_information$OS, event = clinical_information$SurvivalStatus)

plot(survfit(os ~ dpClass), col=col)

legend("topright", legend = levels(dpClass), col=col, lty=1)



kable(summary(survfit(os ~ dpClass))$table)

records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL

dpClass=0 118 118 118 43 3179.909 173.27050 4091.0 3271 NA

dpClass=1 887 887 887 346 3136.705 62.45958 NA 3756 NA

dpClass=2 190 190 190 121 2079.030 141.87390 1470.0 1108 2399

dpClass=3 126 126 126 67 2327.578 189.45547 2283.0 957 NA

dpClass=4 89 89 89 40 2789.888 215.21273 3585.0 2466 NA

dpClass=5 102 102 102 55 2378.981 207.44751 1876.0 982 NA

dpClass=6 80 80 80 53 1870.553 225.21687 513.5 318 2023

dpClass=7 11 11 11 7 1887.727 623.81602 452.0 283 NA

summary(coxph(os ~ dpClass))



## Call:

## coxph(formula = os ~ dpClass)

## 

##   n= 1603, number of events= 732 

##    (4 observations deleted due to missingness)

## 

##             coef exp(coef) se(coef)     z Pr(>|z|)    

## dpClass1 0.05994   1.06178  0.16171 0.371 0.710867    

## dpClass2 0.82397   2.27952  0.17764 4.638 3.51e-06 ***

## dpClass3 0.64791   1.91154  0.19548 3.314 0.000918 ***

## dpClass4 0.31127   1.36515  0.21969 1.417 0.156533    

## dpClass5 0.64184   1.89998  0.20364 3.152 0.001623 ** 

## dpClass6 0.94815   2.58094  0.20542 4.616 3.92e-06 ***

## dpClass7 1.01213   2.75146  0.40796 2.481 0.013102 *  

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

##          exp(coef) exp(-coef) lower .95 upper .95

## dpClass1     1.062     0.9418    0.7734     1.458

## dpClass2     2.280     0.4387    1.6093     3.229

## dpClass3     1.912     0.5231    1.3031     2.804

## dpClass4     1.365     0.7325    0.8875     2.100

## dpClass5     1.900     0.5263    1.2747     2.832

## dpClass6     2.581     0.3875    1.7255     3.860

## dpClass7     2.751     0.3634    1.2368     6.121

## 

## Concordance= 0.598  (se = 0.01 )

## Rsquare= 0.053   (max possible= 0.998 )

## Likelihood ratio test= 87.52  on 7 df,   p=4.441e-16

## Wald test            = 93.49  on 7 df,   p=0

## Score (logrank) test = 97.93  on 7 df,   p=0

#' Risk variance #+ RFX, cache=TRUE library(CoxHD) dataFrameOsTD <- dataFrame[tplSplitOs,]

dataFrameOsTD[which(tplIndexOs), grep(“TPL”, colnames(dataFrameOsTD), value=TRUE)] <- 0 ## Set pre-tpl

variables to zero mainGroups <- grep(“[A-Z][a-z]+[A-Z]”,levels(groups), invert=TRUE, value=TRUE) mainIdx <-

groups %in% mainGroups osTDIdx <- !grepl(“TPL_efs”, colnames(dataFrame)) mainIdxOsTD <- mainIdx & osTDIdx

whichRFXOsTDGG <- which((colSums(dataFrame)>=8 | mainIdxOsTD) & osTDIdx & groups %in%

c(mainGroups,“GeneGene”)) # ie, > 0.5%

coxRFXFitOsTDGGc <- CoxRFX(dataFrameOsTD[,whichRFXOsTDGG], osTD, groups[whichRFXOsTDGG],

which.mu=mainGroups) ## allow only the main groups to have mean different from zero.. coxRFXFitOsTDGGc

d <- cbind(dataFrameOsTD[,whichRFXOsTDGG],DP=t(posteriorProbability)[tplSplitOs,-1]) coxRFXFitOsTDGGcDP

<- CoxRFX(d, osTD, c(as.character(groups[whichRFXOsTDGG]),rep(“DP”, nlevels(dpClass)-1)),

which.mu=mainGroups) ## allow only the main groups to have mean different from zero.. coxRFXFitOsTDGGcDP

PlotVarianceComponents(coxRFXFitOsTDGGcDP, col=col) round(cov(PartialRisk(coxRFXFitOsTDGGcDP)),2)

Phylogeny



library(ape)

plot(nj(dist(t(posteriorMeans/(rep(rowSums(posteriorProbability), each=nrow(posteriorMeans)))>.1

Gene:Gene interactions

Population based



geneToClass <- factor(apply(posteriorMeans, 1,which.max) -1, levels = as.numeric(colnames(posteriorMeans

getOdds <- function(x) {

  f <- sapply(1:ncol(x),

              function(i) sapply(1:ncol(x),

                                 function(j) {

                                   if(j <= i) return(c(NA,NA))

                                   f<- try(fisher.test(x[,i], x[,j]), silent=TRUE)

                                   if(class(f)=="try-error") c(0,NA)

                                   else if(f$estimate>1) c(-log10(f$p.val),f$estimate)

                                   else c(log10(f$p.val), f$estimate)}

              ),

              simplify="array")

  for(i in 1:2)

    f[i,,][upper.tri(f[i,,])] <- t(f[i,,])[upper.tri(f[i,,])]

  return(f)

}

f <- getOdds(genotypesImputed)

logPInt <- f[1,,]

odds <- f[2,,]

pairs <- sapply(1:ncol(genotypesImputed), function(i) colMeans(genotypesImputed * genotypesImputed

diag(logPInt) <- 0

diag(odds) <- 1

colnames(odds) <- rownames(odds) <- colnames(logPInt) <- rownames(logPInt) <- colnames(genotypesImputed

odds[odds<1e-3] = 1e-4

odds[odds>1e3] = 1e4



odds[10^-abs(logPInt) > 0.1] = 1

logOdds=log10(odds)

diag(logPInt) <- NA

par(bty="n", mgp = c(2,.5,0), mar=c(4,4,4,4)+.1, las=2, tcl=-.33)

ix = TRUE#colnames(interactions) %in% colnames(all_genotypes)

o = order(geneToClass, -colSums(genotypesImputed))

M <-  matrix( NA, ncol=ncol(odds), nrow=nrow(odds))

M[lower.tri(M)] <- cut(logOdds[o,o][lower.tri(M)], breaks = c(-4:0-.Machine$double.eps,0:4), include.lowest

M[upper.tri(M, diag=TRUE)] <- as.numeric(cut(pairs[o,o][upper.tri(M, diag=TRUE)]*nrow(genotypesImputed

image(x=1:ncol(logPInt), y=1:nrow(logPInt), M, col=c(brewer.pal(9,"BrBG"), c("white",brewer.pal(

l <- colnames(logPInt)[o]

mtext(side=1, at=1:ncol(logPInt), l, cex=.66, font=ifelse(grepl("^[A-Z]",l),3,1), col=col[geneToClass

mtext(side=2, at=1:ncol(logPInt), l, cex=.66, font=ifelse(grepl("^[A-Z]",l),3,1), col=col[geneToClass

abline(h=0:ncol(logPInt)+.5, col="white", lwd=.5)

abline(v=0:ncol(logPInt)+.5, col="white", lwd=.5)

P <- 10^-abs(logPInt[o,o])

P[upper.tri(P)] <- NA

w = arrayInd(which(p.adjust(P, method="BH") < .1), rep(nrow(logPInt),2))

points(w, pch=".", col="black")

w = arrayInd(which(p.adjust(P) < .05), rep(nrow(logPInt),2))

points(w, pch="*", col="black")

image(y = 1:9 +18, x=rep(ncol(logPInt),2)+c(2,3), z=matrix(c(1:8), nrow=1), col=c("white",brewer.pal

axis(side = 4, at = seq(1,7) + 19, cex.axis=.66, tcl=-.15, label=c(1,5,10,20,50,100,200), las=1, 

mtext(side=4, at=28, "Frequency", las=2, line=-1,cex=.66)

image(y = 1:8 +5, x=rep(ncol(logPInt),2)+c(2,3), z=matrix(c(1:8), nrow=1), col=brewer.pal(8,"BrBG"

axis(side = 4, at = seq(1,7) + 5.5, cex.axis=.66, tcl=-.15, label=10^seq(-3,3), las=1, lwd=.5)

mtext(side=4, at=14, "Odds ratio", las=2, line=-1,cex=.66)

mtext(side=4, at=4, "Significance", las=2, line=-1,cex=.66)

points(x=rep(ncol(logPInt),2)+2.5, y=1:2, pch=c("*","."))

image(x=rep(ncol(logPInt),2)+c(2,3), y=(2:3) +0.5, z=matrix(1), col=brewer.pal(3,"BrBG"), add=TRUE

mtext(side=4, at=3:1, c("P > 0.05", "FDR < 0.1", "FWER < 0.05"), cex=.66, line=0.2)

t <- c(0,table(geneToClass))

s <- cumsum(t)+.5

abline(h=s[-length(s)], col=col, lty=3)

abline(v=s[-length(s)], col=col, lty=3)

rect(s[-1],s[-1], s[-length(s)], s[-length(s)], border=col)



Expected heatmap



set.seed(42)

t <- table(dpClass)

pp <- t(t(posteriorMeans)/as.numeric(t))

expectedOdds <- sapply(colnames(genotypesImputed), function(j){

  sapply(colnames(genotypesImputed), function(i){

    if(i==j) return(0)

    P <- Reduce("+",lapply(seq_along(t), function(k) {t[k] * (pp[i,k] * c(1,-1) + c(0,1)) %o% c(

    #res <- round(log10(M[1,1]*M[2,2]/M[1,2]/M[2,1]))

    #if( sum(M[,1]) * sum(M[1,])/sum(M) < 5 & res < 0) res <- 0

    #return(res)

    M <- matrix(rmultinom(1,sum(t), P), ncol=2)

    f <- fisher.test(round(M))

    res <- pmin(pmax(round(log10(f$estimate)),-4),4)

    if(f$p.value > 0.05)

      res <- 0

    return(res)

  })

})

## Error in rmultinom(1, sum(t), P): negative probability

par(bty="n", mgp = c(2,.5,0), mar=c(4,4,4,4)+.1, las=2, tcl=-.33)

o = order(geneToClass, -colSums(genotypesImputed))

image(x=1:ncol(expectedOdds), y=1:nrow(expectedOdds), expectedOdds[o,o], col=brewer.pal(9,"BrBG"

## Error in ncol(expectedOdds): object 'expectedOdds' not found

l <- colnames(expectedOdds)[o]

## Error in is.data.frame(x): object 'expectedOdds' not found

mtext(side=1, at=1:ncol(expectedOdds), l, cex=.66, font=ifelse(grepl("^[A-Z]",l),3,1), col=col[geneToClass

## Error in ncol(expectedOdds): object 'expectedOdds' not found

mtext(side=2, at=1:ncol(expectedOdds), l, cex=.66, font=ifelse(grepl("^[A-Z]",l),3,1), col=col[geneToClass

## Error in ncol(expectedOdds): object 'expectedOdds' not found

abline(h=0:ncol(expectedOdds)+.5, col="white", lwd=.5)

## Error in ncol(expectedOdds): object 'expectedOdds' not found

abline(v=0:ncol(expectedOdds)+.5, col="white", lwd=.5)



## Error in ncol(expectedOdds): object 'expectedOdds' not found

t <- c(0,table(geneToClass))

s <- cumsum(t)+.5

rect(s[-1],s[-1], s[-length(s)], s[-length(s)], border=col)

## Error in rect(s[-1], s[-1], s[-length(s)], s[-length(s)], border = col): plot.new has not been called yet

Per class



for(cls in levels(dpClass)){

  w <- dpClass == cls

  f <- getOdds(genotypesImputed[w,])

  logPInt <- f[1,,]

  odds <- f[2,,]

  pairs <- sapply(1:ncol(genotypesImputed), function(i) colMeans(genotypesImputed[w,] * genotypesImputed

  diag(logPInt) <- 0

  diag(odds) <- 1

  colnames(odds) <- rownames(odds) <- colnames(logPInt) <- rownames(logPInt) <- colnames(genotypesImputed

  odds[odds<1e-3] = 1e-4

  odds[odds>1e3] = 1e4

  odds[10^-abs(logPInt) > 0.1] = 1

  logOdds=log10(odds)

  diag(logPInt) <- NA

  par(bty="n", mgp = c(2,.5,0), mar=c(4,4,4,4)+.1, las=2, tcl=-.33)

  ix = TRUE#colnames(interactions) %in% colnames(all_genotypes)

  o = order(geneToClass, -colSums(genotypesImputed))

  M <-  matrix( NA, ncol=ncol(odds), nrow=nrow(odds))

  M[lower.tri(M)] <- cut(logOdds[o,o][lower.tri(M)], breaks = c(-4:0-.Machine$double.eps,0:4), include.lowest

  M[upper.tri(M, diag=TRUE)] <- as.numeric(cut(pairs[o,o][upper.tri(M, diag=TRUE)]*nrow(genotypesImputed

  image(x=1:ncol(logPInt), y=1:nrow(logPInt), M, col=c(brewer.pal(9,"BrBG"), c("white",brewer.pal

  l <- colnames(logPInt)[o]

  mtext(side=1, at=1:ncol(logPInt), l, cex=.66, font=ifelse(grepl("^[A-Z]",l),3,1), col=col[geneToClass

  mtext(side=2, at=1:ncol(logPInt), l, cex=.66, font=ifelse(grepl("^[A-Z]",l),3,1), col=col[geneToClass

  abline(h=0:ncol(logPInt)+.5, col="white", lwd=.5)

  abline(v=0:ncol(logPInt)+.5, col="white", lwd=.5)

  P <- 10^-abs(logPInt[o,o])

  P[upper.tri(P)] <- NA

  w = arrayInd(which(p.adjust(P, method="BH") < .1), rep(nrow(logPInt),2))

  points(w, pch=".", col="black")

  w = arrayInd(which(p.adjust(P) < .05), rep(nrow(logPInt),2))

  points(w, pch="*", col="black")

  image(y = 1:9 +18, x=rep(ncol(logPInt),2)+c(2,3), z=matrix(c(1:8), nrow=1), col=c("white",brewer.pal

  axis(side = 4, at = seq(1,7) + 19, cex.axis=.66, tcl=-.15, label=c(1,5,10,20,50,100,200), las=

  mtext(side=4, at=28, "Frequency", las=2, line=-1,cex=.66)

  image(y = 1:8 +5, x=rep(ncol(logPInt),2)+c(2,3), z=matrix(c(1:8), nrow=1), col=brewer.pal(8,"BrBG"

  axis(side = 4, at = seq(1,7) + 5.5, cex.axis=.66, tcl=-.15, label=10^seq(-3,3), las=1, lwd=.5)

  mtext(side=4, at=14, "Odds ratio", las=2, line=-1,cex=.66)

  mtext(side=4, at=4, "Significance", las=2, line=-1,cex=.66)

  points(x=rep(ncol(logPInt),2)+2.5, y=1:2, pch=c("*","."))

  image(x=rep(ncol(logPInt),2)+c(2,3), y=(2:3) +0.5, z=matrix(1), col=brewer.pal(3,"BrBG"), add=

  mtext(side=4, at=3:1, c("P > 0.05", "FDR < 0.1", "FWER < 0.05"), cex=.66, line=0.2)

  t <- c(0,table(geneToClass))

  s <- cumsum(t)+.5

  rect(s[-1],s[-1], s[-length(s)], s[-length(s)], border=col)

  title(main=paste0("Class ",cls,": ", genes[cls]))

}

















Alternatively: Naive Bayes assignment

sigBayes <- function(genotype, sigs){

  dSig <- function(sig,genotype){

    dmultinom(genotype, prob=sig/sum(sig))

  }

  lik <- apply(sigs,2, dSig, genotype)

  lik/sum(lik)

}

naiveBayes <- t(apply(genotypesImputed,1,sigBayes,posteriorMeans))

Save



# names(dpClass) <- clinicalData$PDID

# save(dpClass, posteriorMeans, posteriorQuantiles, posteriorProbability, file='dpClass.RData')

#' ## Curated classification c <- read.table(“../data/reduced_classes.txt”, header=TRUE, sep=“\t”) curatedClass <-

c$ReductionClass names(curatedClass) <- c$Sample rm©

library(clue) t <- table(dpClass, curatedClass) s <- solve_LSAP(t, maximum=TRUE) t[,c(s, setdiff(1:ncol(t),s))]

#' ### Associations

X <- as.matrix(MakeInteger(curatedClass)) Z <- as.matrix(genotypesImputed) Y <- as.matrix(dataFrame[groups

%in% c(“Clinical”,“Demographics”)])

cv.glm <- function(x,y, fold=5, family=“gaussian”){ cvIdx <- sample(1:nrow(x)%% fold +1 ) p <- numeric(length(y))

for(i in 1:fold){ p[cvIdx==i] <- predict(glm(y ~ ., data=x, subset=cvIdx!=i, family=family), newdata=x[cvIdx==i,]) }

if(family==“gaussian”){ m <- mean((p-y)2) s <- sd(sapply(1:fold, function(i) mean((p-y)[cvIdx==i]2)))/sqrt(fold)

return(c(avg=m, sd=s)) } else if(family==“binomial”){ m <- performance(prediction(p, y), “auc”)@y.values[[1]] s <-

sd(sapply(1:fold, function(i) performance(prediction(p[cvIdx==i], y[cvIdx==i]), “auc”)@y.values[[1]]))/sqrt(fold)

return(c(avg=m, sd=s)) } }

#' #### White counts #+ wbc_box y <- log(clinicalData$wbc) boxplot(y ~ factor(curatedClass), ylab=“log wbc”, las=2)

#+ wbc_bar, fig.width=1.5 set.seed(42) mse0 <- cv.glm(as.data.frame(X[!is.na(y),-1]), na.omit(y)) g <-

cv.glmnet(cbind(X,Z)[!is.na(y),], na.omit(y), type=“mse”, alpha=1, penalty.factor=c(rep(0,ncol(X)), rep(1,ncol(Z))))

mse1 <- c(min(g$cvm), g$cvsd[which.min(g$cvm)]) v <- var(y, use='c') a <- (v-c(subtypes=mse0[1],

subtypes+genomics=min(mse1[1])))/v*100 barplot(rbind(a,100-a), ylab=“Explained variance (%)”, names=rep(“”,2),

ylim=c(0,100)) -> b segments(b,(v-c(mse0[1]-mse0[2],mse1[1]-mse1[2]))*100/v,b,(v-c(mse0[1]+mse0[2],

mse1[1]+mse1[2]))*100/v) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”)) title(main=“White counts”)

#' #### Bone marrow blasts #+ BM_box y <- car::logit(clinicalData$BM_Blasts/100 ) boxplot(y ~ factor(curatedClass),

ylab=“logit BM blasts”, las=2) #+ BM_bar, fig.width=1.5 set.seed(42) mse0 <- cv.glm(as.data.frame(X[!is.na(y),-1]),

na.omit(y)) g <- cv.glmnet(cbind(X,Z)[!is.na(y),], na.omit(y), type=“mse”, alpha=1, penalty.factor=c(rep(0,ncol(X)),

rep(1,ncol(Z)))) mse1 <- c(min(g$cvm), g$cvsd[which.min(g$cvm)]) v <- var(y, use='c') a <- (v-c(subtypes=mse0[1],

subtypes+genomics=min(mse1[1])))/v*100 barplot(rbind(a,100-a), ylab=“Explained variance (%)”, names=rep(“”,2),

ylim=c(0,100)) -> b segments(b,(v-c(mse0[1]-mse0[2],mse1[1]-mse1[2]))*100/v,b,(v-c(mse0[1]+mse0[2],

mse1[1]+mse1[2]))*100/v) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”)) title(main=“BM blasts”)

#' #### PB blasts #+ PB_box y <- car::logit(clinicalData$PB_Blasts/100 ) boxplot(y ~ factor(curatedClass), ylab=“logit

PB blasts”, las=2) #+ PB_bar, fig.width=1.5 set.seed(42) mse0 <- cv.glm(as.data.frame(X[!is.na(y),-1]), na.omit(y)) g

<- cv.glmnet(cbind(X,Z)[!is.na(y),], na.omit(y), type=“mse”, alpha=1, penalty.factor=c(rep(0,ncol(X)), rep(1,ncol(Z))))

mse1 <- c(min(g$cvm), g$cvsd[which.min(g$cvm)]) v <- var(y, use='c') a <- (v-c(subtypes=mse0[1],

subtypes+genomics=min(mse1[1])))/v*100 barplot(rbind(a,100-a), ylab=“Explained variance (%)”, names=rep(“”,2),

ylim=c(0,100)) -> b segments(b,(v-c(mse0[1]-mse0[2],mse1[1]-mse1[2]))*100/v,b,(v-c(mse0[1]+mse0[2],

mse1[1]+mse1[2]))*100/v) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”)) title(main=“PB blasts”)

#' #### Age #+ Age_box y <- clinicalData$AOD boxplot(y ~ factor(curatedClass), ylab=“Age”, las=2) #+ Age_bar,

fig.width=1.5 set.seed(42) mse0 <- cv.glm(as.data.frame(X[!is.na(y),-1]), na.omit(y)) g <- cv.glmnet(cbind(X,Z)

[!is.na(y),], na.omit(y), type=“mse”, alpha=1, penalty.factor=c(rep(0,ncol(X)), rep(1,ncol(Z)))) mse1 <- c(min(g$cvm),

g$cvsd[which.min(g$cvm)]) v <- var(y, use='c') a <- (v-c(subtypes=mse0[1],

subtypes+genomics=min(mse1[1])))/v*100 barplot(rbind(a,100-a), ylab=“Explained variance (%)”, names=rep(“”,2),

ylim=c(0,100)) -> b segments(b,(v-c(mse0[1]-mse0[2],mse1[1]-mse1[2]))*100/v,b,(v-c(mse0[1]+mse0[2],

mse1[1]+mse1[2]))*100/v) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”)) title(main=“Age”)

#' #### LDH #+ LDH_box y <- log(clinicalData$LDH) boxplot(y ~ factor(curatedClass), ylab=“log LDH”, las=2) #+



LDH_bar, fig.width=1.5 set.seed(42) mse0 <- cv.glm(as.data.frame(X[!is.na(y),-1]), na.omit(y)) g <-

cv.glmnet(cbind(X,Z)[!is.na(y),], na.omit(y), type=“mse”, alpha=1, penalty.factor=c(rep(0,ncol(X)), rep(1,ncol(Z))))

mse1 <- c(min(g$cvm), g$cvsd[which.min(g$cvm)]) v <- var(y, use='c') a <- (v-c(subtypes=mse0[1],

subtypes+genomics=min(mse1[1])))/v*100 barplot(rbind(a,100-a), ylab=“Explained variance (%)”, names=rep(“”,2),

ylim=c(0,100)) -> b segments(b,(v-c(mse0[1]-mse0[2],mse1[1]-mse1[2]))*100/v,b,(v-c(mse0[1]+mse0[2],

mse1[1]+mse1[2]))*100/v) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”)) title(main=“LDH”)

#' #### Platelets #+ platelets_box y <- log(clinicalData$platelet) boxplot(y ~ factor(curatedClass), ylab=“log platelets”,

las=2) #+ platelets_bar, fig.width=1.5 set.seed(42) mse0 <- cv.glm(as.data.frame(X[!is.na(y),-1]), na.omit(y)) g <-

cv.glmnet(cbind(X,Z)[!is.na(y),], na.omit(y), type=“mse”, alpha=1, penalty.factor=c(rep(0,ncol(X)), rep(1,ncol(Z))))

mse1 <- c(min(g$cvm), g$cvsd[which.min(g$cvm)]) v <- var(y, use='c') a <- (v-c(subtypes=mse0[1],

subtypes+genomics=min(mse1[1])))/v*100 barplot(rbind(a,100-a), ylab=“Explained variance (%)”, names=rep(“”,2),

ylim=c(0,100)) -> b segments(b,(v-c(mse0[1]-mse0[2],mse1[1]-mse1[2]))*100/v,b,(v-c(mse0[1]+mse0[2],

mse1[1]+mse1[2]))*100/v) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”)) title(main=“Platelets”)

#' #### HB #+ HB_box y <- log(clinicalData$HB) boxplot(y ~ factor(curatedClass), ylab=“log HB”, las=2) #+ HB_bar,

fig.width=1.5 set.seed(42) mse0 <- cv.glm(as.data.frame(X[!is.na(y),-1]), na.omit(y)) g <- cv.glmnet(cbind(X,Z)

[!is.na(y),], na.omit(y), type=“mse”, alpha=1, penalty.factor=c(rep(0,ncol(X)), rep(1,ncol(Z)))) mse1 <- c(min(g$cvm),

g$cvsd[which.min(g$cvm)]) v <- var(y, use='c') a <- (v-c(subtypes=mse0[1],

subtypes+genomics=min(mse1[1])))/v*100 barplot(rbind(a,100-a), ylab=“Explained variance (%)”, names=rep(“”,2),

ylim=c(0,100)) -> b segments(b,(v-c(mse0[1]-mse0[2],mse1[1]-mse1[2]))*100/v,b,(v-c(mse0[1]+mse0[2],

mse1[1]+mse1[2]))*100/v) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”)) title(main=“HB”)

oddsPlot <- function(t){ plot(x=rep(1:2, ncol(t)), t[], ylab=“Number of cases”, xlab= names(dimnames(t))[1], xaxt=“n”,

log='y') mtext(side=1,at=c(1,2), text=paste0(rownames(t), “, n=”, rowSums(t)), las=1, pch=16) segments(1,t[1,],2,

t[2,]) p <- sapply(1:ncol(t), function(i) {f <- fisher.test(cbind(rowSums(t[,-i]), t[,i])); c(p.value=f$p.value,

OR=f$estimate[1], f$conf.int)}) mtext(side=4, at=t[2,], text=paste0(colnames(t), “, OR=”, format(p[2,],digits=1), “(”,

apply(round(p[3:4,],2),2,paste, collapse=“-”),“)”, sig2star(p[1,]))) }

#' #### Splenomegaly #+ Splenomegaly_bar, fig.width=1.5 library(ROCR) set.seed(42) y <-

clinicalData$Splenomegaly table(Splenomegaly=y,factor(curatedClass)) auc0 <- cv.glm(as.data.frame(X[!is.na(y),-

1]), y[!is.na(y)], family=“binomial”) g <- cv.glmnet(cbind(X,Z)[!is.na(y),], na.omit(y), family='binomial',type=“auc”,

alpha=1, penalty.factor=c(rep(0,ncol(X)), rep(1,ncol(Z)))) auc1 <- c(max(g$cvm), g$cvsd[which.max(g$cvm)]) a <-

c(subtypes=auc0[1], subtypes+genomics=auc1[1])*100 barplot(rbind(a,150-a)-50, ylab=“AUC (%)”,

main=“Splenomegaly”, offset=50, names=rep(“”,2), ylim=c(50,100)) segments(b,c(auc0[1]-auc0[2],auc1[1]-

auc1[2])*100,b,c(auc0[1]+auc0[2], auc1[1]+auc1[2])*100) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”))

title(main=“Splenomegaly”)

#' #### Gender #+ Gender_bar, fig.width=1.5 set.seed(42) y <- clinicalData$gender -1 table(Gender=factor(y,

labels=c('male','female')),factor(curatedClass)) auc0 <- cv.glm(as.data.frame(X[!is.na(y),-1]), y[!is.na(y)],

family=“binomial”) g <- cv.glmnet(cbind(X,Z)[!is.na(y),], na.omit(y), family='binomial',type=“auc”, alpha=1,

penalty.factor=c(rep(0,ncol(X)), rep(1,ncol(Z)))) auc1 <- c(max(g$cvm), g$cvsd[which.max(g$cvm)]) a <-

c(subtypes=auc0[1], subtypes+genomics=auc1[1])*100 barplot(rbind(a,150-a)-50, ylab=“AUC (%)”, offset=50,

names=rep(“”,2), ylim=c(50,100)) segments(b,c(auc0[1]-auc0[2],auc1[1]-auc1[2])*100,b,c(auc0[1]+auc0[2],

auc1[1]+auc1[2])*100) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”)) title(main=“Gender”)

#' #### CR #+ CR_bar, fig.width=1.5 set.seed(42) y <- !is.na(clinicalData$CR_date) y[is.na(clinicalData$CR_date) &

clinicalData$OS==0] <- NA table(CR=y,factor(curatedClass)) auc0 <- cv.glm(as.data.frame(X[!is.na(y),-1]),

y[!is.na(y)], family=“binomial”) g <- cv.glmnet(cbind(X,Z)[!is.na(y),], na.omit(y), family='binomial',type=“auc”, alpha=1,

penalty.factor=c(rep(0,ncol(X)), rep(1,ncol(Z)))) auc1 <- c(max(g$cvm), g$cvsd[which.max(g$cvm)]) a <-

c(subtypes=auc0[1], subtypes+genomics=auc1[1])*100 barplot(rbind(a,150-a)-50, ylab=“AUC (%)”, offset=50,

names=rep(“”,2), ylim=c(50,100)) segments(b,c(auc0[1]-auc0[2],auc1[1]-auc1[2])*100,b,c(auc0[1]+auc0[2],

auc1[1]+auc1[2])*100) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”)) title(main=“Complete remission”)



#' #### OS #+ OS_bar, fig.width=1.5 set.seed(42) y <- os[1:1540,2] y[os[1:1540,1] < 3 * 365 & os[1:1540,2]==0] <-

NA table(OS=factor(y,labels=c(“alive”,“dead”)),factor(curatedClass)) auc0 <- cv.glm(as.data.frame(X[!is.na(y),-1]),

y[!is.na(y)], family=“binomial”) g <- cv.glmnet(cbind(X,Z)[!is.na(y),], na.omit(y), family='binomial',type=“auc”, alpha=1,

penalty.factor=c(rep(0,ncol(X)), rep(1,ncol(Z)))) auc1 <- c(max(g$cvm), g$cvsd[which.max(g$cvm)]) a <-

c(subtypes=auc0[1], subtypes+genomics=auc1[1])*100 barplot(rbind(a,150-a)-50, ylab=“AUC (%)”, offset=50,

names=rep(“”,2), ylim=c(50,100)) segments(b,c(auc0[1]-auc0[2],auc1[1]-auc1[2])*100,b,c(auc0[1]+auc0[2],

auc1[1]+auc1[2])*100) rotatedLabel(b, labels=c(“subtypes”,“subtypes+genomics”)) title(main=“Overall survival at 3yr”)

Session

devtools::session_info()

## Session info -------------------------------------------------------------

##  setting  value                       

##  version  R version 3.3.3 (2017-03-06)

##  system   x86_64, linux-gnu           

##  ui       X11                         

##  language (EN)                        

##  collate  en_GB.UTF-8                 

##  tz       Europe/London               

##  date     2017-08-29

## Packages -----------------------------------------------------------------

##  package       * version  date       source                               

##  AnnotationDbi   1.36.2   2017-05-15 Bioconductor                         

##  ape           * 4.1      2017-02-14 CRAN (R 3.3.3)                       

##  assertthat      0.2.0    2017-04-11 CRAN (R 3.3.3)                       

##  base          * 3.3.3    2017-03-15 local                                

##  Biobase         2.34.0   2017-05-15 Bioconductor                         

##  BiocGenerics    0.20.0   2017-04-24 Bioconductor                         

##  biomaRt       * 2.30.0   2017-05-15 Bioconductor                         

##  bitops          1.0-6    2013-08-17 CRAN (R 3.3.3)                       

##  cellranger      1.1.0    2016-07-27 CRAN (R 3.3.3)                       

##  codetools       0.2-15   2016-10-05 CRAN (R 3.3.3)                       

##  colorspace      1.3-2    2016-12-14 CRAN (R 3.3.3)                       

##  CoxHD         * 0.0.61   2017-07-04 Github (mg14/CoxHD@d295566)          

##  data.table    * 1.10.4   2017-02-01 CRAN (R 3.3.3)                       

##  datasets      * 3.3.3    2017-03-15 local                                

##  DBI             0.6-1    2017-04-01 CRAN (R 3.3.3)                       

##  devtools        1.13.2   2017-06-02 CRAN (R 3.3.3)                       

##  digest          0.6.12   2017-01-27 CRAN (R 3.3.3)                       

##  dplyr         * 0.5.0    2016-06-24 CRAN (R 3.3.3)                       

##  dtplyr        * 0.0.2    2017-04-21 CRAN (R 3.3.3)                       

##  evaluate        0.10.1   2017-06-24 cran (@0.10.1)                       

##  foreach         1.4.3    2015-10-13 cran (@1.4.3)                        

##  ggplot2       * 2.2.1    2016-12-30 CRAN (R 3.3.3)                       

##  ggrepel       * 0.6.5    2016-11-24 CRAN (R 3.3.3)                       

##  ggthemes      * 3.4.0    2017-02-19 CRAN (R 3.3.3)                       



##  glmnet          2.0-10   2017-05-06 cran (@2.0-10)                       

##  graphics      * 3.3.3    2017-03-15 local                                

##  grDevices     * 3.3.3    2017-03-15 local                                

##  grid          * 3.3.3    2017-03-15 local                                

##  gridExtra     * 2.2.1    2016-02-29 CRAN (R 3.3.3)                       

##  gsubfn        * 0.6-7    2017-04-13 Github (ggrothendieck/gsubfn@d2ef6c4)

##  gtable          0.2.0    2016-02-26 CRAN (R 3.3.3)                       

##  hdp           * 0.0.1    2017-07-19 Github (nicolaroberts/hdp@506f381)   

##  highr           0.6      2016-05-09 cran (@0.6)                          

##  hms             0.3      2016-11-22 CRAN (R 3.3.3)                       

##  IRanges         2.8.2    2017-04-24 Bioconductor                         

##  iterators       1.0.8    2015-10-13 cran (@1.0.8)                        

##  knitr         * 1.16     2017-05-18 cran (@1.16)                         

##  labeling        0.3      2014-08-23 CRAN (R 3.3.3)                       

##  lattice       * 0.20-35  2017-03-25 CRAN (R 3.3.3)                       

##  lazyeval        0.2.0    2016-06-12 CRAN (R 3.3.3)                       

##  lsa             0.73.1   2015-05-08 cran (@0.73.1)                       

##  magrittr        1.5      2014-11-22 CRAN (R 3.3.3)                       

##  MASS            7.3-47   2017-04-21 CRAN (R 3.3.3)                       

##  Matrix          1.2-10   2017-04-28 CRAN (R 3.3.3)                       

##  memoise         1.1.0    2017-04-21 CRAN (R 3.3.3)                       

##  methods       * 3.3.3    2017-03-15 local                                

##  mg14          * 0.0.5    2017-07-04 Github (mg14/mg14@a8b4ba8)           

##  mice            2.30     2017-02-18 cran (@2.30)                         

##  munsell         0.4.3    2016-02-13 CRAN (R 3.3.3)                       

##  mvtnorm         1.0-6    2017-03-02 cran (@1.0-6)                        

##  nlme            3.1-131  2017-02-06 CRAN (R 3.3.3)                       

##  nnet            7.3-12   2016-02-02 CRAN (R 3.3.3)                       

##  parallel      * 3.3.3    2017-03-15 local                                

##  plyr            1.8.4    2016-06-08 CRAN (R 3.3.3)                       

##  proto         * 1.0.0    2016-10-29 cran (@1.0.0)                        

##  R6              2.2.2    2017-06-17 cran (@2.2.2)                        

##  RColorBrewer  * 1.1-2    2014-12-07 CRAN (R 3.3.3)                       

##  Rcpp            0.12.11  2017-05-22 cran (@0.12.11)                      

##  RCurl           1.95-4.8 2016-03-01 CRAN (R 3.3.3)                       

##  readr         * 1.1.0    2017-03-22 CRAN (R 3.3.3)                       

##  readxl        * 1.0.0    2017-04-18 CRAN (R 3.3.3)                       

##  rpart           4.1-11   2017-04-21 CRAN (R 3.3.3)                       

##  RSQLite         1.1-2    2017-01-08 CRAN (R 3.3.3)                       

##  S4Vectors       0.12.2   2017-04-24 Bioconductor                         

##  scales        * 0.4.1    2016-11-09 CRAN (R 3.3.3)                       

##  SnowballC       0.5.1    2014-08-09 cran (@0.5.1)                        

##  splines         3.3.3    2017-03-15 local                                

##  stats         * 3.3.3    2017-03-15 local                                

##  stats4          3.3.3    2017-03-15 local                                

##  stringi         1.1.5    2017-04-07 CRAN (R 3.3.3)                       

##  stringr       * 1.2.0    2017-02-18 CRAN (R 3.3.3)                       

##  survival      * 2.41-3   2017-04-04 CRAN (R 3.3.3)                       

##  tcltk           3.3.3    2017-03-15 local                                

##  tibble          1.3.0    2017-04-01 CRAN (R 3.3.3)                       

##  tidyr         * 0.6.1    2017-01-10 CRAN (R 3.3.3)                       



##  tools           3.3.3    2017-03-15 local                                

##  utils         * 3.3.3    2017-03-15 local                                

##  withr           1.0.2    2016-06-20 CRAN (R 3.3.3)                       

##  XML             3.98-1.7 2017-05-03 CRAN (R 3.3.3)


