
Chapter 1

Introduction

Furthering our understanding of protein domains is fundamental to our knowledge of both

the function of proteins and the evolutionary pressures which have shaped them. Protein

domains are the basic structural and functional repertoire from which evolution produces

novel function through new combinations as well as modifications within a protein domain.

Thus protein domains form an important ‘evolutionary crane’1 [Den95] which have been used

during the evolution of complexity.

There has been a recent explosion in the amount of molecular sequence data. As

of July 2004, the Integr8 project (http://www.ebi.ac.uk/integr8/) contains information

from 13 sequenced eukaryotic, 19 archaeal and 150 bacterial genomes. With more genomes

in the sequencing pipeline, as well as environmental genome shotgun sequencing [Ven04], the

growth of molecular sequence data is set to increase. The number of protein structures is also

steadily increasing. Thus, there is increasing amounts of data upon which to build a firmer

understanding of protein domain evolution.

Molecular sequence data, used in conjunction with structural data, has already proved

to be central in furthering the goal of understanding protein function and evolution. Sequence

data has been used for many diverse purposes, including but not limited to:

• detection of evolutionary relationships between proteins;

• clustering proteins into families on the basis of homology;

1According to Dennett, an evolutionary crane is a piece of machinery which has itself been generated via

evolution, but once created has sped up evolution considerably.

1
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• inferring detailed evolutionary relationships between homologous proteins by recon-

structing phylogenetic trees, and describing orthology and paralogy relationships be-

tween proteins;

• detecting conserved regions, and inferring potential structural domains;

• inferring branchings in the tree of life;

• detecting highly conserved, functionally important residues;

• detecting correlated sites and inferring interactions;

• detecting pseudogenes;

• detecting positive selection;

• detecting recombination.

Moreover, protein sequence data has led to a better understanding of the evolutionary

process both at the molecular level in terms of the mutational and insertion/deletion (indel)

processes and at the domain and whole-protein level. Increasingly, with population sequence

data becoming available, an understanding of population processes within species is emerging.

This includes an understanding of processes responsible for disease and cancer, via studies of

somatic mutations and translocations [FCM+04], as well as an understanding of mutational

processes which occur in germline cells but are not fixed due to non-viability.

Many of these applications rely on likelihood-based inference and probabilistic models.

A probabilistic model parameterises a probability distribution over the space of all possible

datasets, and thus assigns a probability (termed likelihood when the data is fixed and we are

interested in the probability assigned to it by a particular model) for the particular dataset

under investigation. The likelihood-based approach to inference is to construct several prob-

abilistic models, and by comparing the likelihood of the data under one model vs another

decide which best explains the data. One example of this approach is phylogenetic tree re-

construction, where each possible tree topology (together with a fixed model of molecular

evolution) parameterises a different probabilistic model over alignments. An advantage of

likelihood based inference is its flexibility with regard to unknown parameters of the model,
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such as branch lengths in the case of tree reconstruction. Unknown parameters can be esti-

mated as those which maximise the likelihood of the data (the maximum likelihood approach).

Different models (in this case different tree topologies) can be compared on the basis of the

maximum likelihood values. One pitfall of this approach is that adding parameters to a model

will never decrease the maximum likelihood value and in most cases increase it, so that models

with many parameters have a higher maximum likelihood than those with fewer parameters.

A related problem, sometimes called the many parameter trap, occurs when parameters are

introduced in relation to the size of the dataset, for instance site-specific parameters for an

alignment. The Bayesian approach [Jay03], deals with these problems by comparing models

via the integral of the likelihood with respect to a prior probability distribution over parameter

space.

In this introductory chapter I will review some of the literature concerning protein

domains, introduce mathematical models which are used to identify protein domains, as well

as review the literature on parameterising evolutionary models. Accurate protein alignments

and trees are fundamental to the approaches taken in this thesis; however, I will not review

the vast literature surrounding these two topics, as no new techniques for either alignment or

tree reconstruction will be presented in this thesis.

1.1 Protein Domains

The strict definition of a protein domain is a distinct structural and evolutionary unit of a

protein. This can include the entire protein, in the case of a single domain protein, or it

can include a fragment of a multi-domain protein which is observed to also occur in different

contexts on different proteins. This definition assumes that the protein domain has a unique

stable three dimensional structure, so the definition excludes natively disordered regions, al-

though these regions may still be of functional importance – it has been shown that eukaryotes

have 3-5 times more proteins with long regions of no secondary structure than other king-

doms [Ros02]. Not all evolutionary units of proteins have had their structures elucidated, and

so in this thesis the definition will be weakened to include evolutionarily conserved protein

fragments which are not homologous to an entry in the protein data bank (PDB). A domain

architecture is defined as in [VBB+04] as the linear arrangement of protein domains – two

proteins have the same architecture if and only if they have the same domain composition,
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and the domains are arranged from N-terminal to C-terminal in the same way, with linker

regions of up to 30 residues allowed between domains. Inserts can be accommodated in this

definition by requiring the same nesting pattern. The term superfamily will be used as de-

fined in SCOP [HMBC97], which is as a collection of all domains which are related by descent.

Fold will also be used as in SCOP to denote the collection of domains which have structural

similarity, but may not be evolutionarily related.

A hypothesis forwarded in [LPR01, SL03] is that domains are the result of fusions of

antecedent domain sequences (ADSs) which are ancient peptide sequences. The authors argue

that this hypothesis explains the similarity of motifs present in different protein folds better

than the alternative hypothesis of convergent evolution. Under the ADS hypothesis, motifs

rather than domains are the atomic units of protein evolution. This hypothesis remains

unproven and controversial. It is not considered further in this thesis.

A compelling view to emerge from several structural biology studies is that multi-

domain proteins can be described at a high level by their protein domain architectures, and

that most proteins are multi-domain (two-thirds in prokaryotes [TPC98], more in eukaryotes

[Ger98]). Transferring functional annotation between single-domain proteins from the same

superfamily can be done with 68% accuracy, whereas for multi-domain proteins sharing a do-

main combination the accuracy is 81% and for multi-domain proteins with almost complete

residue coverage and identical domain architectures the accuracy rises to 91% [HG01]. These

authors also found that ignoring the multi-domain structure of a multi-domain protein is

particularly perilous for functional transfer: only 35% of multi-domain protein pairs sharing

a single domain have the same function. Aloy and co-workers have shown that the geom-

etry of interaction is generally conserved for homologues with sequence identity above 30%

but is not conserved between members of the same fold without evidence of shared ancestry,

although they also provide examples of very close homologues not preserving the interac-

tion, and distant homologues which strongly preserve the geometry of interaction [ACSR03].

Thus, it appears that a substantial amount of protein function can be understood via an

understanding of the structure and function of representative multi-domain proteins. On

the basis of this principle, protein targets have been prioritised for structure determination

in structural genomics projects [Bre00, AHT03, VBB+04]. As well as predicting function,

domain architectures can be used to assist cellular localization prediction [MSBP02].
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Novel proteins are formed during evolution by duplication and recombination. Dupli-

cation gives rise to proteins which are freer to diverge and evolve new functions. While this

process often leads to the formation of a pseudogene, it is also the main source for the creation

of new genes [PP02]. It has been observed that the degree to which different domain super-

families have been duplicated and subsequently maintained in the genome varies substantially,

and this results in a power law distribution of domain superfamily occurrence[QLG01]. Re-

combination can lead to the formation of novel protein domain architectures, by either fusing

genes or by shuffling exons via intronic recombination, leading to domain shuffling [KZNL02].

Insertions of one domain into another account for 9% of non-redundant domain architectures

in the PDB – a small but likely significant subset of protein structures [ASHS04].

Apic et al. have demonstrated in [AGT01b, AGT01a, AHT03] that the observed pattern

of domain combinations is highly non-random. In fact, a few domain superfamilies are highly

versatile in forming multi-domain proteins with a variety of other protein domains, while most

have only a single partner. A random model of recombination would predict a much flatter

distribution. This suggests that the protein domain combinations which are observed are

strongly selected. The authors also showed that multicellular organisms have more sequences

and more domain families participating in tandem repeats.

A study of the geometry of domain combinations of Rossman domains [BC02], which are

highly versatile in forming multi-domain proteins, has demonstrated that proteins which have

the same domain architecture have evolved from the same ancestor. The authors confirmed

the observation in [AGT01b] that superfamily combinations almost always occur in the same

sequential order, and identified only 2% of cases in which both sequential orders of a domain

pair occur. Moreover the authors discovered no structural reason for a particular order, and

conclude the observed order is due to the single recombination event which occurred to create

the combination. The authors also found extensive conservation of the relative geometry of

the domain pair provided the order was conserved, and not otherwise.

Vogel et al. showed in [VBB+04] that some domain combinations occur in many dif-

ferent domain contexts, while preserving the spatial relationships and the linear order of the

combination. Such a combination is called a supra-domain. Two particular types of supra-

domains, were identified based on the geometry of the interaction: interface supra-domains

have an interface which is critical to the biochemical activity of the protein, whereas the
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domains in separate supra-domains have biochemically separate but complementary activi-

ties. An example provided by the authors of a separate supra-domain is the P-loop nucleotide

triphosphate hydrolase domain, which binds and hydrolyses GTP in order to drive a conforma-

tional change that is transmitted to its supra-domain partner. In the example provided for the

interface supra-domain, both partners of the supra-domain are directly involved in the same

cofactor binding interactions. As with domains, some supra-domains have been duplicated

substantially, while others have only a few copies. A few supra-domains are very versatile with

respect to other domain contexts, while most occur in only a few domain contexts. Vogel et

al. note that the majority (64%) of single SCOP domains occur in all three kingdoms of life,

whereas most two-domain combinations (96%) and most duplet supra-domains (85%) do not

occur in at least one kingdom. Moreover, it was observed in [AGT01b] that of those super-

families which do participate in kingdom specific domain combinations, significantly more are

from all three kingdoms than not. Thus, while domains are in general ancient and common

to the last common ancestor of three kingdoms of life, domain combinations have occurred

largely within the evolution of specific kingdoms.

Superfamilies often display a wide diversity of function. 25% of CATH superfamilies

contain members of different enzyme types [TOT01]. A recent evolutionary study into how

evolution generates functional diversity from similar structures demonstrates the economy of

nature: structurally conserved residues are kept intact, including residues important for co-

factor binding [BBT03]. As noted in [VBK+04], these studies have to a large extent focussed

on residue changes within the protein domain structure, and not investigated the effect of

domain context in modulating the behaviour of component protein domains. As shown in

[HG01] context is of vital importance in correctly annotating domain function. Many exam-

ples of context-modulated function have been observed. One example given in [VBK+04] is

the winged helix domain, which is typically a DNA binding domain, and in many cases is

combined with a regulatory domain, but can also be combined with a catalytic domain so

that the protein function, while still acting on DNA, is changed. This is termed a syntactic

change in [VBK+04]. A more radical modulation of behaviour is observed in cases where the

winged helix domain no longer has any DNA binding activity, but instead acts as a substrate

specificity pocket, which the authors term a semantic change. Elucidating the range and ex-

tent of context-dependent domain functional change is an important area for future research
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in structural biology.

1.2 Sequence based protein domain detection

An important problem is to identify the protein domain architecture of novel protein se-

quences, for example from genome sequencing projects. Once the domain architecture is

determined, it may be possible to transfer functional annotation from biochemically and ge-

netically characterised homologues, as well as to infer structurally important residues as well

as regions of interactions with other proteins.

One potential approach is to use pairwise comparison techniques, such as BLAST

[AMS+97], and to consider pairwise similarity scores with all members of a domain fam-

ily. However, methods which use a profile are more sensitive than methods which look for

pairwise homology [PKB+98] . A profile summarises the site-specific residue frequencies of a

multiple alignment of known members of a domain family, termed the seed alignment. The

simplest profile method is the position specific scoring matrix (PSSM) which constructs a

probability distribution at each of the m sites in the alignment and does not allow gaps. A

novel sequence is scanned by the PSSM by calculating at each site the probability that the

next m residues in the sequence have been emitted by the corresponding distributions in the

PSSM, and the highest score is taken as the overall score.

Profile hidden Markov models (HMMs) formalise PSSMs as probabilistic models and

improve its sensitivity by allowing insertions and deletions relative to the profile. A profile

HMM (labelled D) is a probabilistic model which parameterises a probability distribution

over all possible sequences (labelled x = x1x2 . . . xn). The basic idea is that the profile HMM

constructed for a domain family assigns high probability to sequences which are homologous

to the domain family (or more strictly contain a homologous fragment), and a low probability

to non-homologous sequences. One problem with using the probability of the sequence as a

score, regardless of the precise details of the profile HMM, is that long sequences (above a

certain length threshold) will inevitably have lower probability than shorter sequences. From

the point of view of Bayesian inference another problem is that the correct probability upon

which to base the inference is the posterior probability

P (D|x) =
P (x|D)P (D)∑

D′ P (x|D′)P (D′)
, (1.1)
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where the denominator is a sum of the likelihood under all possible domain models D′ multi-

plied by the prior probability of that model, which is expensive to calculate. Both problems

can be overcome by introducing as an alternative hypothesis a background probability distri-

bution R over sequence space, and calculating the ratio of posterior probabilities, in which

case the term involving the sum in the previous equation cancels out. It will be convenient

to work with log probabilities

log
P (D|x)
P (R|x)

= log
P (x|D)
P (x|R)

+ log
P (D)
P (R)

(1.2)

where the first term is called the log-odds score, and the second term is the log ratio of the

prior probabilities of the models, and can be thought of as a threshold on the log-odds score.

As long as the background model has a similar distribution over protein lengths, the scores

should be normalised with respect to protein length.

The log-odds score is used to rank sequences and apply a threshold cut-off such that

all sequences scoring above a threshold are taken to be members of the family. It is a useful

measure for inferring relative similarities of sequences to the protein domain, but does not

provide similarity scores in absolute terms, or at a particular level of significance. Empirical

significance values can be obtained by calculating the log-odds scores for sequences randomly

sampled from the background model. In this way a distribution of scores for random ‘proteins’

is obtained, and the significance level of a sequence log-odds score can be obtained by counting

the fraction of random sequences which score higher. However, to get an accurate significance

value for high scoring sequences in this way many hundreds of thousands of random sequences

need to be scored2. To get around this problem it has been observed that the distribution

of random scores from an profile HMM follows an extreme value distribution, which can be

successfully parameterised with much less data (HMMER uses 5000 sequences)[DEKM98].

It is useful at this point to parameterise the profile HMM. I start with a description of

Markov models, which will be useful at other points in this thesis.

Discrete Markov Models

Let Σ denote a state space, {Yi : [0, 1] → Σ}i=1,2... denote a series of random variables each

of which takes values in the state space Σ. Let µ denote the uniform probability distribution
2particularly if the significance value is to be ascertained to the level required for annotation in Pfam, which

is a significance of less than 1/N where N is the number of protein sequences scored, currently around 1.5m.
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on the interval [0, 1] so that

P (Yi = y) = µ({r ∈ [0, 1] : Yi(r) = y})

defines a probability distribution on Σ.

A kth order Markov model is a probabilistic model with the property that the state at

position i is only dependent on the preceding k states:

P (Yi = y|Yi−1 = y1, . . . , Y1 = yi−1) = P (Yi = y|Yi−1 = y1, . . . , Yi−k = yk). (1.3)

In the simplest cases of a homogeneous Markov model these probabilities are indepen-

dent of position in the chain

P (Yi = y|Yi−1 = y1, . . . Yi−k = yk) = P (Yi′ = y|Yi′−1 = y1, . . . Yi′−k = yk),

∀1 ≤ i, i′ ≤ n, and y1 . . . yk ∈ Σ. (1.4)

So all that is needed to specify a Markov model is to specify the states, and the transition

probabilities P (y|y1, . . . yk) between states. In the case of a first order Markov model, I will

also write P (y1 → y) for the transition probability. It will be useful to include a special

state S in which the model starts and one for which it terminates, T . The probability

distribution parameterised by a Markov model is over chains of states, which will be of finite

but unbounded length provided there is a path with non-zero transition probability from

every state in the model to the end state.

A hidden Markov model is a Markov model in which some states y ∈ Σ themselves

are allowed to be random variables, y : [0, 1] → Υ, taking values in the space Υ. These are

termed emission states. It is also useful to allow states which are not random variables, which

includes the start and terminate states. The emission probability distribution for emission

state y over Υ is then defined as

P (u|y) = µ({r ∈ [0, 1] : y(r) = u}).

In the case of a profile HMM, the state space Υ will be amino-acids, codons or nucleotides.

These states are hidden in the sense that they are not observed in the data, but are internal

states of the overall probabilistic model. They are introduced in order to provide flexibility in

parameterising an appropriate probability distribution over sequence space. So, in order to
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Figure 1.1: Basic architecture for profile hidden Markov model for an alignment with four amino
acids and without gaps. Each Mi corresponds to a column in the multiple alignment, and emits
over a distribution of amino acids. B,E correspond to begin and end states.

specify a Hidden Markov model, the hidden states Σ, transition probabilities P (y|y1, . . . yk)

and emission probabilities P (u|y) must be specified.

The PSSM reframed in this framework is shown in figure 1.1. The state space Σ consists

of match states Mj for each column in the seed alignment as well as the begin and end states.

Each match state emits in the space Υ of amino-acids.

A profile HMM from HMMER is shown in figure 1.2, taken from [Edd03]. In fact this

comprises two HMMs – the domain model HMM and the null model HMM. Both HMMs

are first order HMMs. For an alignment consisting of m conserved columns (which can be

defined as columns with less than 50% gaps) the domain model state space Σ includes m

match and insert emission states Mj and Ij as well as m non-emission states Dj . Σ also

includes an N-terminal, C-terminal and inter-domain emission state N,C, J respectively as

well as domain begin and end non-emission states B,E. The Mj emit residues according to a

probability distribution estimated from the counts observed in a particular conserved column

of the alignment. The insert states Ij emission probability is calculated from all insert states

in the Pfam database. The match to insert transitions specify the ‘cost’ of opening a gap

relative to the protein domain, and the insert to insert transitions specify the cost to maintain

the gap, which is an affine gap scoring scheme. The delete states allow for domain states to

be skipped, with a penalty controlled by match to delete and delete to match transitions.

The N,C, J states allow the model to score full length proteins by allowing for N- C-terminal

and inter domain regions respectively. These states emit according to a background model

of residue usage in proteins. The null model HMM consists of a single emission state, which

emits according to the background distribution of protein residues.
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Figure 1.2: Diagram of profile Hidden Markov Model. States which emit symbols are shown
as squares or diamonds; circles do not emit symbols. The core model consists of match states –
which model conserved residues of a protein family; insert states – which allow for segments of the
query sequence not present in the protein family; and delete states – which allow for deletions of
conserved residues in the protein family from the query sequence. The model consists of several
flanking states, which allow for local matches and multiple hits. The transition to the J state
allows for multiple hits of the model to a single query sequence. The N, J and C states are
analogous to insert states, but occur before, between and after the model hit respectively. The
B and T states are states used to begin and terminate a hit to the query, while S and E states
are formally required as overall start and end states. To obtain the log-odds score we also require
a null model. The null model consists of an null emission state G which emits according to a
background distribution, and can loop back to itself, or transition to the end state. Effectively
the transitions of the null model act to negate the otherwise intrinsic penalty for scoring longer
query sequences.
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Calculating the likelihood of a profile HMM

The forward algorithm can be used to calculate the likelihood of the sequence given the

profile HMM. Note that the profile HMM can generate a particular sequence with many

different paths through the HMM architecture, although only a few will have high poste-

rior probability[DEKM98]. The forward algorithm naturally sums over all possible paths,

in contrast to the Viterbi algorithm (which will not be used, and so not described in more

detail, but see [DEKM98]) which calculates the probability of the mostly likely path to have

generated the sequence. The Viterbi algorithm is employed by HMMER, and has the ad-

vantage that all calculations can be done in log probability space and that only summation

is required. The forward algorithm, on the other hand requires working in probability space

with multiplication, which can lead to underflow errors if an adaptive scaling algorithm is not

employed.

The forward algorithm proceeds by iteratively filling in eight matrices P (x1 . . . xi|S . . .Mj),

P (x1 . . . xi|S . . . Ij), P (x1 . . . xi|S . . .Dj), P (x1 . . . xi|S . . . C), P (x1 . . . xi|S . . . J), P (x1 . . . xi|S . . .N),

P (x1 . . . xi|S . . . B), P (x1 . . . xi|S . . . E) which are the partial probabilities of the HMM emit-

ting subsequence up to and including the ith residue and the ending in the jth match, delete,

insert or the C, J,N,B,E states respectively. Let ψi denote the state which emitted residue

xi. If the domain begin state B is interpreted as also being M0, these scores can be calculated
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recursively using

P (x1 . . . xi|S . . .Mj) = P (xi|ψi = Mj) ·


P (x1 . . . xi−1|S . . .Mj−1) · P (Mj−1 →Mj)

+ P (x1 . . . xi−1|S . . . Ij−1) · P (Ij−1 →Mj)

+ P (x1 . . . xi|S . . .Dj−1) · P (Dj−1 →Mj)


P (x1 . . . xi|S . . .Dj) =

P (x1 . . . xi|S . . .Mj−1) · P (Mj−1 → Dj)

+ P (x1 . . . xi|S . . .Dj−1) · P (Dj−1 → Dj)


P (x1 . . . xi|S . . . Ij) = P (xi|ψi = Ij) ·

P (x1 . . . xi−1|S . . .Mj) · P (Mj → Ij)

+ P (x1 . . . xi−1|S . . . Ij) · P (Ij → Ij)


P (x1 . . . xi|S . . . B) =

P (x1 . . . xi−1|S . . . C) · P (C → B)

+ P (x1 . . . xi−1|S . . . J) · P (J → B)



P (x1 . . . xi|S . . . E) =


P (x1 . . . xi−1|S . . .Mm) · P (Mm → E)

+ P (x1 . . . xi−1|S . . . Im) · P (Im → E)

+ P (x1 . . . xi|S . . .Dm) · P (Dm → E)


(1.5)

P (x1 . . . xi|S . . . C) = P (xi|ψi = C) ·

P (S → C) if i = 1

P (x1 . . . xi−1|S . . . C) · P (C → C)


P (x1 . . . xi|S . . . J) = P (xi|ψi = J) ·

P (x1 . . . xi−1|S . . . E) · P (E → J)

+ P (x1 . . . xi−1|S . . . J) · P (J → J)


P (x1 . . . xi|S . . .N) = P (xi|ψi = N) ·

P (x1 . . . xi−1|S . . .N) · P (N → N)

+ P (x1 . . . xi−1|S . . . E) · P (E → N)


(1.6)

The overall likelihood of the domain matching the sequence is equal to the score for the

terminal state: P (x|D) = P (x1 . . . xn|S . . . C)P (C → T ). The probability of the sequence

being emitted by the null model can be calculated as

P (x|R) = P (G→ G)n · P (G→ T ) ·
∏

i

P (xi|G).

The overall log-odds score is then calculated as logP (x|D)− logP (x|R).

It is also possible to calculate the backward partial scores P (xi+1 . . . xn|Mj . . . T ),

P (xi+1 . . . xn|Ij . . . T ), P (xi+1 . . . xn|Dj . . . T ), P (xi+1 . . . xn|C . . . T ), P (xi+1 . . . xn|J . . . T ),
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P (xi+1 . . . xn|N . . . T ), P (xi+1 . . . xn|B . . . T ), P (xi+1 . . . xn|E . . . T ) which are the partial prob-

ability of the HMM emitting the subsequence from residue i + 1 to n and coming from jth

match, delete, insert or the C, J,N,B,E states respectively. The backward algorithm pro-

ceeds iteratively from the C-terminal to N-terminal end of the sequence (equations only shown

for P (xi+1 . . . xn|Mj . . . T )). Again to simplify the equations, the E state is interpreted to be

the same state as Mm+1 (where m is the number of match states).

P (xi+1 . . . xn|Mj . . . T ) =


P (xi+1|ψi+1 = Mj+1) · P (xi+2 . . . xn|Mj+1 . . . T ) · P (Mj →Mj+1)

+ P (xi+1|ψi+1 = Ij) · P (xi+2 . . . xn|Ij . . . T ) · P (Mj → Ij)

+ P (xi+1 . . . xn|Dj+1 . . . T ) · P (Mj → Dj+1)


(1.7)

Using the definition of the partial forward and backward scores

P (x|ψi = Mj) = P (x1 . . . xi|S . . .Mj)P (xi+1 . . . xn|Mj . . . T )

and hence, using Bayes’ theorem

P (ψi = Mj |x) =
P (x1 . . . xi|S . . .Mj) · P (xi+1 . . . xn|Mj . . . T )

P (x)
(1.8)

This provides a way of calculating the posterior probabilities.

Building the profile HMM

A profile HMM is constructed from a seed alignment of homologous sequences. The conserved

columns in the alignment correspond to match states, and the other columns correspond to

insert states. Which columns to label as match states and which to label as insert states can

be either resolved heuristically (by labelling all columns with greater than 50% gaps as insert

states), or using the maximum a posteriori architecture algorithm to find the profile HMM

which optimises the likelihood of the seed alignment (see [DEKM98]).

The observed residues in a conserved column are used to estimate the emission prob-

ability distribution for that column, and the observed transitions are used to estimate the

transition probabilities. The most straightforward approach is to use the observed frequencies

as the emission and transition probabilities, however this assumes that the rows are indepen-

dently sampled from the target probability distribution, which is not true. Some sequences
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are closely related to each other whereas some are more distantly related. To get around this

problem, various weighting schemes have been proposed [SA90, HH92, GSC94, KM95, HH96],

which all in effect try to adjust the weights of the rows included in the counts so that se-

quences from parts of sequence space which are not well sampled in the seed contribute more,

and sequences from parts of sequence space which are well sampled each contribute less to

the overall estimation of emission and transition probabilities. Even after re-weighting the

sequences to remove sampling biases, another problem is that the space of possible domain

family members has been inadequately sampled, particularly for small seed alignments. This

problem has been addressed using a mixture of Dirichlet priors, in which the emission prob-

ability is taken to be the mixture of k posterior probabilities, each of which are calculated as

the posterior probability of the residue frequencies given the column and one of k Dirichlet

priors. The mixture co-efficients are calculated as the posterior probability of each mixture

component given the observed counts in the column. See [SKB+96] for more details. This

problem can also be addressed using the tree HMM introduced in the next section.

Other methods and extensions

One improvement made to profile HMM methods in recent years has been the introduction

of iterations, whereby an initial sequence is used to build a profile HMM which is searched

against a database and significant hits are used to rebuild the profile HMM. This process is

then repeated until no further hits are found. This is the strategy used in SAM [HK96] and

PSI-blast [AMS+97].

Several profile-profile comparison techniques have been proposed in recent years [Pie96,

YL02, SBG03, Sd04]. The motivation for these methods is that profile-sequence comparisons

are more sensitive than sequence-sequence comparisons and so profile-profile comparisons

might be expected to be even more sensitive in detecting weak homology. Indeed, these

methods appear to be more sensitive than profile HMMs. The method proposed in [Pie96] was

developed for the comparison or conserved ungapped alignments from the BLOCKS [HHP99]

database and so does not allow gaps. PROF SIM [YL02] and COMPASS [SBG03] both use

allow gaps via a Smith-Waterman local alignment algorithm with column similarity scores

based on Jensen-Shannon entropy and a symmetric log-odds ratios respectively. Söding [Sd04]

generalizes the profile HMM framework to compare two profiles.
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Several discriminative support vector machine (SVM) approaches have been applied

to homology detection. Jaakkola et al. [JDH00] proposed a method for using profile HMMs

to derive a kernel function in a SVM classifier. The motivation for this approach is that

profile HMMs are trained using positive training examples only. A discriminative model,

which takes both positive and negative training examples, should perform better. A support

vector machine is a discriminative model which can be thought of as a classifier which can be

trained to discriminate points in a high dimensional space. A support vector machine relies

on a kernel function K(x, xk) which can be thought of as a measure of similarity between a

sequence x and training example xk, which can be either positive or negative. Considering the

profile HMM as a likelihood function over sequence space, Jaakkola et al. define a vector Ux

called a Fisher score, which is the partial derivative of the log-likelihood score at the sequence

X with respect each of the parameters of the profile HMM. The vectors Ux and Uxk are then

used to derive the kernel function via a formula presented in [JDH00]. Leslie [LEC+04] et

al. have proposed a string kernel for protein classification which maps a protein to a vector

Ux called its ‘k-spectrum’ which is the set of all k-mers contained in the protein. The kernel

function is then a vector function of Ux and Uxk as before.

1.3 Models of sequence evolution

The genomic sequence of cellular organisms is in constant flux. During cell division repli-

cation introduces copying errors of which some fraction remain uncorrected. Recombination

leads to exchange of genomic material between alleles in the case of eukaryotes, and between

different species in bacteria. Processes such as non-allelic homologous recombination lead to

genomic rearrangements including deletion, inversion, translocation and duplication. Retro-

viral elements are integrated into genomic DNA. Certain proteins promote genomic mutation

via processes such as class switch recombination and somatic hypermutation, particularly

in certain cell types such as germinal centre B cells where mutation is required in order to

generate a diverse set of antibodies. External factors such as radiation also lead to genomic

mutation. These mutations can occur either in somatic cells, in which case they are not passed

to the next generation, or in germline cells. Most germline cell mutations are hypothesised

to be neutral [Kim83], however some will be deleterious and therefore not survive. Rarely,

mutations will be advantageous and selected for, resulting in a selective sweep through the
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population.

The DNA or RNA sequence of viruses is typically under an even higher rate of flux

than for cellular organisms due to copying errors during replication in the host cell as well as

processes such as host-mediated hypermutation. In many cases these errors are not repaired

by the host cell DNA repair machinery and so the rate at which mutation occurs is significantly

higher. Retrotransposition is a particularly error prone step leading to high rates of mutation

in retroviruses. Viruses often have particular features which enhance the rate of mutation.

Thus genomic sequences change over time and these changes can be modelled at different

levels: within a single cell during the cell’s lifetime; progressively during transmission from

parent to daughter cells; within a population of cells (for example during the progression of a

tumour, or a bacterial culture); transmission from a multicellular parent to offspring organism;

within a population of multi-cellular organisms; or between different species of organisms.

Each of these levels requires a different level of resolution. For instance when modelling

difference between species, differences within a population will typically be ignored and the

most frequent allele will be taken as representative for that species. Due to duplication,

different segments of genomic DNA will be related to each other via descent, and so sequence

evolution can be modelled within a single genome.

1.3.1 Probabilistic models of sequence evolution

Let Υ describe a state-space, which initially is taken to be all of sequence space, and let

u, v ∈ Υ be elements of this state space. Let |u| denote the length of a sequence. A proba-

bilistic model of sequence evolution, denoted by E , is a model which describes a probability

distribution PE(xt = u) over sequences at each time t ≥ 0. This can be used to describe the

transition probability PE(xt+4t = v|xt = u) of observing a sequence v at time t + 4t given

that u was observed at time t. A general probabilistic model of evolution would need take into

account all of the mutational processes described above, including point mutation, insertion,

deletion, recombination, gene conversion and translocation. Moreover, such a model would

also need to describe how the rates of each of these processes change with respect to position

in the genome and time. This is clearly a very challenging task.

Given the complexity of the task, why bother constructing probabilistic models of evolu-

tion? The answer principally lies in the usefulness of the likelihood P ({xk}|E , T ) of a cluster
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of homologous sequences {xk}. If E is fixed, the likelihood can be used as a criterion for

evaluating how well the tree fits the data, for finding optimal branch lengths, and for param-

eterising a posterior distribution over all possible trees. This approach can also be used to

find evidence for recombination [HW01]. If T is fixed, the likelihood can be used to compare

different evolutionary models, and so gain quantifiable insight into the evolutionary process

itself. This approach is the basis for tests for pseudogenes and positive selection, which will

be further described in section 4.1 and 4.2. Probabilistic models of evolution can also be used

to align sequences [MD95, HB01, Hol03, MLH04].

Whole sequence evolutionary models

The first standard simplifying assumption is that E is a continuous-time Markov process over

the state space Υ. This corresponds to assuming that the transition probability, PE(xt+4t =

u|xt = v) is independent of t, or that evolution is homogeneous with respect to time. This

simplifying assumption is clearly violated in many circumstances. One example is if a func-

tional gene becomes non-functional, in which case the evolutionary constraints on the sequence

change. One way to improve the realism of models with respect to this assumption is to have

different models on different parts of the tree, as in Chapter 4. If the process E is assumed

to be Markov, then the time evolution of the probability distributions PE(t) is described by

the differential equation
dPE(t)
dt

= PE(t)Qr (1.9)

where Q is a fixed rate matrix describing the instantaneous transition rate between states in

the state space so that Qu,v the instantaneous rate of transition between states u and v, and

satisfies

Qu,u = −
∑

v∈Υ,v 6=u

Qu,v, ∀u ∈ Υ. (1.10)

An arbitrary scaling constant r representing the rate of evolution has been included for future

reference and can be assumed at this stage to be equal 1. This rate matrix is scaled so that

the average rate of substitution at equilibrium is 1:

−
∑
u∈Υ

πuQu,u = 1 (1.11)

which reduces by 1 the number of parameters required to specify a rate matrix and implies

that rt is measured in units of expected substitutions per site. The solution to the differential
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equation is given by

PE(t) = PE(0)eQrt, (1.12)

where eQrt is the matrix exponential. The transition probabilities are given by

PE(xt+4t = v|xt = u) =
[
eQr4t

]
u,v
. (1.13)

The rate matrix Q is assumed to be irreducible, which requires that the there is a

non-zero probability of transitioning over some time 4t > 0 between any two states u and v,

and recurrent, which requires that the probability of visiting each state at least N times in an

infinite amount of time is equal to 1 for all positive integers N . A stationary distribution π of

Q is a distribution for which πQ = 0. For a recurrent, irreducible rate matrix Q a stationary

distribution π exists and is unique up to scalar multiplication (see [Nor97] for further details).

Thus it makes sense to talk about the stationary probability distribution of E , and so I will

write E = (π,Q). Another common simplifying assumption is reversibility, which implies that

the instantaneous flux between residues is the same in both directions

πuQu,v = πvQv,u. (1.14)

This halves the number of parameters required to estimate the rate matrix Q. There is no

a priori reason to expect that evolution is reversible, although there is some evidence [AB97]

that DNA evolution in many cases is close to reversible. As observed in [HD98], insertion

events may be short and frequent, while deletion events long and rare, which would lead to a

violation of the reversibility assumption. Observe that if eq. 1.14 holds then

Su,v(f) = πf
uπ

f−1
v Qu,v (1.15)

is symmetric, i.e. Su,v(f) = Sv,u(f). This defines a single parameter family of symmetric

matrices for Q. The parameter f , described in [GW02], is called the +gwF parameter. S(0)

is referred to as an exchangeability matrix. A symmetric matrix can be expressed in the form

S(f) = N(f)D(f)N(f)T (1.16)

where D(f) is a diagonal matrix, N(f) is an orthonormal matrix and N(f)T is the matrix

transpose (see [Lay94] for further details). Let Π be a diagonal matrix with entries Πu,u = πu.
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If I restrict to f = 1/2

Q = Π−1/2S(1/2)Π1/2 (1.17)

= N′(1/2)D(1/2)N′(1/2)−1 (1.18)

where

N′(1/2) = Π−1/2N(1/2). (1.19)

Thus, Q is diagonalizable and the matrix exponential can be calculated as

eQr4t = Π−1/2N(1/2)eD(1/2)r4tN(1/2)T Π1/2 (1.20)

which provides a fast way to calculate the matrix exponential – first calculate the orthonormal

decomposition of S(1/2) and then for all t > 0 the matrix exponential step just consists of

exponentiating the diagonal entries of D(1/2) and two matrix multiplication steps. The

columns of N′(1/2) are the eigenvectors of Q and can be interpreted as directions in state

space in which information about the ancestral sequence is lost through evolution. The

corresponding diagonal entries are the rate at which the information is lost.

Most methods also assume stationarity, which says that PE(0) = π, or that the system

is at equilibrium at time 0. There is also no particular reason to expect stationarity to hold in

general. In particular, a universal trend of amino acid loss and gain has been observed in all

kingdoms of life [JKA+], with Cys, Met, His, Ser, and Phe gaining and Pro, Ala, Glu, and Gly

losing frequency. Moreover G+C content varies widely between genomes, again indicating the

stationarity does not hold in general.

For proteins of known structure, Robinson et al. [RJK+03] parameterise a whole se-

quence model for sequences evolving in such a way as to preserve this structure. The authors

restrict their evolutionary model to DNA sequences of length N and allow only one posi-

tion in the sequence change in any given mutation event, so the rate matrix Q is of size

4N x 4N and each row has no more than 3N non-zero off-diagonal entries. The rate of

amino-acid changing substitutions is based on the propensity of the mutation to change the

structure using a sequence-structure compatibility score. Transition/transversion and non-

synonymous/synonymous substitution rate ratios are used to determine the underlying DNA

mutation rate within these constraints.
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Substitution, insertion, deletion models

Most models of sequence evolution further assume that the evolution consists of two indepen-

dent processes, namely a k-mer residue substitution process and an insertion/deletion (indel)

process. The k-mer residue substitution process can itself be considered as a continuous time

Markov process. Let Υ̇ and Ė = (Q̇, π̇) denote the state space and substitution model re-

spectively for a single residue substitution process, with the natural extension for 2-mer and

3-mer substitution processes. The symbols u, v will be used to represent both arbitrary length

sequences as well as single residues, but it will be clear from the context which is implied in

each case.

Miklós et al. consider the class of evolutionary models which allow local point substi-

tutions and multiple residue inserts and deletes (called SID models) [MLH04]. Let ρI(u) be

the context-independent rate of insertion of sequence u between two residues in an ancestral

sequence and let ρD(u) be the context-independent rate of deletion of sequence u.

The simplest SID model disallows insertions and deletions in the evolutionary model,

and treats gaps as either missing data (see section 1.3.3 for a discussion on how to accommo-

date missing data in the likelihood calculation), or as an extra residue character. This has

the effect of not allowing the sequence length to change over time. The residue substitution

process can be further simplified by assuming that sites evolve independently of one another

according to a single residue model Ė . Site-specific residue models are discussed in more depth

below.

The TFK91 links model [TKF91] is a SID model with an arbitrary point substitution

matrix (Q̇, π̇) and an indel process governed by

ρI(u) =


λπ̇u1 if |u| = 1

0 otherwise
(1.21)

ρD(u) =


µ if |u| = 1

0 otherwise,
(1.22)

where λ is the insert rate and µ is the deletion rate. The TFK92 model [TKF92] is an

extension to this model but considers a sequence to consist of fixed-length indivisible fragments

of variable length k. The substitution process for each of these k-mers is given by
k
E = (

k
Q,

k
π)
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and the indel process is the same as for TFK91 but considered over arbitrary length k-mers.

Each of the
k
E can be parameterised as a product of k independent single residue models.

Miklós et al. introduce a long-indel model [MLH04] which is parameterised over the

state space Υ of sequences of arbitrary length by

ρI(u) = λ|u|

|u|∏
k=1

π̇uk
(1.23)

ρD(u) = µ|u| (1.24)

where λ|u| and µ|u| are the rate of deletion and insertion respectively of sequences of length

|u|. Miklós et al. derive restrictions on the insertion and deletion rates in order to preserve

reversibility. Alignment algorithms using this model are also presented.

Mitchison and Durbin [MD95] propose a tree HMM to model insertions and deletions.

Under this model, there is a collection of n match {Mj} and n delete {Dj} states of a HMM,

each of which will generate a column in a multiple sequence alignment with n columns. The

model does not allow insertions, so the maximum length n of sequence generated by this model

is pre-specified. The HMM architecture is shown in figure 1.3. The path through the HMM

is evolved as well as the residues. Thus, the sequence xt is augmented with ψt describing

the path through the model at time t. Mitchison and Durbin propose that each transition in

the model evolves independently according to continuous, stationary, time-reversible Markov

process, denoted Ē = (Q̄, π̄), over the state space of transitions, denoted by Ῡ, where

Ῡ = {Mi →Mi+1,Mi → Di+1, Di → Di+1, Di →Mi+1}, (1.25)

provided M0 is interpreted as the begin state and Mn+1 is interpreted as the end state. The

rate matrix over transitions Q̄ is trained from a database of alignments. Note that the path

ψt is hidden, and so to use the tree HMM for inference of trees and evolutionary distances, it

is necessary to sum over all possible hidden states, which is computationally expensive. The

tree HMM does not attempt to model novel insertions – instead it models ‘re-insertion’ of

ancestral sequence which has been temporarily lost in a lineage. For practical purposes this

is not a substantial drawback but it is unsatisfactory from a theoretical point of view.

1.3.2 Models of residue substitution

The most general non-reversible DNA model is the unrestricted model (UNR), which has 11

free parameters (12 off-diagonal elements minus 1 parameter for scaling). The general time
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Figure 1.3: Basic architecture for tree HMM as defined in [MD95]. Each Mi corresponds to a
column in the multiple alignment, and emits over a distribution of amino acids. S, T correspond
to start and termination states.

reversible model (GTR) has 5 free parameters (6 upper diagonal elements minus 1 parameter

for scaling). Other substitution models include the HKY model [HKY85], which has 4 free

parameters and the F81 model [Fel81], which has 3 free parameters. These parameters are

typically trained from an alignment with a given tree topology by jointly finding the parame-

ters of the model and the branch lengths which maximise the likelihood of the data. Methods

have been devised for simultaneously optimising over alternative tree topologies.

Goldman and Yang [GY94] and Muse and Gaut [MG94] have described models of

codon evolution which take into account an underlying nucleotide model based on the HKY

[HKY85] with transition/transversion ratio of κ as well as a non-synonymous/synonymous

rate ω. These models were refined in [YN98]. Let u = u1u2u3 and v = v1v2v3 be one of the

61 non-termination codons. Then the codon rate matrix is parameterised as

...
Qu,v =



0 if the codons differ at more than 1 position,

...
π v for a synonymous transversion,

κ
...
π v for a synonymous transition,

ω
...
π v for a non-synonymous transversion,

ωκ
...
π v for a non-synonymous transition.

(1.26)

In [GY94] codon models which take into account the chemical similarity of substituted amino

acids are presented.

The codon and DNA models presented have a small number of parameters which can be

trained by maximum likelihood (ML) on a given alignment. Reversible amino acid models, on

the other hand, have 190 upper diagonal elements and so 189 free parameters after scaling as
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in eq. 1.11. Reliable estimates of these parameters requires a significant amount of data. Thus

amino-acid rate matrices are typically derived from databases of alignments, as is discussed

in more detail below. However, different alignments and particularly different sites in an

alignment have very different structural and functional constraints. Using a database derived

rate matrix to describe all columns in an alignment leads to an inaccurate model of evolution

at particular sites [Bru96, HB98]. One approach is to modify database derived rate matrix,

labelled ˆ̇E = ( ˆ̇Q, ˆ̇π) so that the stationary probabilities of the new rate matrix Q̇ are set to

a given distribution π̇ which is set (or trained) to reflect a particular alignment or site in an

alignment. This can be achieved as described in [CAJ+94, GW02] where the exchangeabilities

matrix for the alignment is set to be equal to that estimated from a database, i.e. Ṡ(f) = ˆ̇S(f),

where the equation for S(f) is given in eq. 1.15. This leads to the equation

Q̇uv =
(
π̇v

ˆ̇πv

)1−f

× ˆ̇Quv ×

(
ˆ̇πu

π̇u

)f

. (1.27)

The +gwF parameter f is restricted to lie between 0 and 1 [GW02]), and can be thought of

as the trade-off between frequencies in the equilibrium distribution resulting from pressure to

mutate from (f = 1) and pressure to mutate towards (f = 0) a particular residue/base. The

most common approach [CAJ+94] is to set f = 0 which reduces equation 1.27 to

Q̇uv =
(
π̇v

ˆ̇πv

)
ˆ̇Quv (1.28)

Accounting for variation between sites

In many cases a single substitution model is used for every site in an alignment, in contrast to

the profile HMM methods discussed in section 1.2 which have a different frequency distribution

at each site. This is readily seen to be a drastic simplifying assumption for both protein and

DNA alignments. Some regions in an alignment will be evolving slowly due to functional

and/or structural reasons. Regions of DNA vary greatly in composition, for example in G+C

content. Codon substitution patterns at neutrally evolving or positively selected sites will be

different from those under purifying selection.

Yang [Yan93] proposed the use of a mixture of substitution models of the form eq. 1.12

each with different rates r chosen from a discretised gamma distribution. Yang [Yan95] as

well as Felsenstein and Churchill [FC96], further proposed correlating rates at adjacent sites

via a first order spatial Markov chain. In [Yan95] it is assumed that the rate at a site is drawn
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from a different discretised gamma distribution, and the variance of the gamma distribution

is the hidden parameter of the spatial HMM. In [FC96] the rate (drawn from a finite set of

categories) is itself the hidden parameter of the HMM. In [SH04], context dependent site-

specific substitution models are used as part of an HMM framework. Their model is context

dependent on the previous column:

PE(xt+4t = u|xt = v) =

PE(x
t+4t
1 = u1|xt

1 = v)
n∏

i=2

PE(x
t+4t
i = ui|xt

i = vi, x
t
i−1 = vi−1, x

t+4t
i−1 = ui−1) (1.29)

Yang and Nielsen [NY98, YN00] describe models of codon evolution where the ratio of

the rates of non-synonymous and synonymous substitution are allowed to vary between sites.

These models have been successful in detection positive selection, as discussed in section 4.2.

Bruno [Bru96, HB98] learn site-specific rate matrices from a given alignment, using an

amino-acid model and a codon model respectively. In both cases the site-specific rate matrices

are defined in terms of the site-specific residue frequencies π̇. In [Bru96] the EM algorithm is

used to find the residue frequencies which optimise the likelihood of the column. In [TGJ96]

the authors introduce a model for amino-acid evolution which has rate matrices specific

to particular secondary structure states. A spatial HMM is used to correlate the hidden

structural states along the length of the sequence. The authors demonstrated a significantly

better likelihood fit to the alignment data, and used the model to derive phylogenetic trees

as well as to label sites in the alignment with secondary structure states. This method was

extended to accommodate more states in [LGTJ98] and to model transmembrane proteins

specifically in [LG99].

Lartillot and Hervet [LP04] have recently defined a Bayesian mixture model which

allows each site in an alignment to evolve according to a mixture of K distinct evolutionary

models Q̇k, where K is itself a parameter of the model and the Q̇k are parameterised as

in eq. 1.28. Thus each class is parameterised by a different stationary probability π̇k. The

authors define appropriate priors over the model parameters as well as tree space and present

a MCMC sampling technique for identifying the ML model parameterisation and tree. In this

way they are able to learn the optimal number of rate matrix categories in the data.
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Database derived protein rate matrices

The original attempts to estimate ˆ̇Q used maximum parsimony (MP) rather than maximum

likelihood. Dayhoff et al. [DSO78] and [JTT92] used MP to estimate both the trees and

ancestral sequences for multiple protein families, and counted the observed amino acid re-

placements along the tree to estimate the PAM matrices. Jones et al. [JTT92] extended this

technique and applied it to a much larger database of protein families. To avoid observ-

ing transitions which are the product of multiple steps and to avoid assigning an ancestral

sequence, the authors counted transitions based on pairwise sequence comparisons (where

each sequence is used in only one comparison) between sequences which are more than 85%

identical.

The maximum likelihood approach has been applied to estimating amino acid replace-

ment rates in [AH96, YN98, AWMH00, WG01]. The first three of these estimated amino

acid replacement rates in vertebrate mitochondrial, mammalian mitochondrial and chloro-

plast sequences respectively. Whelan and Goldman [WG01] apply an approximate form of

ML training on a larger database of globular protein sequences. Holmes and Rubin [HR02] use

expectation maximisation (EM) [DLR77] to train substitution models from sequence align-

ments and phylogenetic trees. The EM algorithm is designed to maximise the likelihood of

data where some of the data is missing. In this case the missing data corresponds to the

precise substitution history of the sequence. The model can also accommodate finding a

pre-defined number of hidden substitution rate matrices in the data.

1.3.3 Likelihood calculation

For a given tree T with branch lengths specified and evolutionary model E , it is desirable

to calculate the likelihood of a cluster of sequences {xk}, P ({xk}|T, E). This likelihood is

useful for several purposes: to evaluate different evolutionary models on a fixed tree, with the

aim of finding the model that best fits the data; or to evaluate different trees with a fixed

evolutionary model, with the aim of finding the tree which best fits the data. The likelihood

can be calculated efficiently using Felsenstein’s algorithm [Fel81]. Felsenstein’s algorithm

allows the summation over unknown states at internal nodes of the tree, and is closely related

to the forward algorithm for for HMMs. In fact, as several authors have noted, the algorithm

also allows summation over unknown states at the leaves of the tree (which might occur, for
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example if there is a gap present in the alignment). Let pu,k denote the partial likelihood of

all sequences {xk′} below node nk given sequence u in the ancestral sequence at nk. This

algorithm proceeds by calculating in post-order (i.e. working upwards from the leaves),

pu,k =


1 if nk is a leaf node and u matches xk

0 if nk is a leaf node and u does not match xk∏
h

∑
v pv,kh · PE(xkh = v|xk = u) otherwise

(1.30)

where nk1, nk2, . . . are the child nodes of nk. The term ‘matches’ (following [SH04]) has been

used to include cases where xk contains a gap but is otherwise equal to u. This is effectively

the same as treating the gap as missing data.

1.4 Outline of thesis

In this thesis, I focus on probabilistic modelling of protein domain evolution. Protein domain

databases, such as Pfam [BCD+04] provide a valuable resource for studying protein domain

evolution. To demonstrate the volume of data amenable for probabilistic analysis of the type

described above, Pfam release 16.0 contains 7677 protein families covering 1.1m protein se-

quences and 264m residues. In the next two chapters of this thesis I investigate ways to model

protein domains in order to improve protein domain detection and to extend the coverage

of protein domain databases. Looking for distant homologues is important beyond simply

extending residue coverage of domain databases. Arguably the most divergent members of a

particular domain family are the most interesting for identifying the range of potential func-

tions and partners for a particular domain as well as identifying fast evolving proteins. The

final chapter of the thesis concerns looking for such fast evolving proteins in order to identify

pseudogenes, as well as proteins and sites under positive selection.
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