
Chapter 3

Enhanced Domain Recognition

Using Phylogeny

There have been several suggestions in the literature for combining sequence based hidden

Markov models (HMMs) with models of evolution [Yan95, MD95, FC96, TGJ96, SH04]. Evo-

lutionary models model changes between homologous sequences at a site, typically with a

uniform substitution process at all sites whereas sequence based hidden Markov models have

site-specific models but only consider a single sequence at a time. The theme common to all

of these suggestions is that integrated models will be both more realistic and more powerful

for common bioinformatics tasks, such as building alignments, detecting homologues and re-

constructing trees. Several of these models have been discussed in section 1.3. The goal of

these methods is to improve the fit of phylogenetic models to real data, and thus to improve

the reliability of phylogenetic inference made from these models.

Qian and Goldstein [QG03] have applied the tree HMM developed in [MD95] to incor-

porate the phylogenetic information contained in the seed alignment which is used to build a

profile HMM. Recall from section 1.3 that the tree HMM only has match and delete states.

Qian and Goldstein effectively re-label match states in which greater than half of the se-

quences in the seed alignment have a gap as insert states. The tree HMM simultaneously

addresses the issue of weighting sequences to correct for redundancy and smoothing observed

emission and transition counts to obtain probabilities. This approach determines a differ-

ent profile HMM for each internal node in the seed tree. The process can be thought of as

re-rooting the tree at a particular internal node, and using the Felsenstein algorithm (see
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eq. 1.3.3) to calculate the distribution of transition probabilities and emission probabilities

at the new root. This can be smoothed further by evolving these probabilities further back

in time. This method does not consider the phylogenetic context of the target sequences to

be scored by the profile HMM. To reduce confusion I will call methods which incorporate

phylogenetic information in the seed alignment such as this one tree profile HMMs, consistent

with the terminology introduced in [MD95], and call methods which incorporate phylogenetic

information with respect to the target sequence phylogenetic profile HMMs, consistent with

[SH04].

In this chapter I will consider whether the integration of models of evolution with profile

HMMs can improve the detection of protein domains. I investigate whether it is possible to use

sequences closely related to the query sequence to increase the sensitivity of the search. The

motivation for this chapter was the observation that the Pfam annotation of closely related

sequences is often inconsistent. It was reasoned that one could improve Pfam coverage by

annotating the domain architecture of clusters of closely related homologues, rather than

annotating proteins individually. As an example, figure 3.1 displays the N-terminal domain

alignment and Pfam annotation for a cluster of homologues to GUDH ECOLI. From the

structure of this protein, it is known that this protein is a member of the MR MLE Pfam

family. The MR MLE N domain is detected as a significant hit in only two of the eight

homologues, while the phylogenetic profile HMM method developed in this chapter scores

the entire alignment above the Pfam threshold. The alignment also includes the consensus

sequence from the profile HMM. This chapter investigates the extent to which the principle

illustrated by this example can be applied on a large scale.

I will first describe in detail the phylogenetic profile HMM and in particular how it is

built from a seed alignment and how it is used to score an alignment of target sequences. I

will describe how site-specific frequency and rate variation is incorporated in the phylogenetic

profile HMM. I discuss the time complexity of the algorithm and how the speed of the calcu-

lation can be increased by performing the calculations in an appropriate order. I also discuss

the calculation of significance values. Subsequently I present the results of a SCOP test of

the phylogenetic HMM on 44 Pfam families. The results of the test are given for several

variations on the phylogenetic profile HMM. One of the parameterisations yields 67% more

homologues above the first non-homologous sequence, thus demonstrating the potential gain
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Figure 3.1: Top: Pfam full-model hits to homologues of GUDH ECOLI. The opacity of the hit is
proportional to the strength of the hit (log-odds score minus threshold) relative to the best scoring
hit in this cluster. GUDH STRCO has the strongest hits for both MR MLE N and MR MLE
domains. MR MLE N is detected in only 2 of the 9 proteins. The bottom track displays the
result using the Phylogenetic HMM. It detects a MR MLE N signal which is stronger than any
of the single protein signal, as well as a relatively strong MR MLE signal. Bottom: Alignment of
N-terminal domain using PROBCONS [DMBB]. The line marked ‘seed’ is the consensus sequence
from the profile HMM.
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in homology detection from this technique.

3.1 Algorithm

3.1.1 Phylogenetic profile HMM

Whereas the standard profile HMM described in section 1.2 parameterises a probability distri-

bution over all possible sequences, a phylogenetic profile HMM D parameterises a conditional

probability distribution over all possible alignments A of k sequences given a phylogenetic

tree T with k leaves, which is denoted P (A|D, T ). Let R denote a background model, which

also parameterises a conditional probability distribution over alignments A given a tree T ,

P (A|R, T ). As for the standard profile HMM, the log-odds score

log
P (A|D, T )
P (A|R, T )

(3.1)

is used to classify matches to the model.

A phylogenetic profile HMM uses the same HMM model architecture as the profile

HMM, as shown in figure 1.2, except that the emission states of the model emit columns of

an alignment (given a tree) rather than residues. If the tree T is a single node, the phylogenetic

profile HMM reduces to a standard profile HMM. The main underlying idea is that each of the

match states of the profile HMM corresponds to a different evolutionary model which reflects

the structural and functional constraints of this position in the protein domain. A standard

profile HMM relies on detecting the biased distribution of residues at a site in a protein domain

for its predictive power. A phylogenetic profile HMM also relies on detecting a specific residue

distribution, but can also take into account whether the pattern of substitutions in a column

is consistent with the particular match state. This is illustrated in figure 3.2, which shows

an alignment of part of the MR MLE N model to the GUDH ECOLI alignment discussed

above. In the first column most positions in the first row match the consensus valine, and

in cases where the position does not match the consensus it has mutated within the class

of ‘allowed’ residues at this position (alanine, isoleucine and leucine). ‘Allowed’ is taken to

mean residues which are observed in the seed alignment but at lower frequencies. In column

8, none of the sequences matches the consensus, glutamate, but the observed conserved serine

and and alanine residues still appear to be consistent with this match state. Columns 10, 13,

15 correspond to a highly conserved glycine in both the seed and the target alignment.
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Figure 3.2: A fragment of the alignment of the GUDH ECOLI alignment (bottom) shown together
with aligned emission states from the profile HMM(top). Match states 34 to 50 are shown together
with the corresponding columns from the alignment (which may not be contiguous). The total
height of a column in the HMM logo is proportional to 1 - entropy of match state/maximum
entropy, where maximum entropy is the entropy of the uniform distribution over 20 states. Thus a
perfectly conserved column will have a height of 1 and the uniform distribution will have a height
of 0. The relative heights of the residues within a column of the HMM logo are just the relative
frequency. Note that the alignment in this figure has been calculated using PROBCONS [DMBB]
rather than hmmalign, which aligns the sequences individually to the profile HMM. In other words,
the alignment has been calculated without assuming a match to the HMM states.
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Let A = {xk,i}1≤k≤K,1≤i≤n denote the target alignment to be scored by the phylogenetic

profile HMM, where k indexes the sequences and i indexes the column of the target alignment.

Let S = {sk,i}1≤k≤K,1≤i≤n refer to the seed alignment used to build the HMM. Let ψ1, . . . , ψn

denote the path the HMM takes through the alignment, so that ψi is the HMM state which

emits column x.,i.

All of the standard HMM algorithms (Viterbi, forward, forward-backward) will apply to

the phylogenetic HMM provided the emission probabilities are interpreted as the probability

of emitting an entire column of an alignment, i.e. P (x.,i|ψi = Mj , T ).

Estimating substitution models for match states

In order to calculate the emission probabilities P (x.,i|ψi = Mj |T ), a different substitution

model is constructed for each match state, with the aim of building a model of evolution

at each conserved site in the seed alignment which reflects the evolutionary pressures acting

at this site. The approach I take is empirical, rather than theoretical, in that the observed

residues from a column in the seed alignment are used as the basis for building the site-

specific models of evolution, rather than (for instance) restricting site-specific evolution within

a particular class of residues (e.g. a hydrophobic site). I will assume that the substitution

models are homogeneous with respect to position on the tree. This assumption will be relaxed

in Chapter 4 in order to test for differential evolution along particular branches of the tree.

Once the substitution models have been parameterised, the emission probability calcu-

lation proceeds using Felsenstein’s tree pruning algorithm, as described in section 1.3.3.

I follow the approach to modelling evolution outlined in section 1.3, in which mutations

are viewed as part of a continuous time Markov process where the instantaneous rate of

mutation between amino acids is given by a 20x20 rate matrix Q. Within this framework,

there are many possibilities for parameterising a rate matrix on the basis of observed residues

at a particular site. The challenge in formulating the right rate matrix is one of accurately

describing the evolutionary process without over-fitting the model. Database derived rate-

matrices (such as WAG [WG01], JTT [JTT92]) contain a lot of information about amino acid

exchangeabilities, which presumably still apply to constrained sites. My approach is to use

the observed residue frequencies in a column to estimate the stationary probabilities of the

site-specific rate matrix, which are then used in equation 1.27 to calculate the terms Qu,v in
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the rate-matrix. This equation has an extra parameter f called the +gwF parameter which

can either be set to 0, resulting in equation 1.28, or can be modelled specifically for each

state. Similarly, the rate r in equation 1.13 can be set to 1 or can be modelled specifically for

each state. Both of these possibilities will be discussed below.

Estimating the site-specific stationary probabilities from an alignment column

The stationary distribution π of a continuous-time Markov process can be shown (see [Nor97])

to be equal to the frequency distribution of residues which would be observed if the evolu-

tionary process was allowed to run for an infinite amount of time. The simplest approach to

estimating this distribution from a column of residues is to set the probability of a residue to

the frequency at which each residue occurs in the column. However, this approach suffers from

two problems: firstly, it over-fits the model to the data given, and automatically disallows

unobserved residues to occur at this site, even if they may occur but with low probability;

secondly it assumes that each sequence is sampled independently from the target distribution

and hence weights them equally, when in fact the observations are highly correlated.

The problem of over-fitting to the data has already been solved for standard profile

HMMs using Dirichlet priors as discussed in section 1.2 and the same type of approach can

be applied here. The problem of differentially weighting sequences has also been addressed in

the profile HMM literature. Dirichlet priors and several sequence weighting schemes including

maximum entropy are incorporated into the hmmbuild program in HMMER. The approach

used in this chapter is to obtain the stationary probabilities from HMMER using hmmbuild,

using a mixture of Dirichlet priors and a maximum entropy weighting scheme. An alternative

approach which has not been investigated is to use the tree HMM. This approach explicitly

incorporates the phylogeny of the tree of the seed alignment.

Estimating substitution models for the non-match emission states

The discussion so far has focussed on modelling match states of the HMM. Equally important

are the non-match states: insert states I, linking states N, J,C and the null emission state G.

One option, which I shall call the mixture model, is to regard each of the non-match emission
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states as a mixture of the match emission states and to score

P (x.,i|ψi = Ij , T ) = P (x.,i|ψi = J, T ) =

P (x.,i|ψi = C, T ) = P (x.,i|ψi = N,T ) = P (x.,i|ψi = G,T ) =

1
M

∑
j′

P (x.,i|ψi = Mj′ , T ). (3.2)

This strategy requires no extra likelihood calculations as the algorithm is already scoring each

of the P (x.,i|ψi = Mj′ , T ) for the match state emission probabilities. However, the method

for taking an unweighted average over the match state emissions is somewhat ad-hoc, but was

found via experimentation to work reasonably well. The second, non-mixture model uses the

same approach used for the match states, and calculates substitution models using equation

1.27. The stationary probabilities are again taken to be the Dirichlet smoothed frequency

distributions calculated by HMMER.

Incorporating rate and gwF variation in match states

As discussed above, the equations used to calculate the match state substitution models eqs.

1.12, 1.27 allow the possibility of site-specific rates and +gwF mode. Figure 3.3 displays

two sites which have the same stationary distribution but different rates and/or +gwF mode.

Capturing this variation in the phylogenetic HMM may improve sensitivity.

As described in section 1.3 the gwF parameter f takes values between 0 and 1 and

describes the degree to which the stationary probabilities are explained by the probability

of mutating from or mutating to a residue. In the ‘from’ model, once a favoured residue is

discovered, it is unlikely to be changed; while in the ‘to’ model, a favoured residue is likely

to be re-discovered and mutated away from several times. The optimal +gwF parameter

for a column will depend to some degree on the rate – figure 3.3 can be viewed either as

demonstrating the difference between a ‘from’ and a ‘to’ (top vs bottom respectively) or as a

fast vs slow column.

Here I describe how to model the rate and +gwF variation jointly, but the equations

presented apply equally well to fixing the +gwF parameter at 0 and only allowing the rate

to vary, or fixing the rate at 1.0 and allowing f to vary. Using a standard gradient descent

algorithm [PTTF92], it is possible to find the values of r and f which maximise the likelihood

of the column of a seed alignment under the site-specific rate-matrix obtained above. However,
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Figure 3.3: Illustration of the effect of different rates of evolution and/or different gwF modes
of evolution at sites with similar functional constraints. Two site are shown for the same tree,
the first site appears to be evolving much slower than the second site, however the stationary
probability distribution is identical. Alternatively, the first site is evolving according to a ‘from’
model and the second according to a ’to’ model.

this approach will over-fit the data to the extent that a uniformly conserved site will have

a rate of 0, thus precluding transition to any other residue in this column. To avoid this, a

prior P (r, f) was introduced over the rates and gwF parameter. Experimentally calculating

maximum likelihood values of f over large Pfam seed alignments revealed a preference for

f values close to 0 or 1. Thus f was constrained via an indicator prior I{0,1}(f), in which

f takes values 0 or 1 each with probability 0.5. The gamma distribution γσ2
r ,1/σ2

r
(r) with

mean 1 and variance σ2
r was chosen as the prior distribution over rates, as it has been used

successfully in modelling rate variation [Yan93]. The site specific rate and gwF parameters

were then chosen to be those that maximised the posterior probability

P (r, f |Q, s.,i) =
P (s.,i|Q, r, f) · P (r, f)

P (s.,i)
. (3.3)

The prior was parameterised as

P (r, f) = γσ2
r ,1/σ2

r
(r) · I{0,1}(f) (3.4)

where the gamma distribution is given by

γb,c(r) =
r

b

c−1
· exp(−r/b)

bΓ(c)
, (3.5)

and where Γ(c), c > 0 is the gamma function (see [EHP00]).
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The variance σ2
r controls the trade-off between fitting the observed pattern of evolu-

tion and over-fitting this pattern. Experimentally it was discovered that setting σ2
r = 0.01

provided a good trade-off. Values of r much higher than this (e.g. 0.05) degraded the per-

formance of the algorithm by over-fitting. In essence, a small value of r encourages most

site-specific rates to be close to 1 but allows some deviation if there is evidence of an elevated

or decreased rate. In passing, I note an alternative to the gamma distribution is the log

Gaussian distribution Nµ,σ(log(r)). The conceptual advantage of this distribution is that the

probability is symmetric with respect to its inverse: a rate of y has the same probability as a

rate of 1/y, or in other words a site is as likely to be evolving y times slower as y times faster

than average. This prior was not investigated further.

Rate and gwF variation can also be incorporated into the non-match emission states.

The approach I take is to incorporate rate and/or gwF variation in the non-match emission

states if and only if it is also used in the match emission states. Using the mixture model, rate

and gwF variation will automatically be incorporated into the calculation if it is incorporated

into the match states. If, instead, I use the non-mixture approach, rate and gwF variation

can be incorporated by marginalising over a rate and gwF distribution. For consistency with

the treatment of match states, the gamma distribution is used to marginalise over rates, and

I{0,1}(f) is used to marginalise of f , so that the equation used is

P (x.,i|ψi = Ij , T, γσ2
r
(r), I{0,1}(f)) =

1
2

∑
f=0,1

∑
rl

P (rl)P (x.,i|ψi = Ij , T, rl, f) (3.6)

where rl are the rate categories used in the discrete approximation to the gamma function.

The value of σ2
r for the gamma distribution was 1. Note that this value is larger than that

used in the prior over the match state rates. This is because the choice of small r in that case

was to avoid over-fitting, whereas the concern for modelling non-match emission states is to

correctly represent the range of rate variation present in real data.

Building the profile HMM

The hmmbuild program in HMMER builds profile HMM architecture and transition probabil-

ities using the maximum a posteriori (MAP) architecture algorithm [DEKM98], as explained

in section 1.2. This technique builds the profile HMM architecture which maximises the sum

of the probabilities of each sequence in the training alignment. This strategy solely uses pos-



3.1. ALGORITHM 81

itive training data. It has been shown in [WS04] that a more sensitive approach is to re-train

transition probabilities (on a fixed architecture) using both positive and negative training

data. The negative training data is generated by the null model and the highest scoring

random sequences are used to re-train the transition probabilities.

The MAP architecture algorithm could be adapted to build the profile HMM which

gives maximum probability to the alignment, using site specific rate matrices, provided it

uses the non-mixture model for the non-match emission states. This might seem more in-

ternally consistent than using HMMER on the seed alignment. As before, residue emission

probabilities would be replaced with column emission probabilities. I have not investigated

this option further.

Restricting the path of the phylogenetic profile HMM

Occasionally the non-mixture model gave a non-homologous sequence cluster a high score

because it contained a few columns which fit particularly match states well, such as a conserved

cysteine column. The model would give these columns very high scores, and would use

insert states to traverse the remaining sequence. The mixture model partially addresses this

problem by including a fraction of this high scoring contribution in the null model score. A

simple heuristic approach was used to solve this problem. The matrix of column emission

probabilities P (x.,i|ψi = Mj , T ) for the phylogenetic HMM is calculated as before, and then

adjusted via

P (x.,i|ψi = Mj |T ) :=


P (x.,i|ψi = Mj |T ) if max

1≤k≤K
P (ψi = Mj |xk) > 0.01.

0 otherwise
(3.7)

The posterior probabilities in the previous equation are calculated using the forward-backward

algorithm. This has the effect of restricting the path through the dynamic programming

matrix that the phylogenetic HMM can take. This solves the problem of random sequence

clusters matching a few columns strongly.

An alternative approach is to use a strategy based on HMMER’s null2 model. In

addition to the original null model, a second alignment-specific null model is calculated based

on the Viterbi path taken by the model through the sequence, which is the mixture model

of all of the emission states traversed by the path. If, as in the example above, the model
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matches a conserved cysteine column with match state 1 and then exclusively uses insert

states and delete states, the mixture would consist of 1 copy of M1 and n − 1 copies of an

insert state, where n is the number of columns in the alignment. Denote the likelihood of

the alignment under the second null model as S2. HMMER incorporates this score with

the original log-odds score by subtracting log(1 + S2/256) from the original log-odds score

to arrive at a corrected score. The factor 256 represents the prior belief that the main null

model is 256 times more likely than the second null model. See [Edd03] for more details. Note

that no additional tree-likelihood calculation has to be performed as every emission state has

already been scored against each model.

Complexity

First I consider the complexity of searching the model against a sequence. The complexity of

the likelihood calculation for a fixed alphabet is O(K) where K is the number of sequences.

The forward algorithm has complexity O(NM) where N is the number of residues and M

is the number of states. Thus the complexity of the phylogenetic HMM is O(KNM). Note,

however, that the algorithm simultaneously scores K sequences, and hence the average com-

plexity per sequence is the same as for the profile HMM.

The order in which the P (x.,i|ψi = Mj) are calculated impacts on the speed of the

implementation. In this implementation, Mj is first fixed, and then Felsenstein’s algorithm

proceeds for each site in the alignment simultaneously. That is, as the Felsenstein algorithm

proceeds upwards from the leaves, the transition probability matrix eQrt(nk) over branch

length t(nk) is calculated via equation 1.20, and this is applied to each column i in the

alignment to calculate the terms PEMj
(xkh = v|xk = u). This order of calculation avoids

unnecessarily exponentiating the same rate matrix multiple times for the same branch length.

This does not improve the complexity of the overall algorithm.

The most time consuming step in model construction for a standard profile HMM is the

maximum entropy sequence weighting step, which is unchanged for the phylogenetic HMM.

If the phylogenetic HMM incorporates differential rates and gwF values, there is an extra

step of optimising these two parameters for each match state. The search consists of two

one-dimensional searches optimising r, one for f = 0 and one for f = 1. Constructing a ML

tree from the seed alignment is the rate limiting step in this process.
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Significance calculation

In this work significance is calculated using the extreme value distribution (EVD) parame-

terised by hmmcalibrate acting on the standard profile HMM. As described in section 1.2,

this works by generating 5000 random sequences, each of length 350, and parameterises the

extreme value distribution to fit the distribution of these scores. A more robust approach

is to calculate the EVD directly from alignments scored with the phylogenetic HMM, and

this remains an area for further research. This could be achieved by first simulating (say)

5000 trees of varying numbers of sequences, according to a distribution over the number of

sequences in an alignment. Clock trees can be rapidly sampled by a coalescent approach,

where k sequences are generated, and recursively two nodes are chosen randomly to ‘coalesce’

at height t above the highest node of the pair, where t is sampled from an exponential dis-

tribution. An alignment can be simulated on this tree according to a background model by

sampling the sequence at the root node from the equilibrium distribution, and progressively

evolving the residues of this sequence to the leaves, determining the sequence at inner nodes

along the way. These alignments can be scored against the model and the resulting scores

used to parameterise an EVD.

3.1.2 Using the phylogenetic profile HMM

Figure 3.4 shows an overview of how the phylogenetic profile HMM is used in practice. which

broadly consists of four steps

• Identifying, aligning and constructing a tree for a homologous cluster of sequences.

• Building a phylogenetic profile HMM.

• Calculating the emission probabilities for each column and match state.

• Dynamic programming to find the overall log-odds score

The homologous cluster of sequences can be obtained from a global clustering of proteins

(using, for example, PHIGS [Deh] or Tribe-MCL [EKO03]). Alternatively, for a single target

query sequence, the homologous cluster can be obtained via a blast [AMS+97] search of

Uniprot [ABW+04]. In this case, only proteins which have blast hits of significance less that



84 CHAPTER 3. ENHANCED DOMAIN RECOGNITION USING PHYLOGENY

Figure 3.4: Diagram of processes involved in the phylogenetic profile HMM. Inputs are shown in
grey, and outputs in yellow, with intermediate steps in light-blue.
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10−7 covering at least 80% of the query sequence (this could comprise multiple local hits) are

accepted into the cluster.

For the SCOP test described in the results section, I use PROBCONS [DMBB] to align

the homologous cluster of sequences. Phyml [GG03] is used to build a maximum likelihood

tree, using a WAG matrix, and 4 gamma rate categories. If the tree has more than 5 leaf

nodes, it is trimmed back to 5 nodes in such a way as to include the original query sequence

and to include the most diverse collection of remaining sequences. This set of 5 sequences

is calculated recursively – a set of k + 1 sequences is generated from a set of k sequences by

adding the sequence which has the largest average pairwise distance to the k sequences. This

trimming step was performed in order to minimize the computational time taken.

The phylogenetic profile HMM is built as described in the previous section, using the

HMMER smoothed emission probabilities as the stationary probabilities of state-specific rate

matrices, and determining site-specific rates and +gwF modes as described above. The emis-

sion probabilities are calculated using Felsenstein’s tree pruning algorithm [Fel81] and the

forward algorithm is used to find the overall log-odds score.

3.2 Results

I compare the detection of homologues by a phylogenetic HMM to a standard profile HMM

using the same Pfam derived SCOP test presented in section 2.4.1. For each Pfam family

tested, HMMER is used to find all sequences from the ASTRAL set filtered to 40% identity

which have an evalue match of less than 100. These proteins form the test set for the method,

with correct homologues assigned on the basis of belonging to the same SCOP superfamily as

the Pfam domain, and incorrect homologues assigned on the basis of belonging to a different

fold. As discussed in the previous section, for each query protein from ASTRAL the target

cluster of homologous proteins is constructed via a blast search.

The phylogenetic HMM is compared to a custom implementation of HMMER’s hmm-

search rather than hmmsearch itself. The custom implementation was used so that the phy-

logenetic HMM is compared to a profile HMM which is identical in all respects except for

the fact that it scores columns rather than residues. In other words, all of the dynamic pro-

gramming routines used are the same, the only difference is in the way in which the emission

probabilities are calculated. The scoring of the profile HMM differs from the HMMER scoring
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scheme in two ways. Firstly, the forward algorithm rather than the Viterbi algorithm is used

to score the model. One reason for using the Viterbi algorithm in HMMER is speed and

memory usage, it allows all calculations to be done in log space using integers, rather than

in probability space which requires extra memory and time to progressively scale rows in the

dynamic programming matrix to avoid underflow errors. The disadvantage, as discussed in

section 1.2, is that the the Viterbi algorithm calculates the probability of the most likely

path through the model, rather than the full probability of the model emitting the sequence.

Another advantage of the forward algorithm is that it allows, in conjunction with the back-

ward algorithm, the calculation of posterior probabilities of a state of the model emitting a

particular site. These probabilities are used in the model scoring step to restrict the path of

the phylogenetic HMM (see section 3.1.1), and will be useful for detecting positively selected

sites in Chapter 4. Moreover, the Felsenstein algorithm requires working in probability space,

as it involves a summation over probabilities (although by replacing the
∑

in the Felsen-

stein algorithm with a max a Viterbi algorithm could in theory be applied to approximating

the tree likelihood with the probability of the most likely ancestral reconstruction). Using

Viterbi rather than forward does not impact the speed of the algorithm, as the calculation

of the tree likelihood is the slowest step. Thus I have decided to use forward rather than

Viterbi algorithm. The second difference with respect to HMMER is that the model does

not incorporate a null2 model. The null2 model has been shown to increase performance and

will be incorporated into this implementation at a later date. In this study the phylogenetic

HMM and the profile HMM are consistent in that they both do not use a null2 model. As

discussed in the previous section, I use a heuristic technique to limit the potential path of the

phylogenetic HMM, using the matches to the individual sequences in the alignment. Use of

a null2 model may render this technique unnecessary.

I score three variations of the standard profile HMM on the target protein cluster:

(i) standard profile HMM log-odds score on the ASTRAL query sequence,

(ii) average of the log-odds scores on each of the proteins in the cluster,

(iii) maximum of the log-odds scores on each of the proteins in the cluster.

The second and third scores can be seen as simpler alternatives to the phylogenetic profile

HMM for integrating information from closely related proteins.
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I score several variations of the phylogenetic profile HMM:

(i) Non-mixture model: non-match state emissions (including null model) not a mixture of

the match state models, but rather parameterised using the relevant HMMER emission

probabilities as stationary probabilities; no rate or gwF variation.

(ii) Non-mixture model+rate variation: using a gamma distribution over as prior with

variance 0.01 for match state emissions, and marginalising over a 3-category discrete

gamma distribution with variance 1 for the non-match state emissions.

(iii) Non-mixture model+ rate and gwF variation: using a gwF prior of I0,1 for determining

match state gwF values, and marginalising over the same distribution for the non-match

emissions.

(iv) Mixture model: non-match state emission probabilities are calculated as the average of

the match state emission probabilities; no rate or gwF variation.

(v) Mixture model+rate variation: rate variation as in (ii), although the non-match emission

states no longer need to be calculated

(vi) Mixture model+rate and gwF variation: gwF and rate variation in (iii); again the

non-match emission states are not calculated.

Firstly, models without gwF variation are considered. The coverage vs. error curves

scored on 44 Pfam families are shown in figure 3.5. Statistics summarizing the performance

of each of the methods are shown in table 3.1. Each of the phylogenetic HMM methods

has a higher coverage at a given error from after the first false positive onwards, and each

improves the classification in more families than they degrade it (as assessed by the number

of homologous sequences scored above the first non-homologous sequence, the over the top

or OTT score). Each of the phylogenetic methods improves the sum of family OTT and

MER (minimum error rate scores) relative to a standard profile HMM. If the scores are

ranked globally, according to a p-value criteria, then all of the phylogenetic methods have a

higher aggregate OTT score and all have a lower aggregate minimum error rate. The best

performing method is the phylogenetic HMM with no mixture and with rate variation, which

scores 67% more homologous sequences above the first non-homologous sequence relative to
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the standard profile HMM, and reduces the error rate by 29%. Rate variation appears to

improve the performance of the non-mixture model but does not impact the mixture model,

suggesting that the biggest impact may be due to marginalising over several possible rates

in the null model. The performance of the maximum and average profile HMM scores is

mixed – they have a lower aggregate MER but higher OTT scores, improve the classification

in more families than degrade it, and improve the sum of family OTT and MER scores.

However the improvements are not as pronounced as for the phylogenetic HMM. The change

in a performance on a family by family level can be seen in figure 3.7. The largest family

improvement in the 44 families tested is in the immunoglobulin (ig) domain.

The error versus significance curves for the phylogenetic HMMs versus the profile HMM

are shown in figure 3.6. The phylogenetic HMMs each have false positive rates at a fixed p-

value threshold which are much lower than the standard profile HMM, as well as higher false

negative rates. The increase in false negative rate is smaller than the decrease in false positive

rate such that the phylogenetic profile HMMs overall perform better. The phylogenetic HMM

false negative and false positive rate increasingly diverge from those of the standard profile

HMM as the p-value increases. This is due to the e-value not being calibrated very well for

the phylogenetic HMM at high p-values. Within the different types of phylogenetic profile

HMM, the non-mixture models have a lower false negative rate at low p-value thresholds, and

modelling rate variation does not appear to influence error rates substantially, although for

the non-mixture model at low p-value thresholds, the false negative rate is below even the

profile HMM false negative rate. As expected, using the maximum of the standard profile

HMM scores has a lower false negative rate but higher false positive rate, while using the

average score gives higher false negative but lower false positive rates.
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Figure 3.5: Coverage vs error curve for phylogenetic HMM vs standard profile HMM on ASTRAL
test set and 44 Pfam families. The coverage at error rate of n is defined as the number of
homologous sequences before the nth false positive (or non-homologous sequence). The black
line is the standard profile HMM score on the sequence from ASTRAL, the purple line is the
maximum of all sequence scores in the same homologous cluster, and the grey line is the average
sequence score in the cluster. The green and red lines are scores for a phylogenetic HMM without
rate variation with a mixture null model and non-mixture null model respectively. The dark and
light blue lines are scores for a phylogenetic HMM with rate variation modelled according to a
gamma distribution, and with a mixture null model and non-mixture null model respectively. The
best performing method is the non-mixture model with rate variation.
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Figure 3.6: Error rate vs p-value score threshold according to HMMER extreme value distribution.
False negatives are shown on the left x-axis (which fall from left to right as the p-value threshold
increases). False positives are shown on the right x-axis (which rise as the p-value threshold
increases). The curves are: standard profile HMM score (black), average of profile HMM score
(grey), maximum of profile HMM score (purple) and the following phylogenetic HMM scores:
mixture, no rate variation (red); mixture with rate variation (dark blue); non-mixture with no
rate variation (green); non-mixture with rate variation (light blue). The rate variation if used
was according to a gamma prior with variance 0.01. This figure is plotted on a log x-axis to
emphasise the behaviour of the algorithms at low false positive rates, which is the range in which
most applications – including Pfam – use homology detection.
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Figure 3.7: Improvement in OTT score relative to the standard profile HMM on a family basis.
The red/blue bars are the scores for the phylogenetic HMM with mixture null model and with-
out/with rate variation respectively. The green and cyan bars are for models without a mixture
model background, and without/with rate variation. The biggest improvement is seen in the
immunoglobulin (ig) family.

Method # families sum of Aggregate

with OTT family score score

Better Worse OTT MER OTT MER

profile HMM 0 0 174 86 95 129

phyHMM mixture 3 1 179 79 127 98

phyHMM mixture r+/-0.01 3 2 179 78 127 98

phyHMM no mixture 5 0 182 75 99 95

phyHMM no mixture r+/-0.01 5 0 184 77 159 92

max 4 0 179 80 106 119

avg 5 0 186 74 103 111

Table 3.1: Comparison of phylogenetic models with a standard profile HMM scored
over 44 families.

Now I consider the effect of including +gwF rate variation. Figure 3.8 displays the effect
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Figure 3.8: Impact of gwF variation on detecting homology for six families. +gwF variation
degrades performance for the mixture model, and in one case improves performance for the non-
mixture model.

of gwF variation on an individual Pfam family basis. In all cases rate variation is included in

the model. For the non-mixture model, +gwF variation provides a substantial improvement

in detecting immunoglobulin (ig) domains. However, for the mixture model, gwF variation

systematically degrades homology detection. Figure 3.9 displays the aggregate results over 30

Pfam models. Including +gwF variation degrades detection of homology in both cases. Un-

fortunately, I cannot conclude from this that modelling +gwF variation is always detrimental

to performance. A possibility is that +gwF will improve performance if rate variation is not

also incorporated. Moreover, there are many ways to model +gwF variation and this result

could be due to they way the models described in section 3.1 incorporate this information.

Two alternative priors on +gwF have been experimented with, including a uniform prior and

a beta distribution parameterised to best fit the seed alignment, neither of which yielded

better results.

3.3 Conclusion

Scoring clusters of closely related proteins with phylogenetic profile HMMs can provide sig-

nificant improvement in homology detection. However, the degree of improvement is sensitive
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Figure 3.9: Coverage vs error curve for models which include +gwF variation (light and dark blue)
vs models which do not include +gwF variation (red and green), scored on 30 Pfam families. The
curve for a standard profile HMM is included in black for reference. Both models which have a
mixture null model (cyan and green), as well as models do not have a mixture null model (blue
and red) are shown. All models incorporate rate variation.
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to the way in which the phylogenetic profile HMM is parameterised. One particular param-

eterisation yielded 68% more homologues scoring above the first non-homologue in a SCOP

test, while other parameterisations yielded a more moderate improvement, or in some cases

degraded performance.

The original motivation of this chapter is to increase coverage of domain databases such

as Pfam. The results of this chapter suggest that the phylogenetic profile HMM has greatest

impact when assessing scores based on a significance threshold. In particular it dramatically

reduces false positive rates at a given p-value threshold. The annotation strategy in Pfam,

however, is based on family specific thresholds and so the potential increase in Pfam coverage

should be assessed based on the increase in the sum of family based OTT scores. On this

basis, the phylogenetic HMM could produce a 5.7% increase in Pfam coverage, which can be

compared with the 2.2% increase achieved with a combined domain and taxonomic context

model in the previous chapter. However, a direct study into the potential improvement in

Pfam is required.

A feasible strategy for introducing the phylogenetic profile HMM into Pfam would be

possible, if computationally expensive. The first step would be to globally cluster proteins

in Uniprot using a clustering algorithm such as Tribe-MCL [EKO03] and reciprocal best

blast scores, or alternatively using a phylogenetically derived clustering such as PHIGS [Deh]

(PHIGS, however, only clusters proteins from fully sequenced organisms and so the clusters

would need to be extended to non-sequenced organisms, potentially using a HMMER search

built from a PHIGS derived seed alignment). The alignment and tree building step currently

involves relatively slow but accurate algorithms, whereas a global Pfam strategy would require

faster algorithms and the impact of this on the sensitivity of the method would need to be

further investigated. Pfam stores sub-threshold hits which have evalue significance less than

1000. In order to minimize the search with the phylogenetic profile HMM, which despite

having the same time complexity is practically substantially slower, only hits less than e-

value threshold 100 would be re-scored with the profile HMM. The analysis in this chapter

involved scoring 44 families on 4418 clusters, each with up to 5 members and was carried out

on a single-processor computer over the course of a few hours, so it would be possible to scale

up the number of proteins by 50 (to reach 1m proteins) and the number of families by 100

provided a cluster of computers was available for the analysis.
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It would be interesting to investigate the effect of the number of sequences in the tree

and the divergence of members of the homologous cluster. Further investigation into how

to best incorporate site-specific variation of the +gwF factor in match states is required –

one option is to parameterise the +gwF factor relative to the maximum likelihood value

obtained using a single model over the entire alignment, both in training and scoring, rather

than in absolute terms. Another possibility is to incorporate context dependence via a first

order Markov model at the training stage, following the procedure defined in [Yan95] for rate

variation. Similarly, further investigation into the inclusion of rate variation is possible, again

investigating different priors as well as context dependence via a HMM.

The ‘null2’ model from HMMER has not been implemented in this chapter, but would

possibly provide a useful alternative to the heuristic rule used to limit the path of the phylo-

genetic HMM.

Context dependent models of substitution have not been incorporated in the model

presented here. It would be straightforward and efficient to incorporate context dependent

models of amino-acid substitution using the method proposed in [SH04]. These authors

discovered a significant improvement in model fit with the introduction of context dependent

models, thus suggesting this is a high priority for further investigation. Such a model could

reflect correlation in residues between adjacent sites. In fact, context dependence of emission

probabilities can be incorporated into the standard profile HMM architecture as well as the

phylogenetic HMM architecture. Again, the only difference concerns whether the probability

distribution is over residues, or columns of residues. In the profile HMM setting, it would be

interesting to model context dependence between adjacent sites which are both emitted by

match states, and not otherwise. This technique can be easily incorporated into the scoring

algorithms used (such as Viterbi, forward and forward-backward) as well as the HMM building

algorithm (such as the MAP architecture algorithm). For example, in the scoring step of

the forward algorithm, as shown in equation 1.5, the emission score P (xi|ψi = Mj) in the

term P (xi|ψi = Mj) · P (x1 . . . xi−1|S . . .Mj−1) · P (Mj−1 →Mj) is replaced with the context

dependent emission score P (xi|ψi = Mj , xi−1). This score can be calculated as

P (xi|ψi = Mj , xi−1) =
P (xi, xi−1|πi = Mj , πi−1 = Mj−1)

Z



96 CHAPTER 3. ENHANCED DOMAIN RECOGNITION USING PHYLOGENY

where the normalising constant is

Z = P (∗, xi−1|πi = Mj , πi−1 = Mj−1)

and * is used to indicate missing data, so that the equation for Z turns into a sum over all

residues in the case xi denote residues. In the case of a phylogenetic HMM, this sum can

be calculated efficiently using the Felsenstein algorithm as outlined in section 1.3.3. Thus,

to incorporate context dependence in both the phylogenetic HMM and the standard pro-

file HMM, the joint emission probabilities P (xi, xi−1,Mj ,Mj−1) must be estimated. These

probabilities can be obtained from the counts observed in the labelled columns of the seed

alignment. These counts must be smoothed using priors to avoid over-fitting – one possibility

for the pseudo-counts is the cross-product of the normal Dirichlet prior probabilities.

In summary, the phylogenetic HMM has been shown to be a valuable tool in modelling

homology, and, provided it is correctly parameterised, can outperform traditional HMMs

substantially. Many research directions are open for investigation, each with the potential

to further improve performance. Moreover, the techniques of this chapter form the basis for

pseudogene and positive selection detection in the next chapter.




