
Chapter 2

Enhanced Domain Detection Using

Approaches From Speech

Recognition

Most modern speech recognition techniques use probabilistic models to interpret a sequence

of sounds [Cha93, Jel97]. Hidden Markov models, in particular, are used to recognize words.

The same techniques have been adapted to find domains in protein sequences of amino

acids [KBM+94, DEKM98], as discussed in section 1.2. However in both cases, detection of

individual constituent domains or words is impeded by noise. One technique which has been

successfully used in speech recognition is to use language models to capture the information

that certain word combinations are more likely than others, thus improving detection based on

context. As discussed in section 1.1, only a limited set of all possible domain combinations are

observed, and the pattern of occurrence is highly non-random ([AGT01b, AHT03]). Moreover,

particular domain combinations are re-used in many domain architectures [VBB+04]. Thus,

language models from speech recognition may also be applicable to the problem of protein

domain identification. I have successfully used this approach to improve domain prediction

in Pfam [CBD03].

Furthermore, different species have different protein domain repertoires, even to the

extent that certain protein domain families are kingdom specific. More strikingly, domain

combinations are highly kingdom specific ([AGT01b, VBB+04]). Thus, taxonomic context by
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itself may also provide extra information for domain detection, and is likely to be even more

useful when used in combination with language models of domain context. I have previously

used taxonomic information to improve domain identification in Pfam [CBD04].

In this chapter, I will present a unified model of domain and taxonomic context, ex-

tending the approaches of [CBD03, CBD04]. I will first provide a brief overview of some of

the techniques used in speech recognition, followed by a comparison of the high-level statis-

tics of word and domain use which will help to motivate further the application of language

modelling to domain detection. I then modify the speech recognition techniques in order

to apply them to domain detection and to incorporate taxonomic context. The results sec-

tion comprises firstly a test of the method on proteins of known structure using the SCOP

classification[AHB+04], in which I will show that the combined taxonomic and domain con-

text method performs better than the individual methods and that each perform better than

a standard search which ignores context altogether. The final part of the results section con-

sists of a scan of the combined method against all Uniprot[ABW+04] proteins to determine

the number of novel Pfam domain occurrences detectable with this technique.

2.1 Statistical Speech Recognition Techniques

Speech recognition has been greatly facilitated by the application of statistical models in-

cluding hidden Markov models (HMMs) and Bayesian methods. The steps in the process are

illustrated in figure 2.1.

Once the acoustic signal has been parsed into discrete sound symbols, the statistical

approach is to build two types of model: for each word there is a phonetic model for the

emission of sounds, based on observed pronunciation patterns in terms of phonemes; above

this there is a language model for the emission of a sequence of words, based on word use

patterns. In order to recognize a given sentence, the method seeks the sequence of words

D = D1, . . .Dn that maximises the probability of the sentence given the acoustic evidence

x and the language model M. This probability can be split (using Bayes’ rule) into a word

term based on the phonetic model (first term), and a ‘context’ term, based on the language

model (second term):
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Figure 2.1: Schema for a speech recognizer. First the analogue speech waveform is converted into
a sequence of phonemes, x = x1, x2, . . .. This sequence is processed by a composite stochastic
language and phoneme model.

P (D|x,M) =
P (x|D)
P (x|M)

P (D|M), , (2.1)

assuming that x is conditionally independent of the language model M given D. When

searching for the most likely sequence of words D, P (x|M) is a fixed constant so it suffices

to maximise

P (D|x,M) ∝ P (x|D)P (D|M). (2.2)

Referring again to figure 2.1 and equation 2.1 observe that statistical speech recognition

naturally divides itself into the following sub-problems, each of which I discuss to the extent

it applies to domain recognition. See [RJ93] for further details.

Conversion Convert the analogue signal into a discrete acoustic signal

Acoustic Modelling For each word, develop and parameterise an acoustic model capable

of discriminating the given word from all others.

Language Modelling Develop and parameterise a single language model

Conversion to a digital signal

The basic idea is to sample the properties of the acoustic signal at some rate (e.g 100HZ),

and to find the closest match to this vector of properties from a library of reference vectors.

As biological sequences are already digitized, this problem is not applicable.
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Acoustic Modelling

The aim is to construct an acoustic model for each word in the language model which is

capable of recognizing words from acoustic signal. A phonetic encoding is determined for

each word in the vocabulary as a sequence of phonemes φ1, φ2, ... from a phonetic dictio-

nary. For each phoneme in the phonetic dictionary a HMM is created which emits over the

space of sound symbols obtained from the previous step. The encoded phonemes’ HMMs are

concatenated to form a word HMM. Training data for the word models is obtained by record-

ing word pronunciations. The model can be trained from this data using the Baum-Welch

algorithm[DEKM98]. This step corresponds to using a profile HMM in biological sequence

modelling, as discussed in section 1.2.

Language Modelling

The aim of language modelling is to create a model over all possible word combinations which

reflect actual word use patterns in speech. The analogy in domain recognition is a model over

all possible domain combinations which reflect protein domain occurrence patterns. Mathe-

matically this corresponds to parameterising the distribution P (D|M) = P (D1, . . .Dn|M) in

a tractable form. One approach is to assume that word use is a Markov process. That is, if

the joint probability is expressed in terms of conditional probabilities,

P (D1 . . .Dn|M) = P (D1)P (D2|D1) . . . P (Dn|D1, . . . ,Dn−1),

to assume that

P (Di|Di−1, . . . ,D1) = P (Di|Di−1, . . . ,Di−k).

In speech recognition, a second order (k = 2) Markov model is usually found to be most

effective, which is called a trigram model. First order methods are called digram methods. In

principle, the higher the order k, the more long-range dependencies can be incorporated into

the model. However, for a fixed data set, as k increases less and less training data becomes

available for the particular context and so the probability estimates become less and less re-

liable. In linguistic terms, Markov models are stochastic regular grammars, and therefore do

not capture the grammatical structure of a sentence. Thus they are not capable of assigning
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zero probability to grammatically incorrect sentences, nor modelling long range dependencies

implied by the grammatical structure. To achieve this it is necessary to use (in order of

increasing complexity and ability to effectively model linguistic structures) stochastic context

free grammars, tree-adjoining grammars [JY99] or context sensitive grammars [Cho59]. How-

ever, Markov models are computationally efficient and have been found to work surprisingly

well in practice.

For domain recognition, it is not yet clear that there is a general higher-order grammar

for domain occurrence, much less how to represent the syntax with a formal grammar. Thus,

approximating the dependence of domain occurrence based on adjacent domains appears to be

an appropriate way to proceed. A phenomenon which occurs in protein domain combinations

but not speech is nested domains, which account for 9% of all domain combinations [ASHS04].

Training data for a language model is obtained from analysing text, typically in the

subject area in which the model will be used. In one sense training a language model is

straightforward, as there are no hidden variables and the transition probabilities between

words can be observed directly. However, the main challenge with language modelling is

data sparseness, particularly with trigram methods. The training corpus will not contain all

possible trigram word combinations used in speech, and observed trigrams occur at such low

frequencies that observed counts are not reliable estimators of probability. This is dealt with

via smoothing, which is an integral part of language modelling and has formed the basis for

much language modelling research.

Equivalence classification of words is one technique for smoothing sparse data. An

example is to treat all the synonyms for a particular word as the same; another is to classify

all proper names as a single word. An example from domain modelling is classifying all

members of a superfamily as the same domain, or classifying regions of low complexity as a

single domain. The method developed in this chapter classifies all Pfam families in the same

Pfam clan as the same family.

Another smoothing technique is to interpolate lower order counts in the estimation of

the trigram and digram probabilities. That is, to assign

P (Di|Di−1) = α1P (Di) + (1− α1)
N(Di−1,Di)

N(Di−1)
, (2.3)

P (Di|Di−1,Di−2) = α2P (Di|Di−1) + (1− α2)
N(Di−2,Di−1,Di)

N(Di−2,Di−1)
, (2.4)
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where N(Di) is the count of Di in the corpus, so that even in the case the trigram is not ob-

served it will have a non-zero probability assigned based on the digram probability. One prin-

ciple often used, called back-off estimation, is that the trigram probabilities P (Di|Di−1,Di−2)

should be more reliable if the context Di−2,Di−1 is observed many times in the training cor-

pus, and similarly for the digram probabilities. Thus it makes sense that the interpolation

parameters α are not constant but rather decreasing functions of the amount of context, e.g.

α2 = f( N(Di−2,Di−1)). A step-function is typically used to approximate f , with several

categories each having a different value of α. A portion of the training data is held over to

estimate the optimal values for this function.

An alternative to Markov models for approximating the joint distribution P (D1, . . . ,Dn),

which only capture local dependencies, is the whole-sentence exponential model introduced

by Rosenfeld and co-workers [RCZ01]. The whole sentence exponential model takes the form

P (D) =
1
Z
P0(D) exp(

∑
i

λifi(D)) (2.5)

where Z is the normalizing constant and the fi(D) are termed features of the sentence:

arbitrary properties of the sentence which can be computed. P0(D) is an initial approximation

to P (D), which can be a uniform distribution, or the distribution obtained from the trigram

model described above. It can be shown that there exists is a unique equation of the form of

eq. 2.5 which satisfies the following constraints on the feature averages under P (D),

EP (fi) = Ki, (2.6)

provided the constraints are consistent. Moreover, among all solutions to equation 2.6 (in-

cluding solutions not of exponential form), the exponential solution is closest to P0(D) under

the Kullback-Leibler distance (see [DEKM98]). This means that in the case P0(D) is the

uniform distribution, the exponential solution is the solution which maximises the entropy.

In this sense the exponential solution is appealing because it maximises the uncertainty of

the distribution while still satisfying all of the constraints presented. So, given a training cor-

pus, the strategy of whole-sentence exponential modelling is to first choose features fi which

capture particular aspects of the data, then to calculate empirical averages of the fi over all

sentences D′ in the training corpus

Ki =
1
N

∑
D′

fi(D′),
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and finally to find the unique equation of the form eq. 2.5 which satisfies the constraints in

eq. 2.6. An iterative procedure is available to find this solution, and is given in [RCZ01].

The main challenge in implementing this procedure is that it requires calculating the average

Ep(fi) over all possible sentences D at each step in the iteration. This is approximated by

Rosenfeld and colleagues using a sampling technique.

In speech recognition the features used in an exponential model include: the number of

times a particular n-gram occurs, either sequentially, or in the entire sentence; existence of

particular grammatical structures; pauses etc. For domain recognition this framework could

incorporate arbitrary co-occurrence patterns (not just adjacent co-occurrence), expected dis-

tribution over the number of repeats as well as protein specific information such as taxonomy,

function and localisation.

In this work I focus on applying the Markov rather than exponential model approach to

language modelling. The Markov model is substantially more efficient to train and to score,

and has been used successfully in speech recognition. Moreover, early results from whole-

sentence models do not appear to provide a significant improvement in performance [RCZ01].

However, the exponential model does appear to provide significantly more flexibility and is

certainly an avenue for further investigation.

2.2 Patterns of domain occurrence and co-occurrence

To motivate the application of language models to protein domain recognition it is interesting

to observe the patterns of domain occurrence in relation to the pattern of word occurrence.

Zipf [Zip35] first described the power law behaviour of word occurrence. The Zipf

distribution for words is displayed in figure 2.3 and reflects the fact that some words are

used very frequently while most words are used rarely. The power law distribution is of the

form N(D) = aR(D)−b where N is the count of a word and R(D) is the rank of the word

according to its count. A Zipf distribution also satisfies b = 1. Power law behaviour has been

observed in many biological contexts, including the distribution of protein families and folds

[QLG01], occurrence of DNA k-mers, occurrence of pseudogenes and levels of gene expression

[LQZ+02].

The Zipf curve for words in figure 2.3 applies from rank 3 to rank 2000 but breaks down

after this. Figure 2.2 shows a power law distribution for Pfam domains. The slope of this
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Figure 2.2: Plot of frequency of domain occurrence vs domain rank (according to frequency,
decreasing from left to right). The domains models are from Pfam 15.0, and are scored over all
proteins from Uniprot. Pfam clans have been used to group closely related domains into a single
entry. The blue line shows the log y = C − 1.0 log x line interpolated between the highest and
lowest ranked domain.

graph is approximately 1.0 from rank 5 to rank 2000, but the gradient is higher at high-rank

domains and lower at low-rank domains. As domain annotation improves, we expect to find

novel small families, but for some of these small families to have more than 200 instances.

These families will then be of higher rank than than those known families of rank 2000 and

above. We also expect to increase the number of instances in small families as they are not

as well characterised as larger families. The combined effect should be to expand the region

of the graph following Zipf’s law to toward the right. It appears that Zipf’s law fits protein

domains at least as well as words.

Next, I consider the different patterns of domain occurrence given different taxonomic
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Figure 2.3: Plot of frequency of word occurrence, taken from the Wall Street Journal from 1987,
1988 and 1989 with sizes approximately 19 million, 16 million and 6 million words respectively.
This graph is taken from [HSGMS02]
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Figure 2.4: Distribution of example domains amongst archaea, eukaryota and bacteria from all
proteins in Uniprot. The top 5 domains for each phyla are included. This graph was not constructed
on a genome basis and redundancies in the Uniprot database have not been removed, thus the
graph may display bias due to over-representation of particular sequences in Uniprot.

contexts. Fig. 2.4 shows examples of domains which have biased taxonomic distribution.

For example, the 4Fe-4S binding domain comprises 2.9% of archaeal domains in Pfam, but

only 0.5% of bacterial domains and 0.05% of eukaryotic domains. Therefore a weak 4Fe-4S

binding domain signal in archaea is more likely to be a real signal than a weak eukaryota 4Fe-

4S binding domain signal. Intuitively, less amino-acid based evidence is required to believe

an 4Fe-4S binding domain in archaea than in eukaryota.

Figure 2.5 demonstrates different patterns of co-occurrence of the TPR domain across

three kingdoms of life. The TPR domain mediates protein-protein interactions and is ob-

served in eukaryota, bacteria and archaea, as can be seen in figure 2.4. In each of the

three kingdoms there is a high probability of observing TPR following another TPR repeat.

Uniquely in eukaryota, a TPR domain is frequently observed following an APC8 (Anaphase

promoting complex sub-unit 8) domain and also following a PRP1 N (PRP splicing factor,

N-terminal) domain. Uniquely in bacteria, a TPR domain has high probability following a

NB-ARC (signalling motif found in bacteria and eukaryota) and following an FF domain (also

involved in protein-protein interaction and found in eukaryotes and bacteria). Uniquely to

Archaea, there is a high probability of observing a TPR domain following a CW binding 2
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Figure 2.5: Observed probability of Tetratrico Peptide Repeats in different contexts. The proba-
bility of observing a member of the TPR clan given the combined taxonomic and domain context
- Bacteria (red), Archae (blue) and Eukaryota (green) - and preceding domain.

(putatively involved in cell wall binding) domain. This reinforces the findings of [AGT01b]

that domain combinations are highly kingdom specific, and also indicates the importance of

building language models which take the taxonomic context into account.

2.3 Methods: Application to protein domain detection

As discussed in section 2.1, profile HMM techniques introduced in section 1.2 broadly map to

the acoustic modelling problem in speech recognition [KBM+94, DEKM98]. In this section, I

will modify the language modelling techniques outlined in section 2.1 to apply them to protein

domain recognition.
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2.3.1 Formulation

Let M denote the combined language and taxonomy model. For each amino acid sequence

x with taxonomy T my approach is to annotate the sequence with the domain sentence

D = D1,D2, . . .Dn matching amino acid segments Di ↔ x[si,ei] if the probability P (D|x,M)

is sufficiently high. Let R denote the background model for generating the sequence inde-

pendently residue by residue according to an average compositional model. Note that in this

formulation D stands for the N- to C-terminal linear sequence of domains as well as the par-

ticular set of (start, end) protein co-ordinates for each of the Di. I require that the Di do not

overlap, but place no restriction on the size of the gaps between the Di. It is not required that

the x[si,ei] completely cover the protein. It should be noted that in the case where a protein

domain has not yet been modelled (for instance, it does not appear in the pdb, and it has

not yet been discovered in sequence space), a relatively large gap may result in the correct

domain annotation of a sequence. Also, transmembrane and low complexity regions are not

modelled. Residues which are not within a x[si,ei] will be assumed to be emitted under the

model D according to the background distribution R. Then

P (D|x, T,M) = P (x|D,T,M)
P (x|T,M) P (D|T,M) (2.7)

∝ P (x|D,T,M)
P (x|R) P (D|T,M) (2.8)

=
(∏

i

P (x[si,ei]
|Di,T,M)

P (x[si,ei]
|R) P (Di)

)
×
(∏

i
P (Di|T,M,D1,...Di−1)

P (Di)

)
, (2.9)

assuming independence of the amino acid fragments x[si,ei] from the other fragments x[sj ,ej ],

j 6= i conditional on Di, T,M. Because I am only interested in maximising P (D|x, T,M)

over all possible domain sentences and fixed x, the term P (x|T,M), which is independent of

the domain sentence, has been replaced with P (x|R). Then residues not belonging to any

sequence fragment x[si,ei] cancel out between the numerator and denominator.

Taking logs and defining the overall sentence score SSx,T,M

logP (D|x, T,M) ∝

SSx,T,M (D) :=

(∑
i

log
P (x[si,ei]|Di)
P (x[si,ei]|R)

− τDi

)
+(∑

i

P (Di|T,M,D1, . . .Di−1)
P (Di)

)
, (2.10)
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with domain score threshold τD = log 1
P (D) . Note that P (x[si,ei]|Di) represents the probability

that the model for domain Di generated the sequence x[si,ei]; and that P (x[si,ei]|R) represents

the probability that the sequence was generated independently residue by residue according

to a background composition model. Also, P (D) represents the probability of obtaining D

according to a background distribution over domains. The left-hand bracket scores the fit of

the domain sentence to the amino-acid sequence, while the right-hand bracket is the context

dependent score.

A simplified view of the Pfam annotation process [BCD+04] is that a domain D an-

notating the sequence fragment x[si,ei] is recognized as real if the domain log-odds ratio is

greater than a manually curated threshold,

log
P (x[si,ei]|Di)
P (x[si,ei]|R)

> τDi . (2.11)

This log-odds ratio is calculated using the HMMER package [Edd98]. The actual process

is somewhat more complicated. As outlined in section 1.2, HMMER calculates the log-odds

ratio that the model generated the full sequence x allowing for multiple matches of the domain

model Di to the sequence. This is called the sequence score. HMMER also calculates the

contribution from each of the repeated domains Di, which is called the domain score. Pfam

enforces a threshold on both the domain and sequence scores, whereas eq. 2.11 just shows

the domain score threshold.

Comparison of eqs. 2.10 and 2.11 reveals that the standard approach is essentially

equivalent to ignoring the context term . My approach is to maximise the sentence score

SSx,T,M given in eq. 2.10 over all domain sentences D, using the Pfam domain threshold for

τDi , and the HMMER domain score for
P (x[si,ei]

|Di)

P (x[si,ei]
|R) .

2.3.2 Context model and smoothing strategy

The combined taxonomic and language context model is parameterised by considering a

different Markov language model MT for each taxonomy T . Begin and end states are included

in the modelling in order to capture associations of domains with the beginning and end of

proteins. A Markov model of order k asserts that the conditional probability of the ith domain

given all preceding domains is only dependent on the k preceding domains:

P (Di|MT ,D1 . . .Di−1) = P (Di|Di−k . . .Di−1). (2.12)
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The terms in eq. 2.12 are calculated using the observed counts in the Pfam database

(denoted by N) and are smoothed recursively using lower order domain contexts and higher

taxa as described for speech recognition. In the following, T0 denotes the species of the protein

in question, Tj the jth parent taxon and Tm is the root of the taxonomy. For a fixed taxon

Tj the probabilities are smoothed over domain contexts:

P̂ (Di|MTj ,Di−k . . .Di−1) =(1− α) ·
(

N(Tj ,Di−k, . . .Di−1,Di)
N(Tj ,Di−k, . . .Di−1)

)
+α · P̂ (Di|MTj ,Di−k+1 . . .Di−1)

(2.13)

P̂ (Di|MTj ,Di−1) = (1− α) ·
(

N(Tj ,Di−1,Di)
N(Tj ,Di−1)

)
+ α · P̂ (Di|MTj ) (2.14)

P̂ (Di|MTj )) =
N(Tj ,Di)∑
D N(Tj ,D)

. (2.15)

The sum in eq. 2.15 is over all domain occurrences in the Pfam database. The inter-

polation parameter α is a fixed constant between 0 and 1. Back-off estimation, as de-

scribed for speech recognition, allows α to be a decreasing function of the amount of context

N(Tj ,Di−k, . . . ,Di−1). This was investigated and not found to significantly improve the

classification.

Next, contributions from higher order taxa are recursively interpolated

P (Di|MTj ,Di−1 . . .Di−k) =(1− β) · P̂ (Di|MTj ,Di−k . . .Di−1)

+β · P (Di|MTj+1 ,Di−k . . .Di−1)
(2.16)

P (Di|MTm ,Di−k . . .Di−1) = P̂ (Di|MTm ,Di−k . . .Di−1). (2.17)

The parameter β represents the degree to which the estimation is based on nodes higher up in

the taxonomy rather than the leaves. Note that this strategy is a smoothing strategy which

recursively interpolates counts of species which are similar according to the NCBI taxonomy.

In order to avoid over-fitting a taxonomy which has low coverage in Uniprot, only those nodes

in the taxonomy below which there is a sufficient sample size, 10, 000 proteins in this case,

are retained. For proteins which have a species T0 which does not meet this criteria, T0 is set

equal to the first ancestor taxonomy in the modified taxonomy tree (which may be the root

of the tree, if none of the kingdom-specific ancestor taxa meet the sample size criteria).

The interpolation parameters can be trained from training data which is held over

from generating the counts for the context models. All that is required is some form of
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objective function, and then an optimization technique can be used to find the parameters

which optimise the objective function. In the results section, held data from the SCOP test

are used to estimate these interpolation parameters.

2.3.3 Context score of a domain in a protein with fixed context

I need to consider how to score an arbitrary Pfam domain instance on a protein with fixed

context (i.e. the other domains on the protein are already known). This is required for the

SCOP test in section 2.4.1. My approach is to consider the difference between the sentence

score SSx,T,M for the domain sequence including and excluding the domain in question.

Denote by dl the Pfam family which I am scoring, and by D the fixed (pre-annotated)

context of the protein such that no Di in D overlaps with dl. Then, define the sentence score

for a single domain as

SSx,T,M (dl) = SSx,T,M (D
⋃

dl)− SSx,T,M (D \ dl) (2.18)

2.3.4 Dynamic programming algorithm

The space of all potential domain assignments for a particular protein is large, and hence

an algorithm which concentrates on searching probable domain assignments is required. My

approach is to first run HMMER against the protein for each Pfam family, keeping only

those hits which have HMMER e-value less than 1000. In this way, a list d = d1 . . .dm

of potential domains is obtained, ordered by end position, with corresponding amino acid

fragments x[si,ei]. The search space is now all possible subsequences of domains in this list.

The search through this reduced space is optimized using a dynamic programming technique.

Firstly, assume that the language model is a first order Markov model. In that case,

the goal is to find the domain sentence D = D1 . . .Dn, a sublist of d which maximises the

protein log-odds score SSx,T,M (D), where

SSx,T,M (D) =
∑i=n+1

i=1 H(Di) + C(Di|Di−1) (2.19)

H(Di) = HMMER(Di)− τDi (2.20)

C(Di|Di−1) = log
(

P (Di|Di−1)
P (Di)

)
. (2.21)
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Note that H(Di) is just the HMMER score for the domain minus the threshold, and

that C(Di|Di−1) is termed the transition score. Denote the begin and end states as D0,Dn+1

respectively, so that C(D1|D0) is the transition score coming from the begin state and

C(Dn+1|Dn) is the transition score going to the end state. As the end state contributes

no sequence-based score, H(Dn+1) is set to zero.

Define Di to be the highest scoring domain sentence which ends in domain di without

overlaps. The following recursion relation then applies:

SSx,T,M (Di) = H(di) + maxej<si{SSx,T,M (Dj) + C(di|dj)}, (2.22)

where the condition ej < si ensures that the maximising sentence does not contain domain

overlaps. Then set

Di = {Dj ,di} (2.23)

where Dj maximises eq. 2.22. Repeated application of eq. 2.22 and eq. 2.23 for i = 1 . . .m+1

gives the maximising sentence D = Dm+1 required by eq. 2.19 (again, I use the convention

that dm+1 is the end state, so that Dm+1 is interpreted as the maximising sentence ending

with the end state).

The assumption that the Markov model M is first order is now relaxed, and C(Di|Di−1)

is replaced with C(Di|Di−1 . . .Di−k). Equation eq. 2.22 now becomes

SSx,T,M (Di) = H(di)+

maxej1
<sj2

<ej2
<...<sjk

{SSx,T,M (Dj1,...jk) + C(di|djk
, . . .dj1)}, (2.24)

and so the strategy outlined above is no longer guaranteed to return the highest scoring

sequence under the language model. However, this strategy is still used in this case, and has

been found to still work well in practice.

2.3.5 Incorporating the sequence score threshold

As mentioned above, Pfam uses a sequence score threshold in addition to the domain score

threshold given in eq. 2.11. This thresholding is equivalent to a threshold on the sum of log-

odds scores contributed by all instances of a particular domain type on a protein (for instance

the sum of all of the zf-C2H2 domain scores). As the method applies Pfam thresholds, it must

also apply a sequence score filter as a post-processing step to retain consistency with Pfam.
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In order to do this, the maximising domain sentence is obtained as before. The total score for

the maximising sentence comprises the sum of HMMER scores (left-hand bracket of eq. 2.10)

and the context score (the right-hand bracket in eq. 2.10). As before, the total HMMER

score for each type of domain on the maximising sentence is summed to give a sequence score

for that domain type. Now, the context component of the score is distributed amongst each

of the sequence scores such that as many domain types score above the sequence threshold

as possible. To do this, assuming a positive context score, simply order the domain types

according to sequence score and allocate to the first sub-threshold domain type as much

context score is required to meet the sequence score threshold. Repeat this step until the

context score has been completely distributed.

2.3.6 Variable length Markov model

The fixed-order Markov model has a significant drawback: the lengths of commonly occurring

domain architectures are not fixed; some patterns are first order (CBS domains often occur

in pairs), while many patterns have a higher order (the group of RNA polymerase RBP1

domains commonly occur in groups of seven). Restricting to a fixed order Markov model will

degrade the ability of the model to recognize patterns of arbitrary length. Instead, for each

proposed context Dj from eq. 2.22 in the dynamic programming algorithm, a different order k

for M is chosen which is the maximum order which is observed in the training database. More

precisely, labelling Dj = Dj
1 . . .D

j
nj the order k is chosen to be the largest order with non-zero

training set count N(Dj
nj−k . . .D

j
nj ). As this does not depend on the current domain di, eq.

2.12 still defines a consistent probability distribution over domains. In practice, however, to

cut down on memory requirements for storing counts of arbitrary length, I restrict k ≤ 4.

This approach is an example of decision tree modelling which is commonly used in

language modelling. Decision trees partition domain histories Dj into equivalence classes

Φ1 . . .ΦM with a corresponding probability distribution P (Di|Φl). My approach partitions

on the basis of the longest domain context which has been observed in the training set. It

is straightforward to develop more complicated decision rules, and this remains a basis for

further investigation. My approach is also similar to the interpolated Markov chain approach

used by Salzberg [SPD+99] in gene prediction.
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2.3.7 Incorporating Pfam clans

The Pfam project groups together closely related Pfam families into Pfam clans. Pfam en-

forces an overlap rule: the Pfam threshold must be set to ensure that no distinct significant

Pfam family matches overlap. Clans were created to relax this rule – that is, two families

from the same clan are allowed to have significant matches which are overlapping, and the

family which scores highest above its own threshold is annotated as the matching Pfam fam-

ily. From the point of view of language modelling of domains clans can be seen as variants

of a single domain (in much the same way that different phonetic representations of a word

are the same word). I have taken the approach that from a language modelling point of view,

Pfam families from different clans are considered to be from the same family, and hence their

counts are aggregated. This only applies for training and scoring the the transition scores

C(Di|Di−1,Di−k) but the HMMER component H(Di) remains specific to the domain which

is being scored. Importantly, the threshold remains domain (not clan) dependent, as thresh-

olds may still vary substantially within a clan (particularly if one clan member is a fragment

of another).

Clans and context modelling have had a mutually beneficial existence in Pfam. Pfam

annotators use context domain hits to guide their decisions about new clans to build, and

grouping Pfam families into clans means that context modelling has more information (as

more patterns are observed) with which to score domain architectures.

2.3.8 Significance scores

The Pfam database maintains for each domain hit an e-value score as well as a log-odds score.

The e-value score for a domain is the number of hits which would be expected to have a score

greater than or equal to the score of the domain in a random database of the same size. It

is calculated for each Pfam family by fitting an extreme value distribution (EVD) to the bit

scores of hits of that family against a set of randomly generated proteins, as implemented in

the hmmcalibrate program of the HMMER package. The e-value score does not directly affect

the assignment of domains in Pfam as manually created thresholds are used instead. However,

the significance of domain matches is important to consider as it is used by end users when

evaluating marginal hits. Moreover, significance scores can be used to compare the reliability

of hits from different Pfam families, whereas log-odds scores cannot. Significance values are
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required in the SCOP test to generate aggregate ranked lists of domain matches. Thus it is

important to consider the effect of language modelling on significance scores.

One possibility is to use the unmodified EVD parameters calculated by hmmcalibrate

to calculate the significance of HMMER+context scores. This is the approach pursued in the

SCOP test in section 2.4.1. An alternative strategy is to score the HMMER+context model

on randomly generated proteins in order to generate a modified EVD. As the significance

score relates to a particular domain rather than the entire domain sentence, the method

described in section 2.3.3 is used to calculate the HMMER+context score for the domain as

the difference of the HMMER+context score of the maximising sentence with and without

the domain in question. As in hmmcalibrate the HMM is required to pass through the given

domain at least once. Note that in almost all cases, the language model uses a start → domain

→ end architecture as it finds no other domains with scores above threshold to include in the

calculation. In this case, all of the start to domain and domain to end transition scores will

be attributed to the domain.

This process is demonstrated on two Pfam families, WD40 and pkinase as shown in

fig. 2.6. Two different types of behaviour are observed. In one case, pkinase commonly

occurs by itself on a protein, and hence hits to random proteins typically have their scores

enhanced slightly by the language model, so that the EVD shifts to the right. However, real

hits also have their scores enhanced. Furthermore, in the case of a single domain protein, the

increase will be the same as the shift in the EVD, so that the significance of the hit remains

unchanged. In contrast, hits to the pkinase domain in atypical contexts will not have their

scores enhanced, and so their significance will decrease. The other example, WD40 commonly

occurs in repeats of 5-8 units; so that individual random hits are penalised under the language

model (by about 4 bits) and so the EVD shifts to the left. The language model enhances the

score of real hits (as they do occur in the appropriate repeating pattern), thus providing the

compound effect of increasing the score of real hits and increasing the significance of hits at a

given score. To summarise, the effect of language modelling on significance scores appears to

be either neutral, in the case in which the scores of random and real hits are shifted by the

same amount, or more discriminatory, in the case of decreasing random scores and increasing

real scores.

A weakness of this approach to calculating significance scores is that it considers random
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Figure 2.6: Extreme Value Distribution (EVD) curves calculated for pkinase and WD40 Pfam
domains. The solid lines are the standard EVD curves calculated using HMMER. The dashed
lines use the language modelling method, and hence take contextual information into account.
For almost all sequences, this results in a domain sentence consisting of a BEGIN state followed
by the given domain and ending in an END state. WD40 is commonly found in groups of 5 to
8 tandem repeats, so that single random WD40 hits are penalised by the language model. The
WD40 EVD shifts 4.0 bits to the left. On the other hand pkinase often occurs by itself on a
protein, and hence random single pkinase repeats gain slightly under the language model. The
pkinase EVD shifts 1.1 bits to the right.
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proteins for calculating the language model component of the score, whereas false positive hits

in real proteins do not have random protein as context. This has not been further investigated.

2.3.9 Implementation

A major implementation challenge was to store efficiently in memory the counts of occurrence

patterns of domains and species used in eqs. 2.13, 2.14, 2.15. These counts are central to

the dynamic programming algorithm described above, and speed of accessing these counts is

critical. Note that the counts are stored, rather than the smoothed probabilities, as the space

of possible domain and taxonomy combinations is much vaster than the space of observed

combinations. A context map is stored, which contains as keys every observed 1-mer, 2-mer

.. k-mer observed in Pfam (with k normally set at 4). These keys map to a secondary map,

in which each observed taxonomy from the reduced taxonomy tree maps to the number of

observations of the given domain sequence k-mer in proteins of this taxonomy or with the tax-

onomy as ancestor. In order to facilitate rapid access to the counts to compute the smoothed

probabilities, the context map is stored as a red-black tree [CLRS01]. The smoothing equa-

tions eq. 2.13 recursively interpolate from higher-order to lower-order contexts. However

the counts are stored and accessed in the reverse order, progressively narrowing down from

general to more and more specific contexts. This is achieved by first constructing an ordering

of Pfam domains. This ordering is used to infer an ordering on domain sequences working

from right to left – that is for two given domain sequences the final position is first compared,

then, if this is equal the penultimate position is compared, etc. If the two domain sequences

are equal in all positions, but one is shorter than the other, then the shorter sequence is

ordered ahead of the longer sequence. This ordering is used to create the red-black map.

Now consider eq. 2.13. The successive numerators require the counts N(Tj ,Di−k, . . .Di),

N(Tj ,Di−k+1, . . .Di), ... N(Tj ,Di), which are obtained in reverse order. Firstly the node

in the red-black map is found below which all domain sequences end in Di, as all subsequent

counts will be from this sub-tree. The first position in this sub-map is the last of the counts

required. This process is continued, progressively narrowing down the sub-tree of counts.

For successive denominators, the same strategy can be pursued, but starting with all domain

sequences ending in Di−1. The counts over all ancestral Tj are all collected at the same stage.

This search is not optimized in the same way as the maps are much smaller, so a standard
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hashing strategy is sufficient.

As an example, consider scoring an example transition C(Di|Di−k, . . .Di). Consider

the domain sequence D0 =BEGIN, D1 = C2-set, D2 = ig and I will show how to calculate eq.

2.21. Let the taxonomy of the protein be (Eutheria, Coelomata, Eukaryota, root). I assume

α = 0.7 and β = 0.35. The array of counts required for smoothing is given as follows:

T0 T1 T2 T3

N(Tj ,D0,D1) 3224 43394 5029 5210

N(Tj ,D1) 17894 255714 29972 30256

N(Tj) 379460 618859 1376701 3005810

(2.25)

T0 T1 T2 T3

N(Tj ,D0,D1,D2) 2428 3355 3946 4011

N(Tj ,D1,D2) 12132 17657 21018 21119

N(Tj ,D2) 17894 25571 29972 30256

(2.26)

From these counts, I calculate the probabilities, and finally log-odds scores.

T0 T1 T2 T3

N(Tj ,D0,D1,D2)
N(Tj ,D0,D1) 0.75 0.77 0.78 0.77

N(Tj ,D1,D2)
N(Tj ,D1) 0.68 0.69 0.70 0.70

N(Tj ,D2)
N(Tj)

0.05 0.04 0.02 0.01

P (D2|Tj ,D0,D1) 0.39 0.40 0.39 0.38

P (D2) 0.01

C(D2|D0,D1) 5.24

(2.27)

So the transition score is 5.24 bits. In other words, in eutherian mammals it is 25.24 = 38

times more likely to see a ig as the second domain in a protein following a C2-set domain

than it is in a random protein.

2.4 Results

Figure 2.7 shows the processes carried out this chapter. The results are split into two sections,

the SCOP test and the Pfam scan. The training set for the language model consisted of Pfam

release 15 and proteins from the Uniprot [ABW+04] database consisting of Swissprot release
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Figure 2.7: Conceptual diagram of processes and data in this chapter. Inputs are shown in grey,
and outputs in light blue, with intermediate steps in yellow, and software steps in red.

44.0 and SP-TrEMBL27.0, with all proteins which match proteins from the ASTRAL protein

set (filtered to a maximum of 40% identity between any two proteins in the set) removed.

This set consisted of 982, 523 proteins, which only includes those proteins which have at least

one annotated Pfam domain.

2.4.1 SCOP test

In order to test objectively the ability of the language model to detect protein domains, I use

the SCOP test, initially developed by Brenner et al. [BCH98] and subsequently used by many

authors to evaluate homology prediction algorithms (e.g. [MG02]). The SCOP database clas-

sifies all proteins of known structure [HMBC97] in terms of protein domains. Multi-domain

proteins are split into component protein domains, which are classified hierarchically in four
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levels: family, superfamily, fold and class. Sequences belonging to the same family share se-

quence similarity, suggesting a common function and implying a clear common evolutionary

origin; families are clustered into superfamilies on the basis of structural similarity suggesting

a probable common evolutionary origin; superfamilies are grouped into folds on the basis of

similar secondary structure topology. ASTRAL is a database of protein sequence fragments

of known structure, annotated with SCOP family classifications [CWC+02]. ASTRAL pro-

vides protein sequences filtered to various levels of sequence similarity. The SCOP test works

by running a given algorithm and domain model over all proteins classified by SCOP, and

comparing domain family predictions with the known structural class. In this way it is pos-

sible to independently identify proteins homologous to the given domain family (all proteins

belonging to the same SCOP superfamily) and proteins which are non-homologous (all pro-

teins belonging to a different SCOP fold). Proteins belonging to the same fold but different

superfamily are not classified as homologous or non-homologous.

The SCOP test was modified in order to apply it to the domain models in Pfam. Using

the file pdbmap (available at ftp://ftp.sanger.ac.uk/pub/databases/Pfam/pdbmap) I obtain

a list of all proteins in which a Pfam domain annotation overlaps a PDB structure . The co-

ordinates (with respect to the Uniprot protein sequence) of both the PDB structure and the

Pfam domain are provided in this file. The PDB structure is classified by SCOP. Providing a

given Pfam domain overlaps one and only one SCOP superfamily, I classify all SCOP proteins

in this superfamily as homologous to the Pfam domain, and all proteins outside the fold to

which this superfamily belongs as non-homologous. I identify 1970 Pfam families in Pfam

release 15 which satisfy this criteria. Of these, I use 500 to train the interpolation parameters

of the context models. The remaining 1470 form the test set of Pfam families for the SCOP

test.

For a given algorithm and a given Pfam family, the SCOP test proceeds by scoring

every protein in the ASTRAL filtered sequence set (to a maximum of 40% shared identity

in this case), and generating a list of proteins ranked according to model log-odds score.

The ultimate goal of homology detection is to score all homologous proteins above all non-

homologous proteins. One simple measure of relative success is the number of true homologies

scored above the highest scoring non-homologous sequence, which I shall refer to as the ‘over

the top’ score (OTT). An alternative is a coverage vs error curve which plots at each point in



2.4. RESULTS 53

the ranked list the total number of homologous proteins (true-positive) above this point on

the y-axis vs the number of non-homologous (false positive) above this point on the x-axis.

A randomly ranked list would give on average an equal proportion of homologous and non-

homologous sequences identified. For a given error rate, a higher curve is a more effective

classifier of homologous proteins, and the area under the curve is another measure of overall

success. The minimum error rate (MER), which is the minimum of the sum of number of

homologous sequences classified as non-homologous and non-homologous sequences classified

as homologous, can also be used.

If instead of ranking according to model score the list is ranked according to e-value

significance, then it is possible to generate an aggregated ranked list of significance across

multiple domain models. From this list a score representing the effectiveness of the algorithm

across all domain families can be obtained, using either the OTT, MER or area under the

coverage versus error curve. The ranking by significance is necessary as the log-odds scores

between models are not comparable.

The SCOP test was carried out on the following variants of the context models de-

scribed in the previous section: HMMER alone; HMMER with a digram language model,

denoted HMMER+2gram (which implies that a single domain is considered as context); HM-

MER+3gram; HMMER+4gram; HMMER with taxonomy context (denoted HMMER+taxonomy)

and HMMER+4gram+taxonomy. It can be seen from the following results that the 4gram

model is a small improvement on the 3gram model. A HMMER+7gram+species model was

tested to observe the effect of longer context, but it was not found to improve results beyond

the HMMER+4gram+context model.

In order to apply the language models, it was necessary to identify the protein sequence

in Uniprot which matched each of the protein fragments in the ASTRAL set, so that I

could use Pfam to assign the domain context and also obtain the taxonomic position of the

protein from the NCBI taxonomic code assigned by Uniprot to each protein. As noted above,

ASTRAL contains protein fragments, so it is also necessary to assign the correct position of

the protein fragment on the Uniprot protein. This is achieved with the pdbmap file discussed

above. The HMMER+context model score for a particular Pfam domain was obtained as the

difference between the context score of the full domain sequence including the Pfam domain

and the context score excluding the context domain, as given by equation eq. 2.18.
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The interpolation parameters were trained on 500 of the 1970 Pfam families with the

remainder forming the test set of Pfam families. The sum of individual family OTT scores

was used as the objective function to train the taxonomy and domain context interpolation

parameters. This score was chosen as it replicates most closely the objective of improving

Pfam annotation, for which a threshold is manually curated for each family with the aim that

there are no false positives. The optimal parameters from this set were α = 0.7 for domain

context, and β = 0.35 for taxonomic context.

Figure 2.8 displays the coverage versus error curve over all Pfam domains tested (with

the results ranked by significance). HMMER+4gram+taxonomy identifies 3% more homolo-

gous proteins at an error rate of 1000 proteins. Table 2.4.1 shows summary measures of the

performance of each of the context models. From the point of view of using the method to

improve Pfam domain annotation, the important measure is the sum of family OTT scores

(column 4). HMMER+4gram+taxonomy improves this measure by 2.2%, implying that if

the Pfam thresholds could be optimally selected, context models could increase the number of

domains annotated by 2.2%. HMMER+4gram+taxonomy is substantially better under this

metric than HMMER+4gram, indicating that taxonomy is useful in improving the context

models. Taxonomy on its own generates a smaller improvement than the 4-gram but better

than the 3-gram language model.
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Figure 2.8: Coverage vs error curve for detection of remote homologies for aggregated results
from 1470 Pfam families not used for training the interpolation parameters. The lines are
black - HMMER score, green- HMMER+taxonomy , blue - HMMER+4gram, the red - HM-
MER+4gram+taxonomy. A higher line indicates a better classification of remote homologies. I
display only up to 1000 false positives.
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Method # families sum of Aggregate

with OTT family score score

Better Worse OTT MER OTT MER

HMMER - - 3604 5092 1620 3692

+2gram 37 15 3638 5042 1650 3668

+3gram 46 20 3646 5041 1655 3662

+4gram 50 22 3657 5031 1654 3665

+taxonomy 53 34 3644 5064 1601 3687

+taxonomy 69 39 3682 5017 1634 3650

+4gram

Table 2.1: Comparison of context models with HMMER, scored
over the 1470 families not used for training the interpolation pa-
rameters.

For each method the number of false positive and false negative matches at a given e-

value significance is plotted in figure 2.9. Context models improve error rates over a range of e-

values less than 1.0 by reducing false negative matches with negligible impact on false positive

matches. This demonstrates that at a given e-value threshold, HMMER+4gram+taxonomy

has a lower error rate than HMMER alone. From the point of view of large scale classification

of protein homology with profile HMMs this is an important result, as classification is often

done on the basis of a global e-value threshold. This figure justifies to a certain extent the use

of the same EVD on context adjusted scores, in that the false positive error curve is correctly

calibrated with the HMMER false positive score. Note that no false positives are obtained

with evalue of 10−3 or lower.

Figure 2.10 displays the domains which have the greatest increase and decrease in OTT

score. In particular, C2-set gains 12 domains while Semialdehyde dh loses 3 domains. In some

cases the increase obtained by using a joint model is greater than the sum of the individual

OTT score increases of the 4gram and context models (for example Laminin EGF).

One family with significant improvement is the C2-set domain. C2-set is a member

of the immunoglobulin superfamily clan in Pfam, and commonly co-occurs with other im-

munoglobulin superfamilies on a protein. HMMER alone scores 6 positive sequence from the
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Figure 2.9: Number of false negative (upper six lines) and false positive (lower six lines) matches
versus e-value threshold for HMMER (red lines) and context models. At a given e-value threshold,
each of the models decreases false negative rates with negligible impact on false positive rates.
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Figure 2.10: Pfam domains which have their OTT scores improved the most (upper graph) and
decreased the most (lower graph), with OTT improvements relative to HMMER alone plotted for
HMMER+taxonomy (blue), HMMER+4gram(red) and HMMER+4gram+taxonomy(black). The
bars indicate absolute increase or decrease in OTT score, indicated on the left-hand y-axis. The
lines indicate the percentage increase (or decrease) in OTT score, indicated on the right-hand
y-axis.
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ASTRAL test set above the first negative sequence, whereas HMMER+context+species scores

18 sequences above the first negative sequence. This improvement is obtained by increasing

the significance of 12 homologous low significance scores and decreasing the significance of 3

non-homologous high significance scores. In the Pfam annotation, this domain is restricted to

eutheria (placental mammals), however other members of immunoglobulin superfamily clan

occur frequently in other verterbrata, and less commonly in other metazoa. The improvement

in classification includes 11 vertebrate proteins and 1 insect protein. Figure 2.11 displays the

significance scores for both HMMER and HMMER+4gram+taxonomy on this family.

2.4.2 Pfam scan

I scanned the Uniprot [ABW+04] database with all Pfam models to search for novel hits

to these models. The same interpolation parameters were used as in the SCOP test. A

HMMER+4gram+taxonomy language model was used, as the SCOP test demonstrated that

this is the most sensitive of those context models tested.

The Pfam scan identifies 44792 new domain instances, which corresponds to 2.8% of

the total number of domains previously scored as significant in Pfam under full-length models

(Pfam also scores partial matches to Pfam domains). The new domain instances occur on

26458 proteins (which corresponds to 1.8% of the total number of proteins in Uniprot) and

3479 proteins which previously had no Pfam annotation (which corresponds to a 0.2% increase

in sequence coverage). The new domain instances cover an additional 1.8m residues (Pfam

full-length models previously covered 246m of 470m residues in Uniprot) which corresponds

to a 0.38% increase in residue coverage. The new predictions are limited to 1245 domains, of

which 344 domains contribute 95% of the new domain instances.

Figure 2.12 displays the families that the method detects. Figure 2.13 displays the

length distribution of both new domains detected using context and the current Pfam an-

notation. Context domains have average length of 44 residues; the average length of Pfam

domains is 183 residues. This is due to the over-representation of repeats in short Pfam fami-

lies (and hence better contextual information) and a lower sequence-based signal-to-noise ratio

for short families so that extra information is more likely to make a difference in detecting

them.

Figure 2.14 shows how the impact of context varies across the taxonomic tree. In
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Figure 2.11: E-value significance scores for HMMER+4gram+taxonomy vs HMMER for C2-set
domain, plotted on a log-log scale. The green dots represent sequences in the same SCOP
superfamily (which are treated as homologous). The red dots represent sequences in different
SCOP folds (which are treated as non-homologous). The blue dots represent sequences in the
same SCOP fold but different superfamily (which are treated as neither homologous or non-
homologous). Note that the four most significant matches (with e-value less than 1e − 8 under
both HMMER and HMMER+4gram+taxonomy) are not shown. All 31 homologous sequences
shown on this graph (green dots) fall below the y = x line, and hence are more significant under
HMMER+4gram+taxonomy than under HMMER.
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Figure 2.12: Domain occurrences amongst top 20 ‘context’ families. The bars shows the absolute
number of new predictions; the line line shows the percentage increase in that family.
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Figure 2.13: Length distribution for context domains(red) and Pfam domains (blue).

particular, context is not particularly effective in annotating Virus proteins. One possible

explanation is that almost half the virus proteins in Uniprot are HIV proteins, and most of

these are homologous proteins from different HIV strains, hence represents a much smaller

pool of proteins with different domain architectures, each of which is already well understood.

Context increases the number of Pfam annotations in bacteria and archaea by approximately

2% which is slightly below the average result. Context performs particularly well on eukaryotic

proteins, increasing coverage by up to 6%. Table 2.2 suggests a weak relationship between

the average number of domains per protein annotated with at least one Pfam domain and

the increase in context domains.
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Figure 2.14: Percentage increase in domain occurrences by position in taxonomic tree. Each of
the taxa displayed have more than 10,000 proteins in Uniprot (counting nodes which have the
given node as ancestor). Nodes which have a single parent have been removed (for example HIV).
Each node is annotated with the percentage increase in domain instances given by context at
that level in the taxonomic tree. The branches above a given node are coloured according to the
percentage increase, from green (high increase) to red (low increase).
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Taxonomy Percentage increase Average no. of

due to context domains per Pfam

domains annotated protein

Drosophila melanogaster 6.4 2.5

Oryza sativa 6.4 2.0

Homo sapiens 4.6 2.6

Eukaryota 3.6 1.9

Bacteria 2.5 1.5

Archaea 2.4 1.5

Viruses 0.4 1.4

Table 2.2: Percentage increase in domain annotations due to context and
average number of domains per protein annotated with at least one do-
main.

Figure 2.15 shows several examples of domains found by the context models without

taxonomic context. Two TPR domains are found on the SR68 HUMAN protein, which has no

TPR domains annotated in any of the protein databases. This protein is known to interact

with SR72 HUMAN in the signal recognition particle [LPA+93], which itself has a pair of

annotated TPR domains. As TPRs are protein-protein interaction motifs, this suggests that

the interaction between SR68 and SR72 may be mediated by this region. On the previously

un-annotated E2BG CAEEL protein I find an NTP transferase domain, followed by three

hexapep repeats, all raised above the noise by their mutual compatibility.

The method also predicts a previously un-annotated Tf Otx domain in the cone rod

homeobox protein (CRX), in H. sapiens, R. norvegicus and M. musculus (figure 2.15). CRX

is a 299 amino acid homeodomain transcription factor which is primarily expressed in the

rod and cone receptors of the retina [CWN+97, FMC97]. CRX is highly conserved amongst

mammalian species. CRX is known to share homology with Otx1 and Otx2, and contains

a homeodomain near the N-terminus followed by a glutamine rich region, a basic region, a

WSP motif, and an Otx-tail motif. The new Tf Otx prediction extends over the un-annotated

region: amino acids 164 to 250. This region encloses a valine to methionine mutation at

position 242 associated with autosomal dominant cone rod dystrophy, which leads to early
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Figure 2.15: Examples of new context domains, indicated by rectangles. Standard Pfam domains
are indicated by angled boxes. These domains can be identified using only a domain context
model, without considering taxonomic context.
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Figure 2.16: Part of multiple alignment of Tf Otx domain in members of the Otx1 and Otx2
sub-families. Position 22 in this alignment - corresponds to position 242 on CRX HUMAN. This
position is methionine for all members of the Otx1 subfamily while it is valine for all members of
the Otx2 sub-family.

blindness [SCW+97, RBD01]. Recent research demonstrates that a region coinciding with

the new prediction (amino acids 200 to 284) is essential for transcriptional activation of the

photo-receptor genes, and supports the hypothesis that the V242M mutation acts by impairing

this transactivation process [CWX+02]. An analysis of the multiple alignment of the Tf Otx

domains (figure 2.16), demonstrates the existence of two sub-families of the domain, the first

of which has a methionine at position 105 and contains all Otx1 proteins, the second of which

has a valine at position 105 and contains all Otx2 proteins. Furthermore, the CRX V242M

mutation aligns with this position and hence transfers the CRX Tf Otx domain from the

Otx2 to Otx1 sub-family. Finally, note that it has been demonstrated that both Otx2 and

CRX transactivate the inter-photo receptor binding protein (IRBP) [BBI+99], while this has

not been demonstrated for Otx1. This suggests that the V242M mutation loss of function is

due to loss of IRBP transactivation ability, and conversely that position 105 in the Tf Otx

motif is critical for IRBP transactivation.

Figure 2.17 shows further examples of new domain occurrences found by considering

taxonomic context only. A pair of TPR repeats are found in Aspartyl (asparaginyl) beta-

hydroxylase (Q9Y4J0). This protein has been shown to be over-expressed in an enzymati-

cally active form in hepatocellular carcinoma and cholangiocarcinoma[LJN+96]. The enzyme

acts by catalyzing post-translational hydroxylation of β carbons of aspartyl and asparaginyl

residues in EGF-like domains with the appropriate consensus sequence. In particular, the

Notch homologues – which are known to be involved in cell differentiation and have been

shown to be oncogenic – have the appropriate consensus sequence. TPR domains are thought

to be involved in protein-protein interactions[DCB98], and may therefore help to mediate this
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interaction.

The method also identifies novel antistasin domain on the theromin protein (THBI THETS)

in Theromyzon tessulatum, a leech. This protein has important medical applications as a po-

tent thrombin inhibitor, and is found in the head of the leech [SCB+00]. The antistasin

family is an inhibitor of trypsin-family proteases and is often found in anti-coagulants. Thus

the function of the protein concurs with the novel domain occurrence. Taxonomic modelling

also find a novel occurrence of the toxin 2, or scorpion short toxin domain on the ErgToxin

protein (Q9GQ92) in Centuroides noxius (Mexican scorpion). The ErgToxin protein blocks

the ERG-K+-channels of nerve, heart and endocrine cells [SBF+00]. Other members of the

toxin 2 family also inhibit potassium channels.

Finally, in the fertilization 18kda protein (Q25063) in Haliotis fulgens (Green Abalone),

a novel Egg lysin domain is identified. Egg lysin is found in other Haliotidae, as well as other

Archaeogastropoda. The 18kda fertilization protein acts in conjunction with a paralogous

16kda lysin protein on the egg vitelline envelope. The 16kda protein creates a hole in the

vitelline envelope. The 18kda protein is a potent fusagen of liposomes, and is thought to me-

diate membrane fusion between the gametes, a step in gamete recognition which is important

in restricting heterospecific fertilization with other species [SV95]. These authors also found

very high divergence amongst the group of orthologous 18kda proteins in California abalone;

together with a high frequency of non-synonymous to synonymous substitution, indicating a

high selective pressure toward differentiation between species and thus furthering the gamete

recognition hypothesis. Furthermore, the 18kda protein exhibits a rate of evolution 2-3x that

of the 16kda protein. The 18kda protein in Haliotis fulgens is the most distantly related of

this group (with 27%–34% identity to the others), and hence standard profile methods fail to

detect the similarity.

I had validated the predictions of an earlier version of this method using a Psi-blast [AMS+97]

test (table 2.4.2). This test was performed on a set of new domain predictions using Pfam 7.7,

and an earlier version of the language modelling software which did not take into account the

taxonomic context of sequences. For each novel predicted domain occurrence, Psi-blast was

used to generate a set of similar sequence fragments. These sequences were then searched for

matches to Pfam families. For 30.7% of novel domain occurrences Psi-blast found matches

that are annotated in Pfam. In 90.0% of these the majority of annotations matched the



68
CHAPTER 2. ENHANCED DOMAIN DETECTION USING APPROACHES

FROM SPEECH RECOGNITION

Figure 2.17: Emergence of new domains occurrences, identified using HMMER+taxonomy, indi-
cated by magenta boxes and ‘Species:’ labels. Standard Pfam domains are indicated by angled
boxes. These domains can be found by modelling taxonomic context without also considering
domain context.
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identified family; a further 7.6% had at least one match to the correct family; 0.8% matched

a related family and for the remaining 1.5% all matches were to incorrect families. By in-

spection, the assignment due to the language modelling method of this paper appears to be

correct for the overwhelming majority of the 7.6% and 0.8%, and many of the 1.5%. This

suggests that the false positive rate is no more than a few percent. Since many of the 69.3%

novel predictions for which Psi-blast does not find a match have higher scores than those for

which it does, this also indicates the approach can detect matches which Psi-blast does not.

Psi-blast does not find match in Pfam Family 10,575 69.3%

Majority of matches to correct Pfam family 4,220 27.6%

Majority of Has 1 match to correct family 358 2.3%

matches to Has matches to related family 38 0.3%

incorrect family All matches to unrelated families 72 0.5%

Table 2.3: Blast Results For New Positives Predicted By Model.

2.5 Discussion

I have demonstrated that significant improvement in protein domain detection is possible

through modelling domain context using techniques inspired by speech recognition method-

ology. I have shown several examples in which the increased predictive power has discovered

domains which further understanding of human disease and biology, and expect there will be

many others. From a theoretical point of view, this method provides an integrated prediction

of domain annotation for a given protein, evaluating in a strictly probabilistic fashion the

appropriate trade-off between amino-acid signal strength and contextual information. Lastly,

from a pragmatic perspective, the method significantly increases sequence coverage. The

predictions of the method are available via the Pfam web-pages.

Further improvements to the language models are possible, motivated by similar tech-

niques in speech recognition. Modifications to the decision trees used to classify domain

contexts are possible, for example I could classify domain contexts on the basis of the longest

potentially non-contiguous preceding subsequence which is also observed in the training

database. Alternatively, standard classification techniques to learn optimal decision trees
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can be employed. Other annotated regions on the protein could be used in our search: for

example regions of low complexity and transmembrane regions. Explicitly modelling the

length distribution of spacers between domains may also increase sensitivity. Lastly, alterna-

tive classes of generative grammars may be used – although it remains unclear which level

is appropriate for domain modelling. The language modelling could also be adapted to take

into account nested domains.

An alternative approach to language modelling, such as the exponential model intro-

duced in section 2.1 might provide more flexibility for modelling long-range domain interac-

tions as well as providing an alternative method for integrating taxonomic information. This

method is more computationally expensive but also more flexible with regard to modelling

arbitrary features.

Extra information other than taxonomy regarding the protein may also prove a useful

guide in domain annotation. For example the techniques used to incorporate taxonomic

information can also be used to incorporate protein localisation or even functional information

such as phenotype in a systematic RNAi screen.

This type of approach may also be applicable to the discovery of cis-regulatory modules

(CRMs) and transcription factor (TF) binding sites. Identification of TF binding sites using

weight matrices is difficult, as they can lie kilobases away from the transcription start-site, and

the motifs occur at random throughout the genome. Several authors have built organizational

models which take motif positioning and orientation into account [DSW01, PFL+01], while

others have attempted to identify functional motifs on the basis of high local density of

potential binding sites [BNP+02]. Language modelling is related to some of these methods,

and may provide an alternative strategy.




