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Summary

Protein domains are the structural, functional and evolutionary units of proteins. A useful

way to predict the function and structure of a new protein coding gene, or one which is poorly

genetically or biochemically characterised, is to identify the domain architecture on the basis

of the amino acid sequence, and then infer function and structure from other proteins with

similar domain architectures.

The first part of my thesis concerns improving techniques for identification of protein

domains from amino acid sequence. I investigate the application of language modelling tech-

niques from speech recognition to integrate contextual information into domain prediction.

This takes advantage of the observation that certain combinations of domains are more likely

to occur than others. I also investigate using knowledge of the species in which the protein

occurs to improve domain prediction, and develop an integrated model of species and domain

context. Lastly, I investigate the degree to which protein domains can be identified on align-

ments of homologous proteins, rather than on the sequences taken individually. This method

relies on the development of models of evolution which reflect the structural and functional

constraints of conserved sites in the protein domain and using these models to calculate the

likelihood that the given protein cluster has been evolving within these structural and func-

tional constraints. I have tested each of these approaches on proteins of known structure, and

demonstrated improvements in domain identification in each case.

The second part of my thesis concerns using annotated protein domains to understand

the evolution of gene families. I look for cases in which the gene family unambiguously

contains a particular protein domain, but also contains proteins which are diverging away

from the domain. Using evolutionary models developed in the first part of my thesis which

reflect functional/structural constraints at conserved sites, I develop a technique for scoring

the degree to which evolution along a branch in the gene tree is constrained by the need to
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maintain the structure and function of the protein, and conversely, the likelihood that it is

not evolving under these constraints. I have used this approach as the basis of a test for

pseudogenes, which has been tested against standard methods for identifying pseudogenes on

the manual annotation of human chromosome six. I have also used this approach to develop

a test for positive selection, and characterised positive selection in several gene families.
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Chapter 1

Introduction

Furthering our understanding of protein domains is fundamental to our knowledge of both

the function of proteins and the evolutionary pressures which have shaped them. Protein

domains are the basic structural and functional repertoire from which evolution produces

novel function through new combinations as well as modifications within a protein domain.

Thus protein domains form an important ‘evolutionary crane’1 [Den95] which have been used

during the evolution of complexity.

There has been a recent explosion in the amount of molecular sequence data. As

of July 2004, the Integr8 project (http://www.ebi.ac.uk/integr8/) contains information

from 13 sequenced eukaryotic, 19 archaeal and 150 bacterial genomes. With more genomes

in the sequencing pipeline, as well as environmental genome shotgun sequencing [Ven04], the

growth of molecular sequence data is set to increase. The number of protein structures is also

steadily increasing. Thus, there is increasing amounts of data upon which to build a firmer

understanding of protein domain evolution.

Molecular sequence data, used in conjunction with structural data, has already proved

to be central in furthering the goal of understanding protein function and evolution. Sequence

data has been used for many diverse purposes, including but not limited to:

• detection of evolutionary relationships between proteins;

• clustering proteins into families on the basis of homology;

1According to Dennett, an evolutionary crane is a piece of machinery which has itself been generated via

evolution, but once created has sped up evolution considerably.

1



2 CHAPTER 1. INTRODUCTION

• inferring detailed evolutionary relationships between homologous proteins by recon-

structing phylogenetic trees, and describing orthology and paralogy relationships be-

tween proteins;

• detecting conserved regions, and inferring potential structural domains;

• inferring branchings in the tree of life;

• detecting highly conserved, functionally important residues;

• detecting correlated sites and inferring interactions;

• detecting pseudogenes;

• detecting positive selection;

• detecting recombination.

Moreover, protein sequence data has led to a better understanding of the evolutionary

process both at the molecular level in terms of the mutational and insertion/deletion (indel)

processes and at the domain and whole-protein level. Increasingly, with population sequence

data becoming available, an understanding of population processes within species is emerging.

This includes an understanding of processes responsible for disease and cancer, via studies of

somatic mutations and translocations [FCM+04], as well as an understanding of mutational

processes which occur in germline cells but are not fixed due to non-viability.

Many of these applications rely on likelihood-based inference and probabilistic models.

A probabilistic model parameterises a probability distribution over the space of all possible

datasets, and thus assigns a probability (termed likelihood when the data is fixed and we are

interested in the probability assigned to it by a particular model) for the particular dataset

under investigation. The likelihood-based approach to inference is to construct several prob-

abilistic models, and by comparing the likelihood of the data under one model vs another

decide which best explains the data. One example of this approach is phylogenetic tree re-

construction, where each possible tree topology (together with a fixed model of molecular

evolution) parameterises a different probabilistic model over alignments. An advantage of

likelihood based inference is its flexibility with regard to unknown parameters of the model,
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such as branch lengths in the case of tree reconstruction. Unknown parameters can be esti-

mated as those which maximise the likelihood of the data (the maximum likelihood approach).

Different models (in this case different tree topologies) can be compared on the basis of the

maximum likelihood values. One pitfall of this approach is that adding parameters to a model

will never decrease the maximum likelihood value and in most cases increase it, so that models

with many parameters have a higher maximum likelihood than those with fewer parameters.

A related problem, sometimes called the many parameter trap, occurs when parameters are

introduced in relation to the size of the dataset, for instance site-specific parameters for an

alignment. The Bayesian approach [Jay03], deals with these problems by comparing models

via the integral of the likelihood with respect to a prior probability distribution over parameter

space.

In this introductory chapter I will review some of the literature concerning protein

domains, introduce mathematical models which are used to identify protein domains, as well

as review the literature on parameterising evolutionary models. Accurate protein alignments

and trees are fundamental to the approaches taken in this thesis; however, I will not review

the vast literature surrounding these two topics, as no new techniques for either alignment or

tree reconstruction will be presented in this thesis.

1.1 Protein Domains

The strict definition of a protein domain is a distinct structural and evolutionary unit of a

protein. This can include the entire protein, in the case of a single domain protein, or it

can include a fragment of a multi-domain protein which is observed to also occur in different

contexts on different proteins. This definition assumes that the protein domain has a unique

stable three dimensional structure, so the definition excludes natively disordered regions, al-

though these regions may still be of functional importance – it has been shown that eukaryotes

have 3-5 times more proteins with long regions of no secondary structure than other king-

doms [Ros02]. Not all evolutionary units of proteins have had their structures elucidated, and

so in this thesis the definition will be weakened to include evolutionarily conserved protein

fragments which are not homologous to an entry in the protein data bank (PDB). A domain

architecture is defined as in [VBB+04] as the linear arrangement of protein domains – two

proteins have the same architecture if and only if they have the same domain composition,
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and the domains are arranged from N-terminal to C-terminal in the same way, with linker

regions of up to 30 residues allowed between domains. Inserts can be accommodated in this

definition by requiring the same nesting pattern. The term superfamily will be used as de-

fined in SCOP [HMBC97], which is as a collection of all domains which are related by descent.

Fold will also be used as in SCOP to denote the collection of domains which have structural

similarity, but may not be evolutionarily related.

A hypothesis forwarded in [LPR01, SL03] is that domains are the result of fusions of

antecedent domain sequences (ADSs) which are ancient peptide sequences. The authors argue

that this hypothesis explains the similarity of motifs present in different protein folds better

than the alternative hypothesis of convergent evolution. Under the ADS hypothesis, motifs

rather than domains are the atomic units of protein evolution. This hypothesis remains

unproven and controversial. It is not considered further in this thesis.

A compelling view to emerge from several structural biology studies is that multi-

domain proteins can be described at a high level by their protein domain architectures, and

that most proteins are multi-domain (two-thirds in prokaryotes [TPC98], more in eukaryotes

[Ger98]). Transferring functional annotation between single-domain proteins from the same

superfamily can be done with 68% accuracy, whereas for multi-domain proteins sharing a do-

main combination the accuracy is 81% and for multi-domain proteins with almost complete

residue coverage and identical domain architectures the accuracy rises to 91% [HG01]. These

authors also found that ignoring the multi-domain structure of a multi-domain protein is

particularly perilous for functional transfer: only 35% of multi-domain protein pairs sharing

a single domain have the same function. Aloy and co-workers have shown that the geom-

etry of interaction is generally conserved for homologues with sequence identity above 30%

but is not conserved between members of the same fold without evidence of shared ancestry,

although they also provide examples of very close homologues not preserving the interac-

tion, and distant homologues which strongly preserve the geometry of interaction [ACSR03].

Thus, it appears that a substantial amount of protein function can be understood via an

understanding of the structure and function of representative multi-domain proteins. On

the basis of this principle, protein targets have been prioritised for structure determination

in structural genomics projects [Bre00, AHT03, VBB+04]. As well as predicting function,

domain architectures can be used to assist cellular localization prediction [MSBP02].
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Novel proteins are formed during evolution by duplication and recombination. Dupli-

cation gives rise to proteins which are freer to diverge and evolve new functions. While this

process often leads to the formation of a pseudogene, it is also the main source for the creation

of new genes [PP02]. It has been observed that the degree to which different domain super-

families have been duplicated and subsequently maintained in the genome varies substantially,

and this results in a power law distribution of domain superfamily occurrence[QLG01]. Re-

combination can lead to the formation of novel protein domain architectures, by either fusing

genes or by shuffling exons via intronic recombination, leading to domain shuffling [KZNL02].

Insertions of one domain into another account for 9% of non-redundant domain architectures

in the PDB – a small but likely significant subset of protein structures [ASHS04].

Apic et al. have demonstrated in [AGT01b, AGT01a, AHT03] that the observed pattern

of domain combinations is highly non-random. In fact, a few domain superfamilies are highly

versatile in forming multi-domain proteins with a variety of other protein domains, while most

have only a single partner. A random model of recombination would predict a much flatter

distribution. This suggests that the protein domain combinations which are observed are

strongly selected. The authors also showed that multicellular organisms have more sequences

and more domain families participating in tandem repeats.

A study of the geometry of domain combinations of Rossman domains [BC02], which are

highly versatile in forming multi-domain proteins, has demonstrated that proteins which have

the same domain architecture have evolved from the same ancestor. The authors confirmed

the observation in [AGT01b] that superfamily combinations almost always occur in the same

sequential order, and identified only 2% of cases in which both sequential orders of a domain

pair occur. Moreover the authors discovered no structural reason for a particular order, and

conclude the observed order is due to the single recombination event which occurred to create

the combination. The authors also found extensive conservation of the relative geometry of

the domain pair provided the order was conserved, and not otherwise.

Vogel et al. showed in [VBB+04] that some domain combinations occur in many dif-

ferent domain contexts, while preserving the spatial relationships and the linear order of the

combination. Such a combination is called a supra-domain. Two particular types of supra-

domains, were identified based on the geometry of the interaction: interface supra-domains

have an interface which is critical to the biochemical activity of the protein, whereas the
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domains in separate supra-domains have biochemically separate but complementary activi-

ties. An example provided by the authors of a separate supra-domain is the P-loop nucleotide

triphosphate hydrolase domain, which binds and hydrolyses GTP in order to drive a conforma-

tional change that is transmitted to its supra-domain partner. In the example provided for the

interface supra-domain, both partners of the supra-domain are directly involved in the same

cofactor binding interactions. As with domains, some supra-domains have been duplicated

substantially, while others have only a few copies. A few supra-domains are very versatile with

respect to other domain contexts, while most occur in only a few domain contexts. Vogel et

al. note that the majority (64%) of single SCOP domains occur in all three kingdoms of life,

whereas most two-domain combinations (96%) and most duplet supra-domains (85%) do not

occur in at least one kingdom. Moreover, it was observed in [AGT01b] that of those super-

families which do participate in kingdom specific domain combinations, significantly more are

from all three kingdoms than not. Thus, while domains are in general ancient and common

to the last common ancestor of three kingdoms of life, domain combinations have occurred

largely within the evolution of specific kingdoms.

Superfamilies often display a wide diversity of function. 25% of CATH superfamilies

contain members of different enzyme types [TOT01]. A recent evolutionary study into how

evolution generates functional diversity from similar structures demonstrates the economy of

nature: structurally conserved residues are kept intact, including residues important for co-

factor binding [BBT03]. As noted in [VBK+04], these studies have to a large extent focussed

on residue changes within the protein domain structure, and not investigated the effect of

domain context in modulating the behaviour of component protein domains. As shown in

[HG01] context is of vital importance in correctly annotating domain function. Many exam-

ples of context-modulated function have been observed. One example given in [VBK+04] is

the winged helix domain, which is typically a DNA binding domain, and in many cases is

combined with a regulatory domain, but can also be combined with a catalytic domain so

that the protein function, while still acting on DNA, is changed. This is termed a syntactic

change in [VBK+04]. A more radical modulation of behaviour is observed in cases where the

winged helix domain no longer has any DNA binding activity, but instead acts as a substrate

specificity pocket, which the authors term a semantic change. Elucidating the range and ex-

tent of context-dependent domain functional change is an important area for future research
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in structural biology.

1.2 Sequence based protein domain detection

An important problem is to identify the protein domain architecture of novel protein se-

quences, for example from genome sequencing projects. Once the domain architecture is

determined, it may be possible to transfer functional annotation from biochemically and ge-

netically characterised homologues, as well as to infer structurally important residues as well

as regions of interactions with other proteins.

One potential approach is to use pairwise comparison techniques, such as BLAST

[AMS+97], and to consider pairwise similarity scores with all members of a domain fam-

ily. However, methods which use a profile are more sensitive than methods which look for

pairwise homology [PKB+98] . A profile summarises the site-specific residue frequencies of a

multiple alignment of known members of a domain family, termed the seed alignment. The

simplest profile method is the position specific scoring matrix (PSSM) which constructs a

probability distribution at each of the m sites in the alignment and does not allow gaps. A

novel sequence is scanned by the PSSM by calculating at each site the probability that the

next m residues in the sequence have been emitted by the corresponding distributions in the

PSSM, and the highest score is taken as the overall score.

Profile hidden Markov models (HMMs) formalise PSSMs as probabilistic models and

improve its sensitivity by allowing insertions and deletions relative to the profile. A profile

HMM (labelled D) is a probabilistic model which parameterises a probability distribution

over all possible sequences (labelled x = x1x2 . . . xn). The basic idea is that the profile HMM

constructed for a domain family assigns high probability to sequences which are homologous

to the domain family (or more strictly contain a homologous fragment), and a low probability

to non-homologous sequences. One problem with using the probability of the sequence as a

score, regardless of the precise details of the profile HMM, is that long sequences (above a

certain length threshold) will inevitably have lower probability than shorter sequences. From

the point of view of Bayesian inference another problem is that the correct probability upon

which to base the inference is the posterior probability

P (D|x) =
P (x|D)P (D)∑

D′ P (x|D′)P (D′)
, (1.1)
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where the denominator is a sum of the likelihood under all possible domain models D′ multi-

plied by the prior probability of that model, which is expensive to calculate. Both problems

can be overcome by introducing as an alternative hypothesis a background probability distri-

bution R over sequence space, and calculating the ratio of posterior probabilities, in which

case the term involving the sum in the previous equation cancels out. It will be convenient

to work with log probabilities

log
P (D|x)
P (R|x)

= log
P (x|D)
P (x|R)

+ log
P (D)
P (R)

(1.2)

where the first term is called the log-odds score, and the second term is the log ratio of the

prior probabilities of the models, and can be thought of as a threshold on the log-odds score.

As long as the background model has a similar distribution over protein lengths, the scores

should be normalised with respect to protein length.

The log-odds score is used to rank sequences and apply a threshold cut-off such that

all sequences scoring above a threshold are taken to be members of the family. It is a useful

measure for inferring relative similarities of sequences to the protein domain, but does not

provide similarity scores in absolute terms, or at a particular level of significance. Empirical

significance values can be obtained by calculating the log-odds scores for sequences randomly

sampled from the background model. In this way a distribution of scores for random ‘proteins’

is obtained, and the significance level of a sequence log-odds score can be obtained by counting

the fraction of random sequences which score higher. However, to get an accurate significance

value for high scoring sequences in this way many hundreds of thousands of random sequences

need to be scored2. To get around this problem it has been observed that the distribution

of random scores from an profile HMM follows an extreme value distribution, which can be

successfully parameterised with much less data (HMMER uses 5000 sequences)[DEKM98].

It is useful at this point to parameterise the profile HMM. I start with a description of

Markov models, which will be useful at other points in this thesis.

Discrete Markov Models

Let Σ denote a state space, {Yi : [0, 1] → Σ}i=1,2... denote a series of random variables each

of which takes values in the state space Σ. Let µ denote the uniform probability distribution
2particularly if the significance value is to be ascertained to the level required for annotation in Pfam, which

is a significance of less than 1/N where N is the number of protein sequences scored, currently around 1.5m.



1.2. SEQUENCE BASED PROTEIN DOMAIN DETECTION 9

on the interval [0, 1] so that

P (Yi = y) = µ({r ∈ [0, 1] : Yi(r) = y})

defines a probability distribution on Σ.

A kth order Markov model is a probabilistic model with the property that the state at

position i is only dependent on the preceding k states:

P (Yi = y|Yi−1 = y1, . . . , Y1 = yi−1) = P (Yi = y|Yi−1 = y1, . . . , Yi−k = yk). (1.3)

In the simplest cases of a homogeneous Markov model these probabilities are indepen-

dent of position in the chain

P (Yi = y|Yi−1 = y1, . . . Yi−k = yk) = P (Yi′ = y|Yi′−1 = y1, . . . Yi′−k = yk),

∀1 ≤ i, i′ ≤ n, and y1 . . . yk ∈ Σ. (1.4)

So all that is needed to specify a Markov model is to specify the states, and the transition

probabilities P (y|y1, . . . yk) between states. In the case of a first order Markov model, I will

also write P (y1 → y) for the transition probability. It will be useful to include a special

state S in which the model starts and one for which it terminates, T . The probability

distribution parameterised by a Markov model is over chains of states, which will be of finite

but unbounded length provided there is a path with non-zero transition probability from

every state in the model to the end state.

A hidden Markov model is a Markov model in which some states y ∈ Σ themselves

are allowed to be random variables, y : [0, 1] → Υ, taking values in the space Υ. These are

termed emission states. It is also useful to allow states which are not random variables, which

includes the start and terminate states. The emission probability distribution for emission

state y over Υ is then defined as

P (u|y) = µ({r ∈ [0, 1] : y(r) = u}).

In the case of a profile HMM, the state space Υ will be amino-acids, codons or nucleotides.

These states are hidden in the sense that they are not observed in the data, but are internal

states of the overall probabilistic model. They are introduced in order to provide flexibility in

parameterising an appropriate probability distribution over sequence space. So, in order to
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Figure 1.1: Basic architecture for profile hidden Markov model for an alignment with four amino
acids and without gaps. Each Mi corresponds to a column in the multiple alignment, and emits
over a distribution of amino acids. B,E correspond to begin and end states.

specify a Hidden Markov model, the hidden states Σ, transition probabilities P (y|y1, . . . yk)

and emission probabilities P (u|y) must be specified.

The PSSM reframed in this framework is shown in figure 1.1. The state space Σ consists

of match states Mj for each column in the seed alignment as well as the begin and end states.

Each match state emits in the space Υ of amino-acids.

A profile HMM from HMMER is shown in figure 1.2, taken from [Edd03]. In fact this

comprises two HMMs – the domain model HMM and the null model HMM. Both HMMs

are first order HMMs. For an alignment consisting of m conserved columns (which can be

defined as columns with less than 50% gaps) the domain model state space Σ includes m

match and insert emission states Mj and Ij as well as m non-emission states Dj . Σ also

includes an N-terminal, C-terminal and inter-domain emission state N,C, J respectively as

well as domain begin and end non-emission states B,E. The Mj emit residues according to a

probability distribution estimated from the counts observed in a particular conserved column

of the alignment. The insert states Ij emission probability is calculated from all insert states

in the Pfam database. The match to insert transitions specify the ‘cost’ of opening a gap

relative to the protein domain, and the insert to insert transitions specify the cost to maintain

the gap, which is an affine gap scoring scheme. The delete states allow for domain states to

be skipped, with a penalty controlled by match to delete and delete to match transitions.

The N,C, J states allow the model to score full length proteins by allowing for N- C-terminal

and inter domain regions respectively. These states emit according to a background model

of residue usage in proteins. The null model HMM consists of a single emission state, which

emits according to the background distribution of protein residues.
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Figure 1.2: Diagram of profile Hidden Markov Model. States which emit symbols are shown
as squares or diamonds; circles do not emit symbols. The core model consists of match states –
which model conserved residues of a protein family; insert states – which allow for segments of the
query sequence not present in the protein family; and delete states – which allow for deletions of
conserved residues in the protein family from the query sequence. The model consists of several
flanking states, which allow for local matches and multiple hits. The transition to the J state
allows for multiple hits of the model to a single query sequence. The N, J and C states are
analogous to insert states, but occur before, between and after the model hit respectively. The
B and T states are states used to begin and terminate a hit to the query, while S and E states
are formally required as overall start and end states. To obtain the log-odds score we also require
a null model. The null model consists of an null emission state G which emits according to a
background distribution, and can loop back to itself, or transition to the end state. Effectively
the transitions of the null model act to negate the otherwise intrinsic penalty for scoring longer
query sequences.
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Calculating the likelihood of a profile HMM

The forward algorithm can be used to calculate the likelihood of the sequence given the

profile HMM. Note that the profile HMM can generate a particular sequence with many

different paths through the HMM architecture, although only a few will have high poste-

rior probability[DEKM98]. The forward algorithm naturally sums over all possible paths,

in contrast to the Viterbi algorithm (which will not be used, and so not described in more

detail, but see [DEKM98]) which calculates the probability of the mostly likely path to have

generated the sequence. The Viterbi algorithm is employed by HMMER, and has the ad-

vantage that all calculations can be done in log probability space and that only summation

is required. The forward algorithm, on the other hand requires working in probability space

with multiplication, which can lead to underflow errors if an adaptive scaling algorithm is not

employed.

The forward algorithm proceeds by iteratively filling in eight matrices P (x1 . . . xi|S . . .Mj),

P (x1 . . . xi|S . . . Ij), P (x1 . . . xi|S . . .Dj), P (x1 . . . xi|S . . . C), P (x1 . . . xi|S . . . J), P (x1 . . . xi|S . . .N),

P (x1 . . . xi|S . . . B), P (x1 . . . xi|S . . . E) which are the partial probabilities of the HMM emit-

ting subsequence up to and including the ith residue and the ending in the jth match, delete,

insert or the C, J,N,B,E states respectively. Let ψi denote the state which emitted residue

xi. If the domain begin state B is interpreted as also being M0, these scores can be calculated
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recursively using

P (x1 . . . xi|S . . .Mj) = P (xi|ψi = Mj) ·


P (x1 . . . xi−1|S . . .Mj−1) · P (Mj−1 →Mj)

+ P (x1 . . . xi−1|S . . . Ij−1) · P (Ij−1 →Mj)

+ P (x1 . . . xi|S . . .Dj−1) · P (Dj−1 →Mj)


P (x1 . . . xi|S . . .Dj) =

P (x1 . . . xi|S . . .Mj−1) · P (Mj−1 → Dj)

+ P (x1 . . . xi|S . . .Dj−1) · P (Dj−1 → Dj)


P (x1 . . . xi|S . . . Ij) = P (xi|ψi = Ij) ·

P (x1 . . . xi−1|S . . .Mj) · P (Mj → Ij)

+ P (x1 . . . xi−1|S . . . Ij) · P (Ij → Ij)


P (x1 . . . xi|S . . . B) =

P (x1 . . . xi−1|S . . . C) · P (C → B)

+ P (x1 . . . xi−1|S . . . J) · P (J → B)



P (x1 . . . xi|S . . . E) =


P (x1 . . . xi−1|S . . .Mm) · P (Mm → E)

+ P (x1 . . . xi−1|S . . . Im) · P (Im → E)

+ P (x1 . . . xi|S . . .Dm) · P (Dm → E)


(1.5)

P (x1 . . . xi|S . . . C) = P (xi|ψi = C) ·

P (S → C) if i = 1

P (x1 . . . xi−1|S . . . C) · P (C → C)


P (x1 . . . xi|S . . . J) = P (xi|ψi = J) ·

P (x1 . . . xi−1|S . . . E) · P (E → J)

+ P (x1 . . . xi−1|S . . . J) · P (J → J)


P (x1 . . . xi|S . . .N) = P (xi|ψi = N) ·

P (x1 . . . xi−1|S . . .N) · P (N → N)

+ P (x1 . . . xi−1|S . . . E) · P (E → N)


(1.6)

The overall likelihood of the domain matching the sequence is equal to the score for the

terminal state: P (x|D) = P (x1 . . . xn|S . . . C)P (C → T ). The probability of the sequence

being emitted by the null model can be calculated as

P (x|R) = P (G→ G)n · P (G→ T ) ·
∏

i

P (xi|G).

The overall log-odds score is then calculated as logP (x|D)− logP (x|R).

It is also possible to calculate the backward partial scores P (xi+1 . . . xn|Mj . . . T ),

P (xi+1 . . . xn|Ij . . . T ), P (xi+1 . . . xn|Dj . . . T ), P (xi+1 . . . xn|C . . . T ), P (xi+1 . . . xn|J . . . T ),
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P (xi+1 . . . xn|N . . . T ), P (xi+1 . . . xn|B . . . T ), P (xi+1 . . . xn|E . . . T ) which are the partial prob-

ability of the HMM emitting the subsequence from residue i + 1 to n and coming from jth

match, delete, insert or the C, J,N,B,E states respectively. The backward algorithm pro-

ceeds iteratively from the C-terminal to N-terminal end of the sequence (equations only shown

for P (xi+1 . . . xn|Mj . . . T )). Again to simplify the equations, the E state is interpreted to be

the same state as Mm+1 (where m is the number of match states).

P (xi+1 . . . xn|Mj . . . T ) =


P (xi+1|ψi+1 = Mj+1) · P (xi+2 . . . xn|Mj+1 . . . T ) · P (Mj →Mj+1)

+ P (xi+1|ψi+1 = Ij) · P (xi+2 . . . xn|Ij . . . T ) · P (Mj → Ij)

+ P (xi+1 . . . xn|Dj+1 . . . T ) · P (Mj → Dj+1)


(1.7)

Using the definition of the partial forward and backward scores

P (x|ψi = Mj) = P (x1 . . . xi|S . . .Mj)P (xi+1 . . . xn|Mj . . . T )

and hence, using Bayes’ theorem

P (ψi = Mj |x) =
P (x1 . . . xi|S . . .Mj) · P (xi+1 . . . xn|Mj . . . T )

P (x)
(1.8)

This provides a way of calculating the posterior probabilities.

Building the profile HMM

A profile HMM is constructed from a seed alignment of homologous sequences. The conserved

columns in the alignment correspond to match states, and the other columns correspond to

insert states. Which columns to label as match states and which to label as insert states can

be either resolved heuristically (by labelling all columns with greater than 50% gaps as insert

states), or using the maximum a posteriori architecture algorithm to find the profile HMM

which optimises the likelihood of the seed alignment (see [DEKM98]).

The observed residues in a conserved column are used to estimate the emission prob-

ability distribution for that column, and the observed transitions are used to estimate the

transition probabilities. The most straightforward approach is to use the observed frequencies

as the emission and transition probabilities, however this assumes that the rows are indepen-

dently sampled from the target probability distribution, which is not true. Some sequences
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are closely related to each other whereas some are more distantly related. To get around this

problem, various weighting schemes have been proposed [SA90, HH92, GSC94, KM95, HH96],

which all in effect try to adjust the weights of the rows included in the counts so that se-

quences from parts of sequence space which are not well sampled in the seed contribute more,

and sequences from parts of sequence space which are well sampled each contribute less to

the overall estimation of emission and transition probabilities. Even after re-weighting the

sequences to remove sampling biases, another problem is that the space of possible domain

family members has been inadequately sampled, particularly for small seed alignments. This

problem has been addressed using a mixture of Dirichlet priors, in which the emission prob-

ability is taken to be the mixture of k posterior probabilities, each of which are calculated as

the posterior probability of the residue frequencies given the column and one of k Dirichlet

priors. The mixture co-efficients are calculated as the posterior probability of each mixture

component given the observed counts in the column. See [SKB+96] for more details. This

problem can also be addressed using the tree HMM introduced in the next section.

Other methods and extensions

One improvement made to profile HMM methods in recent years has been the introduction

of iterations, whereby an initial sequence is used to build a profile HMM which is searched

against a database and significant hits are used to rebuild the profile HMM. This process is

then repeated until no further hits are found. This is the strategy used in SAM [HK96] and

PSI-blast [AMS+97].

Several profile-profile comparison techniques have been proposed in recent years [Pie96,

YL02, SBG03, Sd04]. The motivation for these methods is that profile-sequence comparisons

are more sensitive than sequence-sequence comparisons and so profile-profile comparisons

might be expected to be even more sensitive in detecting weak homology. Indeed, these

methods appear to be more sensitive than profile HMMs. The method proposed in [Pie96] was

developed for the comparison or conserved ungapped alignments from the BLOCKS [HHP99]

database and so does not allow gaps. PROF SIM [YL02] and COMPASS [SBG03] both use

allow gaps via a Smith-Waterman local alignment algorithm with column similarity scores

based on Jensen-Shannon entropy and a symmetric log-odds ratios respectively. Söding [Sd04]

generalizes the profile HMM framework to compare two profiles.
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Several discriminative support vector machine (SVM) approaches have been applied

to homology detection. Jaakkola et al. [JDH00] proposed a method for using profile HMMs

to derive a kernel function in a SVM classifier. The motivation for this approach is that

profile HMMs are trained using positive training examples only. A discriminative model,

which takes both positive and negative training examples, should perform better. A support

vector machine is a discriminative model which can be thought of as a classifier which can be

trained to discriminate points in a high dimensional space. A support vector machine relies

on a kernel function K(x, xk) which can be thought of as a measure of similarity between a

sequence x and training example xk, which can be either positive or negative. Considering the

profile HMM as a likelihood function over sequence space, Jaakkola et al. define a vector Ux

called a Fisher score, which is the partial derivative of the log-likelihood score at the sequence

X with respect each of the parameters of the profile HMM. The vectors Ux and Uxk are then

used to derive the kernel function via a formula presented in [JDH00]. Leslie [LEC+04] et

al. have proposed a string kernel for protein classification which maps a protein to a vector

Ux called its ‘k-spectrum’ which is the set of all k-mers contained in the protein. The kernel

function is then a vector function of Ux and Uxk as before.

1.3 Models of sequence evolution

The genomic sequence of cellular organisms is in constant flux. During cell division repli-

cation introduces copying errors of which some fraction remain uncorrected. Recombination

leads to exchange of genomic material between alleles in the case of eukaryotes, and between

different species in bacteria. Processes such as non-allelic homologous recombination lead to

genomic rearrangements including deletion, inversion, translocation and duplication. Retro-

viral elements are integrated into genomic DNA. Certain proteins promote genomic mutation

via processes such as class switch recombination and somatic hypermutation, particularly

in certain cell types such as germinal centre B cells where mutation is required in order to

generate a diverse set of antibodies. External factors such as radiation also lead to genomic

mutation. These mutations can occur either in somatic cells, in which case they are not passed

to the next generation, or in germline cells. Most germline cell mutations are hypothesised

to be neutral [Kim83], however some will be deleterious and therefore not survive. Rarely,

mutations will be advantageous and selected for, resulting in a selective sweep through the
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population.

The DNA or RNA sequence of viruses is typically under an even higher rate of flux

than for cellular organisms due to copying errors during replication in the host cell as well as

processes such as host-mediated hypermutation. In many cases these errors are not repaired

by the host cell DNA repair machinery and so the rate at which mutation occurs is significantly

higher. Retrotransposition is a particularly error prone step leading to high rates of mutation

in retroviruses. Viruses often have particular features which enhance the rate of mutation.

Thus genomic sequences change over time and these changes can be modelled at different

levels: within a single cell during the cell’s lifetime; progressively during transmission from

parent to daughter cells; within a population of cells (for example during the progression of a

tumour, or a bacterial culture); transmission from a multicellular parent to offspring organism;

within a population of multi-cellular organisms; or between different species of organisms.

Each of these levels requires a different level of resolution. For instance when modelling

difference between species, differences within a population will typically be ignored and the

most frequent allele will be taken as representative for that species. Due to duplication,

different segments of genomic DNA will be related to each other via descent, and so sequence

evolution can be modelled within a single genome.

1.3.1 Probabilistic models of sequence evolution

Let Υ describe a state-space, which initially is taken to be all of sequence space, and let

u, v ∈ Υ be elements of this state space. Let |u| denote the length of a sequence. A proba-

bilistic model of sequence evolution, denoted by E , is a model which describes a probability

distribution PE(xt = u) over sequences at each time t ≥ 0. This can be used to describe the

transition probability PE(xt+4t = v|xt = u) of observing a sequence v at time t + 4t given

that u was observed at time t. A general probabilistic model of evolution would need take into

account all of the mutational processes described above, including point mutation, insertion,

deletion, recombination, gene conversion and translocation. Moreover, such a model would

also need to describe how the rates of each of these processes change with respect to position

in the genome and time. This is clearly a very challenging task.

Given the complexity of the task, why bother constructing probabilistic models of evolu-

tion? The answer principally lies in the usefulness of the likelihood P ({xk}|E , T ) of a cluster
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of homologous sequences {xk}. If E is fixed, the likelihood can be used as a criterion for

evaluating how well the tree fits the data, for finding optimal branch lengths, and for param-

eterising a posterior distribution over all possible trees. This approach can also be used to

find evidence for recombination [HW01]. If T is fixed, the likelihood can be used to compare

different evolutionary models, and so gain quantifiable insight into the evolutionary process

itself. This approach is the basis for tests for pseudogenes and positive selection, which will

be further described in section 4.1 and 4.2. Probabilistic models of evolution can also be used

to align sequences [MD95, HB01, Hol03, MLH04].

Whole sequence evolutionary models

The first standard simplifying assumption is that E is a continuous-time Markov process over

the state space Υ. This corresponds to assuming that the transition probability, PE(xt+4t =

u|xt = v) is independent of t, or that evolution is homogeneous with respect to time. This

simplifying assumption is clearly violated in many circumstances. One example is if a func-

tional gene becomes non-functional, in which case the evolutionary constraints on the sequence

change. One way to improve the realism of models with respect to this assumption is to have

different models on different parts of the tree, as in Chapter 4. If the process E is assumed

to be Markov, then the time evolution of the probability distributions PE(t) is described by

the differential equation
dPE(t)
dt

= PE(t)Qr (1.9)

where Q is a fixed rate matrix describing the instantaneous transition rate between states in

the state space so that Qu,v the instantaneous rate of transition between states u and v, and

satisfies

Qu,u = −
∑

v∈Υ,v 6=u

Qu,v, ∀u ∈ Υ. (1.10)

An arbitrary scaling constant r representing the rate of evolution has been included for future

reference and can be assumed at this stage to be equal 1. This rate matrix is scaled so that

the average rate of substitution at equilibrium is 1:

−
∑
u∈Υ

πuQu,u = 1 (1.11)

which reduces by 1 the number of parameters required to specify a rate matrix and implies

that rt is measured in units of expected substitutions per site. The solution to the differential
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equation is given by

PE(t) = PE(0)eQrt, (1.12)

where eQrt is the matrix exponential. The transition probabilities are given by

PE(xt+4t = v|xt = u) =
[
eQr4t

]
u,v
. (1.13)

The rate matrix Q is assumed to be irreducible, which requires that the there is a

non-zero probability of transitioning over some time 4t > 0 between any two states u and v,

and recurrent, which requires that the probability of visiting each state at least N times in an

infinite amount of time is equal to 1 for all positive integers N . A stationary distribution π of

Q is a distribution for which πQ = 0. For a recurrent, irreducible rate matrix Q a stationary

distribution π exists and is unique up to scalar multiplication (see [Nor97] for further details).

Thus it makes sense to talk about the stationary probability distribution of E , and so I will

write E = (π,Q). Another common simplifying assumption is reversibility, which implies that

the instantaneous flux between residues is the same in both directions

πuQu,v = πvQv,u. (1.14)

This halves the number of parameters required to estimate the rate matrix Q. There is no

a priori reason to expect that evolution is reversible, although there is some evidence [AB97]

that DNA evolution in many cases is close to reversible. As observed in [HD98], insertion

events may be short and frequent, while deletion events long and rare, which would lead to a

violation of the reversibility assumption. Observe that if eq. 1.14 holds then

Su,v(f) = πf
uπ

f−1
v Qu,v (1.15)

is symmetric, i.e. Su,v(f) = Sv,u(f). This defines a single parameter family of symmetric

matrices for Q. The parameter f , described in [GW02], is called the +gwF parameter. S(0)

is referred to as an exchangeability matrix. A symmetric matrix can be expressed in the form

S(f) = N(f)D(f)N(f)T (1.16)

where D(f) is a diagonal matrix, N(f) is an orthonormal matrix and N(f)T is the matrix

transpose (see [Lay94] for further details). Let Π be a diagonal matrix with entries Πu,u = πu.
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If I restrict to f = 1/2

Q = Π−1/2S(1/2)Π1/2 (1.17)

= N′(1/2)D(1/2)N′(1/2)−1 (1.18)

where

N′(1/2) = Π−1/2N(1/2). (1.19)

Thus, Q is diagonalizable and the matrix exponential can be calculated as

eQr4t = Π−1/2N(1/2)eD(1/2)r4tN(1/2)T Π1/2 (1.20)

which provides a fast way to calculate the matrix exponential – first calculate the orthonormal

decomposition of S(1/2) and then for all t > 0 the matrix exponential step just consists of

exponentiating the diagonal entries of D(1/2) and two matrix multiplication steps. The

columns of N′(1/2) are the eigenvectors of Q and can be interpreted as directions in state

space in which information about the ancestral sequence is lost through evolution. The

corresponding diagonal entries are the rate at which the information is lost.

Most methods also assume stationarity, which says that PE(0) = π, or that the system

is at equilibrium at time 0. There is also no particular reason to expect stationarity to hold in

general. In particular, a universal trend of amino acid loss and gain has been observed in all

kingdoms of life [JKA+], with Cys, Met, His, Ser, and Phe gaining and Pro, Ala, Glu, and Gly

losing frequency. Moreover G+C content varies widely between genomes, again indicating the

stationarity does not hold in general.

For proteins of known structure, Robinson et al. [RJK+03] parameterise a whole se-

quence model for sequences evolving in such a way as to preserve this structure. The authors

restrict their evolutionary model to DNA sequences of length N and allow only one posi-

tion in the sequence change in any given mutation event, so the rate matrix Q is of size

4N x 4N and each row has no more than 3N non-zero off-diagonal entries. The rate of

amino-acid changing substitutions is based on the propensity of the mutation to change the

structure using a sequence-structure compatibility score. Transition/transversion and non-

synonymous/synonymous substitution rate ratios are used to determine the underlying DNA

mutation rate within these constraints.
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Substitution, insertion, deletion models

Most models of sequence evolution further assume that the evolution consists of two indepen-

dent processes, namely a k-mer residue substitution process and an insertion/deletion (indel)

process. The k-mer residue substitution process can itself be considered as a continuous time

Markov process. Let Υ̇ and Ė = (Q̇, π̇) denote the state space and substitution model re-

spectively for a single residue substitution process, with the natural extension for 2-mer and

3-mer substitution processes. The symbols u, v will be used to represent both arbitrary length

sequences as well as single residues, but it will be clear from the context which is implied in

each case.

Miklós et al. consider the class of evolutionary models which allow local point substi-

tutions and multiple residue inserts and deletes (called SID models) [MLH04]. Let ρI(u) be

the context-independent rate of insertion of sequence u between two residues in an ancestral

sequence and let ρD(u) be the context-independent rate of deletion of sequence u.

The simplest SID model disallows insertions and deletions in the evolutionary model,

and treats gaps as either missing data (see section 1.3.3 for a discussion on how to accommo-

date missing data in the likelihood calculation), or as an extra residue character. This has

the effect of not allowing the sequence length to change over time. The residue substitution

process can be further simplified by assuming that sites evolve independently of one another

according to a single residue model Ė . Site-specific residue models are discussed in more depth

below.

The TFK91 links model [TKF91] is a SID model with an arbitrary point substitution

matrix (Q̇, π̇) and an indel process governed by

ρI(u) =


λπ̇u1 if |u| = 1

0 otherwise
(1.21)

ρD(u) =


µ if |u| = 1

0 otherwise,
(1.22)

where λ is the insert rate and µ is the deletion rate. The TFK92 model [TKF92] is an

extension to this model but considers a sequence to consist of fixed-length indivisible fragments

of variable length k. The substitution process for each of these k-mers is given by
k
E = (

k
Q,

k
π)
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and the indel process is the same as for TFK91 but considered over arbitrary length k-mers.

Each of the
k
E can be parameterised as a product of k independent single residue models.

Miklós et al. introduce a long-indel model [MLH04] which is parameterised over the

state space Υ of sequences of arbitrary length by

ρI(u) = λ|u|

|u|∏
k=1

π̇uk
(1.23)

ρD(u) = µ|u| (1.24)

where λ|u| and µ|u| are the rate of deletion and insertion respectively of sequences of length

|u|. Miklós et al. derive restrictions on the insertion and deletion rates in order to preserve

reversibility. Alignment algorithms using this model are also presented.

Mitchison and Durbin [MD95] propose a tree HMM to model insertions and deletions.

Under this model, there is a collection of n match {Mj} and n delete {Dj} states of a HMM,

each of which will generate a column in a multiple sequence alignment with n columns. The

model does not allow insertions, so the maximum length n of sequence generated by this model

is pre-specified. The HMM architecture is shown in figure 1.3. The path through the HMM

is evolved as well as the residues. Thus, the sequence xt is augmented with ψt describing

the path through the model at time t. Mitchison and Durbin propose that each transition in

the model evolves independently according to continuous, stationary, time-reversible Markov

process, denoted Ē = (Q̄, π̄), over the state space of transitions, denoted by Ῡ, where

Ῡ = {Mi →Mi+1,Mi → Di+1, Di → Di+1, Di →Mi+1}, (1.25)

provided M0 is interpreted as the begin state and Mn+1 is interpreted as the end state. The

rate matrix over transitions Q̄ is trained from a database of alignments. Note that the path

ψt is hidden, and so to use the tree HMM for inference of trees and evolutionary distances, it

is necessary to sum over all possible hidden states, which is computationally expensive. The

tree HMM does not attempt to model novel insertions – instead it models ‘re-insertion’ of

ancestral sequence which has been temporarily lost in a lineage. For practical purposes this

is not a substantial drawback but it is unsatisfactory from a theoretical point of view.

1.3.2 Models of residue substitution

The most general non-reversible DNA model is the unrestricted model (UNR), which has 11

free parameters (12 off-diagonal elements minus 1 parameter for scaling). The general time
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Figure 1.3: Basic architecture for tree HMM as defined in [MD95]. Each Mi corresponds to a
column in the multiple alignment, and emits over a distribution of amino acids. S, T correspond
to start and termination states.

reversible model (GTR) has 5 free parameters (6 upper diagonal elements minus 1 parameter

for scaling). Other substitution models include the HKY model [HKY85], which has 4 free

parameters and the F81 model [Fel81], which has 3 free parameters. These parameters are

typically trained from an alignment with a given tree topology by jointly finding the parame-

ters of the model and the branch lengths which maximise the likelihood of the data. Methods

have been devised for simultaneously optimising over alternative tree topologies.

Goldman and Yang [GY94] and Muse and Gaut [MG94] have described models of

codon evolution which take into account an underlying nucleotide model based on the HKY

[HKY85] with transition/transversion ratio of κ as well as a non-synonymous/synonymous

rate ω. These models were refined in [YN98]. Let u = u1u2u3 and v = v1v2v3 be one of the

61 non-termination codons. Then the codon rate matrix is parameterised as

...
Qu,v =



0 if the codons differ at more than 1 position,

...
π v for a synonymous transversion,

κ
...
π v for a synonymous transition,

ω
...
π v for a non-synonymous transversion,

ωκ
...
π v for a non-synonymous transition.

(1.26)

In [GY94] codon models which take into account the chemical similarity of substituted amino

acids are presented.

The codon and DNA models presented have a small number of parameters which can be

trained by maximum likelihood (ML) on a given alignment. Reversible amino acid models, on

the other hand, have 190 upper diagonal elements and so 189 free parameters after scaling as
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in eq. 1.11. Reliable estimates of these parameters requires a significant amount of data. Thus

amino-acid rate matrices are typically derived from databases of alignments, as is discussed

in more detail below. However, different alignments and particularly different sites in an

alignment have very different structural and functional constraints. Using a database derived

rate matrix to describe all columns in an alignment leads to an inaccurate model of evolution

at particular sites [Bru96, HB98]. One approach is to modify database derived rate matrix,

labelled ˆ̇E = ( ˆ̇Q, ˆ̇π) so that the stationary probabilities of the new rate matrix Q̇ are set to

a given distribution π̇ which is set (or trained) to reflect a particular alignment or site in an

alignment. This can be achieved as described in [CAJ+94, GW02] where the exchangeabilities

matrix for the alignment is set to be equal to that estimated from a database, i.e. Ṡ(f) = ˆ̇S(f),

where the equation for S(f) is given in eq. 1.15. This leads to the equation

Q̇uv =
(
π̇v

ˆ̇πv

)1−f

× ˆ̇Quv ×

(
ˆ̇πu

π̇u

)f

. (1.27)

The +gwF parameter f is restricted to lie between 0 and 1 [GW02]), and can be thought of

as the trade-off between frequencies in the equilibrium distribution resulting from pressure to

mutate from (f = 1) and pressure to mutate towards (f = 0) a particular residue/base. The

most common approach [CAJ+94] is to set f = 0 which reduces equation 1.27 to

Q̇uv =
(
π̇v

ˆ̇πv

)
ˆ̇Quv (1.28)

Accounting for variation between sites

In many cases a single substitution model is used for every site in an alignment, in contrast to

the profile HMM methods discussed in section 1.2 which have a different frequency distribution

at each site. This is readily seen to be a drastic simplifying assumption for both protein and

DNA alignments. Some regions in an alignment will be evolving slowly due to functional

and/or structural reasons. Regions of DNA vary greatly in composition, for example in G+C

content. Codon substitution patterns at neutrally evolving or positively selected sites will be

different from those under purifying selection.

Yang [Yan93] proposed the use of a mixture of substitution models of the form eq. 1.12

each with different rates r chosen from a discretised gamma distribution. Yang [Yan95] as

well as Felsenstein and Churchill [FC96], further proposed correlating rates at adjacent sites

via a first order spatial Markov chain. In [Yan95] it is assumed that the rate at a site is drawn
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from a different discretised gamma distribution, and the variance of the gamma distribution

is the hidden parameter of the spatial HMM. In [FC96] the rate (drawn from a finite set of

categories) is itself the hidden parameter of the HMM. In [SH04], context dependent site-

specific substitution models are used as part of an HMM framework. Their model is context

dependent on the previous column:

PE(xt+4t = u|xt = v) =

PE(x
t+4t
1 = u1|xt

1 = v)
n∏

i=2

PE(x
t+4t
i = ui|xt

i = vi, x
t
i−1 = vi−1, x

t+4t
i−1 = ui−1) (1.29)

Yang and Nielsen [NY98, YN00] describe models of codon evolution where the ratio of

the rates of non-synonymous and synonymous substitution are allowed to vary between sites.

These models have been successful in detection positive selection, as discussed in section 4.2.

Bruno [Bru96, HB98] learn site-specific rate matrices from a given alignment, using an

amino-acid model and a codon model respectively. In both cases the site-specific rate matrices

are defined in terms of the site-specific residue frequencies π̇. In [Bru96] the EM algorithm is

used to find the residue frequencies which optimise the likelihood of the column. In [TGJ96]

the authors introduce a model for amino-acid evolution which has rate matrices specific

to particular secondary structure states. A spatial HMM is used to correlate the hidden

structural states along the length of the sequence. The authors demonstrated a significantly

better likelihood fit to the alignment data, and used the model to derive phylogenetic trees

as well as to label sites in the alignment with secondary structure states. This method was

extended to accommodate more states in [LGTJ98] and to model transmembrane proteins

specifically in [LG99].

Lartillot and Hervet [LP04] have recently defined a Bayesian mixture model which

allows each site in an alignment to evolve according to a mixture of K distinct evolutionary

models Q̇k, where K is itself a parameter of the model and the Q̇k are parameterised as

in eq. 1.28. Thus each class is parameterised by a different stationary probability π̇k. The

authors define appropriate priors over the model parameters as well as tree space and present

a MCMC sampling technique for identifying the ML model parameterisation and tree. In this

way they are able to learn the optimal number of rate matrix categories in the data.
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Database derived protein rate matrices

The original attempts to estimate ˆ̇Q used maximum parsimony (MP) rather than maximum

likelihood. Dayhoff et al. [DSO78] and [JTT92] used MP to estimate both the trees and

ancestral sequences for multiple protein families, and counted the observed amino acid re-

placements along the tree to estimate the PAM matrices. Jones et al. [JTT92] extended this

technique and applied it to a much larger database of protein families. To avoid observ-

ing transitions which are the product of multiple steps and to avoid assigning an ancestral

sequence, the authors counted transitions based on pairwise sequence comparisons (where

each sequence is used in only one comparison) between sequences which are more than 85%

identical.

The maximum likelihood approach has been applied to estimating amino acid replace-

ment rates in [AH96, YN98, AWMH00, WG01]. The first three of these estimated amino

acid replacement rates in vertebrate mitochondrial, mammalian mitochondrial and chloro-

plast sequences respectively. Whelan and Goldman [WG01] apply an approximate form of

ML training on a larger database of globular protein sequences. Holmes and Rubin [HR02] use

expectation maximisation (EM) [DLR77] to train substitution models from sequence align-

ments and phylogenetic trees. The EM algorithm is designed to maximise the likelihood of

data where some of the data is missing. In this case the missing data corresponds to the

precise substitution history of the sequence. The model can also accommodate finding a

pre-defined number of hidden substitution rate matrices in the data.

1.3.3 Likelihood calculation

For a given tree T with branch lengths specified and evolutionary model E , it is desirable

to calculate the likelihood of a cluster of sequences {xk}, P ({xk}|T, E). This likelihood is

useful for several purposes: to evaluate different evolutionary models on a fixed tree, with the

aim of finding the model that best fits the data; or to evaluate different trees with a fixed

evolutionary model, with the aim of finding the tree which best fits the data. The likelihood

can be calculated efficiently using Felsenstein’s algorithm [Fel81]. Felsenstein’s algorithm

allows the summation over unknown states at internal nodes of the tree, and is closely related

to the forward algorithm for for HMMs. In fact, as several authors have noted, the algorithm

also allows summation over unknown states at the leaves of the tree (which might occur, for
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example if there is a gap present in the alignment). Let pu,k denote the partial likelihood of

all sequences {xk′} below node nk given sequence u in the ancestral sequence at nk. This

algorithm proceeds by calculating in post-order (i.e. working upwards from the leaves),

pu,k =


1 if nk is a leaf node and u matches xk

0 if nk is a leaf node and u does not match xk∏
h

∑
v pv,kh · PE(xkh = v|xk = u) otherwise

(1.30)

where nk1, nk2, . . . are the child nodes of nk. The term ‘matches’ (following [SH04]) has been

used to include cases where xk contains a gap but is otherwise equal to u. This is effectively

the same as treating the gap as missing data.

1.4 Outline of thesis

In this thesis, I focus on probabilistic modelling of protein domain evolution. Protein domain

databases, such as Pfam [BCD+04] provide a valuable resource for studying protein domain

evolution. To demonstrate the volume of data amenable for probabilistic analysis of the type

described above, Pfam release 16.0 contains 7677 protein families covering 1.1m protein se-

quences and 264m residues. In the next two chapters of this thesis I investigate ways to model

protein domains in order to improve protein domain detection and to extend the coverage

of protein domain databases. Looking for distant homologues is important beyond simply

extending residue coverage of domain databases. Arguably the most divergent members of a

particular domain family are the most interesting for identifying the range of potential func-

tions and partners for a particular domain as well as identifying fast evolving proteins. The

final chapter of the thesis concerns looking for such fast evolving proteins in order to identify

pseudogenes, as well as proteins and sites under positive selection.
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Chapter 2

Enhanced Domain Detection Using

Approaches From Speech

Recognition

Most modern speech recognition techniques use probabilistic models to interpret a sequence

of sounds [Cha93, Jel97]. Hidden Markov models, in particular, are used to recognize words.

The same techniques have been adapted to find domains in protein sequences of amino

acids [KBM+94, DEKM98], as discussed in section 1.2. However in both cases, detection of

individual constituent domains or words is impeded by noise. One technique which has been

successfully used in speech recognition is to use language models to capture the information

that certain word combinations are more likely than others, thus improving detection based on

context. As discussed in section 1.1, only a limited set of all possible domain combinations are

observed, and the pattern of occurrence is highly non-random ([AGT01b, AHT03]). Moreover,

particular domain combinations are re-used in many domain architectures [VBB+04]. Thus,

language models from speech recognition may also be applicable to the problem of protein

domain identification. I have successfully used this approach to improve domain prediction

in Pfam [CBD03].

Furthermore, different species have different protein domain repertoires, even to the

extent that certain protein domain families are kingdom specific. More strikingly, domain

combinations are highly kingdom specific ([AGT01b, VBB+04]). Thus, taxonomic context by

29
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itself may also provide extra information for domain detection, and is likely to be even more

useful when used in combination with language models of domain context. I have previously

used taxonomic information to improve domain identification in Pfam [CBD04].

In this chapter, I will present a unified model of domain and taxonomic context, ex-

tending the approaches of [CBD03, CBD04]. I will first provide a brief overview of some of

the techniques used in speech recognition, followed by a comparison of the high-level statis-

tics of word and domain use which will help to motivate further the application of language

modelling to domain detection. I then modify the speech recognition techniques in order

to apply them to domain detection and to incorporate taxonomic context. The results sec-

tion comprises firstly a test of the method on proteins of known structure using the SCOP

classification[AHB+04], in which I will show that the combined taxonomic and domain con-

text method performs better than the individual methods and that each perform better than

a standard search which ignores context altogether. The final part of the results section con-

sists of a scan of the combined method against all Uniprot[ABW+04] proteins to determine

the number of novel Pfam domain occurrences detectable with this technique.

2.1 Statistical Speech Recognition Techniques

Speech recognition has been greatly facilitated by the application of statistical models in-

cluding hidden Markov models (HMMs) and Bayesian methods. The steps in the process are

illustrated in figure 2.1.

Once the acoustic signal has been parsed into discrete sound symbols, the statistical

approach is to build two types of model: for each word there is a phonetic model for the

emission of sounds, based on observed pronunciation patterns in terms of phonemes; above

this there is a language model for the emission of a sequence of words, based on word use

patterns. In order to recognize a given sentence, the method seeks the sequence of words

D = D1, . . .Dn that maximises the probability of the sentence given the acoustic evidence

x and the language model M. This probability can be split (using Bayes’ rule) into a word

term based on the phonetic model (first term), and a ‘context’ term, based on the language

model (second term):
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Figure 2.1: Schema for a speech recognizer. First the analogue speech waveform is converted into
a sequence of phonemes, x = x1, x2, . . .. This sequence is processed by a composite stochastic
language and phoneme model.

P (D|x,M) =
P (x|D)
P (x|M)

P (D|M), , (2.1)

assuming that x is conditionally independent of the language model M given D. When

searching for the most likely sequence of words D, P (x|M) is a fixed constant so it suffices

to maximise

P (D|x,M) ∝ P (x|D)P (D|M). (2.2)

Referring again to figure 2.1 and equation 2.1 observe that statistical speech recognition

naturally divides itself into the following sub-problems, each of which I discuss to the extent

it applies to domain recognition. See [RJ93] for further details.

Conversion Convert the analogue signal into a discrete acoustic signal

Acoustic Modelling For each word, develop and parameterise an acoustic model capable

of discriminating the given word from all others.

Language Modelling Develop and parameterise a single language model

Conversion to a digital signal

The basic idea is to sample the properties of the acoustic signal at some rate (e.g 100HZ),

and to find the closest match to this vector of properties from a library of reference vectors.

As biological sequences are already digitized, this problem is not applicable.
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Acoustic Modelling

The aim is to construct an acoustic model for each word in the language model which is

capable of recognizing words from acoustic signal. A phonetic encoding is determined for

each word in the vocabulary as a sequence of phonemes φ1, φ2, ... from a phonetic dictio-

nary. For each phoneme in the phonetic dictionary a HMM is created which emits over the

space of sound symbols obtained from the previous step. The encoded phonemes’ HMMs are

concatenated to form a word HMM. Training data for the word models is obtained by record-

ing word pronunciations. The model can be trained from this data using the Baum-Welch

algorithm[DEKM98]. This step corresponds to using a profile HMM in biological sequence

modelling, as discussed in section 1.2.

Language Modelling

The aim of language modelling is to create a model over all possible word combinations which

reflect actual word use patterns in speech. The analogy in domain recognition is a model over

all possible domain combinations which reflect protein domain occurrence patterns. Mathe-

matically this corresponds to parameterising the distribution P (D|M) = P (D1, . . .Dn|M) in

a tractable form. One approach is to assume that word use is a Markov process. That is, if

the joint probability is expressed in terms of conditional probabilities,

P (D1 . . .Dn|M) = P (D1)P (D2|D1) . . . P (Dn|D1, . . . ,Dn−1),

to assume that

P (Di|Di−1, . . . ,D1) = P (Di|Di−1, . . . ,Di−k).

In speech recognition, a second order (k = 2) Markov model is usually found to be most

effective, which is called a trigram model. First order methods are called digram methods. In

principle, the higher the order k, the more long-range dependencies can be incorporated into

the model. However, for a fixed data set, as k increases less and less training data becomes

available for the particular context and so the probability estimates become less and less re-

liable. In linguistic terms, Markov models are stochastic regular grammars, and therefore do

not capture the grammatical structure of a sentence. Thus they are not capable of assigning
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zero probability to grammatically incorrect sentences, nor modelling long range dependencies

implied by the grammatical structure. To achieve this it is necessary to use (in order of

increasing complexity and ability to effectively model linguistic structures) stochastic context

free grammars, tree-adjoining grammars [JY99] or context sensitive grammars [Cho59]. How-

ever, Markov models are computationally efficient and have been found to work surprisingly

well in practice.

For domain recognition, it is not yet clear that there is a general higher-order grammar

for domain occurrence, much less how to represent the syntax with a formal grammar. Thus,

approximating the dependence of domain occurrence based on adjacent domains appears to be

an appropriate way to proceed. A phenomenon which occurs in protein domain combinations

but not speech is nested domains, which account for 9% of all domain combinations [ASHS04].

Training data for a language model is obtained from analysing text, typically in the

subject area in which the model will be used. In one sense training a language model is

straightforward, as there are no hidden variables and the transition probabilities between

words can be observed directly. However, the main challenge with language modelling is

data sparseness, particularly with trigram methods. The training corpus will not contain all

possible trigram word combinations used in speech, and observed trigrams occur at such low

frequencies that observed counts are not reliable estimators of probability. This is dealt with

via smoothing, which is an integral part of language modelling and has formed the basis for

much language modelling research.

Equivalence classification of words is one technique for smoothing sparse data. An

example is to treat all the synonyms for a particular word as the same; another is to classify

all proper names as a single word. An example from domain modelling is classifying all

members of a superfamily as the same domain, or classifying regions of low complexity as a

single domain. The method developed in this chapter classifies all Pfam families in the same

Pfam clan as the same family.

Another smoothing technique is to interpolate lower order counts in the estimation of

the trigram and digram probabilities. That is, to assign

P (Di|Di−1) = α1P (Di) + (1− α1)
N(Di−1,Di)

N(Di−1)
, (2.3)

P (Di|Di−1,Di−2) = α2P (Di|Di−1) + (1− α2)
N(Di−2,Di−1,Di)

N(Di−2,Di−1)
, (2.4)



34
CHAPTER 2. ENHANCED DOMAIN DETECTION USING APPROACHES

FROM SPEECH RECOGNITION

where N(Di) is the count of Di in the corpus, so that even in the case the trigram is not ob-

served it will have a non-zero probability assigned based on the digram probability. One prin-

ciple often used, called back-off estimation, is that the trigram probabilities P (Di|Di−1,Di−2)

should be more reliable if the context Di−2,Di−1 is observed many times in the training cor-

pus, and similarly for the digram probabilities. Thus it makes sense that the interpolation

parameters α are not constant but rather decreasing functions of the amount of context, e.g.

α2 = f( N(Di−2,Di−1)). A step-function is typically used to approximate f , with several

categories each having a different value of α. A portion of the training data is held over to

estimate the optimal values for this function.

An alternative to Markov models for approximating the joint distribution P (D1, . . . ,Dn),

which only capture local dependencies, is the whole-sentence exponential model introduced

by Rosenfeld and co-workers [RCZ01]. The whole sentence exponential model takes the form

P (D) =
1
Z
P0(D) exp(

∑
i

λifi(D)) (2.5)

where Z is the normalizing constant and the fi(D) are termed features of the sentence:

arbitrary properties of the sentence which can be computed. P0(D) is an initial approximation

to P (D), which can be a uniform distribution, or the distribution obtained from the trigram

model described above. It can be shown that there exists is a unique equation of the form of

eq. 2.5 which satisfies the following constraints on the feature averages under P (D),

EP (fi) = Ki, (2.6)

provided the constraints are consistent. Moreover, among all solutions to equation 2.6 (in-

cluding solutions not of exponential form), the exponential solution is closest to P0(D) under

the Kullback-Leibler distance (see [DEKM98]). This means that in the case P0(D) is the

uniform distribution, the exponential solution is the solution which maximises the entropy.

In this sense the exponential solution is appealing because it maximises the uncertainty of

the distribution while still satisfying all of the constraints presented. So, given a training cor-

pus, the strategy of whole-sentence exponential modelling is to first choose features fi which

capture particular aspects of the data, then to calculate empirical averages of the fi over all

sentences D′ in the training corpus

Ki =
1
N

∑
D′

fi(D′),
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and finally to find the unique equation of the form eq. 2.5 which satisfies the constraints in

eq. 2.6. An iterative procedure is available to find this solution, and is given in [RCZ01].

The main challenge in implementing this procedure is that it requires calculating the average

Ep(fi) over all possible sentences D at each step in the iteration. This is approximated by

Rosenfeld and colleagues using a sampling technique.

In speech recognition the features used in an exponential model include: the number of

times a particular n-gram occurs, either sequentially, or in the entire sentence; existence of

particular grammatical structures; pauses etc. For domain recognition this framework could

incorporate arbitrary co-occurrence patterns (not just adjacent co-occurrence), expected dis-

tribution over the number of repeats as well as protein specific information such as taxonomy,

function and localisation.

In this work I focus on applying the Markov rather than exponential model approach to

language modelling. The Markov model is substantially more efficient to train and to score,

and has been used successfully in speech recognition. Moreover, early results from whole-

sentence models do not appear to provide a significant improvement in performance [RCZ01].

However, the exponential model does appear to provide significantly more flexibility and is

certainly an avenue for further investigation.

2.2 Patterns of domain occurrence and co-occurrence

To motivate the application of language models to protein domain recognition it is interesting

to observe the patterns of domain occurrence in relation to the pattern of word occurrence.

Zipf [Zip35] first described the power law behaviour of word occurrence. The Zipf

distribution for words is displayed in figure 2.3 and reflects the fact that some words are

used very frequently while most words are used rarely. The power law distribution is of the

form N(D) = aR(D)−b where N is the count of a word and R(D) is the rank of the word

according to its count. A Zipf distribution also satisfies b = 1. Power law behaviour has been

observed in many biological contexts, including the distribution of protein families and folds

[QLG01], occurrence of DNA k-mers, occurrence of pseudogenes and levels of gene expression

[LQZ+02].

The Zipf curve for words in figure 2.3 applies from rank 3 to rank 2000 but breaks down

after this. Figure 2.2 shows a power law distribution for Pfam domains. The slope of this
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Figure 2.2: Plot of frequency of domain occurrence vs domain rank (according to frequency,
decreasing from left to right). The domains models are from Pfam 15.0, and are scored over all
proteins from Uniprot. Pfam clans have been used to group closely related domains into a single
entry. The blue line shows the log y = C − 1.0 log x line interpolated between the highest and
lowest ranked domain.

graph is approximately 1.0 from rank 5 to rank 2000, but the gradient is higher at high-rank

domains and lower at low-rank domains. As domain annotation improves, we expect to find

novel small families, but for some of these small families to have more than 200 instances.

These families will then be of higher rank than than those known families of rank 2000 and

above. We also expect to increase the number of instances in small families as they are not

as well characterised as larger families. The combined effect should be to expand the region

of the graph following Zipf’s law to toward the right. It appears that Zipf’s law fits protein

domains at least as well as words.

Next, I consider the different patterns of domain occurrence given different taxonomic
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Figure 2.3: Plot of frequency of word occurrence, taken from the Wall Street Journal from 1987,
1988 and 1989 with sizes approximately 19 million, 16 million and 6 million words respectively.
This graph is taken from [HSGMS02]
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Figure 2.4: Distribution of example domains amongst archaea, eukaryota and bacteria from all
proteins in Uniprot. The top 5 domains for each phyla are included. This graph was not constructed
on a genome basis and redundancies in the Uniprot database have not been removed, thus the
graph may display bias due to over-representation of particular sequences in Uniprot.

contexts. Fig. 2.4 shows examples of domains which have biased taxonomic distribution.

For example, the 4Fe-4S binding domain comprises 2.9% of archaeal domains in Pfam, but

only 0.5% of bacterial domains and 0.05% of eukaryotic domains. Therefore a weak 4Fe-4S

binding domain signal in archaea is more likely to be a real signal than a weak eukaryota 4Fe-

4S binding domain signal. Intuitively, less amino-acid based evidence is required to believe

an 4Fe-4S binding domain in archaea than in eukaryota.

Figure 2.5 demonstrates different patterns of co-occurrence of the TPR domain across

three kingdoms of life. The TPR domain mediates protein-protein interactions and is ob-

served in eukaryota, bacteria and archaea, as can be seen in figure 2.4. In each of the

three kingdoms there is a high probability of observing TPR following another TPR repeat.

Uniquely in eukaryota, a TPR domain is frequently observed following an APC8 (Anaphase

promoting complex sub-unit 8) domain and also following a PRP1 N (PRP splicing factor,

N-terminal) domain. Uniquely in bacteria, a TPR domain has high probability following a

NB-ARC (signalling motif found in bacteria and eukaryota) and following an FF domain (also

involved in protein-protein interaction and found in eukaryotes and bacteria). Uniquely to

Archaea, there is a high probability of observing a TPR domain following a CW binding 2
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Figure 2.5: Observed probability of Tetratrico Peptide Repeats in different contexts. The proba-
bility of observing a member of the TPR clan given the combined taxonomic and domain context
- Bacteria (red), Archae (blue) and Eukaryota (green) - and preceding domain.

(putatively involved in cell wall binding) domain. This reinforces the findings of [AGT01b]

that domain combinations are highly kingdom specific, and also indicates the importance of

building language models which take the taxonomic context into account.

2.3 Methods: Application to protein domain detection

As discussed in section 2.1, profile HMM techniques introduced in section 1.2 broadly map to

the acoustic modelling problem in speech recognition [KBM+94, DEKM98]. In this section, I

will modify the language modelling techniques outlined in section 2.1 to apply them to protein

domain recognition.
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2.3.1 Formulation

Let M denote the combined language and taxonomy model. For each amino acid sequence

x with taxonomy T my approach is to annotate the sequence with the domain sentence

D = D1,D2, . . .Dn matching amino acid segments Di ↔ x[si,ei] if the probability P (D|x,M)

is sufficiently high. Let R denote the background model for generating the sequence inde-

pendently residue by residue according to an average compositional model. Note that in this

formulation D stands for the N- to C-terminal linear sequence of domains as well as the par-

ticular set of (start, end) protein co-ordinates for each of the Di. I require that the Di do not

overlap, but place no restriction on the size of the gaps between the Di. It is not required that

the x[si,ei] completely cover the protein. It should be noted that in the case where a protein

domain has not yet been modelled (for instance, it does not appear in the pdb, and it has

not yet been discovered in sequence space), a relatively large gap may result in the correct

domain annotation of a sequence. Also, transmembrane and low complexity regions are not

modelled. Residues which are not within a x[si,ei] will be assumed to be emitted under the

model D according to the background distribution R. Then

P (D|x, T,M) = P (x|D,T,M)
P (x|T,M) P (D|T,M) (2.7)

∝ P (x|D,T,M)
P (x|R) P (D|T,M) (2.8)

=
(∏

i

P (x[si,ei]
|Di,T,M)

P (x[si,ei]
|R) P (Di)

)
×
(∏

i
P (Di|T,M,D1,...Di−1)

P (Di)

)
, (2.9)

assuming independence of the amino acid fragments x[si,ei] from the other fragments x[sj ,ej ],

j 6= i conditional on Di, T,M. Because I am only interested in maximising P (D|x, T,M)

over all possible domain sentences and fixed x, the term P (x|T,M), which is independent of

the domain sentence, has been replaced with P (x|R). Then residues not belonging to any

sequence fragment x[si,ei] cancel out between the numerator and denominator.

Taking logs and defining the overall sentence score SSx,T,M

logP (D|x, T,M) ∝

SSx,T,M (D) :=

(∑
i

log
P (x[si,ei]|Di)
P (x[si,ei]|R)

− τDi

)
+(∑

i

P (Di|T,M,D1, . . .Di−1)
P (Di)

)
, (2.10)
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with domain score threshold τD = log 1
P (D) . Note that P (x[si,ei]|Di) represents the probability

that the model for domain Di generated the sequence x[si,ei]; and that P (x[si,ei]|R) represents

the probability that the sequence was generated independently residue by residue according

to a background composition model. Also, P (D) represents the probability of obtaining D

according to a background distribution over domains. The left-hand bracket scores the fit of

the domain sentence to the amino-acid sequence, while the right-hand bracket is the context

dependent score.

A simplified view of the Pfam annotation process [BCD+04] is that a domain D an-

notating the sequence fragment x[si,ei] is recognized as real if the domain log-odds ratio is

greater than a manually curated threshold,

log
P (x[si,ei]|Di)
P (x[si,ei]|R)

> τDi . (2.11)

This log-odds ratio is calculated using the HMMER package [Edd98]. The actual process

is somewhat more complicated. As outlined in section 1.2, HMMER calculates the log-odds

ratio that the model generated the full sequence x allowing for multiple matches of the domain

model Di to the sequence. This is called the sequence score. HMMER also calculates the

contribution from each of the repeated domains Di, which is called the domain score. Pfam

enforces a threshold on both the domain and sequence scores, whereas eq. 2.11 just shows

the domain score threshold.

Comparison of eqs. 2.10 and 2.11 reveals that the standard approach is essentially

equivalent to ignoring the context term . My approach is to maximise the sentence score

SSx,T,M given in eq. 2.10 over all domain sentences D, using the Pfam domain threshold for

τDi , and the HMMER domain score for
P (x[si,ei]

|Di)

P (x[si,ei]
|R) .

2.3.2 Context model and smoothing strategy

The combined taxonomic and language context model is parameterised by considering a

different Markov language model MT for each taxonomy T . Begin and end states are included

in the modelling in order to capture associations of domains with the beginning and end of

proteins. A Markov model of order k asserts that the conditional probability of the ith domain

given all preceding domains is only dependent on the k preceding domains:

P (Di|MT ,D1 . . .Di−1) = P (Di|Di−k . . .Di−1). (2.12)
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The terms in eq. 2.12 are calculated using the observed counts in the Pfam database

(denoted by N) and are smoothed recursively using lower order domain contexts and higher

taxa as described for speech recognition. In the following, T0 denotes the species of the protein

in question, Tj the jth parent taxon and Tm is the root of the taxonomy. For a fixed taxon

Tj the probabilities are smoothed over domain contexts:

P̂ (Di|MTj ,Di−k . . .Di−1) =(1− α) ·
(

N(Tj ,Di−k, . . .Di−1,Di)
N(Tj ,Di−k, . . .Di−1)

)
+α · P̂ (Di|MTj ,Di−k+1 . . .Di−1)

(2.13)

P̂ (Di|MTj ,Di−1) = (1− α) ·
(

N(Tj ,Di−1,Di)
N(Tj ,Di−1)

)
+ α · P̂ (Di|MTj ) (2.14)

P̂ (Di|MTj )) =
N(Tj ,Di)∑
D N(Tj ,D)

. (2.15)

The sum in eq. 2.15 is over all domain occurrences in the Pfam database. The inter-

polation parameter α is a fixed constant between 0 and 1. Back-off estimation, as de-

scribed for speech recognition, allows α to be a decreasing function of the amount of context

N(Tj ,Di−k, . . . ,Di−1). This was investigated and not found to significantly improve the

classification.

Next, contributions from higher order taxa are recursively interpolated

P (Di|MTj ,Di−1 . . .Di−k) =(1− β) · P̂ (Di|MTj ,Di−k . . .Di−1)

+β · P (Di|MTj+1 ,Di−k . . .Di−1)
(2.16)

P (Di|MTm ,Di−k . . .Di−1) = P̂ (Di|MTm ,Di−k . . .Di−1). (2.17)

The parameter β represents the degree to which the estimation is based on nodes higher up in

the taxonomy rather than the leaves. Note that this strategy is a smoothing strategy which

recursively interpolates counts of species which are similar according to the NCBI taxonomy.

In order to avoid over-fitting a taxonomy which has low coverage in Uniprot, only those nodes

in the taxonomy below which there is a sufficient sample size, 10, 000 proteins in this case,

are retained. For proteins which have a species T0 which does not meet this criteria, T0 is set

equal to the first ancestor taxonomy in the modified taxonomy tree (which may be the root

of the tree, if none of the kingdom-specific ancestor taxa meet the sample size criteria).

The interpolation parameters can be trained from training data which is held over

from generating the counts for the context models. All that is required is some form of



2.3. METHODS: APPLICATION TO PROTEIN DOMAIN DETECTION 43

objective function, and then an optimization technique can be used to find the parameters

which optimise the objective function. In the results section, held data from the SCOP test

are used to estimate these interpolation parameters.

2.3.3 Context score of a domain in a protein with fixed context

I need to consider how to score an arbitrary Pfam domain instance on a protein with fixed

context (i.e. the other domains on the protein are already known). This is required for the

SCOP test in section 2.4.1. My approach is to consider the difference between the sentence

score SSx,T,M for the domain sequence including and excluding the domain in question.

Denote by dl the Pfam family which I am scoring, and by D the fixed (pre-annotated)

context of the protein such that no Di in D overlaps with dl. Then, define the sentence score

for a single domain as

SSx,T,M (dl) = SSx,T,M (D
⋃

dl)− SSx,T,M (D \ dl) (2.18)

2.3.4 Dynamic programming algorithm

The space of all potential domain assignments for a particular protein is large, and hence

an algorithm which concentrates on searching probable domain assignments is required. My

approach is to first run HMMER against the protein for each Pfam family, keeping only

those hits which have HMMER e-value less than 1000. In this way, a list d = d1 . . .dm

of potential domains is obtained, ordered by end position, with corresponding amino acid

fragments x[si,ei]. The search space is now all possible subsequences of domains in this list.

The search through this reduced space is optimized using a dynamic programming technique.

Firstly, assume that the language model is a first order Markov model. In that case,

the goal is to find the domain sentence D = D1 . . .Dn, a sublist of d which maximises the

protein log-odds score SSx,T,M (D), where

SSx,T,M (D) =
∑i=n+1

i=1 H(Di) + C(Di|Di−1) (2.19)

H(Di) = HMMER(Di)− τDi (2.20)

C(Di|Di−1) = log
(

P (Di|Di−1)
P (Di)

)
. (2.21)
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Note that H(Di) is just the HMMER score for the domain minus the threshold, and

that C(Di|Di−1) is termed the transition score. Denote the begin and end states as D0,Dn+1

respectively, so that C(D1|D0) is the transition score coming from the begin state and

C(Dn+1|Dn) is the transition score going to the end state. As the end state contributes

no sequence-based score, H(Dn+1) is set to zero.

Define Di to be the highest scoring domain sentence which ends in domain di without

overlaps. The following recursion relation then applies:

SSx,T,M (Di) = H(di) + maxej<si{SSx,T,M (Dj) + C(di|dj)}, (2.22)

where the condition ej < si ensures that the maximising sentence does not contain domain

overlaps. Then set

Di = {Dj ,di} (2.23)

where Dj maximises eq. 2.22. Repeated application of eq. 2.22 and eq. 2.23 for i = 1 . . .m+1

gives the maximising sentence D = Dm+1 required by eq. 2.19 (again, I use the convention

that dm+1 is the end state, so that Dm+1 is interpreted as the maximising sentence ending

with the end state).

The assumption that the Markov model M is first order is now relaxed, and C(Di|Di−1)

is replaced with C(Di|Di−1 . . .Di−k). Equation eq. 2.22 now becomes

SSx,T,M (Di) = H(di)+

maxej1
<sj2

<ej2
<...<sjk

{SSx,T,M (Dj1,...jk) + C(di|djk
, . . .dj1)}, (2.24)

and so the strategy outlined above is no longer guaranteed to return the highest scoring

sequence under the language model. However, this strategy is still used in this case, and has

been found to still work well in practice.

2.3.5 Incorporating the sequence score threshold

As mentioned above, Pfam uses a sequence score threshold in addition to the domain score

threshold given in eq. 2.11. This thresholding is equivalent to a threshold on the sum of log-

odds scores contributed by all instances of a particular domain type on a protein (for instance

the sum of all of the zf-C2H2 domain scores). As the method applies Pfam thresholds, it must

also apply a sequence score filter as a post-processing step to retain consistency with Pfam.
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In order to do this, the maximising domain sentence is obtained as before. The total score for

the maximising sentence comprises the sum of HMMER scores (left-hand bracket of eq. 2.10)

and the context score (the right-hand bracket in eq. 2.10). As before, the total HMMER

score for each type of domain on the maximising sentence is summed to give a sequence score

for that domain type. Now, the context component of the score is distributed amongst each

of the sequence scores such that as many domain types score above the sequence threshold

as possible. To do this, assuming a positive context score, simply order the domain types

according to sequence score and allocate to the first sub-threshold domain type as much

context score is required to meet the sequence score threshold. Repeat this step until the

context score has been completely distributed.

2.3.6 Variable length Markov model

The fixed-order Markov model has a significant drawback: the lengths of commonly occurring

domain architectures are not fixed; some patterns are first order (CBS domains often occur

in pairs), while many patterns have a higher order (the group of RNA polymerase RBP1

domains commonly occur in groups of seven). Restricting to a fixed order Markov model will

degrade the ability of the model to recognize patterns of arbitrary length. Instead, for each

proposed context Dj from eq. 2.22 in the dynamic programming algorithm, a different order k

for M is chosen which is the maximum order which is observed in the training database. More

precisely, labelling Dj = Dj
1 . . .D

j
nj the order k is chosen to be the largest order with non-zero

training set count N(Dj
nj−k . . .D

j
nj ). As this does not depend on the current domain di, eq.

2.12 still defines a consistent probability distribution over domains. In practice, however, to

cut down on memory requirements for storing counts of arbitrary length, I restrict k ≤ 4.

This approach is an example of decision tree modelling which is commonly used in

language modelling. Decision trees partition domain histories Dj into equivalence classes

Φ1 . . .ΦM with a corresponding probability distribution P (Di|Φl). My approach partitions

on the basis of the longest domain context which has been observed in the training set. It

is straightforward to develop more complicated decision rules, and this remains a basis for

further investigation. My approach is also similar to the interpolated Markov chain approach

used by Salzberg [SPD+99] in gene prediction.
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2.3.7 Incorporating Pfam clans

The Pfam project groups together closely related Pfam families into Pfam clans. Pfam en-

forces an overlap rule: the Pfam threshold must be set to ensure that no distinct significant

Pfam family matches overlap. Clans were created to relax this rule – that is, two families

from the same clan are allowed to have significant matches which are overlapping, and the

family which scores highest above its own threshold is annotated as the matching Pfam fam-

ily. From the point of view of language modelling of domains clans can be seen as variants

of a single domain (in much the same way that different phonetic representations of a word

are the same word). I have taken the approach that from a language modelling point of view,

Pfam families from different clans are considered to be from the same family, and hence their

counts are aggregated. This only applies for training and scoring the the transition scores

C(Di|Di−1,Di−k) but the HMMER component H(Di) remains specific to the domain which

is being scored. Importantly, the threshold remains domain (not clan) dependent, as thresh-

olds may still vary substantially within a clan (particularly if one clan member is a fragment

of another).

Clans and context modelling have had a mutually beneficial existence in Pfam. Pfam

annotators use context domain hits to guide their decisions about new clans to build, and

grouping Pfam families into clans means that context modelling has more information (as

more patterns are observed) with which to score domain architectures.

2.3.8 Significance scores

The Pfam database maintains for each domain hit an e-value score as well as a log-odds score.

The e-value score for a domain is the number of hits which would be expected to have a score

greater than or equal to the score of the domain in a random database of the same size. It

is calculated for each Pfam family by fitting an extreme value distribution (EVD) to the bit

scores of hits of that family against a set of randomly generated proteins, as implemented in

the hmmcalibrate program of the HMMER package. The e-value score does not directly affect

the assignment of domains in Pfam as manually created thresholds are used instead. However,

the significance of domain matches is important to consider as it is used by end users when

evaluating marginal hits. Moreover, significance scores can be used to compare the reliability

of hits from different Pfam families, whereas log-odds scores cannot. Significance values are
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required in the SCOP test to generate aggregate ranked lists of domain matches. Thus it is

important to consider the effect of language modelling on significance scores.

One possibility is to use the unmodified EVD parameters calculated by hmmcalibrate

to calculate the significance of HMMER+context scores. This is the approach pursued in the

SCOP test in section 2.4.1. An alternative strategy is to score the HMMER+context model

on randomly generated proteins in order to generate a modified EVD. As the significance

score relates to a particular domain rather than the entire domain sentence, the method

described in section 2.3.3 is used to calculate the HMMER+context score for the domain as

the difference of the HMMER+context score of the maximising sentence with and without

the domain in question. As in hmmcalibrate the HMM is required to pass through the given

domain at least once. Note that in almost all cases, the language model uses a start → domain

→ end architecture as it finds no other domains with scores above threshold to include in the

calculation. In this case, all of the start to domain and domain to end transition scores will

be attributed to the domain.

This process is demonstrated on two Pfam families, WD40 and pkinase as shown in

fig. 2.6. Two different types of behaviour are observed. In one case, pkinase commonly

occurs by itself on a protein, and hence hits to random proteins typically have their scores

enhanced slightly by the language model, so that the EVD shifts to the right. However, real

hits also have their scores enhanced. Furthermore, in the case of a single domain protein, the

increase will be the same as the shift in the EVD, so that the significance of the hit remains

unchanged. In contrast, hits to the pkinase domain in atypical contexts will not have their

scores enhanced, and so their significance will decrease. The other example, WD40 commonly

occurs in repeats of 5-8 units; so that individual random hits are penalised under the language

model (by about 4 bits) and so the EVD shifts to the left. The language model enhances the

score of real hits (as they do occur in the appropriate repeating pattern), thus providing the

compound effect of increasing the score of real hits and increasing the significance of hits at a

given score. To summarise, the effect of language modelling on significance scores appears to

be either neutral, in the case in which the scores of random and real hits are shifted by the

same amount, or more discriminatory, in the case of decreasing random scores and increasing

real scores.

A weakness of this approach to calculating significance scores is that it considers random
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Figure 2.6: Extreme Value Distribution (EVD) curves calculated for pkinase and WD40 Pfam
domains. The solid lines are the standard EVD curves calculated using HMMER. The dashed
lines use the language modelling method, and hence take contextual information into account.
For almost all sequences, this results in a domain sentence consisting of a BEGIN state followed
by the given domain and ending in an END state. WD40 is commonly found in groups of 5 to
8 tandem repeats, so that single random WD40 hits are penalised by the language model. The
WD40 EVD shifts 4.0 bits to the left. On the other hand pkinase often occurs by itself on a
protein, and hence random single pkinase repeats gain slightly under the language model. The
pkinase EVD shifts 1.1 bits to the right.
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proteins for calculating the language model component of the score, whereas false positive hits

in real proteins do not have random protein as context. This has not been further investigated.

2.3.9 Implementation

A major implementation challenge was to store efficiently in memory the counts of occurrence

patterns of domains and species used in eqs. 2.13, 2.14, 2.15. These counts are central to

the dynamic programming algorithm described above, and speed of accessing these counts is

critical. Note that the counts are stored, rather than the smoothed probabilities, as the space

of possible domain and taxonomy combinations is much vaster than the space of observed

combinations. A context map is stored, which contains as keys every observed 1-mer, 2-mer

.. k-mer observed in Pfam (with k normally set at 4). These keys map to a secondary map,

in which each observed taxonomy from the reduced taxonomy tree maps to the number of

observations of the given domain sequence k-mer in proteins of this taxonomy or with the tax-

onomy as ancestor. In order to facilitate rapid access to the counts to compute the smoothed

probabilities, the context map is stored as a red-black tree [CLRS01]. The smoothing equa-

tions eq. 2.13 recursively interpolate from higher-order to lower-order contexts. However

the counts are stored and accessed in the reverse order, progressively narrowing down from

general to more and more specific contexts. This is achieved by first constructing an ordering

of Pfam domains. This ordering is used to infer an ordering on domain sequences working

from right to left – that is for two given domain sequences the final position is first compared,

then, if this is equal the penultimate position is compared, etc. If the two domain sequences

are equal in all positions, but one is shorter than the other, then the shorter sequence is

ordered ahead of the longer sequence. This ordering is used to create the red-black map.

Now consider eq. 2.13. The successive numerators require the counts N(Tj ,Di−k, . . .Di),

N(Tj ,Di−k+1, . . .Di), ... N(Tj ,Di), which are obtained in reverse order. Firstly the node

in the red-black map is found below which all domain sequences end in Di, as all subsequent

counts will be from this sub-tree. The first position in this sub-map is the last of the counts

required. This process is continued, progressively narrowing down the sub-tree of counts.

For successive denominators, the same strategy can be pursued, but starting with all domain

sequences ending in Di−1. The counts over all ancestral Tj are all collected at the same stage.

This search is not optimized in the same way as the maps are much smaller, so a standard
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hashing strategy is sufficient.

As an example, consider scoring an example transition C(Di|Di−k, . . .Di). Consider

the domain sequence D0 =BEGIN, D1 = C2-set, D2 = ig and I will show how to calculate eq.

2.21. Let the taxonomy of the protein be (Eutheria, Coelomata, Eukaryota, root). I assume

α = 0.7 and β = 0.35. The array of counts required for smoothing is given as follows:

T0 T1 T2 T3

N(Tj ,D0,D1) 3224 43394 5029 5210

N(Tj ,D1) 17894 255714 29972 30256

N(Tj) 379460 618859 1376701 3005810

(2.25)

T0 T1 T2 T3

N(Tj ,D0,D1,D2) 2428 3355 3946 4011

N(Tj ,D1,D2) 12132 17657 21018 21119

N(Tj ,D2) 17894 25571 29972 30256

(2.26)

From these counts, I calculate the probabilities, and finally log-odds scores.

T0 T1 T2 T3

N(Tj ,D0,D1,D2)
N(Tj ,D0,D1) 0.75 0.77 0.78 0.77

N(Tj ,D1,D2)
N(Tj ,D1) 0.68 0.69 0.70 0.70

N(Tj ,D2)
N(Tj)

0.05 0.04 0.02 0.01

P (D2|Tj ,D0,D1) 0.39 0.40 0.39 0.38

P (D2) 0.01

C(D2|D0,D1) 5.24

(2.27)

So the transition score is 5.24 bits. In other words, in eutherian mammals it is 25.24 = 38

times more likely to see a ig as the second domain in a protein following a C2-set domain

than it is in a random protein.

2.4 Results

Figure 2.7 shows the processes carried out this chapter. The results are split into two sections,

the SCOP test and the Pfam scan. The training set for the language model consisted of Pfam

release 15 and proteins from the Uniprot [ABW+04] database consisting of Swissprot release
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Figure 2.7: Conceptual diagram of processes and data in this chapter. Inputs are shown in grey,
and outputs in light blue, with intermediate steps in yellow, and software steps in red.

44.0 and SP-TrEMBL27.0, with all proteins which match proteins from the ASTRAL protein

set (filtered to a maximum of 40% identity between any two proteins in the set) removed.

This set consisted of 982, 523 proteins, which only includes those proteins which have at least

one annotated Pfam domain.

2.4.1 SCOP test

In order to test objectively the ability of the language model to detect protein domains, I use

the SCOP test, initially developed by Brenner et al. [BCH98] and subsequently used by many

authors to evaluate homology prediction algorithms (e.g. [MG02]). The SCOP database clas-

sifies all proteins of known structure [HMBC97] in terms of protein domains. Multi-domain

proteins are split into component protein domains, which are classified hierarchically in four
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levels: family, superfamily, fold and class. Sequences belonging to the same family share se-

quence similarity, suggesting a common function and implying a clear common evolutionary

origin; families are clustered into superfamilies on the basis of structural similarity suggesting

a probable common evolutionary origin; superfamilies are grouped into folds on the basis of

similar secondary structure topology. ASTRAL is a database of protein sequence fragments

of known structure, annotated with SCOP family classifications [CWC+02]. ASTRAL pro-

vides protein sequences filtered to various levels of sequence similarity. The SCOP test works

by running a given algorithm and domain model over all proteins classified by SCOP, and

comparing domain family predictions with the known structural class. In this way it is pos-

sible to independently identify proteins homologous to the given domain family (all proteins

belonging to the same SCOP superfamily) and proteins which are non-homologous (all pro-

teins belonging to a different SCOP fold). Proteins belonging to the same fold but different

superfamily are not classified as homologous or non-homologous.

The SCOP test was modified in order to apply it to the domain models in Pfam. Using

the file pdbmap (available at ftp://ftp.sanger.ac.uk/pub/databases/Pfam/pdbmap) I obtain

a list of all proteins in which a Pfam domain annotation overlaps a PDB structure . The co-

ordinates (with respect to the Uniprot protein sequence) of both the PDB structure and the

Pfam domain are provided in this file. The PDB structure is classified by SCOP. Providing a

given Pfam domain overlaps one and only one SCOP superfamily, I classify all SCOP proteins

in this superfamily as homologous to the Pfam domain, and all proteins outside the fold to

which this superfamily belongs as non-homologous. I identify 1970 Pfam families in Pfam

release 15 which satisfy this criteria. Of these, I use 500 to train the interpolation parameters

of the context models. The remaining 1470 form the test set of Pfam families for the SCOP

test.

For a given algorithm and a given Pfam family, the SCOP test proceeds by scoring

every protein in the ASTRAL filtered sequence set (to a maximum of 40% shared identity

in this case), and generating a list of proteins ranked according to model log-odds score.

The ultimate goal of homology detection is to score all homologous proteins above all non-

homologous proteins. One simple measure of relative success is the number of true homologies

scored above the highest scoring non-homologous sequence, which I shall refer to as the ‘over

the top’ score (OTT). An alternative is a coverage vs error curve which plots at each point in



2.4. RESULTS 53

the ranked list the total number of homologous proteins (true-positive) above this point on

the y-axis vs the number of non-homologous (false positive) above this point on the x-axis.

A randomly ranked list would give on average an equal proportion of homologous and non-

homologous sequences identified. For a given error rate, a higher curve is a more effective

classifier of homologous proteins, and the area under the curve is another measure of overall

success. The minimum error rate (MER), which is the minimum of the sum of number of

homologous sequences classified as non-homologous and non-homologous sequences classified

as homologous, can also be used.

If instead of ranking according to model score the list is ranked according to e-value

significance, then it is possible to generate an aggregated ranked list of significance across

multiple domain models. From this list a score representing the effectiveness of the algorithm

across all domain families can be obtained, using either the OTT, MER or area under the

coverage versus error curve. The ranking by significance is necessary as the log-odds scores

between models are not comparable.

The SCOP test was carried out on the following variants of the context models de-

scribed in the previous section: HMMER alone; HMMER with a digram language model,

denoted HMMER+2gram (which implies that a single domain is considered as context); HM-

MER+3gram; HMMER+4gram; HMMER with taxonomy context (denoted HMMER+taxonomy)

and HMMER+4gram+taxonomy. It can be seen from the following results that the 4gram

model is a small improvement on the 3gram model. A HMMER+7gram+species model was

tested to observe the effect of longer context, but it was not found to improve results beyond

the HMMER+4gram+context model.

In order to apply the language models, it was necessary to identify the protein sequence

in Uniprot which matched each of the protein fragments in the ASTRAL set, so that I

could use Pfam to assign the domain context and also obtain the taxonomic position of the

protein from the NCBI taxonomic code assigned by Uniprot to each protein. As noted above,

ASTRAL contains protein fragments, so it is also necessary to assign the correct position of

the protein fragment on the Uniprot protein. This is achieved with the pdbmap file discussed

above. The HMMER+context model score for a particular Pfam domain was obtained as the

difference between the context score of the full domain sequence including the Pfam domain

and the context score excluding the context domain, as given by equation eq. 2.18.
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The interpolation parameters were trained on 500 of the 1970 Pfam families with the

remainder forming the test set of Pfam families. The sum of individual family OTT scores

was used as the objective function to train the taxonomy and domain context interpolation

parameters. This score was chosen as it replicates most closely the objective of improving

Pfam annotation, for which a threshold is manually curated for each family with the aim that

there are no false positives. The optimal parameters from this set were α = 0.7 for domain

context, and β = 0.35 for taxonomic context.

Figure 2.8 displays the coverage versus error curve over all Pfam domains tested (with

the results ranked by significance). HMMER+4gram+taxonomy identifies 3% more homolo-

gous proteins at an error rate of 1000 proteins. Table 2.4.1 shows summary measures of the

performance of each of the context models. From the point of view of using the method to

improve Pfam domain annotation, the important measure is the sum of family OTT scores

(column 4). HMMER+4gram+taxonomy improves this measure by 2.2%, implying that if

the Pfam thresholds could be optimally selected, context models could increase the number of

domains annotated by 2.2%. HMMER+4gram+taxonomy is substantially better under this

metric than HMMER+4gram, indicating that taxonomy is useful in improving the context

models. Taxonomy on its own generates a smaller improvement than the 4-gram but better

than the 3-gram language model.
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Figure 2.8: Coverage vs error curve for detection of remote homologies for aggregated results
from 1470 Pfam families not used for training the interpolation parameters. The lines are
black - HMMER score, green- HMMER+taxonomy , blue - HMMER+4gram, the red - HM-
MER+4gram+taxonomy. A higher line indicates a better classification of remote homologies. I
display only up to 1000 false positives.
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Method # families sum of Aggregate

with OTT family score score

Better Worse OTT MER OTT MER

HMMER - - 3604 5092 1620 3692

+2gram 37 15 3638 5042 1650 3668

+3gram 46 20 3646 5041 1655 3662

+4gram 50 22 3657 5031 1654 3665

+taxonomy 53 34 3644 5064 1601 3687

+taxonomy 69 39 3682 5017 1634 3650

+4gram

Table 2.1: Comparison of context models with HMMER, scored
over the 1470 families not used for training the interpolation pa-
rameters.

For each method the number of false positive and false negative matches at a given e-

value significance is plotted in figure 2.9. Context models improve error rates over a range of e-

values less than 1.0 by reducing false negative matches with negligible impact on false positive

matches. This demonstrates that at a given e-value threshold, HMMER+4gram+taxonomy

has a lower error rate than HMMER alone. From the point of view of large scale classification

of protein homology with profile HMMs this is an important result, as classification is often

done on the basis of a global e-value threshold. This figure justifies to a certain extent the use

of the same EVD on context adjusted scores, in that the false positive error curve is correctly

calibrated with the HMMER false positive score. Note that no false positives are obtained

with evalue of 10−3 or lower.

Figure 2.10 displays the domains which have the greatest increase and decrease in OTT

score. In particular, C2-set gains 12 domains while Semialdehyde dh loses 3 domains. In some

cases the increase obtained by using a joint model is greater than the sum of the individual

OTT score increases of the 4gram and context models (for example Laminin EGF).

One family with significant improvement is the C2-set domain. C2-set is a member

of the immunoglobulin superfamily clan in Pfam, and commonly co-occurs with other im-

munoglobulin superfamilies on a protein. HMMER alone scores 6 positive sequence from the
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Figure 2.9: Number of false negative (upper six lines) and false positive (lower six lines) matches
versus e-value threshold for HMMER (red lines) and context models. At a given e-value threshold,
each of the models decreases false negative rates with negligible impact on false positive rates.
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Figure 2.10: Pfam domains which have their OTT scores improved the most (upper graph) and
decreased the most (lower graph), with OTT improvements relative to HMMER alone plotted for
HMMER+taxonomy (blue), HMMER+4gram(red) and HMMER+4gram+taxonomy(black). The
bars indicate absolute increase or decrease in OTT score, indicated on the left-hand y-axis. The
lines indicate the percentage increase (or decrease) in OTT score, indicated on the right-hand
y-axis.
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ASTRAL test set above the first negative sequence, whereas HMMER+context+species scores

18 sequences above the first negative sequence. This improvement is obtained by increasing

the significance of 12 homologous low significance scores and decreasing the significance of 3

non-homologous high significance scores. In the Pfam annotation, this domain is restricted to

eutheria (placental mammals), however other members of immunoglobulin superfamily clan

occur frequently in other verterbrata, and less commonly in other metazoa. The improvement

in classification includes 11 vertebrate proteins and 1 insect protein. Figure 2.11 displays the

significance scores for both HMMER and HMMER+4gram+taxonomy on this family.

2.4.2 Pfam scan

I scanned the Uniprot [ABW+04] database with all Pfam models to search for novel hits

to these models. The same interpolation parameters were used as in the SCOP test. A

HMMER+4gram+taxonomy language model was used, as the SCOP test demonstrated that

this is the most sensitive of those context models tested.

The Pfam scan identifies 44792 new domain instances, which corresponds to 2.8% of

the total number of domains previously scored as significant in Pfam under full-length models

(Pfam also scores partial matches to Pfam domains). The new domain instances occur on

26458 proteins (which corresponds to 1.8% of the total number of proteins in Uniprot) and

3479 proteins which previously had no Pfam annotation (which corresponds to a 0.2% increase

in sequence coverage). The new domain instances cover an additional 1.8m residues (Pfam

full-length models previously covered 246m of 470m residues in Uniprot) which corresponds

to a 0.38% increase in residue coverage. The new predictions are limited to 1245 domains, of

which 344 domains contribute 95% of the new domain instances.

Figure 2.12 displays the families that the method detects. Figure 2.13 displays the

length distribution of both new domains detected using context and the current Pfam an-

notation. Context domains have average length of 44 residues; the average length of Pfam

domains is 183 residues. This is due to the over-representation of repeats in short Pfam fami-

lies (and hence better contextual information) and a lower sequence-based signal-to-noise ratio

for short families so that extra information is more likely to make a difference in detecting

them.

Figure 2.14 shows how the impact of context varies across the taxonomic tree. In
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Figure 2.11: E-value significance scores for HMMER+4gram+taxonomy vs HMMER for C2-set
domain, plotted on a log-log scale. The green dots represent sequences in the same SCOP
superfamily (which are treated as homologous). The red dots represent sequences in different
SCOP folds (which are treated as non-homologous). The blue dots represent sequences in the
same SCOP fold but different superfamily (which are treated as neither homologous or non-
homologous). Note that the four most significant matches (with e-value less than 1e − 8 under
both HMMER and HMMER+4gram+taxonomy) are not shown. All 31 homologous sequences
shown on this graph (green dots) fall below the y = x line, and hence are more significant under
HMMER+4gram+taxonomy than under HMMER.



2.4. RESULTS 61

Figure 2.12: Domain occurrences amongst top 20 ‘context’ families. The bars shows the absolute
number of new predictions; the line line shows the percentage increase in that family.
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Figure 2.13: Length distribution for context domains(red) and Pfam domains (blue).

particular, context is not particularly effective in annotating Virus proteins. One possible

explanation is that almost half the virus proteins in Uniprot are HIV proteins, and most of

these are homologous proteins from different HIV strains, hence represents a much smaller

pool of proteins with different domain architectures, each of which is already well understood.

Context increases the number of Pfam annotations in bacteria and archaea by approximately

2% which is slightly below the average result. Context performs particularly well on eukaryotic

proteins, increasing coverage by up to 6%. Table 2.2 suggests a weak relationship between

the average number of domains per protein annotated with at least one Pfam domain and

the increase in context domains.
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Figure 2.14: Percentage increase in domain occurrences by position in taxonomic tree. Each of
the taxa displayed have more than 10,000 proteins in Uniprot (counting nodes which have the
given node as ancestor). Nodes which have a single parent have been removed (for example HIV).
Each node is annotated with the percentage increase in domain instances given by context at
that level in the taxonomic tree. The branches above a given node are coloured according to the
percentage increase, from green (high increase) to red (low increase).
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Taxonomy Percentage increase Average no. of

due to context domains per Pfam

domains annotated protein

Drosophila melanogaster 6.4 2.5

Oryza sativa 6.4 2.0

Homo sapiens 4.6 2.6

Eukaryota 3.6 1.9

Bacteria 2.5 1.5

Archaea 2.4 1.5

Viruses 0.4 1.4

Table 2.2: Percentage increase in domain annotations due to context and
average number of domains per protein annotated with at least one do-
main.

Figure 2.15 shows several examples of domains found by the context models without

taxonomic context. Two TPR domains are found on the SR68 HUMAN protein, which has no

TPR domains annotated in any of the protein databases. This protein is known to interact

with SR72 HUMAN in the signal recognition particle [LPA+93], which itself has a pair of

annotated TPR domains. As TPRs are protein-protein interaction motifs, this suggests that

the interaction between SR68 and SR72 may be mediated by this region. On the previously

un-annotated E2BG CAEEL protein I find an NTP transferase domain, followed by three

hexapep repeats, all raised above the noise by their mutual compatibility.

The method also predicts a previously un-annotated Tf Otx domain in the cone rod

homeobox protein (CRX), in H. sapiens, R. norvegicus and M. musculus (figure 2.15). CRX

is a 299 amino acid homeodomain transcription factor which is primarily expressed in the

rod and cone receptors of the retina [CWN+97, FMC97]. CRX is highly conserved amongst

mammalian species. CRX is known to share homology with Otx1 and Otx2, and contains

a homeodomain near the N-terminus followed by a glutamine rich region, a basic region, a

WSP motif, and an Otx-tail motif. The new Tf Otx prediction extends over the un-annotated

region: amino acids 164 to 250. This region encloses a valine to methionine mutation at

position 242 associated with autosomal dominant cone rod dystrophy, which leads to early
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Figure 2.15: Examples of new context domains, indicated by rectangles. Standard Pfam domains
are indicated by angled boxes. These domains can be identified using only a domain context
model, without considering taxonomic context.
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Figure 2.16: Part of multiple alignment of Tf Otx domain in members of the Otx1 and Otx2
sub-families. Position 22 in this alignment - corresponds to position 242 on CRX HUMAN. This
position is methionine for all members of the Otx1 subfamily while it is valine for all members of
the Otx2 sub-family.

blindness [SCW+97, RBD01]. Recent research demonstrates that a region coinciding with

the new prediction (amino acids 200 to 284) is essential for transcriptional activation of the

photo-receptor genes, and supports the hypothesis that the V242M mutation acts by impairing

this transactivation process [CWX+02]. An analysis of the multiple alignment of the Tf Otx

domains (figure 2.16), demonstrates the existence of two sub-families of the domain, the first

of which has a methionine at position 105 and contains all Otx1 proteins, the second of which

has a valine at position 105 and contains all Otx2 proteins. Furthermore, the CRX V242M

mutation aligns with this position and hence transfers the CRX Tf Otx domain from the

Otx2 to Otx1 sub-family. Finally, note that it has been demonstrated that both Otx2 and

CRX transactivate the inter-photo receptor binding protein (IRBP) [BBI+99], while this has

not been demonstrated for Otx1. This suggests that the V242M mutation loss of function is

due to loss of IRBP transactivation ability, and conversely that position 105 in the Tf Otx

motif is critical for IRBP transactivation.

Figure 2.17 shows further examples of new domain occurrences found by considering

taxonomic context only. A pair of TPR repeats are found in Aspartyl (asparaginyl) beta-

hydroxylase (Q9Y4J0). This protein has been shown to be over-expressed in an enzymati-

cally active form in hepatocellular carcinoma and cholangiocarcinoma[LJN+96]. The enzyme

acts by catalyzing post-translational hydroxylation of β carbons of aspartyl and asparaginyl

residues in EGF-like domains with the appropriate consensus sequence. In particular, the

Notch homologues – which are known to be involved in cell differentiation and have been

shown to be oncogenic – have the appropriate consensus sequence. TPR domains are thought

to be involved in protein-protein interactions[DCB98], and may therefore help to mediate this
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interaction.

The method also identifies novel antistasin domain on the theromin protein (THBI THETS)

in Theromyzon tessulatum, a leech. This protein has important medical applications as a po-

tent thrombin inhibitor, and is found in the head of the leech [SCB+00]. The antistasin

family is an inhibitor of trypsin-family proteases and is often found in anti-coagulants. Thus

the function of the protein concurs with the novel domain occurrence. Taxonomic modelling

also find a novel occurrence of the toxin 2, or scorpion short toxin domain on the ErgToxin

protein (Q9GQ92) in Centuroides noxius (Mexican scorpion). The ErgToxin protein blocks

the ERG-K+-channels of nerve, heart and endocrine cells [SBF+00]. Other members of the

toxin 2 family also inhibit potassium channels.

Finally, in the fertilization 18kda protein (Q25063) in Haliotis fulgens (Green Abalone),

a novel Egg lysin domain is identified. Egg lysin is found in other Haliotidae, as well as other

Archaeogastropoda. The 18kda fertilization protein acts in conjunction with a paralogous

16kda lysin protein on the egg vitelline envelope. The 16kda protein creates a hole in the

vitelline envelope. The 18kda protein is a potent fusagen of liposomes, and is thought to me-

diate membrane fusion between the gametes, a step in gamete recognition which is important

in restricting heterospecific fertilization with other species [SV95]. These authors also found

very high divergence amongst the group of orthologous 18kda proteins in California abalone;

together with a high frequency of non-synonymous to synonymous substitution, indicating a

high selective pressure toward differentiation between species and thus furthering the gamete

recognition hypothesis. Furthermore, the 18kda protein exhibits a rate of evolution 2-3x that

of the 16kda protein. The 18kda protein in Haliotis fulgens is the most distantly related of

this group (with 27%–34% identity to the others), and hence standard profile methods fail to

detect the similarity.

I had validated the predictions of an earlier version of this method using a Psi-blast [AMS+97]

test (table 2.4.2). This test was performed on a set of new domain predictions using Pfam 7.7,

and an earlier version of the language modelling software which did not take into account the

taxonomic context of sequences. For each novel predicted domain occurrence, Psi-blast was

used to generate a set of similar sequence fragments. These sequences were then searched for

matches to Pfam families. For 30.7% of novel domain occurrences Psi-blast found matches

that are annotated in Pfam. In 90.0% of these the majority of annotations matched the
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Figure 2.17: Emergence of new domains occurrences, identified using HMMER+taxonomy, indi-
cated by magenta boxes and ‘Species:’ labels. Standard Pfam domains are indicated by angled
boxes. These domains can be found by modelling taxonomic context without also considering
domain context.
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identified family; a further 7.6% had at least one match to the correct family; 0.8% matched

a related family and for the remaining 1.5% all matches were to incorrect families. By in-

spection, the assignment due to the language modelling method of this paper appears to be

correct for the overwhelming majority of the 7.6% and 0.8%, and many of the 1.5%. This

suggests that the false positive rate is no more than a few percent. Since many of the 69.3%

novel predictions for which Psi-blast does not find a match have higher scores than those for

which it does, this also indicates the approach can detect matches which Psi-blast does not.

Psi-blast does not find match in Pfam Family 10,575 69.3%

Majority of matches to correct Pfam family 4,220 27.6%

Majority of Has 1 match to correct family 358 2.3%

matches to Has matches to related family 38 0.3%

incorrect family All matches to unrelated families 72 0.5%

Table 2.3: Blast Results For New Positives Predicted By Model.

2.5 Discussion

I have demonstrated that significant improvement in protein domain detection is possible

through modelling domain context using techniques inspired by speech recognition method-

ology. I have shown several examples in which the increased predictive power has discovered

domains which further understanding of human disease and biology, and expect there will be

many others. From a theoretical point of view, this method provides an integrated prediction

of domain annotation for a given protein, evaluating in a strictly probabilistic fashion the

appropriate trade-off between amino-acid signal strength and contextual information. Lastly,

from a pragmatic perspective, the method significantly increases sequence coverage. The

predictions of the method are available via the Pfam web-pages.

Further improvements to the language models are possible, motivated by similar tech-

niques in speech recognition. Modifications to the decision trees used to classify domain

contexts are possible, for example I could classify domain contexts on the basis of the longest

potentially non-contiguous preceding subsequence which is also observed in the training

database. Alternatively, standard classification techniques to learn optimal decision trees
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can be employed. Other annotated regions on the protein could be used in our search: for

example regions of low complexity and transmembrane regions. Explicitly modelling the

length distribution of spacers between domains may also increase sensitivity. Lastly, alterna-

tive classes of generative grammars may be used – although it remains unclear which level

is appropriate for domain modelling. The language modelling could also be adapted to take

into account nested domains.

An alternative approach to language modelling, such as the exponential model intro-

duced in section 2.1 might provide more flexibility for modelling long-range domain interac-

tions as well as providing an alternative method for integrating taxonomic information. This

method is more computationally expensive but also more flexible with regard to modelling

arbitrary features.

Extra information other than taxonomy regarding the protein may also prove a useful

guide in domain annotation. For example the techniques used to incorporate taxonomic

information can also be used to incorporate protein localisation or even functional information

such as phenotype in a systematic RNAi screen.

This type of approach may also be applicable to the discovery of cis-regulatory modules

(CRMs) and transcription factor (TF) binding sites. Identification of TF binding sites using

weight matrices is difficult, as they can lie kilobases away from the transcription start-site, and

the motifs occur at random throughout the genome. Several authors have built organizational

models which take motif positioning and orientation into account [DSW01, PFL+01], while

others have attempted to identify functional motifs on the basis of high local density of

potential binding sites [BNP+02]. Language modelling is related to some of these methods,

and may provide an alternative strategy.



Chapter 3

Enhanced Domain Recognition

Using Phylogeny

There have been several suggestions in the literature for combining sequence based hidden

Markov models (HMMs) with models of evolution [Yan95, MD95, FC96, TGJ96, SH04]. Evo-

lutionary models model changes between homologous sequences at a site, typically with a

uniform substitution process at all sites whereas sequence based hidden Markov models have

site-specific models but only consider a single sequence at a time. The theme common to all

of these suggestions is that integrated models will be both more realistic and more powerful

for common bioinformatics tasks, such as building alignments, detecting homologues and re-

constructing trees. Several of these models have been discussed in section 1.3. The goal of

these methods is to improve the fit of phylogenetic models to real data, and thus to improve

the reliability of phylogenetic inference made from these models.

Qian and Goldstein [QG03] have applied the tree HMM developed in [MD95] to incor-

porate the phylogenetic information contained in the seed alignment which is used to build a

profile HMM. Recall from section 1.3 that the tree HMM only has match and delete states.

Qian and Goldstein effectively re-label match states in which greater than half of the se-

quences in the seed alignment have a gap as insert states. The tree HMM simultaneously

addresses the issue of weighting sequences to correct for redundancy and smoothing observed

emission and transition counts to obtain probabilities. This approach determines a differ-

ent profile HMM for each internal node in the seed tree. The process can be thought of as

re-rooting the tree at a particular internal node, and using the Felsenstein algorithm (see

71
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eq. 1.3.3) to calculate the distribution of transition probabilities and emission probabilities

at the new root. This can be smoothed further by evolving these probabilities further back

in time. This method does not consider the phylogenetic context of the target sequences to

be scored by the profile HMM. To reduce confusion I will call methods which incorporate

phylogenetic information in the seed alignment such as this one tree profile HMMs, consistent

with the terminology introduced in [MD95], and call methods which incorporate phylogenetic

information with respect to the target sequence phylogenetic profile HMMs, consistent with

[SH04].

In this chapter I will consider whether the integration of models of evolution with profile

HMMs can improve the detection of protein domains. I investigate whether it is possible to use

sequences closely related to the query sequence to increase the sensitivity of the search. The

motivation for this chapter was the observation that the Pfam annotation of closely related

sequences is often inconsistent. It was reasoned that one could improve Pfam coverage by

annotating the domain architecture of clusters of closely related homologues, rather than

annotating proteins individually. As an example, figure 3.1 displays the N-terminal domain

alignment and Pfam annotation for a cluster of homologues to GUDH ECOLI. From the

structure of this protein, it is known that this protein is a member of the MR MLE Pfam

family. The MR MLE N domain is detected as a significant hit in only two of the eight

homologues, while the phylogenetic profile HMM method developed in this chapter scores

the entire alignment above the Pfam threshold. The alignment also includes the consensus

sequence from the profile HMM. This chapter investigates the extent to which the principle

illustrated by this example can be applied on a large scale.

I will first describe in detail the phylogenetic profile HMM and in particular how it is

built from a seed alignment and how it is used to score an alignment of target sequences. I

will describe how site-specific frequency and rate variation is incorporated in the phylogenetic

profile HMM. I discuss the time complexity of the algorithm and how the speed of the calcu-

lation can be increased by performing the calculations in an appropriate order. I also discuss

the calculation of significance values. Subsequently I present the results of a SCOP test of

the phylogenetic HMM on 44 Pfam families. The results of the test are given for several

variations on the phylogenetic profile HMM. One of the parameterisations yields 67% more

homologues above the first non-homologous sequence, thus demonstrating the potential gain
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Figure 3.1: Top: Pfam full-model hits to homologues of GUDH ECOLI. The opacity of the hit is
proportional to the strength of the hit (log-odds score minus threshold) relative to the best scoring
hit in this cluster. GUDH STRCO has the strongest hits for both MR MLE N and MR MLE
domains. MR MLE N is detected in only 2 of the 9 proteins. The bottom track displays the
result using the Phylogenetic HMM. It detects a MR MLE N signal which is stronger than any
of the single protein signal, as well as a relatively strong MR MLE signal. Bottom: Alignment of
N-terminal domain using PROBCONS [DMBB]. The line marked ‘seed’ is the consensus sequence
from the profile HMM.
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in homology detection from this technique.

3.1 Algorithm

3.1.1 Phylogenetic profile HMM

Whereas the standard profile HMM described in section 1.2 parameterises a probability distri-

bution over all possible sequences, a phylogenetic profile HMM D parameterises a conditional

probability distribution over all possible alignments A of k sequences given a phylogenetic

tree T with k leaves, which is denoted P (A|D, T ). Let R denote a background model, which

also parameterises a conditional probability distribution over alignments A given a tree T ,

P (A|R, T ). As for the standard profile HMM, the log-odds score

log
P (A|D, T )
P (A|R, T )

(3.1)

is used to classify matches to the model.

A phylogenetic profile HMM uses the same HMM model architecture as the profile

HMM, as shown in figure 1.2, except that the emission states of the model emit columns of

an alignment (given a tree) rather than residues. If the tree T is a single node, the phylogenetic

profile HMM reduces to a standard profile HMM. The main underlying idea is that each of the

match states of the profile HMM corresponds to a different evolutionary model which reflects

the structural and functional constraints of this position in the protein domain. A standard

profile HMM relies on detecting the biased distribution of residues at a site in a protein domain

for its predictive power. A phylogenetic profile HMM also relies on detecting a specific residue

distribution, but can also take into account whether the pattern of substitutions in a column

is consistent with the particular match state. This is illustrated in figure 3.2, which shows

an alignment of part of the MR MLE N model to the GUDH ECOLI alignment discussed

above. In the first column most positions in the first row match the consensus valine, and

in cases where the position does not match the consensus it has mutated within the class

of ‘allowed’ residues at this position (alanine, isoleucine and leucine). ‘Allowed’ is taken to

mean residues which are observed in the seed alignment but at lower frequencies. In column

8, none of the sequences matches the consensus, glutamate, but the observed conserved serine

and and alanine residues still appear to be consistent with this match state. Columns 10, 13,

15 correspond to a highly conserved glycine in both the seed and the target alignment.
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Figure 3.2: A fragment of the alignment of the GUDH ECOLI alignment (bottom) shown together
with aligned emission states from the profile HMM(top). Match states 34 to 50 are shown together
with the corresponding columns from the alignment (which may not be contiguous). The total
height of a column in the HMM logo is proportional to 1 - entropy of match state/maximum
entropy, where maximum entropy is the entropy of the uniform distribution over 20 states. Thus a
perfectly conserved column will have a height of 1 and the uniform distribution will have a height
of 0. The relative heights of the residues within a column of the HMM logo are just the relative
frequency. Note that the alignment in this figure has been calculated using PROBCONS [DMBB]
rather than hmmalign, which aligns the sequences individually to the profile HMM. In other words,
the alignment has been calculated without assuming a match to the HMM states.
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Let A = {xk,i}1≤k≤K,1≤i≤n denote the target alignment to be scored by the phylogenetic

profile HMM, where k indexes the sequences and i indexes the column of the target alignment.

Let S = {sk,i}1≤k≤K,1≤i≤n refer to the seed alignment used to build the HMM. Let ψ1, . . . , ψn

denote the path the HMM takes through the alignment, so that ψi is the HMM state which

emits column x.,i.

All of the standard HMM algorithms (Viterbi, forward, forward-backward) will apply to

the phylogenetic HMM provided the emission probabilities are interpreted as the probability

of emitting an entire column of an alignment, i.e. P (x.,i|ψi = Mj , T ).

Estimating substitution models for match states

In order to calculate the emission probabilities P (x.,i|ψi = Mj |T ), a different substitution

model is constructed for each match state, with the aim of building a model of evolution

at each conserved site in the seed alignment which reflects the evolutionary pressures acting

at this site. The approach I take is empirical, rather than theoretical, in that the observed

residues from a column in the seed alignment are used as the basis for building the site-

specific models of evolution, rather than (for instance) restricting site-specific evolution within

a particular class of residues (e.g. a hydrophobic site). I will assume that the substitution

models are homogeneous with respect to position on the tree. This assumption will be relaxed

in Chapter 4 in order to test for differential evolution along particular branches of the tree.

Once the substitution models have been parameterised, the emission probability calcu-

lation proceeds using Felsenstein’s tree pruning algorithm, as described in section 1.3.3.

I follow the approach to modelling evolution outlined in section 1.3, in which mutations

are viewed as part of a continuous time Markov process where the instantaneous rate of

mutation between amino acids is given by a 20x20 rate matrix Q. Within this framework,

there are many possibilities for parameterising a rate matrix on the basis of observed residues

at a particular site. The challenge in formulating the right rate matrix is one of accurately

describing the evolutionary process without over-fitting the model. Database derived rate-

matrices (such as WAG [WG01], JTT [JTT92]) contain a lot of information about amino acid

exchangeabilities, which presumably still apply to constrained sites. My approach is to use

the observed residue frequencies in a column to estimate the stationary probabilities of the

site-specific rate matrix, which are then used in equation 1.27 to calculate the terms Qu,v in
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the rate-matrix. This equation has an extra parameter f called the +gwF parameter which

can either be set to 0, resulting in equation 1.28, or can be modelled specifically for each

state. Similarly, the rate r in equation 1.13 can be set to 1 or can be modelled specifically for

each state. Both of these possibilities will be discussed below.

Estimating the site-specific stationary probabilities from an alignment column

The stationary distribution π of a continuous-time Markov process can be shown (see [Nor97])

to be equal to the frequency distribution of residues which would be observed if the evolu-

tionary process was allowed to run for an infinite amount of time. The simplest approach to

estimating this distribution from a column of residues is to set the probability of a residue to

the frequency at which each residue occurs in the column. However, this approach suffers from

two problems: firstly, it over-fits the model to the data given, and automatically disallows

unobserved residues to occur at this site, even if they may occur but with low probability;

secondly it assumes that each sequence is sampled independently from the target distribution

and hence weights them equally, when in fact the observations are highly correlated.

The problem of over-fitting to the data has already been solved for standard profile

HMMs using Dirichlet priors as discussed in section 1.2 and the same type of approach can

be applied here. The problem of differentially weighting sequences has also been addressed in

the profile HMM literature. Dirichlet priors and several sequence weighting schemes including

maximum entropy are incorporated into the hmmbuild program in HMMER. The approach

used in this chapter is to obtain the stationary probabilities from HMMER using hmmbuild,

using a mixture of Dirichlet priors and a maximum entropy weighting scheme. An alternative

approach which has not been investigated is to use the tree HMM. This approach explicitly

incorporates the phylogeny of the tree of the seed alignment.

Estimating substitution models for the non-match emission states

The discussion so far has focussed on modelling match states of the HMM. Equally important

are the non-match states: insert states I, linking states N, J,C and the null emission state G.

One option, which I shall call the mixture model, is to regard each of the non-match emission
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states as a mixture of the match emission states and to score

P (x.,i|ψi = Ij , T ) = P (x.,i|ψi = J, T ) =

P (x.,i|ψi = C, T ) = P (x.,i|ψi = N,T ) = P (x.,i|ψi = G,T ) =

1
M

∑
j′

P (x.,i|ψi = Mj′ , T ). (3.2)

This strategy requires no extra likelihood calculations as the algorithm is already scoring each

of the P (x.,i|ψi = Mj′ , T ) for the match state emission probabilities. However, the method

for taking an unweighted average over the match state emissions is somewhat ad-hoc, but was

found via experimentation to work reasonably well. The second, non-mixture model uses the

same approach used for the match states, and calculates substitution models using equation

1.27. The stationary probabilities are again taken to be the Dirichlet smoothed frequency

distributions calculated by HMMER.

Incorporating rate and gwF variation in match states

As discussed above, the equations used to calculate the match state substitution models eqs.

1.12, 1.27 allow the possibility of site-specific rates and +gwF mode. Figure 3.3 displays

two sites which have the same stationary distribution but different rates and/or +gwF mode.

Capturing this variation in the phylogenetic HMM may improve sensitivity.

As described in section 1.3 the gwF parameter f takes values between 0 and 1 and

describes the degree to which the stationary probabilities are explained by the probability

of mutating from or mutating to a residue. In the ‘from’ model, once a favoured residue is

discovered, it is unlikely to be changed; while in the ‘to’ model, a favoured residue is likely

to be re-discovered and mutated away from several times. The optimal +gwF parameter

for a column will depend to some degree on the rate – figure 3.3 can be viewed either as

demonstrating the difference between a ‘from’ and a ‘to’ (top vs bottom respectively) or as a

fast vs slow column.

Here I describe how to model the rate and +gwF variation jointly, but the equations

presented apply equally well to fixing the +gwF parameter at 0 and only allowing the rate

to vary, or fixing the rate at 1.0 and allowing f to vary. Using a standard gradient descent

algorithm [PTTF92], it is possible to find the values of r and f which maximise the likelihood

of the column of a seed alignment under the site-specific rate-matrix obtained above. However,
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Figure 3.3: Illustration of the effect of different rates of evolution and/or different gwF modes
of evolution at sites with similar functional constraints. Two site are shown for the same tree,
the first site appears to be evolving much slower than the second site, however the stationary
probability distribution is identical. Alternatively, the first site is evolving according to a ‘from’
model and the second according to a ’to’ model.

this approach will over-fit the data to the extent that a uniformly conserved site will have

a rate of 0, thus precluding transition to any other residue in this column. To avoid this, a

prior P (r, f) was introduced over the rates and gwF parameter. Experimentally calculating

maximum likelihood values of f over large Pfam seed alignments revealed a preference for

f values close to 0 or 1. Thus f was constrained via an indicator prior I{0,1}(f), in which

f takes values 0 or 1 each with probability 0.5. The gamma distribution γσ2
r ,1/σ2

r
(r) with

mean 1 and variance σ2
r was chosen as the prior distribution over rates, as it has been used

successfully in modelling rate variation [Yan93]. The site specific rate and gwF parameters

were then chosen to be those that maximised the posterior probability

P (r, f |Q, s.,i) =
P (s.,i|Q, r, f) · P (r, f)

P (s.,i)
. (3.3)

The prior was parameterised as

P (r, f) = γσ2
r ,1/σ2

r
(r) · I{0,1}(f) (3.4)

where the gamma distribution is given by

γb,c(r) =
r

b

c−1
· exp(−r/b)

bΓ(c)
, (3.5)

and where Γ(c), c > 0 is the gamma function (see [EHP00]).
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The variance σ2
r controls the trade-off between fitting the observed pattern of evolu-

tion and over-fitting this pattern. Experimentally it was discovered that setting σ2
r = 0.01

provided a good trade-off. Values of r much higher than this (e.g. 0.05) degraded the per-

formance of the algorithm by over-fitting. In essence, a small value of r encourages most

site-specific rates to be close to 1 but allows some deviation if there is evidence of an elevated

or decreased rate. In passing, I note an alternative to the gamma distribution is the log

Gaussian distribution Nµ,σ(log(r)). The conceptual advantage of this distribution is that the

probability is symmetric with respect to its inverse: a rate of y has the same probability as a

rate of 1/y, or in other words a site is as likely to be evolving y times slower as y times faster

than average. This prior was not investigated further.

Rate and gwF variation can also be incorporated into the non-match emission states.

The approach I take is to incorporate rate and/or gwF variation in the non-match emission

states if and only if it is also used in the match emission states. Using the mixture model, rate

and gwF variation will automatically be incorporated into the calculation if it is incorporated

into the match states. If, instead, I use the non-mixture approach, rate and gwF variation

can be incorporated by marginalising over a rate and gwF distribution. For consistency with

the treatment of match states, the gamma distribution is used to marginalise over rates, and

I{0,1}(f) is used to marginalise of f , so that the equation used is

P (x.,i|ψi = Ij , T, γσ2
r
(r), I{0,1}(f)) =

1
2

∑
f=0,1

∑
rl

P (rl)P (x.,i|ψi = Ij , T, rl, f) (3.6)

where rl are the rate categories used in the discrete approximation to the gamma function.

The value of σ2
r for the gamma distribution was 1. Note that this value is larger than that

used in the prior over the match state rates. This is because the choice of small r in that case

was to avoid over-fitting, whereas the concern for modelling non-match emission states is to

correctly represent the range of rate variation present in real data.

Building the profile HMM

The hmmbuild program in HMMER builds profile HMM architecture and transition probabil-

ities using the maximum a posteriori (MAP) architecture algorithm [DEKM98], as explained

in section 1.2. This technique builds the profile HMM architecture which maximises the sum

of the probabilities of each sequence in the training alignment. This strategy solely uses pos-
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itive training data. It has been shown in [WS04] that a more sensitive approach is to re-train

transition probabilities (on a fixed architecture) using both positive and negative training

data. The negative training data is generated by the null model and the highest scoring

random sequences are used to re-train the transition probabilities.

The MAP architecture algorithm could be adapted to build the profile HMM which

gives maximum probability to the alignment, using site specific rate matrices, provided it

uses the non-mixture model for the non-match emission states. This might seem more in-

ternally consistent than using HMMER on the seed alignment. As before, residue emission

probabilities would be replaced with column emission probabilities. I have not investigated

this option further.

Restricting the path of the phylogenetic profile HMM

Occasionally the non-mixture model gave a non-homologous sequence cluster a high score

because it contained a few columns which fit particularly match states well, such as a conserved

cysteine column. The model would give these columns very high scores, and would use

insert states to traverse the remaining sequence. The mixture model partially addresses this

problem by including a fraction of this high scoring contribution in the null model score. A

simple heuristic approach was used to solve this problem. The matrix of column emission

probabilities P (x.,i|ψi = Mj , T ) for the phylogenetic HMM is calculated as before, and then

adjusted via

P (x.,i|ψi = Mj |T ) :=


P (x.,i|ψi = Mj |T ) if max

1≤k≤K
P (ψi = Mj |xk) > 0.01.

0 otherwise
(3.7)

The posterior probabilities in the previous equation are calculated using the forward-backward

algorithm. This has the effect of restricting the path through the dynamic programming

matrix that the phylogenetic HMM can take. This solves the problem of random sequence

clusters matching a few columns strongly.

An alternative approach is to use a strategy based on HMMER’s null2 model. In

addition to the original null model, a second alignment-specific null model is calculated based

on the Viterbi path taken by the model through the sequence, which is the mixture model

of all of the emission states traversed by the path. If, as in the example above, the model
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matches a conserved cysteine column with match state 1 and then exclusively uses insert

states and delete states, the mixture would consist of 1 copy of M1 and n − 1 copies of an

insert state, where n is the number of columns in the alignment. Denote the likelihood of

the alignment under the second null model as S2. HMMER incorporates this score with

the original log-odds score by subtracting log(1 + S2/256) from the original log-odds score

to arrive at a corrected score. The factor 256 represents the prior belief that the main null

model is 256 times more likely than the second null model. See [Edd03] for more details. Note

that no additional tree-likelihood calculation has to be performed as every emission state has

already been scored against each model.

Complexity

First I consider the complexity of searching the model against a sequence. The complexity of

the likelihood calculation for a fixed alphabet is O(K) where K is the number of sequences.

The forward algorithm has complexity O(NM) where N is the number of residues and M

is the number of states. Thus the complexity of the phylogenetic HMM is O(KNM). Note,

however, that the algorithm simultaneously scores K sequences, and hence the average com-

plexity per sequence is the same as for the profile HMM.

The order in which the P (x.,i|ψi = Mj) are calculated impacts on the speed of the

implementation. In this implementation, Mj is first fixed, and then Felsenstein’s algorithm

proceeds for each site in the alignment simultaneously. That is, as the Felsenstein algorithm

proceeds upwards from the leaves, the transition probability matrix eQrt(nk) over branch

length t(nk) is calculated via equation 1.20, and this is applied to each column i in the

alignment to calculate the terms PEMj
(xkh = v|xk = u). This order of calculation avoids

unnecessarily exponentiating the same rate matrix multiple times for the same branch length.

This does not improve the complexity of the overall algorithm.

The most time consuming step in model construction for a standard profile HMM is the

maximum entropy sequence weighting step, which is unchanged for the phylogenetic HMM.

If the phylogenetic HMM incorporates differential rates and gwF values, there is an extra

step of optimising these two parameters for each match state. The search consists of two

one-dimensional searches optimising r, one for f = 0 and one for f = 1. Constructing a ML

tree from the seed alignment is the rate limiting step in this process.
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Significance calculation

In this work significance is calculated using the extreme value distribution (EVD) parame-

terised by hmmcalibrate acting on the standard profile HMM. As described in section 1.2,

this works by generating 5000 random sequences, each of length 350, and parameterises the

extreme value distribution to fit the distribution of these scores. A more robust approach

is to calculate the EVD directly from alignments scored with the phylogenetic HMM, and

this remains an area for further research. This could be achieved by first simulating (say)

5000 trees of varying numbers of sequences, according to a distribution over the number of

sequences in an alignment. Clock trees can be rapidly sampled by a coalescent approach,

where k sequences are generated, and recursively two nodes are chosen randomly to ‘coalesce’

at height t above the highest node of the pair, where t is sampled from an exponential dis-

tribution. An alignment can be simulated on this tree according to a background model by

sampling the sequence at the root node from the equilibrium distribution, and progressively

evolving the residues of this sequence to the leaves, determining the sequence at inner nodes

along the way. These alignments can be scored against the model and the resulting scores

used to parameterise an EVD.

3.1.2 Using the phylogenetic profile HMM

Figure 3.4 shows an overview of how the phylogenetic profile HMM is used in practice. which

broadly consists of four steps

• Identifying, aligning and constructing a tree for a homologous cluster of sequences.

• Building a phylogenetic profile HMM.

• Calculating the emission probabilities for each column and match state.

• Dynamic programming to find the overall log-odds score

The homologous cluster of sequences can be obtained from a global clustering of proteins

(using, for example, PHIGS [Deh] or Tribe-MCL [EKO03]). Alternatively, for a single target

query sequence, the homologous cluster can be obtained via a blast [AMS+97] search of

Uniprot [ABW+04]. In this case, only proteins which have blast hits of significance less that
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Figure 3.4: Diagram of processes involved in the phylogenetic profile HMM. Inputs are shown in
grey, and outputs in yellow, with intermediate steps in light-blue.
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10−7 covering at least 80% of the query sequence (this could comprise multiple local hits) are

accepted into the cluster.

For the SCOP test described in the results section, I use PROBCONS [DMBB] to align

the homologous cluster of sequences. Phyml [GG03] is used to build a maximum likelihood

tree, using a WAG matrix, and 4 gamma rate categories. If the tree has more than 5 leaf

nodes, it is trimmed back to 5 nodes in such a way as to include the original query sequence

and to include the most diverse collection of remaining sequences. This set of 5 sequences

is calculated recursively – a set of k + 1 sequences is generated from a set of k sequences by

adding the sequence which has the largest average pairwise distance to the k sequences. This

trimming step was performed in order to minimize the computational time taken.

The phylogenetic profile HMM is built as described in the previous section, using the

HMMER smoothed emission probabilities as the stationary probabilities of state-specific rate

matrices, and determining site-specific rates and +gwF modes as described above. The emis-

sion probabilities are calculated using Felsenstein’s tree pruning algorithm [Fel81] and the

forward algorithm is used to find the overall log-odds score.

3.2 Results

I compare the detection of homologues by a phylogenetic HMM to a standard profile HMM

using the same Pfam derived SCOP test presented in section 2.4.1. For each Pfam family

tested, HMMER is used to find all sequences from the ASTRAL set filtered to 40% identity

which have an evalue match of less than 100. These proteins form the test set for the method,

with correct homologues assigned on the basis of belonging to the same SCOP superfamily as

the Pfam domain, and incorrect homologues assigned on the basis of belonging to a different

fold. As discussed in the previous section, for each query protein from ASTRAL the target

cluster of homologous proteins is constructed via a blast search.

The phylogenetic HMM is compared to a custom implementation of HMMER’s hmm-

search rather than hmmsearch itself. The custom implementation was used so that the phy-

logenetic HMM is compared to a profile HMM which is identical in all respects except for

the fact that it scores columns rather than residues. In other words, all of the dynamic pro-

gramming routines used are the same, the only difference is in the way in which the emission

probabilities are calculated. The scoring of the profile HMM differs from the HMMER scoring
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scheme in two ways. Firstly, the forward algorithm rather than the Viterbi algorithm is used

to score the model. One reason for using the Viterbi algorithm in HMMER is speed and

memory usage, it allows all calculations to be done in log space using integers, rather than

in probability space which requires extra memory and time to progressively scale rows in the

dynamic programming matrix to avoid underflow errors. The disadvantage, as discussed in

section 1.2, is that the the Viterbi algorithm calculates the probability of the most likely

path through the model, rather than the full probability of the model emitting the sequence.

Another advantage of the forward algorithm is that it allows, in conjunction with the back-

ward algorithm, the calculation of posterior probabilities of a state of the model emitting a

particular site. These probabilities are used in the model scoring step to restrict the path of

the phylogenetic HMM (see section 3.1.1), and will be useful for detecting positively selected

sites in Chapter 4. Moreover, the Felsenstein algorithm requires working in probability space,

as it involves a summation over probabilities (although by replacing the
∑

in the Felsen-

stein algorithm with a max a Viterbi algorithm could in theory be applied to approximating

the tree likelihood with the probability of the most likely ancestral reconstruction). Using

Viterbi rather than forward does not impact the speed of the algorithm, as the calculation

of the tree likelihood is the slowest step. Thus I have decided to use forward rather than

Viterbi algorithm. The second difference with respect to HMMER is that the model does

not incorporate a null2 model. The null2 model has been shown to increase performance and

will be incorporated into this implementation at a later date. In this study the phylogenetic

HMM and the profile HMM are consistent in that they both do not use a null2 model. As

discussed in the previous section, I use a heuristic technique to limit the potential path of the

phylogenetic HMM, using the matches to the individual sequences in the alignment. Use of

a null2 model may render this technique unnecessary.

I score three variations of the standard profile HMM on the target protein cluster:

(i) standard profile HMM log-odds score on the ASTRAL query sequence,

(ii) average of the log-odds scores on each of the proteins in the cluster,

(iii) maximum of the log-odds scores on each of the proteins in the cluster.

The second and third scores can be seen as simpler alternatives to the phylogenetic profile

HMM for integrating information from closely related proteins.
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I score several variations of the phylogenetic profile HMM:

(i) Non-mixture model: non-match state emissions (including null model) not a mixture of

the match state models, but rather parameterised using the relevant HMMER emission

probabilities as stationary probabilities; no rate or gwF variation.

(ii) Non-mixture model+rate variation: using a gamma distribution over as prior with

variance 0.01 for match state emissions, and marginalising over a 3-category discrete

gamma distribution with variance 1 for the non-match state emissions.

(iii) Non-mixture model+ rate and gwF variation: using a gwF prior of I0,1 for determining

match state gwF values, and marginalising over the same distribution for the non-match

emissions.

(iv) Mixture model: non-match state emission probabilities are calculated as the average of

the match state emission probabilities; no rate or gwF variation.

(v) Mixture model+rate variation: rate variation as in (ii), although the non-match emission

states no longer need to be calculated

(vi) Mixture model+rate and gwF variation: gwF and rate variation in (iii); again the

non-match emission states are not calculated.

Firstly, models without gwF variation are considered. The coverage vs. error curves

scored on 44 Pfam families are shown in figure 3.5. Statistics summarizing the performance

of each of the methods are shown in table 3.1. Each of the phylogenetic HMM methods

has a higher coverage at a given error from after the first false positive onwards, and each

improves the classification in more families than they degrade it (as assessed by the number

of homologous sequences scored above the first non-homologous sequence, the over the top

or OTT score). Each of the phylogenetic methods improves the sum of family OTT and

MER (minimum error rate scores) relative to a standard profile HMM. If the scores are

ranked globally, according to a p-value criteria, then all of the phylogenetic methods have a

higher aggregate OTT score and all have a lower aggregate minimum error rate. The best

performing method is the phylogenetic HMM with no mixture and with rate variation, which

scores 67% more homologous sequences above the first non-homologous sequence relative to
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the standard profile HMM, and reduces the error rate by 29%. Rate variation appears to

improve the performance of the non-mixture model but does not impact the mixture model,

suggesting that the biggest impact may be due to marginalising over several possible rates

in the null model. The performance of the maximum and average profile HMM scores is

mixed – they have a lower aggregate MER but higher OTT scores, improve the classification

in more families than degrade it, and improve the sum of family OTT and MER scores.

However the improvements are not as pronounced as for the phylogenetic HMM. The change

in a performance on a family by family level can be seen in figure 3.7. The largest family

improvement in the 44 families tested is in the immunoglobulin (ig) domain.

The error versus significance curves for the phylogenetic HMMs versus the profile HMM

are shown in figure 3.6. The phylogenetic HMMs each have false positive rates at a fixed p-

value threshold which are much lower than the standard profile HMM, as well as higher false

negative rates. The increase in false negative rate is smaller than the decrease in false positive

rate such that the phylogenetic profile HMMs overall perform better. The phylogenetic HMM

false negative and false positive rate increasingly diverge from those of the standard profile

HMM as the p-value increases. This is due to the e-value not being calibrated very well for

the phylogenetic HMM at high p-values. Within the different types of phylogenetic profile

HMM, the non-mixture models have a lower false negative rate at low p-value thresholds, and

modelling rate variation does not appear to influence error rates substantially, although for

the non-mixture model at low p-value thresholds, the false negative rate is below even the

profile HMM false negative rate. As expected, using the maximum of the standard profile

HMM scores has a lower false negative rate but higher false positive rate, while using the

average score gives higher false negative but lower false positive rates.
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Figure 3.5: Coverage vs error curve for phylogenetic HMM vs standard profile HMM on ASTRAL
test set and 44 Pfam families. The coverage at error rate of n is defined as the number of
homologous sequences before the nth false positive (or non-homologous sequence). The black
line is the standard profile HMM score on the sequence from ASTRAL, the purple line is the
maximum of all sequence scores in the same homologous cluster, and the grey line is the average
sequence score in the cluster. The green and red lines are scores for a phylogenetic HMM without
rate variation with a mixture null model and non-mixture null model respectively. The dark and
light blue lines are scores for a phylogenetic HMM with rate variation modelled according to a
gamma distribution, and with a mixture null model and non-mixture null model respectively. The
best performing method is the non-mixture model with rate variation.
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Figure 3.6: Error rate vs p-value score threshold according to HMMER extreme value distribution.
False negatives are shown on the left x-axis (which fall from left to right as the p-value threshold
increases). False positives are shown on the right x-axis (which rise as the p-value threshold
increases). The curves are: standard profile HMM score (black), average of profile HMM score
(grey), maximum of profile HMM score (purple) and the following phylogenetic HMM scores:
mixture, no rate variation (red); mixture with rate variation (dark blue); non-mixture with no
rate variation (green); non-mixture with rate variation (light blue). The rate variation if used
was according to a gamma prior with variance 0.01. This figure is plotted on a log x-axis to
emphasise the behaviour of the algorithms at low false positive rates, which is the range in which
most applications – including Pfam – use homology detection.
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Figure 3.7: Improvement in OTT score relative to the standard profile HMM on a family basis.
The red/blue bars are the scores for the phylogenetic HMM with mixture null model and with-
out/with rate variation respectively. The green and cyan bars are for models without a mixture
model background, and without/with rate variation. The biggest improvement is seen in the
immunoglobulin (ig) family.

Method # families sum of Aggregate

with OTT family score score

Better Worse OTT MER OTT MER

profile HMM 0 0 174 86 95 129

phyHMM mixture 3 1 179 79 127 98

phyHMM mixture r+/-0.01 3 2 179 78 127 98

phyHMM no mixture 5 0 182 75 99 95

phyHMM no mixture r+/-0.01 5 0 184 77 159 92

max 4 0 179 80 106 119

avg 5 0 186 74 103 111

Table 3.1: Comparison of phylogenetic models with a standard profile HMM scored
over 44 families.

Now I consider the effect of including +gwF rate variation. Figure 3.8 displays the effect
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Figure 3.8: Impact of gwF variation on detecting homology for six families. +gwF variation
degrades performance for the mixture model, and in one case improves performance for the non-
mixture model.

of gwF variation on an individual Pfam family basis. In all cases rate variation is included in

the model. For the non-mixture model, +gwF variation provides a substantial improvement

in detecting immunoglobulin (ig) domains. However, for the mixture model, gwF variation

systematically degrades homology detection. Figure 3.9 displays the aggregate results over 30

Pfam models. Including +gwF variation degrades detection of homology in both cases. Un-

fortunately, I cannot conclude from this that modelling +gwF variation is always detrimental

to performance. A possibility is that +gwF will improve performance if rate variation is not

also incorporated. Moreover, there are many ways to model +gwF variation and this result

could be due to they way the models described in section 3.1 incorporate this information.

Two alternative priors on +gwF have been experimented with, including a uniform prior and

a beta distribution parameterised to best fit the seed alignment, neither of which yielded

better results.

3.3 Conclusion

Scoring clusters of closely related proteins with phylogenetic profile HMMs can provide sig-

nificant improvement in homology detection. However, the degree of improvement is sensitive
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Figure 3.9: Coverage vs error curve for models which include +gwF variation (light and dark blue)
vs models which do not include +gwF variation (red and green), scored on 30 Pfam families. The
curve for a standard profile HMM is included in black for reference. Both models which have a
mixture null model (cyan and green), as well as models do not have a mixture null model (blue
and red) are shown. All models incorporate rate variation.
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to the way in which the phylogenetic profile HMM is parameterised. One particular param-

eterisation yielded 68% more homologues scoring above the first non-homologue in a SCOP

test, while other parameterisations yielded a more moderate improvement, or in some cases

degraded performance.

The original motivation of this chapter is to increase coverage of domain databases such

as Pfam. The results of this chapter suggest that the phylogenetic profile HMM has greatest

impact when assessing scores based on a significance threshold. In particular it dramatically

reduces false positive rates at a given p-value threshold. The annotation strategy in Pfam,

however, is based on family specific thresholds and so the potential increase in Pfam coverage

should be assessed based on the increase in the sum of family based OTT scores. On this

basis, the phylogenetic HMM could produce a 5.7% increase in Pfam coverage, which can be

compared with the 2.2% increase achieved with a combined domain and taxonomic context

model in the previous chapter. However, a direct study into the potential improvement in

Pfam is required.

A feasible strategy for introducing the phylogenetic profile HMM into Pfam would be

possible, if computationally expensive. The first step would be to globally cluster proteins

in Uniprot using a clustering algorithm such as Tribe-MCL [EKO03] and reciprocal best

blast scores, or alternatively using a phylogenetically derived clustering such as PHIGS [Deh]

(PHIGS, however, only clusters proteins from fully sequenced organisms and so the clusters

would need to be extended to non-sequenced organisms, potentially using a HMMER search

built from a PHIGS derived seed alignment). The alignment and tree building step currently

involves relatively slow but accurate algorithms, whereas a global Pfam strategy would require

faster algorithms and the impact of this on the sensitivity of the method would need to be

further investigated. Pfam stores sub-threshold hits which have evalue significance less than

1000. In order to minimize the search with the phylogenetic profile HMM, which despite

having the same time complexity is practically substantially slower, only hits less than e-

value threshold 100 would be re-scored with the profile HMM. The analysis in this chapter

involved scoring 44 families on 4418 clusters, each with up to 5 members and was carried out

on a single-processor computer over the course of a few hours, so it would be possible to scale

up the number of proteins by 50 (to reach 1m proteins) and the number of families by 100

provided a cluster of computers was available for the analysis.
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It would be interesting to investigate the effect of the number of sequences in the tree

and the divergence of members of the homologous cluster. Further investigation into how

to best incorporate site-specific variation of the +gwF factor in match states is required –

one option is to parameterise the +gwF factor relative to the maximum likelihood value

obtained using a single model over the entire alignment, both in training and scoring, rather

than in absolute terms. Another possibility is to incorporate context dependence via a first

order Markov model at the training stage, following the procedure defined in [Yan95] for rate

variation. Similarly, further investigation into the inclusion of rate variation is possible, again

investigating different priors as well as context dependence via a HMM.

The ‘null2’ model from HMMER has not been implemented in this chapter, but would

possibly provide a useful alternative to the heuristic rule used to limit the path of the phylo-

genetic HMM.

Context dependent models of substitution have not been incorporated in the model

presented here. It would be straightforward and efficient to incorporate context dependent

models of amino-acid substitution using the method proposed in [SH04]. These authors

discovered a significant improvement in model fit with the introduction of context dependent

models, thus suggesting this is a high priority for further investigation. Such a model could

reflect correlation in residues between adjacent sites. In fact, context dependence of emission

probabilities can be incorporated into the standard profile HMM architecture as well as the

phylogenetic HMM architecture. Again, the only difference concerns whether the probability

distribution is over residues, or columns of residues. In the profile HMM setting, it would be

interesting to model context dependence between adjacent sites which are both emitted by

match states, and not otherwise. This technique can be easily incorporated into the scoring

algorithms used (such as Viterbi, forward and forward-backward) as well as the HMM building

algorithm (such as the MAP architecture algorithm). For example, in the scoring step of

the forward algorithm, as shown in equation 1.5, the emission score P (xi|ψi = Mj) in the

term P (xi|ψi = Mj) · P (x1 . . . xi−1|S . . .Mj−1) · P (Mj−1 →Mj) is replaced with the context

dependent emission score P (xi|ψi = Mj , xi−1). This score can be calculated as

P (xi|ψi = Mj , xi−1) =
P (xi, xi−1|πi = Mj , πi−1 = Mj−1)

Z
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where the normalising constant is

Z = P (∗, xi−1|πi = Mj , πi−1 = Mj−1)

and * is used to indicate missing data, so that the equation for Z turns into a sum over all

residues in the case xi denote residues. In the case of a phylogenetic HMM, this sum can

be calculated efficiently using the Felsenstein algorithm as outlined in section 1.3.3. Thus,

to incorporate context dependence in both the phylogenetic HMM and the standard pro-

file HMM, the joint emission probabilities P (xi, xi−1,Mj ,Mj−1) must be estimated. These

probabilities can be obtained from the counts observed in the labelled columns of the seed

alignment. These counts must be smoothed using priors to avoid over-fitting – one possibility

for the pseudo-counts is the cross-product of the normal Dirichlet prior probabilities.

In summary, the phylogenetic HMM has been shown to be a valuable tool in modelling

homology, and, provided it is correctly parameterised, can outperform traditional HMMs

substantially. Many research directions are open for investigation, each with the potential

to further improve performance. Moreover, the techniques of this chapter form the basis for

pseudogene and positive selection detection in the next chapter.



Chapter 4

Using protein domains to identify

pseudogenes and positive selection

The detection of pseudogenes and genes under positive selection are both important challenges

for bioinformatics.

From the point of view of functionally annotating eukaryotic genomes it is crucial to

separate protein coding genes from genes which are not translated to give functional proteins.

Moreover, while not translated, transcribed pseudogenes are increasingly thought to play an

important regulatory role [HYC+03]. While experimental techniques for detecting gene tran-

scripts are well developed and amenable to high throughput analysis (including EST libraries,

RT-PCR, Northern blots, microarray analysis), this is not yet the case for detecting protein

products. Standard techniques (such as a Western blot) require an antibody for the protein

to be available, which in turn requires an expressed protein, or a synthetic peptide. Further-

more, these techniques would have to distinguish the protein from any close homologues that

may not be pseudogenes. Thus, bioinformatics has an important role to play in identifying

likely pseudogenes.

The identification of genes under positive selection is an important tool for understand-

ing the evolutionary pressures acting on various organisms. Moreover, identifying sites under

selection can help pinpoint the molecular basis for adaption in processes such as drug resis-

tance, immune defense, speciation, brain size, etc. This also leads to biologically testable

hypotheses regarding the functional importance of particular mutations.

Compositional methods for the identification of pseudogenes are often related to meth-

97
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ods for the detection of positive selection. This is certainly true for methods which estimate

the ratio of the rates of non-synonymous (dN) to synonymous substitution (dS). In this case

the factor distinguishing pseudogene evolution from positive selection is a dN/dS ratio of

around 1 across the length of the gene, rather than several sites of the gene with dN/dS > 1.

In this chapter I introduce a new compositional method for the detection of pseudogenes

and positive selection, using the techniques developed in chapter 3. The motivation for this

method is that not all non-synonymous substitutions are equally detrimental – or transforma-

tional – to the function of the protein. With knowledge of the functional importance of a site

as well as the degree to which a site is conserved in related functional proteins, it should be

possible to weight amino-acid changing mutations based on how likely they are to change the

structure and function of the protein. Thus, mutations in sites which are highly conserved and

structurally/ functionally important contribute greater evidence to either positive selection

or pseudogene evolution than do amino-acid changing mutations in a poorly conserved site.

I will first demonstrate that this method is a better predictor of pseudogene status

than current techniques, to the extent that strong assertions about the pseudogene status of

particular genes can now be made, rather than weaker assertions about sets of genes which

are enriched for pseudogenes. I then investigate the application of the technique to the

identification of positive selection, and discover positive selection in proteins implicated in

the immune response to HIV infection as well as in the HIV protein which counteracts this

response. I re-analyse the abalone sperm lysin set in which positive selection has been previ-

ously identified, and show that despite significant non-synonymous mutation, the mutations

are mostly consistent with maintaining the protein domain, and thus unlikely to result in

major conformational changes. Finally, I carry out a large scale scan for positive selection

in 11 genomes, and identify Pfam domains which are over-represented in positively selected

genes. The results are compared between species.

The algorithm and program developed in this chapter is called PSILC, which is a double

acronym: {Pseudogene / Positive Selection} Inference from Loss of Constraint. The method

presented here extends the algorithm first introduced in [CD04], which was only concerned

with pseudogene annotation. The extensions presented in this chapter allow the method

to differentially detect positively selected genes from pseudogenes, which has the effect of

improving pseudogene classification as well as providing site and lineage specific predictions
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of positive selection.

4.1 Pseudogenes

Pseudogenes have been defined as sequences of genomic DNA which are originally derived from

functional genes but are no longer translated into functional protein products. Pseudogenes

are thought to have arisen by two distinct processes. Unprocessed pseudogenes are believed

to have arisen from genome duplication, with a subsequent loss of function of one copy due

to the accumulation of disabling mutations in the coding or regulatory sequence. Processed

pseudogenes lack introns, and are thought to have arisen by reverse transcription of processed

mRNA, followed by integration back into the genome. There is an increasing number of

examples where pseudogenes play an important biological role, particularly in eukaryotic

genomes [BA03]. It had been assumed that pseudogenes will rapidly degenerate and become

indistinguishable from surrounding genomic sequence, due to non-functionality. Although

this process has been observed in prokaryotic genomes [AA01], eukaryotic genomes contain

many pseudogenes which have avoided full degeneration, and there appears to be less pressure

to delete pseudogenes in eukaryotes than prokaryotes [Mig00, HG02]. A regulatory role for

a human pseudogene has been observed experimentally [HYC+03]. Moreover it has been

calculated that 2− 3% of all human processed pseudogenes are expressed, and that 0.5− 1%

of mouse processed pseudogenes are expressed [Yano04].

Pseudogenes are often mis-annotated as functional genes in sequence databases [Mou02].

Two recent surveys [TSZB03, HHB+02] both estimate ≈ 20000 human pseudogenes. Sequence

based methods for identifying pseudogenes include methods which rely on the presence of

truncations by mutation to stop codon or frame-shift, and compositional methods which are

based on estimating the ratio of the rates of substitution at synonymous sites to the rate

of substitution at non-synonymous sites (dN/dS). Torrents et al. [TSZB03] concluded that

half of human pseudogenes have no detectable frame-shifts or internal stop codons, and hence

compositional methods are required to identify pseudogenes. The dN/dS methods are based

on the assumption that amino acid changes in a protein coding gene are in general detrimental

to its function, and hence less common, whereas a pseudogene has no functional constraints,

and hence the ratio of the rates of synonymous and non-synonymous mutation should be equal.

There are many ways to estimate the rates of synonymous and non-synonymous substitution
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(see [BEW03] for a review). In this chapter, I test the method in [GY94] as well as the

method of [NG86] as calculated by PAML. The method in [GY94] was used in the survey

from [TSZB03].

The method of Goldman and Yang [GY94] uses the model of codon evolution described

in equation 1.26. I use the free dN/dS ratios for branches model, in which each branch in the

tree is allowed to have a different dN/dS ratio, and the branch dN/dS ratios which maximise

the likelihood under equation 1.26 are reported.

4.2 Positive selection

Natural selection can be defined as the process by which the relative frequencies of alleles

in a population change to reflect their relative fitness. The action of natural selection can

be verified, for example, by mutation fluctuation experiments as developed by Luria and

Delbrück [LD43], in which a bacteriophage introduced into bacterial culture induces phage-

resistant colonies. Luria and Delbruck demonstrated that this was due to random mutations

conferring resistant genotypes. Natural selection is thought to act on new alleles generated by

mutations in one of three ways. If the mutation decreases fitness it will be removed from the

population, which is called purifying selection. Positive selection occurs when the mutation

enhances fitness and so the frequency of the allele increases in subsequent generations. This

results in a selective sweep as regions linked to the advantageous mutation also increase in

frequency which also reduces variation in linked regions. If the mutation is selectively neutral

it will persist in subsequent generations at some low alleleic frequency, possibly disappearing

from the population at some stage due to random drift or a selective sweep at a linked site.

Kimura [Kim83] proposes that most polymorphisms are selectively neutral. However, there

are many examples of positive selection acting at the amino acid level.

Tests for positive selection can be loosely divided into those which are based on alleleic

variance within a population, and those which are based on comparisons of homologous se-

quence between different species. These techniques have been used to detect selection in a

wide variety of gene families, for example [HN88, LOV95, SV95, YSV00, YNGP00, SEM04].

One of the most popular and direct ways for detecting positive selection in protein

coding genes is to identify an excess of non-synonymous to synonymous substitutions. There

have been many methods proposed for using dN/dS to detect selection which can be split into
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methods which use parsimony to reconstruct ancestral sequences (e.g. [SG99]) and methods

which estimate dN/dS as a parameter in a probabilistic model using maximum likelihood

(e.g. [NY98]). In the method of [NY98] different probabilistic models are created, each based

on the formulation in equation 1.26. One such model is a mixture model of three different

site categories, with invariable sites (ω = 0), neutral sites (ω = 1) and positively selected sites

(ω > 1). The mixture co-efficients and the value of ω for positively selected sites are those

which maximise the likelihood. The maximum likelihood of this model is compared to the

maximum likelihood of the constrained model in which the frequency of positively selected

sites is set to zero under a likelihood ratio test. If the test result is significant and ω > 1 for

positively selected sites then selection is inferred. This method has been extended in [YSV00]

to accommodate more realistic models of variation of ω amongst sites. These methods have

been shown to be accurate and powerful methods for detecting positive selection [WYGN04].

In [YN02] the branch-site model was developed for detecting positive selection at individual

sites along a specific lineage. It has been suggested that the branch-site model detects false-

positives in some evolutionary scenarios [Zha04].

Guindon et al. recently extended the maximum likelihood framework for detecting

selection by allowing the model to switch between different ω categories at some rate, and

calculating the expected fraction of time the selection process spends in a particular category

to infer positive selection. Tests for using evolutionary rate shifts in order to detect positive

selection have also been proposed [KM01, Gu01, GMB01]. These tests are based on the

observation that subsequent to duplication, a rate change often occurs in residues of the

protein responsible for its new function.

4.3 Algorithm

The PSILC algorithm uses the protein domain match state specific rate matrices defined in

section 3.1.1, which will be referred to collectively as a domain model of evolution. Recall

that this collection of rate-matrices defines a different model of evolution at each site in the

alignment which matches a match state of the profile HMM. In chapter 3 these evolutionary

models were used to test whether the domain model of evolution was more likely to have

generated the alignment than a null protein model of evolution. In this chapter, however, the

starting assumption is that the domain model has generated the alignment, and I test whether
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evolution below a particular node in the tree is better explained by either a null protein or

null DNA model of evolution. Thus, for a given node, the domain model of evolution now

takes the role of background model, and a composite evolutionary model consisting of a null

protein or null DNA model below the node under consideration and a domain model on all

other branches, is tested against this new background model. This can be thought of as

inverting the log-odds ratio in equation 3.1 used in chapter 3 below the given node.

If a pseudogene is present in the tree T , then evolution along the final branch to this gene

is expected to be explained better by the composite domain/null-DNA model of evolution than

the background domain model, and so the composite model should provide a higher likelihood.

This is the basis for the pseudogene score. If, on the other hand, a single site in a gene is

positively selected, then the site-specific likelihood under the composite domain/null-protein

model should be higher than under the background domain model. This forms the basis for

the positive selection score.

Figure 4.1 provides an overview of the PSILC algorithm. The two inputs to PSILC

consist of a homologous cluster of in-frame protein coding nucleotide sequences without in-

ternal stop codons (top right hand side), and a collection of profile HMMs Dl matching

sequences in the homologous cluster (top left-hand side). An alignment and tree are built

for the homologous cluster. Each of the profile HMMs Dl is aligned to the alignment via the

forward-backward algorithm. A rate matrix is built for each match state, and a null DNA

and null protein rate matrix are constructed. Via the alignment of the HMMs to the protein

alignment, site-specific likelihoods under the background domain evolutionary model (the do-

main/domain likelihood) as well as under the composite domain/null-DNA and domain/null-

protein models are calculated. These are summed to give an overall log-likelihood for each of

the three evolutionary models from which the PSILC-prot/dom and PSILC-nuc/dom log-odds

ratio are calculated by subtracting the domain/domain log-likelihood from the domain/null-

protein and the domain/null-DNA log-likelihoods respectively. Thus a high PSILC-nuc/dom

score reflects a better fit to the alignment of the composite domain/null-DNA model than the

domain model, and so this is taken to be the principal pseudogene score. The site-specific

likelihoods are also integrated via a three state selection HMM to obtain site-specific posterior

probabilities of positive selection. Each of these steps is described in more detail below.

There are two important differences with respect to chapter 3. The first is that all
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of the evolutionary models score codon alignments rather than protein alignments. This is

necessary so that the likelihood can be calculated in a consistent manner over both DNA (as

required by the domain /null-DNA models) as well as protein sequences (as required by the

domain/null-protein and background domain models). The second is that each site in the

alignment will be assumed to be evolving under a mixture of each of the profile HMM emission

state evolutionary models according to the posterior probability of each state emitting this

site. Thus, the model marginalises over the alignment of the profile HMM to the alignment

according to this posterior probability.

Building the alignment and tree

PSILC translates the DNA sequences into protein sequences, which are then aligned using

either PROBCONS [DMBB] or MUSCLE [Edg04], and back-translated (referencing the orig-

inal DNA sequences) into a codon alignment, A = {xk,i}. PSILC also produces a tree T

from the protein alignment using either Phyml [GG03], or neighbour joining with maximum

likelihood distances. In both cases an amino acid rate matrix (such as WAG[WG01]) is used.

An amino-acid rate matrix, rather than nucleotide rate matrix is used to estimate distances

as the background assumption is that the cluster is evolving as protein. More accurately, the

background assumption is that the cluster is evolving according to the site specific rate ma-

trices specified in the protein domain model of evolution, and so a more consistent approach

is to calculate distances based on the protein domain model. This may make some difference

to the branch length estimates [HB98, LP04], but this is not investigated here. PSILC also

accepts user defined trees.

Aligning the Profile HMM to the protein alignment

For each sequence xk,. in the protein cluster, and each profile HMM Dl, PSILC calculates the

log-odds score (relative to a null model given in the HMMER HMM) of the model matching the

sequence, using the forward algorithm described in chapter 1. From the log-odds score, and

using the parameters for the extreme value distribution given in the HMMER model, PSILC

calculates an empirical p-value. If this p-value is greater than a user-specified threshold (or

the default value of 1e-5), for all sequences in the cluster, the model is not further considered

in the PSILC calculation. PSILC also calculates the posterior probability P (ψi = Ml,j |xk,.)
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Figure 4.1: Conceptual diagram PSILC. Inputs are shown in grey, and outputs in yellow, with
intermediate steps in light-blue.
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that the match state Ml,j emitted residue xk,i in the sequence xk. By averaging across

all sequences which matched the model Dl below the p-value threshold, PSILC calculates

the posterior probability P (ψi = Ml,j |A) of each match state emitting each column in the

alignment. Although this procedure will guarantee that
∑

j P (ψi = Ml,j |A) <= 1 for each

HMM Dl, it cannot guarantee that

Si =
∑
l,j

P (ψi = Ml,j |A) <= 1, (4.1)

which is required below. This may happen if two profile HMMs are included which are closely

related, for instance two HMMs from the same SCOP superfamily or Pfam clan. Hence each

posterior probability is divided by Si if Si > 1.

PSILC is robust to the inclusion of profile HMMs which do not match sequences in the

cluster for example models which have a low e-value score but are false matches, as these will

be removed in the previous step. PSILC is also robust to the inclusion of models which par-

tially match the protein cluster (i.e. they match in HMMER’s ‘fs’ mode), as PSILC considers

a match state at a position in proportion to its posterior probability of emitting this state.

PSILC will also run if no profile HMMs are provided, in which case it will effectively compare

a null protein model to a null DNA model. The profile HMMs can be downloaded directly

from a profile HMM database, such as Pfam, or can be built directly from a seed alignments

using hmmbuild from the HMMER package. The Profile HMMs should be first calibrated us-

ing the hmmcalibrate program from HMMER, so that PSILC can calculate empirical e-value

significance scores.

Models of substitution

All PSILC likelihoods are calculated on the basis of codon rate matrices and codon alignments.

Hence, it is necessary to devise models of codon substitution which reflect

(i) the null DNA model of evolution, labelled Enuc;

(ii) the null protein model of evolution, labelled Eprot;

(iii) the match state specific models of evolution, labelled EMj .

The null-DNA codon rate matrix uses one of the HKY[HKY85], TN[TN93], F81/F84

[Fel81], GTR [LPSS84] nucleotide models (as specified by the user), and the observed nu-
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cleotide frequencies in the alignment A as the steady-state probabilities. The parameters

in each of the nucleotide models are trained using the tree T and the alignment A. The

null-DNA codon rate matrix is not calculated directly. Instead, PSILC calculates the codon

transition probability as

PEnuc(x
t+4t = u1u2u3|xt = v1v2v3) =

∏
i=1,2,3

PEnuc(x
t+4t
i = ui|xt

i = vi) (4.2)

assuming independence between codon sites.

The null protein codon rate matrix is calculated using one of WAG[WG01], WAG+gwF[GW02],

JTT[JTT92] models with the observed amino acid frequencies in the alignment A as the

steady-state probabilities (using eq. 1.27). The f parameter in the WAG+gwF model is

trained using the tree T and the alignment A. Codon transition probabilities are calculated

as:

PEprot(x
t+4t = u|xt = v) =

n.a if v is a stop codon

0 if u is a stop codon

PEprot(a(xt+4t) = a(u)|a(xt) = a(v)) ∗ PEnuc (xt+4t=u|xt=v)P
w:a(w)=a(u) PEnuc (xt+4t=w|xt=v)

otherwise

(4.3)

where a(x) is the amino acid translation of x. This equation splits the transition probability

from amino acid a(v) to a(u) amongst all possible codons corresponding to a(u) according to

the relative probability of transitioning (at a DNA level) to each of these possible codons.

The match state protein rate matrices are calculated as described in section 3.1.1. Rate

variation between match states was not modelled, and the f parameter of the WAG+gwF

model, if used, is set to the same value as for the null protein rate matrix. These are converted

into codon models using the technique described in the previous paragraph.

Site specific likelihood scores

For a given leaf node n in the tree T , let Tn denote the branch to node n, and T \ Tn denote

all other branches on the tree. The following evolutionary hypothesis are considered:

(i) Enuc,dom: neutral DNA evolution along Tn, domain constrained evolution on T \ Tn

(pseudogene evolution);
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(ii) Eprot,dom: protein constrained evolution along Tn, domain constrained evolution on T \Tn

(evolution under positive selection);

(iii) Edom,dom: domain constrained evolution on all T , including Tn (purifying selection).

The likelihood of each site x.,i is calculated under each of the evolutionary hypotheses, weight-

ing the contribution of each HMM match state according to the posterior probability of being

in the match state at the alignment position, and also including the contribution of the insert

states of the profile HMM with weight 1− Si where Si is given by equation 4.1.

P (x.,i|T, Enuc,dom) =
∑
j,l

P (x.,i|Enuc,Ml,j
, T ) ∗ P (ψi = Ml,j |x)+

(1− Si) ∗ P (x.,i|Enuc,prot)

(4.4)

P (x.,i|T, Eprot,dom) =
∑
j,l

P (x.,i|Eprot,Ml,j
, T ) ∗ P (ψi = Ml,j |x)+

(1− Si) ∗ P (x.,i|Eprot,prot)

(4.5)

P (x.,i|T, Edom,dom) =
∑
j,l

P (x.,i|EMl,j ,Ml,j
, T ) ∗ P (ψi = Ml,j |x)+

(1− Si) ∗ P (x.,i|Eprot,prot)

(4.6)

The calculation of the likelihoods P (x.,i|T, E∗) can be carried out according to the Felsen-

stein algorithm [Fel81], as described in section 1.3.3. Note that the term P (x.,i|EMl,j ,Ml,j
, T )

is just the emission state probability under the match state Ml,j used in section 3.1.1, which

is written there as P (x.,i|ψi = Ml,j , T ). The notation has been modified here to emphasise

the evolutionary models used on each branch in the tree.

Integrating site specific scores

At this point, PSILC proceeds in two distinct ways in order to integrate site specific likelihoods

into an overall PSILC score. One is to assume that a single evolutionary hypothesis applies
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to all sites in the alignment, and calculate the log-odds ratios

PSILC-nuc/dom = log
P (A|Enuc,dom, T )
P (A|Edom,dom, T )

=
∑

i

log
P (x.,i|T, Enuc,dom)
P (x.,i|T, Edom,dom)

,
(4.7)

PSILC-prot/dom = log
P (Eprot,dom|A, T )
P (Edom,dom|A, T )

=
∑

i

log
P (x.,i|T, Eprot,dom)
P (x.,i|T, Edom,dom)

,
(4.8)

assuming that the sites of the alignment are conditionally independent given the tree T and

each of the evolutionary hypotheses. These scores are both pseudogene scores as pseudogenes

have lost both the domain-encoding and protein-encoding constraint. These scores may be

misleading for positively selected genes, particularly if a strongly conserved site is mutated

(which would give rise to a strong PSILC score for a single site that might not be outweighed

by the domain constrained evolution along the remainder), or if many conserved sites are

mutated.

An alternative approach is to regard the evolutionary hypotheses as hidden states of a

hidden Markov model (which I shall call a selection HMM ), and to use posterior decoding

(outlined in the introduction) to calculate the posterior probability of being in each state

at each site in the alignment. The hidden Markov model used is shown in figure 4.2. The

emission probabilities for each evolutionary state and each site are given by eqs. 4.4-4.6.

PSILC uses the forward-backward algorithm to calculate the posterior probabilities of being

in each of the evolutionary states at each site. Sites with gaps (or unknown characters) at all

positions below the target node are non-informative (the emission probabilities are all equal)

and so are removed from this calculation. In this way, for example, the selection HMM does

not have to ‘pay’ the higher transition cost for staying in a positive selection state without

accumulating log-odds score.

The transition probabilities of the selection HMM can be configured in different ways

based on prior knowledge of a particular gene family, and on the particular test. The config-

uration used to test for pseudogenes is shown in 4.2. In this configuration, a path through

the HMM must be either exclusively in the pseudogene state, or not in the pseudogene state

at all. Hence the posterior probability of being in a pseudogene state is uniform across the

length of the gene, and this probability can be used as a metric of pseudogene status ( I
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will call this the ‘PSILC posterior nuc’ score). In this configuration, the maximum posterior

probability of being in a selection state can be used as a metric for selection (I will call this

‘max PSILC posterior prot’ score). Another possibility is to allow a small transition prob-

ability (e.g. 1e-5) from purifying to pseudogene models and a small transition back from

pseudogene to purifying, and use the average posterior probability as a pseudogene metric.

A third alternative would be applicable once pseudogene status had been ruled out, and the

user wished to account for any nucleotide favoured evolution as positive selection. In this

case the model could be reconfigured such that selection and pseudogene states are treated

equally in the Markov model: the purifying state can transition to the pseudogene state with

the same probability as to the selection state, and the pseudogene state can transition back

to purifying with the same probability as the selection state. The maximum of the posterior

probabilities of selection and pseudogene can then be used as a metric for selection.

Note that for sites x.,i in the alignment which do not match any of the profile HMMs,

the contribution to the likelihood (eqs. 4.4-4.6) made by the match states will be small

(provided the posterior probability of these match states matching the site is small). In this

case, the score under Edom,dom and under Eprot,dom both reduce to that under Eprot,prot, and

the score under Enuc,dom reduces to that under Enuc,prot. Hence, outside the region matched

by the profile HMMs the contribution to PSILC-prot/dom is 0, and the contribution to

PSILC-nuc/dom is determined by comparing a nucleotide model along the final branch to a

protein encoding model, which is in general non-zero. Thus, PSILC-nuc/dom captures extra

information relative to PSILC-prot/dom outside the protein domain region.

Complexity and optimizing the algorithm

The computational complexity of the algorithm is driven by calculating the likelihoods

P (x.,i|EMl,j ,Ml,j
) (4.9)

P (x.,i|Eprot,Ml,j
) (4.10)

P (x.,i|Enuc,Ml,j
). (4.11)

Equation 4.9 must be calculated for each site and each match state. Eqs 4.10, 4.11 must be

calculated for each site, match state and each node on the tree. The likelihood calculation is

linear in the number of sequences for a fixed size alphabet. Hence the order of the computation
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Figure 4.2: Diagram of selection HMM, comprising 3 states - purifying selection (Edom,dom),
pseudogene (Enuc,dom), positive selection (Eprot,dom). The transitions are given as an example
only, and can be specified by the user.

is O(JIK2), where J is the total number of match states in all HMMs matching the sequence,

I is the length of the alignment, and K is the number of sequences in the alignment. This can

be improved if these likelihoods are only calculated for sites i with P (Ml,j , x.,i) > 0.01, and

equations 4.4 - 4.6 modified accordingly. Models with low site posterior probability make only

a minor contribution to the PSILC site specific scores. As only a few HMM match sites will

match a given site with posterior probability greater than 0.01, this reduces the complexity

to O(JK2).

PSILC speeds up the calculation by the order in which the calculations are done. For

a fixed HMM l, match state j and node n, PSILC calculates eqs. 4.9, 4.10, 4.11 over all i

with posterior match probability P (Ml,j , x.,i) > 0.01 simultaneously. In this way the matrix

exponential for each edge is only calculate once, instead of multiple times (depending on the

number of sites with posterior match probability greater than 1). Another observation which

provides a speed-up is that the equations 4.9, 4.10, 4.11 only differ in the rate matrix on the

branch to the target node, and hence the partial likelihoods from equation 1.30 only change

between these calculations for nodes which are ancestral to the target node n. Hence the

calculation can be sped up by first calculating eq. 4.9 and in the Felsenstein tree pruning

algorithm only recalculating those probabilities which have changed relative to eq. 4.9 in eqs.

4.10. Moreover, when making the calculation for different nodes n and n′ (with the same
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l and j), the partial likelihoods only change at nodes which are ancestral to either n or n′,

and hence the same principle of only recalculating partial likelihoods which have changed can

be applied. While these optimizations do not reduce the order of the calculation, they do

provide a significant practical speed-up.

4.3.1 Allowing for a single frame-shifted nucleotide sequence

The requirement of in-frame nucleotide sequences without internal stop codons can be relaxed

for a single sequence in the input cluster. In this case PSILC will pairwise align as DNA

sequence (using MUSCLE) this sequence and its closest homologue from the cluster (which

is assumed to be in-frame). PSILC removes any columns in this alignment which are gaps in

the second sequence, and replaces the original frame-shifted sequence with its aligned version

(including inferred gaps). The frame-shifted sequence is now in-frame with respect to its

closest homologue. If stop codons still exist in this sequence, each position in the stop codon

is replaced with a gap character. Each position which is part of an incomplete codon in

this sequence (due to inferred gaps) in this sequence is replaced with a gap character. The

alignment of the nucleotide sequences with the modified sequence proceeds as before.

4.3.2 Restricting the size of the input cluster

In the case where only the PSILC score of a single target node is of interest, most nodes in a

large tree are of small incremental importance to testing alternative hypotheses of evolution

along the final branch to this node. A large tree will slow down the likelihood calculations,

and moreover a large number of nodes will slow down the inference of the ML tree using

Phyml. PSILC provides a level of control over the number of nodes used in building the tree,

and also in calculating the PSILC scores.

The first level of control is in the tree building stage. The user can specify the max-

imum numbers M1,M2 of nodes to include in Phyml tree building and in the PSILC score

calculations. If the number of sequences in the input cluster exceeds M1, PSILC builds a

guide neighbour joining tree using maximum likelihood distances (calculated using a WAG

rate matrix), which is significantly faster than Phyml tree inference. PSILC passes sequences

corresponding to the M1 nodes closest (according to tree distance) to the target node in the

tree to Phyml for maximum likelihood tree inference. If the number of nodes in the Phyml
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inferred tree exceeds M2, PSILC restricts to the subtree of M2 nodes closest (according to

tree distance) to the target node.

4.3.3 Calculating PSILC scores for internal nodes

If the user provides PSILC with a rooted tree, it is possible to calculate PSILC scores for

internal nodes of the tree. The restriction to a rooted tree is necessary to ensure that the

directionality of evolution is known (otherwise it is not possible to know a priori in which

direction is the root, and in which direction are the leaves of the tree). All the above equations

can then be applied to the (rooted) tree T , with Tn now interpreted as the subtree below

node n together with the branch to node n1. The PSILC scores now reflect the log-likelihood

ratio that evolution from the parent of the target node through the target node and along

the subtree of the target node is evolving as a pseudogene rather than as a domain encoding

gene.

4.4 Results: Vega pseudogene test set

4.4.1 Test data

The manual annotation of human chromosome 6 [Mun03] (NCBI34 human genome build),

which can be obtained from http://www.vega.sanger.ac.uk, was used as the principal test

set for the method and is called the Vega set. Vega annotates both functional genes and

pseudogenes, and as such is an ideal test set. In general, Vega pseudogenes are categorised

on the basis of homology to known genes/proteins with a disrupted ORF due to frame-shifts

and/or in-frame stop codons. Vega contains 1887 coding transcripts on chromosome 6 and

633 pseudogenes. Of these, I extracted 1325 coding transcripts and 457 pseudogenes which

could be aligned to at least one different ENSEMBL transcript using the protocol described

below. Of these, 1105 coding transcripts and 422 pseudogenes matched a Pfam domain, via

one or more members of the cluster. Note, however, that PSILC can be applied to clusters

1The user can specify one of two PSILC modes - recursive, or non recursive. The discussion here applies to

the recursive model, in which the divergent evolutionary hypothesis is applied to the branch to the given node

and all branches below the node. The non-recursive mode just applies the divergent hypothesis to the branch

leading to the given node. These two approaches are equivalent at leaf nodes. In order to apply the recursive

model at inner nodes of the tree, a rooted tree is required.
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which do not match Pfam domains, but that the test reverts to distinguishing a protein coding

evolutionary constraint from a null DNA model. Pfam release 15.0 was used.

For each (pseudo)gene transcript in the test set a blast search against the ENSEMBL

[BAB+04] NCBI34 transcripts for human, rat and mouse was carried out. The query tran-

script and ENSEMBL transcripts with blast match e-value less than 10−7 and a cumulative

match length greater than 80% of the query transcript were included in the input cluster

of homologous sequences. Transcripts with greater than 99% match on more than 80% of

the original sequence were removed from the alignment, to avoid the inclusion of sequences

from ENSEMBL which are effectively the same regions in Vega. The procedure in section

4.3.1 is carried out with respect to the Vega (pseudo)gene to ensure that Vega pseudogenes

are adjusted to remove frame-shifts and stop codons. Each Pfam family which matched at

least one sequence in the cluster was identified (using the ENSEMBL ensj API, available

from http://www.ensembl.org/java), and included in the analysis. As discussed above, the

algorithm is robust to the inclusion of Pfam families which are not homologous to sequences

in the input cluster. The list of Pfam families and the homologous cluster of nucleotide se-

quences form the inputs for the PSILC algorithm. A maximum of 10 sequences closest to

the sequence of interest were used to build the tree using Phyml [GG03]. These sequences

where determined on the basis of an initial neighbour joining tree. A maximum of 6 sequences

closest to the sequence of interest where used to calculate the PSILC score (see section 4.3.2),

with those closest chosen on the basis of the Phyml derived tree.

The dN/dS score was calculated on the full extent of the alignment. The PAML program

‘codeml’ was used to calculate dN/dS, using both the method of Nei and Gojobori [NG86], as

well as the method of Goldman and Yang [GY94] as implemented in PAML. The method of

Nei and Gojobori calculates pairwise dN/dS scores. The Goldman/Yang method incorporates

ω = dN/dS as a parameter in the rate matrix, and finds the value of ω which maximises the

likelihood of the data. For each cluster, a maximum of 3 sequences closest to the sequence

of interest (according to the Phyml derived tree) together with the target sequence were

extracted from the nucleotide alignment constructed as part of the PSILC algorithm (i.e with

any frame-shifts corrected) and provided as input to PAML. The PAML configuration file

was set to allow branch specific ω, and the ω calculated for the final branch to the target

sequence was taken as the Goldman-Yang dN/dS score. The average of all of the pairwise
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Nei-Gojobori dN/dS with the target sequence was taken as the Nei-Gojobori dN/dS score.

Figure 4.3 shows the receiver operating curve for PSILC and dN/dS on the Vega chro-

mosome 6 test set. Table 4.1 shows summary statistics for each method. The PSILC posterior-

nuc score has been modified for this graph by adding to the score 1/1000 * PSILC-nuc/dom.

This was done because PSILC posterior-nuc scores a small fraction of functional genes as

pseudogenes with probability 1, and so some means of distinguishing genes with identical

scores was required. With this modification, PSILC posterior-nuc performs the best up to an

error rate of 80, beyond which PSILC-nuc/dom performs best. Most significantly from the

point of view of pseudogene annotation, PSILC posterior-nuc manages to correctly identify

40 pseudogenes before it incorrectly identifies a real gene as a pseudogene, whereas all of the

other methods (aside from PSILC-nuc/dom, which identifies 3) scored a functional gene ahead

of all pseudogenes. Thus, as previously mentioned, PSILC can be used to make assertions

about the pseudogene status of genes, whereas other methods can only identify sets which are

enriched for pseudogenes. The results from this curve can be compared to the similar results

from the paper [CD04], which were obtained from an earlier version of PSILC. In this paper

the approach was to calculate PSILC-prot/dom likelihoods purely on the basis of the amino

acid sequence and amino acid rate matrices, and it was reported that this approach does

better than dN/dS. The approach outlined in this chapter is different in that all likelihoods

are calculated on codon sequences, which appears to have a negative impact on the PSILC-

prot/dom results. However, PSILC-nuc/dom is more effective than both PSILC prot-dom

from the earlier work and much more effective than PSILC nuc-dom from the earlier work.

Figure 4.4 and 4.5 shows the fraction of (pseudo)genes scoring above threshold vs thresh-

old for the PSILC-nuc/dom score, Goldman Yang dN/dS and PSILC posterior-nuc. The

dN/dS graph is plotted on a log x-axis for clarity – the PSILC scores are effectively already

log based scores. The dN/dS pseudogene distribution is centered on dN/dS ≈ 1 as expected,

and at dN/dS ≈ 0.1 for functional genes. However, both distributions are spread over a large

range of dN/dS values, which makes a clean separation on this score difficult. On the other

hand, the functional genes have a much sharper distribution under the PSILC-nuc/dom score,

with most of the weight located at PSILC-nuc/dom ≈ 0, and the pseudogene distribution has

most of its weight greater than 0, making a clean separation more effective. The separation

is less pronounced in PSILC posterior-nuc (figure 4.5). In this case less than 4% of functional
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Figure 4.3: Coverage vs error curve for PSILC and dN/dS. The graph has been plotted on a log
x-axis to reflect the fact that coverage level at low error rate is more important than at a high
error rate. Several (pseudo)genes had a PSILC posterior nuc score of 1.0 - (pseudo)genes with the
same PSILC posterior nuc score were ranked amongst themselves according to PSILC-nuc/dom
score. A larger area under the curve represents a better discrimination between true and false
pseudogenes.
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genes have a PSILC posterior-nuc score greater than 0.5, whereas 67% of all pseudogenes

score above 0.5. A small fraction of functional genes have PSILC posterior-nuc score of 1.0.

Area OTT MER

under curve

PSILC-nuc/dom 92.3% 3 180

PSILC posterior nuc 92.2% 40 177

PSILC-prot/dom 82.5% 0 328

Nei Gojobori dN/dS 82.4% 0 304

Goldman Yang dN/dS 81.7% 0 279

max PSILC posterior prot 29.3% 0 457

Table 4.1: Area under the coverage vs error curve, OTT (num-
ber of pseudogenes scored above the first functional gene)
and MER (minimum error rate) for the different methods for
classifying pseudogenes. For the PSILC-posterior nuc rank-
ing, (pseudo)genes with the same PSILC posterior nuc score
were ranked amongst themselves according to PSILC-nuc/dom
score.

Figure 4.6 and figure 4.7 display the difference between a gene under selective pressure,

and one which is evolving as a pseudogene. Figure 4.6 is a protein coding gene, while figure

4.7 is a pseudogene. Both have high PSILC-nuc/dom and PSILC-prot/dom scores (19,94 and

41,30 respectively). However the high-scoring region of figure 4.6 is limited to the N-terminal

region, while it extends across the length of the protein for figure 4.6. The raw PSILC score

would lead to the incorrect conclusion that both are pseudogenes, while the selection HMM

correctly identifies the pseudogene and the gene under positive selection.

4.5 Results: detection of positive selection

In this section, I analyse the evolutionary pressures acting on three gene families: the

APOBEC/AID family, occurring in vertebrates; the HIV Vif family; the Abalone sperm

lysin family.
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Figure 4.4: Comparison of discrimination between pseudogenes and functional genes between the
PSILC-nuc/dom method (top graph) and Goldman Yang dN/dS (lower graph). In both graphs
I plot the fraction of (pseudo)genes scoring above a particular threshold, with the pseudogenes
represented by the blue line, and functional genes represented by the red line.
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Figure 4.5: Comparison of discrimination between pseudogenes and functional genes using the
PSILC posterior-nuc score.

4.5.1 Analysis of selective pressures on APOBEC/AID enzymes

Extensive evidence for positive selection within the APOBEC family has previously been

found by Sawyer and co-workers[SEM04] using analysis of the ratio of the rate of synonymous

and non-synonymous substitutions. I have reanalysed their data using PSILC, in order to

compare results with those obtained by the authors, and to shed further light on the selective

pressures driving APOBEC evolution. I have also analysed the selective pressures acting on

HIV-1/HIV-2 and SIV Vif, which have been found to interact with APOBEC3G.

Background

The APOBEC/AID enzymes are part of a group of enzymes which deaminate cytosine to

uracil on a polynucleotide molecule (such as single or double-stranded RNA or DNA). They

are related to the cytosine and cytidine deaminases which deaminate a single nucleotide (or

nucleoside or free base). In humans, the APOBEC family comprises eleven genes - APOBEC

1,2,3A,B,C, D/E, F, G, H and activation induced deaminase (AID). The APOBEC family is

found throughout the vertebrates, including bony fish [CTPMN04].

APOBEC1 (apolipoprotein B mRNA editing complex catalytic subunit 1) is the cat-
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Figure 4.6: Pseudogene and selection status of Vega human (functional) gene OT-
THUMT00006012213. Left: the Phyml tree of OTTHUMT00006012213 and homologues in
mouse, human and rat genomes. Right: plot of PSILC nuc-dom(orange) and PSILC prot-
dom(yellow) scores; Pfam domain match probability (to Pkinase, SH3, SH2 domains) (red);
posterior probability of being under selection (blue); posterior probability of being pseudogene
(green). Coordinates are relative to OTTHUMT00006012213 sequence.



120
CHAPTER 4. USING PROTEIN DOMAINS TO IDENTIFY PSEUDOGENES

AND POSITIVE SELECTION

Figure 4.7: Pseudogene and selection status of Vega human pseudo-gene OT-
THUMT00006009362. Left: the Phyml tree of OTTHUMT00006009362 and homologues in
mouse, human and rat genomes. Right: plot of PSILC nuc-dom(orange) and PSILC prot-
dom(yellow) scores; Pfam domain match probability (to Pkinase, SH3, SH2 domains) (red);
posterior probability of being under selection (blue); posterior probability of being pseudogene
(green). Coordinates are relative to OTTHUMT00006009362 sequence.
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alytic subunit of a complex which deaminates cytidine6666 of the mRNA of apolipoprotein

B (ApoB) in the liver, thus creating a premature stop codon and a truncated form (48%)

of the protein [TBD93]. Both the truncated and full length ApoB protein are involved in

the transport of lipids and cholesterol. AID is expressed in germinal center B cells where

it is required for immunoglobulin class switch recombination, somatic hyper-mutation and

gene conversion. AID was initially proposed to also act as an RNA editing enzyme, however

subsequent experiments have demonstrated the ability and preference for AID to deaminate

cytosine in single stranded DNA [PMHN02].

The APOBEC3 family is only found in mammals. Non-primate mammals have a single

APOBEC3 gene; however 8 are present in primates. APOBEC3A-APOBEC3G are encoded

on a 130kb stretch of chromosome 22 in the same orientation[JCB+02]. The APOBEC3

locus is rich in repetitive retroviral elements, which suggests that the rapid expansion in

primates was facilitated by retroviral elements. According to EST evidence, APOBEC3D and

APOBEC3E are likely part of the same protein. A probable processed APOBEC3 pseudogene

has been detected on chromosome 12, due to the fact that it has no introns.

APOBEC3G has been identified as the gene which inhibits infection with HIV-1 strains

lacking the virion infectivity factor (Vif) [SGCM02]. In the absence of Vif, APOBEC3G is

packaged into retroviral particles in the producer cell. After infection of target cells by viruses

produced in APOBEC3G expressing cells, APOBEC3G deaminates cytosine to uracil in the

nascent viral minus strand during reverse transcription [ZYP+03] . These mutations cannot

be repaired correctly as the viral RNA template is simultaneously degraded during reverse

transcription. Hence APOBEC3G does not affect the viral output from a producer cells, but

rather protects the target cell from infection. In wild-type HIV encoding the Vif protein,

APOBEC3G mediated mutation of viral cDNA is prevented by Vif inducing polyubiquitina-

tion of ABOBEC3G and so making it a target for degradation by the 26S proteasome[CHN03].

Human APOBEC3G is resistant to African green monkey SIV induced degradation but sus-

ceptible to HIV-1 Vif, and conversely African green monkey SIV is resistant to HIV-1 Vif but

susceptible to African green monkey SIV Vif. The difference in sensitivity has been mapped

to residue 128 in Human APOBEC3G, which is aspartic acid(D) in human APOBEC3G and

lysine(K). Mutating D → K in human APOBEC3G renders it resistant to HIV1-Vif but sen-

sitive to African green monkey SIV Vif [BDWC04]. The region of interaction between Vif
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and APOBEC3G has been mapped to the residues 54-124 [CTPMN04].

APOBEC3F is adjacent to APOBEC3G, shares over 90% similarity in the upstream

promoter region, and is widely co-expressed in human cells, suggesting that APOBEC3F is

co-regulated with APOBEC3G. APOBEC3F is also packaged into retroviral particles; also

has an effect than on viral infectivity (although smaller than APOBEC3G) and also interacts

with Vif. APOBEC3B and APOBEC3C are also packaged into retroviral particles and have

a weak effect on viral infectivity. ABOBEC3B and APOBEC3C are completely and partially

resistant respectively to HIV Vif induced degradation.

Thus, the APOBEC3 family is in genetic conflict with the HIV/SIV Vif protein. This

type of genetic interaction could be expected to lead to fixation of mutations which change

the conformation of the APOBEC3G protein, as well as mutations in the Vif protein. Sawyer

et al. find that the signal for APOBEC3G positive selection predates the appearance of

modern lentiviruses, and conclude that APOBEC3G evolution is only partially caused by

modern lentiviruses. APOBEC3G is also abundantly expressed in the germline[JCB+02]. It

has been suggested that APOBEC3G is required in the germline to restrict the activity of

the long-terminal bearing(LTR) human endogenous retroviruses (HERVs). The life-cycle of

HERVs is similar to retroviruses, including expression in the cytoplasm (where APOBEC3G

is active) and a reverse transcription stage which would be susceptible to APOBEC mediated

cDNA editing. Sawyer et al. suggest that the HERVs may be a more important driving force

for the evolution of APOBEC3 than the primate lentiviruses.

Method

Primate APOBEC3G DNA sequence was obtained from Sarah Sawyer, which was published

in [SEM04]. DNA sequence for vertebrate APOBEC, AID sequences was obtained from Silvo

Conticello, which was published in [CTPMN04]. APOBEC3 is internally duplicated with

respect to APOBEC2 and so has two homologous copies of APOBEC2, whereas AID and

APOBEC1 only have one homologous copy. The N-terminal and C-terminal copies within

APOBEC3 proteins were split into separate sequences. A protein alignment was created

using MUSCLE [Edg04], and the DNA alignment was inferred from the protein alignment. A

tree was generated using Phyml [GG03] from the DNA sequence, using a HKY evolutionary

model and 4 rate categories, and training the transition to transversion ratio. A nucleotide
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rather than protein rate matrix was used because the primate APOBEC3G sequences are

highly similar at a protein level. Two minor edits were applied to the Phyml tree so that

the phylogeny within APOBEC3 was consistent between the N- and C-terminal sequences

(which was obtained from a Phyml derived tree of full length APOBEC3 sequences). The

tree obtained agreed with the widely accepted taxonomy, but differed slightly from the tree

published in [SEM04] in the relative position of baboon and macacques (this branching is

undefined in the NCBI taxonomy). Branch lengths were derived as those which maximised

the likelihood under the compound WAG+gwF : HKY model (as discussed in section 4.3)

and the assumption of a molecular clock. The maximum likelihood transition/transversion

ratio is 2.1 and the maximum likelihood f value is 0.83.

HIV1, HIV2 and SIV Vif DNA sequences were obtained from the Los Alamos national

laboratory at http://www.hiv.lanl.gov/content/hiv-db/. This data set consists of 558

HIV-1 Vif sequences, 47 HIV-2 Vif sequences and 21 SIV sequences. These sequences were

aligned as protein using MUSCLE, and the DNA alignment was inferred from the protein

alignment. These sequences were filtered so that only the 40 most diverse Vif proteins were

kept in the set, resulting in 13 HIV-1 genes, 9 HIV-2 genes and 18 SIV genes. The tree for this

protein set was built using Phyml, with a WAG rate matrix and 4 rate categories. The tree

was re-rooted so that the HIV1 and HIV2 genes each formed a cluster, which was possible

given the original Phyml tree. The maximum likelihood transition/transversion ratio was 2.4

and f value is 0.63.

Each of the sequences in the APOBEC/AID alignment had a significant match to the

Pfam APOBEC-C family (e-values in range 1e-12 to 1e-20). Some of the sequences had a

significant match to the Pfam dCMP cyt deam family, however several members did not, and

none of the matches were particularly strong. This family is much longer (144 match states)

than the highly conserved zinc co-ordinating motif discovered in structural studies of bacterial

cytidine deaminases and of yeast cytosine and cytidine deaminases. Hence, a new HMMER

HMM – which I will call APOBEC-N – was built from an alignment the N-terminal regions

of the APOBEC family, dCMP-cytidine deaminases and adenosine deaminases which act on

RNA (ADAR1-3) or tRNA (ADAT1-3). This family had 58 match states. The sequences all

had very significant matches to this new family (1e-18 to 1e-21). Each of the sequences in

the Vif alignment had a significant match to the Pfam Vif domain with e-value in the range
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1e-7 to 1e-40.

The tree and HMMER hidden Markov models for both APOBEC/AID and Vif were

given as input to PSILC, which was run in recursive mode with selection transition probabil-

ities given by the diagram 4.2.

Results

The tree obtained by PSILC is shown in figure 4.8, and can be compared with the tree obtained

by Sawyer et al. [SEM04] in figure 4.10. The C-terminal of an APOBEC3 pseudogene included

in the dataset is correctly detected, while the N-terminal has 34% PSILC posterior-nuc score.

The analysis also suggests that APOBEC3H is a pseudogene. There is a strong selection signal

in the N-termini of APOBEC3G in both Cercopithecinae (old world monkeys) and Hominidae,

but not the C-termini, whereas the pattern is reversed for Platyrhinni (new world monkeys).

It is interesting to note that there is no lentivirus which targets new world monkeys, but we

might speculate the N-terminal evolution is driven by interaction with either HERVs or other

reverse-transcribed viruses. The site-specific likelihood ratios and posterior probabilities at

these nodes have been plotted in figure 4.9. The position of the peaks in posterior probability

(above 0.75) for both Cercopithecinae and Hominidae have been mapped to the structure of

Yeast cytosine deaminase in 4.11. The position of human APOBEC3G residue 128 critical

for the species specificity of Vif effectiveness maps to position 118 in this structure. All

co-ordinates are given in terms of the yeast structure. It can be seen that the predicted

selected sites, as well as the Vif specificity site could potentially be involved in conformational

changes, or steric hindrance of the Vif APOBEC3G interaction. The Hominidae peak at 129

corresponds to a glycine {GGA, GGG, GGT} → arginine (CGT) mutation at this node.

Glycine is strongly conserved at this position according to the profile HMM, and chemically

quite different from Arginine, so this change would appear to change the conformation of

the protein. The Cercopithecinae peak at 153 corresponds to tryptophan(TGG) → arginine

(CGG) mutation, again tryptophan is strongly conserved at this position in the profile.

Other members of the APOBEC3 family as well as APOBEC1 also appear to be under

strong selection. However, AID and APOBEC2 positive selection in mammals appears to be

not as strong, which is consistent with the findings of Sawyer et al.

The analysis of the Vif proteins is displayed in figure 4.12. Again, extensive positive
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selection has been detected in the tree. The HIV-1 Vif proteins display a stronger and more

consistent signal for positive selection than the HIV-2 Vif proteins. This can also be seen in

figure 4.13, in which the site specific likelihoods and posterior probabilities are plotted for two

external nodes in each of HIV-1, HIV-2 and SIV-1. The HIV-1 Vif protein in the top line (HIV-

1 C.BW.) displays a positive selection signal across the length of the protein. HIV-1 B.AU

displays a strong pseudogene signal (green circles and purple line) as well as a strong positive

selection signal (orange squares). This is an example where PSILC incorrectly (although the

functionality of this protein has not been tested) identifies a gene as a pseudogene due to a

high rate of positive selection across the length of the protein. The HIV-2 Vif proteins in

this diagram, on the other hand, only display a selection signal at the C-terminus, and the

N-terminus appears to be relatively well conserved. Some SIV proteins appear to be very

highly selected (e.g. SIV GSN in the top line) while others (SIV GRV) display less positive

selection and a higher level of conservation.

4.5.2 Analysis of selective pressures on Abalone lysin protein

I investigate the selective pressures acting on the Abalone lysin protein, which is a 16kda

protein found in Abalone, and acts in conjunction with a paralogous 18kda lysin protein on

the egg vitelline envelope (VE). The 18kda protein was discussed in section 2.4.2 where the

Pfam Egg lysin domain was identified in the divergent Haliotis fulgens protein. As discussed

in this section, the 16kda protein creates a hole in the vitelline envelope and the 18kda protein

is thought to mediate membrane fusion between the gametes[SV95].

The cDNA sequences for lysin from 20 abalone species has been sequenced and analysed

for positive selection (using the method of Nei and Gojobori [NG86]) by [LOV95]. The authors

identified a ω = dn/ds ratio greater than 1 when closely related species are compared, but less

than 1 when distantly related species are compared, providing evidence for positive selection.

The authors also hypothesised that the small ω values for distantly related species may be

due to saturation effects. Subsequently, Yang and co-workers [YSV00] showed that saturation

was unlikely to account for low ω values in divergent species and that ω varies greatly between

sites on the lysin protein. These authors also identified regions of the protein under positive

selection.

I re-analysed the data set analysed by Yang et al in [YSV00], to determine whether
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Figure 4.8: Tree of APOBEC/AID family, showing extensive positive selection. Green branches
to a node indicate strong evidence for positive selection below this node, whereas red branches
indicate strong evidence for pseudogene evolution below a given node. Blue branches indicate lack
of evidence for selection and pseudogene evolution, and hence purifying selection. The numbers
below a branch are the max PSILC posterior-prot score below and including that branch, which is
used here as a score of positive selection.
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Figure 4.9: Site-specific graphs of selection acting on APOBEC3G genes. Green circles/orange
squares indicate the site specific PSILC-nuc/dom and PSILC-prot/dom scores respectively, which,
for clarity, are only plotted if less than -0.3 or greater than 0.3. The black/purple line indicates the
posterior probability of being in a positive selection or pseudogene state respectively. Note that
the purple line runs along the x axis in all of the diagrams, and hence is not clearly visible. The
blue/red line is the posterior probability of being in a match state of the APOBEC N/APOBEC C
families respectively. For clarity, these lines are only plotted for probability greater than 0.5.
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Figure 4.10: Diagram of the tree of full-length APOBEC3G sequences taken from [SEM04]. The
starred species are those which are infected by HIV/SIV. The numbers on the branch indicate
the maximum likelihood value of dN/dS estimated by PAML using the free-branches model. The
numbers in brackets are the number of synonymous and non-synonymous substitutions, calculated
by inferring the ancestral sequences, us
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Figure 4.11: The structure of yeast cytosine deaminase, which is homologous to the APOBEC/AID
family. The structure is of the homo-dimer. The region homologous to the Vif binding region in
human APOBEC3G is drawn in green. The residue which aligns with residue 128 in the human
APOBEC3G family is mapped to position 118 in this structure, and shown in black. PSILC
predictions of positively selected regions are shown via the space-fill representation.
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Figure 4.12: Tree of Vif proteins showing extensive selection. A green branch indicates strong
evidence for selection on the branch to and below that node, whereas a red branch indicates the
gene is evolving under a neutral DNA model. The numbers given below the branches indicate
the maximum posterior probability of selection acting on the branch to this node and the subtree
below the node.
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Figure 4.13: Site-specific graphs of selection acting on Vif genes. Green circles/orange squares
indicate the site specific PSILC-nuc/dom and PSILC-prot/dom scores respectively, which, for
clarity, are only plotted if less than -0.3 or greater than 0.3. The black/purple line indicates the
posterior probability of being in a positive selection or pseudogene state respectively. Note that
the purple line runs along the x axis in all of the diagrams, and hence is not clearly visible. The
blue/red line is the posterior probability of being in a match state of the Vif family, which are only
plotted for probability greater than 0.5.
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positive selection can be identified by looking for amino acid changes which disrupt the

profile HMM consensus and hence also the protein conformation. The tree topology was

obtained from the paper [YSV00], and maximum likelihood branch lengths and substitution

model parameters were estimated under the compound WAG+gwF : HKY model (discussed

in section 4.3) and the assumption of a molecular clock. The maximum likelihood transi-

tion/transversion ratio is 1.6 and the maximum likelihood f value is 0.77.

PSILC was run in recursive mode with selection HMM transitions probabilities as shown

in 4.2. With these transition probabilities, PSILC only detected a positive selection signal

in the C-terminus of H. cracherodii and H. rufescens (with posterior probabilities of 30%

and 25% respectively). This suggests that the lysin proteins are not under positive selection

from the point of view of large structural changes. It may, however, still be the case that

the lysin proteins are evolving under a weaker diversifying pressure for changes which do

not disrupt the protein structure. To investigate this second hypothesis in more detail, the

transition probabilities were adjusted to allow transitions in and out of the neutral DNA model

from the domain model, and to relax the transition probabilities to the positively selected

state. The probabilities used were start → {selection 0.05, pseudogene 0.01, purifying 0.94};

purifying →{selection 0.05, pseudogene 0.01, purifying 0.93, end 0.01}; selection →{purifying

0.2, selection 0.49, end 0.01}; pseudogene →{pseudogene 0.98, purifying 0.01, end 0.01}.

Figure 4.14 shows the overall results with the relaxed transition parameters, and can

be compared with the tree in figure 4.17. Again H. cracherodii and H. rufescens display

the strongest signal for positive selection as determined by a protein coding model. Several

branches have high posterior probability of neutral DNA evolution, supporting the hypothesis

that although the evolution of the lysin has been largely conserved with respect to structure,

it has been freer to explore alternative amino-acids which do not affect the structure. Figure

4.15 displays the site specific scores at particular nodes in the lysin tree. Each of the three

graphs in the top line, as well as the first graph in the second line are of clades with all

species from the same geographic region (California, Japan, California and California respec-

tively). The remaining two graphs are of clades with all descendants dispersed geographically.

If, as hypothesised in previous papers, evolution is driven pressure to reduce heterospecific

fertilization amongst abalone within the same geographical region, then the geographically

restricted clades should exhibit more selection. Although the first three of the geographically
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restricted clades appear to display more selection than the two geographically diverse clades,

the geographically restricted H. scolaris → cyclobates clade breaks the rule. The top 3 clades

display selection in similar regions of the protein. The selection peaks from the three graphs

on the top line are plotted on the structure of lysin in figure 4.16. It is interesting that

the N-terminal lysin segment evolving as neutral DNA and the C-terminal section evolving

as neutral protein are spatially adjacent and external to the protein structure. This figure

should be compared with the predicted positions of positive selection in [YSV00] displayed

in 4.17. The PSILC predictions agree with the PAML predictions at sites 36, 41, 113, but

PSILC also predicts sites 107-109 to be positively selected.

4.6 Results: Global scan for pseudogenes and positive selec-

tion

I conducted a global scan for positive selection and pseudogenes in the genomes of 4 mam-

mals (H. sapiens, P. troglodytes, M. musculus, R. norvegicus), 1 bird (G. gallus), 2 fish (F.

rubripes, D. rerio), 2 insects (D. melanogaster and A. Gambiae) and 2 nematodes (C. Brig-

gsae and C.Elegans). The PHIGS database http://phigs.jgi-psf.org clusters proteins

from complete Opisthokont (Fungi and Metazoa) genomes into protein gene families. I con-

sider only those genomes which are also in the ENSEMBL database. All PHIGS clusters

containing at least one human protein, at least 3 members in total and matching at least on

Pfam domain, were extracted from the PHIGS database. Protein coding DNA sequence for

any sequence from the above 11 genomes in the clusters was extracted from the ENSEMBL

database, and formed the inputs for PSILC. Trees for each of the clusters were built as neigh-

bour joining trees based on maximum likelihood distances calculated using the WAG protein

rate matrices and a single rate category. PSILC was only applied to the leaf nodes due to the

difficulty in rooting trees and to reduce running time. PSILC used a WAG model of protein

evolution and a HKY model of DNA evolution.

Figure 4.18 shows the number of human genes in scored PHIGS clusters with high

pseudogene scores. There are 282 genes with PSILC posterior nuc score of 1.0, and 110

genes with PSILC posterior nuc score of 1 and PSILC-nuc/dom score of greater than 50. No

functional genes in the Vega test set scored above this combined threshold, thus each of these
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Figure 4.14: Tree of sperm lysin family, showing extensive ‘non-structural’ positive selection.
Green branches to a node indicate support for evolution according to a neutral protein model
rather than a domain constrained protein model, whereas red branches indicate support for a
neutral DNA model rather than a protein domain constrained model. Blue branches indicate
lack of evidence for positive selection and pseudogene evolution. The numbers on a branch are
the maximum posterior probability of being in a neutral protein model (first number) and the
maximum posterior probability of being in neutral DNA model (second number).
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Figure 4.15: Site-specific graphs of selection acting on lysin genes. Green circles/orange squares
indicate the site specific PSILC-nuc/dom and PSILC-prot/dom scores respectively, which, for
clarity, are only plotted if less than -0.3 or greater than 0.3. The black/purple line indicates the
posterior probability of being in a positive selection or pseudogene state respectively. The blue/red
line is the posterior probability of being in a match state of the Egg lysin domain. For clarity,
these lines are only plotted for probability greater than 0.5. The relevant nodes in the tree for
each graph are the most recent common ancestor of the two leaf nodes given in the graph titles.
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Figure 4.16: Structure of lysin, with regions of posterior probability of neutral DNA (red) or neutral
protein evolution (green) greater than 50% in the clade H. cracherodii → H. kamtschatkana.

110 genes is highly likely to be a pseudogene. ENSEMBL [BAB+04] builds genes by searching

for homology to known proteins using GeneWise [BD00]. When this procedure is applied to

a pseudogene with a frame-shift, GeneWise will in some instances introduce a small intron to

compensate for a frame-shift. Thus a short minimum intron length in an ENSEMBL gene is

an indication that the gene is in fact a frame-shifted pseudogene. The frequency distribution

of minimum intron lengths for multi-exon genes with PSILC posterior-nuc score of 1.0 has

been plotted in figure 4.19. As would be expected for a pseudogene set, a significant number

of members (28%) have minimum intron length of less than 5 base-pairs, whereas a small

fraction of genes in the full set have intron lengths less than 5 base-pairs.

Figure 4.20 shows for each of 11 species the number of clusters with a protein in that

species with maximum posterior probability of being under selection greater than a given

threshold on max PSILC posterior-prot. As clusters are included only if they contain a

human protein, the total number of clusters with a protein in each species loosely reflects the

evolutionary distance from that species to human. For instance the other mammals occur

in approximately 86% of clusters, while the nematode worms only occur in approximately
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Figure 4.17: Taken from [YSV00]. Top: lysin tree, with the maximum likelihood estimates of
dN/dS using PAML in the free ratios model on the branches of the tree. The thick lines indicate
those branches with dN/dS > 1. Bottom: structure of lysin with sites inferred to be under
positive selection (with greater than 99% posterior probability) coloured in black. Sites in white
are under purifying selection.
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Figure 4.18: Number of human genes in clusters with combined PSILC posterior-nuc threshold/
PSILC nuc-dom score above threshold. The combined score was calculated by adding PSILC-
nuc/dom / 100 to all genes with a PSILC posterior-nuc score of 1. Thus a score of 1.5 indicates
a PSILC posterior-nuc score of 1 and a PSILC nuc/dom score of 50. No functional genes scored
above this combined threshold in the Vega chromosome six test set. A small fraction of functional
genes in the Vega chromosome 6 test set had PSILC posterior-nuc score of 1. Scores are only
plotted if greater than 0.5
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Figure 4.19: Frequency distribution of minimum intron lengths for multi-exon human pseudogene
candidates as determined by a PSILC posterior nuc score of 1.0 (blue bars), versus all genes
included in the study (red bars). Only intron lengths up to 1000 base-pairs are shown.
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Figure 4.20: Number of clusters with a protein with maximum posterior probability of being under
positive selection greater than a given max PSILC posterior-prot threshold in each of 11 species.

25% of clusters. Approximately 6% of clusters contain a human protein which is positively

selected at a 75% max PSILC posterior-prot threshold, which falls to 3% at a 95% threshold.

PHIGS clusters were taken to be either weakly or strongly positively selected in a

particular species if there was a protein in the cluster from that species which had a max

PSILC posterior-prot score greater than either 75% or 95% respectively. For each species,

the count of each Pfam domain occurring in positively selected clusters in that species was

compared to the number expected by chance, and a p-value was calculated using the binomial

distribution. The p-value represents the probability that the same or greater number of

clusters with a particular Pfam domain would be obtained if the same number of positively

selected clusters were drawn at random. To correct for the fact that multiple hypothesis are

tested simultaneously, the 5% threshold for significance is divided by the number of Pfam
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domains counted in at least one positively selected cluster. This cluster based approach to

calculating significance avoids including protein domains purely on the basis of expansion and

positive selection within a single cluster.

Table 4.6 displays the Pfam domains which are significantly over or under-represented

for positively selected proteins in mammalian genomes. All domains which are statistically

significant below 30% after the correction for multiple hypothesis testing are listed, and do-

mains which are significant at 5% are displayed in bold. All of the domains detected as

significantly over-represented are extracellular excluding the calponin homology CH domain

but including Immunoglobulin (ig) superfamily domains, epidermal growth factor (EGF), 7

transmembrane receptor rhodopsin family (7tm 1), trypsin, and CUB. 45 of 464 immunoglob-

ulin superfamily clusters have a selected human protein at 75% threshold, versus 19 expected

clusters. Ig is also over-represented at the 95% threshold for selection, but not at a significant

level. Immunoglobulin domains are found in proteins with a diverse set of functions, including

antibodies and signalling proteins such as tyrosine kinases, both of which would be expected

to be under positive selection. EGF repeats are commonly found in the extracellular region of

membrane bound proteins. 7tm 1 proteins transduce extracellular signals, and include hor-

mone, neurotransmitter and light receptors. CH is involved in signal transduction, and is also

found in cytoskeletal proteins. Trypsin is a secreted proteolytic enzyme. CUB is an extracel-

lular domain often occurring in developmentally regulated proteins, as well as in peptidases.

CUB is the only domain which is significantly over-represented at the 95% threshold for selec-

tion. Two further domains which do not make the cut-off for significant over-representation

are also extracellular domains: Laminin G-like module and the scavenger receptor cysteine

rich domain (SRCR) domain. WD40 repeats – found in proteins acting as transmembrane

receptor signal transduction intermediaries – are significantly under-represented.

The 7 transmembrane receptor (secretin family) (7tm 2) and DUF887 are the only

significantly overrepresented domain in positively selected chimpanzee clusters. The lack of

success in finding chimpanzee proteins under positive selection may be due to the low quality

of the current sequence. The list of over-represented mouse and rat domains is a similar

to the human list, but excludes trypsin (although this is still over-represented), CUB and

CH domains (both of which occur roughly at expected levels). 7tm 1 domains are particu-

larly over-represented in rat, occurring in 79 versus 42 expected selected clusters. Somewhat
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surprisingly, zf-C2H2 – a nucleic acid binding domain – is significantly over-represented in

mouse, and over-represented (but not significantly ) in rat. This repeat is under-represented

(not significantly) in human positively selected protein clusters at both thresholds.

As well as ig, 7tm 1 and EGF, the pleckstrin homology (PH) domain, protein kinase

superfamily and SRC homology-3 (SH3) domains are significantly over-represented in chicken,

zebrafish and pufferfish. The PH domain occurs in proteins involved in intracellular signalling,

as well as constituents of the cytoskeleton. SH3 domains are found in proteins involved in

signal transduction related to cytoskeletal organisation. The PH and SH3 domain occurs at

and less than, respectively, the level expected by chance in positively selected human clusters,

whereas protein kinases are over-represented.

Protein kinase and ig domains are also over-represented in fruit-fly and mosquito clus-

ters. No statistically significant over-representation was found in either nematode genomes,

however the percentage of genes included in this study is less than a quarter of the full

complement of nematode genes.

Hence it appears that extracellular,membrane bound and signalling proteins are partic-

ularly strong candidates for positive selection in several eukaryotic genomes. Positive selection

is expected in families of paralogous proteins which bind peptide or protein ligands, as these

proteins need to evolve specificity to different ligands after duplication, in order to mediate

different responses to different inputs. The CUB and CH domains appear to be the only do-

mains significantly over-represented in human selected proteins which is not over-represented

in other selected proteins of other vertebrate genomes.

These results can be compared to other whole genome scans for positive selection. In

[Cla03a], a scan of chimp and human genomes, using mouse as a reference genome, was carried

out. These authors also discovered a strong positive selection signal in the human genome

in G protein coupled receptor proteins, other protein receptors and extracellular matrix pro-

teins. The strongest signal was discovered in olfactory proteins, which was also discovered

using PSILC (data not shown). Other molecular functions also show a positive selection sig-

nal, including ion channel and transport proteins. Also corresponding to the results shown

above, these authors found far fewer molecular functional categories in chimp under positive

selection. The categories which were identified were chaperones, cell adhesion and extracel-

lular matrix proteins. The authors identified amino acid metabolism as a biological process
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showing significant positive selection in chimp, which might corroborate the positive selection

signal discovered in the Gln-synt protein domain described above.

tot. sel. sel. exp. exp. sig. sig.
>75% >95% >75% >95% >75% >95%

H. sapiens 8882 529 276
Immunoglobulin s.f. 464 45 19 28 14 2.3e-13 1.4e-01
EGF s.f. 165 29 17 9.8 5.1 5.4e-07 2.7e-05
7tm 1 437 50 17 26 14 1.1e-05 2.0e-01
Trypsin 71 15 8 4.2 2.2 3.7e-05 2.0e-03
CH 28 9 3 1.7 0.87 6.2e-05 5.8e-02
CUB 35 9 8 2.1 1.1 3.2e-04 1.9e-05
WD40* 188 1 1 11 5.8 1.5e-04 2.0e-02
SRCR 23 6 5 1.4 0.71 2.9e-03 8.6e-04
Laminin G-like module 40 8 6 2.4 1.2 3.2e-03 1.8e-03

P. troglodytes 7315 200 95
7tm 2 22 5 4 0.6 0.29 4.0e-04 2.2e-04
Gln-synt C 2 2 0 0.055 0.026 1.4e-03 1.0e+00
Gln-synt N 2 2 0 0.055 0.026 1.4e-03 1.0e+00
DUF887 2 2 2 0.055 0.026 1.4e-03 3.3e-04
SAM PNT 8 3 0 0.22 0.1 1.5e-03 1.0e+00
Lipocalin 19 4 3 0.52 0.25 2.0e-03 2.1e-03
AMOP 3 2 2 0.082 0.039 3.2e-03 7.4e-04

M. musculus 7775 734 421
7tm 1 332 45 19 31 18 3.2e-08 4.4e-01
zf-C2H2 296 39 25 28 16 5.0e-06 2.1e-02
Protein kinase C, C1 domain 24 10 7 2.3 1.3 1.3e-04 4.0e-04
Protein kinase s.f. 198 35 19 19 11 4.0e-04 1.3e-02
Immunoglobulin s.f. 414 48 25 39 22 6.6e-04 3.2e-01
Lectin C 48 13 10 4.5 2.6 8.6e-04 3.7e-04
PH 103 19 16 9.7 5.6 5.4e-03 2.3e-04

R. norvegicus 7836 867 536
7tm 1 378 79 33 42 26 0.0e+00 9.4e-02
Immunoglobulin s.f. 387 55 32 43 26 4.8e-06 2.2e-02
EGF s.f. 137 31 17 15 9.4 2.0e-04 1.6e-02
Protein kinase s.f. 202 38 27 22 14 1.4e-03 9.2e-04
Laminin G-like module 30 10 9 3.3 2.1 2.3e-03 2.9e-04
DUF667 5 4 4 0.55 0.34 2.5e-03 4.3e-04

Table 4.2: Significantly over/under-represented Pfam domains in clusters with a positively
selected human, chimp, mouse, rat proteins respectively. Results for 75% and 95% posterior
probability thresholds are shown. Pfam domains which are significant at 5% after adjusting
for testing multiple hypotheses are in bold. An asterix indicates under-representation.
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tot. sel. sel. exp. exp. sig. sig.
>75% >95% >75% >95% >75% >95%

G. gallus 6122 2029 1207
EGF s.f. 141 80 52 47 28 0.0e+00 0.0e+00
Immunoglobulin s.f. 261 146 95 87 51 0.0e+00 0.0e+00
WD40* 156 32 20 52 31 7.1e-14 2.1e-06
7tm 1 127 61 29 42 25 7.9e-13 2.4e-01
Protein kinase s.f. 185 79 43 61 36 9.3e-10 1.2e-02
PH 91 43 31 30 18 2.0e-07 3.0e-03
Src homology-3 domain 142 54 41 47 28 1.1e-02 7.6e-08

F. rubripes 5810 2478 1452
Protein kinase s.f. 171 100 65 73 43 0.0e+00 0.0e+00
EGF s.f. 114 84 55 49 28 0.0e+00 0.0e+00
Immunoglobulin s.f. 172 119 80 73 43 0.0e+00 0.0e+00
PH 84 58 40 36 21 0.0e+00 1.3e-04
WD40* 153 42 28 65 38 8.8e-17 1.7e-05
Homeobox* 91 22 19 39 23 6.8e-12 2.5e-01
zf-C2H2* 186 60 37 79 46 3.3e-11 1.3e-04
Src homology-3 domain 145 80 57 62 36 3.7e-10 2.2e-16
fn3 62 41 30 26 15 1.0e-09 6.5e-04
Ank* 105 32 14 45 26 3.5e-07 2.8e-08
DEAD-like superfamily* 69 20 9 29 17 2.4e-05 2.2e-02

D. rerio 4438 1710 1098
Protein kinase s.f. 152 85 52 59 38 0.0e+00 2.4e-08
Immunoglobulin s.f. 144 79 59 55 36 0.0e+00 0.0e+00
PH 73 50 37 28 18 0.0e+00 5.2e-05
7tm 1 78 47 30 30 19 3.9e-12 1.4e-02
WD40* 119 31 19 46 29 4.6e-09 3.2e-06
Ank* 82 19 14 32 20 4.7e-08 9.2e-02
Src homology-3 domain 116 58 36 45 29 8.3e-07 3.1e-03

Table 4.3: Significantly over/under-represented Pfam domains in clusters with a positively
selected chicken, pufferfish and zebrafish proteins respectively. Results for 75% and 95%
posterior probability thresholds are shown. Pfam domains which are significant at 5% after
adjusting for testing multiple hypotheses are in bold. An asterix indicates under-representation.
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tot. sel. sel. exp. exp. sig. sig.
>75% >95% >75% >95% >75% >95%

D. melanogaster 3303 1253 737
WD40* 125 32 14 47 28 1.5e-09 5.2e-10
Protein kinase s.f. 112 57 36 42 25 4.7e-08 2.0e-02
Immunoglobulin s.f. 34 27 26 13 7.6 3.7e-04 1.3e-07
EGF s.f. 15 11 11 5.7 3.3 3.1e-02 7.1e-04

A. gambiae 3111 1285 692
WD40* 114 32 15 47 25 3.1e-09 1.7e-02
Protein kinase s.f. 100 56 33 41 22 2.6e-08 1.8e-02
Immunoglobulin s.f. 31 24 23 13 6.9 3.2e-03 1.1e-06

C. Elegans 1995 311 147
WHEP-TRS 5 4 4 0.78 0.37 8.3e-03 5.7e-04
Amidase 3 3 3 0.47 0.22 1.2e-02 1.5e-03

Table 4.4: Significantly over/under-represented Pfam domains in clusters with a posi-
tively selected fruit-fly, mosquito and nematode proteins respectively. Results for 75%
and 95% posterior probability thresholds are shown. Pfam domains which are signif-
icant at 5% after adjusting for testing multiple hypotheses are in bold. An asterix
indicates under-representation.

4.7 Discussion

I have demonstrated in this chapter that PSILC is a useful tool for identifying pseudogenes and

positive selection. There are several potential shortcomings of the method. Firstly, PSILC

relies heavily on having a good alignment. For example if a protein was conserved in a partic-

ular position but the alignment program did not align the conserved column properly, PSILC

will incorrectly find evidence for either a pseudogene or positive selection. Identification of

positive selection will be more prone to this sort of error than pseudogene identification, as

several such errors would need to be present across the length of the gene for PSILC to infer

pseudogene evolution incorrectly. This underlines the importance of accurate alignment pro-

grams, and I have endeavoured to minimize this problem by using the most accurate alignment

programs available, such as MUSCLE and PROBCONS. One way to deal with this problem

would be to calculate PSILC scores over many high likelihood alignments. However this is

a very computationally expensive approach. PSILC also relies on having an accurate tree.

For identifying genes and positive selection at external nodes, the main contribution to the
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PSILC score will be from close neighbours. Thus, it is most important to have the topology

close to the leaves correct, which is more easily achieved than deep internal branchings. Fi-

nally, PSILC relies on an accurate and representative protein domain HMM. Pfam HMMs are

hand-curated and thus more reliable than automatically generated profile HMMs. However,

as was evident in the study of APOBEC3G, there is not always an appropriate profile HMM

in the database. PSILC automatically corrects if a poorly scoring HMM is included in the

dataset, so that this problem usually leads to a loss of information regarding conserved sites,

rather than incorrect inference of selection or pseudogenes.

One direction for further investigation is the development of significance values for

PSILC scores for pseudogenes and positive selection. Significance of scores is currently gauged

by reference to the small high-quality benchmark test set used – the Vega test set. It would

be relatively straightforward to fit an extreme value distribution (provided this is the appro-

priate distribution) to scores of functional genes from this test set, and to use this to score

significance of pseudogene hits. However, it is likely that proteins matching different HMMs

have markedly different distributions of PSILC pseudogene scores, in much the same way

that different HMMs have different log-odds score EVD parameters. If this is the case, then

a more appropriate strategy may be to simulate evolution of functional proteins with a par-

ticular Pfam domain, and use the scores of these sets to parameterise a different distribution

for each HMM. This second strategy may also be amenable for parameterizing an EVD for

positive selection.

Another analysis for which PSILC would be useful is a large scale scan of genome

segments not annotated as protein coding genes for pseudogenes, following [TSZB03] and

[HMZ+03]. The approach here is to scan the genome for similarity to known coding regions

in non-coding DNA, using – for example – BLASTX [GS93]. PSILC would then be used to

confirm that the genome fragments found in this approach were genuinely evolving as neutral

DNA.

PSILC could also prove useful in scoring non-synonymous coding SNPs for loss of func-

tion. This approach could also be applied to somatic mutations identified as part of the

Cancer Genome project for impact on protein function, using data from the Catalogue of So-

matic Mutations in Cancer (COSMIC) database [BDF+04]. In fact, it has already been shown

that protein kinases are over-represented in somatically mutated genes which are implicated
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in cancer [FCM+04]. The protein kinases are also over-represented in the set of positively

selected human PHIGS clusters in section 4.6, and hence it may be interesting to investigate

the relationship – if any – between sites which are selected with sites which are implicated as

oncogenic.
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Chapter 5

Conclusion

There has been substantial progress made in recent years in describing patterns of evolu-

tion of protein domains [TPC98, AGT01b, TOT01, Ros02, VBK+04]. Significant progress

has also been made in developing models which describe the molecular evolution of pro-

teins [GY94, Bru96, TGJ96, HR02, MLH04, LP04]. In this thesis, I have focussed on using

this increased understanding of protein domain evolution to infer biologically important sig-

nals from sequence data. The first application in this work used information regarding species

specific patterns of domain co-occurrence in order to infer the domain architecture of a protein

from its sequence. The second application used information regarding patterns of substitution

in conserved domain sites between closely related proteins to enhance the detection of protein

domains in a cluster of homologous sequences. Whereas these two applications both look for

patterns which have been conserved by evolution via purifying selection, the last application

in this work looks for cases when this conservation has been lost in order to infer neutral

evolution acting on a pseudogene as well as positive selection. I have demonstrated in each

case that the extra sources of information can be used to improve inference, however the way

in which the models are parameterised and trained is of critical importance. An over-trained

or poorly parameterised model can substantially degrade inference.

Using observed patterns of occurrence in sequence data to infer biologically important

signals is a common theme in bioinformatics, including amongst many other applications the

detection of RNA genes from secondary structure folding potential and of protein coding genes

from similarity to known gene structures. Thus, this work can be seen as part of a general

approach to bioinformatics in which our understanding of a particular process is transformed

149
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into a predictive probabilistic model, and this model is refined over time as our understanding

of the process increases.

The first chapter was motivated by the observation that evolution has selected and

preserved a restricted repertoire of patterns of domain co-occurrence. This is similar to the

language modelling problem in speech recognition, and so language modelling techniques

were used to incorporate information regarding patterns of domain occurrence into a frame-

work for enhanced domain detection. A variable length Markov model was used to capture

taxonomic-specific domain co-occurrence patterns. To avoid over-training, database counts

of domain co-occurrence patterns were smoothed by recursively interpolating shorter domain

contexts and higher-order taxa. The method resulted in a 2.2% improvement in the prediction

of true-positive domain occurrences before the first false-positive at a family-by-family (i.e.

non-aggregated) level. This improvement varied substantially by species, with the largest

improvement in eukaryotes and a negligible improvement in virus protein annotation, which

probably reflects the number of domains per protein as well as the flexibility of the repertoire

of domain co-occurrence. This method is currently being used to extend the coverage of Pfam.

The motivation for the second chapter was an observation that some closely related

proteins did not share the same annotated domain architecture in Pfam. In general, this

was because the proteins were distantly related to the Pfam domain so although some of

the proteins scored above threshold, most scored below the Pfam threshold. I investigated

whether it was possible to take into account the pattern of substitution between closely

related proteins in order to annotate a cluster of homologous proteins. This technique was

found to be particularly sensitive to the way in which the site-specific evolutionary models

were parameterised, and so several alternative parameterisations were investigated. The best

performing of these resulted in a 67% improvement in detection of Pfam domains on an

aggregated list of hits across multiple families, ranked by significance. On a family by family

level the improvement was 5.3%. This method incorporated site-specific rate as well as residue

frequency usage information. It has been observed that site-specific evolutionary models

improve the likelihood of an alignment (after accounting for a penalty for increasing the

number of free parameters), but as far as I am aware this is the first demonstration that

site-specific evolutionary models can improve detection of protein domains.

In contrast to the first two chapters, the final chapter was concerned with identifying
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cases of protein domain evolution where the observed conservation has been lost on a branch.

The site-specific models of protein domain evolution from the previous chapter were used

to describe the expected residue at a particular site if the protein was evolving to preserve

the structure and function of the domain. An alternative model consisting of a composite

protein domain model until the parent node and a neutral DNA model on the final branch

was used to describe the residues expected if the protein was evolving as a pseudogene on this

final branch. This technique for pseudogene identification was shown to be more successful

at detecting pseudogenes on a human annotated test set of genes and pseudogenes than

standard techniques based on the ratio of the rates of synonymous and non-synonymous

substitution. The feasibility of integrating this technique into the ENSEMBL pipeline is

currently under investigation. By identifying sites which appear to be evolving under a neutral

protein model rather than a domain constrained model or a neutral DNA model of evolution,

this method also predicts sites under positive selection. This approach was used to identify

sites under positive selection in the APOBEC3 proteins, which have been implicated in the

immune response against retroviruses, as well the HIV Virion Infectivity factor (Vif) and the

Abalone lysin protein. The approach was also used in a global scan for positive selection

which primarily identified several classes of extracellular proteins as under significant positive

selection in vertebrates.

The methods outlined in this thesis calculate log-odds scores of a model of interest with

respect to a background, or null model. While this is convenient for ranking matches relative

to one another, it does not indicate the significance of a match. For protein domain identi-

fication, significance scores also enable the comparison of log-odds scores between different

domain models. Calculating robust significance scores is one area in which further research is

required for the techniques presented in this thesis. In the first two chapters, significance was

calculating using the EVD parameterised for the standard profile HMM, without taking into

account the extra information utilised in these chapters. This appears to be a satisfactory

approximation for the language models, as the error vs significance curves are not substan-

tially skewed by the language model scores. However the error vs significance curves for the

phylogenetic HMM demonstrate that the EVD is not parameterised correctly for this score

(see figure 3.6). Significance has not been calculated for the pseudogene or positive selection

scores. An EVD could be fitted to the pseudogene scores of a large set of known functional
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genes in order to calculate significance for pseudogene predictions. Positive selection, on the

other hand, is somewhat harder to unambiguously prove or disprove, and so no such equiva-

lent benchmark set for positive selection exists. Hence calculating robust significance scores

for the positive selection test will require simulation.

This thesis has focussed on protein domain evolution, however similar techniques may

be applicable for other conserved biological signals. Transcription factor binding sites and

cis-regulatory modules may be amenable to some of the techniques presented here. Indeed

in [BNP+02] the authors look for functional motifs on the basis of high local density as well

as a sequence match score, which is related to language modelling. Moses et al. [MCP+04]

use an evolutionary model similar to the phylogenetic profile HMM to identify conserved

transcription factor binding sites. Gene prediction is another area in which these ideas might

be applied, use of a phylogenetic HMM in this area has been explored by [MPJ03].

The techniques in Chapter 3 and 4 rely on parameterising a different evolutionary model

at each match state for each profile HMM in Pfam. We might expect that there is really a

much smaller vocabulary of evolutionary models which could account for the variation in each

of these match states. It would be interesting to try discover this vocabulary of match states,

and to build phylogenetic profile HMMs for each domain family in Pfam which restricted to

using match states from this vocabulary. This would make calculating phylogenetic profile

HMM scores for all of Pfam a feasible task, given that emission probabilities for each site

would only have to be calculated for each match state in the vocabulary, rather than for each

match state of each profile HMM. Moreover, this would lead to a robust definition of a null

model as the mixture model of all of the states in the vocabulary.

The work presented in this thesis demonstrates the usefulness of modelling protein

domain evolution in addressing core problems in bioinformatics such as homology detection,

pseudogene detection and the detection of positive selection.
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