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Summary

Current functional genomics relies on known and characterised genes, but despite

significant efforts in the field of genome annotation, accurate identification and

elucidation of protein coding gene structures remains challenging. Methods are

limited to computational predictions and transcript-level experimental evidence,

hence translation cannot be verified. Proteomic mass spectrometry is a method that

enables sequencing of gene product fragments, enabling the validation and refinement

of existing gene annotation as well as the detection of novel protein coding regions.

However, the application of proteomics data to genome annotation is hindered by

the lack of suitable tools and methods to achieve automatic data processing and

genome mapping at high accuracy and throughput. The main objectives of this work

are to address these issues and to demonstrate the applicability in a pilot study that

validates and refines annotation of Mus musculus.

In the first part of this project I evaluate the scoring schemes of “Mascot”, which

is a peptide identification software that is routinely used, for low and high mass

accuracy data and show these to be not sufficiently accurate. I develop an alternative

scoring method that provides more sensitive peptide identification specifically for

high accuracy data, while allowing the user to fix the false discovery rate.

Building upon this, I utilise the machine learning algorithm “Percolator” to

further extend my Mascot scoring scheme with a large set of orthogonal scoring

features that assess the quality of a peptide-spectrum match. I demonstrate very

good sensitivity with this approach and highlight the importance of reliable and

robust peptide-spectrum match significance measures.

To close the gap between high throughput peptide identification and large scale

genome annotation analysis I introduce a proteogenomics pipeline. A comprehensive

database is the central element of this pipeline, enabling the efficient mapping of

known and predicted peptides to their genomic loci, each of which is associated

with supplemental annotation information such as gene and transcript identifiers.

Software scripts allow the creation of automated genome annotation analysis reports.

In the last part of my project the pipeline is applied to a large mouse MS dataset. I

show the value and the level of coverage that can be achieved for validating genes and

gene structures, while also highlighting the limitations of this technique. Moreover, I

show where peptide identifications facilitated the correction of existing annotation,

such as re-defining the translated regions or splice boundaries. Moreover, I propose a

set of novel genes that are identified by the MS analysis pipeline with high confidence,

but largely lack transcriptional or conservational evidence.
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Chapter 1

Introduction

Current functional genomics relies on known and characterised genes, but despite

significant efforts in the field of genome annotation, accurate identification and

elucidation of protein coding gene structures remains challenging. Methods are

limited to computational predictions and transcript-level experimental evidence,

hence translation cannot be verified. Proteomic mass spectrometry is a method that

enables sequencing of gene product fragments, enabling the validation and refinement

of existing gene annotation as well as the elucidation of novel protein coding regions.

However, the application of proteomics data to genome annotation is hindered

by the lack of suitable tools and methods to achieve automatic data processing and

genome mapping at high accuracy and throughput. The main objective of this work

is to address these issues and to demonstrate its applicability in a pilot study that

validates and refines annotation of Mus musculus.

This introduction presents the foundations of the work described in this thesis.

Section 1.1 is an introduction to the field of protein mass spectrometry and focusses

on the importance of reliable peptide identification methods. Section 1.2 describes

available genome annotation strategies with a focus on in-house systems such as

Ensembl or Vega. A brief history of using proteomics data for genome annotation is

presented in section 1.3. Finally, the outline of my work is described in section 1.4.
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1.1 Protein mass spectrometry

1.1 Protein mass spectrometry

Mass spectrometry (MS) has become the method of choice for protein identification

and quantification (Aebersold and Mann, 2003; Foster et al., 2006; Patterson and

Aebersold, 2003; Washburn et al., 2001). The main reasons for this success include the

availability of high-throughput technology coupled with high sensitivity, specificity

and a good dynamic range (de Godoy et al., 2006). These advantages are achieved by

various separation techniques coupled with high performance MS instrumentation.

In a modern bottom-up LC-MS/MS proteomics experiment (Hunt et al., 1992;

McCormack et al., 1997), a complex protein mixture is often separated via gel

electrophoresis first to simplify the sample (Shevchenko et al., 1996). Subsequently,

proteins are digested with a specific enzyme such as trypsin, generating peptides

that are amenable for subsequent MS analysis. To further reduce sample complexity,

peptides are separated by liquid chromatographic (LC) systems (Wolters et al.,

2001), allowing direct analysis without the need for further fractionation: eluents are

ionised, separated by their mass over charge ratios and subsequently registered by

the detector. In a tandem MS experiment (MS/MS), low energy collision-induced

dissociation is used to fragment the precursor ions, usually along the peptide bonds.

Product fragments are measured as mass over charge ratios, which commonly reflect

the primary structure of the peptide ion (Biemann, 1988; Roepstorff and Fohlman,

1984). This simplified process is illustrated in figure 1.1.

Today this technology allows researchers to identify complex protein mixtures and

enables them to build protein expression landscapes of any biological material (Foster

et al., 2006). However, protein sequence coverage varies largely (de Godoy et al.,

2006; Simpson et al., 2000) while protein inference can be challenging if identified

sequences are shared between different proteins (Nesvizhskii and Aebersold, 2004;

Nesvizhskii et al., 2003).

The alternative top-down MS approach allows us to identify and sequence intact

2



1.1 Protein mass spectrometry
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Figure 1.1: Schematic of a generic bottom-up proteomics MS experiment. (a) Sample
preparation and fractionation, (b) protein separation via gel-electrophoresis, (c)
protein extraction, (d) enzymatic protein digestion, (e) separation of peptides in
one or multiple steps of liquid chromatography, followed by ionisation of eluents
and (f) tandem mass spectrometry analysis. Here, the mass to charge ratios of the
intact peptides are measured, selected peptide ions are fragmented and mass to
charge ratios of the product ions are measured. The resulting spectra are recorded
accordingly (MS, MS/MS) allowing peptide identification. Adapted from Figure 1 in
Aebersold and Mann (2003).

proteins directly and does not limit the analysis to the fraction of detectable enzyme

digests (Parks et al., 2007; Roth et al., 2008). However, this method is currently

not applicable to complex protein samples in a high throughput fashion. Firstly,

there is an insufficiency of efficient whole protein separation techniques and secondly

commercially available MS instruments are either limited by efficient fragmentation

or by molecular weight restrictions of the analytes (Han et al., 2006).
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1.1 Protein mass spectrometry

The most widely used instruments are ion trap mass spectrometers (Douglas

et al., 2005), which offer a high data acquisition rate and have generated an enormous

amount of data, some of which are available in public repositories (Desiere et al.,

2006; Jones et al., 2008; Martens et al., 2005a). Ion trap data is of low resolution and

low mass accuracy and therefore the typical rate of confident sequence assignments

is low (10-15%) (Elias et al., 2005; Peng et al., 2003).

The recent availability of hybrid-FT mass spectrometers (Hu et al., 2005; Syka

et al., 2004) enables high mass resolution (30k-500k) together with very high mass

accuracy (in the range of a few parts per million, ppm). On these instruments,

throughput and sensitivity is maximised by collecting MS data at a high resolution

and accuracy, and MS/MS data is recorded at high speed with low resolution

and accuracy (Haas et al., 2006). High resolution spectra enable charge state

determination of the precursor ion (Chernushevich et al., 2001; Heeren et al., 2004)

and highly restrictive mass tolerance settings lead in database search algorithms

to fewer possible peptide candidates because of the limited number of amino acid

compositions that fall into a given mass window (see next section). It is expected

that the discrimination power of database search engines improves with high accuracy

MS data (Clauser et al., 1999; Zubarev, 2006). In chapter 2 of this work I test this

hypothesis by evaluating the scoring scheme of two common database search engines

with high accuracy data and in chapter 3 I further utilise the discrimination power

of these data. For an outline of my work, please refer to section 1.4.

1.1.1 Peptide identification

A large number of computational tools have been developed to support high-

throughput peptide and protein identification by automatically assigning sequences

to tandem MS spectra (Nesvizhskii et al. (2007), table 1). Three types of approaches

are used: (a) de novo sequencing, (b) database searching and (c) hybrid approaches.

4



1.1 Protein mass spectrometry

1.1.1.1 De novo and hybrid algorithms

De novo algorithms infer the primary sequence directly from the MS/MS spectrum by

matching the mass differences between peaks to the masses of corresponding amino

acids (Dancik et al., 1999; Taylor and Johnson, 1997). These algorithms do not need

a priori sequence information and hence can potentially identify protein sequences

that are not available in a protein database. However, de novo implementations do

not yet reach the overall performance of database search algorithms and often only

a part of the whole peptide sequence is reliably identified (Mann and Wilm, 1994;

Pitzer et al., 2007; Tabb et al., 2003).

High accuracy mass spectrometry circumvents many sequence ambiguities, and

de novo methods can reach new levels of performance (Frank et al., 2007). Moreover,

hybrid algorithms become more important, which build upon the de novo algorithms,

but compare the generated lists of potential peptides (Bern et al., 2007; Frank and

Pevzner, 2005; Kim et al., 2009) or short sequence tags (Tanner et al., 2005) with

available protein sequence databases to limit and refine the search results.

With the constant advances in instrument technology and improved algorithms,

de novo and hybrid methods may have a more important role in the future, however

database searching remains the most widely used method for peptide identification.

1.1.1.2 Sequence database search algorithms

Sequence database search algorithms resemble the experimental steps in silico (figure

1.2): a protein sequence database is digested into peptides with the same enzyme that

is used in the actual experiment, most often trypsin that cuts very specifically after

Arginine (R) and Lysine (K) (Olsen et al., 2004; Rodriguez et al., 2007). All peptide

sequences (candidates) that match the experimental peptide mass within an allowed

maximum mass deviation (MMD) are selected from this in silico digested protein

sequence database. Each candidate is then further investigated at the MS/MS level

by correlating the experimental with the theoretical peptide fragmentation patterns

5



1.1 Protein mass spectrometry
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Figure 1.2: Concept of sequence database searching resembles a generic bottom-up
MS experiment, as for each stage of the experiment, an in silico equivalent component
is available.

and scoring the correlation quality (Eng et al., 1994; Kapp et al., 2005; Perkins et al.,

1999). It should be noted that the sequence database is usually supplemented with

expected experimental contaminant proteins. This avoids spectra that originate from

contaminant proteins to incorrectly match to other proteins.

1.1.2 Scoring of peptide identifications

Most of these database search algorithms provide one or more peptide-spectrum match

(PSM) scores that correlate with the quality of the match, but are typically hard to

interpret and are not associated with any valid statistical meaning. Researchers face

the problem of computing identification error rates or PSM significance measures and

need to deal with post-processing software that converts search scores into meaningful

statistical measures. Therefore, the following sections are focussed on scoring and

6



1.1 Protein mass spectrometry

assessment of database search results, providing a brief overview of common methods,

their advantages and disadvantages.

1.1.2.1 Peptide-spectrum match scores and common thresholds

Sequest (Eng et al., 1994) was the first sequence database search algorithm for tandem

MS data and is today, together with Mascot (Perkins et al., 1999) one of the most

widely used tools for peptide and protein identification. These are representative

of the numerous database search algorithms that report for every PSM, a score

that reflects the quality of the cross correlation between the experimental and the

computed theoretical peptide spectrum. Although Sequest and Mascot scores are

fundamentally different in their calculation, they facilitate good relative PSM ranking:

all peptide candidates that were matched against an experimental spectrum are

ranked according to the PSM score and only the best matches are reported.

Often only the top hit is considered for further investigation and some search

engines like X!Tandem (Craig and Beavis, 2004) exclusively report that very best

match. However, not all these identifications are correct. Sorting all top hit PSMs

(absolute ranking) according to their score enables the selective investigation of

the very best matched PSMs. This approach was initially used to aid manual

interpretation and validation. As the field of MS-based proteomics moved towards

high-throughput methods, researchers started to define empirical score thresholds.

PSMs scoring above these thresholds were accepted and assumed to be correct,

while anything else was classified as incorrect. Depending on how well the underlying

PSM score discriminates, the correct and incorrect scores overlap significantly (figure

1.3) and therefore thresholding is always a trade-off between sensitivity (fraction

of true positive identifications) and the acceptable error rate (fraction of incorrect

identifications). Low score thresholds will accept more PSMs at the cost of a higher

error rate and on the other hand a high score threshold reduces the error rate at the

cost of sensitivity.
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Many groups also apply heuristic rules that combine the score threshold with

some other validation properties such as charge state, the difference in score to

the second best hit, amongst others. The problem with these methods is that the

actual error rate remains unknown and the decision of accepting assignments is only

based on judgement of an expert. Moreover, results between laboratories or even

between experiments cannot be reliably compared, since different search algorithms,

protein databases, search parameters, instrumentation and sample complexity require

adaptation of acceptance criteria. A recent HUPO study (States et al., 2006)

investigated the reproducibility between laboratories. Amongst the 18 laboratories,

each had their own criteria of what was considered a high and low confidence protein

identification, which were mostly based on simple heuristic rules and score thresholds

(States et al. (2006), supplementary table 1). It was found that the number of high

confidence assignments between two different laboratories could vary by as much as

50%, despite being based on the same data. As a result, many proteomic journals

require the validation and assessment of score thresholds, ideally with significance

measures such as presented below.

1.1.2.2 Statistical significance measures

The expected error rates associated with individual or sets of PSMs can be reported

as standard statistical significance measures. This allows transformation of specific

scoring schemes into generic and unified measures, enabling comparability across

any experiment in a consistent and easy to interpret format. In this section I discuss

and explain commonly used statistical measures that ideally are reported by every

database search algorithm or post-processing software; focusing on the false discovery

rate (FDR), its derived q-value and the Posterior Error Probability (PEP), also

sometimes referred to as local FDR.
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Figure 1.3: A score distribution (black) typically consists of a mixture of two
underlying distributions, one representing the correct PSMs (green) and one the
incorrect PSMs (red). Above a chosen score threshold (dashed line) the shaded blue
area (A) represents all PSMs that were accepted, while the solid red filled area (B)
represents the fraction of incorrectly identified PSMs with the chosen acceptance
criteria. B together with B’ sum up all incorrect PSMs for the whole dataset. The
false positive rate (FPR) and the false discovery rate (FDR) can be calculated when
the numbers of PSMs in B, B’ and A are counted using the presented formulas.
The posterior error probability (PEP) can be calculated from the height of the
distributions at a given score threshold.

p-values, false discovery rates and q-values

The p-value is a widely used statistical measure for testing the significance of results

in the scientific literature. The definition of the p-value in the context of MS database

search scores is the probability of observing an incorrect PSM with a given score

or higher by chance, hence a low p-value indicates that the probability is small of

observing an incorrect PSM. The p-value can be derived from the false positive rate

(FPR), which is calculated as the proportion of incorrect PSMs above a certain score
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threshold over all incorrect PSMs (figure 1.3). The simple calculation of the p-value

however is misguiding when this calculation is performed for a large set of PSMs. In

this case, we would expect to observe a certain proportion of small p-values simply by

chance alone. An example: given 10,000 PSMs at a score threshold that is associated

with a p-value of 0.05, we expect 0.05 × 10, 000 = 500 incorrect PSMs simply by

chance. This leads to the well known concept of multiple testing correction, which

can be found in its simplest, but conservative, form in the Bonferroni correction

(Bonferroni, 1935; Shaffer, 1995). Bonferroni suggested to correct the p-value by the

number of tests performed, leading to a p-value of 5 × 10−5 in our example above.

However, we have only corrected for the number of spectra, but not for the number

of candidate peptides the spectrum was compared against. A correction taking into

account both factors leads to extremely conservative score thresholds. However, an

alternative well established method for multiple testing correction for large-scale

data such as genomics and proteomics is to calculate the false discovery rate (FDR)

(Benjamini and Hochberg, 1995).

The FDR is defined as the expected proportion of incorrect predictions amongst

a selected set of predictions. Applied to MS, this corresponds to the fraction of

incorrect PSMs within a selected set of PSMs above a given score threshold (figure

1.3). As an example, say 1,000 PSMs score above a pre-arranged score threshold,

and 100 PSMs were found to be incorrect, the resulting FDR would be 10%. On

the other hand, the FDR can be used to direct the trade-off between sensitivity and

error rate, depending on the experimental prerequisites. If, for example, a 1% FDR

were required, the score threshold can be adapted accordingly.

To uniquely map each score and PSM with its associated FDR, the notion of

q-values can be used. This is because two or more different scores may lead to the

same FDR, indicating that the FDR is not a function of the underlying score (figure

1.4). Storey and Tibshirani (Storey and Tibshirani, 2003) have therefore proposed a

new metric, the q-value, which was introduced into the field of MS proteomics by

10
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(i.e, many of the PSMs are correct), the accepted method for
multiple testing correction is to estimate thefalse discovery rate
(FDR).10,11 Storey and Tibshirani12 provide a description of FDR
methods that is accessible to nonstatisticians and that includes
more recent developments. In our case, the FDR associated
with a particular score threshold is defined as the expected
percentage of accepted PSMs that are incorrect, where an
“accepted PSM” is one that scores above the threshold (Many
proteomics papers incorrectly refer to this quantity as the “false
positive rate.”) However, other scientific fields define the false
positive rate as the fraction of true null tests that are called
significant,13–17 whereas the false discovery rate is defined as
the fraction of true null tests among all of those that are called
significant). For example, at an FDR of 1%, if we accept 500
PSMs, then we expect five of those matches to be incorrect.

The simplest way to calculate the FDR is analogous to the
calculation of p-values, above. For a given score threshold, we
count the number of decoy PSMs above the threshold and the
number of target PSMs above the threshold. We can now
estimate the FDR by simply computing the ratio of these two
values. For example, at a score threshold of 3.0, we observe
3849 accepted target PSMs and 219 accepted decoy PSMs,
yielding an estimated FDR of 5.7%. Figure 4 plots the number
of accepted PSMs as a function of the estimated FDR, and the
series labeled “Simple FDR” was computed using the ratio of
accepted decoys versus accepted targets.

Estimating the Percentage of Incorrect Target PSMs
A slightly more sophisticated method for calculating the FDR

takes into account the observation that, whereas all decoy PSMs
are incorrect by construction, not all target PSMs are correct.
Ideally, the presence of these incorrect target PSMs should be
factored into the FDR calculation. For example, suppose that
among 10 000 target PSMs, 8000 are incorrect and 2000 are
correct. We would like to know the 8000 quantity so that we
can adjust our FDR estimates.

Figure 2 shows that the distributions of scores assigned to
target and decoy PSMs are similar, except that the target PSM
score distribution has a heavier tail to the right. This tail arises
because the set of target PSMs is comprised of a mixture of
correct and incorrect PSMs. Figure 5 shows simulated distribu-

tions that illustrate the underlying phenomenon. For this
simulation, we assume that our PSM score function follows a
normal distribution, and we set the standard deviation to 0.7
(The assumption of normality is for the purposes of illustration
only; the methods we describe here do not require any
particular form of distribution, nor do we assume that XCorr
is normally distributed). For incorrect PSMs, we set the mean
of the distribution to 1.0, and for correct PSMs, we change the
mean to 3.0. Our simulated data set contains 10 000 decoy
PSMs, 8000 incorrect target PSMs, and 2000 correct target
PSMs. The figure shows the resulting decoy score distribution
(black line), the target score distribution (blue line), and its two
component distributions (dotted and dashed blue lines). In this
simulated data set, the percentage of incorrect targets (PIT) is
80%. This PIT is equivalent to the ratio of the area under the
dotted blue line (the incorrect target PSMs) to the area under
the solid black line (the decoy PSMs).

The PIT is important because it allows us to reduce the
estimated FDR associated with a given set of accepted target
PSMs. In our simulation, if we acceptX decoy PSMs with scores
above a certain threshold, then we expect to find 0.8X incorrect
target PSMs above the same theshold. A more accurate estimate
of the FDR, therefore, is to multiply the previous estimate—the

Figure 4. Mapping from the number of identified PSMs to the estimated false discovery rate. (A) The figure plots the number of PSMs
above the threshold as a function of the estimated false discovery rate. Two different methods for computing the FDR are plotted, with
and without an estimate of the percentage of incorrect target PSMs (PIT). The vertical line corresponds to an XCorr of 3.0. (B) A zoomed-
in version of panel A, with the estimated FDR shown as a dotted line and the q-value shown as a solid line.

Figure 5. Simulated target and decoy PSM score distributions.

Assigning Significance to Peptides perspectives

Journal of Proteome Research • Vol. xxx, No. xx, XXXX C

 π 0

Figure 1.4: FDR compared with q-value: two or more different scores may lead
to the same FDR, whereas the q-value is defined as the minimal FDR threshold
at which a PSM is accepted, allowing to associate every PSM score with a specific
q-value. Adapted from Käll et al. (2008a), figure 4b.

Käll et al. (2008a,b). In simple terms, the q-value can be understood as the minimal

FDR threshold at which a PSM is accepted, thereby transforming the FDR into a

monotone function: increasing the score threshold will always lower the FDR and

vice versa. This property enables the mapping of scores to specific q-values. In

Figure 1.5 the q-value is shown for a Mascot search on a high accuracy dataset. At

a Mascot Ionscore of 10, 20 and 30 the corresponding q-values were 0.26, 0.04, 0.005

with 19967, 14608, 10879 PSM identifications respectively. It is important to note

that for other datasets, instruments and parameter setting, the q-value could be

significantly different for the same score and hence the q-value analysis should be

performed for any individual search.
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Figure 1.5: Mascot PSM scores were transformed into q-values and posterior error
probabilities (PEP) using Qvality (see section 1.1.2.3). A score cut-off of 30 demon-
strates the fundamental difference of the two significance measures: the q-value would
have reported about 0.5% of all the PSMs as incorrect above that score threshold,
whereas the PEP would have reported a 4% chance of a PSM being incorrect at this
specific score threshold. Note: The maximum q-value for this dataset is 0.5, since
only half of the PSMs are incorrectly assigned even without any score threshold
applied due to the use of high quality and high mass accuracy data stemming from
an LTQ-FT Ultra instrument. This factor (π0) is discussed in more detail in figure
1.6.

Posterior Error Probability

The q-value is associated with individual PSM scores, although this measure is

always a result of all PSMs in a dataset. For illustration, imagine we remove from a

large dataset half of the spectra that were incorrectly matched above a given score

threshold; after spectral removal the q-value for this same score threshold would be

only about 50% of its original value, even though the underlying spectrum and PSM

has not changed. Moreover, in an extreme case, a q-value of 1% could be taken to

mean that 99 PSMs are perfectly correct and 1 PSM is incorrect. More likely the
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majority of these PSMs are good, but not perfect matches and a few are weaker

matches. Clearly, when the focus of an experiment is based on individual peptide

identifications (for example in biomarker discovery, genome annotation, or follow-up

research of a key peptide), then it would be useful to compute spectrum specific

significance measures that can be represented as the posterior error probability

(PEP).

The global FDR or q-value reflects the error rate which is associated with a set

of PSMs, whereas the PEP (or sometimes referred to as local FDR) measures the

significance of a single spectrum assignment with a specific PSM score (Käll et al.,

2008b,c). The PEP is simply the probability of the PSM being incorrect, thus a PEP

of 0.01 means that there is 1% chance of that PSM being incorrect. For the previous

example where 100 PSMs resulted in a q-value of 1%, the PEPs would have reflected

the stronger and weaker matches.

Unlike the FDR and q-value calculations that require minimal distributional

assumptions, the PEP can only be calculated with knowledge of the underlying score

distributions representing the correct and incorrect PSM identifications (see next

section), since the PEP is inferred from the height of the distributions at a given

PSM score. Figure 1.3 illustrates again that the PEP is specific to one PSM score,

whereas the FDR accounts for the whole set of PSMs that scored at least as good as

the PSM at hand. This leads to the fact that the sum of the PEPs above a chosen

score threshold divided by the number of selected PSMs results in an alternative way

of computing the FDR (Keller et al., 2002).

Figure 1.5 shows the results of the PEP as well as the q-value calculations for

a high mass accuracy dataset that was searched with Mascot. For a PSM score

threshold of 10, 20 and 30, the associated q-values were 0.26, 0.04 and 0.005 whereas

the PEPs were 1.0, 0.39 and 0.04, respectively. This clearly demonstrates the

difference between the significance measures: whereas a Mascot score threshold of

30 (this is all PSMs with Mascot scores of 30 and above) led to only 0.5% incorrect

13
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PSMs in this dataset, the individual Mascot score of 30 was associated with a 4%

chance of being incorrect.

1.1.2.3 Computing statistical significance measures

Some database search algorithms report statistical measures, but these should be

carefully validated and fully understood before being used and interpreted since their

significance calculations are often based on pseudo statistical principles (see chapter

2). It is however very easy to obtain well founded significance measures with free

post-processing software packages and methods as briefly described below. Finally,

the well known effect of ”garbage-in/garbage-out” is also true for MS data analysis,

but when tools and methods are applied sensibly, they can be extremely valuable

and represent some of the latest developments in shotgun proteomics.

Target/Decoy database searching

A crucial step forward in assessing the reliability of reported PSMs was the introduc-

tion of the target/decoy search strategy pioneered by Moore et al. (2002): data is not

only searched against the standard sequence database (target), but also against a

reversed (Moore et al., 2002), randomised (Colinge et al., 2003), or shuffled (Klammer

and MacCoss, 2006) database (decoy).

The idea is that PSMs obtained from the decoy database can be used to estimate

the number of incorrect target PSMs for any given criteria such as score thresholds

or heuristic methods. This enables the calculation of the FDR by simply counting the

number of decoy and target PSMs that meet the chosen acceptance criteria (figure

1.3, FDR formula for separate target/decoy searches). A more accurate FDR can be

obtained when the fraction of incorrect PSMs (π0) matching the target database can

be estimated and incorporated (figure 1.6). π0 is equivalent to the ratio of the area

under the curve of incorrect target PSMs (figure 1.3, red line) to the area under the

curve of all target PSMs (figure 1.3, black line). This ratio can be estimated when
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Figure 1.6: Score distributions of a target and decoy search with and without
accounting for π0 (pi0, percentage of target PSMs that are incorrect). Generally, the
target score distribution (black) is a mixture of correct (green) and incorrect (red)
peptide-spectrum matches, while the decoy matches are meant to be a “proxy” for
the incorrect peptide matches obtained in the target run.
When no score thresholds are applied, all matches from the decoy search are counted
as incorrect identifications. However, this is not a good proxy for the incorrect target
matches, because a certain fraction of target matches are always correct, regardless
of the score threshold. This becomes more important for recent data that is obtained
from modern hybrid instruments such as the Orbitrap or LTQ-FT (Thermo Fisher
Scientific), where even 50% of the peptide assignments can be correct as shown in
this illustration. In fact, not accounting for this would mean that the estimated
number of true identifications (target minus decoy hits) would become negative (left
figure, green). However, incorporating the estimated fraction of peptides that are
incorrect (π0) in the target run, results in a much improved estimate of incorrect
(red) and correct (green) peptide identifications (right figure).
This illustration is based on real data from sample 1 of section 2 of this thesis.
Spline fits of score distributions were generated with the “smooth.spline” function of
the R-project software (http://www.r-project.org) using default parameters and
setting the degrees of freedom to 15.
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decoy and target PSMs are counted for the score intervals [0, n], where 0 is the lowest

score and n increases from the lowest to the highest score for each interval. Scores

close to zero comprise mostly incorrect target PSMs and therefore the larger the

interval the more conservative the π0 estimate becomes with the variance decreasing

(Käll et al., 2008a). Various methods exist to average across these intervals (Hsueh

et al., 2003; Jin and Cai, 2006; Meinshausen and Rice, 2006; Storey, 2002; Storey and

Tibshirani, 2003), but in the simplest form a straight line is fitted across the different

interval ratios to yield a π0 estimate (Käll et al., 2008a). A formal description of the

π0 estimation procedure used in Percolator and Qvality is discussed in detail in Käll

et al. (2008c)

It should be noted that there are two accepted concepts of target/decoy database

searching and different groups favour one or the other method: either data is searched

against a concatenated target/decoy database or data is separately searched against

the target and decoy database (Bianco et al., 2009; Elias and Gygi, 2007; Fitzgibbon

et al., 2007). A clear consensus as to which method is best is still to be established.

Qvality

Qvality (Käll et al., 2008c) is a software tool that builds upon separate target/decoy

database searching together with nonparametric logistic regression, where decoy

PSM scores are used as an estimate “proxy” of the underlying null score distribution.

It thereby enables transformation of raw and arbitrary PSM scores into meaningful q-

values and PEPs. Since no explicit assumptions of the type of the score distributions

are made, the method was shown to be robust for many scoring systems and hence

is not limited to one specific database search algorithm. Qvality incorporates pi0

estimates into the FDR calculation and is therefore expected to produce more

accurate significance metrics than standard target/decoy FDR calculation.

Application of Qvality is straightforward; it only expects two disjoint sets of raw

PSM scores as input, one stemming from the target and one from the decoy database.
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Figure 1.7: Distributions of Mascot and Percolator scores were generated from a
high accuracy LTQ-FT Ultra dataset (left). This illustrates the bi-modal nature
of PSM matching scores as simulated in figure 1.3 and further demonstrates the
discrimination performance improvement between correct and incorrect PSMs for
post-processing tools such as Percolator over Mascot. Note: these scores are not on
the same scale, but have been normalised and scaled for this illustration.

Data for figure 1.5 was computed with Qvality using the target and decoy Mascot

ion scores. Qvality is a small stand-alone command-line application without any

external dependencies and is readily applicable http://noble.gs.washington.edu/

proj/qvality/. Qvality was used for parts of the analysis in chapter 3.

PeptideProphet and Percolator

PeptideProphet and Percolator not only provide meaningful statistics, but also

attempt to improve the discrimination performance between correct and incorrect

PSMs (figure 1.7) by employing an ensemble of features, several of which are used

by experts for manually validating PSMs.

”PeptideProphet” developed by Keller, Nesvizhskii, Kolker, and Aebersold (2002),

was the first software that reported spectrum specific probabilities (P), akin to

the PEP, as well as FDRs. In order to improve the discrimination performance

between correct and incorrect PSMs, PeptideProphet learns from a training dataset

a discriminant score which is a function of Sequest specific scores such as XCorr,
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deltaCn, Sp amongst others. PeptideProphet makes extensive use of the fact that

PSM scores, as well as discriminant scores, represent a mixture distribution from the

underlying superimposed correct and incorrect score distributions (figure 1.3, 1.6).

The original PeptideProphet algorithm is based on the assumption that the

type of these distributions remain the same across experiments and hence were

determined from training datasets. However, using an Expectation Maximisation

algorithm (Dempster et al., 1977), the parameters of these distributions are adapted

for each dataset individually, enabling calculation of the corresponding FDR and P

significance measures.

Recent versions of PeptideProphet supplemented this parametric model with a

variable component mixture model and a semi-parametric model that incorporate

decoy database search results (Choi and Nesvizhskii, 2008; Choi et al., 2008). The

rational of this was to provide more robust models for a greater variety of analytical

platforms where the type of distribution may vary. PeptideProphet is a widely

used and accepted method to compute confidence measures and is available at

http://tools.proteomecenter.org. However, I have not used this tool in this work,

since the Mascot implementation (the algorithm that is installed on our compute

farm) does not improve discrimination and only uses the raw Mascot scores (personal

communication, Alexey I. Nesvizhskii 2007).

Percolator (Käll et al., 2007) is an alternative post-processing software relying on

target/decoy database search results rather than on distributional assumptions to

infer the q-value and PEP. This system employs a semi-supervised machine learning

method for improving the discrimination performance between correct and incorrect

PSMs. In the following the Percolator algorithm is outlined before its use in this

work is discussed in more detail.

Target and decoy search results from Sequest (see section 1.1.1.2 and 1.1.2.3)

are used as an input dataset for Percolator. In a first step, a vector of 20 features

is calculated for every target and decoy PSM from these data, which remain fixed
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Figure 1.8: Schematic of the iterative learning process as implemented by Percolator

throughout the algorithm execution. Every feature, in isolation or in combination

with other features, is reflective of some aspects that relate to the quality of the PSM

at hand. The complete list of features is described in Käll et al. (2007) (supplementary

table 1), which includes PSM scores, score difference between top hit and second

best hit, enzyme specificity, peptide properties amongst others.

In the next step, a user defined feature that is known to discriminate well between

correct and incorrect PSMs, such as the XCorr Sequest score, is used as an initial

scoring function; a FDR filter can utilise this initial scoring function to select all

target PSMs at a predefined low FDR. Given that at a 1% FDR setting 99% target

PSMs can be assumed to be correct, this PSM subset serves as a positive training

dataset, whereas the total set of decoy PSMs, which are known to be incorrect, are

used as a negative training set (figure 1.8). Using the pre-calculated features of these

training data, a linear support vector machine (SVM) (Ben-Hur et al., 2008) learns

to discriminate between the positive and negative training set.

The resulting SVM classifier is then used to re-score the target and decoy PSMs.

The FDR filter is applied in another iteration to select all target PSMs at a low

FDR, which together with all decoy PSMs are used for SVM training. The algorithm

continues this cycle for a few iteration, and in Käll et al. (2007) it was shown that
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after a few iterations the system converges and results in a robust classifier that is

then used in a last step to re-score each PSM in the dataset. It should be noted

that a three-fold cross validation is performed at each iteration to avoid overtraining,

resulting in biased scoring. The combination of features results in significantly better

discrimination between correct and incorrect PSMs when compared to raw PSM

scores (figure 1.7).

For every PSM, the associated q-value as well as the PEP are reported (Käll

et al., 2008b,c). The whole process is fully automated and does not require any

expert-driven or subjective decisions, thereby eliminating any artificial biases. The

learnt classifier is specific and unique to each dataset, thus adapting to variations in

data quality, protocols and instrumentation. This was demonstrated in Käll et al.

(2007) (supplementary figure 2), where feature weights were used as a measure of the

importance of individual features. However, it should be noted that feature weights

of a SVM are difficult to interpret, since multiple features may be correlated and

hence feature weights are divided arbitrary between those. Alternatively, relative

importance of a feature could be measured by removing it from the set, but again,

correlating feature complicate the interpretation.

Percolator is available under http://noble.gs.washington.edu/proj/percolator/

and similar to Qvality does not depend on any external dependencies and hence

can be readily used. It offers a simple command line interface that requires Sequest

results as input and outputs the q-value, PEP, as well as the peptide and associated

protein(s) information for each spectrum.

I have developed upon Percolator a Mascot module that uses an extended feature

set, including Mascot specific features as well as intensity and ion-series information.

This work is discussed in detail in chapter 3. It is available for download under

http://www.sanger.ac.uk/resources/software/mascotpercolator/ and is currently

integrated into the official Mascot 2.3 release (see http://www.matrixscience.com/

workshop_2009.html for more information).
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1.2 Genome annotation

1.2.1 Fundamentals of gene transcription and translation

The genomic sequence encodes the blueprint of an organism. The instruction sets are

encoded in protein coding and non-coding genes, which are defined stretches of DNA

sequence that contain the information required to construct proteins and functional

RNA molecules respectively. The realisation of genes is initiated by transcription,

whereby genomic DNA is transcribed into RNA.

This premature RNA sequence comprises two different types of segments in

eukaryotes, exons and introns, the latter of which is removed during splicing. This

process enables the construction of alternative products (alternative splicing) by

varying the joining of exons: these can be extended at the 5’ donor or 3’ acceptor

site, one or multiple exons can be skipped or rarely introns can be retained.

Products that are derived from non-coding RNA genes, code for RNA molecules

and are not further translated into proteins. These non-coding molecules have been

studied extensively in the last decade and are involved in many cellular processes,

although the function is unknown for some of these elements (Carninci et al., 2005;

Clamp et al., 2007; Claverie, 2005; Washietl et al., 2007). However, the focus of this

introduction are the main functional players in a cell: proteins.

Spliced RNA sequence that was derived from protein coding genes is referred

to as messenger RNA (mRNA). Mature mRNA comprises the open reading frame

(ORF) that codes for the protein and the untranslated sequences (5’ UTR upstream

and 3’ UTR downstream of the ORF). During protein translation, three nucleotides

are read at a time (codons) and specific transfer RNAs (tRNA) match these codons

with three unpaired complementary bases (anticodon). Each anticodon defines a

specific amino acid that is bound to the tRNA, which upon binding of mRNA and

tRNA is ligated to the growing polypeptide chain.

The newly synthesised protein must fold to its active three-dimensional structure
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Transcription

Splicing

Translation

DNA

pre-mRNA

mRNA

protein

5' UTR 3' UTR
Open reading

frame

Exon

Introns

Promoter

Exon Exon Exon Exon

Figure 1.9: Illustration of gene transcription and translation according to the standard
model. The figure was adapted from Wikipedia (http://en.wikipedia.org/wiki/
File:Gene2-plain.svg)

before it can carry out its function. This simplified standard model describing

the unfolding of genomic sequence, also known as the “central dogma of molecular

biology” (Crick, 1958, 1970), is further illustrated in figure 1.9.

1.2.2 Genome sequencing

Sequencing efforts in the last decade generated a large amount of raw genomic DNA

sequence data. To date there are 118 complete eukaryotic genomes sequenced (Liolios

et al., 2009) and more sophisticated sequencing technologies will even speed up this

data collection process. A project to sequence 10,000 vertebrate species has just

been proposed, even though technology is not yet up to it (Pennisi, 2009). Genomes

can be large, for example the human genome comprises approximately 3.2 × 109
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base pairs, yet only about 1-2% of its DNA codes for proteins (Birney et al., 2007;

Claverie, 2005).

1.2.3 Definition of genome annotation

Genome annotation can be defined as augmenting these raw DNA sequences with

additional layers of information (Brent, 2005; Stein, 2001). It can be distinguished

between structural and functional annotation. The former is the process of identifying

important genomic elements such as genes, the precise localisation of genes within

the genome and the elucidation of exon/intron structures, while the latter deals with

the biological function, regulation and expression analysis of these elements. For

clarification, when the term “genome annotation” is used in the remainder of this

work, it refers to structural annotation only.

The task of accurately annotating the complete set of protein coding genes and

their alternative splice forms is considered one of the hardest and yet most important

steps towards understanding a genome, since proteins are central to virtually every

biological process in a cell. However, the difficulty of gene identification and gene

structure elucidation is determined by the complexity of the underlying genome: for

example, identification of ORFs in bacteria, which are not discussed in this work, is

relatively easy due to the lack of alternative splicing and a compact genome; simpler

eukaryotes, such as yeast with limited splicing and short intronic regions are much

easier to annotate than vertebrates, since extensive alternative splicing, long introns

and intergenic regions further complicate sensitive and specific annotation.

1.2.4 Genome annotation strategies

With the ever increasing availability of sequenced genomes, automatic genome

annotation is an active area of research. Figure 1.10 provides an overview of the

different available annotation strategies, which will be briefly discussed.
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http://genomebiology.com/2009/10/1/201 Genome BBiioollooggyy 2009, Volume 10, Issue 1, Article 201 Harrow et al. 201.2

Genome BBiioollooggyy  2009, 1100::201

FFiigguurree  11
Gene-finding strategies. Given a genome DNA sequence, information on the location of genes and transcripts can be obtained from different sources:
conservation with one or more informant genomes (1); intrinsic signals involved in gene specification, such as start and stop codons and splice sites (2);
the statistical properties of coding sequences (3); and, most importantly, known transcript sequences (either full-length cDNAs or partial ESTs) and
protein sequences (4). Over the past two decades, a plethora of programs and strategies has been developed to combine these sources of information to
obtain reliable gene predictions. The ‘intrinsic’ evidence from sequence signals and statistical bias can be combined (using a variety of frameworks often
related to hidden Markov models [59]), to produce gene predictions (6). These programs are often referred to as ab initio or de novo gene finders. They
are the programs of choice in the absence of known transcript or protein sequences or phylogenetically related genomes. If related genome sequences
are available, the intrinsic information can be combined with patterns of genomic sequence conservation using programs often referred to as comparative
(or dual- or multi-genome) gene finders (5). With these programs, maximum resolution is achieved when the compared genomes are at a phylogenetic
distance such that there is maximum separation between the conservation in coding and noncoding regions. To increase resolution, programs have been
developed that use multiple informant genomes. The most sophisticated use an underlying phylogenetic tree to appropriately weight sequence
conservation depending on evolutionary distance. If cDNA and EST sequences are available, these often take priority over other sources of information.
The initial map of the transcript or protein sequences onto the genome, which can be obtained using a variety of tools, including sequence-similarity
searches, is refined using more sophisticated ‘splice alignment’ algorithms, whose explicit splice-site models allow more precise alignment across gaps
corresponding to introns (8). Alternatively, cDNA and protein information can be fed into an ab initio gene-finder algorithm to give information on the
exons included in the prediction (7). Often, cDNA and protein evidence is only partial; in such cases, the initial reliable gene and transcript set may be
extended with more hypothetical models derived from ab initio or comparative gene finders, or from the genome mapping of cDNA and protein
sequences from other species. Pipelines have been derived that automate this multi-step process (9). More recently, programs have been developed that
combine the output of many individual gene finders (10). The underlying assumption in these ‘combiners’ is that consensus across programs increases the
likelihood of the predictions. Thus, predictions are weighted according to the particular features of the program producing them. The most general
frameworks allow the integration of a great variety of types of predictions - not only gene predictions, but also predictions of individual sites and exons.
Despite all the developments in computational gene finding, the most reliable and complete gene annotations are still obtained after the initial alignments
of cDNA and proteins onto the genome sequence are inspected manually to establish the exon boundaries of genes and transcripts (11). This is the task
carried out by the HAVANA team at the Sanger Institute. The initial manual annotation can be refined even further by subsequent experimental
verification of those transcript models lacking sufficiently strong evidence, as in the GENCODE project (12). Examples of gene-prediction programs (with
references and URLs) corresponding to each strategy outlined here are provided in Additional data file 1.

Informant genomes
Query genome

cDNA sequences

Protein sequence

Mapping of known cDNA
and protein sequence into

the query genome

Splice
aligners

Detection of
sequence bias

related to coding
functionDetection of signals

involved in gene
identification: splice sites,

start sites and so on

Comparison and
allignment of query

genome against
informant genomes

Dual or multiple
comparative

genome finders ‘Ab initio’
genome finders

Combiners
Integrative
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verification

Manual
annotation

(1) (2)
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(9)

(12)

(11)
(10)

Figure 1.10: Overview of the different gene-finding strategies. Figure was adapted
from Harrow et al. 2009, figure 1.

The most reliable gene-finding systems are based on experimental evidence where

available complementary DNA (cDNA) (Furuno et al., 2003; Imanishi et al., 2004),

expressed sequence tags (EST) (Adams et al., 1991; Parkinson and Blaxter, 2009)

and protein sequences are aligned to the genomic sequence by algorithms that can

account for splicing, such as GeneWise (Birney and Durbin, 1997; Birney et al.,

2004) or Exonerate (Slater and Birney, 2005). However, this approach requires

extensive mRNA or protein sequence coverage and since only a fraction of genes are

transcribed at any given time for any given cell, complete coverage is hard to achieve.

Moreover, the quality of these data is often low, for example the intrinsically short

EST sequences contain up to 5% sequencing errors or include contaminant sequences

and “full-length” cDNAs can be truncated, which together with SNPs can result in

ambiguous or incorrect alignments (Nagaraj et al., 2007).

An additional strategy is the comparative genomics approach. It is known that
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functional elements undergo mutation at a slower rate and hence regions that are

found to be conserved between related genomes such as human and mouse can

indicate functional genes (Alexandersson et al., 2003; Korf et al., 2001; Parra et al.,

2003). However, many non-coding functional elements are also conserved (Claverie,

2005) and species specific genes can be missed (Knowles and McLysaght, 2009),

limiting the approach when used in isolation.

Ab initio gene predictors detect protein coding signals from DNA sequence alone.

These signals are either specific sequences that indicate the presence of a nearby

gene (e.g. regulatory regions such as promoters), or statistical properties of the

protein-coding sequence itself (e.g. GC content). Genscan (Burge and Karlin, 1997),

GeneID (Parra et al., 2000) and Augustus (Stanke and Waack, 2003) are popular ab

initio gene-finders. Inferring annotation from genomic sequence alone is an extremely

challenging task, resulting in low sensitivity and specificity and hence is not used

directly for annotation but rather for the generation of candidate transcripts. Some

of these predictors optionally allow the incorporation of additional extrinsic evidence

such as cDNA, EST, protein or sequence conservation data to improve prediction

accuracy.

1.2.5 Ensembl and Vega

With the availability of the human genome draft sequence in 2001 (Lander et al.,

2001; Venter et al., 2001), Ensembl was developed with the aim of providing a

robust and high quality automated annotation system yielding reliable information

(Hubbard et al., 2002). Ensembl leverages experimental evidence (see previous

section), whereby species specific cDNAs and protein data are aligned onto the

genome to derive annotation. However, ESTs are not considered in the Ensembl

gene build process due to their variable quality and the implied ambiguities. The

automatic Ensembl annotation system is described in detail by Curwen et al. (2004).

Ensembl now expanded to more than 41 vertebrates (Hubbard et al., 2009) as well
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as to plants, fungi, parasites and bacteria (Kersey et al., 2009).

Moreover, Ensembl offers a stable and rich resource for researchers. It provides a

web application that enables researchers to explore the genome of interest with a

web browser (figure 1.11), optionally allowing to integrate external annotation data.

Lastly, it provides a robust and extensive Perl application programming interface

that enables more advanced analysis of the underlying data.

When the first draft of the human genome sequence was published, the number

of protein-coding genes was estimated to be around 30,000 to 40,000 (Lander et al.,

2001; Venter et al., 2001). Over the years the number of predicted protein coding

genes decreased (International Human Genome Sequencing Consortium, 2004) and

even today the exact number remains uncertain and is estimated to be between 20,000

and 25,000 (Clamp et al., 2007), with Ensembl release 56 (November 2009) predicting

23,621 protein coding genes. The ENCyclopedia Of DNA Elements (ENCODE)

community experiment aims at identifying all functional elements in the human

genome with high-throughput methods (The ENCODE Project Consortium, 2004),

with the pilot study being completed in 2007, where 1% of the human genome was

investigated (Birney et al., 2007).

The GENCODE project produced a high quality “reference” annotation of protein

coding genes for these regions through a combination of computational, experimental

and manual annotation efforts (Harrow et al., 2006). Based on a reference annotation

set produced by GENCODE, the ENCODE Genome Annotation Assessment Project

(EGASP) evaluated the accuracy of automatic gene prediction methods, including

Ensembl (Guigo et al., 2006). The results confirmed the high quality GENCODE

annotation, but also illustrated that automated annotation cannot produce the same

level of accuracy: in 30% of the cases, the best predicted transcript per gene did not

reproduce the GENCODE reference annotation and accuracy dropped significantly

when alternative isoforms were to be considered by Ensembl.

This illustrates that manual analysis still plays a significant role for high quality
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1.3 Proteogenomics

annotation. The HAVANA group at the Wellcome Trust Sanger Institute manually

annotates sequences on a clone by clone basis, using a combination of extrinsic

evidence, most notably cDNAs/ESTs and protein sequence alignments combined

with ab initio gene predictions (Genscan, Augustus) and comparative analysis.

Thereby the team manually annotates genes by supporting evidence only. The

Vertebrate Genome Annotation (Vega) database is a publicly accessible repository

for these manually annotated genome sequences (Ashurst et al., 2005; Wilming et al.,

2008). Moreover, full length HAVANA transcripts are also merged into Ensembl

(Hubbard et al., 2009).

Future work will continue to improve genome annotation quality. For example,

experimental validation will continue as part of the GENCODE scale-up project

(http://www.sanger.ac.uk/encode/), which builds on the success of the GENCODE

pilot project (Harrow et al., 2006), but is limited to the human genome. The CCDS

(Consensus Coding Sequence, Pruitt et al. 2009) project defines a stable set of protein

coding gene structures for human and mouse by identifying agreeing annotation

between Ensembl/Vega, RefSeq (Pruitt et al., 2006) and UCSC (Kuhn et al., 2009).

Lastly, as technology evolves, new and revolutionary methods will be identified that

can further aid the genome annotation efforts, such as the recent introduction of

next-generation sequencing methods (Fullwood et al., 2009; Wang et al., 2009).

1.3 Proteogenomics

The automatic Ensembl pipeline and the HAVANA manual curation pipeline incor-

porate protein data from the UniProtKB database (Bairoch and Apweiler, 1997;

Wu et al., 2006), where more than 99% of the protein sequences are derived from

genomic translations and cDNA sequences, but only 13% are supported by protein

level evidence such as mass spectrometry identification (UniProt release notes 15.11,

http://www.uniprot.org/news/2009/11/24/release). Proteins that are detected by
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1.3 Proteogenomics

mass spectrometry provide direct experimental evidence for gene translation, which

cDNA data cannot offer. Therefore high-throughput tandem mass spectrometry

can aid genome annotation efforts on a genome scale, by validating and refining

annotated coding sequences and detection of novel ORF. Efforts to combine genome

annotation with protein mass spectrometry led to the establishment of a new field,

proteogenomics, a term coined by Jaffe et al. (2004).

Yates et al. (1995) demonstrated the concept of searching MS/MS data directly

against a six-frame translation of the genome, but it was Kuster et al. (2001) and

Choudhary et al. (2001a,b) that applied this approach to eukaryotic genomes with

the purpose of validating and refining gene annotation as well as the identification of

novel genes. In these studies a six-frame translation was used as a search database,

however in higher eukaryotes this is problematic: only 1-2% of the human genome

encodes proteins (Birney et al., 2007; Claverie, 2005), therefore most of the six-frame

translation is essentially random sequence. The inflated search space increases the

likelihood of false positive identifications and therefore sensitivity decreases at a

constant FDR. In addition, six-frame translation does not account for alternative

splicing, which can affect the majority of genes (Wang et al., 2008), and 20-28% of

tryptic peptides, depending on the number of allowed missed cleavages, span a splice

site.

The Peptide Atlas project (Desiere et al., 2005, 2006), the first large-scale pro-

teogenomics pipeline and MS/MS peak lists and raw data repository, employs the

standard International Protein Index (IPI) database (Kersey et al., 2004) as an

alternative approach to six-frame translation. IPI provides a minimally redundant

yet maximally complete sets of protein sequences from Ensembl, Vega, RefSeq

and UniProtKB. Later versions of Peptide Atlas complement the IPI database

with protein isoforms from Ensembl. Peptide Atlas comprises an analysis pipeline

to processes MS data with Sequest and PeptideProphet and provides access to

these peptide identifications, which are persisted in a comprehensive relational
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1.3 Proteogenomics

database. As an additional feature, Peptide Atlas maps peptide identifications

to the genome using the sequence alignment tool BLAST (Altschul et al., 1990).

These mappings are made available with a distributed annotation server (DAS)

(Dowell et al., 2001), allowing peptide identification results to be integrated into

various genome browsers, such as Ensembl. The currently available DAS source

(http://www.peptideatlas.org/setup_genome_browser.php) does not provide meta-

information of the uniqueness of the peptide within the genome, limiting the direct

use for annotation, since the peptide could match multiple different genomic loci.

The system is not available for download, providing little flexibility for required

changes or extensions, such as support of Mascot and Mascot Percolator or different

search databases.

The Genome Annotating Proteomic Pipeline (GAPP), developed by Shadforth

et al. (2006), is an alternative proteogenomic pipeline that unlike PeptideAtlas

relies on Ensembl translations for peptide identification, guaranteeing a perfect

genomic match of every identified peptide. Another significant difference compared

to Peptide Atlas is the peptide scoring scheme: GAPP accepts Mascot, Sequest

and X!Tandem peptide identification results, which are subsequently post-processed

with the advanced average peptide score (Shadforth et al., 2005), where peptides

are given extra credibility when they share a protein that was obtained from within

the same experiment (Chepanoske et al., 2005). However, this approach does not

provide a significance measure for an individual peptide match, which is required

when peptide identifications are used for genome annotation. Moreover, the inherent

peptide-protein apportioning further increases scoring complexity (Nesvizhskii and

Aebersold, 2004; Nesvizhskii et al., 2003), in particular in respect to target/decoy

FDR estimation. The target/decoy approach is extensively tested for peptide level

FDR estimation, but when protein level information is incorporated, it requires

the decoy database to resemble the target database in terms of peptide-protein

composition in order to provide a valid null model. Otherwise the number of protein
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1.3 Proteogenomics

identifications in the decoy database may deviate from the actual number of incorrect

protein identifications.

Although Peptide Atlas and GAPP are the only available high-throughput pro-

teogenomic systems, the following studies are representative of alternative analytical

strategies that are employed in this field of research. Tanner et al. (2007) developed

an exon splice graph database that is build by combining all pairs of predicted

exons with subsequent cDNA and EST filtering data to limit the search space. This

method is implemented as an extension of the Inspect peptide identification algo-

rithm (Tanner et al., 2005), a peptide sequence tag based approach (Mann and Wilm,

1994). The associated proteogenomics study of Tanner et al. (2005) remains the most

comprehensive proteogenomics study to date. They searched a corpus of 18.5 million

tandem MS spectra (human), enabling the validation of 39,000 exons, 11,000 splice

sites (introns) and confirmed 40 alternative splice events. Tress et al. (2008) focussed

specifically on the analysis of alternative splicing and identified multiple alternative

gene products for over a hundred Drosophila genes. Castellana et al. (2008) has

combined the splice graph approach with a six-frame translation and the currently

annotated proteome of Arabidopsis thaliana and found the majority of peptides to

map to existing annotation, although 13% novel peptides were identified.

Further improvements can be expected in the field of proteogenomics when

experimental and computational methods integrate. For example, Sevinsky et al.

(2008) leveraged peptide isoelectric focusing and accurate peptide mass to greatly

reduce the peptide search space, enabling highly sensitive peptide identification even

on a large six-frame translation of human. Brunner et al. (2007) has combined sample

diversity, multidimensional fractionation and analysis-driven feedback loops to guide

data collection, resulting in unprecedented gene coverage in Drosophila melanogaster.

Proteogenomics studies can be focussed on particular problems, as demonstrated

by Schandorff et al. (2007) and Bunger et al. (2007) who validated non-synonymous

SNPs, Wright et al. (2009) who used proteogenomics on newly sequenced genomes as
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1.4 Thesis outline

well as by (Gupta et al., 2008) who introduced comparative proteogenomic studies.

Although proteogenomics is still a relatively novel field of research, the growing

interest from both sides, the proteomics and genomics community is apparent. This

is facilitated by the readily available proteomics data that provides inherently strong

experimental evidence of translated gene products, something that cannot be achieved

with transcriptional data.

1.4 Thesis outline

The objectives of my work are to build on and improve the methods introduced in

section 1.3 to enable reliable high-throughput proteogenomic data analysis.

In the first results chapter, I evaluate the peptide identification software “Mascot”

that is routinely used at the Wellcome Trust Sanger Institute and elsewhere. Since

peptide-spectrum matching is a difficult problem, wrong peptide identifications

are expected. To address this Mascot provides a scoring scheme with probability

thresholds. I have evaluated these for low and high mass accuracy data and showed

that they are not sufficiently accurate. I developed an alternative scoring scheme

that provides more sensitive peptide identification specifically for high accuracy data,

while allowing the user to fix the false discovery rate.

I utilise the machine learning algorithm “Percolator” in the following chapter

to further extend my Mascot scoring scheme with a large set of orthogonal scoring

features that contribute to the discrimination performance between correct and

incorrect peptide-spectrum matches. I demonstrate that this method provides very

good sensitivity, while producing reliable and robust significance measures that were

validated with protein standard datasets. Sound scoring statistics avoid propagation

of wrong peptide identifications into genome annotation pipelines.

My genome annotation pipeline, introduced in chapter 4, closes the gap between

high throughput peptide identification and large scale genome annotation analysis. At
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1.4 Thesis outline

the core of this pipeline is a comprehensive database, enabling the efficient mapping

of known and predicted peptides to their genomic loci, each of which is associated

with supplemental annotation information such as gene and transcript identifiers.

Software scripts allow the creation of automated genome annotation analysis reports.

In the last results chapter, the pipeline is tested with a large mouse MS dataset. I

show the value and the level of coverage that can be achieved for validating genes and

gene structures, while also highlighting the limitations of this technique. Moreover, I

show where peptide identifications facilitated the correction of existing annotation,

such as re-defining the translated regions or splice boundaries. Lastly, I propose a set

of novel genes that are identified by the MS analysis pipeline with high confidence,

but currently lack transcription or conservational evidence.
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Chapter 2

Assessment of Mascot and

X!Tandem and development of the

Adjusted Mascot Threshold

2.1 Introduction

In the general introduction I have discussed the concept of sequence database

searching, that is commonly used to assign sequence information to MS/MS spectra

(section 1.1.1). This chapter focusses on the scoring schemes of database search

algorithms, which are required to provide sound peptide assignment significance

measures in order to minimising incorrect and maximising correct identification.

Many different techniques have been applied in the past, from manual heuristic

rules to machine learning algorithms that discriminate between correct and incorrect

identifications (Anderson et al., 2003; Jones et al., 2009; Resing et al., 2004; Ulintz

et al., 2006). The most popular database search engines to date, including Mascot

(Perkins et al., 1999) and X!Tandem (Craig and Beavis, 2004), provide theoretically

or empirically derived statistical thresholds to help assess the significance of peptide

identifications.

34



2.1 Introduction

●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

0 10 20 30 40

1e
−

10
1e

−
07

1e
−

04
1e

−
01

X!Tandem Score Distribution, Query A

X!Tandem Hyperscore

X
!T

an
de

m
 s

ur
vi

va
l f

un
ct

io
n

Mascot comparison: MIT=44, MHT=41

●●●●●●●●●●
●

●
●

●

●
●

●

●

●

● ●

●

0 10 20 30 40

1e
−

10
1e

−
07

1e
−

04
1e

−
01

X!Tandem Scoring Distribution, Query B

X!Tandem Hyperscore

X
!T

an
de

m
 s

ur
vi

va
l f

un
ct

io
n

Mascot comparison: MIT=42, MHT=18

Figure 2.1: Exemplary survival functions from X!Tandem for two spectrum queries
A and B. Although the number of peptide candidates for both queries is similar,
there are apparent differences in the actual peptide score distributions. The survival
functions were extrapolated for a score of 40 that corresponds to a probability of
approximately 3 × 10−6 and 2 × 10−10 for query A and B respectively. Given the
number of peptides scored were 1 × 105, the expectation value of the former would
be 0.3 while the expectation value of the latter would be 2 × 10−5 (for a detailed
explanation on how the survival function and expectation values are calculated, refer
to Fenyo and Beavis, 2003). Therefore, at a significance level of 0.05 the same score
would have been considered highly significant for query B, but not for query A.
In contrast, the MIT is inferred from the number of peptide candidates only, resulting
in very similar thresholds of 44 and 42 for both queries. A hypothetical Mascot score
of 40 would not have been considered significant for either query.
On the other hand, the empirically derived MHT was 41 for query A and 18 for
query B, thus classifying the peptide hit for query B as significant which agrees with
the X!Tandem extrapolation example. It should be noted that the absolute scores
and threshold values of X!Tandem and Mascot are not directly comparable.
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2.1 Introduction

Mascot reports a probability-based Mascot Identity Threshold (MIT) for each

individual spectrum query. A Mascot score above MIT is considered to be a significant

peptide assignment. The MIT is defined as −10 × log10(20 × p× n), where p is the

probability of a random peptide match and n corresponds to the actual number of

peptide candidates. For example, if a 1 in 20 chance of obtaining a false positive is

acceptable (p = 0.05) and there are 10000, 1000, 100 and 10 peptide candidates for

a given mass window in the sequence database, the MIT would be 40, 30, 20 and

10 respectively. For a peptide match with a score that equals the MIT (p = 0.05),

the expectation value (E-value) of this hit is also 0.05, but if the score exceeds

the MIT by e.g. 10, the E-value drops to 0.005. The E-value in Mascot is defined

as p × 10(MIT−score)/10 and corresponds to the number of times one would expect

this score by chance alone (http://www.matrixscience.com/pdf/2005WKSHP4.pdf).

Therefore the MIT only reflects changes in search space, defined by the number of

peptide candidates, and would be affected by various factors such as the maximum

mass deviation (MMD) settings, the number of allowed missed cleavages, enzyme

specificity and variable modifications.

Mascot also reports an empirical Mascot Homology Threshold (MHT). A Mascot

score exceeding this threshold can be considered a significant outlier from the

distribution of all candidate peptide-spectrum match scores, but an exact definition

of the MHT was not published. Similarly, X!Tandem employs score distributions, but

extrapolates empirical E-values to assess the significance of a peptide match (Craig

and Beavis, 2004; Fenyo and Beavis, 2003). It is important to note that the E-values

derived by Mascot and X!Tandem are based on completely different assumptions

and may therefore lead to significantly different scoring results even for the same

peptide spectrum match; as described above, the Mascot E-value is based on a

theoretical statistical model, whereas the X!Tandem E-value is an empirical outlier

determination. In figure 2.1 I illustrate the similarities and differences between the

X!Tandem, MHT and MIT scoring scheme.
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2.1 Introduction

With high accuracy MMD settings the search space can decrease significantly

leading to insufficient data points of the score distributions to reliably extrapolate

E-values. To compensate for this, X!Tandem uses cyclic permutations of all peptide

candidates that are scored and used to pad the score distribution (optional). In gen-

eral, empirical scoring schemes that utilise the peptide candidate score distributions

for thresholding or E-value extrapolation are more robust to changing MS/MS data

quality such as signal to noise, mass accuracy or fragmentation quality.

It is anticipated that reducing the search space should improve the performance of

algorithms for peptide identification (Zubarev and Mann, 2007). For example, with

high mass accuracy data in the range of a few ppm, the search space can be reduced

by orders of magnitude in comparison to low accuracy data acquired typically on ion

trap instruments (Elias and Gygi, 2007).

Established database search algorithms, and in particular their scoring schemes,

were not specifically developed for high mass accuracy data. Rudnick et al. (2005)

evaluated the effects of MMD settings on Mascot performance and proposed an empir-

ical Mass Accuracy based THreshold (MATH) that provided improved sensitivity at a

user-defined false discovery rate (FDR). They applied a range of global cut-off thresh-

olds and determined the associated FDRs. A linear regression over the logarithms

of these FDRs and the cut-off values enabled an empirical threshold extrapolation

at a predefined FDR. However, the Mascot evaluation was exclusively limited to

the MIT. Savitski et al. (2005) have developed a database size independent scoring

scheme for high accuracy data. This work is based on complementary fragmentation

techniques, and cannot be applied solely on standard collision induced dissociation

data (Biemann, 1988; Roepstorff and Fohlman, 1984). Gygi and co-workers proposed

to exploit high accuracy MS data by searching at relaxed mass tolerance settings

followed by mass accuracy filtering (Beausoleil et al., 2006; Everley et al., 2006).

Combined with a moderate threshold on peptide-spectrum correlation scores, they

found this strategy to serve as a good discriminator between correct and incorrect
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Figure 2.2: Distribution of all peptide matches obtained from a 1 Da MMD target
and decoy database search of sample 1, showing the Mascot score and the mass
deviations in ppm for a small window of ±100 ppm. Most mass deviations of high
scoring peptide-spectra matches fell within the experimental mass errors that have
been reported previously, 99% fell within ±20 ppm and 90% fell within ±5 ppm.
The mass outliers between -5 and -20 ppm seem to be an experimental artefact for
this particular sample.

peptide assignments. The rationale behind this is that the chance of finding a strong

peptide match in a relaxed mass window with many peptide candidates is greater

than for a very stringent mass window with only a few peptide candidates. A correct

and strong match is likely to remain the same, regardless of the size of the search

space. On the other hand, it is more likely for a weak match arising from a poor
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2.1 Introduction

spectra or from an incorrect peptide correlation to find a better alternative in a

larger search space. A subsequent mass accuracy filtering step, which limits the

matches to the experimental mass deviations, serves as useful discriminator between

correct and incorrect matches. This is further illustrated in Figure 2.2 using the data

of this study. Overall, these studies indicate that a more detailed evaluation and

optimisation of established search algorithms for high accuracy mass spectrometry is

still required.

In this chapter I have investigated the performance of Mascot and X!Tandem for

varying MMD settings common for low and high accuracy MS. I show that the MIT

is highly dependent on the search space and affects false discovery and identification

rates. I also show that the empirical scoring scheme in X!Tandem is more robust

across different mass tolerance settings. The Mascot equivalent empirical MHT

outperforms X!Tandem for ion trap data, but is not comprehensively applicable for

very stringent MMD settings. I demonstrate that searching high accuracy data at

relaxed MMD windows followed by peptide mass accuracy filtering serves as a good

discriminator between correct and incorrect assignments. I propose an alternative

empirical Adjusted Mascot Threshold (AMT1), applicable to low accuracy data and,

in combination with peptide mass accuracy filtering, also to high accuracy data.

In addition, the AMT enables the user to freely select the best trade-off between

sensitivity and specificity by defining the actual FDR.

Parts of this chapter were published in Molecular Cellular Proteomics (Brosch

et al., 2008) by the author of this thesis (Markus Brosch) and my supervisors (Tim

Hubbard, Jyoti Choudhary) as well as by Sajani Swamy, who introduced me to the

field of computational proteomics. Markus Brosch performed the work and wrote

the manuscript. Lu Yu (acknowledgements) run the mass spectrometry experiments

(specifically indicated in the relevant sections).

1Same abbreviation used for the accurate mass and time tag approach (Pasa-Tolic et al., 2004)
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2.2 Experimental Procedures

2.2 Experimental Procedures

2.2.1 Sample preparation

Sample 1: A nuclear protein extract of murine embryonic stem cells (2 mg/mL) was

reduced with 1 mM dithiothreitol (Sigma) at 70 C for 10 min, followed by alkylation

with 20 mM iodoacetamide (Sigma) at room temperature for 30 min. 10 µg of

total protein was separated on a NuPAGE Novex 4-12% Bis-Tris polyacrylamide

gel (Invitrogen). The gel was stained with colloidal Coomassie Blue (Sigma). The

entire gel lane was excised into 48 bands, de-stained with 50% acetonitrile and

subsequently digested with sequencing grade trypsin (Roche) overnight. Peptides

were extracted with 5% formic acid / 50% acetonitrile twice and vacuum dried in a

SpeedVac (Thermo Fisher Scientific). Peptides were redissolved in 0.5% formic acid

and subjected to LC-MS/MS. This work was carried out as part of my two month

web-lab rotation and was guided by Mercedes Pardo (Team 17 at the Wellcome Trust

Sanger Institute).

Sample 2: A standard protein set of 48 human proteins (Sigma, Universal

Proteomics Standard Set UPS1) was reduced with Tris(2-carboxyethyl)phosphine

hydrochloride (TCEP), alkylated with iodoacetamide as above, followed by digestion

in solution with sequencing grade trypsin (Roche Applied Science) overnight. To

minimise the chance of detection of low abundance contaminants in the protein

standard sample, a very low concentration of 10 fmol (per protein) was directly

subjected to the LC-MS/MS. This work was carried out by Lu Yu (Team 17, Wellcome

Trust Sanger Institute).

2.2.2 LC-MS/MS analysis

Peptides were analysed with on-line nanoLC-MS/MS on a LTQ FT (Thermo Fisher

Scientific), a hybrid linear ion trap and a 7 Tesla Fourier transform ion cyclotron

resonance mass spectrometer, coupled with an Ultimate 3000 Nano/Capillary LC
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2.2 Experimental Procedures

System (Dionex).

Samples were first loaded and desalted on a trap (0.3 mm id x 5 mm) at 20

µL/min with 0.1% formic acid for 5 min then separated on an analytical column (75

µm id x 15 cm) (both PepMap C18, LC Packings) over a 30 min linear gradient of

4-40% CH3CN/0.1% formic acid. The flow rate through the column was 300 nL/min.

The LTQ FT mass spectrometer was operated in standard data dependent mode

controlled by Xcalibur 1.4 software. The survey scans (m/z 400-2000) were acquired

on the FT-ICR at a resolution of 100,000 at m/z 400 and one microscan was acquired

per spectrum. The top three (top five for sample 2) most abundant multiply charged

ions with a minimal intensity at 1000 counts were subject to MS/MS in the linear

ion trap at an isolation width of 3 Th.

Precursor activation was performed with an activation time of 30 msec and the

activation Q was set at 0.25. The normalised collision energy was set at 35%. The

dynamic exclusion width was set at ±5 ppm with 2 repeats and a duration of 30

sec. To achieve high mass accuracy, the automatic gain control (AGC) target value

was regulated at 4E5 for FT and 1E4 for the ion trap, with a maximum injection

time of 1000 ms for FT, and 100 msec for ion trap respectively. The instrument was

externally calibrated using the standard calibration mixture of caffeine, MRFA and

Ultramark 1600.

All LC and MS related work was carried out by Lu Yu (Team 17, Wellcome

Trust Sanger Institute) and was used to introduce me to the basics of practical mass

spectrometry during my wet-lab rotation project.

2.2.3 Raw data processing

LTQ FT MS raw data files were processed to peak lists with BioWorks 3.2 (Thermo

Fisher Scientific). Parameters were as follows: precursor masses were set to 800-4500

Da, grouping was enabled allowing 50 intermediate scans, and a precursor mass

tolerance setting of 10 ppm in BioWorks was applied. The number of minimum scans
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per group was set to 1. For sample 2 grouping was disabled.

RAW data, peak lists (with and without mass error correction) and Mascot

results for both samples are available through ftp under the address: ftp://ftp.

sanger.ac.uk/pub/mb8/mcp2008/

2.2.4 Database search parameters

Sample 1: Mascot 2.1 (Matrix Science, London, UK) and X!Tandem 2007.07.01

(The Global Proteome Machine Organization) were used for analysing the data.

Parameters used in Mascot and X!Tandem searches were: enzyme = trypsin; vari-

able modifications = carbamidomethylation of cysteine, oxidation of methionine;

maximum missed cleavages = 1; peptide mass tolerance settings/windows were as

indicated in the individual experiments (between 2 Da and 5 ppm); product mass

tolerance = 0.5 Da. Probability p of random matches for MIT calculations in Mascot

was set to the default value of 0.05.

Specific X!Tandem parameters were: spectrum dynamic range was set to 1000,

refinement was disabled, maximum valid E-value for reported peptides was set to

100 (E-values were limited in the data analysis steps) and cyclic permutations to

compensate for small search spaces was enabled, with remaining parameters at

default.

The protein sequence database used by Mascot and X!Tandem was built from an

non-identical superset of Ensembl peptides, UniProtKB and RefSeq sequences for

Mus musculus, including common external contaminants from cRAP (a maintained

list of contaminants, laboratory proteins and protein standards provided through the

Global Proteome Machine Organization, http://www.thegpm.org/crap/index.html)

and contains 94,524 sequences and 42,765,694 residues. For false positive discovery

assessment, a separate decoy database was generated from the target database using

the Perl decoy.pl script provided by MatrixScience. This script randomises each

entry, but retains the average amino acid composition and length of the entries. 0.1%
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2.2 Experimental Procedures

of sequences were common in both target and decoy database, including K/Q and

L/I isoforms that are indistinguishable above 0.04 Da MMD.

Peak lists of sample 2 (8,190 spectra) were searched with Mascot and X!Tandem

against human IPI (June 2007, 68,322 sequences, 28,806,780 residues) including

common external contaminants from cRAP. To minimise unexpected contaminants

from the protein standard set (Klimek et al., 2007), a very low concentration of

10 fmol was used. Parameters used: enzyme = trypsin; variable modifications

= carbamidomethylation of cysteine, oxidation of methionine and deamidation of

aspargine and glutamine; maximum missed cleavages = 2; peptide mass tolerance

= 1 Da; product mass tolerance = 0.5 Da. A random and a reversed version of the

sequence database was generated and searched under the same conditions.

2.2.5 Data analysis

Mascot results (p < 1.0) were exported to pepXML using the Mascot export tool

and X!Tandem results (E-value < 100) were stored as X!Tandem XML. An in-house

Java tool was used for the data analysis. Results from Mascot and X!Tandem were

imported and filters on score thresholds and mass tolerances were applied. Only

doubly and triply charged ions and the first hit rank per spectrum were considered

for analysis.

For FDR estimation I chose to search the target and decoy database separately

to avoid affecting the MIT scoring by changing database size. The decoy database

used was a randomised version of the target database, which was found to be the

best approximation based on evaluations of sample 2 (see figure 2.3). All estimated

FDRs in this work were calculated using the same target/decoy approach, enabling

consistent comparison of results.

Estimated FDRs were calculated by counting all peptide assignments obtained

from the decoy database (proxy for false positives, FP), divided by the number of

peptide assignments that were obtained from the target database (TP+FP), given
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Figure 2.3: An experimental FDR, based on the known proteins of the set, can be
determined as follows: any peptide hit that did not match against any of the 48
standard proteins or any of the external contaminants was considered a false positive
hit. The FDR rates were determined for a range of Mascot score cutoffs (10-50).
Similarly, the estimated FDRs based on target/decoy searching were determined for
both the randomised and reversed database. This enabled a comparison of actual
FDRs with estimated FDRs, which is interesting since there is no consensus in the
proteomics community concerning the different decoy strategies (discussed in section
1.1.2.3). Nevertheless, both decoy strategies (randomized/reversed) tested in this
work show a linear relationship between the FDR determined by the protein standard
and the target/decoy estimation, validating the target/decoy approach. However,
the FDRs derived by the random database were closer to what was reported by the
protein standard, which let me to chose the random database as a decoy database
for this study. The linear regression of the random database (R2 = 0.99) indicates a
small offset of 1.5% which can be explained by unexpected contaminations in the
protein standard.
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the same parameter and threshold settings. The estimated number of true positive

hits (TP) was calculated by counting the number of all peptide hits against the

target database minus all hits against the decoy database search. FDR assessment

was limited to the peptide level only, since I was interested in the quality of matching

individual spectra to peptide sequences. Furthermore it avoids comparison of protein

inference strategies (Nesvizhskii and Aebersold, 2004), which is a separate issue.

2.2.6 Correction of systematic mass error

Data from sample 1 was searched in a first pass with Mascot at 100 ppm MMD in

order to determine the mass accuracy for the experiment. Only peptide hits with a

Mascot score greater than 30 were used for the mass accuracy assessment (10634

queries) to exclude mass deviations of incorrect matches. 99% of hits had mass

deviations within a (3±20) ppm mass window (systematic mass error ± peptide

mass error), while 90% of mass deviations fell within (3±5) ppm. In order to allow

the best possible mass tolerance settings of (0±5) ppm in Mascot and X!Tandem,

the precursor masses were corrected by 3 ppm (figure 2.4a). A similar mass error

correction method was described by Zubarev and Mann (2007). The mass outliers

between -5 and -20 ppm seem to be an experimental artefact for this particular

sample. For this study I deliberately accepted a loss of identifications for 5 ppm

MMD settings in order to study the effects of stringent mass settings on Mascot and

X!Tandem. Mass error correction was applied in the same way to sample 2, where

the peptide masses were corrected by 5 ppm (figure 2.4b).

2.3 Results and discussion

If not stated otherwise, all subsequent results are based on sample 1, which is a large

complex dataset and representative of typical proteomics experiments.

45



2.3 Results and discussion

−100 −50 0 50 100

30
40

50
60

70
80

90
10

0

Original mass error distribution

Mass error [ppm]

M
as

co
t S

co
re

●●●●●●●●●
●●●

●●
●●

●
●
●
●
●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●

●●●●●●●●●●●●●●●●●
●●●

●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Systematic mass error correction

Systematic mass error offset [ppm]

F
ra

ct
io

n 
of

 m
as

s 
de

vi
at

io
ns

 th
at

 fa
ll 

in
 a

 +
/−

 5
 p

pm
 m

as
s 

w
in

do
w

 [%
]

●●●●●●●●●
●●●

●●
●●

●
●
●
●
●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●

●●●●●●●●●●●●●●●●●
●●●

●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●

−100 −50 0 50 100

30
40

50
60

70
80

90
10

0

Corrected mass error distribution

Mass error [ppm]

M
as

co
t S

co
re

(a) Sample 1

−40 −20 0 20 40

30
40

50
60

70
80

90
10

0

Original mass error distribution

Mass error [ppm]

M
as

co
t S

co
re

●

●

●

●

●

●

●

●
●
●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Systematic mass error correction

Systematic mass error offset [ppm]

F
ra

ct
io

n 
of

 m
as

s 
de

vi
at

io
ns

 th
at

 fa
ll 

in
 a

 +
/−

 5
 p

pm
 m

as
s 

w
in

do
w

 [%
]

●●●●●●●●●●●●●●
●●●●●

●●●●
●●●●

●●●
●●●
●
●●
●
●
●
●
●
●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●
●●
●●●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●
●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−40 −20 0 20 40

30
40

50
60

70
80

90
10

0

Corrected mass error distribution

Mass error [ppm]

M
as

co
t S

co
re

(b) Sample 2

Figure 2.4: Mass error determination and correction of systematic mass errors.
Left: the original mass deviations of all highly significant peptide matches. Centre:
Systematic mass error correction that maximises the peptide assignments within a 5
ppm mass window. Right: After correction of the systematic mass error.
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Figure 2.5: (a) Cumulative MIT distributions for different peptide mass tolerance
settings. Only MITs from queries with a peptide assignment across all searches were
used to enable comparison. With more stringent MMD settings, the MIT tends to
decrease, accommodating for the smaller search space. Vice versa it increases for
more relaxed MMD windows. (b) Cumulative MHT distributions over the range
of MMD settings. The MHT is not reported for every query. All MHTs exceeding
the MIT are omitted by Mascot and reported as 0 in the HTML and XML result
files (personal communication, John Cottrell, Matrix Science). The minimum MHT
reported by Mascot is 13 and the maximum MHT is limited by the corresponding
MIT.

2.3.1 Performance of the Mascot Identity Threshold

Mass error corrected spectra were submitted to Mascot and searched at 2 Da, 1 Da,

100 ppm, 50 ppm, 20 ppm and 5 ppm MMD settings, while all other parameters

were fixed.

Spectra that were assigned across all searches (23,080 out of 38,058 queries) were

used to draw the MIT distribution for each MMD setting (Figure 2.5a). From this

analysis the median MIT values for relaxed MMD settings were 42 at 2 Da MMD and

39 at 1 Da MMD with an inter-quartile range of 1. Under more stringent settings (5

ppm) the MIT median decreased to 24 while the inter-quartile range increased to 2.

These results suggest that the MIT adapts with changing search space and performs

more like a global cut-off based on the narrow variation in thresholds.

To evaluate the effects of MIT adaptions on the peptide identifications performance

at different MMD settings, the rates of incorrect and correct peptide-spectrum
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Figure 2.6: Comparative evaluation of Mascot and X!Tandem performance. Mascot
and X!Tandem searches were performed against a target and decoy database at
different MMD settings. The total number of identifications is reported, the estimated
number of true identifications is indicated in grey, while the estimated number of
incorrect assignments is highlighted in red.

matches were determined by target/decoy FDR estimations, under identical search

and threshold parameters for all spectra (Figure 2.6, Mascot). Using the MIT as

a score cut-off, 10,909 and 6,661 estimated TP peptide identifications were made

at 2 Da and 5 ppm MMD settings respectively. Relative to the 5 ppm search, this

suggests 4,248 (39%) false negative peptide assignments for the 2 Da search. For the

same MMD settings, the FDR increased from 0.9% to 4.6% respectively, failing to

maintain the specified (5%) rate of random (incorrect) assignments.

The MIT is based on a probabilistic model that attempts to maintain a constant

rate of random (false) identifications and hence is dependent on search space. However,

I found a correlation between FDRs and MMD settings, indicating that the MIT

does not adhere to the predefined FDR. This trend is also mirrored in the number

of correct identifications. At relaxed mass tolerances (large search space) used for

ion trap data, the MIT tends to become very conservative resulting in excellent

specificity but hindering sensitivity. With more stringent mass tolerances (smaller

search space) sensitivity increases at the cost of specificity. The results reported
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2.3 Results and discussion

here represent a snapshot of many possible combinations of search parameters that

directly affect the search space, for example: sequence database size, allowed variable

modifications, allowed missed cleavages and enzyme specificity. This highlights the

necessity to individually assess the FDR via a target/decoy database search.

2.3.2 Performance of the X!Tandem scoring scheme

Spectra were searched in X!Tandem using MMD settings as described in the previous

section. FDRs were calculated on the basis of target and decoy database searches

using identical search parameters.

Using an E-value cut-off value of 0.05, which is in-line with that used for the

MIT evaluation discussed above, only moderate changes (9%) in sensitivity over all

MMD settings were detected, varying between 9,982 TPs at 2 Da and up to 10,927

TP at 20 ppm (Figure 2.6, X!Tandem). A constant FDR for varying MMD settings

was not delivered by X!Tandem. The FDRs increased from 4.3% to 5.9% between

the 2 Da and 100 ppm MMD, and an inverse trend was observed below 100 ppm,

with a minimum of 2.6% FDR at 5 ppm MMD. FDRs show no clear correlation with

mass tolerance settings, suggesting no direct dependency. The E-Value distributions

of these searches were very similar over the whole range, further supporting the

robustness of the X!Tandem scoring (figure 2.7).

Overall, X!Tandem appears to maintain sensitive peptide identification at varying

MMD settings. The FDRs were close to the defined E-Values, but were not constant

over changing mass tolerance settings. However, there appears to be no direct

correlation between the FDRs and search space. These results indicate that the

empirical X!Tandem scoring, based on peptide-spectra match score distributions, is

more robust over the search space dependent probabilistic scoring model of the MIT.
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Figure 2.7: Spectra were searched with X!Tandem at 2 Da, 1 Da, 100 ppm, 50
ppm, 20 ppm and 5 ppm MMD settings, while all other parameters were fixed.
For each search the E-value distribution was drawn, indicating that the X!Tandem
scoring is very robust over changes in search space. The E-values 0.01 and 0.05 are
highlighted. The plot is in concordance with the ROC curve presented in the paper.
Personal communication with Dr David Fenyo (The Rockefeller University) explained
the robustness of the E-value distributions: Each E-value depends on the survival
function and on the number of sequences scored (Fenyo and Beavis (2003), equation
2). For X!Tandem in its current format, the term ”number of sequences scored” refers
to the whole sequence database, regardless of the peptide mass tolerance setting and
hence all variations seen in the E-values are the result of the slight differences in
survival functions only.
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2.3.3 Performance of the Mascot Homology Threshold

Similarly to X!Tandem, the empirical MHT also utilises peptide-spectra match score

distributions. Using the results from the above Mascot searches, I plotted MHT

distributions at different MMD settings (Figure 2.5b). Only spectra that were

assigned across all searches (23,080 out of 38,058 queries) were used for comparison.

As stated earlier, the MHT is not always reported. A MHT value was reported

for about 95% of the considered queries at relaxed MMD settings of 1 or 2 Da. For

stringent MMD settings (5 ppm), MHTs were only reported for less than 60% of

queries, limiting its applicability. The MHT median for a 1 Da MMD setting was 24,

compared with a MIT median of 39 for the same setting, while the inter-quartile

ranges were 9 and 1, respectively. The wide MHT variation observed would be

reflective of a query specific thresholding.

Using the MHT as a cut-off score for a 1 Da MMD search, 11,315 TPs were

identified at the given FDR of 3.1%. This corresponds to 51% more TP identifications

than using the MIT at the given 1.5% FDR and 12% more TP identifications than

X!Tandem at the given FDR of 4.7%.

Overall, I observe the MHT to be significantly more sensitive than the MIT

and X!Tandem at the given FDRs. However, the FDR is pre-imposed and does not

allow the user to select a fixed rate. Furthermore, Mascot omits any MHT which

exceeds the MIT to prevent conservative thresholds that arise, for example from

score distributions with insufficient data points. This effect is further compounded

since the MIT values decrease for a smaller search space. Sufficient search space

is required for the MHT to be comprehensively applicable, for example a larger or

smaller database would need a more or less restrictive MMD setting to compensate

for this effect.
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2.3.4 Peptide mass accuracy filtering

An alternative approach for using high mass accuracy for peptide identification is to

search under relaxed mass tolerance settings and subsequently apply mass accuracy

filters. To evaluate this approach, data was searched with Mascot at a 1 Da MMD

setting against the target and decoy databases, where approximately 95% of queries

obtained a MHT.

As shown in figure 2.2, peptide-spectrum matches with high scores mostly lie

within the experimental mass errors discussed previously, while low scoring matches

were distributed evenly across the whole mass window. Mass accuracy filtering

of the 1 Da search using 50, 20 and 5 ppm cut-offs, without imposing any other

constraints such as MIT or MHT, limits the FDRs to 65%, 35% and 12% respectively.

This clearly indicates that mass accuracy based filtering alone can reduce incorrect

sequence assignments. However, the effectiveness of this discriminator is confined by

experimentally derived mass error deviations. Significantly, 13,273 TP were identified

with a 5 ppm mass filter, more than obtained by any method tested here, showing

this to be a very sensitive approach for peptide identification with high accuracy

data.

The 12% FDR observed at 5 ppm mass accuracy filtering suggests that even

higher mass accuracy would be required for lower FDRs. An extrapolation from a

regression over 10 data points ranging from 5 to 50 ppm (r2 = 0.99) suggests a 5%

FDR for 1.5 ppm, however this prediction would need to be verified experimentally.

It should be noted that the use of ultra high mass accuracies cannot further improve

FDR once mass accuracies resolve elemental compositions.

If mass accuracies cannot be achieved at this stringent level, an alternative would

be to introduce a moderate thresholding on the peptide-spectrum match scores. I

therefore tested mass accuracy filtering in combination with the MHT score cut-off.

For this, data was searched at 1 Da MMD, then filtered at 5 ppm to exclude all

peptide assignments with a larger mass deviation, and subsequently constrained by
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the MHT. In instances where the MHT was not reported, the MIT was used. This

two-step filtering identified 10,338 TP peptide assignments and reduced the FDR to

only 0.2%, which is a 60-fold improvement over the mass accuracy filtering alone,

although the TPs were reduced significantly (22%). In comparison with the Mascot

search using 5 ppm MMD setting with the MIT score cut-off, where a FDR of 4.8%

and 10,909 TP was previously reported, the two-step filtering improved the FDR by

23-fold, while the TPs were reduced by only 6%.

These results suggest that mass accuracy filtering on its own might be a valuable

and very sensitive approach, however sub-ppm mass errors would be needed for

highly specific identification. Alternatively, a combination with a threshold such

as the MHT serves as a very strong discriminator between correct and incorrect

peptide assignments. In comparison with a direct high accuracy Mascot search, the

two-step filtering strategy leads to highly specific identifications without significantly

compromising sensitivity. A less restrictive and adjustable thresholding would

increase sensitivity for peptide identification from high accuracy data.

2.3.5 The Adjusted Mascot Threshold (AMT)

Applying either the MIT, MHT or the two-step filtering provides pre-imposed FDRs

that are not directly adjustable by the user. However, it is often desirable to be able

to select and fix the FDR.

To achieve this I have implemented the Adjusted Mascot Threshold (AMT). This

is a similar strategy to the MATH threshold introduced by Rudnick et al. (2005),

which uses a global threshold that defines a cut-off value for all queries. However,

I favour the use of individual query specific thresholds based on the MHT, since I

have found it to be very sensitive in my above evaluations. The AMT is defined as

the sum of the query specific MHT and a global offset value. FDRs are determined

for a range of offset values that are used to calculate a linear regression in order to

approximate an offset value for a user defined FDR (Figure 2.8).
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Figure 2.8: Regression for extrapolating the AMT thresholds. Data was searched at
a 1 Da MMD setting against the target and decoy database. A range of offset values
was applied that were added to the MHT and used as cut-off thresholds. For each
new threshold the associated FDR was determined. A linear regression between the
logarithm of the FDR and the offset values was calculated (r2=0.99). The method
was also applied to the mass accuracy filtered dataset (5 ppm). A new Adjusted
Mascot Threshold can be extrapolated based on a user defined FDR for each dataset.
The AMT adapts for the preceding mass accuracy filtering. The offset values for a
FDR value of 1% and 5% are indicated as dashed lines.
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2.3 Results and discussion

For the 1 Da search, described in the previous section, the regression was calculated

for an offset range of -12 to +10, indicating a strong linear correlation between the

logarithm of FDRs and the offset values with a correlation coefficient of r2 = 0.99.

For the 5 ppm mass filtered dataset, a second regression was calculated (r2 = 0.99).

Offset values of 4.7 and -1.3 were reported for a target FDR of 1% and 5% using the

1 Da search data and for the 5 ppm mass accuracy filtered dataset these values were

-4.5 and -10.2 respectively. The slope of both regressions was found to be very similar,

but the difference between the offsets was approximately -9, which compensates for

the inherent specificity of the mass accuracy filtered dataset by moderating these

offset values.

Our proposed AMT is an adjustable and query specific cut-off value. It is

calculated based on the MHT and a global offset value, the latter is derived from

FDR estimates through target/decoy database searching and thus is no longer

dependent on search parameters affecting search space. AMT can be extrapolated

for either low or high accuracy (using mass filtered data), and combines the benefits

of a highly sensitive MHT with a user defined FDR.

2.3.6 Comparison of the AMT with MIT, MHT, MATH

and X!Tandem

I then tested the performance of the AMT. Search results obtained by application

of AMT were compared to those from MIT, MHT, X!Tandem and MATH using a

receiver operator characteristic (ROC) representing the number of true identifications

at various FDRs. ROC curves (Figure 2.9) were calculated using varying thresholds

of MATH (global cut-off value), X!Tandem (E-values) and AMT (offset values relative

to MHT). Since the MIT and MHT are not variable, they define a single point in

the diagram.

For low accuracy MMD settings (Figure 2.9a) applying the MIT identified 7,494
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Figure 2.9: MIT, MHT, MATH, X!Tandem and AMT comparison for low and high
accuracy mass tolerance settings. A 1 Da search (a), a 5 ppm search (b, dashed
lines) and a 1 Da search with subsequent peptide mass accuracy filtering at 5 ppm
(b, solid lines) were performed. The estimated number of TPs was determined as a
function of the FDRs, represented in the receiver operator curve, enabling the user
to choose where the best trade-off between sensitivity (TPs) and specificity (FDR).

TP with an inherent 1.5% FDR. MIT variation for these mass tolerance settings

effectively acts as a global cut-off, hence MATH also identified a similar number

at the same FDR. MATH however allows the user to freely select the target FDR,

and at a 5% FDR it identified about 20% more TP peptides than at 1.5% FDR.

X!Tandem empirical scoring outperformed both MIT (13% more TP at the same

FDR of 1.5%) and MATH (between 10-15% more TP over the whole range of FDRs).

The most striking observation is the MHT performance, identifying 11,315 TPs at

the inherent FDR of 3.1%, improving correct identifications by 18% and 35% over

X!Tandem and MATH at the same FDR. The AMT extends application of the MHT

over the whole range of FDRs, improving the TP assignments by 18%, 39% and

42% over X!Tandem, MIT and MATH at 1.5% FDR, and by 16% and 30% over
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2.3 Results and discussion

X!Tandem and MATH at 5% FDR.

For the analysis of high accuracy data I have evaluated two strategies (I) searching

high accuracy data at stringent mass tolerance settings (5 ppm) followed by peptide

score thresholding (Figure 2.9b, dashed lines), and (II) searching high accuracy data

at a relaxed mass window (1 Da) with subsequent peptide mass accuracy filtering (5

ppm) followed by peptide score thresholding (Figure 2.9b, solid lines).

(I) Using direct high mass accuracy searching at 5 ppm MMD setting, the number

of expected true peptide identifications was similar, approximately 11,000, for MIT,

X!Tandem and MATH at around 4.5% FDR. However, X!Tandem performed better

for lower FDRs, e.g. at 1% X!Tandem identified about 1,000 more TPs than MATH.

MHT was not assessed at these mass tolerance settings since it was absent for 40%

of queries.

(II) The alternative mass filtering approach returned very conservative FDRs

below 0.2% and identified 6,798 and 10,338 TP hits for the MIT and MHT respectively.

Mass filtered X!Tandem results identified approximately 25% more peptides than

the MIT and 18% less TP hits than with the MHT, at the corresponding FDRs. By

relaxing the E-values of X!Tandem, 10,611 TP at 1% FDR and 12,100 TP at 5%

FDR were identified. Using MATH, 6,821 TP assignments were made at the 0.2%

FDR, which is again similar to MIT and significantly worse than X!Tandem or MHT.

At a 1% FDR about 18% fewer identifications were made using MATH as compared

to X!Tandem, while they performed similarly at 5% FDR. Significantly, the AMT

identified 11,893 TP assignments at 1%, outperforming both MATH and X!Tandem

by 35% and 12% at the same FDR.

Compared to the direct 5 ppm search strategy in (I), the mass accuracy filter

approach in (II) was generally more sensitive, e.g. MATH and X!Tandem with mass

filtering identified about 8-9% more TPs at 5% FDR than without mass filtering. The

improvement of performance with X!Tandem can be seen throughout the whole range

of FDRs, whereas for MATH sensitivity is only gained above a 1% FDR. By far the
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2.3 Results and discussion

most sensitive approach at any given FDR was provided by mass accuracy filtering

combined with the AMT. Against a direct 5 ppm search using MIT, MATH and

X!Tandem, about 18-20% more TPs at a FDR of 4.6% were made, which corresponds

to approximately 1,500 more unique peptides identifications.

In summary, application of MIT or MHT always results in a fixed pre-imposed

FDR, while X!Tandem together with a target/decoy database search enables FDR

adjustment using an appropriate E-value cut-off. MATH and AMT implement this

target/decoy FDR estimation and directly deliver the defined FDRs. For low accuracy

MS, MHT performed best at a fixed FDR, whilst this performance was extended to

the whole FDR range by AMT. X!Tandem was significantly less sensitive than AMT,

and MATH together with the MIT were the least sensitive thresholds. For direct

high mass accuracy searching, MIT, MATH and X!Tandem performance was very

similar and overall sensitivity improved over the low accuracy search. Exploiting

high mass accuracy via mass filtering was the most sensitive search strategy at the

corresponding FDRs. For this approach, AMT significantly outperformed X!Tandem,

followed by MATH and MIT.

2.3.7 Validation with independent dataset

To validate the findings and the AMT performance, a standard mixture of 48 proteins

(sample 2) was analysed in the same way as sample 1. First, data were searched

against a 50 ppm peptide mass tolerance to identify any systematic mass error

(Figure 2.4b), which was corrected (-5 ppm) subsequently.

Next, data were searched at 2 Da, 1 Da, 100 ppm, 50 ppm, 20 ppm and 5 ppm

peptide mass tolerances and the FDRs were determined accordingly (figure 2.10a).

The same FDR trends as for sample 1 (figure 2.5) were observed: using the MIT

resulted in the FDR being dependent on the search parameters used, rising from

2.8% to over 10% when the mass tolerance window was narrowed from 2 Da to 5

ppm. However, X!Tandem was shown to be quite robust again, indicating little
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(a) Comparative evaluation of Mascot and X!Tandem performance and FDR robustness for sample 2.
Compare with figure 2.6.
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sample 2. Compare with figure 2.9. The vertical dashed lines correspond to commonly used 1% and
5% FDR values.

Figure 2.10: Validation of results on an independent protein standard dataset.
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dependance of the search space on the scoring scheme.

ROC curves were compiled to enable comparison (Figure 2.10b) of the AMT and

the standard Mascot thresholds as well as the X!Tandem performance. Again, the

MHT was shown to be significantly more sensitive than the MIT, but the AMT

scoring method clearly outperformed the MIT and MHT as well as X!Tandem,

validating the findings of sample 1.

2.4 Conclusion

In this chapter I have investigated how MMD settings affect peptide identification

using Mascot and X!Tandem and presented an alternative search strategy and an

Adjusted Mascot Threshold (AMT) to enable sensitive identification of high accuracy

data with Mascot.

I have demonstrated the correlation between the MIT and search space, which

is for example affected by MMD settings. I have shown that the MIT can be very

conservative for MMD settings commonly used for ion trap data, leading to very

specific identifications at the expense of sensitivity, while it tends to become more

optimistic for stringent MMD settings used for high accuracy data. The MHT was

found to be significantly more sensitive for ion trap data, but is not comprehensively

applicable to very stringent MMD settings commonly used for high accuracy data.

However, the actual FDRs for both MIT and MHT are pre-imposed and deviate from

the theoretically defined rate. Furthermore, my results indicate that X!Tandem is

more robust than the MIT and MHT when faced with MMD changes and is equally

applicable to both low and high accuracy MS data with a sensitivity that was better

than using the MIT but worse than using the MHT.

I also investigated the use of mass accuracy filtering as the sole discriminator

between correct and incorrect peptide assignments. Mass accuracy filtering served

as a highly sensitive discriminator with limited specificity and sub-ppm mass errors
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2.4 Conclusion

would be needed for more specific identifications. Alternatively, a two-step filtering

strategy can be employed. I first searched the data at relaxed MMD settings, followed

by applying mass accuracy filtering. The results demonstrate that combining peptide

mass accuracy filtering with the MHT serves as a very strong discriminator, efficiently

eliminating incorrect peptide assignments, although sensitivity was limited. To regain

sensitivity I propose an Adjusted Mascot Threshold (AMT) that allows the user to

freely select the best trade-off between sensitivity and specificity by having full control

over the actual FDR. The AMT can easily be applied on top of any Mascot search

where target/decoy searching is amenable. It is independent of search parameters

affecting the search space and is expected to adjust with MS/MS data quality. AMT

outperforms MIT and MHT, as well as MATH and X!Tandem for both low and high

accuracy MS data.
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Chapter 3

Accurate and sensitive peptide

identification with Mascot

Percolator

3.1 Introduction

With the advent of high accuracy instrumentation, it was anticipated that peptide

identification specificity would improve, since peptide mass accuracy in the region

of a few ppm reduces the search space by orders of magnitude (Elias and Gygi,

2007; Zubarev and Mann, 2007; Zubarev et al., 1996). However, in chapter 2 I have

evaluated the performance of Mascot and demonstrated that this is not necessarily the

case. I have shown that the Mascot Identity Threshold (MIT) was anti-conservative

(low specificity, but high sensitivity) for stringent peptide mass tolerance settings

(small search space) and conversely very conservative (high specificity, but low

sensitivity) for relaxed parameter settings. Mascot also reports an empirical Mascot

Homology Threshold (MHT) at which a Mascot score can be considered a significant

outlier from the score distribution of all peptide matches to a given spectrum. Overall,

the MHT was shown to be more sensitive than the MIT, but is only reported for
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3.1 Introduction

peptide-spectrum matches (PSMs) where sufficient peptide candidates are scored,

e.g. at relaxed search parameter settings. These findings led me to implement the

Adjusted Mascot Homology Threshold (AMT), utilising the MHT at relaxed search

parameters that, combined with a peptide mass deviation filter (AMT/mass-filter)

on mass error recalibrated data, was shown to be a sensitive Mascot scoring method

for high accuracy data (see chapter 2).

However, a limitation of the AMT/mass-filtering strategy is that it requires a

fixed mass tolerance filter in order to subsequently determine a score threshold that

maintains a predefined FDR. A more flexible implementation would be to use both

features, the score cut-off and the mass deviation, in combination for discrimination

of correct and incorrect PSMs. This can be achieved using the iterative machine

learning method called Percolator (Käll et al., 2007). See section 1.1.2.3 for more

background information concerning Percolator.

Although Percolator was originally designed for Sequest use only, the availability

of a standard input format enables the use of Percolator as a generic machine

learning algorithm where target/decoy data are available. I have therefore developed

a Mascot extension (“Mascot Percolator”) that extracts and computes relevant

features from the Mascot search results, trains Percolator, applies the resulting

classifier to each PSM and writes a result file. I firstly assessed the AMT/mass-

filtering approach with Mascot Percolator, but also extended this method with

more features directly available from Mascot search results, such as Mascot scoring

information and peptide properties. Moreover, an extended feature set comprising

information not directly accessible from Mascot search results, including ion matching

statistics and intensity information, was explored. I have evaluated the performance of

Mascot Percolator with high precursor mass accuracy LC-MS/MS datasets, but also

benchmarked it with the low mass accuracy LC-MS/MS dataset used in the original

Percolator publication. In a final assessment, I validated the q-value accuracy

reported by Percolator with a protein standard dataset acquired on a range of
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3.2 Methods

instruments. Mascot Percolator is freely available at http://www.sanger.ac.uk/

Software/analysis/MascotPercolator/ including databases, peak lists and results

as presented in this chapter.

Parts of this chapter were published in the Journal of Proteome Research (Brosch

et al., 2009) by the author of this thesis (Markus Brosch) and my supervisors (Tim

Hubbard, Jyoti Choudhary) as well as by Lu Yu who run the mass spectrometry

experiments (specifically indicated in the relevant section).

Moreover, in collaboration with John Cottrell and David Creasy (Matrix Science,

London) my method presented in this chapter is currently implemented into the official

Mascot 2.3 software release (http://www.matrixscience.com/workshop_2009.html),

and will be readily applicable by the proteomics community without the need of any

third party software.

3.2 Methods

3.2.1 Datasets and experimental methods

• Dataset 1: LTQ-FT (Thermo Fisher Scientific) dataset from a nuclear protein

extract of murine embryonic stem cells. Data and methods were described in

detail and used in chapter 2.

• Dataset 2: Käll et al. (2007) provided us with their Yeast (Saccharomyces

cerevisiae) dataset acquired on an LTQ (Thermo Fisher Scientific).

• Dataset 3: LTQ-FT dataset from a standard protein set comprising 48 human

proteins (Universal Proteomics Standard Set UPS-1, Sigma). Data and methods

were described in detail in chapter 2. In addition, the same sample was also

acquired on a LTQ, LTQ-FT Ultra and Q-Tof Premier (Waters) by Lu Yu

(Team 17, Wellcome Trust Sanger Institute), providing me a comprehensive set

of protein standard data.
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3.2 Methods

3.2.2 MS/MS database searching

Dataset 1: Peak lists of (38,058 spectra) were searched with Mascot 2.2 using

the following parameters: enzyme = trypsin (allowing for cleavage before proline

(Rodriguez et al., 2007)); maximum missed cleavages = 2; variable modifications =

carbamidomethylation of cysteine, oxidation of methionine; product mass tolerance =

0.5 Da. The International Protein Index (IPI) database version 337 (Mus musculus)

was used as a protein sequence database. Common external contaminants from

cRAP (a maintained list of contaminants, laboratory proteins and protein standards

provided through the Global Proteome Machine Organisation, http://www.thegpm.

org/crap/index.html) were appended (see 1.1.1.2). The compounded database

contained 51,355 sequences and 23,635,027 residues. For FDR assessment, a separate

decoy database was generated from the protein sequence database using the “decoy.pl”

Perl script provided by Matrix Science. This script randomises each entry, but retains

the average amino acid composition and length of the entries. Data was searched at

100 ppm peptide mass tolerance to evaluate data mass accuracy. After a correction

of a systematic mass deviation of 3 ppm(Brosch et al., 2008), 90% and 99% of all

PSMs with a Mascot score greater than 30 fell within a ±5 ppm and ±20 ppm mass

window respectively. For the most stringent mass tolerance settings, where Mascot

thresholds are most sensitive, the data was searched at 20 ppm. Moreover, data was

also searched at 500 ppm peptide mass tolerance to enable mass accuracy filtering

combined with the adjusted MHT (Adjusted Mascot Threshold, AMT (Brosch et al.,

2008), see chapter 2). The mass deviation filter was set to 5 ppm, which was shown

to be the most effective filter setting in combination with the AMT (figure 3.1).

Dataset 2: Peak lists of (35,236 spectra) were searched with Mascot 2.2. against

the same target and decoy databases that were used by Käll et al. (2007). The

following parameters were used: enzyme = trypsin; maximum missed cleavages =

2; fixed modification = carbamidomethylation of cysteine; peptide mass tolerance

settings = 3 Da; product mass tolerance = 0.5 Da.
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Supplementary figure 1
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The performance of the Adjusted Mascot Threshold (AMT) was evaluated using mass devia-

tion filter settings of 50, 25, 10, 5 and 3ppm: for each, the number of estimated correct PSMs

was determined across a range of q-values. These results show the trade-off between improv-

ing specificity with more stringent mass tolerance filters and conversely excluding potentially

correct PSMs when the filters become too stringent. For this dataset the best mass filter was

found to be 5 ppm. 
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Figure 3.1: The performance of the Adjusted Mascot Threshold (AMT) was evaluated
using mass deviation filter settings of 50, 25, 10, 5 and 3 ppm: for each, the number
of estimated correct PSMs was determined across a range of q-values. These results
show the trade-off between improving specificity with more stringent mass tolerance
filters and conversely excluding potentially correct PSMs when the filters become
too stringent. For this dataset the best mass filter was found to be 5 ppm.

Dataset 3: Peak lists (spectra count LTQ: 43,710, LTQ-FT: 45,289, LTQ-FT

Ultra: 18,285, Q-Tof: 1206) were searched with Mascot 2.2 against human IPI (June

2007, 68,322 sequences, 28,806,780 residues) including common external contaminants

from cRAP. Parameters used: enzyme = trypsin; maximum missed cleavages = 2;

variable modifications = carbamidomethylation of cysteine, oxidation of methionine

and deamidation of aspargine and glutamine; peptide/product mass tolerance =

LTQ: 0.9 / 0.5 Da, LTQ-FT: 20, 50, 200 ppm / 0.5 Da, LTQ-FT Ultra: 10 ppm /

0.5 Da, Q-Tof: 30 ppm / 0.2 Da; 5 randomised versions (decoy.pl) of the sequence

database were generated and searched individually under the same conditions.
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Figure 3.2: Illustration of the Mascot Percolator workflow.

3.2.3 Mascot Percolator implementation

Mascot Percolator was implemented with the Java programming language, ensuring

platform independent operation. It utilizes the Mascot Java parser library provided

by Matrix Science (http://www.matrixscience.com/msparser.html) and uses the

generic interface to Percolator (Washington University, http://noble.gs.washington.

edu/proj/percolator/). The latest Percolator version 1.12 using default parameters

was used for this study, which should be taken into account when comparing results

of this study to the original publication of Percolator (Käll et al., 2007), where

version 1.01 was used. Results in this chapter are based on Mascot Percolator version

1.09.

The Mascot Percolator implementation performs the following operations for each

run: it reads the Mascot results files, computes the scoring features as introduced

in the results and discussion section and uses these for the Percolator training as

described in section 1.1.2.3. In a last step, the result file of Percolator and the input

files are merged to combine peptide, protein and scoring information (figure 3.2).

3.2.4 Data analysis

Receiver Operating Characteristics (ROCs) for Mascot Percolator were generated

by varying the q-value cutoffs and reporting the corresponding number of estimated

true positives. The MIT, MHT and AMT were used as a reference for comparison.
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3.3 Results and Discussion

When no MHT was reported, the MIT was used instead, which is the default

behaviour of Mascot. ROCs for the MIT and MHT were generated by varying the

Mascot significance threshold p (default 0.05) between 1 × 10−5 to 1 × 101, the

latter representing the maximum allowed. Percolator factors the percentage of target

PSMs that are incorrect (π0) into the q-value calculation (see section 1.1.2.3). For

consistency, the q-value calculations of MIT, MHT and AMT also take this factor

into account and were determined using “Qvality”: 0.55 (dataset 1), 0.5 (dataset 2),

0.77 (dataset 3).

3.3 Results and Discussion

3.3.1 Peptide mass accuracy features

Dataset 1 is representative of a large high mass accuracy proteomics experiment.

For this dataset I previously showed that the AMT/mass-filtering method was the

most sensitive Mascot scoring method available (see chapter 2). Therefore, the data

were searched at 500 ppm peptide mass tolerance, filtered to 5 ppm (figure 3.1) and

AMT thresholding was applied, resulting in 13,668 estimated true positive peptide

identifications at a q-value of 1.0%. In comparison, the MIT and MHT at the same

q-value only identified 10,385 and 12,338 true positives at the most restrictive (see

method section) peptide mass tolerance setting of 20 ppm (figure 3.3, AMT, MIT,

MHT).

A more flexible implementation would be to use both features, the score cut-off

and the mass deviation, in combination for improved discrimination of correct and

incorrect PSMs, for example accepting PSMs with slightly larger mass deviation

given the PSM scores are highly significant.

This can be achieved with a machine learning algorithm such as Percolator using

features relevant to the AMT/mass-filtering strategy. Accordingly, the following

features were calculated from the 500 ppm Mascot target and decoy searches and
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Figure 3.3: For the 20 ppm Mascot search, the basic and extended Mascot Percolator
(MP), the Mascot Identity Threshold (MIT) and the Mascot Homology Threshold
(MHT) performance was determined as a function of q-value cut-offs ranging from 0
to 0.06. Moreover, the performance of the mass-filtering (5 ppm) strategy together
with the Adjusted Mascot Threshold (AMT), the emulated Percolator AMT method
(MP AMT), the MIT and MHT are shown for the 500 ppm Mascot search. Note: if
no MHT was reported, the MIT was used (default Mascot behaviour).

were used for Percolator training: MHT minus Mascot score, deviation of theoretical

and observed peptide mass, and the absolute value of the mass deviation.

Mascot Percolator identified a total of 14,512 estimated true positive PSMs at a

1.0% q-value (figure 3.3, MP AMT), clearly outperforming the AMT/mass-filtering

approach by 6.2%. When Mascot Percolator was compared to the Mascot thresholds,

it identified 40% (37%) and 18% (17%) more true positive (unique) peptides than
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3.3 Results and Discussion

the MIT and MHT, respectively, significantly improving performance upon both

Mascot thresholds.

These results demonstrate that the combined use of the score threshold and

the mass deviation features as a discriminator provide better performance than

the AMT/mass-filtering strategy. It should be noted that the used features tackle

systematic mass errors and random mass errors separately, therefore simplifying

the usability since post-processing to remove systematic mass shifts is not required.

These promising results motivated the assessment of more comprehensive feature

sets.

3.3.2 Mascot Percolator using extended feature sets

In addition to the mass deviation features described previously, features that can be

directly extracted from the Mascot search results were added, defining the “basic

feature set”(table 3.1, feature 1-9).

The idea behind the additional chosen features: the native Mascot score is

known to correlate well with the quality of a PSM (feature 1); the difference of the

Mascot score between two non-isobaric peptide hits indicates the level of ambiguity

between two competing matches (feature 2); the number of missed tryptic cleavages

or variable modifications of a peptide may be indicative of whether the PSM matches

the properties of the rest of the dataset (feature 8 and 9 respectively). Feature

3-4 are not expected to provide discrimination power by themselves, but they may

correlate with other features and thereby improve discrimination.

Moreover, an “extended feature set”(table 3.1, feature 1-17) that required re-

matching the experimental spectra against the theoretical spectra was considered.

The idea was to include fragment ion matching statistics, not readily available from

the Mascot results: a higher total (matched) ion intensity can be indicative of

better spectrum and peptide-spectrum match quality (feature 10-12 respectively);

fragment mass error statistics is widely used to manually validate PSMs (feature
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13-14); the longest consecutive ion series as well as the fraction of ions matched is

another commonly used feature for manual validation (feature 15, 16) and lastly,

the fraction of matched ion intensity relative to the total ion intensity may further

aid discrimination. Importantly, features 15-17 are computed for each ion series

separately, e.g. b and y series, doubly charged b and y series as well as the b and

y series including derivatives such as neutral losses of ammonia or water, enabling

Mascot Percolator to learn ion series preferences from the dataset at hand.

Using the target/decoy Mascot search results for subsequent Percolator training

with the basic and extended feature set, the peptide identification performance

improved by 2.5% and 13%, respectively, as compared to the Mascot Percolator

performance using only the AMT/mass-filtering features (figure 3.3). Since about

the same number of identifications were made for the 500 ppm and 20 ppm search,

the basic and extended feature sets appear to effectively substitute the necessity for

strong mass accuracy discriminators.

Table 3.1: Features 1-9 represent the “basic feature set” and features 1-17 represent
the “extended feature set” as used in Mascot Percolator.

Feature No. Short description

1 Mascot score
2 Mascot score of current peptide hit relative to 2nd best hit rank
3 Calculated monoisotopic mass of the identified peptide
4 Charge (1 to n)
5 Calculated minus observed peptide mass (in Dalton and ppm)
6 Feature No. 5, corrected for isotope error
7 Absolute value of feature No. 5
8 Number of missed tryptic cleavages
9 Number of variable modifications
10 Total ion intensity
11 Total ion intensity of matched ions
12 Relative ion intensity (Feature No. 11 / Feature No. 12)
13 Median of delta mass of fragment ions (in Dalton and ppm)
14 Interquartile range of delta mass of fragment ions (in Dalton and ppm)
15 Longest consecutive ion series (per ion series)
16 Fraction of ions matched (per ion series)
17 Relative ion intensity matched (per ion series)
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Figure 3.4: Both figures enable the visual comparison of the raw Mascot scores against
the Mascot Percolator (posterior error probability) scores. Figure (a) highlights all
the extra PSMs with weak Mascot score that Mascot Percolator accepted based
on its discrimination power using all 17 features. Figure (b) compares the score
distributions and the improved bi-modal distribution of the Percolator scores indicates
the improved discrimination power.

Therefore, Mascot Percolator with features that include Mascot scoring and

peptide features as well as ion matching statistics, identified more than 58% (52%) and

33% (29%) more true positive (unique) peptides than the MIT and MHT respectively

at a 1.0% q-value with a standard 20 ppm search (figure 3.3), clearly demonstrating

the enhanced discrimination power when using an ensembl of features (figure 3.4).

These improvements translate into 15% and 6% more protein identifications over the

MIT and MHT, respectively. Overall, these results are a significant improvement

over all current Mascot scoring methods, including AMT, and eliminate the need to

search high accuracy data at relaxed mass tolerances to improve sensitivity.

3.3.3 Mascot Percolator applied to low mass accuracy data

The following evaluation is concerned with dataset 2, a yeast sample acquired on a

LTQ instrument that was used for the evaluation of Sequest Percolator. To enable
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Threshold (MHT) as well as for the Sequest Percolator.

comparison of Mascot Percolator and Sequest Percolator, the subsequent experiments

were therefore not only based on the same data, but also on the same target/decoy

databases and search parameters as described by Käll et al. (2007), with the only

exception being the trypsin specificity parameter.

Using the MIT and MHT, 6,379 and 7,541 true positive identifications (figure

3.5, MIT, MHT) were made at a q-value of 0.7% and 1.0%, respectively (the Mascot

significance threshold is limited to 0.1, corresponding to a q-value of 0.7%). Using

the basic feature set with Mascot Percolator improved sensitivity over MIT and MHT

by more than 41% and 19%, respectively, at a 1.0% q-value (figure 3.5, MP basic).

Sensitivity was further boosted by more than 50% when the extended feature set
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was applied (figure 3.5, MP extended). Compared to the MIT and MHT, this relates

to a (unique) peptide identification gain of 93% (82%) and 63% (55%), respectively,

at the standard 1.0% q-value. Overall, these results further support the performance

advantages of Mascot Percolator over the default MIT and MHT.

Moreover, the difference in performance of Mascot Percolator between the basic

and extended feature set was significantly more prominent than it was with dataset

1, highlighting that feature contribution can vary substantially for different datasets

and demonstrating the dynamic and adaptive property of the Percolator algorithm

(Käll et al. 2007, supplement 2). It could be speculated that low accuracy data

benefit from more discriminating features, while high accuracy data almost reaches

the maximum sensitivity with the basic feature set due to the more restrictive search

parameters and known charge states.

Käll et al. (2007) identified trypsin-specificity as a strong discriminating feature

and consequently they searched without enzyme specificity in their study. However,

this practice is significantly more CPU intensive due to the larger search space. Search

times in Mascot are one order of magnitude slower when semi-trypsin is specified

instead of trypsin, and two orders of magnitude slower when no enzyme specificity

is defined instead of trypsin (http://www.matrixscience.com/pdf/2006WKSHP1.pdf).

Therefore, Mascot Percolator does not make use of any enzyme specificity related

features, yet improves upon the Sequest Percolator sensitivity with the extended

feature set by about 8% at a 1% q-value (figure 3.5).

3.3.4 Validation with standard protein datasets

The robustness and precision of the q-value was validated in the supplemental

material of the original Percolator publication (Käll et al., 2007). The employed

target/decoy search strategy for q-value estimation is a widely accepted approach,

but various methods exist for generating the decoy databases (see section 1.1.2.3).

Therefore, I extended this evaluation by assessing the accuracy of the q-value as
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Figure 3.6: The estimated q-values were plotted against the false discovery rates as
reported by the protein standard datasets for the extended and the basic Mascot
Percolator runs. The dotted lines represent the standard error.

a result of the Matrix Science decoy.pl script (see methods) with a set of protein

standard datasets (dataset 3). Five Mascot searches were performed and analysed

with Mascot Percolator for each data, using the same target but independently

generated random databases. This enabled computation of the standard error for the

q-value calculations. For every estimated q-value, the corresponding observed FDR

was determined by counting the incorrect PSMs that did not match the expected

protein sequences.

It was found that q-value estimates were in very good agreement with the results
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Figure 3.7: Performance of the Mascot Percolator, MIT and MHT were compared
for a no enzyme search of the LTQ-FT protein standard dataset (left). Estimated
q-values were also plotted against the FDR as reported by this protein standard
dataset (right).

obtained by the expected protein sequences (figure 3.6), while the standard errors

were negligible, particularly in the low FDR region. This implies that the gain in

sensitivity with Mascot Percolator is limited to valid sequences within the expected

error rates. These results demonstrate that none of the chosen features introduced

any bias towards severe under- or overestimation of the q-values and that these can

be seen as accurate and reliable estimates of the real error rates for a variety of

analytical platforms. This is a significant improvement over the standard Mascot

results using the MIT or MHT, for which I have previously shown that the actual

FDR can differ by several fold from the expected FDR (Brosch et al., 2008).

Moreover, the LTQ-FT dataset was also used for a more demanding no-enzyme

search. The Mascot scoring scheme as well as the Mascot Percolator were evaluated

with the protein standard dataset that was searched in Mascot without any enzyme

constraints. Mascot Percolator identified 265% and 96% more peptides than using

the MIT or MHT respectively, at a q-value of 1%. It should be noted that none of the

features I use discriminate by enzyme specificity as pointed out earlier. Estimated

q-values were validated against this protein standard dataset and showed good
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accuracy, indicating that the identifications are limited to valid sequences within the

expected error rates.

Overall these results demonstrate that Mascot Percolator can also be applied

to more challenging conditions than standard tryptic searches, where the search

space is increased by several orders of magnitude (http://www.matrixscience.com/

help/search_field_help.html), such as searches without any enzyme constrains or

excessive variable modification settings.

3.3.5 Mascot Percolator applied to a pool of 73 datasets

About 10 million tandem MS spectra from various sources were post-processed with

Mascot Percolator in chapter 5 (see section 5.2.1 for details). This data enabled

the evaluation of Mascot Percolator on a large scale. For each of the 73 datasets

the increase in peptide identifications with Mascot Percolator over MHT, MIT and

Mascot was determined, allowing to compute the median and interquartile range for

each comparison: the median improvement at a 1% q-value were 54%, 109% and

99%, with an interquartile range (IQR) of 39%, 84% and 69% when the number of

PSMs of Mascot Percolator were compared with MHT, MIT and the Mascot score

respectively.

In a next step, the same data were searched against a database that was supple-

mented with gene predictions, resulting in about a 10-fold search space increase (see

section 5.2.2 for details). Mascot Percolator identified 16% fewer peptides (median

value) at a 1% q-value when compared with the searches against the smaller database,

while the difference in performance between Mascot Percolator and the MIT, MHT

and Mascot score also changed: the median improvement of peptide identifications

with Mascot Percolator at a 1% q-value over the MHT, MIT and Mascot score were

65%, 197% and 155% respectively. While the improvement over the MHT was almost

constant, the change over the MIT and raw score was considerable, resulting in about

half the number of peptide identifications when compared to the search against the
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Figure 3.8: 73 datasets were processed with Mascot Percolator and the number of
peptide identifications were compared to the identification rates of Mascot Identity
and Homology thresholds as well as the raw Mascot score (left).
The same data was also searched against a 10-fold increased search space, followed
by the same evaluation (right).

smaller database, further supporting the findings of chapter 2.

Overall this demonstrates on a large scale that Mascot Percolator shows a robust

improvement over the native Mascot scoring, including a significant less severe drop

in performance when search space inflates.

3.4 Mascot Percolator availability

Standalone package

Mascot Percolator was designed as a command line program to run either as a

stand-alone application or as a component that can be embedded into existing data

processing pipelines, allowing for streamlining data and automation.

An example of executing the program follows for illustration: “java -cp Mas-

cotPercolator.jar cli.MascotPercolator -target 11026 -decoy 11027 -out 11026-11027

-newDat”. This command line triggers Mascot Percolator to parse the Mascot search

results from the files that are associated with the provided Mascot job identifiers

(11026, 11027) to subsequently calculate the features discussed above for the subse-
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quent Percolator run. Results and logging files are written into files prefixed with

“11026-11027”. Moreover, the flag “newDat” directs Mascot Percolator to write a

new Mascot results file (*.dat) that can be opened by the Mascot server just as if it

was a standard Mascot result file. The differences however are as follows: the Mascot

scores are replaced with the −10log10 of the Posterior Error Probability (PEP); the

expect value that is calculated on the Mascot results page directly corresponds to

the PEP; the accepted FDR can be changed by setting the Probability values on the

Mascot results page accordingly. A summary for illustration is shown in figure 3.9.

Mascot Percolator is available at http://www.sanger.ac.uk/Software/analysis/

MascotPercolator/, where I also documented the more advanced command line

options.

Distributed package

I was confronted with the problem to post-process the search results of 146 Mascot

searches comprising a total of about 20 million spectra (2× 10 million, see chapter 5).

Moreover, I had to process these data as quickly as possibly and ultimately wanted

to make use of our Mascot compute farm. This farm does not have a “Load Sharing

Facility1” and hence there was a need to develop a distributed version of Mascot

Percolator, which is now used by default in our lab.

The system is based on several components: a database server was implemented

that runs independently of the system and logs every action of the distributed Mascot

Percolator system. A Mascot Percolator Server was developed that after starting up

connects to the database and triggers the status page for the intranet to be updated

and listens for Mascot Percolator Nodes (figure 3.10). These nodes can be run on

either Unix or Windows computers and automatically connect to the server. A script

as well as a web-interface2 were implemented that enable the submission of jobs in

1A commercial computer software job scheduler that can be used to execute batch jobs on
networked Unix and Windows systems.

2The web-based submission interface was developed by Parthiban Vijayarangakannan, Team
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Score:
-10log10(PEP)

FDR

p = PEP = 0.05; MIT 13
p = PEP = 0.01; MIT 20

Expect = PEP

Warning

Figure 3.9: Screenshot of a Mascot results page that was generated by Mascot
Percolator. The results are basically identical to a standard Mascot results page, can
be opened by the Mascot server, but the scoring values are derived from the Mascot
Percolator run. A warning at the top of the page states this very clearly to avoid
confusion.

batches. The server then schedules the jobs and distributes these onto the different

available nodes. When jobs complete, the status page updates and the result files

can be browsed. The system has some more advanced options that are documented

at http://www.sanger.ac.uk/Software/analysis/MascotPercolator/.

In conclusion this distributed system enabled me to process the large datasets

reliably and efficiently in a fraction of the time when compared to the stand alone

version of Mascot Percolator.

17, Wellcome Trust Sanger Institute
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Figure 3.10: Schematic of the Distributed Mascot Percolator package and screenshot
of the status webpage.

Official Mascot Percolator support by Matrix Science

In collaboration with John Cottrell, David Creasy (Matrix Science, London) and

Lukas Käll (University of Stockholm), Mascot Percolator is currently implemented

into the official Mascot release 2.3 (see http://www.matrixscience.com/workshop_

2009.html). Features will be pre-computed for every Mascot search, cutting compute

time and allowing streamlined processing through Percolator, without the need of

a user to access the command line. This will ultimately expand the user group of

Mascot Percolator significantly.

3.5 Conclusion

The Percolator machine learning algorithm was recently introduced to rescore Sequest

results and demonstrated significantly improved sensitivity for peptide and protein

identification. Percolator learns a classifier independently for each dataset, thereby
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adapting to inherent variations between different datasets, such as changing analytical

protocols or instrumentation.

In this work, I have developed and evaluated Mascot Percolator, a software package

that interfaces Mascot with Percolator. It automatically extracts and computes

relevant features from target/decoy Mascot search results, trains Percolator, applies

the resulting classifier to each PSM and writes a result file. Mascot Percolator has

been developed as a command line tool and can be readily integrated into existing

pipelines or be used as a stand-alone application. A large number of features that

are relevant to the quality of a PSM, such as Mascot scores, parent and fragment

mass accuracy, peptide as well as ion matching statistics, amongst others, were

incorporated.

I have demonstrated that Mascot Percolator substantially outperforms previous

Mascot scoring methods for high and low mass accuracy data and applied it to a large

ensembl of 73 datasets, where up to 65% and 197% more peptides than the MIT and

MHT were identified with Mascot Percolator at a 1% q-value (median values). This

demonstrates the improved discrimination potential achieved when several factors

that define the quality of a PSM are used collectively for scoring instead of only one

metric. Furthermore, I have shown that the estimated q-values are in very good

agreement with the actual FDRs and represent a significant improvement in accuracy

as compared to the Mascot thresholds. Lastly, Percolator calculates both significance

measures, the q-value and the posterior error probability. The latter is particularly

important for my genome annotation efforts, where the significance of every peptide

identification should be known.
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Chapter 4

Development of a proteogenomics

pipeline

4.1 Introduction

In chapter 3 the development and evaluation of Mascot Percolator was discussed,

a powerful peptide scoring scheme with an implementation that can be automated

and run in batch-mode, providing high-throughput capability. This system delivers

sensitive peptide identification with accurate significance measures and thereby sets

the foundation for a reliable proteogenomic pipeline. Mascot Percolator results can be

written into a tab delimited text file or exported into the proprietary Mascot results

file format. To use these data for genome annotation purposes, a proteogenomic

pipeline is required that stores these data, maps the peptide identifications to the

genome and enables comprehensive data analysis.

The currently available proteogenomics pipelines, Peptide Atlas (Desiere et al.,

2005) and GAPP (Shadforth et al., 2006), which were described in detail in section

1.3, were found to be not suitable since these systems are highly specialised and the

code bases are not in the public domain. The envisaged system should integrate

peptide identifications available from Mascot Percolator, enable validation and
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Development of a proteogenomics

pipeline

4.1 Introduction

In chapter 3 the development and evaluation of Mascot Percolator was discussed,

a powerful peptide scoring scheme with an implementation that can be automated

and run in batch-mode, providing high-throughput capability. This system delivers

sensitive peptide identification with accurate significance measures and thereby sets

the foundation for a reliable proteogenomic pipeline. Mascot Percolator results can be

written into a tab delimited text file or exported into the proprietary Mascot results

file format. To use these data for genome annotation purposes, a proteogenomic

pipeline is required that stores these data, maps the peptide identifications to the

genome and enables comprehensive data analysis.

The currently available proteogenomics pipelines, Peptide Atlas (Desiere et al.,

2005) and GAPP (Shadforth et al., 2006), which were described in detail in section

1.3, were found to be not suitable since these systems are highly specialised and the

code bases are not in the public domain. The envisaged system should integrate

peptide identifications available from Mascot Percolator, enable validation and
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refinement of Ensembl (Hubbard et al., 2002) and Vega (Ashurst et al., 2005)

annotation, and provide a modular implementation together with a small code base

for easy maintenance. Moreover, the pipeline should automatically and readily map

the available peptide identifications onto the genome and provide comprehensive

means to analyse and visualise these data. This chapter discusses the pipeline

development, design and its individual components. Chapter 5 applies this pipeline

in a proteogenomics pilot study.

Parts of this chapter will be published together with the next chapter by the

author of this thesis (Markus Brosch) and my thesis supervisors (Tim Hubbard,

Jyoti Choudhary).

4.2 Pipeline design and development

Figure 4.1 illustrates the pipeline design with its components. At the core of the

system is a relational database “GenoMS-DB”, which integrates all in silico digested

peptides, each of which is associated with its genomic context. This approach offers

several advantages:

• Non-redundant peptide-level FASTA files can be constructed, enabling more

efficient Mascot searches.

• Gene level FASTA files can be constructed for gene centric viewing of Mascot

results. Optionally, a peptide list that comprises peptides unique to a gene or

gene isoform supports targeted proteomics experiment.

• Peptides identified with Mascot and processed with Mascot Percolator can be

flagged and linked in the database with experimental and scoring information.

• The database provides readily available peptide-genome mapping, allowing

immediate and direct mapping of peptides onto the genome.
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Figure 4.1: Schematic overview of the proteogenomics pipeline. The database at the
core of the system, “GenoMS-DB”, is built by integrating all peptides that are derived
from an in silico digestion of available data sources. These can comprise Ensembl,
Vega or Augustus gene predictions. Each peptide derived from these data-sources
is associated with its genomic locus and context, such as gene, transcript, exon or
splice site information. Peptides from FASTA protein databases can optionally be
integrated, but lack genome mapping.
GenoMS-DB is then used to export a set of all non-redundant in silico digested
peptides, which are used by Mascot as a search database. Tandem MS spectra are
searched with Mascot and post processed with Mascot Percolator. This is followed by
removing common contaminant sequences and low scoring peptide-spectrum matches
(PSMs) from the results, prior to storing the remaining identifications into GenoMS-
DB database. This integration of peptide-genome mapping together with peptide
identifications enables streamlined analysis with standard SQL or visualisation via a
DAS feature server.
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• Comprehensive data analysis can be performed with fast and efficient Struc-

tured Query Language (SQL), a standard language for accessing and querying

databases.

• The availability of the complete peptide-genome mapping enables theoretical

studies such as genome coverage with a specific set of peptide.

The core of the system is written in Perl, comprising more than 2,000 lines of

code, extensively relying on the Ensembl Perl API (Stabenau et al., 2004), without

which the codebase would have been significantly larger. This API provided all the

core functionality required to establish the proteome-genome relationship, such as

the coordinate conversions between translated gene products and the underlying

genomic sequences. Therefore, none of the involved steps required any sequence

alignment tools. The next few sections of this chapter briefly describe individual

components.

4.2.1 Genome annotation data sources and integration

Section 1.2.5 discussed the Ensembl and Vega projects in detail, which together with

Augustus gene predictions build the annotation data basis for this pipeline. Details

and parameters are discussed in depth in the pilot study of chapter 5.

Conveniently, the Ensembl core API can be configured with the Bio::Ens-

EMBL::Registry module to handle either Ensembl or Vega data sources with the same

platform. Moreover, the API module extension Bio::EnsEMBL::Analysis::Runn-

able::Finished::Augustus enables full API functionality for Augustus gene pre-

dictions (Stanke and Waack, 2003), which are otherwise only available as GFF files

(http://www.sanger.ac.uk/Software/formats/GFF/). Lastly, standard text-based

FASTA sequences can be integrated as supplemental data, such as a selected labora-

tory or contaminant protein sequences, but genome association is not possible.

During the database build process, the system performs the following simplified
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steps: (a) for each chromosome, get all protein coding genes; (b) for each gene, get

all protein coding transcripts; (c) for each transcript, obtain the protein sequence;

(d) determine all enzymatic cleavage sites within the protein sequence; (e) calculate

the individual peptide start and end coordinates within the translation; (f) perform

in silico digestion according to the available cleavage sites, allowing for the defined

number of missed cleavage sites and sequence length constraints; (g) for each peptide,

calculate the genomic coordinates, accounting for multiple loci if the peptide spans

one or multiple splice sites; (h) store these loci in GenoMS-DB for each peptide, along

with gene, transcript, exon and splice site information; (i) optionally account for

coding SNPs (Schandorff et al., 2007) and N-terminal methionine excision (Frottin

et al., 2006) by generating alternative peptide variants. In the current form, known

post translational modifications or cleavages are not accounted for. It should be

noted that the organism, enzyme settings, missed cleavages, peptide minimum and

maximum length are user defined parameters, with the following default values: mus

musculus, trypsin (cleavage after Arginine and Lysine), 2, 6, 50 respectively.

4.2.2 Database design

The database is an integral part of this pipeline and its relational model (schema) is

illustrated in figure 4.2. The database is populated with one or multiple data sources,

which were discussed in the previous section. Once built, the database is only used

for querying with the only exception of some “PeptideSequence” table attributes,

which are related to Mascot Percolator results integration (see section below).

GenoMS-DB was designed to allow the user to construct simple and fast SQL

queries. This is done by selective denormalisation (Shin and Sanders, 2006) and

choosing the peptide-genome mapping information as a central element, which is

represented by the PeptideMapping table. This peptide-centric orientation, together

with the involved denormalisation, led me to the development of a new schema

instead of adapting the existing Ensembl database schema (Stabenau et al., 2004).
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PeptideMapping
PartialMapping
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Family

PeptideMapping
Gene

PeptideMapping
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Family Gene Transcript SpliceSite

ExonGeneFamily ExonTranscript

SourceFASTA Protein

Figure 4.2: GenoMS-DB database schema. The PeptideSeqeunce together with
the PeptideMapping table are the central elements in the schema (highlighted in
orange). The former comprises peptide properties alongside peptide identification
scores where available. The latter provides the genomic mapping coordinates for
every peptide in the database. Note that this design is not fully normalised to
provide optimal performance and ease of use. Yet, data integrity is guaranteed by the
carefully controlled data integration process. Later use of the database only updates
specific attributes of the PeptideSequence table that cannot lead to inconsistent
data. The notation used in this schema is a simplified Crow’s Foot notation.

In the following section the design of GenoMS-DB is discussed in more detail.

The PeptideSequence table stores all peptide related information, such as peptide

sequence, the number of missed cleavages or sequence length. The attribute seqKQLI

stores a sequence version with all Lysine (K) and Glutamine (Q) residues replaced with

“1” and all Leucine (L) and Isoleucine (I) replaced with “2”. Sequences that only differ

in either K/Q or L/I residues cannot be differentiated in low resolution fragmentation

spectra. Therefore, the uniqueness of every peptide within the proteome accounting

for these ambiguities is tested in a post database build process. The results are

stored as an integer number in the ambigEnsVega and ambiguity attributes, relating

to the number of genomic loci these substituted peptides match within the tested

space. The former attribute confines this space to Ensembl and Vega annotation only,

whereas the latter also accounts for a much larger search space, such as predicted
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sequences generated by Augustus.

It should be noted that this approach is a simplification of the potential complexity

involved in peptide-spectrum matching. For example, a modified residue such as

deamidated Asparagine could result in a similar mass as an unmodified amino acid

such as aspartic acid, which differs by only 3.6 × 10−5 Dalton. The selection of the

wrong monoisotopic peak or the occurrence of a single-nucleotide polymorphism can

lead to similar artefacts, hence sound MS data processing and database searching

requires careful selection of parameters to avoid these caveats. Finally, the Peptide-

Sequence table also stores identification information if the peptide was identified with

Mascot and scored with Mascot Percolator. A separate table could have been directly

linked with this table, but as pointed out earlier, the design is partly denormalised

to minimise unnecessary table joins and yet provide a robust database schema.

To link peptide sequences with their genomic context, the PeptideSequence

table has a one-to-many relationship with the PeptideMapping table. The latter

represents the central proteogenomic element in the database, comprising attributes

such as start, end, chromosome and strand. If a peptide spans one or multiple

splice sites, the peptide maps partially to different genomic locations, which are

stored in the PartialMapping table. If no splice site is spanned, the information of

the PeptideMapping table and the PartialMapping table are redundant. If multiple

alternative gene products give rise to multiple distinct peptide sequences, which have

the same genomic start and end coordinate but differ in the partial genomic mapping

due to variation in splicing, an alternative PeptideMapping entity is created in the

table for each distinct case. Hence, a PeptideMapping entity maps to one and only

one PeptideSequence entity.

PartialMapping entities are linked to the underlying Exon, which in turn links

to related SpliceSite and Transcript entities. A SpliceSite entity maps to two

distinct Exon entities, one representing the donor and one the acceptor exon. Since a

transcript contains one or many exons and one exonic region can be part of multiple
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transcripts, the Exon table is linked to the Transcript table by a many-to-many

relationship. Genes can give rise to multiple alternative transcripts, but a transcript

always belongs to one gene, hence the relationship between the gene and Transcript

table is one-to-many. To complete the genomic relationships, each Gene entity can

belong to multiple GeneFamily entities and vice versa. The Gene, Transcript

and Exon table store only the most relevant information, such as the chromosomal

coordinates, identifiers, annotation status or short descriptions.

The PeptideMapping table has a many-to-many relationship with the Gene-

Family, Gene, Transcript and SpliceSite tables. This redundant data represen-

tation minimises table joins to optimise performance and enables simplified query

building.

The following example should clarify the rationale behind this design: to identify

all splice sites that are associated with a set of peptides, the PeptideSequence table

is joined with the table holding the peptide-genome mapping information, which

in turn is joined with the table that maps to these requested splice sites. A fully

normalised design would have required significantly more table joins, complicating

the SQL query and slowing down the execution performance.

Lastly, the PeptideSequence table also has a many-to-many relationship with

the FastaProtein table. This table is only populated if FASTA sequence information

is integrated into the database, whereby no genomic mapping is available. This can

be useful for protein contaminants or laboratory proteins as well as protein databases

which are to be compared with Ensembl, Vega or Augustus. The Source table

has a one-to-one relationship with GeneFamily, Gene, Transcript, SpliceSite and

FastaProtein table. It comprises the version and type of the source database, which

was used to build GenoMS-DB.

Overall the partly denormalised database represents a powerful tool to analyse

proteogenomic data in an effective and efficient way. GenoMS-DB is individually

built for genome annotation resources that are to be validated and refined with
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proteomics data, such as a specific Ensembl or Vega builds.

4.2.3 Mascot search database construction

The search “database” of Mascot is simply a FASTA text file, where individual

protein sequence entries are concatenated with the protein identifier as a delimiter,

with alternative protein isoforms being handled as an individual protein entry.

Ensembl annotates alternative isoforms conservatively and as shown in chapter 5,

of the almost 23 thousand protein coding Ensembl genes in mouse, only 8,877 had

multiple protein coding isoforms annotated (Ensembl 54). However, a small subset

of 1,542 protein coding Ensembl genes were predicted to code for 13,664 transcripts.

Recently, Wang et al. (2008) has shown that more than 90% of human genes are

expected to code for alternative isoforms. It is anticipated that manual annotation

and improved automated annotation systems together with increased availability of

expression data from different cell types or tissues will further increase the number

of known alternative gene products.

Protein variants typically share most peptides (see section 5.3.2.4), which leads

to significant peptide redundancy in these text based FASTA files. Moreover, when

gene finding algorithms predict tens of alternative isoforms for a gene, a compact

representation eliminating the inherent peptide redundancy is required.

Many database search tools, including Mascot, do not remove this redundancy

since they sequentially cross correlate the in silico digested peptides (personal

communication, John Cottrell, Matrix Science, London). Therefore search times

scale linearly with database size.

To enable a compact representation, Martens et al. (2005b) proposed to digest the

proteome into a peptide centric database that can be filtered and indexed to remove

redundancy. For this, peptides are concatenated by an artificial residue that is used

as a spacer element to separate individual peptides. The Mascot search enzyme

settings need to be set accordingly to cleave at this artificial spacer element (see
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 Mascot Search Results

User                   : moc
Email                  : 
Search title           : mPSD01-allbands
MS data file           : C:\Program Files\Matrix Science\Mascot Daemon\MGF\1 mPSD01-allbands\mascot_daemon_merge.mgf
Database               : ipi_mm_june2007  (54152 sequences; 25561781 residues)
Timestamp              : 21 Jul 2008 at 08:34:20 GMT
Enzyme                 : Trypsin
Variable modifications : Acetyl (Protein N-term),Carbamidomethyl (C),Oxidation (M)
Mass values            : Monoisotopic
Protein Mass           : Unrestricted
Peptide Mass Tolerance : ± 20 ppm
Fragment Mass Tolerance: ± 0.5 Da
Max Missed Cleavages   : 1
Instrument type        : ESI-TRAP
Number of queries      : 53980
Protein hits           : IPI00753815  IPI:IPI00753815.2|SWISS-PROT:P16546-1|ENSEMBL:ENSMUSP00000092697|REFSEQ:XP_001000474;XP_994106|VEGA:OTTMUSP00000018114 Tax_Id=10090 Gene_Symbol=Spna2 Isoform 1 of Spectrin alpha chain, brain
  IPI00757353  IPI:IPI00757353.1|TREMBL:A3KGU7|REFSEQ:XP_001000449;XP_994029|VEGA:OTTMUSP00000018116 Tax_Id=10090 Gene_Symbol=Spna2 similar to Spectrin alpha chain, brain (Spectrin, non-erythroid alpha chain) (Alpha-II spectrin) (Fodrin alpha chain) isoform 18
  IPI00678951  IPI:IPI00678951.1|TREMBL:A3KGU5|REFSEQ:XP_001000491;XP_994149|VEGA:OTTMUSP00000018113 Tax_Id=10090 Gene_Symbol=Spna2 Spectrin alpha 2
  IPI00756070  IPI:IPI00756070.1|REFSEQ:XP_992228 Tax_Id=10090 Gene_Symbol=Spna2 similar to Spectrin alpha chain, brain (Spectrin, non-erythroid alpha chain) (Alpha-II spectrin) (Fodrin alpha chain) isoform 12
  IPI00319830  IPI:IPI00319830.7|SWISS-PROT:Q62261|TREMBL:Q8BQ35;Q8R1C2|ENSEMBL:ENSMUSP00000006629;ENSMUSP00000011877|REFSEQ:NP_787030|VEGA:OTTMUSP00000005519 Tax_Id=10090 Gene_Symbol=Spnb2 Spectrin beta chain, brain 1
  IPI00750506  IPI:IPI00750506.1|ENSEMBL:ENSMUSP00000047792|REFSEQ:XP_001000410;XP_992123;XP_993888 Tax_Id=10090 Gene_Symbol=Spna2 similar to Spectrin alpha chain, brain (Spectrin, non-erythroid alpha chain) (Alpha-II spectrin) (Fodrin alpha chain) isoform 15
  IPI00134093  IPI:IPI00134093.4|SWISS-PROT:O88737-1|TREMBL:Q3TUN1;Q3UXD6|ENSEMBL:ENSMUSP00000035208|REFSEQ:NP_031593|VEGA:OTTMUSP00000018359 Tax_Id=10090 Gene_Symbol=Bsn Isoform 1 of Protein bassoon
  IPI00134344  IPI:IPI00134344.6|TREMBL:O35411;Q3UGZ4;Q68FG2;Q68FM2;Q6A087;Q80ZK2|ENSEMBL:ENSMUSP00000008991|REFSEQ:NP_067262 Tax_Id=10090 Gene_Symbol=Spnb3 Adult male brain UNDEFINED_CELL_LINE cDNA, RIKEN full-length enriched library, clone:M5C1106A14 product:spectrin beta 3, full insert sequence
  T17CTM_TRY1_BOVIN  IPI:T17CTM_TRY1_BOVIN P00760 Cationic trypsin precursor (EC 3.4.21.4) (Beta-trypsin) (Fragment). BIOCTM:gi|136425|sp|P00760|TRYP_BOVIN TRYPSINOGEN.(FRAG)
  IPI00828530  IPI:IPI00828530.1|TREMBL:A2A634|REFSEQ:XP_982965|VEGA:OTTMUSP00000006577 Tax_Id=10090 Gene_Symbol=P140 Novel protein
  IPI00116599  IPI:IPI00116599.2|TREMBL:A2A627|ENSEMBL:ENSMUSP00000065424|REFSEQ:NP_061361|VEGA:OTTMUSP00000002552 Tax_Id=10090 Gene_Symbol=P140 Snap-25-interacting protein
  IPI00752290  IPI:IPI00752290.1|REFSEQ:XP_998750 Tax_Id=10090 Gene_Symbol=P140 similar to p130Cas-associated protein
  IPI00227235  IPI:IPI00227235.2|TREMBL:Q8C8R3|ENSEMBL:ENSMUSP00000036378 Tax_Id=10090 Gene_Symbol=Ank2 Adult retina cDNA, RIKEN full-length enriched library, clone:A930028N13 product:similar to Ankyrin-2, full insert sequence
  IPI00229509  IPI:IPI00229509.2|SWISS-PROT:Q9QXS1-16 Tax_Id=10090 Gene_Symbol=Plec1 Isoform PLEC-1I of Plectin-1
  IPI00663736  IPI:IPI00663736.1|ENSEMBL:ENSMUSP00000080038|REFSEQ:XP_920298;XP_990642;XP_995323 Tax_Id=10090 Gene_Symbol=Syngap1 similar to Ras GTPase-activating protein SynGAP
  IPI00757312  IPI:IPI00757312.1|TREMBL:Q3UH59|ENSEMBL:ENSMUSP00000090661|VEGA:OTTMUSP00000017507 Tax_Id=10090 Gene_Symbol=Myh10 CDNA, RIKEN full-length enriched library, clone:M5C1080G13 product:myosin heavy chain 10, non-muscle, full insert sequence
  IPI00225140  IPI:IPI00225140.4|SWISS-PROT:Q9QYX7-1|ENSEMBL:ENSMUSP00000071676|REFSEQ:NP_036125 Tax_Id=10090 Gene_Symbol=Pclo piccolo
  IPI00828459  IPI:IPI00828459.1|SWISS-PROT:P63260|TREMBL:A1E281;Q3UD81;Q3UDT9;Q4KL81|ENSEMBL:ENSMUSP00000071486|REFSEQ:NP_033739|VEGA:OTTMUSP00000004544 Tax_Id=10090 Gene_Symbol=Actg1 Actin, cytoplasmic 2
  IPI00649886  IPI:IPI00649886.1|SWISS-PROT:O88935-2|ENSEMBL:ENSMUSP00000080568 Tax_Id=10090 Gene_Symbol=Syn1 Isoform Ia of Synapsin-1
  IPI00468100  IPI:IPI00468100.4|SWISS-PROT:Q9QYX7-2|ENSEMBL:ENSMUSP00000030691 Tax_Id=10090 Gene_Symbol=Pclo Isoform 2 of Protein piccolo
  IPI00110850  IPI:IPI00110850.1|SWISS-PROT:P60710|TREMBL:Q3TIJ9;Q3U5R4;Q3UA89;Q3UAA9;Q3UAF6;Q3UAF7;Q3UBP6;Q3UGS0;Q61276|ENSEMBL:ENSMUSP00000031564|REFSEQ:NP_031419 Tax_Id=10090 Gene_Symbol=Actb Actin, cytoplasmic 1
  IPI00118120  IPI:IPI00118120.1|SWISS-PROT:Q99104|ENSEMBL:ENSMUSP00000039576|REFSEQ:NP_034994|VEGA:OTTMUSP00000017756 Tax_Id=10090 Gene_Symbol=Myo5a Myosin-Va
  IPI00122048  IPI:IPI00122048.2|SWISS-PROT:Q6PIC6|TREMBL:Q8CGD9;Q8R0B0;Q8R0E8|VEGA:OTTMUSP00000017754 Tax_Id=10090 Gene_Symbol=Atp1a3 Sodium/potassium-transporting ATPase alpha-3 chain
  IPI00776221  IPI:IPI00776221.1|VEGA:OTTMUSP00000019176 Tax_Id=10090 Gene_Symbol=Myo5a 215 kDa protein
  IPI00223377  IPI:IPI00223377.1|SWISS-PROT:P04370-4|ENSEMBL:ENSMUSP00000053495|REFSEQ:NP_001020422|VEGA:OTTMUSP00000017520 Tax_Id=10090 Gene_Symbol=Mbp Isoform 4 of Myelin basic protein
  IPI00223382  IPI:IPI00223382.1|SWISS-PROT:P04370-9|REFSEQ:NP_001020425|VEGA:OTTMUSP00000017518 Tax_Id=10090 Gene_Symbol=Mbp Isoform 9 of Myelin basic protein
  IPI00123058  IPI:IPI00123058.1|SWISS-PROT:P12960|ENSEMBL:ENSMUSP00000000109;ENSMUSP00000067842|REFSEQ:NP_031753|VEGA:OTTMUSP00000015953;OTTMUSP00000015954 Tax_Id=10090 Gene_Symbol=Cntn1 Contactin-1 precursor
  IPI00351827  IPI:IPI00351827.5|TREMBL:Q4ACU6;Q69ZD8|ENSEMBL:ENSMUSP00000048062|REFSEQ:NP_067398 Tax_Id=10090 Gene_Symbol=Shank3 Shank3
  IPI00338039  IPI:IPI00338039.1|SWISS-PROT:Q7TMM9|TREMBL:Q99J49|ENSEMBL:ENSMUSP00000060246|REFSEQ:NP_033476 Tax_Id=10090 Gene_Symbol=Tubb2a Tubulin beta-2A chain
  IPI00473320  IPI:IPI00473320.2|TREMBL:Q3U804;Q3U939;Q3UBQ4;Q3UCF8;Q99NC5|ENSEMBL:ENSMUSP00000098066 Tax_Id=10090 Gene_Symbol=Actb Bone marrow macrophage cDNA, RIKEN full-length enriched library, clone:I830072C08 product:actin, beta, cytoplasmic, full insert sequence

Figure 4.3: Screenshot of a typical Mascot search result page. In this example, five
of the top six protein entries belong to the same gene spectrin alpha 2, indicated in
yellow.

section 5.2.2). In the following section I present two alternative peptide-level search

databases, both of which can be directly derived from the GenoMS-DB database.

Gene centric peptide level database

The first approach concatenates all peptides from GenoMS-DB on a per gene basis

in a non-redundant manner, thereby compressing the database size and reducing the

database search times, since multiple occurrences of a peptide in alternative gene

products are collapsed into one gene entry. This “gene-centric” search database can

be useful to simplify the analysis of a complex sample, when there is no need to

distinguish the individual isoforms.

To contrast this approach with the classic protein database search, figure 4.3

shows a typical Mascot search result page with a list of protein hits that were

identified from a standard protein database (IPI). Browsing this list manually to

92



4.2 Pipeline design and development

analyse the dataset can be cumbersome, especially when multiple protein isoforms

belong to the same underlying gene. In the illustrated example, five of the top six

proteins belong to the same gene spectrin alpha 2. On the other hand, the search

result against the gene-centric database introduced above only returned the gene

of interest instead of the five individual entries, which can be useful for users who

directly browse the search results with Mascot.

An alternative strategy would be to use GenoMS-DB to selectively export only

peptides that map uniquely to one locus. This would enable a targeted proteomics

experiment with the focus of gene identification. Even more complex scenarios could

be designed, such as the selection of peptides that enable discrimination of protein

isoforms.

Strict peptide level database

For my work however, no protein nor gene information was required from the Mascot

search results, since the genomic context is established by integrating these peptide

identifications into GenoMS-DB, which is discussed in section 4.2.4. Hence, this

second approach simply concatenates all peptides stored in the database in a non-

redundant manner, where 1000 peptides at a time are binned and concatenated into

one FASTA entry, separated only by a spacer element (e.g. artificial residue “J”). The

FASTA header is set to the number of the entry as a text string. By default, there is

no selection for specific peptide parameters during the FASTA file build process, but

optionally sequence length or number of missed cleavages could be restricted. By

default only the database build parameters (see 4.2.1) limit the peptides available in

the resulting FASTA file. Given a peptide is only stored once in the whole FASTA

file, this method further reduces peptide-level redundancy that is caused by peptides

that are present in multiple genes. This database type is used in the pilot study

conducted in chapter 5.
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Listing 4.1: A simple SQL query example that selects the list of Ensembl protein
coding genes from GenoMS-DB with the corresponding number of identified peptides
per gene that exceed a PEP score of 20 and match a unique genomic locus within
the Ensembl annotation.

select geneID , count(distinct peptideSequenceID)

from PeptideSequence

inner join PeptideMapping using(peptideSequenceID)

inner join PeptideMapping_Gene using(peptideMappingID)

inner join Gene using(geneID)

inner join Source using(sourceID)

where PeptideSequence.score > 20

and PeptideSequence.ambigEnsVega = 1

and Source.db = "ensembl"

and Gene.biotype = "protein_coding"

group by geneID

4.2.4 Results integration

After searching tandem MS data with Mascot against the peptide level database

described above, search results are post-processed by Mascot Percolator and stored

in a specified folder. A Perl script, which can be executed on a regular basis with

a job scheduler such as “Cron” on Unix-like operating systems, scans this results

folder and processes the Mascot Percolator result files in the following way: (a)

firstly peptides that match to user defined contaminants or laboratory proteins are

filtered out from the search results; (b) all remaining peptide identifications that

exceed user defined scoring criteria are then persisted in the PeptideSequence table of

GenoMS-DB (figure 4.2) by updating the relevant attributes. Currently the system

only keeps the best scoring peptide identification in GenoMS-DB.

4.2.5 SQL analysis and DAS server implementation

After results integration, GenoMS-DB can be leveraged for large scale proteogenomics

analysis, employing standard SQL queries. For each analysis, a custom SQL query

statement can be designed and executed, providing efficient means to an otherwise

complex manual analysis process. In listing 4.1 a simple SQL query example is
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4.2 Pipeline design and development

Listing 4.2: A more complex SQL query example that selects the list of Augustus
genes that were validated by identified peptides that exceed a PEP score of 30 and
map to an unique genomic locus and not match either the Ensembl or the Vega
annotation in order to only select truly novel coding regions. The resulting list
provides all gene details, the matching peptide sequences and the genomic peptide
mapping information.

select G.*, S.seq , P.*

from PeptideSequence as S

inner join PeptideMapping as P using(sequenceID)

inner join PeptideMapping_Gene using(peptideMappingID)

inner join Gene as G using(geneID)

inner join Source using(sourceID)

where PEP > 30

and db = "augustus"

and ambiguity = 1

and not exists (

select * from PeptideSequence

inner join PeptideMapping using(sequenceID)

inner join PeptideMapping_Gene using(peptideMappingID)

inner join Gene using(geneID)

inner join Source using(sourceID)

where PEP > 30

and db in (’ensembl ’, ’vega’)

and S.seq = seq

)

provided that demonstrates how the list of Ensembl genes with the corresponding pep-

tide matches can be selected. Listing 4.2 is a more complex query that demonstrates

the simplicity with which relatively complex questions can be answered.

SQL queries were also used for the development of a stand-alone proteogenomic

distributed annotation server (DAS) (Dowell et al., 2001) that is accessing the

integrated data of GenoMS-DB. When the DAS server receives a request for a

specific genomic region, all peptides together with their associated genomic mapping

data are selected within the defined region and returned as DAS features. The

required SQL statements were implemented into ProServer, an extendable Perl

based DAS feature server (Finn et al., 2007). Peptide features provided through

the DAS server can then be attached to genome browsers, such as Ensembl (figure

4.4). Features can be supplemented with meta-information that are required for

automatic or manual genome annotation: peptide mapping details, uniqueness of
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4.3 Conclusion

peptide within the genome, scoring details or original Mascot spectrum ID.

4.3 Conclusion

In this work I have developed a proteogenomic pipeline that enables efficient and

effective large scale genome wide data analysis. It leverages the power of a relational

database, which is at the core of the system. My database design allows high

performance analysis with easy to construct SQL statements. GenoMS-DB, integrates

all relevant information for subsequent proteogenomic analysis. This database accepts

annotation data from Ensembl, Vega or Augustus, as well as supplemental data

from FASTA databases. Therefore, proteins or protein isoforms not present in these

databases cannot be identified with this pipeline, which is generally true for any

database search algorithm (see section 1.1.1). These data are digested in silico and

stored in GenoMS-DB together with their genomic context. The genomic mapping

coordinates are calculated, enabling the ad-hoc mapping of millions of peptides with

GenoMS-DB, since alignment tools to map peptide sequences against the genome

are not required. Integrated peptides can be exported to non-redundant peptide

collections, which can in turn be used by Mascot as efficient search databases. Results

from Mascot Percolator can also be stored in GenoMS-DB. This complete integration

enables proteogenomic analysis with standard SQL. Even complex questions can

be formulated in a few lines of SQL code, whereby analysis is fully automated,

avoiding any manual intervention. Large scale studies can be carried out since

genome mapping is readily available through GenoMS-DB. This also allows the

analysis of theoretical peptide collections, such as the whole proteome. The next

chapter tests and uses this pipeline in a pilot study.
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Chapter 5

Refining annotation of the mouse

genome using mass spectrometry

5.1 Introduction

This chapter applies the work of the previous chapters in the form of a pilot study

to validate and extend genome annotation for Mus musculus as available through

Ensembl and Vega. In section 1.2 the current strategies of genome annotation,

including Ensembl and Vega, were discussed in detail and a brief introduction to the

field of proteogenomics was provided in section 1.3.

In this work I build upon these efforts and apply a two stage search strategy

with the aim of validating and refining mouse (Waterston et al., 2002) genome

annotation for the first time. MS data, obtained from the Peptide Atlas project

(Desiere et al., 2006) and generated in-house, was first searched against a peptide

centric non-redundant superset of Ensembl, Vega and IPI (Kersey et al., 2004) that

was generated with GenoMS-DB (see chapter 4). IPI, commonly used as a standard

protein database for MS proteomics, was included for completeness. It is expected

that these databases comprise most of the proteome and due to the limited search

space, peptide identification sensitivity is maintained at a high level. In a second
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5.2 Methods

stage, I have incorporated protein predictions from Augustus that significantly inflate

search space, but enable refinement of existing gene annotations. These data were

then used to validate existing Ensembl and Vega gene models at the gene, exon

and splice-boundary level. Interestingly, I show evidence of alternatively translated

protein variants and discuss the implications of not detecting any translational

evidence for transcripts that are tagged with nonsense mediated decay (NMD)

(Maquat, 2005), which are discussed in section 5.3.2.5. Furthermore, I highlight the

value of proteogenomics to refine gene structures: significant peptide identifications

were made outside annotated coding regions as well as within annotated pseudogenes.

Novel exons or exon boundaries, as well as a set of novel genes that are not annotated

in existing databases, were also identified. Lastly, the pre-computation of genome

mapping for all peptides, as provided through GenoMS-DB, enabled me to assess for

the first time not only the value of proteogenomics for observed peptides, but also

offer a perspective of what could theoretically be achieved with this approach.

Parts of this chapter will be published by the author of this thesis (Markus

Brosch), my supervisors (Tim Hubbard, Jyoti Choudhary), Lu Yu and Mark Collins

who run the mass spectrometry experiments and Jennifer Harrow and co-workers

who will further investigate the results in collaboration with the HAVANA team at

the Wellcome Trust Sanger Institute.

5.2 Methods

5.2.1 Tandem mass spectrometry data

This pilot study is based on 10,465,149 tandem MS spectra, where 729,583 spectra

were obtained from in-house experiments on nuclear protein extracts of murine

embryonic stem cells and murine brain membrane fractions. These experiments were

performed by Lu Yu and Mark Collins and the experimental procedures follow the

methods described in section 2.2 (sample 1).
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5.2 Methods

9,735,566 spectra were provided by Eric Deutsch and Zhi Sun (Institute for

Systems Biology, Seattle, US) as Mascot mgf peaklist files. These data were selected

from the Mus Musculus Peptide Atlas data repository (unpublished, Feb. 2009 data

snapshot, http://www.peptideatlas.org/repository/). Data were not associated

with any publication records, but short descriptions suggested sampling across various

tissues of mouse such as brain, liver, lung, heart, kidney, testes and placenta.

5.2.2 Search database construction

All gene products from Ensembl (mouse, release 54) and Vega (mouse, release 35,

December 2008) as well as all protein entries from the IPI database (mouse, v3.55)

were tryptically digested in silico (cutting after arginine and lysine), allowing up to

two missed tryptic cleavages. Protein N-terminal methionine excision by Methionine

aminopeptidase (Frottin et al., 2006) was considered and therefore the N-terminus

peptide of a protein was staggered. In addition, all potential 2,690 mouse NMD

products (internal data release, February 2009) and common external contaminants

from cRAP (a maintained list of contaminants and laboratory proteins provided

through the Global Proteome Machine Organisation, http://www.thegpm.org/crap/

index.html) were appended and processed in the same way. In total, 3,276,592

distinct tryptic peptides where generated and integrated into GenoMS-DB together

with the corresponding genomic context (see chapter 4). Figure 5.1a illustrates the

peptide distribution between the different data sources.

The search database (FASTA flatfile) for Mascot was built by concatenating all

tryptic peptides in a non-redundant manner, thereby eliminating multiple occurrences

of a peptide in alternative gene products as described in section 4.2.3. The artificial

residue “J” was introduced as a spacer element to separate individual peptides,

similar to the method described by Schandorff et al. (2007).

A second search database was constructed that extends the former database by ab

initio Augustus (version 2.0.3) gene predictions, resulting in 28,742,036 distinct pep-
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Figure 5.1: Four-way Venn diagram of all distinct fully tryptic peptides from Ensembl,
Vega, IPI and Augustus.

101



5.2 Methods

tides. For this, DNA sequences (Mus Musculus, NCBI37) for each chromosome were

downloaded from the ensembl data resource (ftp://ftp.ensembl.org/pub/current_

fasta/mus_musculus/dna/) and Augustus was run on all chromosome sequences, each

of which was chopped into 50 Mb slices, overlapping by 2.5 Mb. The Augustus release

provided a script (join aug pred.pl) to re-assemble predictions from individual

slices and those that spanned the slice boundaries. The resulting file in GFF format

was processed and converted into tryptic peptides in the same manner as described

above and imported into GenoMS-DB.

In total, three individual Augustus runs were performed: (a) standard mode,

(b) over-prediction mode and (c) single exon gene mode. The standard mode (a)

used the recommended default parameters that provide similar performance as other

gene prediction tools (Guigo and Reese, 2005; Stanke et al., 2006). In mode (b)

Augustus was run with parameter settings that provide maximum sensitivity and also

allowing for shorter gene predictions. When Augustus is used directly for genome

annotation purposes without any subsequent validation, false positive predictions

are generally unwanted and a trade-off between sensitivity and accuracy needs to be

made. However, here the aim was to minimize false negatives and thereby maximize

sensitivity. The false positive Augustus gene predictions are controlled in the MS

peptide-spectra correlation stage with stringent and robust scoring, essentially acting

as a validator for this large set of potential genes. Lastly, in mode (c) Augustus was

optimized to predict single exon containing genes, which are known to be difficult to

annotate. The detailed parameters for these customised runs (b) and (c) were as

follows (provided by the author of Augustus, Mario Stanke, personal communication,

November 2008):

b) The parameter /Constant/min coding len in the configuration file config/-

species/human/human parameters.cfg was set to 50. The Augustus program

parameters were set to: --sample=1000 --maxtracks=10 --minexonintron-

prob=0 --minmeanexonintronprob=0 --alternativesfromsampling=true.
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5.2 Methods

c) Same parameters as in (b) were used, but additionally the following changes were

made in the configuration file config/model/trans shadow partial.pbl: sin-

gle exon (final intergenic region) was set to: 1 0 10 and reverse single exon

(intergenic region) was set to 24 0 10.

For both FASTA databases, corresponding decoy databases were constructed

for significance assessment (see section 1.1.2.3). However, the default Mascot decoy

method was not sufficient: Mascot randomizes each protein sequence (FASTA entry),

while retaining the average amino acid composition and length. This does not

suffice for the FASTA entries that were artificially constructed in this work, where

fully tryptic peptides are concatenated with a spacer residue “J”. The chance of

obtaining an arginine (R) or lysine (K) residue immediately before “J” when the

decoy script is applied, would be approximately 10% (2 in 20 residues), meaning

that the decoy database would be significantly depleted in “real” potential decoy

matches. I therefore implemented a Perl script that shuffles each unique peptide

entry individually by maintaining the tryptic cleavage site, instead of shuffling a

whole FASTA entry. After each randomization round, it is tested whether the peptide

was either produced before or exists as a natural peptide in the target database. In

both of these cases, the randomization process is continued until a new random fully

tryptic peptide was determined. Overall this process maintains the trypticity, the

amino acid composition, the peptide length distribution as well as the number of

peptides in an entry.

5.2.3 Data processing and database searching with Mascot

In-house LTQ-FT and LTQ-FT Ultra (Thermo Fisher Scientific) generated MS raw

data files were processed to peak lists with BioWorks (version 3.2 and 3.3, Thermo

Fisher Scientific). Processing parameters were identical to those used in section 2.2.3.

All MS peaklist data (in-house and PeptideAltas) were searched with Mascot
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5.2 Methods

and post processed with Mascot Percolator. For this, each peaklist file was searched

against both target and decoy databases using an enzyme setting that is compatible

with the custom made peptide centric search databases; therefore the artificial amino

acid “J” was introduced under the mascot config file that defines the amino acid

masses. “J” was set to a mass that does not correspond to a naturally occurring

amino acid (300 Da). The enzyme was set to cut at the N- and C-terminal of the

peptide, thereby only fully tryptic peptides that were separated by “J” were searched

with Mascot. For in-house data, parameters were identical to 2.2.4 with the parent

mass tolerance set to 20 ppm. Peptide Atlas data was searched with the parameters

supplemented with the data file.

5.2.4 Post processing with Mascot Percolator and results

integration

Mascot search results were post-processed with Mascot Percolator (1.09, default

settings) using Percolator version 1.12. Each peptide-spectrum match was assigned

a q-value and a posterior error probability. All sequences that either had a posterior

error probability greater than 0.05, or matched any entry of the contaminants protein

list, were filtered out. The remaining peptide identifications were integrated into

GenoMS-DB (see section 4.2.4).

The Distributed Annotation Server (Dowell et al., 2001) (DAS), which is build

on top of GenoMS-DB (see section 4.2.5), provides access to the results of this pilot

study. Meta-information for each peptide is provided in the form of scoring statistics

(q-value, −10 × log10 transformed posterior error probability), genomic uniqueness

of the peptide within the Ensembl/Vega and Ensembl/Vega/Augustus annotation,

Mascot search log ID and spectrum ID. The DAS data source can be accessed at

http://das.sanger.ac.uk/das/ms_das/ and can be readily integrated into genome

browsers that allow embedding external DAS sources.
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5.3 Results and Discussion

5.3 Results and Discussion

5.3.1 Peptide identification and genome mapping

It is expected that the superset of the Ensembl, Vega and IPI database represents most

of the mouse proteome and was therefore used for the first pass Mascot search. After

post-processing with Mascot Percolator, in total 1,491,410 and 1,772,159 peptides

were identified at a q-value (a more advanced notion of the false discovery rate, see

section 1.1.2.2) of 1% and 5%, respectively. Applying a maximum allowed probability

of 1% and 5% of an individual peptide match to be incorrect (posterior error

probability, PEP), 1,124,724 and 1,358,323 peptides were identified, corresponding

to a q-value of less than 0.14% and 0.59%, respectively.

When data was searched against the database that was supplemented with the Au-

gustus predictions (see methods), 16% fewer identifications (1,253,074 and 1,490,020

at a q-value of 1% and 5%) were made due to the search space inflation of almost one

order of magnitude (figure 5.1a), which increases the chance of incorrectly identifying

peptides and hence more restrictive scoring was required in order to maintain the

q-value (this is discussed in detail in chapter 2). 967,131 and 1,171,060 peptides were

identified with a maximum PEP of 1% and 5%, corresponding to q-values of 0.12%

and 0.57%, respectively. Interestingly, 88.1% of the distinct peptide identifications

(PEP 6 1%) overlapped between Ensembl and the Augustus predictions (figure

5.1b), suggesting good sensitivity for the chosen Augustus configuration.

For subsequent analyses, only the best PEP and q-value score for each peptide

sequence was considered (PEP significance threshold 6 5%), resulting in 95,606

distinct peptide identifications, 3,260 of which matched common contaminants. Since

all fragment ion (MS/MS) data were generated with collision induced fragmentation

(Biemann, 1988; Roepstorff and Fohlman, 1984) and analyzed with a low resolution

instrument, Leucine/Isoleucine as well as Lysine/Glutamine sequence isoforms could

not be differentiated due to identical or similar residue mass. Therefore, sequences
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6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

peptide length

#
 p

e
p

ti
d

e
s

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

PEP <= 0.01 filtered

theoretical 0mc (x75)

theoretical 1mc (x150)

theoretical 2mc (x150)
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Figure 5.2: Peptide length distribution of identified peptides that passed the filtering
criteria (red) and of the potential identifiable peptides as derived from the protein
digest (black/grey). The number of peptides for the latter are scaled down by a
factor of 75 for peptides without a missed cleavages (0mc) site (black) and by 150
for peptides with one (1mc, mid-grey) or two (2mc, light-grey) missed cleavages
respectively. When theoretical genome annotation coverage was computed in this
work, only peptides ranging from 8 to 30 residues were considered (shaded area).

that have an isoform in any of these residues were filtered out (1,159 cases). In total,

83% (76,029) of the remaining peptides mapped unambiguously to one genomic locus.

Since only fully tryptic peptides were considered, it was further tested whether a semi-

tryptic form of the peptide sequence mapped elsewhere in the genome (758 cases).

As a last measure, it was evaluated whether peptides with one residue substitution

or indel could be identified elsewhere in the genome (6,685 cases, preferentially

short peptide identifications), since coding SNPs were not considered in this study.

Therefore, a total of 68,586 distinct peptides built the basis for subsequent genome

annotation. However, peptide-spectrum matches with a PEP between 1-5% were

exclusively used as supplementing peptides and only peptide identifications with a

PEP of 1% or better (58,574 cases) were used as a primary annotation data source.
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5.3 Results and Discussion

This meant that the chance of a wrong peptide identification would be 1% in the

worst-case scenario, corresponding to a false discovery rate of less than 0.14%. Most

proteogenomics research studies to date have used a false discovery rate of 1% to

5%, but I have taken a conservative approach to avoid the propagation of erroneous

identifications into genome annotation pipelines.

5.3.2 Ensembl/Vega annotation validation

98.1% of all identified peptides (PEP 6 1%) matched the Ensembl/Vega database

with only 1.9% attributed solely to IPI and Augustus (figure 5.1b). Therefore I focus

first on confirming Ensembl/Vega annotation at the level of gene translation and

structure.

5.3.2.1 Genome coverage

Figure 5.3a shows the distribution of fully tryptic peptides across the genome. Each

chromosome was binned into 1Mb blocks and the number of potentially identifiable

(all in silico digested peptides), as well as the number of identified peptides were

calculated to evaluate genome coverage. Gene density varies across mouse chromo-

somes (Waterston et al., 2002) and each gene contains peptides over a range of three

orders of magnitude (see next section), the number of identifiable peptides per 1Mb

block is also highly variable (nil to 12,910 peptides, median 715). The number of

identified peptides (median 10) per 1Mb block is not only dependent on the number

of identifiable peptides, but most notably on the expression level of the gene products,

which determines the number of peptides that can be sampled by the MS instrument

(Ishihama et al., 2005; Lu et al., 2007). The ratio between identified and identifiable

peptides varied by more than two orders of magnitude (figure 5.3b). These results

indicate that there was no mistake or bias in the data processing towards certain

chromosomes and a more in-depth analysis can be conducted.
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Ensembl/Vega peptides that match uniquely to one locus (1Mb slices)
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(a) Peptide counts of all potential identifiable peptides (red) and all peptides that have been identified
(green) are plotted for each chromosome. Note the different y-axis scale.
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(b) Relative peptide identification rate as defined by all peptides that have been identified versus all
potential identifiable peptides.

Figure 5.3: Chromosomes were binned into 1Mb blocks and absolute (a) and relative
(b) peptide counts were evaluated, allowing the evaluation of peptide coverage at a
genome scale.
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5.3 Results and Discussion

5.3.2.2 Verification of gene translation

Figure 5.4a shows the cumulative percentage of genes that could be validated

theoretically by tryptic peptides that map uniquely to a genomic locus and comprise

between eight to 30 amino acids. These are the default peptide parameters for all

theoretical considerations in the remainder of this work (peptide length distribution

is illustrated in figure 5.2) and no predictions were made about proteotypic peptides

(Fusaro et al., 2009; Mallick et al., 2007). Interestingly, when nil, one and two missed

cleavages were allowed, 5.0%, 3.8% and 3.5% protein coding Ensembl gene products

contain no tryptic peptides and 43.0%, 17.4% and 11.9% contain only ten or fewer

peptides respectively. This could potentially limit the chances of gene validation,

given that not all peptides are amenable for MS analysis (Fusaro et al., 2009).

Nevertheless, a significant number of 7,221 (4,463) protein coding Ensembl (Vega)

genes could be validated with peptide identifications that mapped uniquely to one

gene, corresponding to 31.6% (36.7%) of all protein coding genes. However, peptide

coverage was limited, with only 7.9% (9.0%) of the genes being validated by more

than ten peptides and 0.08% (0.09%) by more than 100 peptides (figure 5.6a).

In order to further study the relationship between identified and potentially

identifiable peptides, it was tested whether a linear model could be fitted (figure

5.5). A perfect fit would mean that the MS instrument would sample more peptides

from gene products with more potential peptides. However, it was found that there

is no correlation (R2 = 0.10) and this is consistent with the above statement that

peptide sampling is mainly determined by relative protein abundance. Moreover,

genes that are only expressed in specific tissues would not be identified if the tissue

of interest was not analyzed. For example, Obscurin (ENSMUSG00000061462) is a

muscle protein and is amongst the top ten genes with most potentially identifiable

peptides (1192) and yet none of the peptides were identified, suggesting that it

was either expressed at very low abundance or not at all in the tissues or cell lines

that were analyzed (see also http://tinyurl.com/Obscurin). In contrast, Plectin-1
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Figure 5.4: Theoretical gene and exon validation rate. Note: considered peptides
where fully tryptic, ranged from 8-30 residues and were unique to a genomic locus.
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(ENSMUSG00000022565), a cytoskeletal protein that is more widely expressed,

has a similar number of potential peptides (1447), but has the highest number of

identified peptides (280). Other genes amongst the top five genes with highest peptide

coverage (> 170 distinct peptides) include: Spectrin alpha chain 2 (Spna2) brain

(ENSMUSG00000057738), Bassoon (Bsn) (ENSMUSG00000032589), Cytoplasmic

dynein 1 heavy chain 1 (Dync1h1) (ENSMUSG00000018707) and Spectrin alpha

chain brain 1 (Spna1) (ENSMUSG00000020315). All of these proteins are very large

(275-533 kDa) and therefore smaller proteins at the same expression level would

always result in lower peptide coverage.

It is important to note that the consideration of missed cleavages makes a

significant difference. Allowing missed cleavages results in better gene coverage,

which can be explained by the fact that peptides with missed cleavages tend to be

longer. Trypsin is a very specific enzyme, but is not always 100% efficient. In fact,

31.7% and 9.9% of all identified peptides in this study have one and two missed

tryptic cleavage sites respectively and only 58.4% have no missed cleavage sites,

hence about 90% of the peptides have none or one missed tryptic cleavage site.

Overall I show that proteomics MS data is of significant value for confirming genes,

some of which could be validated with extensive peptide coverage. Considering that

currently eukaryotic proteomes are far from being saturated (de Godoy et al., 2006),

gene validation coverage of proteogenomics data will further increase as improved

methods and instrumentation allow for deeper proteome sequencing, theoretically

enabling validation of considerable portion of the genes.

5.3.2.3 Gene structure validation

A similar analysis at the exon level, using the same peptide properties as before,

revealed that 15.1%, 10.0% and 9.0% of all Ensembl protein coding exons do not

contain detectable peptides when nil, one or two missed cleavages are allowed,

respectively. In addition, 93.6%, 47.8%, and 30.4% of the protein coding Ensembl
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Figure 5.5: Correlation analysis between the number of identified peptides and the
number of potential identifiable peptides per gene. Since many data points have the
same x-y values, the number of overlaying data points (genes) is encoded with the
color gradient (available from the legend).

exons contained five or fewer peptides, respectively (figure 5.4b). The lower peptide

coverage compared with complete genes can be explained by the fact that the average

protein coding exon count per gene in mouse is around 9.7.

A total of 16.7% of the total 222,378 Ensembl protein coding exons could be

validated by peptide identifications. About 8.0% and 1.4% of Ensembl exons were

validated by at least two and five peptides, respectively (figure 5.6b). Validation

rates for Vega were insignificantly different.
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Figure 5.6: Observed gene and exon validation rate using identified peptides.
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A more difficult challenge is to validate annotation of introns, since this requires a

fully tryptic and unique peptide spanning splice boundaries to be identified. Defining

the accurate splice donor and acceptor sites is not trivial and a peptide spanning

these sites not only validates them, but implicitly also validates the joined exons and

thereby significantly contributes to gene structure validation.

Of the 202,205 (131,336) introns in Ensembl (Vega) that span a protein-coding

splice boundary, up to 70.9% and 86.2% could theoretically be confirmed by peptides,

allowing for one or two missed cleavages, respectively. However, when only peptides

without missed cleavages are considered, the theoretical validation rate drops to 46%.

Using the subset of identified peptides that span a splice site, a total of 14,426

(9,347) Ensembl (Vega) introns could be confirmed, corresponding to 7.1% of all

splice sites that join protein coding exons in both Ensembl and Vega, 1.3% of which

were validated with two or more distinct peptides.

Clearly, the value of translational evidence is indispensable for independent gene

structure validation. Notably up to 91.0% of all protein coding exons and 86.2%

of all introns could theoretically be confirmed with peptides obtained in typical

proteomics experiments. Applying the peptides identified in this study, 16.7% of all

exons and 7.1% of all introns could be confirmed, highlighting that with relatively

moderate efforts a significant proportion of gene structures can be validated.

5.3.2.4 Evidence of alternative translation

Until recently, only limited evidence was available of alternatively expressed tran-

scripts at the protein level (Tress et al., 2008). The detection of these variants by

standard MS proteomics experiments is hindered by the fact that the majority of

protein sequence is shared between transcripts, differing only in small parts of the

translation products. Validation of alternative translation requires identification of

at least one “signature” peptide for each protein isoform. 8,877 (40%) protein coding

Ensembl genes code for alternative products, but only 16,664 transcripts from 1,542
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genes could theoretically be discriminated by 168,726 “signature” peptides. For

example, Catenin delta-1 (ENSMUSG00000034101) has 25 alternative transcripts an-

notated as coding, but only nine “signature” peptides could theoretically distinguish

the alternative translation of three protein isoforms.

Nevertheless, protein evidence for alternatively translated genes from tryptic

digests was shown recently; Tanner et al. (2007) found evidence for 16 human genes,

Castellana et al. (2008) found evidence for 47 Arabidopsis genes and Tress et al.

(2008) identified 130 drosophila genes that express at least two protein isoforms.

Here, a total of 370 peptides enabled discrimination of 112 transcripts in 53 genes,

corresponding to 3.4% of all protein coding genes with multiple isoforms that can

be discriminated by a peptide. UDP-glucuronosyltransferase 1-2 Precursor (ENS-

MUSG00000054545), which has 12 alternative coding transcripts within one locus,

is unusual as all variants have an alternative 5’ exon spliced to a common set of

downstream constant exons. These variable first exons confer diverse functional

mRNAs with different tissue specific expression profiles (Zhang et al., 2004). Figure

5.7 shows an overview of this complex locus with evidence for expression of five

alternative protein isoforms from 27 “signature” peptides. Other examples with

evidence for three alternative gene products include: ankyrin 2 brain isoform 2 (ENS-

MUSG00000032826), Synaptotagmin-7 (ENSMUSG00000024743) and Core histone

macro-H2A.1 (ENSMUSG00000015937). Two alternative isoforms were validated for

each of the remaining 49 genes.

Even though the overall rate of peptide identifications that could be attributed to

alternative protein isoforms is low in proteogenomic studies due to only few available

“signature” peptides that are unique to one isoform, these results demonstrate evidence

for the presence of alternative splice variants in vivo. It would be interesting to

follow-up this study with a more sensitive hypothesis driven targeted proteomics

approach (Anderson et al., 2009; Arnott et al., 2002), in which the mass spectrometer

is directed to scan specifically for “signature” peptides of individual protein isoforms.
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5.3 Results and Discussion

5.3.2.5 Nonsense mediated decay

Nonsense mediated decay (NMD) is a translational-coupled mechanism that elimi-

nates mRNAs containing premature translation-termination codons (PTCs) (Brogna

and Wen, 2009) and is estimated to effect 75-90% of human genes (McGlincy and

Smith, 2008). The exact mechanism of how NMD occurs in mammals is still under

debate (Brogna and Wen, 2009). Some known proteins e.g. NRAS have transcripts

that appear to escape the NMD since they contain a PTC but still a functional

protein appears to be produced. Since the Vega database contains annotation of

transcripts predicted to be subject to NMD, I used the MS data to test whether

any of the NMD transcripts actually produced a detectable translated protein. The

search database contained 2,690 NMD transcripts, which would allow identification.

However, only 1,704 NMD transcripts could theoretically be validated by 9,202

potential “signature” peptides. Interestingly, I have not been able to identify any

“signature” peptides that would suggest the translation of NMD transcripts. Using

Fisher’s exact test, this result is significantly different (p-value 5 × 10−9) from what

would be expected by chance (20 peptides) when compared with the conservative

peptide identification rate that could be attributed to alternative transcripts. This

reinforces the theory that transcripts flagged with NMD indeed undergo degradation

with a short half life. On the other hand, these proteins may not be expressed at all

or at a very low level, hindering detection by the MS instrument.

5.3.3 Gene model correction

Peptide identifications are also of great value for correcting gene structures, only

limited by the fact that the protein sequence needs to be in the search database to be

identified in the first place. For this reason, the search database was supplemented

with Augustus predictions, containing about ten-fold the number of peptides com-

pared to Ensembl (see methods and figure 5.1a). Moreover, peptides derived from
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5.3 Results and Discussion

the IPI database could be indicative of differences between the genomic annotation

and the protein database. Therefore the superset of Ensembl, Vega, Augustus, IPI

and the cRAP contaminants database was used to search the MS data with Mascot

for a second round for extended analysis.

1.9% of all peptide identifications matched neither Ensembl nor Vega, but were

present in the IPI database or Augustus gene predictions, indicating a significant

number of identifications that contribute to gene structure refinements or novel genes

(figure 5.1b). These identifications do not fall into the expected number of incorrect

identifications (0.12% false discovery rate at the chosen 1% PEP threshold) and were

therefore further investigated.

5.3.3.1 Gene model refinements

Predicting the correct gene structure and defining the exact donor and acceptor

splice site remains one of the most difficult problems in genome annotation. Using

peptide data that was searched against the Augustus database, a total of 168 intron

refinements could be made, which include the correction of splice donor and acceptor

sites, skipping exons, as well as the introduction or refinement of novel exons.

Figure 5.8 shows one example where Augustus predicted an exon extension that

was not annotated in any of the Ensembl/Vega transcripts but was validated by

52 distinct peptide identifications. This clearly suggests that either the existing

annotation was incorrect or a novel isoform was found. This example demonstrates

the power of searching tandem-MS data against an over-predicted genome to detected

flaws or missing annotation.

Refinements identified in this work will be manually investigated by the HAVANA

team in-house and future Vega releases will have validated refinements incorporated.
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5.3 Results and Discussion

5.3.3.2 Translational evidence for annotated non-coding regions

The accurate identification of the UTR and protein coding regions is another challenge

in genome annotation. For example, cDNA sequences are often truncated and protein

sequences from protein databases are not validated by mass spectrometry, which can

lead to wrongly annotated UTRs or protein coding regions.

Data of this pilot study revealed translational evidence either within the UTR or

in adjacent intergenic regions for 101 genes, suggesting incorrectly defined coding

or gene boundaries. Of the 39 genes that were manually investigated, 85% had

additional peptides matching upstream the 5’ end.

Figure 5.9 illustrates one example where peptide identifications map uniquely to

three exons in the 5’ UTR of Ensembl/Vega gene Asparagine synthetase domain-

containing protein 1 (ENSMUSG00000026095), suggesting that either the UTR is

incorrectly annotated or an alternative protein isoform exists.

Another example is illustrated in figure 5.10a, where ten peptides map to the

intergenic region upstream of an uncharacterised gene (ENSMUSG00000051339).

Gary Sounders from the HAVANA team investigated this region manually and built

an ab initio gene model, which was supported by EST evidence and the ten identified

peptides. EST Em:BY593944.1 fused this novel upstream region with the existing

annotation of ENSMUSG00000051339. The translation of an orthologous gene in

human showed extensive sequence conservation, further supporting this novel variant.

Moreover, pseudo and processed genes in Vega were predicted by Augustus

to be protein coding. Strikingly, for 55 of these, translational evidence in the

form of peptide identifications was found, suggesting incorrect Ensembl/Vega an-

notation. Figure 5.10b shows one example where gene LINE-1 type transposase

(OTTMUST00000019654) was annotated as processed, but a significant number

of peptide identifications clearly demonstrated translation. Similar proteogenomic

findings of translated pseudogenes were recently demonstrated by Castellana et al.

(2008) in Arabidopsis thaliana and by Merrihew et al. (2008) in C. elegans.
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5.3 Results and Discussion

Figure 9: One example of where the peptide sequence in Ensembl was different to

the sequence in IPI (highlighted with grey). The identified peptide (yellow) matches

perfectly the IPI database but differs in four residues to the Ensembl translations. 

al. [Tanner2007] have searched a corpus of 18.5 million MS spectra (human) against a data-

base incorporating coding SNP, resulting in 1.2 million peptide identifications with only 308

validated coding SNPs. We have decided to not include coding SNP into the our search data-

bases, but currently there are large scale mouse sequencing efforts underway, potentially

allowing strain specific search databases to be built in the future. Evaluation of their perform-

ance over a generic species specific protein databases will be assessed in future work. 

However, since our search database included IPI protein sequences, some of which were not

derived from genomic but from mRNA sequences, differences between IPI and the Ensembl/

Vega protein sequences could be detected. 19 IPI proteins with peptide sequences not match-

ing the reference genome were identified. In five cases, the sequence differences were caused

by indels, with the remaining 14 cases caused by coding SNPs. Figure 9 shows one example

where a peptide match was made against the IPI protein sequence (indicated in yellow,

PEP=E-4), but the Ensembl/Vega reference sequence is different in four residues. This could

indicate either a wrong genome reference sequence or four novel coding SNPs.

d. Novel genes 

Peptides matching to intergenic regions are of great interest to further complement the list of

coding genes. The Ensembl genome annotation process is conservative in that it requires

evidence in the form of conservation, cDNA or ESTs to make a gene call [xxx]. However,

- 22 -

Figure 5.11: One example where the peptide sequence in Ensembl was different to
the sequence in IPI (highlighted with grey). The identified peptide (indicated in
yellow, PEP = 1 × 10−4) matches perfectly the IPI database but differs in four
residues to the Ensembl translations.

5.3.3.3 Protein database derived peptide matches

Genotyping projects over the last number of years have populated large SNP

databases, but although these are large, they are yet far from being complete,

especially for the mouse genome. Insertion of SNPs into protein databases inflates

the search space significantly since multiple variants of one peptide need to be

searched, thereby reducing identification sensitivity. In a recent study, Tanner et al.

(2007) searched a corpus of 18.5 million MS spectra (human) against a database

incorporating coding SNPs, resulting in 1.2 million peptide identifications with only

0.02% (308) validated coding SNPs. I have decided to not include coding SNPs

into the search databases, but currently there are large scale mouse sequencing

efforts underway, potentially allowing strain specific search databases to be built in

the future. Evaluation of their performance over a generic species-specific protein

databases will be interesting to study.

However, since the search database included IPI protein sequences, some of which

were not derived from genomic but from mRNA sequences, differences between

IPI and the Ensembl/Vega protein sequences could be detected. 19 IPI proteins

with peptide sequences not matching the reference genome were identified. In five

cases, the sequence differences were caused by indels, with the remaining 14 cases

caused by coding SNPs. Figure 5.11 shows one example where a peptide match was

made against the IPI protein sequence, but the Ensembl/Vega reference sequence is

different in four residues. This indicates that either the genome reference sequence

was incorrect or four novel coding SNPs exist in this peptide.
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Figure 5.12: Four peptides match uniquely (green) to an intergenic region (“MassSpec”
track). Together with full-length mouse cDNA evidence (”RefSeq” track) these data
suggests a novel protein coding region.

5.3.3.4 Novel genes

Peptides matching to intergenic regions are of great interest to further complement

the list of coding genes. The Ensembl genome annotation process is conservative

(see section 1.2.5) and proteogenomic methods are ideally placed to identify such

missing genes. The caveat is that the gene of interest must be present in the search

database of Mascot to enable identification. As discussed above, the gene finding

algorithm Augustus was employed to over-predict the genome. Peptides derived

from these predictions and existing annotated protein coding sequences were used

as a search database. Assuming that the Ensembl gene list is close to complete,

the Augustus predictions contain 90% random sequence (figure 5.1a). Therefore,

reliable and stringent peptide scoring together with subsequent filtering to exclude

ambiguous matches are crucial to minimize and ultimately to exclude any false

positive identifications. To reiterate, the worst peptide match considered in this

study had a 1% probability to be incorrect, corresponding to a false discovery rate of

less than 0.14%. For subsequent analysis, where peptides were not supported by any

existing annotation, this was further constrained in that at least two peptides (one of

which with a PEP of at least 0.01, the second of at least 0.05) had to be identified.

Using this approach, I propose 29 novel genes, supported by a total of 70 peptides.

However, 12 of these genes have overlapping identifications with IPI protein entries,

suggesting that the Ensembl/Vega annotation process missed these genes. The

remaining 17 novel genes do not overlap with any known Ensembl/Vega genes or
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5.4 Conclusion

IPI entries, but six are potentially an extension of known Ensembl/Vega genes,

four at the 5’ and two at the 3’ region. For nine of these genes, Pfam-A domains

(Sonnhammer et al., 1997) could be detected with high significance, and based on

this it is likely that most of these genes are RNA/DNA binding proteins. Some

cDNA or EST evidence was observed for 50% of these novel regions, but vertebrate

conservation was generally absent for all of these predictions (figure 5.12).

I have not further investigated an additional set of 50 potential new protein

coding genes that were supported by only one peptide. Nevertheless, these peptides

are strong matches, with PEP values ranging from 4 × 10−13 to 1 × 10−3. Even

though I am hesitant to identify these regions as novel genes only based on peptide

identifications, these predictions together with the proposed new genes are available as

a DAS annotation track for the HAVANA annotation team who currently investigate

these cases manually and potentially demand additional experimental evidence to

complete annotation in Vega.

5.4 Conclusion

Mass spectrometry has become the method of choice to identify peptides and infer

proteins in a high-throughput manner and it is therefore a consequent development

to incorporate these data into genome annotation pipelines as translational evidence.

I have shown that, theoretically, peptide evidence could validate up to 96.5% of all

protein coding genes, 91.0% of all protein coding exons and 86.2% of all exon-exon

junctions.

However, the mouse proteome is far from being saturated by MS based peptide

identifications. Even if every organ with all its regions, cell types and organelles could

be isolated and analyzed, there would probably be a significant set of genes that

would be missed because expression of these may be only activated under specific

and transient cellular activation. There have not been systematic analyses at these
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5.4 Conclusion

levels of complexity, but if I compare studies from ten years ago with the latest

achievements, it is clear that MS data becomes richer and more valuable for genome

annotation every day.

Using the proteomics datasets readily available for this study, comprising about

10 million spectra, I could validate 31.6% of all protein coding genes, 16.7% of

all protein coding exons and 7.1% of all exon-exon junctions in Ensembl, with

similar numbers in Vega, significantly contributing to the validation of the mostly

automatically annotated mouse genome. Interestingly, for 53 genes I have shown

evidence of expression of alternatively spliced isoforms, yet I have also shown that

MS data is not always sufficient to fully validate protein isoforms, since many share

coding sequence and do not always allow the variants to be distinguished.

It is still not clear of whether transcripts that are flagged to undergo nonsense

mediated decay could be translated into stable proteins. I have not detected a single

peptide that was unique to NMD transcripts. This could be interpreted in two ways:

either these transcripts indeed undergo degradation and cannot be detected or they

are translated at very low abundance and were not sampled by the MS instrument

for this reason.

Beyond validation, peptide identifications contributed to the identification of

potential incorrect annotation. 129 regions were attributed to donor or acceptor

splice site refinements or the introduction of novel exons, 101 genomic loci were

identified that mapped outside the coding region of genes (mostly at the 5’ region)

and 55 pseudo- and processed genes were found to be coding. Lastly, I propose 29

protein coding genes, 12 of which are already present in IPI but not in Ensembl/Vega

and 6 cases could be coding extensions of known genes.

Overall I have highlighted the possibilities and the limitations of the use of

“bottom-up” proteomics for genome annotation and demonstrated the use of available

MS data for incorporation into automatic genome annotation pipelines such as

Ensembl as an additional layer of evidence.
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Chapter 6

Concluding remarks

Despite significant efforts in annotating complex genomes such as mouse or human,

accurate identification and structural elucidation of protein coding genes remains

challenging. Current high-throughput and manually driven annotation methods rely

largely on computational predictions and transcriptional evidence, such as full-length

cDNA data. However, a lack of protein-level evidence leaves translation unverified in

most cases.

Proteomic mass spectrometry (MS) is the method of choice for sequencing gene

product fragments. This enables the validation of translation, the refinement of

existing gene annotation, and the identification of novel protein coding regions.

However, high-throughput application of proteomics data to genome annotation

is hindered by the lack of suitable tools and methods to achieve automatic data

processing and genome mapping at high accuracy and throughput. The work

presented in this thesis attempts to address some of these issues.

The outcome of every proteomics MS/MS experiment is dependent on the relia-

bility, sensitivity and specificity of the peptide identification procedure. This also

underpins any proteogenomic analysis where proteomics data is applied to the field

of genome annotation; incorrect peptide identifications would be propagated leading

to incorrect annotation, which would subsequently be trusted incorrectly.
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Therefore I initially evaluated the peptide identification software “Mascot” that is

routinely used at the Wellcome Trust Sanger Institute and elsewhere as described in

chapter 2. I have shown that the default Mascot scoring scheme deviates significantly

from the expected error rates, due to sensitivity and specificity being correlated with

search space. Counter intuitively the error rate was found to increase as the search

space decreases. This is of significance when high accuracy MS instruments are

used for proteomics experiments; here the search space can be orders of magnitude

smaller than with standard instruments due to the afforded high mass accuracy.

As a solution I proposed a novel “Adjusted Mascot Threshold” (AMT) that is

based on false discovery rate estimates (Brosch et al., 2008). AMT utilises the mass

accuracy of recent state-of-the-art instruments by using peptide mass filtering as a

first discriminator, which leverages the improved sensitivity of the method.

The limitation of this approach was that discrimination is solely based on mass

accuracy and the adjusted score threshold. In the light of potentially large search

databases used for detecting novel genes, it was desirable to further complement this

approach with orthogonal scoring features that would aid discrimination between

correct and incorrect peptide spectrum matches. This was achieved by utilising the

machine learning algorithm “Percolator” (Käll et al., 2007), as discussed in chapter

3. Percolator provided the framework to extend my AMT scoring scheme with a

large set of scoring features, which led to the development of “Mascot Percolator”

(MP). I showed that MP is the most sensitive Mascot scoring scheme available,

providing reliable and robust significance measures, validated against standard

protein datasets (Brosch et al., 2009). MP is available as a standalone software

package that can be run on top of any Mascot search where target/decoy searching is

amenable. Moreover, the method is currently implemented into the official Mascot 2.3

release (http://www.matrixscience.com/workshop_2009.html), which will distribute

MP to a large proteomics community. This system provides good sensitivity, an

advanced notion of the global false discovery rate, and a peptide level scoring statistics
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(posterior error probability) that are calculated for each peptide spectrum match.

This is important when peptide identifications are used for genome annotation; a

probability measure can be attributed to each genome annotation that is based on

a peptide identification. In future work Mascot Percolator could be extended to

alternative fragmentation methods and alternative scoring features could be explored.

I am confident that the widespread use of this method will increase research interest

in the field of peptide scoring.

In chapter 4 I developed a genome annotation pipeline that closes the gap between

high throughput peptide identification and scoring, as provided with Mascot and

Mascot Percolator, and large scale genome annotation analysis. Most proteogenomics

studies map peptides by alignment tools onto the genome, I presented a rather

different approach, whereby the peptide-genome mapping is computed by utilising

the application programming interfaces of the Ensembl pipeline. These mappings

are stored in a comprehensive database which enables efficient and ad-hoc mapping

of identified and predicted peptides to their genomic loci, each of which is associated

with supplemental annotation information such as gene and transcript identifiers.

The comprehensive database facilitates the export of compact non-redundant peptide

level databases that can be used as Mascot search databases allowing for best

possible performance. Considering the increased acceptance of targeted proteomic

strategies in the proteomics community, it should be noted that the peptide export

could facilitate these novel approaches by generating lists of signature peptides for

individual genes or gene isoforms. The database enables the generation of automated

genome annotation analysis reports and provides the data basis for a distributed

annotation server (DAS) that can be integrated into existing genome annotation

projects.

This proteogenomics pipeline was applied in a pilot study using a large mouse MS

dataset in chapter 5. I showed where peptide identifications facilitated the validation

and correction of existing annotation, such as re-defining the translated regions or
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splice boundaries. I also proposed a set of novel genes that were identified by the MS

analysis pipeline with high confidence. Moreover, I demonstrated for the first time

the value and level of coverage that can be achieved with proteogenomic analysis

for validating genes and gene structures, while also highlighting the theoretical

limitations of this technique. This was possible since for every in silico generated

peptide the genomic mapping was readily available through the proteogenomics

database. Detailed manual investigation of the refined and novel regions that were

identified by MS are currently investigated by the HAVANA team at the Wellcome

Trust Sanger Institute. Overall this study demonstrated the value of utilising

proteomics data for genome annotation and it may be an interesting future direction

to extend automated annotation pipelines such as Ensembl to complement cDNA

evidence with high confident proteomics data.

Scaling up this pilot study to improve coverage should be an easy undertaking,

only limited by available proteomics data. Nevertheless, the theoretical genome

validation coverage, which was discussed in chapter 5, will be hard to achieve with

current MS proteomics methods. The trade-off between sensitivity, dynamic range

and throughput underpins current shotgun proteomics approaches. In addition, it is

a significant challenge to analyse the complete proteome that covers every organ with

all its regions, all cell types and organelles in various states. However, the incremental

methodological and technological advancements have led to significant improvements

in MS proteomics over the last two decades and with the ever increasing need for

high performing proteomics applications, this trend is likely to continue.
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