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Abstract

Genomic profiling of response to in vivo immune perturbations
Benjamin Yu Hang Bai

The human immune system plays a central role in defense against infection, but its dys-
regulation is implicated in immune-mediated diseases. The past decade has seen increasing
application of high-throughput technologies to profile, predict, and understand immune response
to perturbation. The ability to measure immune gene expression at scale has led to the identifi-
cation of transcriptomic signatures that predict clinical phenotypes such as antibody response to
vaccines. It has also been recognised that both expression and phenotypic responses are traits
with complex genetic architectures. This thesis examines the longitudinal transcriptomic response
to immune perturbations, and its association with clinical response phenotypes and common
genetic variation.

Chapter 2 explores transcriptomic response to pandemic influenza vaccine in a multi-ethnic
cohort of healthy adults: the Human Immune Response Dynamics (HIRD) cohort. The success
of vaccination in controlling influenza is indisputable, but it is incompletely understood why
some individuals fail to mount protective antibody responses. I meta-analysed blood microarray
and RNA sequencing (RNA-seq) datasets, identifying a distinct transition from innate immune
response at day 1 after vaccination to adaptive immune response at day 7. Heterogeneity between
measurement platforms made it difficult to identify single-gene transcriptomic associations
with antibody response. Using a gene set approach, I found expression modules related to the
inflammatory response, the cell cycle, CD4+ T cells, and plasma cells to be associated with
vaccine-induced antibody response.

In Chapter 3, I map response expression quantitative trait loci (reQTLs) in the HIRD cohort
to investigate regulation of transcriptomic response by common genetic variants. Rather than
driving differential expression post-vaccination, the strongest reQTLs appeared to be explained
by changes in cell composition revealing cell type-specific expression quantitative trait locus
(eQTL) effects. For example, a reQTL identified for ADCY3 specific to day 1 may be explained
largely by high monocyte proportions at day 1 compared to other timepoints. Changes in cell
composition present a significant challenge to interpreting reQTLs found through bulk sequencing
of heterogeneous tissues.

Finally, Chapter 4 applies an analogous longitudinal study design to explore drug response in
the Personalised Anti-TNF Therapy in Crohn’s Disease (PANTS) cohort: a cohort of Crohn’s
disease (CD) patients treated with the anti-tumour necrosis factor (TNF) drugs, infliximab
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and adalimumab. Anti-TNF treatment has revolutionised patient care for CD, but 20–40 % of
patients show primary non-response soon after starting treatment. I identified baseline expression
modules associated with primary non-response, but also found significant heterogeneity of
associations between the two drugs. Expression changes post-treatment in non-responders were
largely magnified in responders, suggesting there may be a continuum of response. Distinct
expression trajectories identified for responders and non-responders revealed sustained expression
differences during the first year of treatment. Sets of interferon-related genes were regulated in
opposing directions in responders and non-responders, presenting an attractive target for future
studies of the biological mechanisms underlying non-response.
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A little learning is a dangerous thing;
Drink deep, or taste not the Pierian spring:
There shallow draughts intoxicate the brain,
And drinking largely sobers us again.

Alexander Pope, An Essay on Criticism
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Chapter 1

Introduction

Observable human characteristics or traits are called phenotypes. Variation in phenotype emerges
from the interplay of genetics, environment, and pure chance. The contributions of each can vary
immensely from phenotype to phenotype. Traits for which genetic variation explains a non-zero
percentage of phenotypic variation are heritable. Virtually all phenotypic traits are heritable
to some degree, and twin studies provide upper bounds on this heritability by partitioning
phenotypic variation into genetic and environmental components [1].

Genetic variation presents a unique opportunity to probe the causal molecular mechanisms
underlying phenotypes. Information encoded in the genome has phenotypic consequences only
after flowing through multiple molecular layers. This guiding principle is the central dogma of
molecular biology, whereby the flow is directed from DNA to RNA to protein via transcription and
translation. Barring somatic mutation, an individual’s genome is fixed at conception, providing a
causally upstream anchor that can be measured with relatively little error. A mainstay of the
field of human genetics is uncovering the specific genetic variants that contribute to heritability of
phenotypes through statistical association of variants and phenotypes. Although not immune to
population-level biases like stratification [2] and collider bias [3], genetic association has intrinsic
resistance to reverse causality, an issue that permeates observational studies of the causes of
human phenotypes.

1.1 Genetic association studies for complex traits

1.1.1 Structure and variation of the human genome

The human genome is over three billion bp (base pairs) in length, containing 20 000–25 000
protein-coding genes that span 1–3 % of its length, with the remaining sequence being non-coding
[4, 5]. Each diploid cell contains two copies of the genome, organised into 46 chromosomes
comprised of 23 maternal-parental pairs: 22 pairs of homologous autosomes and one pair of sex
chromosomes. Variation in the genome between individuals in a population exists in the form
of single nucleotide polymorphisms (SNPs), short indels, and structural variants. For common
population variants with minor allele frequency (MAF) >1 %, the vast majority (>99.9 %) are
SNPs and short indels [5]. On average, a pair of genomes differs by one SNP per 1000–2000 bp
[6]. Each version of a variant is called an allele; each individual has a maternal and parental
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allele at each variant.
The large number of variants in a population are inherited on a smaller number of haplotypes:

contiguous stretches of the genome passed through generations via meiotic segregation. The
fundamental sources of genetic diversity, mutation and meiotic recombination, generate new
alleles and break apart haplotypes into shorter ones over evolutionary time. Variants that are
physically close on a chromosome are less likely to flank a recombination event, hence are more
likely to cosegregate from parent to offspring on the same haplotype (genetic linkage). Genetic
linkage is one source of linkage disequilibrium (LD): the non-random association of alleles at
two variants, differing from expectation based on their population frequencies and the law of
independent assortment. LD can be quantified by r2, the squared correlation coefficient between
alleles in a specific population [7]. Recombination events are not distributed uniformly throughout
the genome. The genome is a mosaic of haplotype blocks delimited by recombination hotspots,
characterised by strong LD within blocks, and little LD between blocks [8, 9] (Fig. 1.1). The
structure of correlated haplotypes reflects a population’s unique evolutionary history, and can be
used to trace the demography of populations back through time [10].

1.1.2 Lessons from the past fifteen years

Genetic variants can affect heritable traits by impacting the function or regulation of target
genes. How genetic variation contributes to a particular trait defines its genetic architecture:
the number of genes affecting the trait; and the frequencies, effect sizes, and interactions of
trait-associated alleles [12, 13]. The number of genes defines a spectrum of traits from monogenic
(where inheritance follows simple Mendelian patterns) to polygenic (where inheritance is complex).
Proposed architectures differ strikingly among complex traits, even for traits with phenotypic
similarities like type 1 diabetes (T1D) and type 2 diabetes (T2D) [12]. Consistently, however, the
number of genes and genetic variants affecting a complex trait is large (ranging from dozens to
many thousands), the average effect size of trait-associated variants is small, and the contribution
of environment is substantial [14–16].

Since the 1980s, linkage analysis has been used to map the chromosomal positions and regions
(loci) affecting traits by tracing the cosegregation of markers (variants with known positions)
with the trait in family pedigrees [17–19]. Linkage analysis was complemented by early genetic
association studies, which largely focused on variants in or near candidate genes selected on the
basis of prior biological knowledge [20]. These methods saw much success for Mendelian traits,
but application to most complex traits proved challenging. Small average effect sizes meant
penetrance was too low to reliably observe cosegregation in pedigrees [19]. Early candidate gene
studies were severely underpowered to detect such small effects [21].

The past fifteen years have seen the rise of genome-wide association studies (GWASs) that
systematically test common variants selected in a hypothesis-free manner across the whole genome
(Fig. 1.2). Using large sample sizes to overcome small effects and the large multiple testing burden,
thousands of associations have been discovered for complex traits and diseases, many robustly
replicated across populations [19, 22]. A number of take-home messages have emerged. Most
genetic variance is additive; the contributions of dominance and epistatic interaction are small
[13]. Variants with effects on multiple phenotypes (pleiotropy) are widespread [19]. Even traits
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Figure 1.1: The mosaic structure of human genetic variation. Large parts of the genome can be divided
into haplotype blocks between 5–200 kbp in length, with strong intra-block LD. For each block, three to seven
common haplotypes (indicated by different colors) represent the majority of variation found in humans. An
individual carries two haplotypes per block, one inherited from each parent. The exact structure and diversity of
haplotype blocks varies between populations. Information on the haplotypes, their locations in the genome, and
their frequencies in different populations form a “haplotype map” of the genome. Figure reprinted by permission
from Springer Nature: Springer Nature, Nature, Pääbo [11], © 2003.

that are molecular rather than whole-organism phenotypes can be remarkably polygenic, with
hundreds to thousands of associated loci [23]. GWAS sample sizes in the millions are increasingly
commonplace, and the discovery of new associations with ever smaller effects as sample sizes
increase shows no sign of plateauing [24, 25].

1.1.3 From complex trait to locus

GWASs rely on the tendency of common variants on the same haplotype to be in strong LD.
As the number of haplotypes is relatively few, it is possible to select a subset of tag variants
such that all other known common variants are within a certain LD threshold of that subset.
In practice, there is enough redundancy that the number of variants measured on a modern
genotyping array (in the order of 105–106) is sufficient to tag almost all common variants [27,
28]. Associations with unmeasured variants are indirectly detected through correlation with a
tag variant. Furthermore, as unrelated individuals still share short ancestral haplotypes, study
samples can be assigned haplotypes from a panel of haplotypes derived from reference samples
by matching on directly genotyped variants. Genotypes at untyped variants can then be assigned
from those haplotypes. This process—genotype imputation—allows ascertainment of many more
variants than are directly genotyped [29] and helps to recover rarer variants that are poorly-tagged
[22]. Modern imputation panels enable cost-effective GWASs testing tens of millions of variants
as rare as 0.01–0.1 % in diverse populations [30].

Testing large numbers of variants incurs a massive multiple testing burden, but acknowledging
the correlation between variants due to LD and restricting tests to common variants, there
are only the equivalent of ∼106 independent tests in the European genome, regardless of the
number of tests actually performed [31]. The field has thus converged on a fixed discovery
threshold of 0.05/106 = 5× 10−8 for genome-wide significance in European populations [32],
akin to controlling the family-wise error rate (FWER) to below α = 0.05 using the Bonferroni
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Figure 1.2: Effect size and allele frequency of trait-associated genetic variants. Different classes of
genetic effects require different and complementary methods. Linkage analysis is suited to detecting Mendelian
variants with large effects. GWAS is suited to detecting common variants with small effects. There are few
common variants with large effects due to selection pressure. Rare variants with small effects are hard to
distinguish from noise without very large samples. They are also poorly tagged by genotyping arrays and difficult
to impute. Studies focusing on rare variants often employ whole-exome sequencing (WES) or whole-genome
sequencing (WGS) to directly type variants. Figure reproduced from Bush et al. [26] under the CC BY 4.0 license
(creativecommons.org/licenses/by/4.0/legalcode).

creativecommons.org/licenses/by/4.0/legalcode
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correction∗.

1.1.4 From locus to causal variant

By design, a significant trait-associated variant from a GWAS needs not be a variant that
causally affects the trait and may only tag a causal variant. The resolution of the associated
locus depends on the local LD structure. Fine-mapping is the process of determining which of the
many correlated variants in an associated locus are most likely to be causal, assuming the causal
variants are observed either by direct genotyping or confident imputation. Due to incomplete
power, the causal variants in a locus are not necessarily the ones with the strongest associations
[34]. Bayesian fine-mapping methods take a variable selection approach, assigning each variant a
posterior probability of causality. A credible set of variants likely to contain the causal variant in
the locus with some probability can then be determined [34, 35]. The ability to separate causal
and tag variants depends on factors including LD, sample size, and the effect size and number of
causal variants [22, 34].

1.1.5 From causal variant to target gene

Most causal variants for Mendelian traits are coding variants (nonsense, missense, or frameshift)
that impact protein sequence [36]. In contrast, over 90 % of GWAS loci fall in non-coding regions
[37], and often too far from the nearest coding region to be in LD [38]. Even if the causal variants
in a locus are fine-mapped, one of the greatest challenges following a GWAS is prioritising the
target genes through which those variants affect the trait. A reasonable heuristic is to assign
the gene with the nearest transcription start site (TSS) or body as the target, particularly for
metabolite traits [39]. For improved accuracy across a variety of complex traits, integrative
methods for gene prioritisation combine variant-to-gene distance with other metrics and data
types drawn from numerous external sources [39–41].

1.2 Gene expression as an intermediate molecular phenotype

1.2.1 Regulation of gene expression

Gene regulation data are indispensable for gene prioritisation. Rather than directly impacting
the coding sequence of a gene, many non-coding GWAS loci are hypothesised to affect traits by
affecting the regulation of target gene expression [37, 42]. Unlike genotype, expression is dynamic
across time and space. Diverse expression programs are responsible for the myriad of cell and
tissue types generated during development, and enable adaptation in response to environmental
stimuli.

Expression is the product of eukaryotic transcription, a multi-step process involving interac-
tions between DNA, RNA, and hundreds of proteins [43]. Transcription of the pre-messenger
RNA (mRNA) is initiated when RNA polymerase and transcription factors (TFs) form part

∗The Bonferroni correction makes no assumptions about the dependence structure of the p-values, controlling
the FWER (probability of at least one type I error) exactly under any structure. It is conservative (i.e. controls the
FWER at a stricter level than the chosen threshold α) even for independent tests. In fact, it is always conservative
unless the p-values have strong negative correlations [33].
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of a protein complex around the promoter region and TSS of a gene. TFs can also bind to
more distant cis-regulatory elements such as enhancers and repressors. These distant regulatory
elements interact with the promoter region via DNA looping. Transcription can only happen
in regions of open chromatin, where the packing of DNA-histone complexes (nucleosomes) is
loose enough that the DNA is physically accessible to the transcriptional machinery. Chromatin
accessibility is partially determined by histone modifications such as methylation, acetylation,
phosphorylation, and ubiquitination [44]. The DNA itself can also be modified; methylation at
CpG sites in promoters tends to repress transcription [45].

To form a mature mRNA, the pre-mRNA is capped at the 5’ end by a modified nucleotide
and at the 3’ end by a poly(A) tail. Exons are joined by spliceosomes that cut and rejoin the
pre-mRNA at one or more pairs of splice sites, excising the intronic sequence between each pair.
The choice of splice sites determines which of many alternatively-spliced transcripts is produced.
Post-transcriptional regulation of mature mRNAs is also possible via RNA editing [46] and
regulatory elements in the flanking 5’ and 3’ untranslated regions (UTRs) [47].

In line with the regulatory hypothesis, GWAS variants are heavily enriched in regulatory
elements annotated by functional genomics projects (e.g. ENCODE [4]), including regions of open
chromatin, histone binding sites, TF binding sites, enhancers, splice sites, and UTRs [48–52].
Furthermore, this enrichment is often observed in particular contexts (tissues, cell types, or cell
states [22, 37, 42]). An example is the enrichment of fine-mapped SNPs associated with risk
of immune-mediated inflammatory disease (IMID) in CD4+ T cell enhancers, particularly in
enhancers activated after stimulation [50]. These results put forth expression as an important
intermediate that links non-coding GWAS variants to their associated traits, and helps nominate
trait-relevant contexts and target genes.

1.2.2 Expression quantitative trait loci (eQTLs)

Expression is a complex molecular phenotype in itself, with a heritability of 15–30 % [53].
Genome-wide assays for expression, such as microarrays and RNA sequencing (RNA-seq), were
among the earliest high-throughput technologies developed for quantifying molecular phenotypes.
Genetic loci associated with quantified gene expression are called expression quantitative trait
loci (eQTLs). Large-scale efforts such as the Genotype-Tissue Expression (GTEx) project [54]
have pioneered the study of eQTLs and other molecular quantitative trait loci (molQTLs) over
the past decade [55].

eQTL effect sizes are large relative to variants associated with whole-organism phenotypes,
with the average eQTL explaining 5–18 % of additive genetic variance for its associated gene [53].
The eQTLs with the largest effects tend to be concentrated near the TSS of their target gene
(cis-eQTLs), affecting TF binding sites and other local regulatory elements. eQTLs further away
or on a different chromosome are called trans-eQTLs. The exact threshold separating cis from
trans on the same chromosome is arbitrary; <1 Mbp and >5 Mbp are commonly used thresholds
for cis- and trans-eQTLs respectively [56–58]∗. In general, eQTL effect size declines with distance

∗Having a threshold is often a matter of practicality to reduce the number of variants tested. Assaying
expression is still more costly than array genotyping, so eQTL mapping sample sizes are small compared to GWASs.
Even though eQTL effects are relatively large, eQTL mapping genome-wide would be equivalent to performing
GWASs on thousands of continuous phenotypes, incurring enormous computational and multiple testing burdens.
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to the TSS, and trans-eQTLs have smaller effects compared to cis-eQTLs [55]. Trans-eQTLs
often represent cis-eQTLs of regulatory molecules like TFs and RNA-binding proteins that may
target many genes in trans as master regulators [57, 59]. Gathering large enough samples to
detect trans-eQTLs remains a priority, as most expression heritability is driven by trans rather
than cis effects, perhaps due to small but wide-reaching effects [60].

1.2.3 Context-dependent eQTLs

Like expression itself, the effects of eQTLs are highly context-dependent [55, 57]. When the effect
size of an eQTL is not the same in all environments, but differs depending on the environment, the
eQTL is said to interact with those environments. This can manifest as a statistical interaction
in a regression model with a multiplicative genotype-environment term, where the effects of
environment and genotype on expression are not additive at the chosen scale for measuring
expression. A non-exhaustive list of environmental contexts that have been found to interact
with eQTLs includes sex [61], age [61], ancestry [62–64], tissue [65, 66], purified cell type [62,
67–70], cell type composition in bulk samples [71–74], cell differentiation stage [75], disease status
[68], and experimental stimulation (see Section 1.2.4). These contexts can be interdependent;
for example, tissue-dependent effects may arise from a combination of cell type-dependence and
varying cell composition between tissues.

A multitude of molecular mechanisms could facilitate genotype-environment interactions
at eQTLs. Fu et al. [76] mapped eQTLs in blood and four non-blood tissues (Fig. 1.3), and
proposed mechanisms that might explain discordant effects of an eQTL allele on a target gene
between tissues, assuming the eQTL disrupts a regulatory factor’s binding site. Different effect
sizes of same or opposite signs could arise from tissue-dependent effects of the same factor, such
as activating expression in one tissue and repressing it in another (e.g. due to cofactors, or from
binding of different factors in different tissues at the same site). Effects specific to a tissue could
arise from tissue-specific expression of a regulatory factor. A tissue-specific effect could also reflect
tissue-specific target gene expression, as the eQTL effect will be zero in a tissue where the target
is not expressed (e.g. due to chromatin inaccessibility). Tagging of different causal variants in the
two tissues, potentially with differing tagging efficiency (i.e. LD), could also generate the above
scenarios [76]. Furthermore, the complexity of human gene regulation means these mechanisms
might be acting at epigenetic, pre-, co-, or post-transcriptional regulatory levels [53]. Detection of
context-dependent effects merely exposes differences in regulatory architecture between contexts.
Much like in GWASs, going from association to underlying mechanism requires considering data
types beyond just genotype and expression.

1.2.4 Response eQTLs (reQTLs)

A important class of context-dependent eQTLs are response expression quantitative trait loci
(reQTLs), where the interacting environment is experimental stimulation, revealing regulatory
effects not detectable in the baseline state [55, 77]. The vast majority of reQTL studies to date
have been conducted on immune cells. This is not only due to the abundance of immune cells

Studies focused specifically on trans-eQTL mapping reduce the number of tests in other ways, such as testing only
significant GWAS variants for eQTLs [58].
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Figure 1.3: Types of tissue-dependent cis-eQTL effects. The effect size of an eQTL SNP on expression
can be concordant or discordant between tissues. Discordant effects represent genotype-tissue interactions and can
be classified into four subtypes. Specific regulation refers to a gene with a significant eQTL in only one tissue.
Alternative regulation refers to regulation of the same gene by independent SNPs in the two tissues—genes can
have multiple eQTLs with tissue-specific effects. Different effect size refers to an eQTL having tissue-dependent
effects with concordant sign but discordant magnitude. Opposite allelic direction is a tissue-dependent effect where
the sign is discordant. Pie charts show the proportion of different types of effects in pairwise comparisons of blood
and four non-blood tissues by Fu et al. [76]. Figure reproduced from Fu et al. [76] under the CC BY 4.0 license
(creativecommons.org/licenses/by/4.0/legalcode).

creativecommons.org/licenses/by/4.0/legalcode
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easily accessible in peripheral blood, amenable to purification and stimulation, but because
the immune system is specialised for mounting different responses to different pathogens and
perturbations.

When stimulation is applied in vitro, variables such as cell type and abundance; and the
nature, length, and intensity of stimulation can be precisely controlled. A seminal study by
Barreiro et al. [78] mapped eQTLs in monocyte-derived dendritic cells (DCs) before and after 18 h
of infection with Mycobacterium tuberculosis. reQTLs were detected for 198 genes: 102 specific to
the uninfected state and 96 specific to the infected state. They observed a 1.4-fold enrichment of
reQTLs among GWAS variants associated with susceptibility to pulmonary tuberculosis, but
no enrichment of eQTLs shared between uninfected and infected DCs. From overlap of reQTLs
and GWAS variants, three genes (DUSP14, ATP6V0A2, RIPK2 ) were prioritised as candidates
affecting tuberculosis susceptibility. Since then, numerous in vitro reQTL studies have been
conducted with a variety of stimulations (often cytokines, pathogens, or pathogen-associated
molecular patterns (PAMPs)), applied to purified [70, 79–91] or mixed cell types [83, 92].

A complementary approach is reQTL mapping with in vivo stimulation. An isolated mixture
of cells in vitro cannot hope to replicate the innumerable interactions involved in human immune
response. In vivo designs suit whole-organism stimulations and response phenotypes, such
as vaccination and vaccine-induced antibody response. Published in vivo reQTL studies are
comparatively few. Idaghdour et al. [93] mapped whole blood eQTLs in 94 West African children
admitted to hospital for malaria and 61 age-matched controls. reQTLs with a significant case-
genotype interaction were detected for five genes: PRUNE2, SLC39A8, C3AR1, PADI3, and
UNC119B. As SLC39A8 is upregulated with T cell activation, a postulation was made that
T cell activation is important to malaria infection response. In Franco et al. [94], whole blood
eQTLs were mapped in 247 healthy adults given trivalent inactivated influenza vaccine (TIV).
Twenty genes involved in membrane trafficking and antigen processing were prioritised to be
important to vaccine response, on account of having post-vaccination reQTLs or differential
expression, and an expression correlation with antibody response. Lareau et al. [95] focused on
epistatic effects of SNP-SNP interactions on expression fold-change after smallpox vaccination in
183 individuals. Eleven significant interactions were found where the effect of two independent
SNPs on expression was non-additive. Apoptosis-related genes (e.g. TRAPPC4, ITK) were
enriched among target genes. Most recently, Davenport et al. [96] mapped whole blood eQTLs
in 157 systemic lupus erythematosus (SLE) patients in a phase II clinical trial of an anti-IL-6
monoclonal antibody. Nine reQTLs with effect sizes magnified by drug exposure were found
to disrupt the binding site of IRF4, highlighting it as a key regulatory factor downstream of
IL-6. Overall, in vivo reQTL studies have delivered insight into the biology of a diverse set of
whole-organism phenotypes. However, ethical requirements can limit sample size and choice
of stimulation. Many environmental factors (e.g. diet, lifestyle, immune exposures) cannot be
controlled, potentially leading to greater experimental noise compared to in vitro designs, and
complicating interpretation of results.
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1.2.5 Gene prioritisation using eQTLs

eQTLs are enormously valuable for target gene prioritisation after GWAS. They propose both
target gene and mechanism of action, where the effect of variant on complex trait is mediated
through expression. GWAS variants for many traits are indeed enriched for eQTLs [97], but
care must be taken when conducting enrichment analyses to avoid false positives due to the
abundance of eQTLs. At current sample sizes, 60–80 % of genes have at least one detectable eQTL
[55, 58]. Assuming that a locus is associated with both a trait of interest and with expression
of a particular gene, how can one separate the scenario where the same causal variants affect
both trait and expression (pleiotropy) from coincidental overlap between distinct sets of causal
variants that may possibly be in LD? Bayesian colocalisation methods address this problem by
extending Bayesian fine-mapping methods to multiple phenotypes [98–100]. Using information
from all measured variants in the locus, they estimate the posterior probability that the same
causal variants are associated with both phenotypes, distinguishing pleiotropy from LD.

Given the effect of an eQTL can be starkly context-dependent, eQTL datasets from trait-
relevant contexts are most useful for gene prioritisation. For instance, immune in vitro reQTLs are
enriched more so than non-reQTLs among GWAS associations for immune-related phenotypes,
such as susceptibility to infectious [78, 92] and immune-mediated diseases [85, 92]. Supplementing
shared eQTL effects with cell type-specific eQTL effects finds many additional colocalisations with
complex traits [74, 101]. The increasing number of context-dependent eQTL datasets available for
large-scale colocalisation analyses means eQTLs can propose not just target gene and mechanism,
but also the specific environments most relevant to a trait.

1.3 Phenotypes of immune response

1.3.1 An overview of the immune system

Immunology began as the study of host defense against infection [102]. It is now recognised that
the immune system is also involved in pathogenesis of diverse conditions encompassing allergic
diseases, autoimmune and immune-mediated diseases, and cancer. This subsection provides a
basic overview of parts of the immune system relevant to this thesis.

The two major arms of the immune response are the innate and adaptive response. The innate
response is rapid and non-specific, occurring in the first few minutes to days after the initial
(primary) exposure to infection. This triggers the adaptive response, which takes days to weeks
to develop, but delivers a powerful and specific response capable of eliminating pathogens that
have evaded the innate response. The adaptive response can also create immunological memory
lasting years to decades, where re-exposure to the same pathogen induces a faster and more
powerful recall response∗. Both arms distinguish self from non-self through complex interactions
between many cell types via surface receptors and signalling molecules.

Immune cell types differentiate from common myeloid progenitor or common lymphoid
progenitors, which themselves are descended from pluripotent hematopoietic stem cells (HSCs)
in the bone marrow. By and large, the cells of the innate response are of the myeloid lineage,

∗There is increasing evidence the innate immune system also has a form of immunological memory [103].
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and the cells of the adaptive response are of the lymphoid lineage. Immune cells are also called
leukocytes or white-blood cells as many types can be found in peripheral blood, but certain types
are confined to tissues or parts of the lymphatic system.

Innate response begins with the detection of pathogens by phagocytotic sensor cells—primarily
neutrophils, tissue-resident macrophages, and DCs. These cells express pattern recognition
receptors (PRRs) that recognise conserved PAMPs not present in host cells, then secrete small
proteins (cytokines) that trigger the inflammatory response: a massive recruitment of multiple cell
types from blood into infected tissues. Recruitment is partially mediated by a family of cytokines
called chemokines, which chemically attract immune cells by creating a concentration gradient
(chemotaxis). Recruited neutrophils clear pathogens by phagocytosis and secrete antimicrobial
molecules by degranulation. Natural killer (NK) cells detect and kill virus-infected and tumour
cells. Circulating monocytes migrate to the site of infection and differentiate into macrophages
and DCs. Macrophages perform phagocytosis, modulate inflammation, and can also engage in
antigen-presentation—but it is DCs that are considered to be the specialist antigen-presenting
cell (APC) type. Antigen-presentation by DCs is a key link between the innate and adaptive
responses.

The main forces of the adaptive response comprise B and T lymphocytes. Naive lymphocytes
express antigen receptors that recognise parts of specific antigens called epitopes. When they
encounter this antigen, they activate, proliferate (clonal expansion), then differentiate into effector
cells. To initiate adaptive response, CD4+ (helper) T cells recognise peptide fragments from
the antigen presented in a complex with major histocompatibility complex (MHC) class II on
the surface of APCs. CD4+ T cells then differentiate into several subsets; these activate and
regulate other immune cell types such as macrophages, CD8+ T cells and B cells. Activated
CD8+ (cytotoxic) T cells recognise antigens presented by MHC class I on infected cells and
directly kill the cell. Activated B cells differentiate into plasma cells that secrete large quantities
of antibodies, the soluble form of the B cell receptor (BCR). Antibody-mediated immunity is also
called humoral immunity, whereas T cell and innate immune responses comprise cell-mediated
immunity. A small subset of activated B and T cells can become memory cells, responsible for
long-term immunological memory.

1.3.2 High-throughput immunology

To understand the immune system and its intricate interactions, “systems immunology” studies
take a holistic rather than reductionist experimental approach [104–106]. The basic principle is the
same: experimentally perturb the immune system and observe its response. Drugs and vaccines
can be used as safe and synchronised perturbations—one of the largest subfields of systems
immunology is systems vaccinology, which I review in Section 2.1.4. A range of high-throughput
technologies are applied to measure response at many layers of the immune system (Fig. 1.4).
Longitudinal designs are common, aiming to sample timepoints corresponding to baseline, innate,
and adaptive immunity. The complexity of the immune response presents a major challenge,
with the richness of sampling required often restricting the sample sizes of systems immunology
studies due to cost and logistics.

There are three major themes to systems immunology. Initial studies of immune response to



12 Introduction

Figure 1.4: High-throughput technologies for systems immunology. Profiling can be done in humans
and model organisms, at multiple levels of the immune system, and at bulk or single-cell resolutions. An additional
dimension not shown here is profiling at multiple timepoints before and after perturbation. Figure reprinted from
Yu et al. [107], © 2019, with permission from Elsevier.

a particular perturbation are often descriptive, aiming to find correlations between components
of the immune response. Predictive studies then evaluate the ability to use measurements of
relevant components to predict individual responses to the perturbation. Feature sets that are
molecular phenotypes (e.g. gene expression) with validated predictive accuracy are known as
molecular signatures. Causal inference is the third and most difficult goal. Fortunately, the
heritability of immune parameters (e.g. cell counts, surface marker expression, serum protein
levels) is substantial (20–40 % [108–111]), with greater heritability for innate than adaptive
immune parameters [110]. Much akin to GWAS and quantitative trait locus (QTL) studies,
to identify causal links in the immune system, one can leverage genetic variants as naturally-
occurring perturbations [105, 112]. Controlled variation can also be systematically generated by
RNA interference or genome editing [113]. Obtaining causal understanding is essential for clinical
translation, to determine the interventions that can be made to promote effective response to
pathogens and vaccines, and impede pathways that lead to immune dysregulation in disease.

1.4 Thesis outline

This thesis examines longitudinal response to in vivo immune perturbations by vaccines and
drugs. Chapter 2 is a descriptive differential gene expression (DGE) study of transcriptomic and
antibody responses to pandemic influenza vaccine (Pandemrix) in the Human Immune Response
Dynamics (HIRD) cohort of healthy adults. Chapter 3 integrates HIRD genotype data to map
the regulation of expression response to Pandemrix using an in vivo reQTL study design. In
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Chapter 4, I mirror the design of the previous two chapters, exploring clinical response to biologic
anti-tumour necrosis factor (TNF) therapy for Crohn’s disease (CD) patients in the Personalised
Anti-TNF Therapy in Crohn’s Disease (PANTS) cohort. Finally, Chapter 5 presents an overview
of shared themes and limitations, and provides recommendations for future analyses and study
designs for immune response phenotypes.
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Chapter 2

Transcriptomic response to
Pandemrix vaccine

The work presented in this chapter is a collaboration between the Wellcome Sanger Institute,
King’s College London, the Francis Crick Institute, and the Biomedical Research Centre at Guy’s
and St Thomas’ Hospital and King’s College London. I would like to thank Adrian Hayday, for
kindly extending the opportunity to collaborate on the HIRD cohort; Efstathios Theodoridis, for
performing the RNA and DNA extractions; Sean O’Farrell and Anna Lorenc, for providing the
HIRD clinical, FACS, and antibody titre data, and for providing advice on the data formats;
and the Wellcome Sanger Institute Sample Management and Pipelines teams, for performing the
RNA-seq library preparation and sequencing, and the array genotyping.

2.1 Introduction

2.1.1 Influenza

Influenza is an infectious respiratory disease caused by the influenza virus family (Orthomyxoviri-
dae) in a variety of vertebrate hosts. Of the four virus types (A, B, C, D) defined by antigenic
specificity of the viral nucleoprotein, human infections are primarily caused by influenza A and
influenza B. Each year, seasonal epidemics result in ∼1 billion infections and 300 000–500 000
deaths worldwide. Peak seasonality is defined by low humidity, low temperature, and other
climate factors. Risk factors for severe illness and death include extremes of age (infants <1 yr,
elderly >65 yr), pregnancy, obesity, chronic illness, and host genetics (e.g. mutations in IFITM3
and IRF7 ) [114, 115].

Influenza viruses are enveloped viruses with a negative-sense single-stranded RNA genome
divided into segments (eight segments in influenza A and B), each encoding one or more viral
proteins. Two glycoproteins occurring on the surface of the viral envelope are the main antigens
targeted by the host immune system. Haemagglutinin (HA), with its characteristic head-stalk
structure, facilitates viral entry by binding sialic acid-containing surface receptors on host cells.
Neuraminidase (NA) facilitates viral release, cleaving sialic acids to prevent newly-synthesised
viruses aggregating to each other—viral proteins can be sialylated post-translation—and to the
dying host cell in the final stages of the viral life cycle. The gradual accumulation of mutations
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in these surface protein genes is known as antigenic drift, and can lead to evasion of antibody-
mediated immunity acquired during previous exposures. As the virus type with the greatest
prevalence, host range, and genetic diversity, influenza A is classified into a number of subtypes
based on the antigenic properties of its HA and NA. At least 18 HA subtypes and 11 NA subtypes
exist [116]. Although these HA and NA subtypes are all antigenically-dissimilar, there can still
be cross-reactivity between subtypes, and considerable antigenic drift within subtypes [117].
Influenza B viruses are less diverse, classified into two antigenically-distinct lineages: Victoria-like
and Yamagata-like [114].

On occasion, reassortment of genome segments between viruses infecting the same cell can
quickly generate new strains (antigenic shift). Antigenic shifts are associated with pandemics
due to lack of pre-existing population immunity [114]. Pandemics have occurred four times in
modern history: 1918 (“Spanish”), 1957 (“Asian”), 1968 (“Hong Kong”), and 2009 (“swine”).
Each was caused by influenza A, involving either reassortment of human and animal strains or
zoonotic transmission of animal strains [118]. For instance, the 2009 pandemic was due to an
influenza A strain with HA subtype 1 and NA subtype 1 gene segments of swine origin [119]:
A(H1N1)pdm09∗. Pandemic strains tend to enter seasonal circulation post-outbreak, potentially
replacing previously-circulating strains; A(H1N1)pdm09-like strains are now the predominant
seasonal A(H1N1) strain [114].

2.1.2 Seasonal influenza vaccines

Vaccination is the primary method for prevention and control of influenza. Antigenic drift
and decline of vaccine-induced immunity over time means annual vaccination is recommended.
Seasonal vaccines are multivalent, usually formulated against three (trivalent) or four (quadri-
valent) influenza strains anticipated to circulate in upcoming influenza seasons. The World
Health Organization (WHO)-run Global Influenza Surveillance Response System (GISRS) makes
recommendations on the most representative strains for the Northern and Southern hemispheres
each year, about six months before the start of the respective seasons.

There are three classes of licensed vaccines against seasonal influenza: inactivated influenza
vaccines (IIVs), live attenuated influenza vaccines (LAIVs), and recombinant HA vaccines
[116, 121]. IIVs can be split virion, containing virions disrupted with detergent, or subunit,
containing further purified HA protein. LAIVs contain low-virulence, cold-adapted viruses that
replicate well only in the cool upper respiratory tract. Recombinant HA vaccines contain purified
recombinant HA expressed in insect cell lines rather than relying on traditional viral propagation
in embryonated chicken eggs; cell-based IIVs are also available. Cell-based vaccines are faster to
manufacture in pandemic situations, not dependent on egg supply, and avoids egg-adaptation:
mismatches between vaccine and circulating strains caused by adaptation to growth in eggs.

Licensed seasonal vaccines are effective and well-tolerated in healthy adults, but particular
subclasses of vaccine are recommended for different demographics [122–125]. LAIVs are delivered
via nasal spray and are more effective than IIVs at mitigating transmission. They are recommended
for children—the major drivers of transmission due to high viral loads and prolonged shedding [114,

∗The suffix “pdm09” distinguishes the 2009 pandemic strain from the circulating seasonal A(H1N1) strains at
that time [120].
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122]—but are contraindicated in young children <2 yr due to increased risk of wheezing, and also
in immunocompromised individuals. Trials suggest LAIV has superior efficacy compared to IIVs
in children. High-dose and adjuvanted IIV vaccines are recommended to enhance immunogenicity
in the elderly. Cell-based and egg-free vaccines are suitable for people with egg allergies. No
vaccines are licensed for use in infants <6 mo, but passive immunity can be conferred through
vaccinating the mother.

Point estimates of seasonal vaccine efficacy range from 50–90 % in healthy adults in controlled
trials. Real-world effectiveness can be as low as 10 %, depending greatly on vaccine class, choice
of endpoint, the match between vaccine and circulating strains, and various host factors [115,
126]. In general, efficacy is comparable or better in children versus young adults, and lowest in the
elderly due to immunosenescence. Females mount higher antibody responses than males to IIVs
regardless of age, potentially mediated by sex steroid levels [115, 127]. Immune history has a major
impact on vaccine response due to immune memory. Adults primed by past exposures to seasonal
influenza strains have qualitatively different responses to unprimed adults or influenza-naive
children. For example, influenza-naive children mount much higher serum antibody responses to
seasonal LAIV than primed adults [123]; and antibody responses to IIV peak later in unprimed
individuals, requiring two doses to generate optimal concentrations [122]. Immune history also
affects response via antigenic seniority (a.k.a. immune imprinting), where the antibody response
is biased towards recall against strains encountered in early childhood over generation of a de
novo response. This is beneficial if strains with the same epitopes come back into circulation,
and harmful against strains still similar enough to trigger immune memory, but with drifted
epitopes [115, 128]. Finally, host genetic variation in cytokine genes, immunoglobulin genes, and
the human leukocyte antigen (HLA) region are associated with antibody responses—reviewed in
Section 3.1.1.

2.1.3 Quantifying immune response to influenza vaccines

The efficacy of IIVs is mostly mediated by induction of strain-specific anti-HA antibodies,
although other antibodies (e.g. anti-NA) may also contribute in the case of non-purified vaccines.
Antibody-secreting cells (ASCs) in peripheral blood peak around one week after vaccination, and
serum antibodies peak around two to four weeks after vaccination. Antibody-mediated protection
may last up to a year in healthy adults [122, 129]. The immunodominance of the HA head over
the stalk means most anti-HA antibodies have epitopes in the head domain. Unsurprisingly,
the resulting immune selection pressure concentrates antigenic drift in the head domain. The
stalk domain is relatively conserved, hence anti-stalk antibodies are more likely to be broadly
neutralising antibodies effective against multiple virus subtypes (heterosubtypic immunity) [130].

The haemagglutination inhibition (HAI) assay is an inexpensive method for quantifying
serum anti-HA antibody concentrations. A serial dilution of serum is created and mixed with
standardised concentrations of red blood cells (RBCs) and influenza virus. Without the presence
of antibodies, the receptor site on the HA head binds to membrane-bound sialic acid on RBCs,
agglutinating them into a lattice that appears as a cloudy red solution. Anti-HA antibodies
inhibit agglutination, allowing the RBCs to settle, creating a clear solution with a dark red pellet.
The titre value comes from the most dilute concentration of serum that completely inhibits
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agglutination [131]. The value is relative to the concentrations of reagents, requiring standardised
protocols for comparability. A standardised HAI titre of 40 (1:40 dilution) is deemed seroprotective,
and is an accepted correlate of protection for IIVs, representing 50 % clinical protection rate
against infection [122, 132]. Reliable correlates of protection are useful in vaccine trials to reduce
resource requirements (e.g. time, sample size, cost) compared to disease or infection-based
endpoints like clinical protection [133]. For seasonal IIVs, regulatory agencies define target criteria
based on the minimum proportion of individuals achieving HAI seroprotection (≥ 40 titre) and
seroconversion (≥ 4-fold increase in titre after vaccination, indicating the vaccine is immunogenic)
[116, 130, 132].

An alternative method is the microneutralisation (MN) assay, which quantifies concentrations
of serum antibodies capable of neutralising viral infectivity. Neutralising antibodies may be
anti-HA antibodies quantifiable by HAI, but may also be anti-HA stalk antibodies or antibodies
with non-HA targets not detectable by HAI [116]. The assay again involves a serial dilution of
serum, which is incubated with standardised concentrations of virus. The serum-virus mixtures
are inoculated into host cells in vitro. After incubation, virus-infected cells are quantified (e.g.
enzyme-linked immunosorbent assay (ELISA) using antibodies against viral proteins), the lack
of which indicates neutralising activity sufficient to suppress viral replication [131]. A MN assay
value of 160 (1:160 dilution) is considered equivalent to the seroprotective HAI value of 40 [122].

IIVs primarily induce serum antibodies of the IgG isotype. The cellular response has not
been extensively studied, but the induction of CD8+ T cells by unadjuvanted subunit IIVs is
considered poor [122, 134]. In contrast, LAIVs can induce serum IgG, but also efficiently induce
mucosal IgA and T cell responses [123]. Protection may also have greater duration than that
afforded by IIVs, although the longevity still pales in comparison to natural infection, which can
grant strain-specific protection that is lifelong [116, 121–123]. Different facets of response play
different roles in immunity: serum IgG is important for limiting severity of systemic infection,
mucosal IgA in the upper respiratory tract inhibits initial infection and transmission, CD8+ T
cells promote viral clearance and recovery, and CD4+ T cells help induce the humoral and CD8+

T cell responses [114, 122, 130, 135]. Correlates of protection for LAIV have not yet been defined;
licensed LAIVs have all been licensed on the basis of clinical protection. Their comparable efficacy
to IIVs in adults despite low HAI titres and seroconversion rates are presumed to be mediated by
mucosal and cell-mediated immunity [116, 123]. Clearly, a broader view of immunity than granted
by serological antibody assays is needed to understand the mechanisms leading to efficacious
influenza vaccine responses.

2.1.4 Systems vaccinology of seasonal influenza vaccines

Vaccinology has historically been driven by the “isolate-inactivate-inject” paradigm [136]. Many
vaccines have been developed and licensed through expensive, large-scale, and largely empiri-
cal trials that deliver highly effective vaccines, but little understanding of the immunological
mechanisms of protection. In response, the last decade has seen the rise of systems vaccinology,
a subfield of systems immunology dedicated to the analysis of high-throughput data measured
at multiple levels of the immune system to characterise response to vaccination [133, 137–143].
Traditional serological assays (e.g. HAI, MN) are complemented with a raft of other technologies
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to give a broader view of immune response [137–139, 142, 143]. Flow (e.g. fluorescence-activated
cell sorting (FACS)) and mass cytometry (e.g. cytometry by time-of-flight (CyTOF)) are used to
quantify immune cell subpopulations by their surface markers using fluorescent and heavy metal
tags. These technologies can also be used to quantify intracellular markers (e.g. cytokines) by
cell staining. Frequencies of cells secreting specific proteins (e.g. cytokines or antibodies) can also
be quantified (e.g. enzyme-linked immune absorbent spot (ELISPOT)), useful for monitoring
activated cell populations involved in both humoral and cell-mediated immunity. The transcrip-
tome of peripheral blood is extremely popular to assay (e.g. expression array, RNA sequencing
(RNA-seq)), providing an accessible, global measure of gene expression in dozens of immune cell
subtypes without the need to select specific genes of interest in advance. Recently, there has been
a growing interest in targeted sequencing of B cell and T cell repertoires, responsible for the
specificity of the adaptive immune system. Serum proteins can be quantified in a low-throughput
(e.g. ELISA) or multiplex manner (e.g. Luminex). Modern proteomics platforms also embrace a
global philosophy, simultaneously quantifying thousands of proteins (e.g. SOMAscan). Finally,
although not often considered due to small cohort sizes, host genetic variation can be accurately
measured by genotyping arrays and sequencing.

Longitudinal study design is key, not only to profile different stages of innate and adaptive
immunity, but also for determining correlates of protection. Correlates are known for some but
not all established vaccines [144, 145]. For novel and emerging diseases, there may be no prior
knowledge of correlates for use in vaccine development. The term “molecular signature” was
coined to refer to transcriptomic responses induced early after vaccination that correlate with,
and importantly, are predictive of later immune phenotypes (e.g. antibody titres) [133], although
non-transcriptomic data types can also be used to form signatures. The ultimate goal is baseline
prediction, where the immune state immediately prior to vaccination predicts response, and could
potentially be modulated to enhance response in a similar manner to adjuvanting the vaccine
itself [146].

Work in the field has thus far focused on established vaccines. One can learn from the success
of highly-efficacious vaccines like yellow fever vaccine (YF-17D); where interferon, complement,
and inflammasome expression signatures measured 3–7 days post-vaccination predict CD8+ T
cell and neutralising antibody responses 60 days post-vaccination [138, 147]. Much has also been
learnt from the study of vaccines with suboptimal efficacy in challenging populations: infants
and the elderly, pregnant women, immunocompromised patients, ethnically-diverse populations,
developing countries [148]. The field has not yet identified completely novel correlates for many
vaccines, partially because protection itself can be difficult to measure. One promising system is the
human challenge trial, applied by Vahey et al. [149] to identify genes in the immunoproteasome
pathway associated with protection from malaria challenge after adjuvanted RTS,S malaria
vaccination. If correlates for novel vaccine candidates could be routinely established based on
shared immune mechanisms leading to efficacy and long-lasting protection derived from multiple
successful vaccines, there is enormous potential for optimising trials to be fast and cost-effective
[133, 150], and informing rational, mechanism-based design for diseases that have thus far proved
intractable to empirically-designed vaccines (e.g. HIV, malaria, non-childhood tuberculosis) [136,
140, 143, 150].
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Seasonal influenza vaccines have been well-studied by systems approaches. One of the earliest
studies by Zhu et al. [151] found that expression of type I interferon-modulated genes at day
7 was more prominent for LAIV than trivalent inactivated influenza vaccine (TIV) in children
(total cohort size n = 85). A subsequent study found that both LAIV and TIV could induce
interferon-related genes in children (n = 37), but much earlier in TIV (day 1) than in LAIV (day
7) [152]. As serum antibody titres are an established correlate for TIV, studies have been carried
out to identify its molecular basis. Bucasas et al. [153] (n = 119) reported a 494-gene expression
signature (including STAT1, CD74, and E2F2 ) measured at day 1 and 3 that correlated with
serum antibody titres measured 14 and 28 days after vaccination. Signatures including day 3
kinase CaMKIV expression were found to predict day 28 HAI antibody titres in independent
trials over three consecutive influenza seasons (n = 67) [154]. Expression of gene sets related to
B cell proliferation at day 7 were likewise predictive of day 28 HAI (n = 15) [155]. Work has also
been conducted to understand the heterogeneity in response due to host factors like sex [127]
and age [156–159].

Signatures can be derived from predictors measured pre-vaccination [146]. A gene module
enriched in apoptosis-related genes measured at baseline was found to predict day 28 HAI
response (n = 89) [160]. Tsang et al. [161] used not gene expression, but FACS measurements
to establish signatures for day 70 neutralising antibody titres (n = 63). Frequencies of several
B cell, myeloid dendritic cell (DC), CD4+ memory T cell, and a number of other activated T
cell populations were not only predictive, but also stable over a period of two months. Nakaya
et al. [157] used data collected over five consecutive seasons (n = 212) to identify associations
between day 28 HAI and baseline expression modules annotated to B cells (positive association),
T cells (positive association), and monocytes (negative association). They were able to replicate
these associations using published data from Franco et al. [94] and Furman et al. [160]. Another
multi-cohort, multi-season study (n > 500) by the Human Immunology Project Consortium
(HIPC) [159] found baseline expression of genes (RAB24, GRB2, DPP3, ACTB, MVP, DPP7,
ARPC4, PLEKHB2, ARRB1 ) and gene modules to be associated with antibody response in
young individuals. Again, the authors were able to validate the associations in an independent
cohort.

To conclude, it must be noted that the utility of molecular signature for predicting response
to influenza or other vaccines in clinical trials has not yet been validated, and it is difficult to
draw causal insights from studies that are largely descriptive or predictive. The existence of
temporally-stable and replicable signatures is, however, encouraging.

2.1.5 The Human Immune Response Dynamics (HIRD) cohort

For studies of seasonal influenza vaccines in adults, responses are heavily influenced by im-
munological memory built by past vaccination or infection with antigenically-similar strains
[137, 162]. Dependence on exposure is reflected in high variability of baseline vaccine-specific
antibody titres and memory B cell numbers [161]. There have also been few systems vaccinology
studies of adjuvanted influenza vaccines, known to have greater immunogenicity and efficacy
than non-adjuvanted vaccines in children and the elderly [158, 163, 164]. The Human Immune
Response Dynamics (HIRD) study conducted by Sobolev et al. [162] was conceived as a unique
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opportunity to study response to an adjuvanted pandemic influenza vaccine (Pandemrix), where
responses are more likely to be primary than recall, and variability due to prior exposure is
minimised.

Pandemrix was one of several vaccines rapidly developed and licensed in response to the
2009 influenza pandemic [165]. It is a monovalent split-virion IIV against the pandemic influenza
A/California/07/2009 (H1N1)pdm09 strain∗ developed by GlaxoSmithKline, containing 3.75 µg
HA and adjuvant AS03 (oil-in-water emulsion containing DL-α-tocopherol, squalene, polysorbate
80). Subsequent studies estimated its effectiveness to be ∼80 % after a single dose [166]. As the
H1N1 subtype had not circulated since the 1918 pandemic, the majority of the population was
expected to be immunologically-naive at the time of study sampling (March 2010 to August
2011).

The study was a longitudinal, prospective cohort study. A total of 178 healthy adults in
the UK were vaccinated with a single dose of Pandemrix. Clinical, transcriptomic, immune cell
frequency, cytokine level, antibody titre, and adverse event phenotypes were collected. Genes
associated with both myeloid and lymphoid effector functions had increased expression at day 1
versus baseline, most prominently for genes associated with the interferon response. Day 1 gene
expression was impacted by age; significant global differences were observed in individuals older
than 30–40 yr, considerably earlier than usually considered in studies of immunosenescence in old
age. The early myeloid responses—increase in blood monocyte levels and cytokines associated
with innate activation e.g. CCL4—were overall consistent with studies of unadjuvanted seasonal
influenza vaccines. However, the early lymphoid responses—driven by a five-fold increase in
serum interferon gamma levels at day 1—were unique to this adjuvanted pandemic influenza
vaccine.

Vaccine (antibody) response was defined as a ≥4-fold increase in either HAI or MN titres
after vaccination. Genes related to plasma cell development and antibody production were more
highly expressed in 23 responders compared to 18 non-responders at day 7 post-vaccination.
However, due to high variability among the vaccine non-responders in expression trajectory over
time, a predictive model that segregated the two groups could not be built, even considering
other predictors such as frequencies of immune cell subsets, and serum cytokine levels. There
appeared to be many “routes to failure” [162], rather than any single determining factor leading
to poor antibody response.

2.1.6 Chapter summary

Transcriptomic measurements in the original HIRD study were restricted to a relatively small
number of individuals (n = 46), limiting power to detect expression associated with antibody
response. In addition, the binary responder versus non-responder definition used does not account
for variation in baseline titres, and dichotomisation of a continuous variable loses information
and implies a discontinuity in response at the cutoff.

In this chapter, I combine the existing array data with newly generated RNA-seq data (n = 75)

∗The WHO nomenclature for isolates specifies influenza type (A, B, C, D), host of origin (human if omitted),
geographical origin, strain number, year of isolation, and isolate subtype (combination of HA and NA subtypes)
[117].
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on additional individuals from the HIRD cohort using Bayesian random-effects meta-analysis
to account for between-platform heterogeneity. I also compute a baseline-adjusted, continuous
phenotype of antibody response to vaccination, the titre response index (TRI) [153]. Leveraging
the greater sample size, more statistically efficient definition of vaccine response, and greater
sensitivity of rank-based gene set enrichment analysis over per-gene analysis, I identify gene
expression modules associated with magnitude of antibody response. The strongest associations
are seen at day 7, but significant module associations are also observed at baseline.

2.2 Methods

2.2.1 Existing HIRD data and additional data generation

The design of the HIRD study is described fully in Sobolev et al. [162]. In brief, blood samples
were collected from each individual on each of six visits: two pre-vaccination (days -7 and 0),
and four post-vaccination (days 1, 7, 14 and 63). A single Pandemrix dose was administered
after blood sampling on day 0. Serum antibodies were measured for all individuals (n = 178) on
days -7 and 63 using both HAI and MN assays. peripheral blood mononuclear cell (PBMC) gene
expression was profiled for 46 individuals by expression array on days -7, 0, 1 and 7.

In addition to this existing data, PBMC RNA-seq data was generated for 75 individuals at
days 0, 1, and 7; and 169 individuals were genotyped. The sets of individuals with gene expression
assayed by array and RNA-seq are disjoint, as no biological material for RNA extraction remained
for the array individuals. An overview of datasets is shown in Fig. 2.1.

2.2.2 Computing baseline-adjusted measures of antibody response

There were 166/178 individuals with HAI and MN titres available at both baseline (day -7)
and post-vaccination (day 63). Sobolev et al. [162] defined Pandemrix vaccine responders as
individuals with ≥4-fold titre increases from day -7 to day 63 in either the HAI or MN assays.
This is a typical threshold for HAI and MN seroconversion used to assess the immunogenicity
of seasonal IIVs [116], and has also been recommended for pandemic IIVs [167]. However, they
noted there was “a complete spectrum” of baseline titres of non-responders, citing “glass ceiling”
non-responders whose high baseline titres made “enhancements by ≥4-fold harder to achieve”.
This may be referring to the dynamic range of the assays. In the full data, the range of HAI
titres is 8–4096, and the range of MN titres is 10–5120 (Fig. 2.2a, Fig. 2.2b). In just the day -7
baseline titres, the range of HAI titres is 8–512, and the range of MN titres is 10–5120∗. It is
impossible for an individual with higher than 1280 MN at day -7 to achieve a 4-fold increase
in MN after vaccination if the maximum MN value is 5120. This ceiling effect can been seen in
Fig. 2.2d, where for a given baseline MN titre, there is a limit to the maximum observable fold
change.

Another perspective is to consider that day 63/day -7 fold change is a change score on the log
scale. It is well-known that change scores are usually negatively correlated to baseline. This can

∗This indicates some individuals likely do have pre-existing antibodies to the pandemic strain (or cross-reactive
antibodies), although the mean of the baseline titre distribution would still be expected to be higher if this were a
seasonal vaccine.
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Figure 2.1: Overview of HIRD study data. The total cohort size was 178 individuals. Serum cytokines
were quantified by 16-plex Luminex panel. Immune cell subsets were quantified by FACS. Serum antibodies
were quantified by both HAI and MN assays. Array and RNA-seq gene expression were quantified in the PBMC
compartment.

be due to individual-level regression to the mean∗, the tendency for extreme observations to be
followed by less extreme ones in the same individual [168], but is also due to the mathematical
relationship between change score and baseline (“mathematical coupling” [170]). The correlation
between change score and baseline is likely to be negative when the variance of the post-test
score is much larger than the variance of the baseline and the correlation between baseline and
post-test score is less than one [170, 171]. The negative correlation of titre fold change and
baseline is visible in the HIRD data (Fig. 2.2c, Fig. 2.2d).

Additionally, dichotomisation of continuous variables can result in loss of information [172–175].
Cohen [172] presents a classic example where dichotomising a continuous independent variable
reduces statistical power akin to throwing away a third of the samples—this being the optimal
case when the cutpoint is the mean. A discontinuous cutpoint is also biologically implausible,
implying that a 4.01-fold antibody titre change would be dramatically more protective than a
3.99-fold change.

To address these concerns, I computed the TRI as defined in Bucasas et al. [153]. For each
assay, a linear regression was fit with the log2 day 63/day -7 titre fold change as the response,
and the log2 day -7 baseline titre as the predictor. The residuals from the two regressions were
each standardised to zero mean and unit variance, then averaged with equal weight. The TRI
is a single variable that expresses a continuous measure of change in antibody titres averaged
across both assays post-vaccination, compared to individuals with a similar baseline titre. It is
no longer correlated with baseline (Fig. 2.2e, Fig. 2.2f), and remains qualitatively comparable to
the original binary definition (Fig. 2.2g, Fig. 2.2h).

Descriptive statistics for the 114 individuals with both gene expression and antibody titre
data are presented in Table 2.1. Although the proportion of responders between array (32/44)
and RNA-seq (59/70) individuals is similar (p = 0.16, Fisher’s exact test), the variance of TRI in
array individuals is higher (p = 2.10× 10−4, Levene’s test), suggesting more extreme antibody
response phenotypes are present (Fig. 2.3). The cause of this is unknown—there is a possibility

∗Cf. group-level regression to the mean, which is prominent if the baseline measurement is used as a selection
criteria for follow-up [168, 169].



24 Transcriptomic response to Pandemrix vaccine

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●●●●●●●●●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●5.0

7.5

10.0

12.5

4 6 8
log2(day −7) HAI

lo
g2

(d
ay

 −
7)

 M
N

responder
●

●

FALSE
TRUE

MN vs. HAI, baseline
a

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●
●

●

●●

●

●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●
●
●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

6

9

12

15

5.0 7.5 10.0
log2(day 63) HAI

lo
g2

(d
ay

 6
3)

 M
N

responder
●

●

FALSE
TRUE

MN vs. HAI, post−vaccination
b

●

●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●● ●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●● ●

●

0.0

2.5

5.0

7.5

0.0 2.5 5.0 7.5
log2(day −7) HAI

lo
g2

(d
ay

 6
3/

da
y 

−
7)

 H
A

I

responder
●

●

FALSE
TRUE

HAI fold change vs. baseline
c

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

0.0

2.5

5.0

7.5

0 4 8 12
log2(day −7) MN

lo
g2

(d
ay

 6
3/

da
y 

−
7)

 M
N

responder
●

●

FALSE
TRUE

MN fold change vs. baseline
d

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2

−1

0

1

2

0.0 2.5 5.0 7.5
log2(day −7) HAI

T
R

I responder
●

●

FALSE
TRUE

TRI vs. HAI baseline
e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

−2

−1

0

1

2

0 4 8 12
log2(day −7) MN

T
R

I responder
●

●

FALSE
TRUE

TRI vs. MN baseline
f

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2

−1

0

1

2

0.0 2.5 5.0 7.5
log2(day 63/day −7) HAI

T
R

I responder
●

●

FALSE
TRUE

TRI vs. HAI fold change
g

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2

−1

0

1

2

0.0 2.5 5.0 7.5
log2(day 63/day −7) MN

T
R

I responder
●

●

FALSE
TRUE

TRI vs. MN fold change
h

Figure 2.2: Antibody titre data and responder definitions. Titre values are on the log2 scale. Individuals
are colored by binary responder status: ≥4-fold increase in either HAI or MN titres from baseline (day -7) to
post-vaccination (day 63). Dashed lines show the ≥4-fold thresholds. (a, b) HAI and MN titres are correlated
at baseline (a) and post-vaccination (b). (c, d) Baseline titres are negatively correlated to fold change. (e, f)
TRI is computed from the standardised residuals from c and d, adjusting for baseline titre. (g, h) TRI remains
comparable in ordering to binary response status.
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that individuals with more extreme phenotypes were prioritised for array transcriptomics in the
original HIRD study∗.

2.2.3 Genotype data generation

DNA was extracted from frozen blood using the Blood and Tissue DNeasy kit (Qiagen), and
genotyping was performed using on the Infinium CoreExome-24 BeadChip array (Illumina). In
total, 192 samples from 176 individuals in the HIRD cohort—replicate samples were submitted for
individuals where extracted DNA concentrations were initially low—were genotyped at 550 601
markers

2.2.4 Genotype data preprocessing

Using PLINK (v1.90b3w) [176], genotype data underwent the following quality control filters to
remove poorly genotyped samples and markers:

• maximum marker missingness across samples <5 %;

• maximum sample missingness across markers <1 % (Fig. 2.4);

• sample heterozygosity rate within 3 standard deviations of the mean of all samples (threshold
selected visually to exclude outliers, Fig. 2.4);

• sample sex mismatches based on X chromosome marker heterozygosity (--check-sex
option);

• and marker deviation from Hardy-Weinberg equilibrium (HWE), an indication of genotyping
or genotype calling errors [177–179] (--hwe option, p-value <1× 10−5)†.

To exclude closely-related individuals and deduplicate samples from the same individual,
pairwise kinship coefficients were computed using KING (v1.4) [181]. As rare variation is not
generally required to determine relatedness, markers were filtered to minor allele frequency (MAF)
>0.05 for computational efficiency. For each pair of samples with pairwise kinship coefficient
>0.18 (first-degree relatives or closer), the sample with lower marker missingness was selected.
After all filters, 169/176 samples and 549 414/550 601 markers remained.

2.2.5 Computing genotype principal components as covariates for ancestry

As shown in Table 2.1, the HIRD cohort is multi-ethnic. Large-scale population structure explains
variation in gene expression [182, 183], so including genotype principal components (PCs) that
reflect that structure as covariates can increase statistical efficiency for detecting associations
with expression. I used HapMap 3 samples [184] as a reference population of unrelated individuals
where the major axes of variation in genotypes are ancestry. Genotypes were first linkage

∗Personal communication with Sobolev et al. [162] authors.
†A wide range of thresholds for the HWE marker filter in controls between 1.00× 10−3 and 5.70× 10−7 are

reported in the literature [178]. The HWE threshold used here is from de Lange et al. [180]; since the HIRD
cohort is two orders of magnitude smaller in size, this represents a relaxed threshold, so additional vigilance for
genotyping errors downstream is required. In principle, it may be possible to select an appropriate threshold from
the empirical distribution of HWE p-values [177].
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Table 2.1: Descriptive statistics for HIRD individuals with both expression and antibody data.
Values are count and percentage for categorical variables; mean and standard deviation for continuous variables.

Platform
Total Array RNA-seq

n = 114 n = 44 n = 70
Gender
F 72 (63.2%) 27 (61.4%) 45 (64.3%)
M 42 (36.8%) 17 (38.6%) 25 (35.7%)

Age at vaccination (years)
29.2 (11.8) 32.9 (14.1) 26.8 (9.4)

Ancestry (self-reported)
Asian 14 (12.3%) 5 (11.4%) 9 (12.9%)
Black/African 9 (7.9%) 4 (9.1%) 5 (7.1%)
Caucasian 82 (71.9%) 33 (75%) 49 (70%)
Latin American 2 (1.8%) 1 (2.3%) 1 (1.4%)
Mixed 5 (4.4%) 1 (2.3%) 4 (5.7%)
Other - Arab 1 (0.9%) 0 (0%) 1 (1.4%)
White Other 1 (0.9%) 0 (0%) 1 (1.4%)

log2 day -7 HAI
4.4 (1.8) 4.2 (1.6) 4.5 (1.9)

log2 day 63 HAI
7.6 (1.8) 7.4 (2.2) 7.6 (1.5)

log2 HAI fold change
3.2 (1.9) 3.2 (2.4) 3.1 (1.6)

log2 day -7 MN
6.2 (2.8) 5.4 (2.4) 6.6 (3.0)

log2 day 63 MN
10.4 (2.0) 9.5 (2.2) 10.9 (1.6)

log2 MN fold change
4.2 (2.3) 4.1 (2.6) 4.3 (2.1)

Responder (binary definition)
FALSE 23 (20.2%) 12 (27.3%) 11 (15.7%)
TRUE 91 (79.8%) 32 (72.7%) 59 (84.3%)

TRI
-0.0 (0.9) -0.2 (1.2) 0.1 (0.7)
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Figure 2.3: Distribution of patient TRIs, stratified by expression measurement platform. Points are
colored by binary response status.



28 Transcriptomic response to Pandemrix vaccine

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

0.28

0.30

0.32

0.34

3e−04 1e−03 3e−03 1e−02
Marker missingness

M
ar

ke
r 

he
te

ro
zy

go
si

ty
 r

at
e

Ancestry (self−reported)

●

●

●

●

●

●

●

●

●

●

●

Arabic

Asian

Asian/Carribean

Black/African

Caucasian

Iranian/German

Latin american

Mixed

Other − Arab

White Other

NA
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disequilibrium (LD)-pruned (PLINK --indep-pairwise 50 5 0.2 i.e. in a sliding window of
50 kbp, with a step size of 5 variants, remove variants at each step until no pair of variants has
LD >0.2), to avoid regions with many redundant markers being overrepresented in the resulting
PCs [185, 186]. Eighteen genomic regions with especially strong and/or long-range LD that
contain many highly correlated markers were excluded, otherwise some PCs may reflect those just
regions rather than genome-wide ancestry [185, 187]. Principal component analysis (PCA) was
performed using smartpca (v8000) [185], then HIRD sample PCs were computed by projection
onto the HapMap 3 PCA eigenvectors. A projection was used instead of in-sample PCA, as
cryptic relatedness in HIRD may be reflected in the resulting PCs instead of ancestry [188]. For
non-genotyped individuals with expression data, PC values were imputed as the mean value for
all genotyped individuals with the same self-reported ancestry. The top PCs indeed separate
HIRD samples by ancestry (Fig. 2.5). Significant PCs with large eigenvalues unlikely to be due to
sampling noise were selected by Tracy-Widom test [189]. The fourth PC had an eigenvalue of 1.01
(p = 0.02), so the top four PCs were retained as continuous covariates for ancestry downstream.

2.2.6 RNA-seq data generation

Total RNA was extracted from PBMCs using the Qiagen RNeasy Mini kit, with on-column
DNase treatment. RNA integrity was checked on the Agilent Bioanalyzer and mRNA libraries
were prepared with the KAPA Stranded mRNA-Seq Kit (KK8421), which uses poly(A) selection.
To avoid confounding of timepoint and technical effects from library preparation and sequencing,
samples were pooled by library preparation plate (three pools) ensuring libraries from all
timepoints of an individual were in the same pool, then sequenced across multiple lanes as
technical replicates (HiSeq 4000, 75 bp paired-end).

RNA-seq quality metrics were assessed using FastQC∗ and Qualimap [190], then visualised
with MultiQC [191]. Sequence quality was high, as measured by mean per-base Phred scores
across sample reads (Fig. 2.6). The unimodal GC-content distribution suggested negligible levels
of non-human contamination (Fig. 2.7).

2.2.7 RNA-seq quantification and preprocessing

Reads were quantified against the Ensembl reference transcriptome (GRCh38.p15) using Salmon
[192] in quasi-mapping-based mode, which internally corrects for transcript length and GC
composition by computing an effective length for each transcript. Relative transcript abundances
were summarised to Ensembl (release 90) gene-level count estimates using tximport (scaledTPM
method, which scales Salmon transcripts per million (TPM) values up to the library size [193,
194]) to improve statistical robustness and interpretability [193]. To combine technical replicates,
as the sum of Poisson distributions remains Poisson-distributed, counts for technical replicates
were summed for each sample. The mean number of mapped read pairs per sample after summing
was 27.09 million read pairs (range 20.24–39.14 million), representing a mean mapping rate of
80.73 % (range 75.57–90.10 %). These meet sequencing depth recommendations for differential
gene expression (DGE) experiments (e.g. diminishing returns after 10 million single-end reads

∗https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 2.5: HIRD samples projected onto PC axes defined by PCA of HapMap 3 samples. The first
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Figure 2.6: FastQC per-base sequence quality (Phred scores) versus read position for RNA-seq
samples. Visualised with MultiQC [191].
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[195]) and mapping rate expectations (e.g. 70–90 % [196]).
Genes with short non-coding RNA (ncRNA) biotypes∗ were filtered out. These are generally

not polyadenylated, depleted by size selection during library preparation, and shorter than the
75 bp read length, so expression estimates for these genes can reflect misassignment of counts
from overlapping protein-coding or long ncRNA genes [197]. Globin genes, which are highly
expressed in RBCs and reticulocytes—cell types expected to be depleted in PBMC [198]—were
also filtered out. Given the proportion of removed counts at this stage was low for most samples
(Fig. 2.8), poly(A) selection and PBMC isolation were deemed to have been efficient.

Many of the genes in the reference transcriptome were not detectably expressed in PBMC
(Fig. 2.9), and many genes were expressed at counts too low for statistical analysis of DGE. Genes
were filtered to require a minimum of 0.5 counts per million (CPM) in at least 20 % of samples.
The 0.5 CPM threshold was chosen to correspond to approximately 10 counts in the smallest
library, where 10–15 counts is a rule of thumb for considering a gene to be robustly expressed
[199, 200]. Genes were further filtered to require detection (non-zero expression) in at least 95 %
of samples to lessen the impact of low-expression outliers. The change in the distributions of gene
expression among samples before and after filtering shows a substantial number of low expression
genes are removed (Fig. 2.10).

RNA-seq produces compositional data due to sequencing a fixed number of reads per library;
if one gene’s expression goes up in a library, another’s must go down. In order for expression values
to be comparable between different libraries (samples), it is important to account for composition
bias: the dependence of expression estimates on the expression properties of other genes in each
library [201]. Effective library sizes were computed as between-sample normalisation factors using
the trimmed mean of M-values (TMM) method [201, 202] from edgeR::calcNormFactors [203].
Precision weights for each (gene by sample) observation were computed with limma::voom [204]
to account for the mean-variance relationship in RNA-seq data; limma::voom also transforms
expression values to the log2 CPM scale using effective library sizes.

Finally, 15 samples were excluded for having missing HAI or MN data. After the application
of all filters, expression values were available for 21 626 genes over 208 samples (70/75 individuals
on day 0, 68/75 on day 1, and 70/75 on day 7).

2.2.8 Array data preprocessing

Single-channel Agilent 4x44K expression array data (G4112F, 60-mer oligonucleotide probes) for
173 samples from Sobolev et al. [162] were downloaded from ArrayExpress (https://www.ebi.
ac.uk/arrayexpress/experiments/E-MTAB-2313/). These arrays were originally processed in
two batches, the effect of which can be seen in the raw foreground intensities (Fig. 2.11).

VSN::normalizeVSN [205] was used for simultaneous background correction, between-array
normalisation (affine transformation, centers and scales each array to control for systematic
experimental factors), and variance-stabilisation of intensity values (generalised logarithm, similar
to log2 with better performance for small values), resulting in expression values on a log2 scale.
As systematic experimental factors might differ between batches, requiring different centering

∗miRNA, miRNA_pseudogene, miscRNA, miscRNA pseudogene, Mt rRNA, Mt tRNA, rRNA, scRNA, snlRNA,
snoRNA, snRNA, tRNA, tRNA_pseudogene. List from https://www.ensembl.org/Help/Faq?id=468

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2313/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2313/
https://www.ensembl.org/Help/Faq?id=468
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Figure 2.8: Distributions of removed short ncRNA and globin counts as a proportion of total counts
in RNA-seq samples.
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by array processing batch.
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and scaling factors, normalisation was performed per-batch, then the two batches were merged.
Probes were matched to genes using hgug4112a.db∗. Most genes were targeted by multiple

array probes; 31 208 probes were collapsed into 18 216 Ensembl genes using by selecting the probe
with the highest mean intensity for each gene (WGCNA::collapseRows(method = “MaxMean”),
recommended for probe to gene collapsing by Miller et al. [206]). While it would be optimal to
select a collapsing method to maximise the concordance between array and RNA-seq expression
values, there were no samples assayed by both platforms in the HIRD dataset. The final
normalised log2 intensity values for these 18 216 genes over 173 samples is shown in Fig. 2.12.
Finally, limma::arrayWeightsQuick [207] was used to compute per-sample quality weights used
to downweight unreliable arrays (samples) in the DGE analyses.

2.2.9 Differential gene expression (DGE)

2.2.9.1 Platform and batch effects

Combining the normalised array and RNA-seq data resulted in expression values for 13 593
genes assayed in both platforms for a total of 374 samples. PCA revealed that although samples
separate by experimental timepoint along PC3 (Fig. 2.13e), measurement platform is by far the
largest source of variation (Fig. 2.13a). Normalisation was also not able to completely remove
the batch effect within the array data (Fig. 2.13a). The large platform effect likely stems from
systematic technological differences in how each platform measures expression. RNA-seq has a
higher dynamic range, resulting less bias at low expression levels, but estimates are more sensitive
to changes in depth than array estimates are to changes in intensity [208]. Agreement between
the two platforms is poor at extremes of expression [209, 210]. The preprocessing steps for the
two platforms (Sections 2.2.7 and 2.2.8) were also vastly different.

Despite the potential shortcomings of array data detailed above, the array dataset contains
individuals with more extreme antibody response phenotypes (Fig. 2.3), and hence should not be
excluded. Given the magnitude of the platform effect, I concluded that the appropriate approach
was a two-stage approach that meta-analyses per-platform DGE effect estimates while explicitly
accounting for between-platform heterogeneity.

Regarding the batch effect within the array data, a popular adjustment method is ComBat
[211], which estimates per-gene, per-batch centering and scaling parameters, which are shrunk
towards the per-batch mean parameters over all genes using empirical Bayes to improve robustness.
ComBat was the method used by Sobolev et al. [162]. In comparisons of array batch effect
adjustment methods, ComBat performed favourably (versus five other adjustment packages)
[212] or comparably (versus fitting batch as a fixed or random effect in the linear model, which
are centering-only corrections) [213]. However, where batches are unbalanced in terms of sample
size [214] or distribution of study groups that have an impact on expression [215], ComBat can
overcorrect batch differences or bias estimates of group differences respectively. In our data,
sample size and timepoint groups are fairly balanced between the two array batches (Table 2.2).
The proportion of responders is not, but response status does not have as prominent an impact
on global expression as timepoint (Fig. 2.13). For the DGE analyses in this chapter, I chose to

∗https://bioconductor.org/packages/release/data/annotation/html/hgug4112a.db.html

https://bioconductor.org/packages/release/data/annotation/html/hgug4112a.db.html
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Figure 2.12: Distribution of per-sample expression estimates after normalisation and collapsing of
probes to genes. Colored by array processing batch.
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Figure 2.13: First four standardised PCs in the expression data, colored by array batch/RNA-seq
pool (a, c), timepoint (b, d), and binary response status (e, f). Expression of each gene was standardised
across samples within each platform before PCA.
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model batches (array batch and RNA-seq pool) as fixed effects rather than pre-adjusting with
ComBat in a separate step, ensuring the degrees of freedom (df) in the DGE model were correct.
In practice, results from the analyses were not substantially affected by the choice of whether to
use a ComBat pre-adjustment or a fixed effect.

2.2.9.2 Per-platform DGE model

As a meta-analysis was performed, DGE analyses were restricted to the 13 593 genes assayed
by both the array and RNA-seq platforms. Linear models were fit using limma [216], which is
computationally fast, performs well for sufficiently large (n ≥ 3 per group) sample sizes [217], and
internally considers the precision weights computed for RNA-seq observations in Section 2.2.7,
and the array quality weights computed for array samples in Section 2.2.8. As Sobolev et al.
[162] already found there was no global dissimilarity in array expression between day -7 and
day 0, for the DGE analyses in this chapter, array day -7 and day 0 are treated as repeated
measurements taken at a single “baseline” timepoint.

For each gene and platform, I fit a model (model 1) with expression as the response vari-
able; with an intercept, timepoint (baseline, day 1, day 7), TRI, array batch/RNA-seq pool,
sex, age, and the first 4 genotype PCs as fixed-effect predictors; and individual as a random-
effect predictor. Within-individual correlations for the random effect were estimated using
limma::duplicateCorrelation. A second model (model 2) was also fit, the only difference
being two additional predictors for the multiplicative interactions between day 1 and day 7 with
TRI. Model 1 was used for testing differences in expression between pairs of timepoints, and for
testing association between TRI and expression with timepoints pooled. Model 2 was used for
testing association between TRI and expression at specific timepoints.

Contrasts were defined, testing if linear combinations of estimated model coefficients are
different from zero. From model 1, I defined contrasts for day 1 vs. baseline, day 7 vs. baseline, day
7 vs. day 1, TRI, sex, and age. For example, to test for association between TRI and expression,
I used a contrast where the weight for the TRI coefficient was 1, with all other coefficient weights
set to 0; to test for differences between day 7 vs. day 1, I used a contrast where the weight for the
day 7 coefficient was 1, the weight for the day 1 coefficient was -1, and all other coefficient weights
were 0. From model 2, I defined contrasts for the TRI, TRI-day 1, and TRI-day 7 interaction
terms, which respectively test for association between TRI and expression at specifically at
baseline, day 1, and day 7. Corresponding coefficients and standard errors for the contrasts were
extracted from the limma models, which represent effect size in units of log2 expression fold
change per unit change in predictor value.

2.2.9.3 Choice of DGE meta-analysis method

Two popular frameworks for effect size meta-analysis are fixed-effect and random-effects [218,
219]. The fixed-effect model assumes a single true effect size θ common to all studies. Given
k studies (i = 1, . . . , k), the observed effect size in the ith study is commonly assumed to be
yi ∼ N (θ, σ2

i ), where observed variation is explained only by within-study sampling error σi. In
meta-analysis, the effects are combined with some weighting, commonly the inverse variance
(precision) 1/σ2

i .



2.2 Methods 39

Table 2.2: Distribution of HIRD samples among timepoint and responder groups in the array
batches and RNA-seq pools. Values are count and percentage for categorical variables; mean and standard
deviation for continuous variables.

Array batch/RNA-seq pool
Total Array 1 Array 2 RNA-seq 1 RNA-seq 2 RNA-seq 3

n = 374 n = 87 n = 79 n = 70 n = 69 n = 69
Day
-7 40 (10.7%) 20 (23%) 20 (25.3%) 0 (0%) 0 (0%) 0 (0%)
0 114 (30.5%) 24 (27.6%) 20 (25.3%) 24 (34.3%) 23 (33.3%) 23 (33.3%)
1 109 (29.1%) 21 (24.1%) 20 (25.3%) 22 (31.4%) 23 (33.3%) 23 (33.3%)
7 111 (29.7%) 22 (25.3%) 19 (24.1%) 24 (34.3%) 23 (33.3%) 23 (33.3%)

Responder
FALSE 80 (21.4%) 12 (13.8%) 36 (45.6%) 11 (15.7%) 9 (13%) 12 (17.4%)
TRUE 294 (78.6%) 75 (86.2%) 43 (54.4%) 59 (84.3%) 60 (87%) 57 (82.6%)

TRI
-0.1 (1.0) -0.1 (1.0) -0.4 (1.4) 0.1 (0.6) -0.0 (0.8) 0.2 (0.6)

The random-effects model assumes a distribution of true effects centered around a common
mean µ. Each of the k studies estimates its own study-specific true effect size θi. These are
distributed around µ with variance τ2 (standard deviation τ), representing an additional source
of variation: the between-study heterogeneity. Then we have yi ∼ N (θi, σ2

i ) for the first level of
variation, θi ∼ N (µ, τ2) for the second level of variation, and assuming these distributions, we have
a normal-normal multilevel model [220]. Study weights include both within- and between-study
variance 1/(σ2

i + τ2), reducing to the fixed-effect model when τ = 0.

The choice of fixed or random effects depends on whether it is tenable to assume studies
are identical enough that they all estimate a common effect∗. In the HIRD data, there are
k = 2 studies: array and RNA-seq. The between-platform differences described in Section 2.2.9.1
represent considerable sources of between-study heterogeneity. For DGE effect sizes, arrays also
suffer from ratio compression of fold change estimates due to cross-hybridisation and probe
saturation [210, 222, 223]. The assumption of τ = 0 is unrealistic, so a random-effects model is
more appropriate.

Unfortunately, there is no optimal solution for directly estimating τ in random-effects meta-
analyses with small k [224], and especially in the case of k = 2 [225]. Many estimators are available
[226], but lack of information with small k causes estimation to be imprecise, and often results in
boundary values of τ = 0 that are incompatible with the assumed positive heterogeneity [227,
228]. In such circumstances, the most sensible approach may be to incorporate prior information
about hyperparameters µ and τ in a Bayesian random-effects framework [226–229]. For this
study, I used the implementation in bayesmeta [220].

∗A common misinterpretation is that random-effects meta-analysis assumes studies themselves are sampled
from a population of studies. This is rarely appropriate since the design of new studies is influenced by existing
studies [221]. The required assumption is exchangeability of study effects, which informally states effects are neither
completely identical nor completely independent, but “similar” [221].
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2.2.9.4 Prior for between-study heterogeneity

The choice of prior for between-study heterogeneity τ is influential when k is small [229]. Gelman
[230] considers the case of k = 3, showing that a flat prior places too much weight on implausibly
large estimates of τ , and recommends a weakly informative prior that acts to regularise the
posterior distribution, constraining it away from implausible values. Since I assumed zero estimates
for τ are unrealistic, I used a weakly informative gamma prior, as recommended by Chung et al.
[227], which has zero density at τ = 0 but increases gently as τ increases (a positive constant
derivative at zero). This constrains τ to be positive, but still permits estimates close to zero if
the data support it. This is in contrast to priors used in other studies from the log-normal (e.g
[231, 232]) or inverse-gamma (e.g. [233]) families that have zero density at zero and derivatives of
zero close to zero, ruling out small values of τ no matter what the data suggest; and in contrast
to half-t family priors (e.g. [229, 230]), which have their mode at zero, and do not rule out τ = 0.

Instead of constraining the value of τ for a gene’s effect size to be a single unreliable estimate
from k = 2 data points, assuming a prior distribution recognises that other genes may be
informative of the range of plausible values for between-platform heterogeneity. To estimate the
appropriate shape and scale parameters for the gamma empirically, a frequentist random-effects
model using the restricted maximum likelihood (REML) estimator for τ (recommended for
continuous effects [226]) was fit for each gene using metafor::rma.uni [234]. Depending on
the contrast, over half of resulting per-gene τ estimates were boundary values of zero. Small
estimates of τ < 0.01 were excluded, and a gamma distribution fit to the remaining estimates
using fitdistrplus [235].

2.2.9.5 Prior for effect size

While the choice of prior on τ is influential when k is small, there is usually enough data to
estimate the effect size µ such that any reasonable non-informative prior can be used [228, 230].
bayesmeta implements both flat and normal priors for µ. Assuming that most genes are not
differentially expressed with effect sizes distributed randomly around zero, I selected a normal
prior with N(µ = 0, σ2), over a flat prior. As in the section above, to determine an appropriate
scale, a normal distribution with mean µ = 0 was fit to the distribution of effect sizes from the
per-gene frequentist models to empirically estimate σ.

Heavy-tailed Cauchy priors have been proposed for effect size distributions in DGE experiments
to avoid over-shrinkage of true large effects in the tails [236]. Since bayesmeta does not implement
a Cauchy prior, to avoid over-shrinkage, I flatten the normal prior considerably by scaling up
the standard deviation by a factor of 10: N(0, (10σ)2). This places a 95 % prior probability
that effects are less extreme than approximately 20 times the observed σ, sufficient to allow for
extreme fold-changes.

2.2.9.6 Example of priors

An example of the empirically estimated hyperparameters for the priors for the day 1 vs. baseline
contrast are shown in Fig. 2.14 (for τ) and Fig. 2.15 (for µ). For τ , the final prior used was
Gamma(shape = 1.57, scale = 0.06). This is comparable to the default recommendation from
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Chung et al. [227] of a Gamma(shape = 2, scale = λ) prior where λ is small. For µ, the final prior
used was N(0, (0.324× 10)2). The tails of the non-scaled normal fit (black) are light compared
to the Cauchy fit (red), which may lead to over-shrinkage, especially since there are many genes
with high positive fold changes for the day 1 vs. baseline effect.

2.2.9.7 Multiple testing correction

For per-platform DGE, false discovery rate (FDR) was controlled with limma::decideTests

using the Benjamini-Hochberg (BH) procedure. For the frequentist random-effects meta-analysis,
nominal per-gene p-values were converted to FDR estimates using p.adjust(method = “BH”)

in R. For the Bayesian random-effects meta-analysis, the effect sizes and standard errors from
the per-gene meta-analysis output from bayesmeta were supplied to ashr [238], which models
the distribution of effects under the assumption of unimodality. ashr applies empirical Bayes
shrinkage to improve the accuracy of effect estimation (e.g. against winner’s curse), returning
posterior effect sizes, posterior standard errors, and their significance (local false sign rate (LFSR)).
LFSR is analogous to FDR, but quantifies the probability, given the data, of calling the wrong
sign for an effect, rather than the confidence of a non-zero effect [238]. Unless otherwise stated,
FDR and LFSR were controlled at the 5 % level separately for each contrast, as control is for the
proportion of positives expected to be false positives, which is scalable to multiple contrasts.

2.2.10 Ranked gene set enrichment using blood transcription modules

The gene sets used were blood transcription modules (BTMs) from Chaussabel et al. [239]
(prefixed “DC”) and Li et al. [240] (prefixed “LI”). Modules are sets of genes with transcriptional
and functional similarities across a variety of healthy, diseased, and stimulated conditions. The 260
modules from Chaussabel et al. [239] were constructed by unsupervised clustering of 239 PBMC
transcriptomes from multiple disease datasets, then annotated by data mining of gene names in
PubMed abstracts. The 334 modules from Li et al. [240] were constructed from coexpression
analysis of approximately 30 000 blood transcriptomes, then annotated making use of Gene
Ontology (GO) terms, cell type-specific markers, pathway databases, and manual literature
searches. These datasets are particularly suitable for systems vaccinology studies, given their
focus on the blood transcriptome. Li et al. [240] modules are better annotated in general, and
were used for the majority of gene set enrichments in this chapter.

Gene set enrichment analyses were conducted using tmod::tmodCERNOtest [241], which
assesses the enrichment of small ranks within specific sets of genes compared to all genes, after
the genes are ranked by some metric—here I used effect sizes from bayesmeta. The CERNO
statistic for a gene set is:

− 2
n∑
i=1

ln ri
N
∼ χ2(2n) (2.1)

where n is the number of genes in the set, N is the number of measured genes in the experiment,
and ri ∈ 1, 2, ..., N is the rank of the ith gene in the set among all measured genes. CERNO
is relatively robust to the ranking metric [242]. FDR control for the number of gene sets
tested was performed using BH, again separately for each contrast. The χ2 test is one-sided, so
tmod::tmodCERNOtest only considers enrichment of small ranks when computing significance.
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Figure 2.14: Gamma prior for τ (blue) used for bayesmeta analyses of the day 1 versus baseline
effect, compared to the empirical distribution of per-gene frequentist metafor::rma.uni estimates
for τ . Genes with small estimates of τ < 0.01 were excluded before distribution fitting. Empirical log-normal fit
also shown (red). Distribution parameters are listed.
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Figure 2.15: Normal prior for µ (blue) used for bayesmeta analyses of the day 1 versus baseline DGE
effect, compared to the empirical distribution of per-gene frequentist metafor::rma.uni estimates
for τ . Genes with small estimates of τ < 0.01 were excluded before distribution fitting. The original non-scaled
normal fit is shown (black), as well as a Cauchy fit (red). Distribution parameters are listed. An alternative
estimate of the Normal standard deviation more robust to outliers using a quantile matching method from DESeq2
[237] is also given. In this case, it was comparable to the maximum likelihood (ML) estimate from fitdistrplus.
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As genes can be down or upregulated, separate tests were performed sorting genes in ascending
and descending order, and the more significant result was used to determine the overall direction
of effect for each gene set. As the approach is rank-based and considers all measured genes, no
filters based on the ranking metric were necessary.

The effect size of a gene set enrichment can be quantified with the area under the curve
(AUC), computed from U , the test statistic from a Mann-Whitney U test (also known as the
Wilcoxon rank-sum test):

U = n(N − n) + n(n+ 1)
2 −

n∑
i=1

ri (2.2)

This is a non-parametric test for whether genes in the set have smaller ranks than genes not
in the set on average. Then AUC = U/(n(N − n)), which takes values from 0 to 1. Significant
results from the one-sided tmod::tmodCERNOtest will always have AUC > 0.5.

2.3 Results

2.3.1 Extensive global changes in expression after vaccination

To gain an overview of how the transcriptome changes after vaccination, linear models were fit to
identify genes differentially expressed at day 1 or day 7 compared to baseline (day -7 and day 0)
in the HIRD array and RNA-seq expression data, accounting for covariates such as batch effects,
sex, age, TRI, and ancestry. At the 13 593 genes with expression measured by both platforms,
models were fit within each platform. A frequentist random-effects meta-analysis was initially
run to generate plausible values for DGE effect size and between-platform heterogeneity. These
were used to form empirical priors for a Bayesian random-effects meta-analysis, producing final
posterior estimates of effect size and standard errors.

Vaccination induced changes in a large proportion of the PBMC transcriptome; 6257/13 593
genes were differentially expressed between any pair of timepoints (LFSR < 0.05). Applying
an absolute FC > 1.5 cutoff identified 857 genes with the strongest effects. Their expression
clustered into three general patterns: upregulation from baseline to day 1, then downregulation
from day 1 to day 7 back to baseline levels; upregulation from baseline to day 1, sustained at
day 7; and downregulation from baseline to day 1, then upregulation from day 1 to day 7 back
to baseline levels (Fig. 2.16).

2.3.1.1 Innate immune response at day 1 post-vaccination

Consistent with global expression at day 1 being markedly different from expression at other
timepoints (Fig. 2.13), the highest numbers of differentially expressed genes were observed at
day 1, with 644 genes differentially expressed vs. baseline. The majority of these (580/644) were
upregulated. The gene with the highest FC increase at day 1 compared to baseline was ANKRD22
(log2 FC = 4.49), an interferon-induced gene in monocytes and DCs involved in antiviral innate
immune pathways [243]. Other key genes in the interferon signalling pathway [244] such as STAT1
(log2 FC = 2.17), STAT2 (log2 FC = 0.95), and IRF9 (log2 FC = 0.82) were also upregulated
at day 1. Rank-based gene set enrichment analysis using tmod [241] revealed that genes with
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Timepoint
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Figure 2.16: Normalised gene expression for 857 genes differentially expressed between any pair
of timepoints (lfsr < 0.05, |FC| > 1.5). Rows are genes; columns are samples. Genes were standardised
within-platform, then hierarchically-clustered by Manhattan distance. Baseline timepoints are days -7 and 0. Row
annotations show DGE between pairs of timepoints. Column annotations show sample platform and timepoint.
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the large FC increases at day 1 were enriched in modules associated with interferon, activated
DCs, monocytes, and toll-like receptors (TLRs) and inflammatory signalling (Fig. 2.17). Sobolev
et al. [162] reported only a 1.6-fold (log2 1.6 = 0.68) increase in blood monocytes from baseline
to day 1, as measured by FACS, so these changes reflect active, per-cell upregulation as well as
proliferation.

Sixty-four genes were downregulated at day 1, enriched in modules associated with T cells
and natural killer (NK) cells. The largest absolute fold change was observed for FGFBP2
(log2 FC = −0.91), which encodes Ksp37, a secretory protein unique to CD8+ T cells and NK
cells [245]. Again, the fold changes in expression were of greater magnitude than observed for the
abundance of these cell types, suggesting active downregulation Sobolev et al. [162].

As can be seen in Fig. 2.16, there was a general tendency for expression to return to baseline
levels by day 7. This was the case for 566/644 upregulated genes and 44/64 downregulated genes,
indicating the innate phase of response likely peaks in the first few days.

2.3.1.2 Adaptive immune response at day 7 post-vaccination

Fifty-nine genes were differentially expressed at day 7 vs. baseline. The genes with the highest
upregulation were genes associated with B cell differentiation and maturation: TNFRSF17
(marginal zone B and B1 cell specific protein, log2 FC = 1.75) and MZB1 (B-cell maturation
antigen, log2 FC = 1.74). Genes specific to plasma cells, including SDC1 (which encodes CD138,
required for plasma cell maturation [246]) (log2 FC = 1.37) and ELL2 (which mediates antibody
secretion [247]) (log2 FC = 0.87) were also prominently upregulated. This matches an almost
5-fold increase in plasma cell abundance at day 7 compared to baseline [162]. Strongly enriched
modules at day 7 were related to mitosis and cell proliferation, particularly in CD4+ T cells
(Fig. 2.17). Both the CD4+ T cell and plasma cell response are indications of a shift toward an
adaptive and primarily humoral immune response by day 7.

2.3.2 Expression associations with antibody response

2.3.2.1 Between-platform heterogeneity hinders detection of gene-level associa-
tions

Using only array expression data, Sobolev et al. [162] identified a set of 62 genes with day 7
expression associated with antibody response, where response was defined as a binary phenotype
based on 4-fold increases in HAI or MN titres from day -7 to day 63. Many of these genes were
related to plasma cell development and antibody production. I aimed to find genes similarly
associated with antibody response in the meta-analysis of array and RNA-seq expression data,
and assess the replication of the 58/62 genes that fell into the set of 13 593 genes measured by
both platforms.

I computed a baseline-adjusted, continuous measure of antibody response, the TRI [153]. The
TRI is comparable to the binary definition in ranking (Fig. 2.2g, Fig. 2.2h), but as a continuous
phenotype, it improves statistical efficiency to detect associations. Within just the array data,
51/58 genes were replicated (FDR < 0.05), confirming TRI and the binary response phenotype
were comparable. However, using only the RNA-seq data replicated 0/58 genes.
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In the initial frequentist random-effects meta-analysis, with a significance threshold of
FDR < 0.05, 6 genes had expression associated with TRI at baseline (Fig. 2.18f), 55 at day
7 (Fig. 2.18h), and 11 pooling samples over all timepoints (Fig. 2.18e). Of the day 7-specific
associations reported by Sobolev et al. [162] (circled in Fig. 2.18h), 15/58 replicated, all with the
same positive direction of effect (high expression with high TRI). However, almost all significant
results displayed higher effect sizes in the array compared to RNA-seq (13/15 genes). This was in
contrast to the associations identified with timepoint, where significant genes had more consistent
effects between platforms along the diagonal (Fig. 2.18b–d). The likely cause is the presence of
more extreme antibody response phenotypes (higher TRI range) in the array versus the RNA-seq
dataset (Fig. 2.3). This represents an additional source of between-platform variation not due to
technical factors, but inherent to the samples themselves.

The Bayesian meta-analysis pipeline more robustly models between-study heterogeneity due
to platform and sample-specific effects. Due to shrinkage of effects, few genes with effects closer
to the dense center of the effect distribution were called as significant, and significant genes
tended to have outlying effect sizes in both platforms (compare Fig. 2.18b–d with Fig. 2.19b–d).
No single gene was detected as significantly associated with TRI at LFSR < 0.05 for any contrast:
not at any single timepoint, nor when pooling samples across all timepoints (Fig. 2.19e–h). The
frequentist meta-analysis is likely to use poor estimates of the between-platform heterogeneity,
as there are only two data points to estimate it from. Indeed, all 15 significant genes with day 7
expression associated with TRI in the frequentist meta-analysis had unrealistic between-platform
heterogeneity estimates of exactly zero (Fig. 2.20).

2.3.2.2 Module-level associations with antibody response

Using effect sizes from the Bayesian meta-analysis, significant enrichments were detectable at the
gene set level. The strongest effects were seen at day 7, where expression of modules related to
the cell cycle, CD4+ T cells, and plasma cells were positively associated with TRI—“cell cycle (I)”
(LI.M4.1, FDR = 6.81× 10−54), “Plasma cell surface signature” (LI.S3, FDR = 1.78× 10−12),
and “cell division stimulated CD4+ T cells” (LI.M46, FDR = 5.54× 10−10) (Fig. 2.21).

Associations with TRI were also detected at baseline. A diverse set of set of modules had pos-
itive associations, including “chemokines and inflammatory molecules in myeloid cells” (LI.M86.0,
FDR = 2.25× 10−11), “platelet activation - actin binding” (LI.M196, FDR = 1.71× 10−8),
“enriched in B cells (I)” (LI.M47.0, FDR = 2.40× 10−7), “cell adhesion” (LI.M51, FDR =
1.22× 10−10), “myeloid, dendritic cell activation via NFkB (I)” (LI.M43.0, FDR = 4.68× 10−7),
and “proinflammatory dendritic cell, myeloid cell response” (LI.M86.1, FDR = 4.11× 10−7).
Monocyte modules “enriched in monocytes (II)” (LI.M11.0, FDR = 3.53× 10−4) and “Monocyte
surface signature” (LI.S4, FDR = 1.17× 10−3) were negatively association with TRI. Negative as-
sociations for these same modules were also maintained at day 1 (LI.M11.0, FDR = 1.41× 10−10;
LI.S4, FDR = 1.74× 10−6) and at day 7 (LI.M11.0, FDR = 5.54× 10−10) (Fig. 2.21).
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Figure 2.18: DGE effect sizes (log2 FC) estimated in array versus RNA-seq samples, colored by
significance in frequentist random effects meta-analysis using rma.uni at BH FDR < 0.05. Genes with
day 7 expression associated with binary responder/non-responder status in Sobolev et al. [162] are circled for that
contrast.
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Figure 2.19: DGE effect sizes (log2 FC) estimated in array versus RNA-seq samples, colored by
significance in Bayesian random effects meta-analysis using bayesmeta at ashr LFSR < 0.05. Genes
with day 7 expression associated with binary responder/non-responder status in Sobolev et al. [162] are circled for
that contrast.
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Figure 2.20: Estimates of between-platform heterogeneity τ from frequentist and Bayesian meta-
analysis, for the 58 genes with a significant association between day 7 expression and binary
responder/non-responder status in Sobolev et al. [162]. Dashed line is the identity line. Estimates from
the frequentist method cover a wide range and can be zero. For this contrast testing association between day 7
expression and TRI, 8563/13 593 of per-gene τ estimates are zero, including all 15/58 significant results (right).
Significant results are array-driven, with 13/15 having higher effects in array than RNA-seq (54/58 genes overall).
Estimates of τ from the Bayesian method are in a narrower range and constrained away from zero by the prior.
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Figure 2.21: Gene expression modules associated with antibody response (TRI). Enrichments were
performed with all timepoints pooled, and at each timepoint specifically. The top ten most significant modules for
each contrast are shown. Size of circle indicates absolute effect size (AUC). Color of circle indicates significance
(FDR < 0.05) and direction of effect (red = expression positively correlated with TRI, blue = negatively correlated).
Absence of circle indicates non-significance.
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2.4 Discussion

A meta-analysis of array and RNA-seq data revealed extensive transcriptomic response to
Pandemrix vaccination in the HIRD cohort. At day 1, there was upregulation of genes and modules
related to monocytes, interferon signalling, and the inflammatory response; and downregulation of
T cell and NK cell genes and gene modules. Concordant changes in these gene modules were also
reported by Nakaya et al. [158] at day 1 after MF59-adjuvanted seasonal TIV in young children,
but changes in these modules were not as consistent in children who received non-adjuvanted
TIV. The AS03 adjuvant in Pandemrix is thought to act by promoting chemokine secretion,
predominantly targeting monocytes and macrophages [163, 248], which concurs with the strong
upregulation of monocyte and DC modules observed at day 1 after Pandemrix. A large component
of the expression response at day 1 may reflect response to the adjuvant. Most genes differentially
expressed at day 1 returned to baseline expression by day 7. Nakaya et al. [158] saw a similar
trend comparing day 0 and day 3 for MF59-adjuvanted TIV. Unadjuvanted seasonal TIV also
causes peak transcriptomic induction at day 1 [153]. Although the timepoint resolution here is
coarse, the early innate response to Pandemrix is transient, peaking less than 7 days, and likely
less than 3 days post-vaccination. Upregulation of cell cycle, proliferating CD4+ T cell, and B
(plasma) cell genes and modules were detected at day 7. This indicates a shift to the adaptive
immune response, likely involving CD4+ T cell-supported differentiation and proliferation of
ASCs.

Both day 1 and day 7 expression module changes were concordant with changes in cell
populations seen in the HIRD FACS data. The greater magnitude of expression fold change
of individual genes compared to cell abundance fold changes suggests the influence of both
mechanisms [162]. Statistical adjustment for measured or estimated cell composition is one
possibility; I explore these methods in Chapter 3 and Chapter 4. An experimental approach
would be in vitro stimulation of PBMCs with vaccine, ruling out cell migration, but not shifts in
cell subtype composition [249].

The overall patterns of expression over time were consistent between array and RNA-seq,
with the meta-analysis identifying genes with outlying effects in both platforms. In contrast, I was
not able to replicate the 58 gene-level associations reported by Sobolev et al. [162] between day 7
expression and antibody response that were assessable in my meta-analysis. The difference was not
wholly due to response definitions, as within the array data alone, switching from binary response
status to TRI still replicated the majority of reported associations, but using either binary
response status or TRI in the RNA-seq data alone found no significant associations. Initially,
15/58 signals replicated using frequentist random-effects meta-analysis to combine per-platform
estimates. I do not consider these hits as robust, as the estimated between-platform heterogeneity
was zero for all 15 of these signals. None of these signals replicated in the Bayesian random-
effects meta-analysis, where prior information about τ could be incorporated, discouraging
unrealistic estimates of zero heterogeneity. The Bayesian meta-analysis was in general more
conservative, calling fewer differentially expressed genes compared to the frequentist analysis
for all contrasts. Most of the 58 genes also had larger effects in the array dataset than in the
RNA-seq dataset, possibly because the array data contains more extreme TRIs. At a single-gene
level, significant associations with timepoint are robustly detectable, but associations with TRI
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have effects too modest relative to the noise introduced by platform-dependent technical effects
and dataset-dependent phenotype distributions.

Expression associations with antibody response were, however, observed at the gene set level,
at modules associated with TRI as a whole. The strongest effects were observed at day 7, where
modules related to adaptive immunity (cell cycle, stimulated CD4+ cells, plasma cells) were
positively associated with TRI. These same modules were upregulated at day 7 compared to
baseline; it seems that those individuals with the greatest antibody response to vaccination are
most able to induce these modules by day 7 post-vaccination.

Module associations with TRI were also observed pre-vaccination with both positive (e.g.
chemokines, proinflammatory DCs, B cells, platelet activation) and negative (e.g. monocytes)
directions of effect, suggesting baseline immune state has influence on long-term antibody response
to Pandemrix. Some of the positive associations have been previously reported for unadjuvanted
seasonal influenza vaccines in multiple independent cohorts. The same B cell modules were
reported by Nakaya et al. [157], and similar DC, inflammatory, and platelet activation modules
were found to be predictive of antibody response in young adults [159]. The negative association
of monocyte modules with antibody response at baseline was also reported by Nakaya et al. [157].
Interestingly, I detected the same negative associations at day 1 and day 7. Monocyte modules
were one of the most upregulated modules at day 1, and although the module annotations do
not separate monocyte subsets, abundance of CD16+ inflammatory monocytes was particularly
increased at day 1 in the FACS data [162]. This lends some support to the hypothesis that
chronic baseline inflammation or excessive/prolonged post-vaccination inflammation—specifically
driven by monocytes—can be detrimental to the humoral response [157, 250, 251].

There are several caveats to consider when drawing comparisons to the systems vaccinology
literature. Most studies are of unadjuvanted multivalent seasonal vaccines; HIRD used an
adjuvanted monovalent pandemic vaccine. Most studies measure post-vaccination antibody
response around the expected peak of day 28; HIRD measured later at day 63, which may
attenuate the signal. The specific genes within modules driving associations may also differ
between studies. Nevertheless, the ability to observe module-level associations with TRI also
reported in previous studies with diverse populations, measurement platforms, influenza seasons,
and analysis pipelines, is a stark contrast to difficulty of replicating single-gene associations even
within the HIRD cohort itself. When the effect of individual genes on phenotype is expected to
be subtle, module-level analyses are not only more sensitive, but appear to be more generalisable.

The next step is to explore the utility of the identified associations for prediction. Although I
have identified highly significant associations between expression modules and antibody response,
that does not imply the ability to accurately predict response from expression [161]—that
is, the existence of molecular signatures. Some exploration can be done within HIRD using
cross-validation, or by setting aside a subset (e.g. the array data) as a test set, but having an
independent test set is especially important for prediction to guard against overfitting. Matched
expression and antibody data are rare for adjuvanted and pandemic vaccines, so an initial
effort would likely draw on published seasonal vaccine datasets (e.g. [157, 159]), with the aim of
identifying shared molecular signatures.

The fundamental question of why gene expression and antibody responses vary between
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HIRD individuals also remains. Which genes, if their expression were to be modulated, would
lead to a change in antibody response? This is a critical question in the move from identifying
correlates of protection and molecular signatures, towards targeted interventions to improve
vaccine outcomes [146]. The descriptive design of the HIRD study does not lend itself to exploring
causation between expression and antibody titres without a causal anchor. Interindividual genetic
variation could play such a role; Chapter 3 will examine the impact of common host genetic
variants on expression response in the HIRD cohort.
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Chapter 3

Genetic architecture of
transcriptomic response to
Pandemrix vaccine

The work presented in this chapter is a collaboration between the Wellcome Sanger Institute,
King’s College London, the Francis Crick Institute, and the Biomedical Research Centre at Guy’s
and St Thomas’ Hospital and King’s College London. I would like to reiterate my thanks to the
people and organisations mentioned at the beginning of Chapter 2.

3.1 Introduction

3.1.1 Host genetic factors affecting influenza vaccine response

Many human traits are heritable and complex—response to vaccination is no exception. Twin
studies have demonstrated approximately 30–90 % heritability of antibody responses to many
vaccines, including smallpox, hepatitis A and B, anthrax, pneumococcal, Haemophilus influenzae
type b (Hib), diphtheria-tetanus-pertussis (DTP), and bacillus Calmette–Guérin (BCG) [252–255].
Candidate gene studies and genome-wide association studies (GWASs) have identified multiple
genetic associations with antibody response [252, 253, 256, 257], including replicated associations
for hepatitis B vaccine in a haplotype block in the human leukocyte antigen (HLA) region
encompassing HLA-DR and BTNL2, and for measles vaccine in an intron of a receptor known to
interact with measles virus, CD46.

In contrast, Brodin et al. [255] found anti-haemagglutinin (HA) antibody responses to seasonal
influenza vaccine in 105 adult twin pairs (median age 44 yr) had no detectable heritability,
alongside a general decrease in heritability of most immune parameters with age. They posited
that the genetic contribution to response was overshadowed by environmental factors such
as previous influenza vaccination or infection in adults, whereas the estimated heritability of
the aforementioned vaccines was substantial because they are vaccines against non-circulating
pathogens, or are childhood vaccines for which heritability was assessed in young children with
shorter immune histories.

Nevertheless, a small number of candidate gene studies have identified genetic variants
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associated with antibody response to influenza vaccines [257]. Gelder et al. [258] (n = 73) identified
associations between HLA alleles in HLA-DRB1 and HLA-DQB1 with haemagglutination
inhibition (HAI) seroconversion after trivalent inactivated influenza vaccine (TIV); Moss et al.
[259] (n = 185) also found associations between HLA class II alleles (HLA-DRB1*04:01 and
HLA-DPB1*04:01) and HAI seroconversion after seasonal influenza vaccination. Poland et al.
[260] (n = 184) tested HLA alleles, and single nucleotide polymorphisms (SNPs) in coding and
regulatory regions of cytokine or cytokine receptor genes, for association with post-TIV HAI
titres specific to H1 and H3 subtypes (two of the components of the trivalent vaccine). They
reported nominally significant associations for two HLA-A alleles with H1-specific titres, six
SNP associations with H1-specific titres and ten SNP associations with H3-specific titres. Egli
et al. [261] (n = 196) identified a SNP upstream of IFNL3 (rs8099917) to be associated with
seroconversion post-TIV, and also found the SNP to be an expression quantitative trait locus
(eQTL) for IFNL3 expression in H1N1-stimulated peripheral blood mononuclear cells (PBMCs)
in a second cohort (n = 49). Lastly, Avnir et al. [262] focused on a coding variant (rs55891010) in
the part of IGHV1-69 that encodes the complementarity-determining region (CDR) of broadly
neutralising antibodies that bind influenza HA. One month after H5N1 avian influenza vaccination
(n = 85), associations were detected with usage of IGHV1-69 in the antibody repertoire, and
serum antibody binding efficiency to H5N1 HA. The associations listed above have all been found
in small cohorts and have not been validated by subsequent studies, so it remains unknown
whether robust genetic associations with antibody response to influenza vaccines exist.

3.1.2 reQTLs induced by influenza vaccination

Host genetic variation could play a causal role in influenza vaccine response by altering the
expression of genes as eQTLs. As described in Section 1.2.3 and Section 1.2.4, the effect sizes of
eQTLs can be highly context-dependent, and many eQTLs in the immune system are response
expression quantitative trait loci (reQTLs) only detectable after stimulation, not at baseline. One
can map reQTLs considering vaccination as an in vivo immune stimulation. This usually involves
measuring the transcriptome of immune cells before and after vaccination in genotyped individuals,
then testing for genotype-dependent changes in expression. As expression is a key molecular
intermediate between genotype and phenotype, a genotype-dependent change in expression after
vaccination may be a mechanism mediating genotype-dependent antibody responses.

As reviewed in Section 1.2.4, few in vivo reQTL studies have been conducted, and even fewer
studies have been conducted where the in vivo stimulation is vaccination, despite the potential
for learning about genetic regulation of vaccine-induced expression responses. To my knowledge,
there is only one such study: by Franco et al. [94] on response to seasonal inactivated TIV.
Franco et al. [94] enrolled healthy Europeans adults into discovery (n = 119 males) and validation
(n = 128 females) cohorts in two consecutive influenza seasons∗. In each cohort, peripheral blood
gene expression was measured by expression array on day 0 (baseline); and on days 1, 3, and 14
post-vaccination. Serum HAI and microneutralisation (MN) titres were measured against each of
the three vaccine components at days 0, 14, and 28. The titre response index (TRI) [153] was
computed from these titres as a single measure of antibody response adjusted for baseline titres.

∗Sex-dependence of effects was not addressed.
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Individuals were genotyped by genotyping array.
Cis-eQTL were mapped using a linear mixed model jointly over all four days, with day,

genotype, day-genotype interaction, and a random intercept for individual as predictors; and gene
expression the response variable. At 467 (non-independent) eQTL for 78 genes replicated in both
cohorts, there was both a significant day effect (indicating the gene was differentially expressed
post-vaccination) and a significant genotype effect (indicating the eQTL effect). To call reQTLs,
eQTLs were also mapped separately for each day with a linear model including only genotype
as a predictor, from which the model R2 was computed as a rough measure of the variance in
expression explained by the eQTL at each day. Franco et al. [94] then computed delta-R2: the
maximum absolute deviation of the three post-vaccination R2s from the day 0 R2. Out of the
eQTLs that replicated in both cohorts, 146 eQTLs for 34 genes ranking above the 99th percentile
of the delta-R2 distribution were defined as reQTLs. The union of the 78 and 34 genes from the
above analyses (98 genes with differential gene expression (DGE) and an eQTL; or a reQTL)
was enriched for pathways and gene sets related to antigen processing and presentation, CD8+ T
cell-mediated apoptosis, dendritic cell (DC) maturation and function, and membrane trafficking.
Lastly, integrating antibody titre data, they filtered down to 20 genes with expression correlated
to TRI at any day, with an eQTL, and with either post-vaccination differential expression or
a reQTL effect. Seven genes out of these 20 were involved in antigen transport, processing, or
presentation in antigen-presenting cells (APCs): NAPSA, C1orf85, GM2A, SNX29, FGD2, TAP2,
and DYNLT1.

Critically, Franco et al. [94] recognised that just assessing overlap of multiple filtering criteria
cannot infer the direction of causal relationships between genetic variation, expression and TRI.
They attempted a model comparison with the CIT [263] method to resolve the directionality
of association between expression and TRI, finding suggestive evidence of causal effect on TRI
mediated by expression at several eQTL. Unfortunately, they also evaluated that the power of
the CIT was only ∼60 % at their total sample size of n = 247. Nevertheless, the study is proof
of concept that integration of genotype, expression, and antibody response data in an in vivo
reQTL framework can identify genes under genetic regulation likely to be involved in vaccine
response.

3.1.3 Chapter summary

The Human Immune Response Dynamics (HIRD) cohort represents a unique opportunity for
detecting host genetic contributions to influenza vaccine response. Similar to Franco et al. [94],
expression, antibody response, and genotypes are all available for the same individuals. As
Pandemrix is against a pandemic strain that had not been in seasonal circulation for decades
at the time of cohort recruitment, responses will be less driven by individual immune history,
so power to detect genetic associations is expected to be greater. In Chapter 2, I characterised
differential expression induced by Pandemrix, as well as expression associations with antibody
titres. In this chapter—given that HIRD is too small for a direct GWAS of antibody response—I
focus on the genetic contribution to expression response. I apply the in vivo reQTL framework,
aiming to characterise the association of common genetic variants with expression across multiple
timepoints, and pinpoint genes important to Pandemrix response.
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3.2 Methods

3.2.1 Overall strategy for reQTL mapping

A plethora of approaches to mapping eQTLs with linear models exist; each approach has its own
advantages, disadvantages, and assumptions. When the task is also to define reQTL between
multiple conditions, the diversity of possible approaches further multiplies. Here I will discuss
aspects of the data and available methodologies that led to the final modelling strategy adopted
in this chapter.

3.2.1.1 Adjusting for population structure using linear mixed models

Population structure occurs when the samples in a study are not independent, but structured due
to genetic relatedness. Genetic association studies assume that the individuals in a sample are
unrelated (or at least sufficiently distantly related) [264–266]. Relatedness, and thus population
structure, occurs at different scales. Population stratification refers to systematic differences in
allele frequencies and genetic background between human populations due to demographic history.
This represents large-scale structure where individuals are related due to shared ancestry [188,
265]. At a smaller scale, sample individuals can be related due to being in the same family. The
presence of more relatedness in a sample than is assumed is the problem of cryptic relatedness
[264–266]; this can be at any scale, but more often the term refers to recent relatedness.

In the context of eQTL mapping (and genetic association studies in general), where the aim
is to assess the effect of a single genetic variant on expression, there is potential for confounding.
The issue (well-reviewed in [266, 267]) is that we fit a marginal model to estimate the effect of a
single variant xk on the phenotype y:

y = µ+ βkxk + ε (3.1)

where µ is the intercept, and ε ∼ N(0, σ2
eI) is the error term that represents environmental and

stochastic sources of variation. The variance-covariance matrix for error term is a scalar matrix,
encoding the classic regression assumptions of homoscedasticity and uncorrelated errors. A more
appropriate data generating model is:

y = µ+ βkxk +G+ ε (3.2)

where G = ∑
i 6=k βixi represents the effect of the genetic background at all other variants in the

genome. As many variants can be expected to affect a complex polygenic trait, G has some causal
effect on y. Population structure means there can be a shared cause of G and xk such as ancestry.
This opens a backdoor path xk ← ancestry→ G→ y, confounding the relationship between xk
and y. In Eq. (3.1), when one estimates the coefficients, the effects of the omitted variable G
will be attributed to xk, resulting in spurious associations and genomic inflation of test statistics
[188]. Here, G represents exactly the confounding due to genetic background, but there are other
possible confounders, such as shared environmental factors that differ systematically between
populations [268]. A popular approach to avoid confounding is to include genotype principal
components (PCs) as fixed effects in the regression [185, 269], thus blocking the backdoor path
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from xk to y. Genotype PCs represent population stratification effects like ancestry, but also act
to block confounding from genetic background and environmental effects by proxy [268].

Unfortunately, genotype PCs alone cannot account for smaller-scale population structure
[188]. An approach that can explicitly model such population structure is the linear mixed model
(LMM) [188, 267, 269], which expresses the idea that more genetically correlated individuals are
expected to be more phenotypically correlated [268]. A typical model form is:

y = µ+ βkxk + u+ ε (3.3)

where random effect u ∼ N(0, σ2
gK) has a variance-covariance matrix proportional to the genetic

correlation between individuals: the kinship matrix K. This improves on Eq. (3.2) by recognising
that the variants in G are correlated. σ2

g is often called the (genetic) variance component; the
larger it is, the more phenotypic variance is explained by genetic background [267]. Although
LMMs were originally developed in the context of animal breeding, where K is computed from
a known pedigree, it can also be computed from genome-wide SNP data [266, 269]. Unlike
pedigree-based kinships that range from zero (unrelated) to one (self or identical twin), SNP-
based relatedness values represent average correlations of alleles between individuals [270], hence
may be negative or greater than one [271]. This does not affect their usage in LMMs.

The HIRD genotype data has already been filtered such that no pair of individuals are
first-degree relatives or closer (Section 2.2.4), but cryptic relatedness may remain. The multi-
ethnicity of the cohort means there is large-scale population structure from ancestry (Fig. 2.5).
Genotype PCs were computed to represent axes of variation due to ancestry. These were included
as covariates in DGE analyses in Chapter 2 to improve efficiency by explaining some variation in
expression. For eQTL mapping in this chapter, I use both a random effect in an LMM and PC
fixed effects to correct for population structure. This may not be strictly necessary if the random
effect can correct for large-scale structure, but does not seem to impact power or type I error
rate [272], and may have some benefit at SNPs with very different allele distributions between
populations (unusually differentiated) [188].

The performance of various software implementations for kinship estimation from genome-
wide SNP data and LMMs are highly comparable; the specific choice of implementation can
usually be made on the basis of computational efficiency [269]. In this chapter, I use LMMs
implemented in LIMIX [273] with kinship matrices estimated by LDAK [274].

3.2.1.2 Multi-condition models

Since the aim of this chapter is to identify genetic variation that affects expression response
to vaccination, it may seem most direct to model the change in each individual’s expression
after vaccination as the response variable. This approach has been applied for identification of
condition-specific eQTL, typically with the response taking units of log fold change between
conditions (e.g. [275–277]). Although potentially powerful if eQTL effects are small and opposite
between conditions [276], it is analogous to the “change score” approach, which can suffer
from regression to the mean, and increased uncertainty from the variance sum law if effects
between conditions have positive covariance [171, 278]. Instead, I map eQTLs within each of three
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timepoint conditions (day -7/0 pre-vaccination baseline, day 1, and day 7), and find reQTLs
by looking for eQTLs that have different effects between conditions. As in Section 2.2.9.2, day
-7 and day 0 array measurements were treated as repeated measures of the baseline timepoint.
Unlike a test for difference implemented using a genotype-condition interaction term in a joint
regression model, homoscedasticity of errors is not assumed for all conditions [279].

Within each timepoint, the HIRD dataset includes expression measured by both array and
RNA sequencing (RNA-seq). As discussed in Section 2.2.9.3, it is difficult to directly estimate the
between-study heterogeneity when the number of studies is small, thus Bayesian meta-analysis
was preferred for combining array and RNA-seq DGE estimates. That method does not scale
to eQTL analysis, where the number of tests is large, in the order of thousands of tests per
gene, versus the handful DGE contrasts per gene performed in Chapter 2. Instead, I perform a
mega-analysis within each timepoint, first merging array and RNA-seq expression estimates into
a single matrix with ComBat [211]. For comparison purposes, eQTL analyses were also run in
the array and RNA-seq samples separately.

Defining whether an eQTL is shared between conditions can be a tricky business. Naively, after
mapping eQTLs separately in each condition, one can assess the overlap of significant associations
between conditions. This underestimates sharing due to the difficulty of distinguishing true lack
of sharing from missed discoveries as a consequence of incomplete power within each condition
[68, 280]. Condition-by-condition analysis also cannot borrow information across conditions for
mapping shared associations [280–282]. Counterintuitively, a joint multivariate analysis may be
more powerful even when associations are not shared across all conditions [283].

A variety of models have been employed for joint eQTL mapping, including the use of classical
multivariate methods such as multivariate analysis of variance (MANOVA) [80], frequentist
meta-analyses (e.g. Meta-Tissue [284], METASOFT [285]), and Bayesian models (e.g. eQtlBma
[280], MT-HESS [286], MT-eQTL [287]). Joint mapping has repeatedly been demonstrated
to be more powerful than condition-by-condition analysis, and recent joint methods are now
computationally efficient when scaling to large numbers of conditions and variants tested (e.g.
RECOV [288], mashr [281], HT-eQTL [282]). In this chapter, I apply mashr [281] for the joint
estimation of eQTL effects across my three timepoints. The method learns patterns of correlation
among multiple conditions empirically from condition-by-condition summary statistics, then
applies shrinkage to provide improved posterior effect size estimates, and computes measures of
significance per condition.

3.2.1.3 Additional expression preprocessing

There are a number of transformations often applied to expression data before eQTL mapping,
such as the rank-based inverse normal transformation (INT) (e.g. GTEx v8 [54]). INTs work by
matching sample quantiles to quantiles of the standard normal distribution, which conforms often
non-normal expression data to an approximately normal distribution, improving computation
speed in large samples [289] and reducing the impact of expression outliers. In the context of
genetic association studies, the practice of applying rank-based INT to phenotypes has been
criticised for only guaranteeing approximate normality of residuals when effect sizes are small,
and potentially inflating the type I error in linear models that include interaction terms [290].
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More recent simulations suggest that INTs have good power and type I error control across
commonly-encountered distributions of non-normal residuals [289]. Another common transform
is standardising (centering and scaling to zero mean and unit variance e.g. eQTLGen Consortium
[58]), often done so that effects across genes and studies can be comparably interpreted in units
of standard deviation expression [291]. In multi-condition datasets, data transformations are
typically applied within conditions (e.g. within each tissue individually in GTEx v8 [54]).

Simulations were performed to evaluate the effect of the aforementioned transformations on
reQTL detection between a hypothetical day 0 baseline and day 1 post-vaccination condition.
The size of a reQTL effect depends on the scale of the expression data; here I define the size
of a reQTL as the difference in eQTL slopes (betas) for the same variant-gene pair between
conditions with expression measured on the log2 scale. The boxed facets in Fig. 3.1 represent
undesirable effects of transformations on reQTL effect sizes. Rank-based INT induces false
shared eQTL effects between conditions in scenarios 4 and 5 (e.g. row “Rank-based INT” in
Fig. 3.1). In general, transformations that scale within condition are not appropriate, as different
variances within conditions contribute to the reQTL effect (e.g. “Scale within day”). Scaling
without separating conditions is also problematic, since the total variance also affects the reQTL
effect size. For example, in “Scale”, scenarios 2 and 4 have the same 1 unit increase in beta
pre-transformation (the same fold-change between conditions), but after scaling-only the beta
increases are 0.75− 0 = 0.75 and 0.8− 0.4 = 0.4 respectively—scenario 4 now looks like a reQTL
of weaker effect.

In light of these simulations, I decided that neither rank-based INT nor standardisation were
appropriate. Only the centering-only transformations (e.g. “Center”) avoided both false shared
effects and preserved relative reQTL effect sizes. The simple inclusion of an intercept term in the
eQTL model already achieves this, so no additional expression transformations were applied before
eQTL mapping. Not performing a rank-based transform does lose the advantage of reining in
outliers, but the expression data have already been preprocessed to remove low-expression outliers
in Section 2.2.7. Many other preprocessing steps done prior to this stage in the pipeline (e.g.
variance-stabilisation, ComBat batch effect correction) are also expression transformations, but I
only consider the preservation of reQTL effects defined from expression values post-adjustment
for technical effects to be important, so I did not consider those steps in my simulations.

3.2.2 Genotype phasing and imputation

Genotyping and pre-imputation processing are described in Section 2.2.3 and Section 2.2.4.
Prior to imputation, 213 277 monomorphic variants that provide no information for imputation
were removed. Variant alleles were aligned such that the reference allele matched the GRCh37
reference, and 358 indels were removed, leaving only SNPs. Imputation for the autosomes and X
chromosome was conducted using the Sanger Imputation Service∗, which involved pre-phasing
(separate estimation of haplotypes before imputation to improve imputation speed) with EAGLE2
(v2.4) [292] and imputation with PBWT (v3.1) [293] against the Haplotype Reference Consortium
(r1.1) panel [294]. Imputed SNPs were lifted-over from GRCh37 to GRCh38 coordinates using
CrossMap [295]. Poorly-imputed SNPs with imputation information score INFO < 0.4 were

∗https://www.sanger.ac.uk/tool/sanger-imputation-service/

https://www.sanger.ac.uk/tool/sanger-imputation-service/
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Figure 3.1: Simulating the effect of data transformation on reQTL effects. Expression values on the log
scale were simulated for 200 individuals (100 with each genotype) at a day 0 baseline and day 1 post-vaccination
timepoint. Gene expression is upregulated at day 1 by log2 FC = 1. Six scenarios were simulated with different
gene-variant pairs (columns) corresponding to different eQTL and/or reQTL effects between day 1 and day 0; the
size of the reQTL effect (difference in beta between day 1 and day 0) was set to 0, 0, 1, 2, 1, and 3 for the six
scenarios. Gaussian noise with mean = 0 and standard deviation = 0.1 was added. The top row is the ground
truth. In following rows, a different transformation was applied within each row: a rank-based INT (Blom offset
for fractional ranks [289, 290]), standardising (centering and scaling), centering only, or scaling only. Highlighted
pairs of scenario-transform combinations on each row represent false positives or negatives where the size of the
relative reQTL effects are no longer correct.
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removed, leaving 40 290 981 SNPs measured for the 169 genotyped individuals.

3.2.3 Estimation of kinship matrices

When testing a variant for association using LMMs, the kinship matrix used should not include
that variant to avoid loss of power from “proximal contamination” [296]. A simple way to avoid
this is to compute a leave-one-chromosome-out (LOCO) kinship matrix using all variants except
the ones on the tested variant’s chromosome [297]. I estimated kinship in the HIRD data from
common autosomal variants, using LDAK (v5.0) [274], which computes SNP-based kinship
matrices weighting SNPs by linkage disequilibrium (LD) and accounting for genotype uncertainty.
Filtered pre-imputation sample genotypes from Section 3.2.2 were pruned to MAF > 0.05. A
kinship matrix was computed for each autosome, then combined into a single genome-wide matrix
using LDAK --join-kins. To obtain a LOCO kinship matrix for each autosome, each autosome’s
kinship matrix was then subtracted from this genome-wide matrix (LDAK --sub-grm).

3.2.4 Estimation of cell type abundance from expression

PBMC samples are a mixture of immune cells, and a fixed input of RNA extracted from
that mixture is used to estimate expression, so estimates for genes that have cell type-specific
expression depend on the relative abundances of each cell type in each sample. Sobolev et al.
[162] showed these abundances shift after Pandemrix vaccination. As genotype can be assumed
to stay constant, it is valid to compare the effect size of genotype on expression between multiple
timepoints to call reQTLs, but changes in cell type abundance complicate this by modifying
both expression (i.e. cell type-specific expression) and the effect of genotype on expression (i.e.
cell type-specific eQTL effects). Immune cell abundance also varies naturally between healthy
individuals [109, 255], so it is important to model these effects not only post-vaccination, but
also at baseline.

Cell type abundance directly measured via fluorescence-activated cell sorting (FACS) was only
available for a small subset of HIRD individuals (Section 2.2.1), so I computed cell type abundance
estimates from the expression data as an alternative. In silico estimates have previously been
used as covariates for eQTL analyses in bulk samples where cell type-specific effects are expected
[71, 72, 74, 96]. As the estimates are based on the expression of multiple genes, it is not entirely
circular to use them as covariates in this way for per-gene eQTL models. I selected xCell [298],
which has been shown to outperform other deconvolution methods for cell type-specific eQTL
mapping in blood [74]. xCell computes enrichment scores based on the expression ranks of
approximately 10 000 signature genes derived from purified cell types, works for both array and
RNA-seq expression data, and implements “spillover compensation” that reduces dependency of
estimates between related cell types [298]. xCell was originally developed for tumour samples,
so many of the built-in cell types are not expected to be in PBMCs. Reviewing the literature to
find which broad classes of peripheral blood cell types are commonly expected in the PBMC
compartment [96, 299, 300], I selected 7/64 of the built-in cell types: CD4+ T cells, CD8+ T
cells, B cells, plasma cells, natural killer (NK) cells, monocytes, and DCs. Array and RNA-seq
data from Section 2.2.8 and Section 2.2.7 were processed separately, as different internal xCell
parameters are used for each platform. The large batch effect present in the array expression was
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first removed using ComBat [211]. Finally, enrichment scores were standardised across timepoints,
so that a score of zero represents the average abundance of that cell type across all timepoints.

As with actual cell type abundances, xCell enrichment scores are correlated (Fig. 3.2).
Imprecise coefficient estimates due to multicollinearity may be a problem when these scores are
included as independent variables in eQTL models∗. To select a subset of cell type scores, I
performed a principal component analysis (PCA) of the cell type scores separately in array and
RNA-seq datasets (to prevent axes reflecting platform rather than cell type), then determined the
number of PCs that exceeded the eigenvalues-greater-than-one rule of thumb [302]. In both array
and RNA-seq datasets, this number of PCs was three. The cumulative percentage of variance
explained by the top three PCs was 81.02 % and 74.58 % in the array and RNA-seq datasets
respectively. Since the PCs between the array and RNA-seq are not directly comparable, I selected
three cell types with high contributions to the top three PCs in both datasets: monocytes, NK
cells, and plasma cells (Fig. 3.3)—Sobolev et al. [162] also reported monocytes and plasma cells to
be the cell types with the highest abundance increases at days 1 and 7 respectively. Additionally,
using the actual cell type scores rather than PCs as covariates provides more interpretable
regression coefficients for those terms.

Scores were validated against FACS measurements from Sobolev et al. [162] in the subset
of ∼40 individuals that had both expression and FACS data. Depending on each FACS panel’s
gating strategy for each cell subset, the data were in units of either absolute counts or percentage
of the previously gated population. Values were normalised by rank-based INT within each
panel and cell subset (Astle et al. [303] took a similar approach for cell abundance data using a
quantile-based INT). Missing values were then imputed with MissForest [304], a random forest
imputation method suitable for high-dimensional mixed-type data where p� n. The method
establishes an initial guess for missing values using mean- or mode-imputation, then a random
forest is trained on the observed part of the data and used to predict and update the values of
the missing part. The process repeats iteratively until convergence.

Although the increases in xCell score for monocytes at day 1 and plasma cells at day 7
do reflect the increases in those cell types observed by Sobolev et al. [162], overall correlation
between xCell and FACS was poor (Fig. 3.4). Substantial discrepancy is expected, as the cell
types as defined in the xCell signatures do not directly correspond to the combinations of surface
markers used for FACS; the comparison is against the closest match. The FACS gating strategy
also meant that for some cell populations, the only available FACS measure was a proportion
of the previously gated population, whereas xCell attempts to estimate scores that represent
enrichments in the whole mixture. The accuracy of the built-in signatures may also be lower
when applied to the expression matrix for a stimulated state, where an enrichment-based method
may not be able to distinguish per-cell differential expression of signature genes from changes
in cell abundance. A custom signature matrix can be used for xCell, perhaps drawn from an
independent study with similar stimulation conditions as HIRD, such as Franco et al. [94], but
this would not solve the issue of coupled differential expression and cell abundance. Weighing

∗High correlation between predictors is not necessary nor sufficient by itself to induce multicollinearity
(predictors being linearly-related), but multiple correlation (how well predictors can be predicted as linear
combinations of other predictors) does have an inverse relationship with the standard error of coefficient estimates
[301].
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Figure 3.2: Correlation matrix of standardised xCell cell type enrichment scores in HIRD array
and RNA-seq datasets. Rows and columns are hierarchically-clustered.
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xCell cell type enrichment scores. Contribution is calculated as the squared correlation between a variable
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that are highly correlated with the PC.
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the downsides of having imperfect estimates of cell type abundance against the downsides of not
accounting for abundance, or excluding samples without FACS measurements, I chose to continue
the analysis using the xCell scores. These scores can distinguish large changes in cell abundances
between days, but may not be reliable for distinguishing small differences in abundance between
individuals within a timepoint.

3.2.5 Finding unmeasured covariates using factor analysis

Apart from cell type abundance, a myriad of unmeasured variables contribute to expression
variation. Hidden determinants of expression variation were learnt using PEER [182]. As suggested
by Stegle et al. [182], I used DESeq2::vst [237] to perform between-sample normalisation and
variance stabilisation on the RNA-seq count data∗. ComBat [211] was then applied to merge array
and RNA-seq data into a single log scale expression matrix per timepoint, treating the largest
global effects on expression—the two array batches and three RNA-seq library preparation pools
(Fig. 2.13)—as known batch effects. Given a set of known covariates (intercept, sex, four genotype
PCs from Section 2.2.5 representing ancestry, and the three xCell scores estimated above in
Section 3.2.4), PEER was used to estimate additional hidden factors that explain variation in the
expression matrix. These can be technical (e.g. sample quality/concentration, library preparation
plate/reagents, processing time, lane/flow cell) or biological (e.g. cell type composition, ancestry).
Factors are assumed to be unmeasured covariates that have global effects on a large fraction of
genes, whereas a cis-eQTL will typically only have local effects, so including factors as covariates
should not introduce dependence with the genotype term, but should explain some of the residual
variation, improving power to detect cis-eQTLs. The analysis was run per timepoint, otherwise
global changes in expression between timepoints induced by the vaccine would be recapitulated
as factors.

Correlating the estimated factors to a larger set of known covariates revealed many correlations
with xCell estimates, indicating that cell type abundance does indeed have substantial global
effects on the expression matrix (Fig. 3.5). These factors likely represent additional cell types
with abundances that have a global effect on the expression matrix, and when used as covariates
in combination with the three major cell type scores selected in Section 3.2.4, should improve
overall adjustment for cell composition. There was little correlation with known array or RNA-seq
batch effects, indicating ComBat did an adequate job of removing batch- and platform-dependent
global effects on expression prior to PEER. Note that I did not leave this adjustment for PEER
to perform, as ComBat estimates centering and scaling factors per gene and batch, whereas the
use of PEER factors represents a mean-only per-gene adjustment. Given the severity of the batch
effect in this dataset, especially between platforms, mean-only adjustment may be insufficient
[214], particularly in the context of cis-eQTL mapping where associated variants will only explain
a small fraction of expression variance.

∗The count data were taken from Section 2.2.7 before trimmed mean of M-values (TMM) normalisation and
limma::voom transformation, as PEER cannot use the weights output by those methods for between-sample
normalisation and variance stabilisation as limma can.
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(a) Monocytes.
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(b) NK cells.
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Figure 3.4: Comparison of standardised xCell scores with normalised HIRD FACS measurements,
for monocytes, NK cells, and plasma cells. The comparisons are against the most comparable measurements
available in the FACS data of Sobolev et al. [162]: CD14+ monocyte count, CD56+ NK cell count, and the
proportion of CD19+ B cells that were CD19+CD27+CD24hiCD38hi plasma cells. Missing FACS values were first
imputed with MissForest after rank-based INT transformation.
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Figure 3.5: Correlation of known variables to the first 25 PEER factors estimated from the array
and RNA-seq mega-analysis expression data at baseline. The known factors provided to PEER were sex,
four genotype PCs, and monocyte, NK cell and plasma cell xCell scores. PEER factors are not constrained to be
orthogonal like PCs, so correlations to known factors and other PEER factors are expected. The estimated factors
have zero mean, and PEER implements automatic relevance determination [182], which decreases the variance of
successive estimated factors to zero if they no longer explain additional expression variance. Although there are
extensive correlations between higher numbered factors, these factors have near-zero variance.
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3.2.6 eQTL mapping per timepoint

I mapped eQTLs within each timepoint using LIMIX [273], which implements univariate and
multivariate LMMs with one or more random effects. Imputed genotype probabilities were
converted to continuous alternate allele dosages using bcftools (1.7-1-ge07034a)∗. Variants with
sample AC < 15 of the minor allele within each timepoint were excluded, corresponding to a
5–7 % MAF depending on sample size (145 at baseline, 105 at day 1, and 107 at day 7). At these
sample sizes, false discovery rate (FDR) cannot be controlled by standard hierarchical FDR
methods without a MAF filter of approximately 5–10 % [305].

At each of 13 570 genes, at all cis-variants within within ±1 Mbp of the gene transcription
start site (TSS), I fit the following model to map eQTLs:

y = 1 + sex +
4∑
i=1

PCi +
3∑

xCell +
k∑
i=1

PEERi + βx+ u+ ε (3.4)

where the eQTL effect size is the slope of the genotype fixed effect β, the average additive
effect of the alternate allele [13]; and u ∼ N(0, σ2

gK) is a random effect with zero mean and
covariance matrix proportional to the LOCO kinship matrix for variant x. For chromosome
X variants, no LOCO matrix was available from LDAK, so the matrix for chromosome 1 was
used. Known covariates and PEER factors from Section 3.2.5 were included. PEER factors
are automatically weighted such that the variance of factors tends to zero as more factors are
estimated, hence continuing to add more and more factors as covariates will not continue to
improve eQTL detection power, and eventually the model degrees of freedom will be depleted.
To optimise the number of factors k to include†, per-timepoint eQTL mapping was performed
in chromosome 1, iteratively increasing the number of factors until including additional factors
provides no further benefit, and the number of eQTLs detected stabilises. I settled on a final
choice of k = 10 factors for baseline, 5 factors for day 1, and 5 factors for day 7 (Fig. 3.6).

3.2.7 Joint eQTL analysis across timepoints

Joint analysis was conducted with mashr [281] at 40 197 618 gene-variant pairs (mean of 2962
tests per gene) for which summary statistics from within timepoint mapping were available
in all three timepoint conditions. For n conditions, the mashr model incorporates multiple
n × n canonical and data-driven covariance matrices to represent patterns of effects across
conditions. Canonical matrices include the identity matrix (representing independent effects
between conditions), singleton matrices (effects only in one condition), a matrix of ones (equal
effects in all conditions), and other patterns of correlations. Data-driven covariance matrices
represent patterns of effect observed empirically, derived from dimension reduction of a strong
subset of tests likely to have an effect in at least one condition. I took the most significant
variants per gene per condition, which ensures strong condition-specific effects are included, then
further filtered to only nominally significant tests, resulting in a strong subset of 45962 tests used

∗https://samtools.github.io/bcftools/
†I avoid the commonly performed two-stage approach of using PEER residuals as expression phenotypes, as

the degrees of freedom for the eQTL model will be incorrect, which can have a substantial effect on estimates at
this modest sample size.

https://samtools.github.io/bcftools/
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Figure 3.6: Number of significant genes with an eQTL detected on chromosome 1 as a function
of the number of PEER factors included as covariates. FDR computed with hierarchical Bonferroni-
Benjamini-Hochberg (BH) [305] with significance threshold set at 0.05. The number of eGenes stabilises since
higher number PEER factors explain less and less variance in expression, thus having less and less influence on the
regression.

to calculate data-driven covariance matrices.
The mashr model was trained on a random subset of 200 000 tests, using the exchange-

able Z (EZ) model (assumes effects are independent of their standard errors, which per-
formed better in GTEx data [281]). The correlation of null tests between conditions—critical
to account for due to the repeated measures structure of the data—was estimated using
mashr::estimate_null_correlation, which uses tests from the random subset that have small
absolute z-scores. The fitted model was used as a prior to compute posterior effects and standard
errors for all tests through shrinkage. A condition-specific Bayesian measure of significance is
returned: local false sign rate (LFSR), which gives the probability that the declared sign of
the effect is incorrect [238]. Note that mashr is the multiple-condition extension of ashr [238],
previously used in Section 2.2.9.7 for computing posterior effects and their significance in DGE
analyses.

3.2.8 Defining shared eQTLs and reQTLs

Many of the tested variants for each gene will be in high LD. To unambiguously select a lead
eQTL variant per gene for comparison across timepoints, I selected the variant with the lowest
LFSR over all conditions. If multiple variants had that same lowest LFSR value, ties were broken
by highest imputation INFO, highest MAF, most upstream of the TSS, and finally genomic
coordinate. Ties were not frequent. Sharing was then evaluated for that gene-variant pair across
all three conditions.

Thresholding on the LFSR is not appropriate for determining sharing, as the difference
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between significant and non-significant effect estimates in two conditions is not necessarily
significant [306, 307]. Urbut et al. [281] provides a heuristic that two effects are shared by
magnitude if they have the same sign, and are also within a factor of two, but this does not
consider the posterior standard error of the estimates. Between a pair of effects in two conditions
x and y, I computed a z-statistic for the difference in effects:

z = βx − βy√
σ2
x + σ2

y − 2σxy
(3.5)

This is a common strategy for comparing regression coefficients [279, 306] and has also been
applied to call reQTLs by Kim-Hellmuth et al. [85]. Like Kim-Hellmuth et al. [85], I assume
the posterior pairwise covariance of effects σxy is zero. This is conservative if the covariance is
actually positive. A Wald test p-value for the difference can be computed, as under the null
hypothesis of zero difference, asymptotically z ∼ N (0, 1). I use nominal p < 0.05 as a heuristic
threshold to separate shared and reQTL effects, and also computed the corresponding BH FDR
per timepoint as a formal measure of significance. Note that even a nominal p < 0.05 threshold
is still more stringent than calling sharing using the LFSR = 0.05 as a threshold (e.g. [74, 91]) or
the 2-fold difference in magnitude threshold suggested by Urbut et al. [281].

Another statistic that quantifies the strength of an eQTL is the proportion of variance
explained (PVE) by the variant. This was approximated using the following formula from Shim
et al. [308] for variant X and expression Y :

PVE = β2Var(X)
Var(Y ) = β2Var(X)

β2Var(X) + σ2
ε

≈
β2
p2pq

β2
p2pq + σ2

p2Npq
(3.6)

where β is the beta from a simple linear regression of Y on X, σ2
ε is the residual error, βp is

the posterior beta from mashr, σp is its posterior standard error from mashr, N is the sample
size, p is the sample MAF, and q = 1− p. PVE was computed with the intention to allow for
comparison of effect strength between timepoints, which have different sample sizes and different
MAFs. In practice, this turns out to just be a monotonic transformation of the absolute posterior
z-statistic |βp/σp|, with more interpretable units.

3.2.9 Replication of eQTLs in a reference dataset

To validate the mega-analysis approach to eQTL mapping, I estimated the replication of significant
eQTLs in a large independent reference. Due to the lack of large sample size eQTL maps specific
to PBMC, I used the GTEx v8 whole blood dataset as my reference dataset ([54], n = 670, 51 %
eGene rate). For lead variants called as significant at a given LFSR significance threshold in the
HIRD dataset, for those variants that also exist in GTEx, I looked up their nominal p-values
in GTEx. I then used qvalue::qvalue_truncp (v2.15.0∗, implements theory from Storey et al.
[309]) to estimate the proportion of those GTEx nominal p-values that are null (π0), giving a
measure of replication π1 = 1− π0. The higher the π1, the higher the proportion of HIRD eQTLs
at this significance threshold replicating in GTEx. However, the higher the significance threshold,

∗https://github.com/StoreyLab/qvalue

https://github.com/StoreyLab/qvalue
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the fewer variants will have p-values meeting this threshold in HIRD, and thus fewer GTEx
p-values will be available for computing π1. More significant p-values in HIRD are also more
likely to come from true eQTLs in general, so the higher the significance threshold, the lower
the maximum nominal p-value from GTEx for those variants is likely to be. The π1 procedure
assumes a well-behaved p-value distribution with values over the full range [0, 1], and reliability
declines if the number of p-values is too small∗, or the maximum p-value is much smaller than 1.

The mega-analysis had comparable replication rate to RNA-seq-only analysis for shared
eQTLs at moderately stringent LFSR thresholds up to 10−5, and better replication rate for
very stringent LFSR thresholds (Fig. 3.7). The suggests the mega-analysis is not creating false
positives due to technical effects from merging the expression data, and is preferred to either of
the single-platform analyses. A caveat is this approach may be overestimating the replication
rate as it does not take the direction or magnitude of eQTL effects into account. The numbers
of reQTLs were too low to assess their replication using this method, and one might also not
expect them to replicate in a baseline dataset such as GTEx whole blood, especially for those
reQTLs significant only at post-vaccination timepoints.

3.2.10 Genotype interactions with cell type abundance

If the abundance of a particular cell type does truly modify the eQTL effect, then an interaction
term between genotype and cell type abundance is required. As the additivity assumption no
longer holds, a ceteris paribus interpretation does not make sense, as the effect of genotype
holding cell type abundance constant depends on what value of cell type abundance you choose.
One cannot adjust for modification just by including the main effect for cell type abundance;
wrongly omitting a significant interaction term between cell abundance and genotype biases the
estimation of the two main effects†. Given the modest sample size, I used a two-stage approach,
where tests for interaction are only performed at a subset of tests. If the main effect estimates
from main effect-only models (stage one) are used to filter SNPs for second stage testing, and
are also independent from the interaction effect estimates in stage two, then the type I error can
be controlled based on the number of interactions that are actually tested, rather the number of
interactions that could have been tested [68, 311]. It is unclear whether this assumption holds in
practice, as being able to detect a main effect at least implies that gene is sufficiently expressed
for eQTL mapping. Nevertheless, the two-stage approach is often used for eQTL mapping with
an interaction term [68, 71, 85, 96]. As the main purpose of my interaction analyses was scanning
for cell type modification at detected reQTLs, I chose to test for interactions only at the lead
eQTL variant for each gene with a significant main eQTL, controlling the FDR with BH—an
approach used by Peters et al. [68] and Kim-Hellmuth et al. [85].

Models with interactions between genotype and other predictors were fit using lme4qtl [312].
The model specification was identical to Eq. (3.4), except the addition of three interaction terms
between genotype and each xCell score. Significance was assessed using the likelihood ratio test

∗In https://github.com/StoreyLab/qvalue/pull/6#commitcomment-26277751 the developers suggest “you
usually need a few hundred p-values” to reliably compute π1.

†When a variable that is the function of another explanatory variable is omitted, this is known as functional
form misspecification in the field of econometrics, a special case of omitted variable bias. Also see Mikucka et al.
[310] for a review of bias caused by omitting significant interaction terms.

https://github.com/StoreyLab/qvalue/pull/6#commitcomment-26277751
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Figure 3.7: Replication rate π1 of HIRD eQTLs in GTEx whole blood eQTL reference data. Three
eQTL analyses were run in HIRD: array-only, RNA-seq-only, and a mega-analysis of the two datasets. The top
panel shows π1 replication in each analysis as a function of the significance threshold (LFSR), with the shaded
region showing the 5th–95th percentile range of 1000 bootstraps. Vertical line shows LFSR = 0.05. The middle
panel shows the number of significant HIRD eQTLs present in GTEx; this is the number of p-values available
for computing π1. The computation is more reliable when there are ∼1000 or more. The bottom panel shows the
maximum nominal GTEx p-value for those variants use to compute π1. The computation is more reliable when
the maximum is near one. Each panel is stratified into HIRD shared eQTLs and reQTLs.
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(LRT) versus the nested model with no interaction terms. Note that although PEER factors are
correlated with xCell scores (Fig. 3.5), Kim-Hellmuth et al. [74] also used this approach, claiming
that the interaction term between genotype and xCell scores should still be interpretable. I
attribute their claim to the fact that there are no interaction terms between genotype and PEER
factors, so the coefficients for the genotype-xCell score interactions still have their standard
interpretation: βx + βcxc increase in log2 expression per unit of effect allele dosage, where βx is
the main effect of genotype, βcx is the interaction effect, and c is xCell score.

3.2.11 Gene set enrichment analyses

Ranked gene set enrichment analyses with tmod::tmodCERNOtest were conducted as described in
Section 2.2.10, using blood transcription modules (BTMs) from Li et al. [240] (prefixed “LI”). Gene
set overrepresentation analyses were run with tmod::tmodHGtest [241], which implements the
hypergeometric test for enrichment in BTMs, controlling the FDR at 0.05 using the BH procedure.
Gene set overrepresentation analyses were also run with gprofiler2::gost [313], which derives
gene sets from Gene Ontology (GO), pathway databases (KEGG, Reactome, WikiPathways),
regulatory motif databases (TRANSFAC, miRTarBase), protein databases (Human Protein Atlas,
CORUM), and phenotype ontologies (HP). The default gprofiler2 g:SCS method was used to
control for multiple testing while accounting for the hierarchical structure of certain gene set
databases like the GO. In both overrepresentation analyses, the 13 570 genes assayed by both
array and RNA-seq were used as a custom background set.

3.2.12 Statistical colocalisation

Published GWAS and quantitative trait locus (QTL) summary statistics were downloaded for
statistical colocalisation with per-timepoint HIRD eQTL summary statistics. Clinical blood
count QTL maps generated by Astle et al. [303] in 173 480 European-ancestry participants were
downloaded from ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/hu

man/2017-12-12/hematological_traits/. eQTL maps in fifteen FACS-sorted immune cell
types generated by Schmiedel et al. [88] in a multi-ethnic cohort of 91 donors were downloaded from
the eQTL Catalogue ([314], release 1, January 2020, https://www.ebi.ac.uk/eqtl/). The fifteen
cell types included three naive innate immune cell types: classical monocytes (CD14hiCD16−),
non-classical monocytes (CD14−CD16+), and NK cells; four naive adaptive immune cell types: B
cells, CD4+ T cells, CD8+ T cells, and regulatory T cells (Treg); CD4+ T cells and CD8+ T cells
stimulated with anti-CD3 anti-CD28 for 4 hours; and six CD4+ memory T cell subsets: Th1,
Th1/Th17, Th17, Th2, and memory Tregs. Inflammatory bowel disease (IBD) GWAS summary
statistics generated by de Lange et al. [180] in a total of 59 957 European ancestry samples
were downloaded from https://www.ebi.ac.uk/gwas/studies/GCST004131. Datasets were
converted to GRCh38 coordinates with rtracklayer::liftOver (v1.46.0) [315] and harmonised
to a standard format, matching variants between studies by genomic position and effect allele.

Multi-trait Bayesian colocalisation was performed using HyPrColoc [316]. HyPrColoc uses
the pattern of per-variant summary statistics (betas and standard errors) from multiple traits in
a locus to partition traits into clusters, where each cluster contains traits that share a causal
variant. This can be seen as a multi-trait extension of pairwise Bayesian colocalisation methods

ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2017-12-12/hematological_traits/
ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2017-12-12/hematological_traits/
https://www.ebi.ac.uk/eqtl/
https://www.ebi.ac.uk/gwas/studies/GCST004131
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such as coloc [317]. Multi-trait colocalisation is more powerful than pairwise colocalisation for
detecting causal variants shared between more than two traits, and large numbers of traits can
be analysed simultaneously in a computationally efficient manner. The method formally assumes
that studies generating the summary statistics for each trait are independent, but performs well
even when there is complete sample overlap between traits [316]. If studies are non-independent,
it is assumed the LD structure is the same across those studies (which holds in the case of
multiple QTL maps generated from the same individuals). Each trait is assumed to have no more
than one causal variant in the locus. Finally, it is assumed the causal variants for each trait are
present in the input.

As with any Bayesian colocalisation method, the choice of priors and other algorithm
parameters is influential. HyPrColoc implements variant-level priors where the prior depends on
the number of traits a variant is causally associated with: prior.1 is the prior probability that a
variant is causal for one trait (default = 1× 10−4), and 1− prior.2 is the prior probability that
a variant is causal for an additional trait, given it is causal for one trait (default = 0.98). The
prior for a variant being causal for a third trait given it is causal for two traits is 1− (prior.2)2,
and so on. In the two trait case, the setup is identical to coloc [317]. prior.2 tends to be more
influential than prior.1, as it controls the probability of association with more and more traits.

The posterior probability of colocalisation for a cluster of traits is the product of regional
association and alignment probabilities. The regional association probability is the probability
there is a shared association region within the locus for all the traits in the cluster, containing one
or more causal variants. The alignment probability is the probability that regional association
is due to a single causal variant, rather than one or more variants in strong LD. A branch and
bound algorithm is run, starting with all traits in one cluster, then recursively partitioning
traits into subsets, assessing regional association and alignment probabilities for subsets at each
iteration. The end result is clusters of traits sharing a causal variant, with each cluster having
a distinct causal variant. Only clusters with more than one trait, and regional association and
alignment probabilities above reg.thresh (default = 0.5) and align.thresh (default = 0.5) are
reported.

In sensitivity analyses using the sensitivity.plot function, I fixed the less influential
prior.1 at the default of 1× 10−4, then iterated over combinations of four choices of prior.2
(0.98, 0.99, 0.995, 0.999), five choices of reg.thresh (0.5, 0.6, 0.7, 0.8, 0.9), and five choices
of align.thresh (0.5, 0.6, 0.7, 0.8, 0.9). Each range starts at the default value and becomes
more stringent, requiring stronger and stronger evidence for clusters of colocalised traits to be
identified.

3.3 Results

3.3.1 Mapping reQTLs in the HIRD cohort

To characterise the effect of common host genetic variation on expression response to Pandemrix, I
mapped cis-eQTLs for each gene (±1 Mbp of the TSS) within each timepoint condition (baseline,
day 1, and day 7), then conducted joint analysis of all three timepoints with mashr [281] to
obtain per-timepoint posterior effect sizes (betas), posterior standard errors, and measures of
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significance (the LFSR). At LFSR < 0.05, 6887/13 570 genes (50.8 %) were eGenes (genes with a
significant eQTL) in at least one timepoint. The most significant tested variant over all timepoints
was selected as the lead variant for each gene, then reQTLs were defined by comparing the effect
size of this lead variant between each pair of timepoints. This guards against differences in effect
size from differential tagging efficiency (of an assumed single causal variant), a potential issue
if different variants are compared across timepoints. Fig. 3.8 shows patterns of sharing over
timepoints for the lead variant for each of the 13 570 genes, illustrating the difference between
calling reQTLs using a significance threshold and a difference in betas method. For example,
there were 85 eQTL-eGene pairs significant only at day 1 post-vaccination (LFSR < 0.05); of
these, only 40/85 were called as reQTLs by the difference in betas method. The difference in
betas method is more strict because calling by significance alone would call a reQTL for an eQTL
with LFSR = 0.049 at baseline and LFSR = 0.051 at day 1, even if the effect sizes are similar.
Shared eQTLs were well-replicated in GTEx whole blood (Fig. 3.7).

The largest number of eGenes was detected at baseline, reflecting the larger sample size
compared to other timepoints. Most eQTLs were shared across timepoints; these were also
the strongest eQTLs in terms of both maximum absolute beta and PVE across timepoints,
highlighting the power advantage for mapping shared effects granted by joint analysis. Based on
difference in effect size between any pair of timepoints (nominal p < 0.05), 1154/6887 (16.8 %)
eQTLs were classified as reQTLs. Of these, 690/1154 were reQTLs between both day 1 vs.
baseline and day 7 vs. baseline, and only 23/1154 were unique to the day 7 vs. day 1 comparison,
indicating most reQTL effects were differences between pre- and post-vaccination (Fig. 3.9).

3.3.2 Characterising reQTLs post-vaccination

To characterise the eGenes associated with post-vaccination reQTLs, I ranked eGenes by the
increase in PVE for their associated reQTLs from baseline to day 1 and baseline to day 7,
then performed ranked gene set enrichments with tmod::tmodCERNOtest [241]. The same four
modules were significant at both post-vaccination timepoints: “immune activation - generic cluster”
(LI.M37.0, day 1 FDR = 1.28× 10−6, day 7 FDR = 3.39× 10−6), “enriched in monocytes (II)”
(LI.M11.0, day 1 FDR = 4.69× 10−3, day 7 FDR = 1.88× 10−2), “cytoskeleton/actin (SRF
transcription targets)” (LI.M145.0, day 1 FDR = 2.07× 10−2, day 7 FDR = 2.04× 10−2), and
“MHC-TLR7-TLR8 cluster” (LI.M146, day 1 FDR = 2.07× 10−2, day 7 FDR = 2.04× 10−2).
These enrichments are weak, but consistent with immune activation driving post-vaccination
reQTLs. Given that TLR7 and TLR8 are primarily expressed in monocytes, macrophages, and
DCs [318], and SRF is a regulator of the cytoskeleton in macrophages [319], there is suggestive
evidence reQTLs may be enriched in genes specific to these phagocytotic APCs.

Changes in PVE do not capture changes in allelic direction. I classified post-vaccination
reQTLs into one of three effect types: magnified, where the beta increases after vaccination
but remains the same sign; dampened, where the beta decreases after vaccination but remains
the same sign; and opposite, where the allelic direction changes after vaccination. As LFSR
quantifies uncertainty in the sign of the effect, I did not make this classification for reQTLs
that were not significant both at baseline and post-vaccination—the effect type for these are
unclear. The classifications are shown in Fig. 3.10, plotting all 6887 shared or reQTLs by their
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Figure 3.8: Summary of HIRD eQTL mapping from mega-analysis of array and RNA-seq expression
data, binned by patterns of lead variant significance over the three timepoints. The most significant
variant for each gene over all timepoints was chosen as the lead variant. Significant eQTLs (LFSR < 0.05) were
found at 6887/13 570 eGenes. These were classified as reQTLs if there was a significant difference in beta (nominal
p < 0.05) between any pair of timepoints, given that the eQTL was significant in at least one of those two
timepoints. For variants in each bin, counts of shared and reQTLs, and distributions of maximum beta and PVE
across timepoints are shown.
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Figure 3.9: eGenes where the lead eQTL was a reQTL between a pair of timepoints. reQTLs were
observed for 1154 unique eGenes, defined by a significant difference in beta between timepoints (nominal p < 0.05).

distance relative to the eGene TSS. Shared eQTLs have difference in beta z-statistics close to
zero, and are concentrated close to the TSS as expected. reQTLs have a distribution of mostly
negative z-statistics clearly separated from the shared eQTLs at both day 1 and 7, and these are
mostly unclear or opposite rather than dampened effect types. Many of these unclear effects may
actually be dampening, but as the sample size is greatest at baseline, dampening effects are hard
to distinguish from drops in power at post-vaccination timepoints, whereas an opposite effect
significant in both timepoints is unambiguous.

Fig. 3.10 also shows that reQTLs tended to be distributed evenly across the entire cis window,
raising the question or whether they are enriched in false positives. A nominal p < 0.05 difference
in betas threshold—although stricter than many other methods (see Section 3.2.8)—may still be
too lax for calling reQTLs, so I applied a stronger BH FDR = 0.2 threshold. At this threshold, the
only remaining reQTL was at day 1 was for ADCY3 (nominal p = 8.68× 10−6, FDR = 0.12)—
the next smallest FDR value was 0.65. At day 7, 676 significant reQTLs had FDR < 0.2, of
which 221 were opposite effects. Performing gene set overrepresentation analysis on the set of
221 eGenes to identify a shared biological signature was relatively uninformative, and revealed
only one enrichment for genes PRKACB, PRKACA, SAR1B, and APOE in “Plasma lipoprotein
assembly” (Reactome pathway identifer R-HSA-8963898, set size = 11, adj. p = 0.01). Since
Fairfax et al. [59] found cases of opposite reQTL effects between B cells and monocytes, and
B plasma cells but not monocytes were increased in abundance at HIRD day 7 [162], I also
performed gene set overrepresentation analysis using BTMs to detect if eGenes related to B cells
were enriched at day 7. No significant enrichments were identified.
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Figure 3.10: z-statistic for difference in beta post-vaccination versus baseline for shared and reQTLs,
against distance from the eGene TSS. For each plot, all eQTLs significant in either timepoint are shown.
Shared eQTLs can only have the shared effect type. An unclear effect type indicates the eQTL in question is not
significant in both timepoints. Allelic direction of effect is aligned so that the beta at baseline is positive.
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3.3.3 Exploring possible mechanisms generating reQTLs

3.3.3.1 Differential expression of genes with reQTLs

As gene set analyses based on the effect sizes of reQTLs at different timepoints had been largely
uninformative, I considered whether reQTLs could be characterised by shared mechanisms. One
mechanism that could generate reQTLs is differential expression, where an eQTL is not detected
at baseline because the eGene is not expressed, and vaccine-stimulated upregulation reveals the
effect post-vaccination.

Fig. 3.10 shows whether each eGene was up or downregulated at the timepoint based on the
DGE analyses in Chapter 2. Visually, a large number of reQTLs occur without corresponding
differential expression. Statistically, compared to genes without reQTLs, genes with reQTLs were
less likely be differentially expressed at day 1 post-vaccination (26.5 % for genes with reQTLs,
42.3 % for genes without reQTLs, Fisher’s test p < 2.20× 10−16). This was also the case when
restricting the scope to only eGenes (26.5 % for genes with reQTLs, 47.9 % for genes with shared
eQTLs, Fisher’s test p < 2.20× 10−16). At day 7, no significant difference was observed comparing
genes with and without a reQTL (2.2 % for genes with reQTLs, 1.4 % for genes without reQTLs,
Fisher’s test p = 0.05), but compared to genes with shared eQTLs, genes with reQTLs were
more likely to be upregulated (2.2 % for genes with reQTL, 1.1 % for genes with shared eQTLs,
Fisher’s test p = 0.01). Twenty-two genes with both day 7 reQTLs and upregulated expression
were strongly enriched within gene sets related to the cell cycle, such as “mitotic cell cycle” (GO
biological process term GO:0000278, term size = 914, intersection size = 12, gprofiler2::gost
[313] adj. p = 1.42× 10−4), “cell cycle (I)” (LI.M4.1, module size = 137, intersection size =
12, tmodHGtest [241] FDR = 1.41× 10−16), and “mitotic cell cycle in stimulated CD4 T cells”
(LI.M4.5, module size = 33, intersection size = 3, tmodHGtest FDR = 1.35× 10−3). However,
these 22 genes previously appeared in Fig. 3.10 as having reQTL with decreased or opposite
effect at day 7 versus baseline, making it implausible that the generating mechanism is increased
detection power due to upregulation. The enrichment for cell cycle is likely driven by the DGE
signal alone, especially as similar cell cycle gene modules were detected to be strongly upregulated
at day 7 in Section 2.3.1.2.

The presence of reQTLs without DGE is exemplified by the strongest reQTL at each day.
The only significant day 1 reQTL at difference in betas FDR < 0.2 was for ADCY3 (Fig. 3.11).
Computing the PVEs, this reQTL explained 1.9 % of ADCY3 expression variation at baseline,
increasing to 14.1 % at day 1, yet ADCY3 was not differentially expressed from baseline to day
1 (log2 FC = 0.10, LFSR = 0.26). The strongest day 7 reQTL was at SH2D4A (difference in
betas FDR = 0.02, Fig. 3.12). Here, the reQTL variant explained similar amounts of expression
variation at baseline (PVE = 8.2 %) and day 7 (PVE = 9.0 %), with opposite directions of effect.
Again, there was no differential expression. There is strong evidence that many post-vaccination
reQTLs are generated by mechanisms unrelated to DGE.

3.3.3.2 Genotype by cell type abundance interaction effects

The presence of cell type-specific eQTL effects combined with changes in cell abundance between
timepoints was considered as an alternate explanation generating reQTLs. Even if an eGene is
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Figure 3.11: Expression and lead eQTL of ADCY3 over study timepoints. Normalised array (top-left)
and RNA-seq (top-right) expression before batch effect correction with ComBat and eQTL mapping. Bottom:
eQTL effects at each timepoint condition in the mega-analysis of array and RNA-seq data.

not differentially expressed on average in bulk expression data, the composition of cell types
that are the source of that gene’s transcripts can change. xCell [298] enrichment scores were
used to estimate abundance of seven PBMC cell types from the expression data. After pruning
highly correlated cell types to avoid multicollinearity, standardised scores for monocytes, NK
cells, and plasma cells were tested for interaction with genotype. Within each timepoint, full
eQTL models including genotype main effect, the three cell type abundance main effects, and
three cell type-genotype interaction terms, were fit using lme4qtl [312], then compared to a
nested model excluding the three interaction terms with a LRT. Significant cell type interactions
were detected at 16/1154 reQTL-gene pairs in at least one timepoint (BH FDR < 0.05). Fifteen
were significant in only one timepoint: baseline (SLAMF8, CSE1L, MAST1, DLGAP1 ), day 1
(ZNF519, LPAR1, ADCY3, NAA20, EPB41L5 ), or day 7 (APOL6, ADAR, ADAM17, UHRF2,
MST1, CUL1 ).

For ADCY3 at day 1 (full vs. nested FDR = 9.54× 10−5), although the genotype effect was
0.26 (standard error = 0.03) in the nested model; the estimate in the full model was −0.01 (0.07),
with the three cell type-genotype interaction term estimates being 0.21 (0.05) for monocytes,
−0.01 (0.04) for NK cells, and 0.02 (0.07) for plasma cells. The small magnitude of the genotype
main effect in the full model compared to the nested model suggests the eQTL effect is driven
largely by the monocyte score (or a cell type that is highly correlated with monocyte score in
Fig. 3.2). In the case where the monocyte score is zero (representing an average abundance
across samples, as scores were standardised), the effect of increasing genotype dosage on ADCY3



3.3 Results 83

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

17.94th 17.62th 18.64th 18.08th

4.5

5.0

Day −7 Day 0 Day 1 Day 7

E
xp

re
ss

io
n 

(n
or

m
al

is
ed

 lo
g2

 in
te

ns
ity

)

batch

●

●

1

2

Array expression (percent ranks shown):

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

10.13th 10.71th 10.01th

−4

−2

0

2

Day 0 Day 1 Day 7

E
xp

re
ss

io
n 

(n
or

m
al

is
ed

 lo
g2

C
P

M
)

batch

●

●

●

DN500165J

DN500166K

DN500167L

RNAseq expression (percent ranks shown):

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●●

●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

AC/AN = 51.00/290 = 0.1759

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

AC/AN = 39.00/210 = 0.1857

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

AC/AN = 38.00/214 = 0.1776

Baseline (day −7 and day 0) Day 1 Day 7

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

Genotype (dosage of A allele)

E
xp

re
ss

io
n 

(P
E

E
R

 r
es

id
ua

ls
)

dataset

●

●

Array

RNA−seq

eGene = ENSG00000104611    eSNP = rs7841346_SNP_chr8_20170963_C_A

Figure 3.12: Expression and lead eQTL of SH2D4A over study timepoints. Normalised array (top-left)
and RNA-seq (top-right) expression before batch effect correction with ComBat. Bottom: eQTL effects at each
timepoint condition in the mega-analysis of array and RNA-seq data.

expression is minimal. Fig. 3.13 and 3.14 illustrate this effect. Monocyte abundance has no effect
on expression at baseline, increases after vaccination, and modifies the effect of genotype on
expression at day 1. It is feasible that the mechanism generating reQTLs at the remainder of
these genes also involve cell type-specific eQTL effects, but unlike at ADCY3, I have not yet
examined which of the three cell abundance scores have the greatest contributions.

3.3.3.3 Colocalisation with external QTL datasets at the ADCY3 locus

The day 1 ADCY3 reQTL is of particular interest, as reQTLs were also found for ADCY3 in
blood approximately 1 day after stimulation with TIV [94], rhinovirus [83], and Mycobacterium
leprae [92]. The locus containing ADCY3 has also been implicated in disease risk for immune-
mediated inflammatory diseases (IMIDs) such as IBD [180], and ADCY3 expression in immune
cells in gut mucosa has been suggested to contribute to Crohn’s disease (CD) risk (a subtype
of IBD) [320]. Aside from monocytes, ADCY3 is expressed in a wide range of immune cells:
CD4+ T cells, CD8+ T cells, B cells, and NK cells (Fig. 3.15). Identifying cell type-dependent
eQTLs through genotype-cell type abundance interaction terms cannot distinguish between cell
types with highly correlated abundances [74]; the similar contributions to xCell score PC1 by
monocyte, CD4+ T cell, and CD8+ T cell scores indicates cell types with ADCY3 expression are
indeed correlated in HIRD (Fig. 3.3). Given the ADCY3 locus is associated with response to a
wide range of immune stimuli, and also an IMID, I conducted colocalisation analysis to test if
shared causal variants may be driving these associations, and to determine which among the
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Figure 3.13: Effect of estimated monocyte abundance on ADCY3 expression at baseline, stratified
by genotype at a day 1 ADCY3 reQTL.
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Figure 3.14: Effect of estimated monocyte abundance on ADCY3 expression at day 1, stratified by
genotype at a day 1 ADCY3 reQTL.
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correlated cell types expressing ADCY3 are mostly likely responsible.

In a ±500 Mbp window around the lead reQTL variant rs916485, I performed Bayesian
multi-trait colocalisation (HyPrColoc [316]) of the three per-timepoint ADCY3 eQTL summary
statistics with external summary statistics: ADCY3 eQTL in 15 sorted immune cell populations
from Schmiedel et al. [88], monocyte count QTL from Astle et al. [303], and IBD GWAS from
de Lange et al. [180]. There were 1054 variants present in all 20 sets of summary statistics.

HyPrColoc identifies clusters of traits that colocalise at different causal variants in the locus.
As Bayesian colocalisation can be sensitive to the choice of priors, I performed a sensitivity analysis
iterating over configurations of priors and other algorithm parameters, ranging from default to
more stringent parameter values. Two stable clusters were identified across 100 configurations of
parameters (Fig. 3.16). A set of three traits—ADCY3 expression at HIRD day 1, and in naive
classical and non-classical monocytes—clustered in ∼65 % of tested configurations. A set of nine
traits—IBD, and expression in eight naive and memory CD4+ T cell subsets—clustered in ∼90 %
of tested configurations. The remaining traits did not robustly cluster with any other traits over
the tested configurations, except for the rare inclusion of HIRD baseline ADCY3 expression
into the larger cluster for less stringent configurations. The value of prior.2 (the probability
that a variant associated with at least one trait is not associated with any additional traits)
was subsequently set to 0.99 (default = 0.98) to increase stringency, preventing this inclusion
of baseline HIRD expression into the larger cluster. The values of other priors and algorithm
parameters were left at their defaults, producing the final clustering shown in Fig. 3.17.

Under the final configuration, the posterior probability that all traits in the cluster share
a causal variant was 0.94 for the smaller cluster (HIRD day 1 and monocyte expression), and
0.98 for the larger cluster (CD4+ T cell expression and IBD). Distinct candidate causal variants
were proposed for each cluster: for the smaller cluster, rs7567997, an intronic variant 45 kbp
downstream of the canonical ADCY3 TSS; and for the larger cluster, rs713586, a variant 15 kbp
upstream of the TSS. In both cases, the variant explained all of the posterior probability for the
cluster, but as the analysis was restricted to the 1054 variants present in all datasets, there is
ample chance the true causal variants were not included. When it comes to fine mapping, it would
be more appropriate to perform it using the dataset with the densest genotyping in each cluster.
Nevertheless, the two main clusters being distinct from one another, and from non-colocalising
traits across many configurations, still supports the existence of distinct causal variants, even if
they may be unobserved. For HIRD day 1 expression of ADCY3, the more relevant cell type
appears to be monocytes, not a correlated cell type like CD4+ T cells—and vice versa for IBD.
The clustering was robust despite the data containing no stimulated monocyte subsets. This
eQTL effect is readily observable at baseline, and appears to be more significant in naive classical
than non-classical monocytes in the Schmiedel et al. [88] data (Fig. 3.17). No colocalisation with
blood monocyte count was observed, so the reQTL does not appear to affect monocyte abundance
in general. I believe a variant that affects ability to increase monocyte counts post-vaccination
can also be ruled out, as in that case the effect of genotype on expression is entirely mediated
through the effect of genotype on monocyte abundance, so having cell abundance scores as
covariates in the regression should eliminate that effect. Thus I hypothesise that a plausible
mechanism generating the day 1 reQTL signal in HIRD is an increase in abundance of (classical)
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Figure 3.15: Expression of ADCY3 in sorted immune cell subsets. Figure from Schmiedel et al. [88],
DICE (database of immune cell expression, expression quantitative trait loci, and epigenomics), https://dice-d
atabase.org/genes/ADCY3, accessed Nov 2020.

https://dice-database.org/genes/ADCY3
https://dice-database.org/genes/ADCY3
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monocytes at day 1 post-vaccination, increasing the proportion of ADCY3 transcripts in the
bulk data originating from monocytes, thus making an eQTL specific to monocytes—not just
stimulated monocytes—more readily detectable. This is the scenario where monocyte abundance
modifies the effect of genotype on expression.
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Figure 3.16: Sensitivity analysis for multi-trait colocalisation at the ADCY3 locus. Colocalisation
performed using HyPrColoc [316] in a ±500 kbp window around the lead variant for the day 1 ADCY3 reQTL in
HIRD, for trait datasets described in Section 3.2.12. Heatmap shows the proportion of configurations in which two
traits colocalise in the same cluster over 100 configurations of algorithm parameters reg.thresh, align.thresh,
and prior.2 (range of values listed in Section 3.2.12). prior.1 set at 1× 10−4 (default). Rows and columns
hierarchically-clustered.
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Figure 3.17: Multi-trait colocalisation at the ADCY3 locus. Colocalisation performed using HyPrColoc
[316] in a ±500 kbp window around the lead variant for the day 1 ADCY3 reQTL in HIRD (vertical grey line).
Traits are monocyte cell count (Astle et al. [303]), ADCY3 expression in sorted immune cell subsets (Schmiedel
et al. [88]), ADCY3 expression at HIRD timepoints, and IBD (de Lange et al. [180]). Locus plots show summary
statistics for 1054 variants present in all datasets. Traits in red and green represent two distinct clusters each
hypothesised to be driven by a shared causal variant (vertical red and green lines). Non-colocalising traits are
shown in black. Horizontal dashed lines show nominal p = 0.05. Default values for priors and algorithm parameters
used, except prior.2 = 0.99.
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3.4 Discussion

Just as Pandemrix vaccination was found to induce extensive changes in the transcriptome in
Chapter 2, it also induces changes in the regulatory architecture of gene expression. In a mega-
analysis of array and RNA-seq datasets, cis-eQTL were detected for 50.8 % (6887/13 570) of genes
in at least one timepoint, with the majority replicating in the much larger GTEx whole blood
dataset. This is a substantial eGene rate given the modest per-timepoint sample size in HIRD,
reflecting the gain in effective sample size from joint mapping over multiple conditions. Defining
reQTLs by a significant difference in beta of the same eQTL between two timepoints, 1154/6887
(16.8 %) of lead eQTLs were classified as reQTLs. This is comparable to estimates of a 3–18 %
reQTL rate between monocytes in different stimulation conditions by Kim-Hellmuth et al. [85],
who also used a beta comparison method. The method is relatively stringent for calling reQTLs,
avoiding both threshold effects where significant and non-significant eQTLs may have very similar
betas, and discovery power biases caused by sample size differences between conditions. Indeed,
had reQTLs been called by significance alone, 1427 reQTLs would have been detected with
effects specific to baseline, the timepoint with the largest sample size in HIRD. There is growing
consensus in the literature that most eQTLs are shared between conditions such as tissue and
cell-type [74, 281, 321, 322], and that high estimates of >50 % condition-specificity based on
significance thresholds (e.g. [276]) are overestimated. A counter-argument is that many studies
overestimate sharing by calling condition-specific effects in LD as shared [322]. Here I compared
the same gene-tag SNP pair across timepoints, but distinct causal, condition-specific variants
may be tagged in such a way that the effect size of the tag SNP ends up similar—multi-trait
colocalisation would be required to truly confirm a shared eQTL.

Gene set enrichment analyses to identify shared biological processes among target genes for
reQTLs were generally uninformative. Genes targeted by reQTLs that explained more variation
in expression post-vaccination were enriched for immune activation, with weaker enrichments
related to APCs. This misses the full picture, as many of the strongest reQTLs were those with
opposite sign effects at baseline and post-vaccination, but little change in PVE. Prevalence of
opposite sign effects between pairs of conditions has been previously described in multi-tissue
studies: in Fu et al. [76], the proportion of opposite sign effects among all reQTLs between five
tissues was 4.4 %. In HIRD, I found an unexpectedly high proportion: 39/819 (4.8 %) for day
1 reQTLs, and 211/1002 (21.1 %) for day 7 reQTLs (Fig. 3.10). Given the global change in
expression versus baseline was larger at day 1 than at day 7 (as described in Chapter 2), the
larger number of strong reQTLs at day 7 was also unexpected. The genes with these opposite
sign effects were not significantly enriched in any of the gene sets or BTMs I tested.

Post-vaccination DGE was considered as a mechanism that might generate reQTLs. As in
Kim-Hellmuth et al. [85] and Davenport et al. [96], the overlap between differentially expressed
genes and genes with reQTLs in HIRD was poor. Only at day 7 were genes with reQTLs more
likely to be differentially expressed than genes without reQTLs—specifically after excluding genes
without an eQTL from the analysis. The genes with both day 7 reQTLs and day 7 upregulation
were enriched in cell cycle GO terms, but it is unclear how this may lead to generation of opposite
sign effects, and the enrichment may largely have been driven by the DGE signal rather than the
reQTL one. As described in Section 3.1.2, to define genes important to TIV response, Franco
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et al. [94] made heavy use of the overlap of genes with DGE and reQTLs, followed by gene set
enrichment. Unfortunately, their filtering before enrichment selected genes with either DGE or
reQTL, making it difficult to assess which criteria contributed more to the significant enrichments
they observed in the antigen presentation pathway. As noted by Davenport et al. [96] and Cuomo
et al. [323], it may be that DGE and reQTLs are generated by different mechanisms, and focusing
on the overlap is an unnecessarily narrow view.

An unappealing thought is that opposite sign effects are enriched in false positives, especially
as they seem to show no positional enrichment near the TSS. While it is known that stimulation-
specific reQTLs are more distal than baseline eQTLs [79], the HIRD reQTLs are evenly spread
across the cis window. Some reQTLs may be statistical artifacts of the shrinkage of effects
by mashr. Small and opposite effects generated by noise may be frequent enough for mashr to
consider them a “pattern” of effects. This might explain the clear separation of the distribution
of z-statistics for difference in beta between reQTLs and shared eQTLs. Conversely, it may
be that small and opposite effects are more prevalent than expected, and combining mashr

and a difference in betas test is the best framework for detecting them. To confirm either way,
it may be necessary to repeat the reQTL calling without the influence of mashr shrinkage
in a different modelling framework, such as one using a timepoint-genotype interaction term
[96]. A complementary approach for validating these opposite sign reQTLs using the existing
RNA-seq data might be within-individual allele-specific expression (ASE) (e.g. RASQUAL [324],
PLASMA [325]). One would expect a true opposite sign reQTL effect to be recapitulated as
opposite directions of allelic expression imbalance between timepoints. ASE may also provide
more interpretable effect sizes than eQTL betas [326], for purposes such as clustering effect sizes
to determine patterns of effects across timepoints [323].

At least one reQTL signal was plausibly not a false positive. The strongest reQTL detected
at day 1 was for ADCY3, a membrane-bound enzyme that catalyses the conversion of ATP to
the second messenger cAMP [327]. ADCY3 is upregulated after the differentiation of monocytes—
induced by beta-glucan—into macrophages in a state of trained immunity: a state in which
they are more responsive to future immune stimuli [328]. GWASs have implicated the ADCY3
locus in diseases such as obesity [327] and IBD [180]. ADCY3 has also been identified as a
post-stimulation reQTL in other studies involving stimulated blood immune cells: in PBMCs
24 h after in vitro infection with rhinovirus [83], in vivo in whole blood at day 1 after vaccination
with seasonal TIV [94], and in whole blood after in vitro stimulation with M. leprae antigen for
26–32 h [92]. Given the diversity of stimulations and tissue types, the effect is likely a consequence
of general immune activation, rather than a Pandemrix-specific response.

The strength of the ADCY3 reQTL at day 1 was found to be modified by xCell estimates
of monocyte abundance. The xCell scores are imperfect. Compared to FACS measurements in a
cohort subset, the xCell scores were only weakly correlated, and the signatures used by xCell

may be less accurate after vaccine stimulation. Fortunately, statistical colocalisation confirmed
that the day 1 ADCY3 reQTL signal is likely to be a monocyte-specific effect—and independent
to the IBD signal in the locus, which colocalises with CD4+ T cell eQTL datasets. The proportion
of monocytes in the PBMC compartment increases at day 1, supported by both FACS [162]
measurements and an increase in monocyte xCell score. Expression of ADCY3 in HIRD is not
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monocyte-specific: despite the increase in monocyte proportion, no upregulation was observed at
day 1. Colocalisation was also not restricted to stimulated monocytes. The probable mechanism
is an increased proportion of the bulk sample taken up by monocytes at day 1 providing more
monocyte-derived ADCY3 transcripts, rather than an upregulation-driven increase in detection
power, or a vaccine-induced activation of the locus at day 1. Although multi-trait colocalisation
proved to be the crucial piece of evidence suggesting the effect is not related to T cells, only
15 immune cell types were included in the analysis, so it is possible the reQTL is not entirely
monocyte-specific.

Overall, cell type interactions were only detected at 16/1154 reQTLs. Although power to
detect significant interactions is lower than power to detect main effects—not helped by the
unclear reliability of xCell scores—it is still likely that mechanisms other than shifts in cell
abundance underlie a large number of the detected reQTLs. One type of mechanism by which
cis-eQTLs affect expression is through their impact on transcription factor (TF) binding affinity
to motifs in promoters and enhancers [329]. Immune cells, including monocytes, are heavily
regulated by cell type-specific TFs [330]. Cell type-specific expression of TFs has been proposed
as a model for explaining magnifying, dampening, and opposite sign reQTL effects; for example,
opposite sign effects could result from different TFs regulating the same gene via the same
regulatory element, with activating effects in one cell type and suppressive effects in another [76].
There is evidence that TF activity is important for in vivo immune reQTLs: Çalışkan et al. [83]
found rhinovirus reQTLs in PBMCs were enriched in ENCODE chromatin immunoprecipitation
sequencing (ChIP-seq) peaks for the TFs STAT1 and STAT2, and Davenport et al. [96] found
interferon and anti-IL6 drug reQTLs likely disrupt ISRE and IRF4 binding motifs. Rather than
condition-specific expression of the eGene, reQTL effects could be generated by condition-specific
expression of TFs whose activity is affected by the reQTL variant. A genomic feature enrichment
for TF binding sites and other regulatory elements among (fine-mapped) HIRD reQTL variants
could expose shared regulatory factors that explain subsets of the remaining reQTLs. This would
also help evaluate if the even distribution of reQTLs across the cis window is a cause for concern.

Not only are the mechanisms at many detected reQTLs unknown, there may be many more
reQTLs yet to detect in HIRD. Multiple independent eQTLs are present for a large fraction
of eGenes [331]. As a single lead variant for reQTL assessment was chosen per gene to avoid
reQTLs caused by differential tagging efficiency, I could not detect secondary reQTLs masked by
a stronger shared eQTL for the same gene. This is not expected to be uncommon, as the effective
sample size for shared eQTLs is usually large due to borrowing of information across conditions.
Secondary eQTL signals tend to be weaker, more distal to the TSS, more likely to be enriched in
enhancers rather than promoters, and—importantly—more context-specific [55, 85, 332, 333].
The proportion of genes with reQTLs I detect based only on the lead signal likely represents
a lower bound. Stepwise conditional analyses at each lead variant will be required to uncover
secondary associations, which then can be compared across timepoints in the same manner as
the primary associations. These associations, although weaker on average, may actually have
more variable effects between timepoints. I also did not consider trans-eQTLs due to sample size,
which are more likely to be condition specific than cis-eQTLs [56, 59, 79].

Finally, I address the prospect that common genetic variation may explain some variation
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in antibody response to Pandemrix. I have indirectly demonstrated genotype-dependent effects
on expression response by identifying reQTLs with differing effect size between timepoints, but
have yet to determine resulting genotype-dependent differences in antibody phenotypes. Some
of the identified reQTLs will undoubtedly affect genes whose expression or post-vaccination
expression change correlates with antibody response, but correlation is not transitive [334], so
correlation of genotype with expression and expression with antibody response does not imply a
correlation between genotype and antibody response. Formal tests such as the CIT [263] will
be required to distinguish mediation of genotype-antibody response associations through gene
expression from competing models. Franco et al. [94] realised this, but concluded that they had
insufficient power for the CIT, with a greater sample size and comparable study design to HIRD.
The HIRD cohort is also too small for a direct GWAS of Pandemrix antibody response. An
approach for prioritising reQTLs that contribute to the antibody response to Pandemrix may
need to leverage external genetic associations with similar phenotypes found in larger cohorts;
for example, colocalisation with existing GWAS summary statistics for antibody response to
other vaccines (ideally adjuvanted and inactivated vaccines). However, due to the number of
possible generating mechanisms for bulk reQTLs in vivo, careful interpretation will be required
to glean any insight into the biology of the stimulation in question. Chapter 5 will continue the
discussion on the methodologies, experimental designs, and upcoming technologies required to
complement the in vivo reQTL study design.
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Chapter 4

Transcriptomic associations with
anti-TNF drug response in Crohn’s
disease patients

The work presented in this chapter is a collaboration between the Wellcome Sanger Institute,
the Royal Devon and Exeter Hospital National Health Service (NHS) Foundation Trust, the
University of Exeter, and AbbVie. I would like to thank Nicholas Kennedy, Tariq Ahmad, and
the AbbVie team for kindly extending the opportunity to collaborate on the PANTS cohort; Mark
Reppell, Samantha Lent, and others at AbbVie, for performing the RNA-seq library preparation
and sequencing, initial quality control, alignment and quantification, and estimation of cell
proportions from methylation data; Simeng Lin, for advice on the sample structure of PANTS;
Aleksejs Sazonovs, for performing the genotype quality control; and other individuals in the
Sanger-AbbVie-Exeter PANTS working group, for their feedback during our video conferences.

4.1 Introduction

4.1.1 Crohn’s disease and inflammatory bowel disease

Crohn’s disease (CD) is a chronic inflammatory disease of the gastrointestinal tract. Along
with ulcerative colitis (UC), it is one of the two main forms of inflammatory bowel disease
(IBD). CD is characterised by patchy inflammation, where lesions are interspersed with regions
of normal mucosa. The lesions can be distributed anywhere in the gastrointestinal tract, and
tend to be transmural, affecting all layers of the gut wall. In contrast, UC is characterised by
continuous inflammation, with lesions that are superficial rather than transmural, and restricted
to the colon [335]. Whilst the two are distinct forms of IBD, similarities in clinical presentation,
available therapies, and genetic architecture mean they have often been studied together. Both are
immune-mediated inflammatory diseases (IMIDs), a group of related diseases involving immune
dysregulation of common inflammatory pathways. Other IMIDs include type 1 diabetes (T1D),
systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), and
psoriasis [336, 337].

Pathogenesis of CD is not completely understood, but involves interaction of the immune
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system, environmental factors (e.g. smoking, stress, diet [335, 338]), and gut microbial factors
in a genetically-susceptible individual [339]. Since the seminal discovery by linkage analysis in
2001 that genetic variation in NOD2 is linked to CD risk [340], much progress has been made in
establishing the disease’s genetic architecture. The most recent genome-wide association study
(GWAS) studies catalogue over 240 risk loci for IBD [180]. Most associations are shared between
CD and UC, but there is strong heterogeneity of effects at some loci, such as NOD2 being only
associated with CD risk [341, 342].

CD has historically been considered a disease of the Western world. The highest prevalence
and incidence of new CD cases are in North America and Western Europe [335], although disease
burden is now rising in newly industrialised countries in Asia, Africa, and South America [343,
344]. The modal age of onset is typically between late adolescence and early adulthood. The
disease is progressive: within 10 years of diagnosis, approximately 50 % of CD patients develop
further complications (strictures or penetrating lesions); within 20 years, approximately 15 % will
require surgical intervention [335]. Given the rising prevalence and large impact on quality of life,
there is active research into developing treatment regimens with the goal of inducing complete
mucosal healing [335, 345].

4.1.2 Anti-TNF therapies for Crohn’s disease

Tumour necrosis factor (TNF), also known by the archaic name TNF-α, is a proinflammatory
cytokine produced mainly by immune cells such as monocytes, macrophages, natural killer (NK)
cells, T cells, and B cells. It is synthesised in transmembrane form, then enzymatically cleaved
into its soluble form. TNF binds to receptors TNFR1 and TNFR2; most cells in the body
express one receptor or the other. Binding triggers a signalling cascade that in different contexts
regulates inflammation, apoptosis, cell proliferation, and cell survival [346–348]. In the context
of IBD pathogenesis, current models suggest high TNF levels promote apoptosis of monocytes,
macrophages, and gut epithelial cells via TNFR1, while inhibiting apoptosis of mucosal CD4+ T
cells via TNFR2 [345, 348, 349], overall encouraging maintained gut inflammation.

The development of anti-TNF biologic therapies has revolutionised patient care for CD and
a number of other IMIDs in the last two decades. Infliximab and adalimumab are the two
major anti-TNF drugs in use. Both are IgG1 monoclonal antibodies that bind both soluble and
transmembrane TNF, inhibiting their interactions with TNF receptors [349, 350]. Two main
mechanisms for their action have been proposed: induction of CD4+ T cell apoptosis in the gut
mucosa by inhibiting the TNF-TNFR2 interaction; and binding of the antibody tail (Fc) region
of the drug to Fc receptors on monocytes, inducing their differentiation into wound-healing M2
macrophages [345].

Adalimumab is a human antibody, typically administered subcutaneously via auto-injector
pen, with two initial doses aimed to induce remission, then a dose every two weeks to maintain
remission. Infliximab is a chimeric mouse-human antibody, administered via intravenous infusion,
with a three-dose induction, then doses every eight weeks for maintenance [349]. Anti-TNF
biologics consistently rank among the drugs generating the highest global revenues. In 2017,
spending on adalimumab (Humira) in developed markets was estimated at 20.7 billion USD—
almost double the spending on second-ranked insulin glargine (Lantus, 10.5 billion USD) [351].
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4.1.3 Anti-TNF treatment failure

Unfortunately, anti-TNF therapy is not always effective at treating CD. Various types of treatment
failure can occur: primary non-response (PNR) within the induction period (the first 12–14
weeks for adalimumab and infliximab), developing secondary loss of response (LOR) during
maintenance after an initial response, failure to achieve remission after the treatment course, and
adverse events that lead to treatment stoppage [352]. For IBD patients, the incidence of PNR is
10–40 %, and the incidence of secondary LOR is 24–46 % in the first year of treatment [353–355].
Another factor affecting treatment outcome is immunogenicity, the generation of antibodies
against the drug, thought to increase the probability of treatment failure and LOR by increasing
drug clearance rate [350, 355]. As a chimeric antibody, infliximab is more immunogenic than
adalimumab [355, 356]. Although remission with complete mucosal healing remains the gold
standard for treatment success or failure [335], PNR and LOR phenotypes can be defined much
earlier in the treatment course, and help guide changes in treatment regimens, such as dose
intensification or switching to a drug class with a different mechanism of action [350, 353].

Anti-TNF biologics are near the top of the therapeutic pyramid for CD in the UK, among the
treatment options with the highest toxicity and costs [357]. The traditional approach to disease
management in the UK is “step-up”, beginning at the bottom of the pyramid with steroids
[349, 357]. This may undertreat patients that require more aggressive therapies, allowing the
disease time to progress. An inverted approach begins at biologic therapies, then steps down
the pyramid if possible. This risks exposing patients to aggressive therapies they may not have
needed [354]. The best approach would be to predict whether a particular treatment will be
required and effective for a patient, especially given the costliness and patient risks associated
with therapies near the top of the pyramid. Reliable baseline prediction would be especially
valuable for stratifying patients to specific therapies from treatment initiation.

4.1.4 Predicting patient response to anti-TNFs

Clinical variables reported to have associations with anti-TNF response include age, disease
duration, body mass index (BMI), smoking, C-reactive protein (CRP) levels, faecal calprotectin
levels, serum drug concentrations, and anti-drug antibody concentrations. These associations have
mostly been found in small retrospective cohorts, and have rarely been independently validated
[348, 354, 358–361]. In the Personalised Anti-TNF Therapy in Crohn’s Disease (PANTS) study,
the largest study of infliximab and adalimumab response in CD patients to date (enrollment
n = 1610), baseline obesity, smoking, and greater disease activity were associated with low serum
drug concentration after induction. Low drug concentration was in turn associated with PNR
and non-remission, suggesting immunogenicity may be mediating treatment failure [355].

Multiple studies have attempted to define transcriptomic predictors for anti-TNF response
in gut biopsies and blood [348, 361]. In gut biopsies, expression of sets of “signature” genes
were found to be predictive of mucosal healing after infliximab treatment in cohorts of UC
(TNFRSF11B, STC1, PTGS2, IL13RA2, IL11 ; n = 46 [362]) and CD patients (TNFAIP6,
S100A8, IL11, G0S2, S100A9 ; n = 19 [363]). Expression of OSM was associated with anti-TNF
response defined by improved Mayo score, a multiparameter clinical score of UC activity (n = 227)
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[364]. Most recently, single-cell RNA sequencing (RNA-seq) identified a module of IgG plasma
cells, inflammatory mononuclear phagocytes, activated T cells, and stromal cells associated with
clinical remission after anti-TNF therapy in two separate CD cohorts (total n = 340) [365].

As obtaining blood samples is non-invasive, there has been great interest in finding transcrip-
tomic predictors of response in blood. While blood is not the main disease-relevant tissue for CD,
many genes in gut biopsy signatures have high expression in infiltrating immune cells, and blood
gene expression may capture the precursors of those cells [366]. Blood TREM1 expression has
been identified as a marker of anti-TNF response in two studies with inconsistent directions of
effect. Gaujoux et al. [366] defined response based on “clinical and/or endoscopic improvement”.
TREM1 expression was lower in infliximab responders in gut biopsies (total n = 72), but higher
in responders in a separate cohort measuring baseline whole blood expression (n = 22). Verstockt
et al. [367] defined response based on endoscopic remission, reporting TREM1 to be a marker
of response with lower expression in responders to infliximab and adalimumab in both baseline
gut biopsies (n = 44) and baseline whole blood (n = 54). Proposed reasons for the discrepancy
include false positives due to small sample sizes, differences in patient ethnicity, and different
definitions of response [348, 368].

Attempts have also been made to find genetic markers for response. Anti-TNF response does
not necessarily share the same genetic architecture as disease risk. Variants in TNF-regulated
genes that are also associated with IBD risk (NOD2, TNFR1, TNFR2 ) are not associated with
response to infliximab [348, 361]. A number of candidate gene studies found single nucleotide
polymorphism (SNP) associations with response in genes such as apoptosis-related Fas ligand and
caspase-9 that have yet to be validated [354, 369]. Recently, larger cohorts have enabled GWASs
of anti-TNF response in IBD. In PANTS, although no associations to PNR were genome-wide
significant, HLA-DQA1*05 carriage was found to be associated with higher anti-drug antibody
levels, which was in turn associated with LOR [370], but larger samples may be needed to find
direct associations between HLA-DQA1*05 carriage and LOR.

Overall, small sample sizes and variation among studies in analysis methods, anti-TNF drug,
response definition, tissues sampled, and disease make a consensus hard to establish. Few markers
of any type—clinical, transcriptomic (gut/blood), or genetic—have been validated in independent
studies. No algorithms using such markers for predicting IBD patient response to anti-TNF
therapy have yet been translated to clinical practice, although several are currently undergoing
validation [361].

4.1.5 Chapter summary

This chapter focuses on identifying novel transcriptomic associations with anti-TNF primary
response in a subset of the PANTS cohort with longitudinal RNA-seq data from the first year
of follow-up. I model differential gene expression (DGE) between primary responders and non-
responders at the gene and module-level at baseline (week 0), post-induction (week 14), and
during maintenance (week 30 and week 54). As this is one of the largest datasets currently
available for assessing transcriptomic associations with anti-TNF response in IBD, I attempt to
validate and resolve conflicts in the literature for previously identified transcriptomic markers such
as TREM1. Finally, I integrate existing genotype data to map response expression quantitative
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trait loci (reQTLs) between timepoints, with the aim of identifying common genetic variants
controlling expression response to anti-TNF drugs.

4.2 Methods

4.2.1 The Personalised Anti-TNF Therapy in Crohn’s Disease (PANTS) co-
hort

PANTS is a UK-wide, prospective, observational cohort study of response to anti-TNF therapy
in CD patients, described in detail by Kennedy et al. [355]. The study was registered with
ClinicalTrials.gov identifier NCT03088449, and the protocol is available at https://www.ibdres
earch.co.uk/pants/. Total enrollment was 1610 patients, who were at least 6 years old, had
active luminal CD, and were naive to anti-TNF therapy. Patients were invited to attend up to
ten major study visits over a maximum follow-up period of three years, or until drug withdrawal.

The anti-TNF drugs evaluated were adalimumab (ADA) and infliximab (IFX). The study also
evaluated infliximab biosimilars; data from patients who received a biosimilar are not included in
this chapter. All major visits were scheduled immediately prior to a drug dose. Adalimumab and
infliximab have 2-week and 8-week dosing intervals respectively, so the timing of major visits was
chosen such that the same visit structure could be used for patients on either drug. Additional
visits were scheduled in case of secondary LOR or premature study exit due to drug withdrawal,
usually replacing the next scheduled major visit.

The overall rate of primary non-response by week 14 was 21.9 % for infliximab and 26.8 % for
adalimumab. The rate of secondary LOR by week 54 among primary responders was 36.9 % for
infliximab and 34.1 % for adalimumab. Rate of remission by week 54 was 39.1 % for infliximab
and 33.1 % for adalimumab.

4.2.2 Definition of timepoints

The RNA-seq data for this chapter comes from a subset of the cohort sampled around four
timepoints: week 0, week 14, week 30, and week 54. These are the target timings for four major
visits in the first year of follow-up. The week 0 major visit is the visit immediately prior to the
first dose of drug. Week 0 to week 14 is the induction period. After week 14, patients continued
to take their drug according to the prescribed schedule (a dose every 8 weeks for infliximab, and
every 2 weeks for adalimumab). Whole blood samples at major visits were taken prior to the
scheduled drug doses that aligned with those visits, labelled with the visit’s name, and preserved
for RNA-seq in Tempus Blood RNA Tubes. As sampling was always done prior to a scheduled
dose, the measured transcriptome reflects the state at trough drug levels.

I mapped samples from major and additional visits to four discrete timepoints centered
around the four major visits. As it could not be guaranteed that visits occurred on the exact day
specified in the protocol, I considered the visit windows defined by Kennedy et al. [355]: week 0
(week −4–0)∗, week 14 (week 10–20), week 30 (week 22–38), and week 54 (week 42–66). Samples

∗Samples at negative weeks or study days indicate the patient was first sampled before the day they took the
first drug dose (week or day 0).

https://www.ibdresearch.co.uk/pants/
https://www.ibdresearch.co.uk/pants/
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were mapped to timepoints based on their sample label and study day according to the following
mapping criteria:

• Labelled major visit samples were mapped to the corresponding timepoint, regardless of
whether they fell within the corresponding window i.e. a sample labelled week 54 was always
mapped to the week 54 timepoint.

• Samples taken at additional (LOR or exit) visits falling within one of the windows were
mapped to that timepoint, unless the patient also had a major visit sample inside that
window. This avoided any patient having multiple samples for a single timepoint.

Only a small minority of major visit samples fell outside their corresponding windows, mostly
for later timepoints where there was more variation around the target day. Inclusion of samples
from additional visits was important, as they often replaced major visits for patients with PNR
or LOR. For example, a patient who developed PNR by week 14 and decided to exit the study
would not have a labelled week 14 major visit, but may still have a sample taken at that time
labelled as an additional exit visit. The mapping of samples to timepoints is shown in Fig. 4.1.
Samples included under both of the above mapping criteria should be representative of trough
drug levels, as major visits and LOR visits were always scheduled prior to a drug dose, and exit
visits were scheduled for when the next drug dose would have been.

4.2.3 Definition of primary response and primary non-response

The definition of primary response and non-response was based on the clinical decision tree from
Kennedy et al. [355]. Primary response and non-response could be assessed from week 12, with a
final classification made by the scheduled week 14 visit. The criteria for primary non-response
was either of the following:

• exit for treatment failure before week 14 (e.g. as decided by physician global assessment),
or corticosteroid use at week 14 (a continuing or new prescription);

• compared to week 0, a decrease in CRP by <50 % or to >3 mg l−1, and a decrease in
Harvey Bradshaw index (HBI) by <3 points or to >4.

The criteria used to define primary response was all of the following:

• not classified as a primary non-responder;

• compared to week 0, a decrease in CRP by ≥50 % or to ≤3 mg l−1, and a decrease in HBI
by ≥3 points or to ≤4.

Grey zone patients that only partially met the criteria for either primary non-response or
response were excluded in this chapter. There were also additional selection criteria used to choose
the subcohort of PANTS patients put forward for RNA-seq. Patients were required to be at least
16 years old, and to have an available baseline serum sample. Within the patients on infliximab,
there was propensity score matching between primary non-responders and other patients based
on baseline immunomodulator use, baseline steroid use, age, sex, and BMI. As PANTS was
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Figure 4.1: Sample size and study day distribution for PANTS study RNA-seq samples, stratified
by timepoint and study group. Windows from Kennedy et al. [355] for the four major PANTS visits are
colored in grey. Samples mostly come from major visits, but a small number of LOR and exit visit samples were
included according to the criteria in Section 4.2.2.

an observational study that continued until drug withdrawal, a patient’s clinician may have
decided to continue anti-TNF therapy even if a patient demonstrated primary non-response,
so it was possible for primary non-responders to remain in the study past week 14. Primary
non-responders were selected excluding patients known to be in remission at week 54. Primary
responders were selected from patients known to be in remission by week 30 or week 54. The
primary non-responders and responders in the RNA-seq subcohort thus represent phenotypic
extremes of response.

4.2.4 Library preparation and RNA-seq

Total RNA was extracted following the Qiagen QIAsymphony instrument protocol (RNA Isolation
PAX RNA CR22332 ID 2915). RNA was quantified with the ThermoFisher QuBit BR RNA
(Q10211), and RNA integrity assessed with the Agilent RNA ScreenTape assay (5067-5579,
5067-5577, 5067-5576) on the Agilent 4200 TapeStation.

Library preparation was performed using the Kapa mRNA HyperPrep Kit, including enrich-
ment for messenger RNA (mRNA) using magnetic oligo-dT beads, depletion of ribosomal RNA
(rRNA) and globin mRNA using the QIAseq FastSelect RNA Removal Kit, and adapter ligation
with IDT xGEN Dual Index UMI adapters. Libraries were sequenced on the Illumina HiSeq 4000
with 75 bp paired-end reads.
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4.2.5 RNA-seq quantification and preprocessing

A total of 1141 samples from 396 patients were sequenced to a median depth of ∼20 million
read pairs. Sequencing data was demultiplexed with Picard∗. Sequence quality, overrepresented
sequences, adapter content, and sequence duplication rates were checked using FastQC [371].
Reads were mapped to GRCh38 using STAR (v2.6.1d) [372] and deduplicated to unique reads
using UMI-tools [373]. Gene expression was quantified against the Ensembl 96 gene annotation
with featureCounts (v1.6.4) [374].

Samples were filtered to remove outliers (>2 standard deviations from the mean) according
to percentage of aligned reads in coding regions reported by Picard, percentage of unique reads,
and number of unique reads. Samples that could not be mapped to a timepoint according to
Section 4.2.2 were removed. Samples with sex mismatch were removed. Samples from patients
with grey zone primary response were removed. Samples for which there was missingness in
the data matrix for variables considered in the variable selection process (Section 4.2.6.1) were
removed. A total of 814 samples remained after filtering. The number of samples mapping to each
timepoint as defined in Section 4.2.2 is shown in Fig. 4.1. The number of samples per patient
ranged from one to four, with a median of three (Fig. 4.2).

The Ensembl 96 gene annotation contains 58 884 genes, many of which are not expressed in
whole blood. Effective library sizes were computed using the trimmed mean of M-values (TMM)
method in edgeR [203], then between-sample normalisation for library size was performed using
edgeR::cpm, converting counts to counts per million (CPM). Genes with low expression were
filtered, requiring >1.25 CPM in >10 % of samples (1.25 CPM being approximately 10 counts at
the median library size of 8 million unique mapped read pairs) and non-zero expression in >90 %
of samples. Globin genes and short non-coding RNAs (ncRNAs) were removed. A total of 15 511
genes remained after filtering. Finally, CPMs were converted to the log2 scale, and precision
weights to account for the expression mean-variance relationship were computed for each gene
and sample using variancePartition::voomWithDreamWeights [375].

4.2.6 Differential gene expression

4.2.6.1 Variable selection by variance components analysis

For each gene, the DGE model was a regression expressing the response variable (gene expression),
as a linear function of predictor variables of interest (primary response status, drug, timepoint),
and other selected predictor variables. In estimating the association of predictor X to response Y
by regression, adjustment for a third variable Z can increase, decrease, or even reverse the effect
estimate for X (the regression coefficient). I aimed to select third variables for inclusion into the
DGE model that were covariates, defined here as a Z that is associated with Y , but not with X.
Such variables are also known as neutral controls [376], precision variables, or prognostic variables.
At the cost of one degree of freedom (df), Z explains variation in Y that would otherwise be
considered residual, so conditioning on Z increases the efficiency of estimating the effect of X on
Y , but does not change the effect estimate.

∗https://broadinstitute.github.io/picard/

https://broadinstitute.github.io/picard/
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Figure 4.2: Distribution of RNA-seq samples from each patient among timepoints.

Many variables were available for selection; Fig. 4.3 shows their correlation matrix. These
included three variables associated with primary response in Kennedy et al. [355]: baseline
immunomodulator use, smoking, and BMI. Also available were proportions of six common cell
types in whole blood (CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes, granulocytes),
estimated using the Houseman method (minfi::estimateCellCounts [377]) from whole blood
Illumina MethylationEPIC methylation array data collected from the same patients and time-
points. The Houseman method uses differentially methylated regions between immune cell types
as cell type markers [378].

A variance components analysis was performed to quantify the proportion of expression
variance explained by each variable for each gene using variancePartition [375]. Variables that
do not explain much variation in the response are unlikely to improve efficiency if conditioned on.
The model was a mixed effects regression model with variables in Fig. 4.3 included as predictors.
Additional categorical variables were included for patient and RNA-seq library preparation
plate. An additional continuous variable consisting of random numbers drawn from the standard
normal distribution was included as a null. Granulocyte proportion estimates were dropped
to relieve perfect multicollinearity. Categorical variables were coded as random intercepts, and
continuous variables as fixed effects. Surprisingly, simulations from Hoffman et al. [375] showed
variance proportion estimates were unbiased even when coding categorical variables with as few
as two categories as random effects, as long as model parameters were estimated using maximum
likelihood (ML) rather than restricted maximum likelihood (REML). It was also shown this
approach avoids overestimates of variance proportions that occur if categorical variables with
many levels are treated as fixed.

As downstream DGE methods require the same set of predictors for all genes, I aimed to
select variables that explained a lot of variance for many genes. Variables that explained the most
variance on average were patient, cell proportions, and RNA-seq plate (Fig. 4.4). Some variables
that did not explain more variance on average than the null nevertheless had high maximum
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values, indicating their importance for a relatively small number of genes. These included sex,
library preparation protocol version, and smoking status. However primary response status—a
variable of interest—also fell into this group, so it was difficult to justify excluding all variables
with lower median variance explained than the null. Consequently, all non-null variables in
Fig. 4.4 were selected as predictors in downstream models apart from “Ever_Immunomodulator”
(whether the patient had ever had immunomodulator treatment), as that variable had both
low median variance explained and was correlated with baseline immunomodulator use. This
is a crude approach, but the sample size is large compared to number of df lost by including
predictors that may not be relevant for some genes.

How might interpretations of effect sizes of interest be affected by including this suite of other
variables, all of which can be considered as third variables? If a third variable Z is not a precision
variable, but is also associated with X, conditioning on Z changes the effect estimate of X on
Y . The regression model is mathematically agnostic to causal relationships between variables,
but distinct types of third variable can be distinguished conceptually by assuming the direction
of causal relationships [379]. Conditioning on a confounder (X ← Z → Y ) reduces bias of the
effect estimate, conditioning on a collider (X → Z ← Y ) induces bias, and conditioning on a
mediator in the causal pathway (X → Z → Y ) changes the effect estimated by removing the
indirect effect mediated by Z, usually biasing the effect estimate towards zero∗.

From the variance components analysis shown in Fig. 4.4, cell proportions were among
the biological factors that explained the most variance on average; they are one of the largest
sources of variation in bulk blood expression data, and are a major driver of transcriptional
response to immune perturbations [381]. Thus I decided to I fit two sets of separate DGE
models including and excluding cell proportions as predictors, but otherwise identical. Assuming
that cell proportions act as a mediator of the drug’s effect on gene expression, these models
have complementary interpretations. In models without cell proportions included, differential
expression after drug perturbation could represent up or downregulation on a per-cell basis,
but could also come from differences in cell proportions induced by the drug. The estimates
from models adjusted for cell proportions are more likely to reflect up or downregulation on a
per-cell basis. When comparing expression between responders and non-responders, one might
also assume cell proportions can mediate the effect of a patient’s response status on expression†.
Analogously, estimates of expression differences between responders and non-responders from
the two sets of models also have complementary interpretations: total difference, and per-cell
differences not due to differences in cell proportions. Throughout this chapter, I interpret the
estimates from both sets of models accordingly.

∗It is not easy to determine the direction of bias (positive or negative) for any of these cases in general [380].
†The assumption that response status is a stable property of a patient that can be treated as a predictor/inde-

pendent variable will be discussed in Section 5.2.
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Figure 4.4: Variance components analysis showing the distribution of per-gene percentage of vari-
ance in expression explained by each variable. Variables are ordered by the median of per-gene variance
explained estimates. random_numbers is a null drawn from the standard normal distribution. PANTS.ID = patient
ID, NK = NK cell, Gran = granulocyte, Mono = monocyte, Bcell = B cell, CD4T = CD4+ T cell, CD8 = CD8+

T cell.

4.2.6.2 Contrasts for pairwise group comparisons

Per-gene DGE models were fit in dream [382]. Like the variance components analysis models,
these DGE models were linear mixed models:

y = 0 + βtrdGtrd +
9∑
βZZ + (

5∑
βCC) + u+ v + ε (4.1)

where:

• The response variable is gene expression y.

• 0 indicates there is no intercept term.

• Gtrd is a fixed effect for experimental group defined by combinations of the predictors of
interest: timepoint (week 0, 14, 30, 54), response (responder, non-responder), and drug
(infliximab, adalimumab). This is equivalent to having an intercept term and a three-way
interaction between visit, response, and drug, including all lower order terms, but is more
convenient for testing pairwise expression differences between groups, as the coefficient for
each term is the estimate of mean expression for that group.

• ∑9 βZZ are the non-cell proportion fixed effects chosen in Section 4.2.6.1: sex (Sex),
age of disease onset (Age_of_Onset), disease duration (Disease_Duration), smoking
history (Smoking_History: ex, current or never), whether the patient has had surgery
for CD (Crohns_Surgery), whether the patient was on immunomodulator at baseline
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(On_Immunomodulator_At_Baseline), whether the patient was on steroids at baseline
(On_Steroids_At_Baseline), BMI at baseline (Earliest_BMI), and library preparation
protocol version (Library_Prep_Protocol).

• ∑5 βCC are the cell proportion fixed effects chosen in Section 4.2.6.1, for NK cells, mono-
cytes, B cells, CD4+ T cells, and CD8+ T cells.

• u is a random intercept for RNA-seq plate (RNA_Plate).

• v is a random intercept for patient (PANTS.ID), nested inside RNA-seq plate.

As the interest is in estimating a single coefficient for each predictor’s effect size on expression
(rather than estimating variance components), most predictors above are modelled as fixed effects.
Since RNA-seq plate and patient are nuisance variables with a large number of levels, they
are modelled as random intercepts. A total of four sets of per-gene models were fit, with and
without the cell proportion terms ∑5 βCC, and replacing βtrdGtrd (separate drug models) with
βtrGtr + βdd (pooled drug models) or not. Unlike with variance components analysis, to avoid
small-sample bias in estimates of fixed effect standard errors, REML was used for estimation
[383].

Specific hypotheses were tested using sum-to-zero contrasts, which are linear combinations
of model coefficients with weights summing to zero. For example, to test for DGE between
responders and non-responders to infliximab at baseline in the non-pooled model, I used a
contrast where the weight for the week 0/responder/infliximab group coefficient was 1, the
weight for the week 0/non-responder/infliximab group coefficient was -1, and all other coefficient
weights were 0. To get p-values, the contrast divided by its standard error was compared to
the t-distribution using the Satterthwaite approximation for df. False discovery rate (FDR) was
controlled with the Benjamini-Hochberg (BH) method, with threshold set at 0.05, computed
separately for each contrast∗.

4.2.6.3 Spline model of expression over time

The aim was to use expression data from all four timepoints to find genes associated with response,
while avoiding a large number of pairwise comparisons. I fit a natural cubic spline (splines::ns,
R 3.6.2) to the study day to allow for non-linear trajectories of expression over time. A cubic
spline is a continuous function defined piecewise in each successive interval between a set of k
knots in the range of the input variable. The k−1 pieces between knots are polynomials of degree
3. For a natural spline, the function is constrained to be linear outside of the boundary (first and
last) knots to avoid unpredictable behaviour at the boundaries [384]. I set two inner knots at
week 14 and week 30, as expression is expected to change after each drug dose. To include all
data within the boundaries, the two boundary knots were set at the minimum and maximum
values of study day rather than week 0 and week 54. A basis matrix [384] was computed with
ns(Study_Day, knots=7*c(14, 30)), which is a matrix with 3 columns, each column being
a transformation of the input, study day. The columns are fit in the regression model in place

∗FDR could also have been computed globally over all contrasts if it were necessary to have the same t-statistic
threshold for statistical significance in all contrasts.
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of study day to allow for non-linear effects of study day on expression. The model form used
was as in Eq. (4.1), except with βtrdGtrd replaced by βrr + ∑3 βbb + ∑3 βrbrb + βdd, where r
is response status, d is drug, ∑3 βbb are the three columns of the basis matrix, and ∑3 βrbrb

are the second-order interaction terms between response status and the basis matrix columns.
Separate sets of per-gene models were again fit with and without cell proportions ∑5 βCC.

When testing for response-associated differences in the spline parameters, the predictors of
interest are the interaction terms ∑3 βrbrb. The three terms were tested jointly with an F -test,
and FDR correction was performed with the BH method, with the threshold set at 0.05. A
significant result indicates a significant difference in the trajectory of expression over study day
between responders and non-responders.

4.2.6.4 Clustering expression over all timepoints

I clustered genes by their expression trajectories to define sets of genes with similar trajectories over
time. This was done to aid the interpretation of significant genes from the cell proportion-adjusted
spline model using gene set enrichment analysis. Expression data was converted to the CPM scale
using TMM normalisation factors, then regressed against cell proportions. Residuals were centered
and scaled per gene. A distance matrix was computed using 1− r as the distance metric, where
r is the Pearson correlation. Hierarchical clustering was performed with complete agglomeration
for inter-cluster distance (fastcluster::hclust(method = “complete”), [385]). The optimal
number of clusters was assessed by the gap statistic (factoextra::fviz_nbclust(method =

“gap_stat”, nboot = 500)∗), which determines when the change in within-cluster dispersions
are no longer significantly improved by increasing the number of clusters [386]. The default
firstSEmax criteria was used to choose the optimal number of clusters k, which finds the first
local maximum at m clusters where Gap(m) ≥ Gap(m+1), then finds the smallest k : 1 ≤ k ≤ m
such that Gap(k) is not less than Gap(m) minus the bootstrapped standard error of Gap(m).
The hierarchical clustering tree was then cut into k clusters.

4.2.6.5 Gene set enrichment analyses

Rank-based gene set enrichment analyses were conducted using tmod::tmodCERNOtest [241] and
blood transcription modules (BTMs), as described in Section 2.2.10. For each contrast, as the
t-statistics are not comparable between genes due to the use of approximate df, I ranked genes
by the signed z-score reported by dream, which is a monotonic transformation of the p-value.
Similarly, moderated F -statistics from the spline model are not comparable between genes, so I
used the signed F -statistic reported by dream from the transformation of the p-value.

Gene set overrepresentation analyses with the hypergeometric test were conducted with
tmod::tmodHGtest as detailed in Section 3.2.11.

4.2.7 Genotyping and genotype data preprocessing

Genotype data were subsetted from the post-quality control PANTS cohort genotypes generated
by Sazonovs et al. [370], where the genotyping and preprocessing pipeline is fully described. In brief,

∗https://rpkgs.datanovia.com/factoextra/index.html

https://rpkgs.datanovia.com/factoextra/index.html


4.2 Methods 109

whole blood samples were collected into EDTA tubes at week 0 and genotyped on the Illumina
CoreExome genotyping array. Pre-imputation quality control was performed in accordance with
de Lange et al. [180]. Imputation was performed using the Sanger Imputation Service with
the Haplotype Reference Consortium panel. Post-imputation, samples that were non-European,
related (proportion identity-by-descent > 0.1875), or were outliers in genotype missingness or
heterozygosity rate were removed; SNPs that were poorly imputed (INFO score < 0.4), deviated
from Hardy-Weinberg equilibrium (HWE) (p < 1× 10−10), had high missingness (>5 %), or low
minor allele frequency (MAF) (<1 % before subsetting) were removed. 7 503 762 SNPs remained
after filtering. Genotypes were converted to dosages of the non-reference allele.

4.2.8 reQTL mapping

The overall strategy and methods used were largely identical those to those used in Chapter 3,
laid out in Section 3.2. Differences are described below.

4.2.8.1 Computing genotype principal components

Samples were projected onto principal components (PCs) defined by 1000 Genomes Project
samples using SNP weights from akt∗, confirming that samples were of European ancestry
(Fig. 4.5). Here I chose the first five PCs for use as covariates in expression quantitative trait locus
(eQTL) mapping downstream, one more than was chosen in Section 2.2.5 for Human Immune
Response Dynamics (HIRD) by the Tracy-Widom test. This should be sufficient to adjust for
large-scale population structure, as the PANTS cohort is less ethnically diverse than the HIRD
cohort. PCs were centered and scaled before downstream use to improve model convergence.

4.2.8.2 Finding hidden confounders in expression data

Between-sample normalisation and variance stabilisation was applied to the counts matrix
(DESeq2::vst [237]), resulting in log2 scale expression estimates. Akin to Section 3.2, given
known factors (response, drug, five scaled genotype PCs, five cell proportions), PEER [182] was
used to infer additional hidden factors that explain variance in the expression matrix for a large
fraction of genes. This is similar in principle to the variance components analysis carried out in
Section 4.2.6.1, except hidden factors can be unmeasured. To maximise efficiency for cis-eQTL
mapping, the number of PEER factors retained for each timepoint was selected to maximise the
number of genes with at least one significant eQTL (eGenes) detected on chromosome 1 (Fig. 4.6).
The selected numbers were 25, 20, 15, and 5 factors; for weeks 0, 14, 30, and 54 respectively.

4.2.8.3 Computing kinship matrices

Akin to Section 3.2.3, leave-one-chromosome-out (LOCO) kinship matrices were computed on
typed SNPs for each chromosome using LDAK [274].

∗https://github.com/Illumina/akt

https://github.com/Illumina/akt
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Figure 4.5: 1000 Genomes Project (1000G) samples and PANTS samples projected onto 1000G
genotype PC1 and PC2 axes, colored by (a) superpopulation and (b) population. 1000G superpopu-
lations: AFR = African, AMR = Ad Mixed American, EAS = East Asian, EUR = European, SAS = South Asian.
1000G European populations: CEU = Utah Residents (CEPH) with Northern and Western European Ancestry,
FIN = Finnish in Finland, GBR = British in England and Scotland, IBS = Iberian Population in Spain, TSI =
Toscani in Italia.
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Figure 4.6: Number of eGenes on chromosome 1 vs. number of PEER factors included in eQTL
mapping as covariates. FDR computed with hierarchical Bonferroni-BH [305] with significance threshold set at
0.05.

4.2.8.4 Mapping eQTLs per timepoint

As in Section 3.2, eQTLs were mapped in each timepoint using a linear mixed model in LIMIX
[273]. The sample sizes with both genotype and expression data available for eQTL mapping at
weeks 0, 14, 30 and 54 were 223, 205, 167, and 84 respectively.

For each autosomal gene, cis-SNPs within 1 Mbp of the Ensembl gene start (or gene end on
the minus strand), were filtered to keep SNPs where the number of samples homozygous for
the minor allele was at least five. Small group numbers lead to data points with high leverage
that may be unduly influential on the genotype beta. Assuming HWE, this is equivalent to a
MAF filter of

√
5/(223× 2) = 0.11 in the timepoint with the largest sample size (week 0), and√

5/(84× 2) = 0.17 in the timepoint with the smallest sample size (week 54).
The LIMIX model for each SNP-gene pair had log2 expression as the response variable and

genotype dosage as the predictor of interest. Other fixed effect predictors were the intercept,
known factors (response, drug, five scaled genotype PCs, cell proportions), and PEER hidden
factors (timepoint-specific number of PEER factors selected in Section 4.2.8.2). A random
intercept term was also included with mean zero and covariance matrix proportional to the
LOCO kinship matrix for the SNP’s chromosome.

4.2.8.5 Joint reQTL mapping over all timepoints

Analogously to Section 3.2, summary statistics from per-timepoint mapping were input to mashr

[281] to map eQTLs jointly over all timepoints. A total of 25 908 527 SNPs were testable at
all four timepoints. The null correlation structure of the timepoints was estimated using null
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tests within a random subset of 200 000 tests (mashr::estimate_null_correlation_simple).
Data-driven covariance matrices representing patterns of effects across timepoints were estimated
using a strong subset of tests. As the strong subset should contain eQTLs that are likely to have
an effect in at least one timepoint, at each timepoint, for each gene with at least one nominally
significant eQTL (p < 0.05), I selected the eQTL with the smallest p-value, resulting in a strong
subset of 129 002 tests. The mashr model was then fit on the full random subset in exchangeable
Z (EZ) mode, accounting for the computed null correlation and covariance matrices. Finally,
posterior betas, standard errors, and local false sign rates (LFSRs) were computed for all tests
using the fitted model parameters.

The lead eQTL for each gene was chosen as the eQTL with the lowest LFSR in any condition,
breaking ties by highest INFO score, highest MAF, shortest distance to gene start (or end), and
smallest genomic coordinate. Each lead eQTL was assessed for being a significant reQTL by a
z-test for whether the difference in betas was zero, between the week 0 beta and each of the
other three timepoints. Multiple testing for the number of genes was controlled using the BH
FDR for each of the three comparisons separately.

4.3 Results

4.3.1 Longitudinal RNA-seq data from the PANTS cohort

To define transcriptomic differences between primary responders and non-responders to anti-TNF
therapy in the PANTS cohort, I analysed whole blood RNA-seq gene expression measured at
up to four timepoints per patient: week 0 baseline before commencing anti-TNF therapy, and
weeks 14, 30 and 54 after commencing anti-TNF therapy. After quality control, expression data
was available for 15 584 genes and 814 samples. These samples come from 324 patients, whose
characteristics are shown in Table 4.1. The proportion of primary non-responders is high (43.8 %)
compared to the overall proportion in the PANTS cohort (23.8 % [355]). This is due to sample
selection for RNA-seq to balance the sample size for each combination of drug and primary
response status.

4.3.2 Baseline gene expression associated with primary response

Patient primary response to anti-TNF was defined at week 12–14 (after the induction period)
according to the clinical decision algorithm from Kennedy et al. [355] described in Section 4.2.3,
which integrates clinician assessment with changes in CRP level and HBI score. To identify
differences in baseline gene expression associated with future primary response, I fit per-gene
linear models at 15 511 genes, comparing week 0 gene expression in primary responders with
week 0 gene expression in primary non-responders. Comparisons were performed both within
infliximab-only and adalimumab-only subgroups, and with both drugs pooled. Models were run
both adjusting for cell composition estimates of six immune cell types, and without adjustment.
Throughout this section, the significance threshold was set at FDR < 0.05 for each comparison,
and positive log2 FCs indicate increased expression in responders versus non-responders.

Without adjusting for cell composition, the largest effects were infliximab-only, with 859 genes
differentially expressed. Only KCNN3 (log2 FC = −0.84) was significant for the adalimumab-
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Table 4.1: Patient characteristics for the PANTS RNA-seq subcohort. Values are count and percentage
for categorical variables; mean and standard deviation for continuous variables; p-values are for the comparison
between drugs.

adalimumab (ADA) infliximab (IFX) drugs pooled p-value
Sex 0.317

(Col %) Fisher exact
FEMALE 78 (48.4%) 89 (54.6%) 167 (51.5%)
MALE 83 (51.6%) 74 (45.4%) 157 (48.5%)

Age of onset (years) 0.774
Mean (SD) 33.3 (15.4) 32.8 (15.3) 33.1 (15.3) Wilcoxon rank-sum
Missing 0 0 0

Disease duration (years) 0.546
Mean (SD) 6.1 (8.1) 5.9 (7.7) 6.0 (7.9) Wilcoxon rank-sum
Missing 0 0 0

Smoking status 0.263
(Col %) Fisher exact
Current 28 (17.4%) 36 (22.1%) 64 (19.8%)
Ex 55 (34.2%) 43 (26.4%) 98 (30.2%)
Never 78 (48.4%) 84 (51.5%) 162 (50.0%)

Crohn’s-related surgery 0.549
(Col %) Fisher exact
FALSE 114 (70.8%) 110 (67.5%) 224 (69.1%)
TRUE 47 (29.2%) 53 (32.5%) 100 (30.9%)

On immunomodulator ever 0.543
(Col %) Fisher exact
FALSE 23 (14.3%) 28 (17.2%) 51 (15.7%)
TRUE 138 (85.7%) 135 (82.8%) 273 (84.3%)

On immunomodulator at baseline 0.912
(Col %) Fisher exact
FALSE 79 (49.1%) 81 (49.7%) 160 (49.4%)
TRUE 82 (50.9%) 82 (50.3%) 164 (50.6%)

On corticosteroids at baseline 0.011
(Col %) Fisher exact
FALSE 113 (70.2%) 92 (56.4%) 205 (63.3%)
TRUE 48 (29.8%) 71 (43.6%) 119 (36.7%)

Baseline BMI 0.237
Mean (SD) 25.2 (6.2) 24.3 (5.5) 24.8 (5.9) Wilcoxon rank-sum
Missing 0 0 0

Primary response status 0.263
(Col %) Fisher exact
Primary non-response 76 (47.2%) 66 (40.5%) 142 (43.8%)
Primary response 85 (52.8%) 97 (59.5%) 182 (56.2%)

CD8+ T cell (%) 0.380
Mean (SD) 2.8 (4.2) 2.8 (5.2) 2.8 (4.7) Wilcoxon rank-sum
Missing 38 18 56

CD4+ T cell (%s) 0.752
Mean (SD) 9.2 (6.3) 9.2 (6.8) 9.2 (6.5) Wilcoxon rank-sum
Missing 38 18 56

B cell (%s) 0.094
Mean (SD) 1.9 (2.0) 1.5 (1.9) 1.7 (1.9) Wilcoxon rank-sum
Missing 38 18 56

Monocyte (%s) 0.497
Mean (SD) 8.9 (3.5) 9.2 (3.7) 9.0 (3.6) Wilcoxon rank-sum
Missing 38 18 56

NK cell (%s) 0.683
Mean (SD) 1.9 (3.2) 1.9 (3.8) 1.9 (3.5) Wilcoxon rank-sum
Missing 38 18 56

Granulocyte (%s) 0.911
Mean (SD) 74.3 ( 9.7) 74.3 (10.8) 74.3 (10.3) Wilcoxon rank-sum
Missing 38 18 56



114 Transcriptomic associations with anti-TNF drug response in Crohn’s disease patients

only comparison, and only SIGLEC10 (log2 FC = 0.35) was significant in the pooled analysis
(Fig. 4.7). After adjustment for cell composition, there were no longer any significant genes in
the infliximab-only analysis, with 856/859 genes that were significant before the comparison
having a dampened effect size after correction (smaller absolute effect and same sign), suggesting
many effects may be mediated by cell composition. SIGLEC10 in the combined analysis was
also non-significant after adjustment (adjusted log2 FC = 0.31, FDR = 0.05). Conversely, at
the three genes downregulated in the adalimumab-only analysis that were the only significant
genes post-adjustment, I observed increased significance: PDIA5 (unadjusted log2 FC = −0.33,
adjusted log2 FC = −0.35), KCNN3 (−0.84, −0.88), and IGKV1-9 (−1.15, −1.22).

To identify coordinately up and downregulated gene sets and increase sensitivity for detecting
differences between responders and non-responders, I performed rank-based gene set enrichment
analyses on the per-gene z-statistics using BTMs: annotated sets of coexpressed genes in peripheral
whole blood from Li et al. [240] (prefixed “LI”). This module-level analysis was also run both
unadjusted (Fig. 4.8) and adjusted for cell composition (Fig. 4.9).

Despite only SAMD10 having a significantly different effect between drugs at the gene level
(a significant interaction between drug and response at week 0), the large global differences
observable in Fig. 4.7 were detected in the module-level analysis∗. Without adjusting for cell
composition, many of the most significantly upregulated modules in the pooled analysis—including
upregulation of monocyte (LI.M11.0, LI.S4), neutrophil (LI.M37.1, LI.M11.2), and dendritic cell
(LI.M165, LI.S11) modules—appear to be driven by an infliximab-specific effect. These modules
had heavily reduced significance after adjusting for cell composition. The new modules that were
most upregulated in the pooled analysis after adjustment had more consistent effects between
drugs, such as MHC-TLR7-TLR8 cluster (LI.M146), antigen presentation (LI.M71, LI.M95.0),
and myeloid cell enriched receptors and transporters (LI.M4.3).

For downregulated modules before adjustment, I observed infliximab-specific effects for
NK cell (LI.M7.2) and T cell (LI.M7.0, LI.M7.1) modules. Adalimumab-specific effects were
observed for plasma cell, B cell and immunoglobulin modules (LI.M156.0, LI.M156.0, LI.S3),
and cell cycle and transcription modules (LI.M4.0, LI.M4.1). After adjustment, the significance
of infliximab-specific modules was reduced, but the significance of adalimumab-specific modules
and the corresponding interaction effects was increased. For both gene-level and module-level
comparisons of baseline expression between responders and non-responders, there is a striking
heterogeneity between patients on infliximab and adalimumab that is only partially reduced by
cell proportion adjustment.

4.3.3 Assessing previously reported baseline predictors of primary response

In addition to significant genes from this study, Fig. 4.7 is annotated with genes whose expres-
sion in gut biopsies or blood has been previously evaluated for baseline prediction of primary
response [362, 363, 367, 387]. Some genes expressed in gut mucosa (e.g. IL13RA2 ) were not
appreciably expressed in this whole blood dataset, and most other genes that were expressed were

∗It is likely the PANTS RNA-seq study is not powered to detect gene-level three-way interaction effects between
timepoint, drug and response. I am not aware of which subgroup analyses may have been prespecified during the
study design and sample size calculations for the PANTS RNA-seq cohort.
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Figure 4.7: Volcano plots of DGE between primary responders (PR) and non-responders at week
0; unadjusted (top row) and adjusted (bottom row) for cell composition; for infliximab (IFX),
adalimumab (ADA), or with both drugs pooled. Annotated genes include significant associations from
this study and previously reported associations from Section 4.1.4. Dashed line shows significance threshold at
FDR = 0.05.
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Figure 4.8: Top modules differentially expressed between primary responders (PR) and non-
responders at week 0, unadjusted for cell composition. Columns correspond to results from infliximab
(IFX), adalimumab (ADA), infliximab minus adalimumab difference, and pooled analyses. The top 30 modules
ranked by minimum FDR in any column are shown. Vertical dashed line shows significance threshold at FDR = 0.05.
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Figure 4.9: Top modules differentially expressed between primary responders (PR) and non-
responders at week 0, adjusted for cell composition. Columns correspond to results from infliximab
(IFX), adalimumab (ADA), infliximab minus adalimumab difference, and pooled analyses. The top 30 modules
ranked by minimum FDR in any column are shown. Vertical dashed line shows significance threshold at FDR = 0.05.
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not significantly differentially expressed. Only TNFRSF1B and PTGS2 were associated with
primary response, being upregulated at baseline in responders, specifically in the infliximab-only
comparison, unadjusted for cell composition. TNFRSF1B was found by Verstockt et al. [367]
to be downregulated in baseline inflamed mucosal biopsies of responders to anti-TNF therapy
in IBD patients (n = 44, FC = 0.72, p = 0.008). PTGS2 was found by Arijs et al. [362] to
be downregulated in baseline mucosal biopsies of responders to infliximab for Crohn’s colitis
(n = 46). The directions of effect in both cases are opposite to this study, but comparisons are
hard to draw between blood and mucosal biopsies.

A previously identified marker in blood, TREM1 was found to have opposing effects in two
studies by Gaujoux et al. [366] (n = 22) and Verstockt et al. [367] (n = 54). Here, TREM1
showed the strongest differences between responders and non-responders at baseline in the
infliximab subcohort, but did not reach significance before (log2 FC = 0.29, FDR = 0.06) nor
after adjusting for cell composition (log2 FC = 0.05, FDR = 0.99). The sample size in this study
for the infliximab subcohort at baseline is n = 145 (Fig. 4.1), so it is expected the power in this
study is greater.

4.3.4 Post-induction gene expression associated with primary response

The same methodology applied at week 0 was applied at week 14 to identify differences in post-
induction expression associated with primary response. A larger proportion of the transcriptome
was differentially expressed between responders and non-responders at week 14: 1364 genes
for the infliximab-only comparison, 1544 genes for the adalimumab-only comparison, and 4841
genes pooling both drugs (Fig. 4.10). No significant interactions between drug and response were
detected at the per-gene level. Given that sample sizes at week 0 and week 14 are comparable
(Fig. 4.1), the overall signal-to-noise ratio is much stronger than at baseline.

After adjusting for cell composition, 1320/1364, 1515/1544, and 4653/4841 genes had damp-
ened effects; and the numbers of significant genes dropped to 379, 177, and 1302; for the infliximab,
adalimumab, and pooled analyses respectively. This again suggests many effects are mediated by
differences in immune cell composition between responders and non-responders.

Modules including generic immune activation, monocytes, TLR and inflammatory signalling,
and neutrophils were downregulated in responders; whereas B cell and plasma cell modules
were upregulated (Fig. 4.11). These modules remained differentially expressed with the same
direction of effect after adjusting for cell composition (Fig. 4.12), suggesting there is per-
cell up or downregulation on top of abundance changes of the cell types expressing these
modules. Modules related to antigen presentation (LI.M71, LI.M97.0, LI.M5.0), interferon
(LI.M75, LI.M127, LI.M111.1), and dendritic cells (LI.M64, LI.M165) also appeared among
significantly downregulated modules after cell composition adjustment. Directions of effect for
the most significant modules were largely consistent between drugs, and there were few significant
drug by response interaction effects. This is in contrast to the baseline responder vs. non-responder
comparison, where many of the strongest effects in the pooled analysis were driven by stronger
effects in one drug.

SIGLEC10 from the baseline analysis retained its significant association with primary response
post-induction, with the same direction of effect (adjusted log2 FC = 0.37). Some genes previously
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proposed as baseline markers of response in gut mucosa—G0S2, TNFAIP6, S100A8, and S100A9
by Arijs et al. [363]; and OSM by West et al. [364]—were differentially expressed in post-induction
blood in this study. The direction of effect for both sets of markers, downregulation in primary
responders, also matches this study.

4.3.5 Magnification of expression changes from baseline to post-induction in
responders

Given the stronger differences in expression between primary responders and non-responders
at week 14 than week 0, I estimated the change in expression from week 0 to week 14 within
the two groups, and also estimated the timepoint by response interaction. I performed only the
pooled comparison to simplify the analysis, and because like the within week 14 comparison,
change from week 0 to week 14 was relatively consistent between drugs, with exceptions noted.

Without adjusting for cell composition, 12 862 genes were differentially expressed in primary
responders comparing week 14 vs. week 0, 8310 genes in primary non-responders, and 6320
genes had a significant interaction between responders and non-responders. After adjusting for
cell composition, 5572 genes were differentially expressed in primary responders, 626 genes in
primary non-responders, and 179 genes had a significant interaction. Of the genes differentially
expressed between week 14 and week 0 in both primary responders and non-responders, and
with a significant interaction between timepoint and response, nearly all (4885/4891 unadjusted
for cell composition, 31/32 adjusted) were magnified by primary response, with the same genes
having larger FCs in the same direction for primary responders (Fig. 4.13).

The most significant modules that changed from week 0 to week 14 in responders included
upregulation of B cell (LI.M47.0), plasma cell (LI.M156.0), and T cell activation (LI.M7.1); and
downregulation of immune activation (LI.M37.0), monocyte (LI.M11.0), neutrophil (LI.M37.1),
and TLR and inflammatory signalling (LI.M16) modules (Fig. 4.14). Many of these are the same
modules associated with response within the week 14 timepoint, with concordant directions of
effect between the two analyses (Fig. 4.11), suggesting that a change in expression of these gene
sets from week 0 to week 14 is what leads to the difference between responders and non-responders
at week 14.

Adjusting for cell composition decreased the significance of a majority of modules (Fig. 4.15),
especially for T cell modules in the adalimumab-only analysis. Magnification was also observed at
the module level, with nearly all module effects aligned in the same direction in responders and
non-responders, with significant interactions also in the same direction. In general, responders
seem to experience greater changes in their gene expression from week 0 to week 14, presumably
due to the drug.

4.3.6 Interferon modules with opposing expression changes in responders and
non-responders

Fig. 4.13 also contains genes that were downregulated from week 0 to week 14 in responders,
but upregulated in non-responders (“flipped”). At the module level, these flipped effects were
apparent in the cell composition-adjusted analysis, for antiviral interferon signature (LI.M175),
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Figure 4.10: Volcano plots of DGE between primary responders (PR) and non-responders at week
14; unadjusted (top row) and adjusted (bottom row) for cell composition; for infliximab (IFX),
adalimumab (ADA), or with both drugs pooled. Annotated genes include significant associations from
this study and previously reported associations from Section 4.1.4. Dashed line shows significance threshold at
FDR = 0.05.
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Figure 4.11: Top modules differentially expressed between primary responders (PR) and non-
responders at week 14, unadjusted for cell composition. Columns correspond to results from infliximab
(IFX), adalimumab (ADA), infliximab minus adalimumab difference, and pooled analyses. The top 30 modules
ranked by minimum FDR in any column are shown. Vertical dashed line shows significance threshold at FDR = 0.05.
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Figure 4.12: Top modules differentially expressed between primary responders (PR) and non-
responders at week 14, adjusted for cell composition. Columns correspond to results from infliximab
(IFX), adalimumab (ADA), infliximab minus adalimumab difference, and pooled analyses. The top 30 modules
ranked by minimum FDR in any column are shown. Vertical dashed line shows significance threshold at FDR = 0.05.
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Figure 4.13: Expression log2 FC from week 0 to week 14 in primary responders (PR) versus
non-responders (PNR), for genes that differentially expressed from week 0 to week 14 in both
responders and non-responders, with a significantly different effect size between responders and
non-responders. Results adjusted (right) and unadjusted (left) for cell proportions are shown. The identity line
is shown by the dashed line. Most expression changes from week 0 to week 14 are magnified in primary responders,
with a small proportion of changes in the opposite direction.

type I interferon response (LI.M127), and antigen presentation (LI.M95.0) modules (Fig. 4.15). I
extended my gene set enrichment analyses to include modules from Chaussabel et al. [239] (prefixed
“DC”); although these modules are on the whole poorly annotated compared to modules from Li
et al. [240], interferon modules are well-annotated. STAT2, GBP5, and PARP14 from Fig. 4.13 are
annotated into an interferon module, DC.M3.4. IFIT3 and GBP2 are also annotated into separate
interferon modules, DC.M1.2 and DC.M5.12. Adjusted for cell composition, these modules were
all significantly upregulated at week 14 in non-responders only (DC.M3.4, FDR = 3.45× 10−21;
DC.M1.2, FDR = 9.49× 10−16; DC.M5.12, FDR = 1.36× 10−13; Fig. 4.16).

4.3.7 Sustained expression differences between primary responders and non-
responders during maintenance

As PANTS is an observational study, it was able to include patients who continued with anti-TNF
therapy even after meeting the definition of primary non-response at week 14. For both responders
and non-responders, expression data was also available from blood samples around week 30 and
week 54, and at additional visits scheduled in the event of secondary LOR. To test for general
differences in expression over time between responders and non-responders, I fit a natural cubic
spline to the expression of each gene as a function of study day. This analysis was performed
only with drugs pooled due to lower sample sizes at later timepoints.

Without adjusting for cell composition, 4426 genes were differentially expressed between
responders and non-responders; 210 genes were differentially expressed after adjustment. To
identify distinct trajectories of expression over time, I hierarchically clustered those 210 genes by
their mean expression in responders and non-responders at each timepoint, and determined the
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Figure 4.14: Top modules differentially expressed between week 14 and week 0, unadjusted for
cell composition. Columns show effects in primary responders (PR), non-responders (PNR), and the primary
responder minus non-responder difference. The top 30 modules ranked by minimum FDR in any column are shown.
Vertical dashed line shows significance threshold at FDR = 0.05.
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Figure 4.15: Top modules differentially expressed between week 14 and week 0, adjusted for cell
composition. Columns show effects in primary responders (PR), non-responders (PNR), and the primary
responder minus non-responder difference. The top 30 modules ranked by minimum FDR in any column are shown.
Vertical dashed line shows significance threshold at FDR = 0.05.



126 Transcriptomic associations with anti-TNF drug response in Crohn’s disease patients

0 2000 4000 6000 8000

List of genes

F
ra

ct
io

n 
of

 g
en

es
 in

 m
od

ul
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DC.M3.4
DC.M1.2
DC.M5.12
LI.M127

a
PR week 14 vs. week 0

0 2000 4000 6000 8000

List of genes

F
ra

ct
io

n 
of

 g
en

es
 in

 m
od

ul
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DC.M3.4
DC.M1.2
DC.M5.12
LI.M127

b
PNR week 14 vs. week 0

Figure 4.16: tmod evidence plots showing interferon-related modules specifically upregulated from
week 0 to week 14 in primary non-responders (PNR), but not in primary responders (PR). Genes
were ranked in ascending order by week 14 versus week 0 DGE z-statistic. The ranks of genes in interferon-related
modules are indicated by colored rug plots. Colored curves show the cumulative fraction of genes in each module.
For non-responders, these modules are enriched for large ranks (large, positive z-statistics). The area under the
colored curves are the effect sizes (area under the curves (AUCs)). The null of randomly-distributed ranks is shown
by the grey diagonal line.
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optimal number of clusters by the gap statistic method (Fig. 4.17). Six distinct clusters were
proposed (Fig. 4.18). Many of the 210 genes had previously been identified as having significant
differences in expression between responders and non-responders either within week 14, or for
change in expression from week 0 to week 14. Cluster 1 contained mainly previously identified
genes (Fig. 4.19); and was enriched for modules such as myeloid cells and monocytes (LI.M81,
hypergeometric test, FDR = 2.11× 10−6), platelet activation (LI.M196, FDR = 1.35× 10−5),
immune activation (LI.M37.0, FDR = 1.44× 10−4), and TLR and inflammatory signalling
(LI.M16, FDR = 2.36× 10−3). The spline analysis highlights that expression differences at week
14 are maintained at week 30 and week 54.

The highest proportions of genes uniquely identified as significant by the spline analysis were
in cluster 2 (26/31) and cluster 4 (15/20). Cluster 2 was enriched in Li et al. [240] B cell modules
(LI.M47.0, FDR = 1.53× 10−6; LI.M47.1, FDR = 4.53× 10−5) previously identified as having a
greater increase from week 0 to week 14 in primary responders than in primary non-responders
(Fig. 4.15), matching the observed cluster trajectory. Cluster 4 was not enriched in any modules
from Li et al. [240], but was enriched for a B cell module (DC.M4.10, FDR = 1.37× 10−3) from
Chaussabel et al. [239]. Although no genes were significantly associated with response at week 0
(Fig. 4.7), the genes in cluster 4 were coordinately downregulated as a set in primary responders
(CERNO test, p = 6.18× 10−25).

Cluster 3 was enriched for type I interferon response (LI.M127, FDR = 0.01) and interferon
(DC.M3.4, FDR = 5.27× 10−4) modules, as well as genes that contain putative transcription
factor (TF) binding motifs for interferon regulatory factors IRF7 (g:Profiler [313] term ID
TF:M00453_1, adj. p = 0.01) and IRF8 (TF:M11684_1, adj. p = 0.01; TF:M11685_1, adj.
p = 0.01). The cluster trajectory shows direction of expression change is opposing in responders
and non-responders from week 0 to week 14, followed by sustained differences at week 30 and
week 54. The trajectory and interferon-related gene set enrichments are consistent with those
identified in Section 4.3.6. Of the nine genes in this cluster, eight genes (STAT1, BATF2, GBP1,
GBP5, IRF1, TAP1, APOL1, APOL2 ) had significant interaction between week 0 to week 14
expression change and response status, whether or not correcting for cell composition. However,
only GBP5 was differentially expressed from week 0 to week 14 in both responders and non-
responders, and only when unadjusted for cell composition (Fig. 4.13). This indicates that small
and opposite effects in responders and non-responders at the gene level are best detected in
the interaction analysis that explicitly tests the difference, and in the spline analysis with the
support of additional data from week 30 and week 54.

4.3.8 Limited evidence for changes in genetic architecture of gene expression
over time

Given the substantial changes in expression from baseline to post-induction after starting the
drug, and the differing trajectories observed in responders and non-responders, I performed eQTL
mapping to identity common genetic variants associated with expression that may contribute
to these differences. Variants cis (within 1 Mb of the transcription start site (TSS)) to 15 040
genes were tested for association. Mapping was performed within each timepoint (weeks 0, 14,
30, and 54), followed by joint analysis of per-timepoint eQTL summary statistics and control for
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multiple testing using mashr [281].
The majority 11 156/15 040 (74.2 %) of genes were eGenes (a gene with at least one significant

cis-eQTL) in at least 1 timepoint (LFSR < 0.05). The variant with the lowest LFSR over all
timepoints for each gene was chosen as the lead variant (eSNP) for that gene. Most eSNPs
were significant at multiple timepoints: 999 at one timepoint, 381 at two timepoints, 526 at
three timepoints, and 9250 at all four timepoints. I compared eSNP effect sizes between week
0 and each of weeks 14, 30, and 54 to identify reQTLs with a significant difference in effect
versus baseline, as they may explain changes in expression from baseline. Most eSNPs were
shared across timepoints; only six eSNP-eGene pairs were significant reQTLs (difference in betas
BH FDR < 0.05): 1/6 between week 30 and week 0, and 5/6 between week 54 and week 0
(Fig. 4.20). Of the six eGenes with reQTLs between week 54 and week 0, NMI and EPSTI1
both have magnified eQTL effect sizes at week 54 compared to week 0, and both are annotated
to contain putative binding motifs for IRF8 and IRF2 (g:Profiler term IDs TF:M11685_1 and
TF:M11665_1). However, direct interpretation of these reQTLs is complicated by changing cell
composition in bulk expression data (discussed in Section 3.2.10 and Section 5.3).
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4.4 Discussion

In PANTS, a cohort of CD patients receiving infliximab or adalimumab anti-TNF therapy
for the first time, there were substantial differences in whole blood gene expression between
primary responders and non-responders. At baseline, the greatest differences in expression were
observed between future responders and non-responders to infliximab, with increased expression of
monocyte, neutrophil, and dendritic cell gene modules in responders, and decreased expression of
T cell and NK cell modules. These effects appear to be infliximab-specific, and are attenuated after
adjusting for the proportions of six major immune cell types, suggesting expression differences
may be driven by mediation via the proportions of these cell types.

In contrast, future responders to adalimumab had lower baseline expression of plasma cell
and cell division modules. The three hits from the gene-level adalimumab-only analysis implicate
similar cell types; IGKV1-9 encodes the immunoglobulin light chain variable region that forms
part of antibodies produced by plasma cells, KCNN3 is annotated to a plasma cell surface
signature module (LI.S3 [240]), and the expression of both KCNN3 and PDIA5 are correlated
with blood plasmablast frequencies [161]. Gaujoux et al. [366] observed lower baseline plasma cell
abundances in infliximab responders than in non-responders, and hypothesised that plasma cell
survival is supported by increased TNF levels in non-responders. Plasma cells also formed part
of a correlated module of cell populations identified by Martin et al. [365], where lower module
expression was associated with better response to anti-TNFs in a cohort with both infliximab
and adalimumab patients. However, both these studies were conducted in gut biopsy samples,
and there was no mention of strong between-drug heterogeneity.

The adalimumab-specific associations were more significant after cell proportion adjustment,
which may indicate per-cell downregulation rather than cell abundance being associated with
response. However, cell composition differences mediated by rarer cell types that have abundances
poorly captured by the six major types used in the model will be poorly adjusted for. For example,
plasma cell proportions are only weakly correlated with other cell types in the healthy immune
system [388], although the relationship may differ in CD patients. It has also been shown that
DGE analyses with correction for only common blood cell types can identify associations that are
proxies for rare cell types [389]. If this is the case, the role of the cell composition estimates for
adalimumab-specific effects may be more akin to precision variables, which would be consistent
with increased significance after adjusting.

The between-drug heterogeneity for baseline associations is puzzling, especially the greater
effect of cell composition adjustment for the infliximab-only model. Baseline patient differences
between drugs could offer a partial explanation. There may be characteristics not listed in
Table 4.1 that differ between patients on different drugs [355]. In the full PANTS cohort, lower
albumin, higher CRP, and higher faecal calprotectin levels in infliximab patients suggest that
they may have had greater disease severity. Differences may be driven by patient or physician
preference, for example, patients with more severe disease are often given infliximab rather
than adalimumab∗. I have not yet been able to access clinical variables such as CRP and faecal
calprotectin levels, variables that one could consider adjusting for in the DGE models. A richer

∗Kennedy, N. A., personal communication, 4 June (2020).
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phenotype dataset containing clinical variables has been requested from collaborators.

The strongest single-gene association in the pooled analysis was SIGLEC10, which had
reduced significance and a comparable effect size post-adjustment, where baseline expression
was approximately 25 % higher in responders. Direction of effect was consistent between drugs,
although the association was most significant in infliximab without cell composition adjustment.
In IBD, small molecules called damage-associated molecular patterns (DAMPs) are released
due to tissue damage and cell death, and further promote inflammation through pathogen-
sensing pattern recognition receptor (PRR) pathways that include toll-like receptor (TLR) family
receptors [339, 390]. For instance, faecal calprotectin, a marker for IBD activity, is a complex of
two DAMPs, S100A8 and S100A9 [339]. SIGLEC10 has been shown to repress DAMP-mediated
inflammation through binding CD24 [390]. SIGLEC10 is expressed on B cells, monocytes, and
eosinophils [391]. Of these cell types, module level results posit monocytes as the most likely
candidate cell type to be increased in anti-TNF responders. In monocytes, SIGLEC10 gene
expression is more specific to the CD16+ monocytes [392], and in particular the CD14+CD16++

non-classical monocytes rather than the classical CD14++CD16− or intermediate CD14++CD16+

subsets [393]. In PANTS, it was suggested by Kennedy et al. [355] that higher inflammatory
load, as indicated by low baseline albumin levels, may result in low week 14 drug levels due to
faster drug clearance. Low drug levels at week 14 were in turn associated with non-response. A
hypothetical model might be high baseline SIGLEC10 expression reflecting higher proportions
of CD16+ monocytes (or lower proportions of CD16− monocytes), decreased DAMP-mediated
inflammation and increasing chance of primary response, possibly by affecting drug clearance rate.
This is an extremely tentative model: both the cell proportion estimates and module definitions
used thus far only represent monocytes as a whole, lacking the resolution to properly explore
shifts in monocyte subsets. It may be possible to use expression of monocyte subset marker genes,
such as those identified by Villani et al. [393], to improve the resolution of the cell proportion
estimates.

Despite the strong heterogeneity in effects between drugs, consistent module-level effects that
emerged after adjusting for cell composition included baseline upregulation of MHC-TLR7-TLR8,
antigen presentation, and interferon modules in responders. As mentioned above, TLR receptors
are involved in pathogen sensing, and TLR7 and TLR8 are endosomal proteins primarily expressed
in monocytes, macrophages, and dendritic cells (DCs), part of an antigen presentation pathway
that senses bacterial DNA and activates downstream innate immune pathways including type I
interferon response [318]. Type I interferons have pathogenic or protective roles in many IMIDs
[394]. It has been suggested that type I interferon responses induced via TLR7 and TLR8 can
suppress colitis in mouse models, and play a role in maintaining gut homeostasis [395, 396], so
upregulation here may again represent a less severe baseline disease in future responders.

Most previously reported baseline markers in blood and gut biopsies were non-significant in
this study. For gut markers, this may not be unexpected. Although a subset of gut infiltrating
immune cells and their precursors may also be circulating, genes specific to epithelium and immune
cell types that differentiate after they migrate into tissues (e.g. monocyte-derived macrophages)
are difficult to observe in blood. For blood markers, I sought to clarify the conflicting results
in the literature about the association of TREM1 expression in blood with anti-TNF response
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[366, 367]. TREM1 is expressed in myeloid lineage cells such as monocytes and macrophages;
Villani et al. [393] reported that TREM1 expression is most specific to classical monocytes and a
newly identified subtype within the intermediate monocytes (“Mono3”). I did not find TREM1
to be significantly differentially expressed in PANTS. The direction of effect corresponded to
increased expression in responders, matching the Gaujoux et al. [366] direction of effect in
blood. The strongest effect was observed in the infliximab-specific comparison without cell
proportion adjustment, which may be another indication that baseline monocyte cell proportions
are associated with response. There are many factors that could explain failures to replicate
reported markers or identification of different markers from study to study. Many existing studies
pool cohorts with different anti-TNF drugs due to the scarcity of large datasets, yet even within
the PANTS cohort, there appears to be heterogeneity between drugs. There are between-study
differences in the definition of primary response, such as endoscopic healing [366] versus scoring on
clinical parameters [367]. Any two studies are unlikely to have adjusted for the same combinations
of covariates in modelling, and some covariates like cell composition are very influential for
bulk expression data. Finally, small sample sizes have considerable sampling error. Set-based
associations that draw on changes in multiple genes, such as the module associations from this
study, may be more reproducible compared to single-gene markers. A future aim will be to see if
the identified baseline module associations also imply that response status can be predicted from
baseline expression. Because modules associated with response appear to be mediated by cell
proportions, much of the predictive ability may also lie in differences in cell proportions between
responders and non-responders. Indeed, Gaujoux et al. [366] noted that adjusting expression for
cell composition resulted in gut gene signatures that were worse at discriminating responders
from non-responders. Testing the abundances of specific subpopulations for association with
response (e.g. CD16+ monocytes or plasma cells) can also be viewed as a type of set-based test
that represents a set of cell-type specific genes, and thus may also be more reproducible than
single-gene markers.

A much larger proportion of the transcriptome was associated with response after the
induction period at week 14. Module associations showed downregulation of immune activation,
TLR, inflammatory, monocyte, and neutrophil modules in responders; and upregulation of B
and T cell modules. Similar module associations were also found when considering modules
differentially expressed from week 0 to week 14. The differences between responders and non-
responders at week 14 were qualitatively similar to the differences between week 14 and week 0 in
responders, suggesting there may be relatively little change in the transcriptome of non-responders
after anti-TNF induction. Associations were generally consistent between drugs for both the
within week 14 and change from week 0 to week 14 analyses, perhaps because any baseline
transcriptomic differences between patients taking different drugs were diluted by the large
transcriptomic perturbation caused by taking an anti-TNF drug. Many of the same modules
were also significant regardless of cell proportion correction. A general reduction in immune
activation in responders at week 14 is presumably due to successful inhibition of TNF-mediated
inflammation by the anti-TNF drug. Decreased inflammation correlates with reduced neutrophil
activation and reduced monocyte recruitment [397], supported by the observed downregulation of
neutrophil and monocyte modules. Apoptosis of monocytes induced by anti-TNF in CD patients



136 Transcriptomic associations with anti-TNF drug response in Crohn’s disease patients

has also been previously described [398]. Certain B cell subsets are reduced in the blood of IBD
patients compared to controls [399], so upregulation of B cell modules at week 14 may represent
a shift towards health. Another potential explanation would be increased immunogenicity due to
higher drug levels in responders [355], although lack of between-drug heterogeneity for the B
cell signal is not consistent with the greater immunogenicity of infliximab. Overall, it is difficult
to glean exact mechanisms from an observational study design, with bulk expression data, and
using such broad module definitions.

Some previously identified baseline gut markers of response that were not differentially
expressed in blood at week 0, were differentially expressed at week 14. S100A8 and S100A9,
identified as markers by Arijs et al. [363], which encode components of the inflammatory
marker CRP, were downregulated in week 14 responders. The cytokine OSM, which promotes
inflammation in gut stromal cells [364], was similarly downregulated. Although it is pointless to
use a week 14 marker to predict a response that is defined at week 14, this does demonstrate that
gut markers can coincide with blood markers if expressed in immune cells present in both tissues.

When considering the interaction between change from week 0 to week 14 and response, the
general pattern is magnification in responders, where the same expression changes occur with
greater magnitude than in non-responders. A potential hypothesis is a continuum of response
from non-response to response. Gaujoux et al. [366] found changes in cell proportions in response
to anti-TNF treatment were magnified in responders, also supporting response as continuous
phenotype. This study demonstrates a similar trend at the transcriptional level. There were some
rare exceptions to magnification for genes and modules in the type I interferon pathway. These
showed upregulation in non-responders from week 0 to week 14, yet were either downregulated
or not significantly different in responders. Single-gene examples include the interferon-induced
guanylate-binding proteins GBP2 and GBP5 [400], and STAT2, a key transcription factor for
interferon-stimulated genes [244]. Genes such as IFIT3 and STAT2 are more strongly induced
by type I interferons compared to type II [401]. A study of RA, an IMID also treated with
anti-TNF drugs, likewise found increases in type I interferon-regulated gene expression in blood
after infliximab treatment to be associated with poor clinical response [402].

A spline model of expression over all four timepoints confirmed the above observations made
in week 0 and week 14 samples. Two main clusters of genes (clusters 1 and 5) contained mostly
genes significantly associated with response in the two pairwise comparisons: within week 14, and
change from week 0 to week 14. An example is the most significant single-gene association from
cluster 1 in spline model, KREMEN1, which is also one of most significant associations in the
pairwise comparisons. KREMEN1 is part of an inflammatory apoptotic pathway in gut epithelium
[403], and is downregulated in responders post-induction. The trajectories of expression for genes
in clusters 1 and 5 confirmed that changes in expression post-induction were generally greater
for responders, and in addition demonstrates that post-induction expression differences between
responders and non-responders are sustained in samples taken around week 30 and week 54
during the anti-TNF maintenance period. In PANTS, Kennedy et al. [355] found that “continuing
standard dosing regimens after primary non-response was rarely helpful” for inducing remission
by week 54. This phenomenon may have a transcriptomic basis, although non-responders in the
PANTS RNA-seq data were selected to exclude patients in remission by week 54, so trajectories
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for non-responders at week 14 that eventually achieved remission could not be observed.

Making use of data from later timepoints allowed more subtle effects to be detected in the
spline analysis. Clusters 2 and 4 were enriched for B cell genes that were not significantly different
at the gene-level in the within week 0 comparison, although some downregulation of B cell and
plasma cell modules was detected. Cluster 3 reproduced the observation that interferon-induced
genes have opposing trajectories of expression in responders and non-responders. Expression of
these genes was higher in responders at week 0 and lower at all post-treatment timepoints. The
cluster contains genes such as STAT1, IRF1, and TAP1 that are induced by both type I and type
II interferons [401]. I propose that blood expression of interferon-related genes is an attractive
target for future studies of the biological basis of anti-TNF response, and for use in building
predictive models of primary response status. Since the difference is maintained until week 54,
by which time patients would have received many doses of drug, it is more likely that response is
due to some biological property of an individual patient. Studies of anti-TNF response in RA
patients have also found high baseline interferon activity in blood to be associated with good
clinical response [404, 405]. It should be noted that the number of clusters is only the optimal
number determined in this dataset, and does not imply that genes in different clusters represent
biologically distinct pathways. Clusters 2 and 4 have similar trajectories and enrichments for B
cell genes, and interferon pathway genes appear in both clusters 1 and 3.

Finally, I attempted to determine if there were changes in genetic architecture of expression
over time, which could indicate that expression response to anti-TNF has a genetic component.
Out of all significant lead eQTLs for 11 156 genes, only six reQTLs were detected between baseline
and any one of the three post-treatment timepoints. Although no enrichment analyses were
attempted due to the small number of associations, NMI and EPSTI1 are both interferon-induced
genes with significant reQTLs that had their strongest effect size on expression at week 54. Given
the issues with doing a reQTL analysis in bulk expression data are similar to those encountered
in Chapter 3, I did not place emphasis on interpreting these small numbers of associations. I
would also like to verify that these significant reQTLs are not artifacts from shrinkage of effect
sizes in the joint eQTL model, as their posterior effect sizes from mashr were very different from
the input effect sizes from the per-timepoint models. If these hits are indeed reproducible by
complementary methods such as allele-specific expression (ASE) [406], it may then be worth
introducing genotype-response interaction terms into the eQTL models to identify eQTLs with
differing effects in responders and non-responders. Given there is prior interest in the interferon
pathway from DGE analyses, a more statistically powerful approach may be to generate a
continuous interferon pathway score for each sample, which would then act as the interacting
variable, similar to the approach of Davenport et al. [96].

Several threats to the validity of the study remain to be discussed. The most pressing may be
the meaning of time in the study. For pairwise DGE comparisons, expression trajectory clustering,
and reQTL mapping, samples were divided into four discrete timepoints that corresponded to the
major visits in PANTS; whereas the DGE spline model was fit to study day directly. Study day
has substantial variation around the target for later timepoints. The particular target timings
for post-baseline visits (weeks 14, 30, 54) were chosen so that patients on infliximab (8 weeks
between doses) and adalimumab (2 weeks between doses) could both be sampled with the same
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visit structure. Drug levels peak sharply after each dose and decline exponentially over time. To
capture trough drug levels, visits were scheduled to be as close as possible to the next scheduled
drug dose (within a week) Neither modelling approach is perfect; matching patients by timepoint
and study day are merely attempts to gather samples matched by trough drug level.

A further complication is the inclusion of LOR samples in analyses. One treatment option
after LOR is dose escalation, which may raise trough drug levels for all subsequent visits for
those patients. However, since the PANTS protocol allows for LOR visits that coincide with
major visits to be labelled as a major visit, there is no guarantee that simply excluding samples
labelled as LOR would resolve this. The best solution may to explicitly model measured serum
drug levels as a covariate, where like cell proportions, it would likely act as a mediator of some
associations with response. I did not do this as data missingness would reduce the sample size by
about 40 % in this study. Finding a suitable normalisation of drug level for use in pooled drug
analyses would also be challenging. Infliximab and adalimumab have differing pharmacokinetics;
infliximab has higher peak concentrations, higher peak-trough ratios, and shorter half-life. The
same serum concentrations of infliximab and adalimumab also have different biological effects
due to differing therapeutic windows [350, 407, 408].

The effect of differential drop out in responders and non-responders has not been explored.
There are three main mechanisms of missing data: missing completely at random (MCAR), where
probability of data being missing is independent of both observed and missing data; missing
at random (MAR), where probability of data being missing conditional on observed data is
independent of missing data; and missing not at random (MNAR), where probability of data
being missing depends on missing data [409]. Even conditional on response status, it is more likely
that expression data from more extreme non-responders is missing for later timepoints, so the
likely mechanism here is MNAR, thus the linear mixed models used in this study may be biased.
If it is indeed the most extreme non-responders dropping out, the estimation of responder versus
non-responder effects may be conservative in the spline analysis. Note there is no sidestepping a
MNAR mechanism by analysing only the complete cases, since they will differ systematically
from the sample as a whole [410].

In conclusion, it remains unclear whether there are any robust single-gene expression markers
for anti-TNF response in the whole blood of CD patients at baseline. Baseline module associations
were observed, but there was unexpected heterogeneity between infliximab and adalimumab
patients, so it remains to be seen if such associations will be replicated in other cohorts. Large
upcoming datasets with drug response phenotypes such as the 1000IBD project [411] will be
invaluable for attempted replication of the associations found in PANTS. Expression differences
between responders and non-responders were more distinct at timepoints after the induction
period. I found type I interferon genes were more upregulated post-treatment in non-responders,
going against the general trend of magnified transcriptomic change in responders, Given that
type I interferon expression in blood has also been associated with anti-TNF response in RA
patients, there may be an opportunity to consider the shared biology of anti-TNF response
in IBD and RA. Much work has been done generating and validating signatures for anti-TNF
response in RA [412]; but not much work on validating RA signatures in IBD cohorts and vice
versa.
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This chapter has been purely descriptive. Although there are expression differences at many
genes between responders and non-responders, I do not know which cause non-response, and
which are a consequence of disease reduction in responders. I have deliberately avoided the
term “signature” in describing my own results, as I have not yet had a chance to assess the
predictive capability of associated gene modules. I also did not find evidence for many strong and
interpretable reQTL effects over time in whole blood, and therefore was unable to form hypotheses
on the genetic mechanisms influencing anti-TNF response via expression. However, the presence
of eQTLs for most genes and the presence of strong differences in expression post-induction
may allow testing for causal mechanisms where genotype affects drug response via expression.
Strategies for moving on to both prediction and causal inference will be discussed in Chapter 5.
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Chapter 5

Discussion

Human immune response to perturbation is variable at numerous molecular and phenotypic levels.
In this thesis, I profiled the transcriptomic response to in vivo vaccine and drug perturbations,
established associations between expression and phenotypic response, and mapped changes over
time in the genetic regulation of expression response. Chapter 2 focused on transcriptomic
response to Pandemrix vaccination in the Human Immune Response Dynamics (HIRD) cohort,
describing the transition from innate to adaptive immune response, and detecting associations
between expression and antibody response. In Chapter 3, I considered the impact of host genetics
on vaccine response in HIRD, identifying genetic variants associated with changes in expression
post-vaccination, then exploring potential mechanisms explaining those associations. Finally,
Chapter 4 applied similar analysis frameworks in a different context, response to anti-tumour
necrosis factor (TNF) therapy in Crohn’s disease (CD) patients in the Personalised Anti-TNF
Therapy in Crohn’s Disease (PANTS) cohort, finding distinct trajectories of expression between
primary responders and non-responders to treatment. Each chapter presented its results and
limitations in turn, but similarities in design and analysis qualify them for a joint deliberation. In
this final chapter, I highlight shared themes, examine core limitations, and outline considerations
for the design and analysis of future longitudinal in vivo perturbation studies to better our
biological understanding of immune response to vaccines and drugs.

5.1 Strategies for detecting robust associations

In Chapters 2 and 4, I focused on identifying genes with differential expression after immune
perturbation, or expression associated with phenotypic response variables—antibody titres and
clinical anti-TNF response respectively. Vaccine and drug perturbation had strong effects on
large proportions of the blood immune transcriptome, resulting in thousands of highly significant
associations when comparing pre- and post-perturbation timepoints. In comparison, it was
much more challenging to identify robust single-gene associations with response phenotypes. In
Chapter 2, associations of day 7 expression with antibody response from Sobolev et al. [162] were
replicated in my analysis of the original array data, but not in newly-generated RNA sequencing
(RNA-seq) data, or in the meta-analysis. In Chapter 4, baseline associations with anti-TNF
response from the literature—including at TREM1, previously reported by two independent
groups [366, 367]—were not significant in my analysis of the PANTS cohort. The biological
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effect size of a single gene’s expression on phenotypic response is likely to be small, eclipsed
by other sources of variation: measurement platform, difference in response definitions, sample
characteristics, and noise. The idealistic suggestion is to increase sample size, but resource and
ethical constraints will always exist. Rather than creating new cohorts, a logistically-efficient
strategy is sampling from individuals enrolled in drug and vaccine trials, but care must be taken
to ensure the trial is powered both for its primary endpoints, and for planned transcriptomic
analyses. Power calculations for differential gene expression (DGE) are non-trivial and it is often
unknown what a reasonable effect size to assume might be. Many experiments choose parameters
like sample size and sequencing depth based on rules of thumb [196], or to be comparable to
existing ones in the field. In cases where small effects are likely and high power is not guaranteed,
one should be cognizant of winner’s curse when reporting and interpreting associations determined
to be significant based on some threshold [305].

Another consideration is how best to distribute a fixed sample size between depth (number
of individuals) and richness (number of timepoints, phenotypes, data types). Some degree of
longitudinal sampling is recommended for a phenotype as dynamic as immune response. Chapter 2
demonstrated a distinct jump from day 1 innate to day 7 adaptive immune expression profiles
post-vaccination, but the kinetics of the transition are not clear. In hindsight, responses could
have peaked earlier or later in different individuals, and variation in the speed of response cannot
be examined without denser sampling. In Chapter 4, expression differences between anti-TNF
responders and non-responders were apparent from week 14, but it is not known if differences
actually appear much earlier. Future analysis of a (small) number of available PANTS RNA-seq
samples from day 3 after initiating treatment may uncover associations in the early innate
response.

Rich sampling also offers analytical advantages. Having repeated measures from the same
individuals allowed modelling of within-individual covariance in Chapters 2 and 4, improving
statistical efficiency. The spline model in Chapter 4 enabled separation of responders and non-
responders based on expression trajectory over multiple timepoints. However, all those models
only incorporated two data types: expression and phenotypic response. Studies in the systems
vaccinology field have demonstrated how integrating networks of many data types identifies
correlates and predictors of response not only in the transcriptome, but in multiple layers of
the immune system [413]. In HIRD, longitudinal fluorescence-activated cell sorting (FACS) and
cytokine measurements are available for this form of integrative modelling.

When transcription is quantified on a global scale, analyses should not consider genes in
isolation. Genes in the immune system are not independent, and just as variation increases
uncertainty, covariation reduces it∗. In Chapter 2, imprecise estimates from multiple genes were
used to build an informative empirical prior for between-platform heterogeneity. Throughout the
thesis, I make extensive use of enrichment analyses with gene sets defined by prior biological
knowledge, to detect subtle but coordinated changes based on the expression of multiple genes.
General purpose gene sets may be less relevant in immune cells [157], so I used blood transcription
modules (BTMs) [239, 240] tailored for immune gene expression in blood. Alternative databases

∗Wickham, H. & Grolemund, G. Chapter 7: Exploratory Data Analysis. R for Data Science. https://r4ds.h
ad.co.nz/exploratory-data-analysis.html

https://r4ds.had.co.nz/exploratory-data-analysis.html
https://r4ds.had.co.nz/exploratory-data-analysis.html
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that provide immune-focused gene sets include InnateDB [414] and MSigDB [415]. Many significant
module associations with vaccine antibody response and clinical drug response were identified in
Chapters 2 and 4, and my expectation is that these should be more replicable than any single-gene
associations I reported (e.g. SIGLEC10 from Chapter 4). While the effect size of a single gene
may vary from sample to sample due to noise, a summary measure computed from multiple
genes should be more robust. Indeed, some module associations between baseline expression and
antibody response found in Chapter 2 were reported in previous studies of seasonal influenza
vaccines. Most systems vaccinology studies aiming to identify consistent associations with vaccine
response over multiple cohorts and sampling years focus their analyses at the gene set level [146].
Gene set analyses cannot, however, be divorced from examining the genes within them, as the
genes that drive set-level associations can differ between apparent replications, and the mapping
between genes and gene sets is one-to-many.

5.2 Responder analysis

A key determinant of how well the models in this thesis might correspond to reality lies in the
assumed model for phenotypic response. By encoding response as an independent variable, an
assumption is made that it is a stable characteristic of an individual that is measured without
error∗. This may not be an accurate assumption. Imagine a hypothetical drug or vaccine where
60 % of a sample of individuals have an observed response phenotype: “60 % of the time, it
works every time”†. This is compatible with a stable 60 % success rate in 100 % of individuals
(variation in observed response is entirely due to chance), or a stable 100 % success rate in
60 % of individuals and a 0 % success rate in the other 40 % of individuals (response is highly
personal)—most likely the truth is somewhere in between. In the first scenario, it is difficult
to imagine identifying robust baseline associations with response. This has been extensively
discussed in the context of randomised controlled trials [416], but similar issues pertain to
response definitions in observational studies.

One needs to establish how correlated phenotypic response is over time within the same
individual, and computing within-individual variation requires replication at the level of the
individual. The same individual must be perturbed and measured more than once [417]. This
is not always possible in practice; in Chapter 2, antibody response was defined based on a
single measurement after a single vaccine dose, but measuring response after a hypothetical
second dose would quantify a different phenotype: the secondary immune response based on
vaccine-induced immune memory. In Chapter 4, patients did receive repeated anti-TNF doses
interspersed with sampling timepoints, and the expression differences between clinical responders
and non-responders seen at week 14—the timepoint where clinical response was assessed—were
maintained at week 30 and week 54. This suggests the initial designation of non-responders is
not entirely due to chance, but due to some characteristic of patient disease state.

Even if response is actually a stable personal characteristic, one still needs to select an
appropriate mathematical definition. As discussed in Section 2.2.2, a binary definition of response

∗Note that the regression framework can accommodate measurement error in the context of errors-in-variables
models.

†Apatow, J., McKay, A. & Ferrell, W. Anchorman: The Legend of Ron Burgundy (2004).
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based on dichotomisation is inefficient and biologically implausible. I instead used the titre
response index (TRI) in Chapters 2 and 3, a continuous change score combining haemagglutination
inhibition (HAI) and microneutralisation (MN) titres, residualised on the baseline titres. In
Chapter 4, the binary clinical response phenotype is based on a complex decision tree with
many inputs. Defining dichotomies based on multiple inputs can lead to discontinuities and
non-monotonicity in response probabilities under small changes in inputs [173]. Pragmatism
did come into play when choosing these definitions. For DGE, the most widespread models
have expression as the sole dependent variable, and encode phenotypic response variables as
independent variables. Both TRI and the PANTS clinical response definition provided that
single independent variable. In hindsight, variation in response definitions likely contributes to
difficulties in replicating associations between studies, so it may be more sensible to model on
the component phenotypes themselves (e.g. log HAI and MN titres, C-reactive protein (CRP)
levels and Harvey Bradshaw index (HBI) scores).

5.3 Challenges in the interpretation of bulk expression data

Bulk expression data is a mixture of cell types with heterogeneous expression profiles. One of the
largest sources of variation in bulk blood expression data is variation in immune cell composition,
generated both from true variation in composition and sampling effects. The more cell type-
specific a gene’s expression, the more its measurement in bulk is affected by cell composition
[418]. Highly cell type-specific genes can be treated as marker genes, used in deconvolution
methods to estimate cell proportions in bulk samples when they are not directly measured. In
Chapter 3, xCell [298]—while not technically a deconvolution method—was used to estimate
cell type enrichment scores from array and RNA-seq expression data. In Chapter 4, estimates
of cell proportions were computed by deconvolution of matched genome-wide methylation data.
When fit as covariates in linear regression, cell abundance estimates act as precision variables
for sampling noise, but additionally as mediators of the perturbation’s effect on expression. In
Chapter 4, I chose to run two sets of models with and without including estimates of five major
immune cell proportions, gaining some information on which effects are likely driven by cell
abundance, and which are driven by per-cell up or downregulation of transcription.

Using major cell populations for correction misses the contribution of rare populations [389].
For cis-expression quantitative trait locus (eQTL) mapping in Chapters 3 and 4, where the
main concern was maximising the number of eQTLs detected, hidden factors from PEER [182]
were included into models in addition to cell abundance estimates from deconvolution. PEER
factors were correlated with deconvoluted cell abundances, so it is likely they capture additional
variation from rarer cell types. If having interpretable covariates for cell abundance is unimportant,
methods like surrogate variable analysis [419, 420] can be used to adjust for cell composition and
other unmeasured technical sources of variation in DGE analyses also.

Interpretable covariates for cell abundances are important for considering response expression
quantitative trait locus (reQTL) effects in bulk data. As discussed in Section 3.2.10, it is model
misspecification to omit genotype-cell abundance interactions if the effect of genotype changes
depending on cell abundance. It is even popular to use such interaction terms between genotype
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and cell abundance (or a proxy of cell abundance) to discover cell type-specific eQTLs [71, 74].
In vivo, cell abundances are causally affected by the perturbation due to active recruitment,
differentiation, and proliferation of immune cells. Consider the case where vaccine perturbation
causes active proliferation of a rare cell type that is near absent at baseline, but forms a greatly
increased proportion of the bulk mixture after perturbation. Any baseline eQTL specific to
this cell type will appear as a reQTL at the post-perturbation timepoint, because expression
of that cell type contributes more to the bulk mixture. If the eGene is not cell type-specific
in its expression, adjusting for abundance of the cell type will only offset the regression lines
at each timepoint, but not change their slopes relative to one another. The eGene also does
not have to be differentially expressed on average, as the effect of interest is not the pre-post
difference in expression, but the effect size of genotype on that difference. In Chapter 3, I found
that an increase in naive classical monocytes at day 1 revealing a non-stimulus-specific but
monocyte-specific eQTL, for the non-monocyte-specific gene ADCY3, was a plausible mechanism
underlying the strongest day 1 reQTL.

An aim of the in vivo reQTL design is to find host genetic variants with a causal effect on
response to perturbation. The crux of the issue is whether such an interpretation is justifiable:
whether a difference in group-level eQTL regression slopes between baseline and post-perturbation
necessarily entails a causal effect of genotype on change in expression from baseline to post-
perturbation at the individual level. For the specific case of the ADCY3 day 1 reQTL, I believe
so. As the variant is an eQTL in monocytes, individuals with more copies of the effect allele
have higher ADCY3 expression per-monocyte on average. If you were to change the genotype
of an individual from homozygous non-effect to homozygous effect, you would change their
post-vaccination increase of ADCY3, because the exact same increase in monocyte abundance
from baseline to day 1 would provide more ADCY3 transcripts. It is less clear in the general
case, as there are many possible mechanisms for an observed reQTL: a gene with an eQTL
not expressed at baseline becoming detectable (power), a cell type with a cell type-specific
eQTL increasing in proportion (recruitment or proliferation), the effect of a cell type-specific
eQTL increasing within that cell type (activation, the canonical scenario assumed for in vitro
stimulation), a genotype-dependent increase in cell abundance creating a reQTL for a gene
with cell type-specific expression, et cetera. Not all of these can be ruled out just by including
cell abundances as covariates in the eQTL model. Even if a large number of reQTLs can be
detected by statistical interaction, as in Chapter 3, the challenge is distinguishing between these
mechanistic scenarios and forming causal hypotheses. It is also unclear whether in vivo reQTLs
provide additional utility over in vitro reQTLs for gene prioritisation at genome-wide association
study (GWAS) loci. Theoretically, there may be effects unobservable without in vivo interactions
in the immune system, but a systematic comparison of reQTLs detected with in vivo and in
vitro stimulation has not been performed. In vivo reQTL studies are certainly not ineffectual at
their stated goals, but cell composition does add considerable complexity to their interpretation.
Although insights into the biological mechanism of the stimulation response is easier to gain
when cell type abundance is controlled in vitro, one basic utility of in vivo stimulation is allowing
the detection of additional cell type-specific eQTL effects in bulk data using genotype-cell type
abundance interaction terms, a methodology already well-established in non-stimulated bulk
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samples (e.g. [71]).
To truly control for cell composition, the best option is to control it at the study design

stage. Adjusting for cell abundance in regression only attempts to estimate the effect of other
predictors if cell abundance were held constant. It does not change the cell abundances to
be equal—it is a change of viewpoint, not a change of data. Adjusting for abundance also
cannot distinguish cell types with correlated abundance estimates. Single-cell RNA sequencing
(scRNA-seq) after in vivo perturbation would quantify per-cell expression and cell abundance
simultaneously. The technology is emerging as an alternative to bulk sequencing of FACS-sorted
cells, having comparable cost, and the additional advantage of not requiring pre-defined marker
sets [421]. There is flexibility in choosing to conduct DGE analysis and eQTL mapping within
each cell type cluster, or to pool clusters to mimic bulk data. Paired designs that leverage
the power of bulk reQTL mapping and the cell type resolution of single-cell data have been
explored, using eGene expression in clusters to annotate bulk reQTLs to likely cell types [90].
As an emerging technology, scRNA-seq still faces many limitations, such as low coverage of the
transcriptome due to dropout, smaller sample sizes due to cost, difficulties in defining robust cell
type clusters, and sample processing effects on the transcriptome, but progress in the field has
been nothing but rapid.

5.4 From association to prediction

In the DGE regression models I used to test for association of expression with phenotypic response,
expression was always placed as the dependent variable, and response as an independent variable.
In a clinical setting, a more relevant concern is prediction of patient response from expression
(ideally baseline expression), reversing the roles of expression and response in the model. In
Chapters 2 and 4, I observed few significant single-gene associations with response at baseline. It
is first useful to consider what implications this has on the move from association to prediction
in these datasets.

Prediction from genome-wide transcriptomic data is often a p� n prediction problem, where
the number of potential predictors p dwarfs the sample size n. Efron [422] provides a fascinating
case study on predicting prostate cancer status from expression array data (p = 6033 genes) in
samples from 52 prostate cancer patients and 50 controls (n = 102). After randomly splitting the
data into training and test sets, each with 26 cancer patients and 25 controls, a random forest
used to predict cancer status from gene expression recorded a 2 % test set error. Repeating over
many random splits showed this high predictive performance was not an outlier. Random forests
have embedded feature selection, assigning their predictors an importance score, with a positive
importance score indicating that a predictor was utilised by the model. After removing all 348
genes with positive importance scores in the trained model from the dataset, then repeating
the process with remaining p = 5685 by n = 102 matrix, another model was produced where
a set of 364 genes with positive importance—completely disjoint from the first 348—predicted
cancer status with a similar error rate. This process could be repeated multiple times, each time
producing a model with similar error rate, using none of the “important” genes from the previous
models. Although these error rates come from internal validation, which have an optimistic
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bias, the performance of pure prediction models does appear to be dominated by the confluence
of many weak predictors. Therefore it is still feasible to consider prediction in datasets where
attribution of significance to individual strong predictors may be impossible.

A large part of systems vaccinology in the last decade has been building models to predict
vaccine-induced antibody and cellular responses from high-dimensional data. The methods used
span the full gamut of statistical and machine learning algorithms, including classification to
nearest centroid (ClaNC) [249], discriminant analysis via mixed integer programming (DAMIP)
[154, 157, 249, 423], nearest shrunken centroid algorithm (e.g. PAM [149]), linear regression [153,
413], logistic regression [127, 155, 424], linear discriminant analysis (LDA) [161, 425], elastic
net [160], partial least squares (PLS) [161], artificial neural networks (ANN) [157], naive Bayes
[426], lasso regression [427], sparse partial least squares (SPLS) [428], and logistic multiple
network-constrained regression (LogMiNeR) [429, 430]. The choice of methodology can be
daunting. Fortunately (or unfortunately), an extensive survey of transcriptomic prediction models
by the MicroArray Quality Control Consortium [431] found that the choice of algorithm was
not as influential on predictive performance as the endpoint itself, with some endpoints being
inherently difficult to predict. There is also no need to restrict oneself to a particular method;
ensemble models that combine multiple algorithms consistently have the best performance and
robustness [432]. It is hard to say a priori whether antibody response in HIRD and anti-TNF
response in PANTS are “difficult” endpoints. The existence of predictive signatures for seasonal
influenza vaccine response using baseline expression—validated over multiple cohorts, years, and
geographical locations—does set an encouraging precedent for the former [159].

Oncology was one of the earliest fields to adopt predictive gene signatures into clinical
practice. Despite the first commercial tests launching in the early 2000s (e.g. MammaPrint,
a 76-gene signature for breast cancer prognosis), only a handful are in use today [433–435].
There are multiple hurdles to clinical implementation, requiring that a signature not only have
validated accuracy, but provide sufficient incremental value on top of existing clinical markers
in a cost-effective manner [434]. Feature selection is of particular importance when building
models for the clinic; cost-effectiveness entails that most expression tests are qPCR-based tests
that measure at most a few dozen genes. There is an interesting tension between the sparsity
assumed by feature selection methods (that most predictors have no effect) and the observation
that prediction algorithms depend on many weak predictors. A balance between predictive
performance and measurement cost will likely need to be struck. The ability to predict individual
response to anti-TNF treatment would be revolutionary due to the treatment cost and quality
of life impact of taking ineffectual biologic therapy. The case for personalised vaccinology lies
mostly in building understanding of the best vaccine type, dose, and timing for vaccination of
challenging populations [124].

5.5 From association to causality

Knowing the causal mechanisms of immune response to perturbation is crucial for conceiving
of possible interventions. For example, assuming the baseline association of SIGLEC10 with
anti-TNF response identified in Chapter 4 is a true association, would intervening on baseline
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SIGLEC10 expression affect probability of response? The study designs used in this thesis are
uncontrolled, but still provide useful guarantees against reverse causality. Post-perturbation
phenotypic or expression measurements cannot cause baseline gene expression. Post-conception
phenotypic or expression measurements cannot cause genotype. To estimate causal effects
of expression on phenotype, models are needed that encode causal relationships as testable
hypotheses. There are several families of such methods; as I shall now describe, they should be
used in combination.

Mendelian randomisation (MR) is a form of instrumental variable (IV) analysis that uses
genetic variants as IVs to estimate the causal effect of an exposure on an outcome. Three
assumptions define a valid genetic IV [436–438]. In the case where the exposure is gene expression,
and the outcome is some phenotypic response such as antibody titre, the first assumption (IV1)
is that the variant should be associated with the exposure as an eQTL. The term MR comes
from an analogy to randomised controlled trials; meiotic segregation is largely independent of
environmental confounders, so different eQTL alleles can be thought to randomly assign different
“doses” of expression [436]. The second assumption (IV2) is that the variant is not associated
with unmeasured confounders of the expression-phenotype association (e.g. population structure).
The third assumption (IV3) is that the variant has no association with phenotype except through
expression. Combined, these assumptions place expression as a complete mediator (vertical
pleiotropy) of the effect of the eQTL on phenotype (Fig. 5.1). The effects of variant on expression
and expression on phenotype can be estimated in the same sample, or in non-overlapping samples
(two-sample MR [437, 438]). Two-sample MR can leverage existing large eQTL catalogues and
helps mitigate weak-instrument bias, where eQTLs with weak effects on expression are used
as IVs. The direction of bias in estimating the expression-phenotype effect is away from the
null in single-sample MR, but towards the null in two-sample MR [439, 440]. A related family
of methods, transcriptome-wide association studies (TWASs) [441], train predictive models of
expression from eQTL data, then apply those models in GWAS cohorts to test the association of
genetically-predicted expression with phenotype. TWAS methods have methodological similarities
to two-sample MR [442].

Violating the assumptions of MR will likely lead to biased causal estimates. The most
troublesome assumption is often IV3. If there is no temporal ordering of exposure and outcome,
IV3 can be violated by reverse causation. For example, if evaluating the causal effect of day
7 post-vaccination gene expression on day 7 CD4+ T cell abundance, an association between
variant and expression might be mediated by the phenotype, cell abundance. If this is suspected,
one can perform MR in the reverse direction if there are available instruments for the phenotype
(bi-directional MR), or perform a statistical test of the directionality (MR Steiger) [436–438, 443].
IV3 can be violated by linkage if the eQTL does not actually have any effect on the phenotype at
all, but simply is in linkage disequilibrium (LD) with another variant that does; and can also be
violated by the existence of horizontal pleiotropy, where the effect of the variant on expression
and phenotype are independent (Fig. 5.1). Colocalisation methods, as used in Chapter 3, can be
used to test whether the same causal variant affects expression and phenotype, distinguishing
pleiotropy from linkage. However, colocalisation is necessary but not sufficient for mediation,
thus it does not distinguish mediation (vertical pleiotropy) from horizontal pleiotropy [437].
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Figure 5.1: The three assumptions of MR. MR uses genetic IVs to estimate the causal effect α of an exposure
(here, gene expression) on a phenotypic outcome, under three assumptions: (i) IV1: the variant is associated with
the exposure (here, an eQTL with effect size β); (ii) IV2: the variant is not associated with any unmeasured
confounders; (iii) IV3: the variant is not associated with the outcome except through exposure. The directionality
of the arrows in the causal diagram are also assumed to hold. The blue arrow shows a horizontal pleiotropic effect
of the variant on outcome, a violation of the IV3 assumption. Figure reprinted by permission from Springer Nature:
Springer Nature, Quantitative Biology, Zhu et al. [442], © 2020.

Mediation analysis methods (e.g. CIT [263], Findr [444]) can be used to test for violations
of IV3 by horizontal pleiotropy. They distinguish mediation from horizontal pleiotropy using
comparison of causal models with different structures, but require individual level data, and are
more susceptible to measurement error than MR [437, 443].

5.6 Triangulation

Triangulation refers to the use of methods that address the same question, but with different
assumptions, biases, and limitations [445]. An example from this thesis appears in Chapter 3,
combining DGE, between-individual reQTL mapping, and colocalisation—and pending validation
by within-individual allele-specific expression (ASE)—to propose mechanisms behind changes in
the genetic architecture of immune gene expression after vaccination. As discussed above, MR,
colocalisation, and mediation analysis can be seen as complementary methods for triangulating
the causal relationships between variant, exposure, and outcome. Taylor et al. [446] and Zheng
et al. [447] exemplify how these methods can be combined in practice for genetic instruments,
molecular exposures, and molecular outcomes. A combination of methods addresses limitations
that cannot be solved by increasing sample size. Triangulation will be critical in moving from a
descriptive to a mechanistic understanding of immune response to perturbations.

5.7 Concluding remarks

It has now been almost two decades since the completion of the Human Genome Project and
the conception of systems biology, and almost fifteen years since the first GWASs and systems
immunology studies. High-throughput profiling, complex algorithms, and big data are the new
normal, yet the classical principles of perturbation and observation are alive and well. The
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projects in this thesis come in the wake of these monumental achievements, yet still lie at the
beginning of a long road leading towards a fuller understanding of our immune system.

The goal must be to not only observe the immune response to perturbation, but to be able
to predict it, and to understand the causal relationships within the immune system that will
ultimately guide the rational design and administration of vaccines and drugs. For this, we
need study designs and analysis strategies for detecting robust and replicable associations with
sensible response phenotypes. We need technologies that quantify the immune system with great
richness and resolution, yet remain affordable enough to do so without sacrificing sample size.
We need triangulation via multiple lines of evidence, requiring both confluence of methodology
and collaboration of minds. The road from perturbation to understanding is a long one indeed,
but it shall be a road paved by good science.



151

Bibliography

1. Polderman, T. J. C. et al. Meta-Analysis of the Heritability of Human Traits Based on
Fifty Years of Twin Studies. Nature Genetics 47, 702–709. doi:10.1038/ng.3285 (2015).

2. Lawson, D. J. et al. Is Population Structure in the Genetic Biobank Era Irrelevant, a
Challenge, or an Opportunity? Human Genetics 139, 23–41. doi:10.1007/s00439-019-0
2014-8 (2020).

3. Day, F. R., Loh, P.-R., Scott, R. A., Ong, K. K. & Perry, J. R. A Robust Example of
Collider Bias in a Genetic Association Study. The American Journal of Human Genetics
98, 392–393. doi:10.1016/j.ajhg.2015.12.019 (2016).

4. The ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements in the
Human Genome. Nature 489, 57–74. doi:10.1038/nature11247 (2012).

5. 1000 Genomes Project Consortium et al. A Global Reference for Human Genetic Variation.
Nature 526, 68–74. doi:10.1038/nature15393 (2015).

6. The International SNP Map Working Group. A Map of Human Genome Sequence Variation
Containing 1.42 Million Single Nucleotide Polymorphisms. Nature 409, 928–933. doi:10.1
038/35057149 (2001).

7. Slatkin, M. Linkage Disequilibrium — Understanding the Evolutionary Past and Mapping
the Medical Future. Nature Reviews Genetics 9, 477–485. doi:10.1038/nrg2361 (2008).

8. Wall, J. D. & Pritchard, J. K. Haplotype Blocks and Linkage Disequilibrium in the Human
Genome. Nature Reviews Genetics 4, 587–597. doi:10.1038/nrg1123 (2003).

9. The International HapMap Consortium. A Second Generation Human Haplotype Map of
over 3.1 Million SNPs. Nature 449, 851–861. doi:10.1038/nature06258 (2007).

10. Karczewski, K. J. & Martin, A. R. Analytic and Translational Genetics. Annual Review of
Biomedical Data Science 3. doi:10.1146/annurev-biodatasci-072018-021148 (2020).

11. Pääbo, S. The Mosaic That Is Our Genome. Nature 421, 409–412. doi:10.1038/nature0
1400 (2003).

12. Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic
Architecture: The Shape of the Genetic Contribution to Human Traits and Disease. Nature
Reviews Genetics 19, 110–124. doi:10.1038/nrg.2017.101 (2018).

13. Visscher, P. M. & Goddard, M. E. From R.A. Fisher’s 1918 Paper to GWAS a Century
Later. Genetics 211, 1125–1130. doi:10.1534/genetics.118.301594 (2019).

http://dx.doi.org/10.1038/ng.3285
http://dx.doi.org/10.1007/s00439-019-02014-8
http://dx.doi.org/10.1007/s00439-019-02014-8
http://dx.doi.org/10.1016/j.ajhg.2015.12.019
http://dx.doi.org/10.1038/nature11247
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.1038/35057149
http://dx.doi.org/10.1038/35057149
http://dx.doi.org/10.1038/nrg2361
http://dx.doi.org/10.1038/nrg1123
http://dx.doi.org/10.1038/nature06258
http://dx.doi.org/10.1146/annurev-biodatasci-072018-021148
http://dx.doi.org/10.1038/nature01400
http://dx.doi.org/10.1038/nature01400
http://dx.doi.org/10.1038/nrg.2017.101
http://dx.doi.org/10.1534/genetics.118.301594


152 Bibliography

14. Hindorff, L. A. et al. Potential Etiologic and Functional Implications of Genome-Wide
Association Loci for Human Diseases and Traits. Proceedings of the National Academy of
Sciences 106, 9362–9367. doi:10.1073/pnas.0903103106 (2009).

15. Gibson, G. Rare and Common Variants: Twenty Arguments. Nature reviews. Genetics 13,
135–145. doi:10.1038/nrg3118 (2011).

16. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An Expanded View of Complex Traits: From
Polygenic to Omnigenic. Cell 169, 1177–1186. doi:10.1016/j.cell.2017.05.038 (2017).

17. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic Mapping in Human Disease. Science
322, 881–8. doi:10.1126/science.1156409 (2008).

18. Ott, J., Kamatani, Y. & Lathrop, M. Family-Based Designs for Genome-Wide Association
Studies. Nature Reviews Genetics 12, 465–474. doi:10.1038/nrg2989 (2011).

19. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five Years of GWAS Discovery.
The American Journal of Human Genetics 90, 7–24. doi:10.1016/j.ajhg.2011.11.029
(2012).

20. Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A Comprehensive Review
of Genetic Association Studies. Genetics in Medicine 4, 45–61. doi:10.1097/00125817-2
00203000-00002 (2002).

21. Border, R. et al. No Support for Historical Candidate Gene or Candidate Gene-by-
Interaction Hypotheses for Major Depression Across Multiple Large Samples. American
Journal of Psychiatry 176, 376–387. doi:10.1176/appi.ajp.2018.18070881 (2019).

22. Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation.
The American Journal of Human Genetics 101, 5–22. doi:10.1016/j.ajhg.2017.06.005
(2017).

23. Sinnott-Armstrong, N., Naqvi, S., Rivas, M. & Pritchard, J. K. GWAS of Three Molecular
Traits Highlights Core Genes and Pathways alongside a Highly Polygenic Background.
bioRxiv. doi:10.1101/2020.04.20.051631 (2020).

24. Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G. & Meyre, D. Benefits and Limitations
of Genome-Wide Association Studies. Nature Reviews Genetics. doi:10.1038/s41576-019
-0127-1 (2019).

25. Crouch, D. J. M. & Bodmer, W. F. Polygenic Inheritance, GWAS, Polygenic Risk Scores,
and the Search for Functional Variants. Proceedings of the National Academy of Sciences
117, 18924–18933. doi:10.1073/pnas.2005634117 (2020).

26. Bush, W. S. & Moore, J. H. Chapter 11: Genome-Wide Association Studies. PLoS
Computational Biology 8 (eds Lewitter, F. & Kann, M.) e1002822. doi:10.1371/jou
rnal.pcbi.1002822 (2012).

27. The International HapMap Consortium. A Haplotype Map of the Human Genome. Nature
437, 1299–1320. doi:10.1038/nature04226 (2005).

28. Barrett, J. C. & Cardon, L. R. Evaluating Coverage of Genome-Wide Association Studies.
Nature Genetics 38, 659–662. doi:10.1038/ng1801 (2006).

http://dx.doi.org/10.1073/pnas.0903103106
http://dx.doi.org/10.1038/nrg3118
http://dx.doi.org/10.1016/j.cell.2017.05.038
http://dx.doi.org/10.1126/science.1156409
http://dx.doi.org/10.1038/nrg2989
http://dx.doi.org/10.1016/j.ajhg.2011.11.029
http://dx.doi.org/10.1097/00125817-200203000-00002
http://dx.doi.org/10.1097/00125817-200203000-00002
http://dx.doi.org/10.1176/appi.ajp.2018.18070881
http://dx.doi.org/10.1016/j.ajhg.2017.06.005
http://dx.doi.org/10.1101/2020.04.20.051631
http://dx.doi.org/10.1038/s41576-019-0127-1
http://dx.doi.org/10.1038/s41576-019-0127-1
http://dx.doi.org/10.1073/pnas.2005634117
http://dx.doi.org/10.1371/journal.pcbi.1002822
http://dx.doi.org/10.1371/journal.pcbi.1002822
http://dx.doi.org/10.1038/nature04226
http://dx.doi.org/10.1038/ng1801


153

29. Das, S., Abecasis, G. R. & Browning, B. L. Genotype Imputation from Large Reference
Panels. Annual Review of Genomics and Human Genetics 19, 73–96. doi:10.1146/annur
ev-genom-083117-021602 (2018).

30. Taliun, D. et al. Sequencing of 53,831 Diverse Genomes from the NHLBI TOPMed Program.
bioRxiv. doi:10.1101/563866 (2019).

31. Pe’er, I., Yelensky, R., Altshuler, D. & Daly, M. J. Estimation of the Multiple Testing
Burden for Genomewide Association Studies of Nearly All Common Variants. Genetic
Epidemiology 32, 381–385. doi:10.1002/gepi.20303 (2008).

32. Jannot, A.-S., Ehret, G. & Perneger, T. P < 5 × 10-8 Has Emerged as a Standard
of Statistical Significance for Genome-Wide Association Studies. Journal of Clinical
Epidemiology 68, 460–465. doi:10.1016/j.jclinepi.2015.01.001 (2015).

33. Goeman, J. J. & Solari, A. Multiple Hypothesis Testing in Genomics. Statistics in Medicine
33, 1946–1978. doi:10.1002/sim.6082 (2014).

34. Schaid, D. J., Chen, W. & Larson, N. B. From Genome-Wide Associations to Candidate
Causal Variants by Statistical Fine-Mapping. Nature Reviews Genetics 19, 491–504.
doi:10.1038/s41576-018-0016-z (2018).

35. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A Simple New Approach to Variable
Selection in Regression, with Application to Genetic Fine Mapping. Journal of the Royal
Statistical Society: Series B (Statistical Methodology). doi:10.1111/rssb.12388 (2020).

36. Chong, J. X. et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges,
and Opportunities. The American Journal of Human Genetics 97, 199–215. doi:10.1016
/j.ajhg.2015.06.009 (2015).

37. Gallagher, M. D. & Chen-Plotkin, A. S. The Post-GWAS Era: From Association to
Function. The American Journal of Human Genetics 102, 717–730. doi:10.1016/j.ajhg
.2018.04.002 (2018).

38. Brodie, A., Azaria, J. R. & Ofran, Y. How Far from the SNP May the Causative Genes
Be? Nucleic Acids Research 44, 6046–6054. doi:10.1093/nar/gkw500 (2016).

39. Stacey, D. et al. ProGeM: A Framework for the Prioritization of Candidate Causal Genes
at Molecular Quantitative Trait Loci. Nucleic Acids Research 47, e3–e3. doi:10.1093/nar
/gky837 (2019).

40. Forgetta, V. et al. An Effector Index to Predict Causal Genes at GWAS Loci. bioRxiv.
doi:10.1101/2020.06.28.171561 (2020).

41. Ghoussaini, M. et al. Open Targets Genetics: Systematic Identification of Trait-Associated
Genes Using Large-Scale Genetics and Functional Genomics. Nucleic Acids Research.
doi:10.1093/nar/gkaa840 (2020).

42. Cano-Gamez, E. & Trynka, G. From GWAS to Function: Using Functional Genomics
to Identify the Mechanisms Underlying Complex Diseases. Frontiers in Genetics 11.
doi:10.3389/fgene.2020.00424 (2020).

http://dx.doi.org/10.1146/annurev-genom-083117-021602
http://dx.doi.org/10.1146/annurev-genom-083117-021602
http://dx.doi.org/10.1101/563866
http://dx.doi.org/10.1002/gepi.20303
http://dx.doi.org/10.1016/j.jclinepi.2015.01.001
http://dx.doi.org/10.1002/sim.6082
http://dx.doi.org/10.1038/s41576-018-0016-z
http://dx.doi.org/10.1111/rssb.12388
http://dx.doi.org/10.1016/j.ajhg.2015.06.009
http://dx.doi.org/10.1016/j.ajhg.2015.06.009
http://dx.doi.org/10.1016/j.ajhg.2018.04.002
http://dx.doi.org/10.1016/j.ajhg.2018.04.002
http://dx.doi.org/10.1093/nar/gkw500
http://dx.doi.org/10.1093/nar/gky837
http://dx.doi.org/10.1093/nar/gky837
http://dx.doi.org/10.1101/2020.06.28.171561
http://dx.doi.org/10.1093/nar/gkaa840
http://dx.doi.org/10.3389/fgene.2020.00424


154 Bibliography

43. Cramer, P. Organization and Regulation of Gene Transcription. Nature 573, 45–54.
doi:10.1038/s41586-019-1517-4 (2019).

44. Bannister, A. J. & Kouzarides, T. Regulation of Chromatin by Histone Modifications. Cell
Research 21, 381–395. doi:10.1038/cr.2011.22 (2011).

45. Robertson, K. D. & Wolffe, A. P. DNA Methylation in Health and Disease. Nature Reviews
Genetics 1, 11–19. doi:10.1038/35049533 (2000).

46. Gott, J. M. & Emeson, R. B. Functions and Mechanisms of RNA Editing. Annual Review
of Genetics 34, 499–531. doi:10.1146/annurev.genet.34.1.499 (2000).

47. Mignone, F., Gissi, C., Liuni, S. & Pesole, G. Untranslated Regions of mRNAs. Genome
Biology 3, REVIEWS0004. doi:10.1186/gb-2002-3-3-reviews0004 (2002).

48. Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking Disease
Associations with Regulatory Information in the Human Genome. Genome Research 22,
1748–1759. doi:10.1101/gr.136127.111 (2012).

49. Maurano, M. T. et al. Systematic Localization of Common Disease-Associated Variation
in Regulatory DNA. Science 337, 1190–1195. doi:10.1126/science.1222794 (2012).

50. Farh, K. K.-H. et al. Genetic and Epigenetic Fine Mapping of Causal Autoimmune Disease
Variants. Nature 518, 337–343. doi:10.1038/nature13835 (2015).

51. Trynka, G. et al. Disentangling the Effects of Colocalizing Genomic Annotations to
Functionally Prioritize Non-Coding Variants within Complex-Trait Loci. The American
Journal of Human Genetics 97, 139–152. doi:10.1016/j.ajhg.2015.05.016 (2015).

52. Nasser, J. et al. Genome-Wide Maps of Enhancer Regulation Connect Risk Variants to
Disease Genes. bioRxiv. doi:10.1101/2020.09.01.278093 (2020).

53. Gaffney, D. J. Global Properties and Functional Complexity of Human Gene Regulatory
Variation. PLoS Genetics 9 (ed Abecasis, G. R.) e1003501. doi:10.1371/journal.pgen.1
003501 (2013).

54. The GTEx Consortium. The GTEx Consortium Atlas of Genetic Regulatory Effects across
Human Tissues. Science 369, 1318–1330. doi:10.1126/science.aaz1776 (2020).

55. Vandiedonck, C. Genetic Association of Molecular Traits: A Help to Identify Causative
Variants in Complex Diseases. Clinical Genetics. doi:10.1111/cge.13187 (2017).

56. Westra, H.-J. & Franke, L. From Genome to Function by Studying eQTLs. Biochimica et
Biophysica Acta (BBA) - Molecular Basis of Disease 1842, 1896–1902. doi:10.1016/j.bb
adis.2014.04.024 (2014).

57. Albert, F. W. & Kruglyak, L. The Role of Regulatory Variation in Complex Traits and
Disease. Nature Reviews Genetics 16, 197–212. doi:10.1038/nrg3891 (2015).

58. Võsa, U. et al. Unraveling the Polygenic Architecture of Complex Traits Using Blood
eQTL Meta-Analysis. bioRxiv. doi:10.1101/447367 (2018).

59. Fairfax, B. P. et al. Genetics of Gene Expression in Primary Immune Cells Identifies Cell
Type–Specific Master Regulators and Roles of HLA Alleles. Nature Genetics 44, 502–510.
doi:10.1038/ng.2205 (2012).

http://dx.doi.org/10.1038/s41586-019-1517-4
http://dx.doi.org/10.1038/cr.2011.22
http://dx.doi.org/10.1038/35049533
http://dx.doi.org/10.1146/annurev.genet.34.1.499
http://dx.doi.org/10.1186/gb-2002-3-3-reviews0004
http://dx.doi.org/10.1101/gr.136127.111
http://dx.doi.org/10.1126/science.1222794
http://dx.doi.org/10.1038/nature13835
http://dx.doi.org/10.1016/j.ajhg.2015.05.016
http://dx.doi.org/10.1101/2020.09.01.278093
http://dx.doi.org/10.1371/journal.pgen.1003501
http://dx.doi.org/10.1371/journal.pgen.1003501
http://dx.doi.org/10.1126/science.aaz1776
http://dx.doi.org/10.1111/cge.13187
http://dx.doi.org/10.1016/j.bbadis.2014.04.024
http://dx.doi.org/10.1016/j.bbadis.2014.04.024
http://dx.doi.org/10.1038/nrg3891
http://dx.doi.org/10.1101/447367
http://dx.doi.org/10.1038/ng.2205


155

60. Liu, X., Li, Y. I. & Pritchard, J. K. Trans Effects on Gene Expression Can Drive Omnigenic
Inheritance. Cell 177, 1022–1034.e6. doi:10.1016/j.cell.2019.04.014 (2019).

61. Yao, C. et al. Sex- and Age-Interacting eQTLs in Human Complex Diseases. Human
Molecular Genetics 23, 1947–1956. doi:10.1093/hmg/ddt582 (2014).

62. De Jager, P. L., Hacohen, N., Mathis, D., Regev, A., Stranger, B. E. & Benoist, C. ImmVar
Project: Insights and Design Considerations for Future Studies of “Healthy” Immune
Variation. Seminars in Immunology 27, 51–57. doi:10.1016/j.smim.2015.03.003 (2015).

63. Nédélec, Y. et al. Genetic Ancestry and Natural Selection Drive Population Differences in
Immune Responses to Pathogens. Cell 167, 657–669.e21. doi:10.1016/j.cell.2016.09
.025 (2016).

64. Quach, H. & Quintana-Murci, L. Living in an Adaptive World: Genomic Dissection of the
Genus Homo and Its Immune Response. Journal of Experimental Medicine 214, 877–894.
doi:10.1084/jem.20161942 (2017).

65. Nica, A. C. et al. The Architecture of Gene Regulatory Variation across Multiple Human
Tissues: The MuTHER Study. PLoS Genetics 7 (ed Barsh, G.) e1002003. doi:10.1371/jo
urnal.pgen.1002003 (2011).

66. Aguet, F. et al. Genetic Effects on Gene Expression across Human Tissues. Nature 550,
204–213. doi:10.1038/nature24277 (2017).

67. Dimas, A. S. et al. Common Regulatory Variation Impacts Gene Expression in a Cell
Type-Dependent Manner. Science 325, 1246–1250. doi:10.1126/science.1174148 (2009).

68. Peters, J. E. et al. Insight into Genotype-Phenotype Associations through eQTL Mapping
in Multiple Cell Types in Health and Immune-Mediated Disease. PLOS Genetics 12 (ed
Plagnol, V.) e1005908. doi:10.1371/journal.pgen.1005908 (2016).

69. Chen, L. et al. Genetic Drivers of Epigenetic and Transcriptional Variation in Human
Immune Cells. Cell 167, 1398–1414.e24. doi:10.1016/j.cell.2016.10.026 (2016).

70. Calderon, D. et al. Landscape of Stimulation-Responsive Chromatin across Diverse Human
Immune Cells. Nature Genetics 51, 1494–1505. doi:10.1038/s41588-019-0505-9 (2019).

71. Westra, H.-J. et al. Cell Specific eQTL Analysis without Sorting Cells. PLOS Genetics 11
(ed Pastinen, T.) e1005223. doi:10.1371/journal.pgen.1005223 (2015).

72. Zhernakova, D. V. et al. Identification of Context-Dependent Expression Quantitative
Trait Loci in Whole Blood. Nature Genetics 49, 139–145. doi:10.1038/ng.3737 (2017).

73. Glastonbury, C. A., Couto Alves, A., El-Sayed Moustafa, J. S. & Small, K. S. Cell-Type
Heterogeneity in Adipose Tissue Is Associated with Complex Traits and Reveals Disease-
Relevant Cell-Specific eQTLs. The American Journal of Human Genetics 104, 1013–1024.
doi:10.1016/j.ajhg.2019.03.025 (2019).

74. Kim-Hellmuth, S. et al. Cell Type–Specific Genetic Regulation of Gene Expression across
Human Tissues. Science 369, eaaz8528. doi:10.1126/science.aaz8528 (2020).

75. Strober, B. J. et al. Dynamic Genetic Regulation of Gene Expression during Cellular
Differentiation. Science 364, 1287–1290. doi:10.1126/science.aaw0040 (2019).

http://dx.doi.org/10.1016/j.cell.2019.04.014
http://dx.doi.org/10.1093/hmg/ddt582
http://dx.doi.org/10.1016/j.smim.2015.03.003
http://dx.doi.org/10.1016/j.cell.2016.09.025
http://dx.doi.org/10.1016/j.cell.2016.09.025
http://dx.doi.org/10.1084/jem.20161942
http://dx.doi.org/10.1371/journal.pgen.1002003
http://dx.doi.org/10.1371/journal.pgen.1002003
http://dx.doi.org/10.1038/nature24277
http://dx.doi.org/10.1126/science.1174148
http://dx.doi.org/10.1371/journal.pgen.1005908
http://dx.doi.org/10.1016/j.cell.2016.10.026
http://dx.doi.org/10.1038/s41588-019-0505-9
http://dx.doi.org/10.1371/journal.pgen.1005223
http://dx.doi.org/10.1038/ng.3737
http://dx.doi.org/10.1016/j.ajhg.2019.03.025
http://dx.doi.org/10.1126/science.aaz8528
http://dx.doi.org/10.1126/science.aaw0040


156 Bibliography

76. Fu, J. et al. Unraveling the Regulatory Mechanisms Underlying Tissue-Dependent Genetic
Variation of Gene Expression. PLoS Genetics 8 (ed Gibson, G.) e1002431. doi:10.1371/j
ournal.pgen.1002431 (2012).

77. Huang, Q. The Genetics of Gene Expression: From Simulations to the Early-Life Origins
of Immune Diseases (2019).

78. Barreiro, L. B., Tailleux, L., Pai, A. A., Gicquel, B., Marioni, J. C. & Gilad, Y. Decipher-
ing the Genetic Architecture of Variation in the Immune Response to Mycobacterium
Tuberculosis Infection. Proceedings of the National Academy of Sciences 109, 1204–1209.
doi:10.1073/pnas.1115761109 (2012).

79. Fairfax, B. P. et al. Innate Immune Activity Conditions the Effect of Regulatory Variants
upon Monocyte Gene Expression. Science 343, 1246949–1246949. doi:10.1126/science
.1246949 (2014).

80. Kim, S. et al. Characterizing the Genetic Basis of Innate Immune Response in TLR4-
Activated Human Monocytes. Nature Communications 5. doi:10.1038/ncomms6236 (2014).

81. Hu, X. et al. Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic
Basis of Proliferation in CD4+ Effector Memory T Cells. PLoS Genetics 10 (ed Roopenian,
D. C.) e1004404. doi:10.1371/journal.pgen.1004404 (2014).

82. Lee, M. N. et al. Common Genetic Variants Modulate Pathogen-Sensing Responses in
Human Dendritic Cells. Science 343, 1246980–1246980. doi:10.1126/science.1246980
(2014).

83. Çalışkan, M., Baker, S. W., Gilad, Y. & Ober, C. Host Genetic Variation Influences Gene
Expression Response to Rhinovirus Infection. PLOS Genetics 11 (ed Gibson, G.) e1005111.
doi:10.1371/journal.pgen.1005111 (2015).

84. Quach, H. et al. Genetic Adaptation and Neandertal Admixture Shaped the Immune
System of Human Populations. Cell 167, 643–656.e17. doi:10.1016/j.cell.2016.09.024
(2016).

85. Kim-Hellmuth, S. et al. Genetic Regulatory Effects Modified by Immune Activation
Contribute to Autoimmune Disease Associations. Nature Communications 8. doi:10.1038
/s41467-017-00366-1 (2017).

86. Alasoo, K. et al. Shared Genetic Effects on Chromatin and Gene Expression Indicate a
Role for Enhancer Priming in Immune Response. Nature Genetics 50, 424–431. doi:10.10
38/s41588-018-0046-7 (2018).

87. Gate, R. E. et al. Genetic Determinants of Co-Accessible Chromatin Regions in Activated T
Cells across Humans. Nature Genetics 50, 1140–1150. doi:10.1038/s41588-018-0156-2
(2018).

88. Schmiedel, B. J. et al. Impact of Genetic Polymorphisms on Human Immune Cell Gene
Expression. Cell 175, 1701–1715.e16. doi:10.1016/j.cell.2018.10.022 (2018).

http://dx.doi.org/10.1371/journal.pgen.1002431
http://dx.doi.org/10.1371/journal.pgen.1002431
http://dx.doi.org/10.1073/pnas.1115761109
http://dx.doi.org/10.1126/science.1246949
http://dx.doi.org/10.1126/science.1246949
http://dx.doi.org/10.1038/ncomms6236
http://dx.doi.org/10.1371/journal.pgen.1004404
http://dx.doi.org/10.1126/science.1246980
http://dx.doi.org/10.1371/journal.pgen.1005111
http://dx.doi.org/10.1016/j.cell.2016.09.024
http://dx.doi.org/10.1038/s41467-017-00366-1
http://dx.doi.org/10.1038/s41467-017-00366-1
http://dx.doi.org/10.1038/s41588-018-0046-7
http://dx.doi.org/10.1038/s41588-018-0046-7
http://dx.doi.org/10.1038/s41588-018-0156-2
http://dx.doi.org/10.1016/j.cell.2018.10.022


157

89. Alasoo, K., Rodrigues, J., Danesh, J., Freitag, D. F., Paul, D. S. & Gaffney, D. J. Genetic
Effects on Promoter Usage Are Highly Context-Specific and Contribute to Complex Traits.
eLife 8. doi:10.7554/eLife.41673 (2019).

90. De Vries, D. H. et al. Integrating GWAS with Bulk and Single-Cell RNA-Sequencing
Reveals a Role for LY86 in the Anti-Candida Host Response. PLOS Pathogens 16 (ed
May, R. C.) e1008408. doi:10.1371/journal.ppat.1008408 (2020).

91. Huang, Q. Q. et al. Neonatal Genetics of Gene Expression Reveal Potential Origins of
Autoimmune and Allergic Disease Risk. Nature Communications 11. doi:10.1038/s41467
-020-17477-x (2020).

92. Manry, J. et al. Deciphering the Genetic Control of Gene Expression Following My-
cobacterium Leprae Antigen Stimulation. PLOS Genetics 13 (ed Sirugo, G.) e1006952.
doi:10.1371/journal.pgen.1006952 (2017).

93. Idaghdour, Y. et al. Evidence for Additive and Interaction Effects of Host Genotype and
Infection in Malaria. Proceedings of the National Academy of Sciences 109, 16786–16793.
doi:10.1073/pnas.1204945109 (2012).

94. Franco, L. M. et al. Integrative Genomic Analysis of the Human Immune Response to
Influenza Vaccination. eLife 2, e00299. doi:10.7554/eLife.00299 (2013).

95. Lareau, C. A., White, B. C., Oberg, A. L., Kennedy, R. B., Poland, G. A. & McKinney,
B. A. An Interaction Quantitative Trait Loci Tool Implicates Epistatic Functional Variants
in an Apoptosis Pathway in Smallpox Vaccine eQTL Data. Genes & Immunity 17, 244–250.
doi:10.1038/gene.2016.15 (2016).

96. Davenport, E. E. et al. Discovering in Vivo Cytokine-eQTL Interactions from a Lupus
Clinical Trial. Genome Biology 19. doi:10.1186/s13059-018-1560-8 (2018).

97. Nicolae, D. L., Gamazon, E., Zhang, W., Duan, S., Dolan, M. E. & Cox, N. J. Trait-
Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from
GWAS. PLoS Genetics 6 (ed Gibson, G.) e1000888. doi:10.1371/journal.pgen.1000888
(2010).

98. Burgess, S., Foley, C. N. & Zuber, V. Inferring Causal Relationships Between Risk Factors
and Outcomes from Genome-Wide Association Study Data. Annual Review of Genomics
and Human Genetics 19, 303–327. doi:10.1146/annurev-genom-083117-021731 (2018).

99. Wallace, C. Eliciting Priors and Relaxing the Single Causal Variant Assumption in
Colocalisation Analyses. PLOS Genetics 16 (ed Epstein, M. P.) e1008720. doi:10.1371/j
ournal.pgen.1008720 (2020).

100. Hukku, A., Pividori, M., Luca, F., Pique-Regi, R., Im, H. K. & Wen, X. Probabilistic
Colocalization of Genetic Variants from Complex and Molecular Traits: Promise and
Limitations. bioRxiv. doi:10.1101/2020.07.01.182097 (2020).

101. Kundu, K. et al. Genetic Associations at Regulatory Phenotypes Improve Fine-Mapping of
Causal Variants for Twelve Immune-Mediated Diseases. doi:10.1101/2020.01.15.907436
(2020).

http://dx.doi.org/10.7554/eLife.41673
http://dx.doi.org/10.1371/journal.ppat.1008408
http://dx.doi.org/10.1038/s41467-020-17477-x
http://dx.doi.org/10.1038/s41467-020-17477-x
http://dx.doi.org/10.1371/journal.pgen.1006952
http://dx.doi.org/10.1073/pnas.1204945109
http://dx.doi.org/10.7554/eLife.00299
http://dx.doi.org/10.1038/gene.2016.15
http://dx.doi.org/10.1186/s13059-018-1560-8
http://dx.doi.org/10.1371/journal.pgen.1000888
http://dx.doi.org/10.1146/annurev-genom-083117-021731
http://dx.doi.org/10.1371/journal.pgen.1008720
http://dx.doi.org/10.1371/journal.pgen.1008720
http://dx.doi.org/10.1101/2020.07.01.182097
http://dx.doi.org/10.1101/2020.01.15.907436


158 Bibliography

102. Murphy, K. & Weaver, C. Chapter 1: Basic Concepts in Immunology in Janeway’s Im-
munobiology 9th edition (Garland Science/Taylor & Francis Group, LLC, New York, NY,
2016).

103. Domínguez-Andrés, J. & Netea, M. G. The Specifics of Innate Immune Memory. Science
368, 1052–1053. doi:10.1126/science.abc2660 (2020).

104. Davis, M. M., Tato, C. M. & Furman, D. Systems Immunology: Just Getting Started.
Nature Immunology 18, 725–732. doi:10.1038/ni.3768 (2017).

105. Villani, A.-C., Sarkizova, S. & Hacohen, N. Systems Immunology: Learning the Rules of
the Immune System. Annual Review of Immunology 36, 813–842. doi:10.1146/annurev-
immunol-042617-053035 (2018).

106. Pulendran, B. & Davis, M. M. The Science and Medicine of Human Immunology, 13
(2020).

107. Yu, J., Peng, J. & Chi, H. Systems Immunology: Integrating Multi-Omics Data to Infer
Regulatory Networks and Hidden Drivers of Immunity. Current Opinion in Systems Biology
15, 19–29. doi:10.1016/j.coisb.2019.03.003 (2019).

108. Liston, A., Carr, E. J. & Linterman, M. A. Shaping Variation in the Human Immune
System. Trends in Immunology 37, 637–646. doi:10.1016/j.it.2016.08.002 (2016).

109. Brodin, P. & Davis, M. M. Human Immune System Variation. Nature Reviews Immunology
17, 21–29. doi:10.1038/nri.2016.125 (2017).

110. Patin, E. et al. Natural Variation in the Parameters of Innate Immune Cells Is Preferentially
Driven by Genetic Factors. Nature Immunology. doi:10.1038/s41590-018-0049-7 (2018).

111. Liston, A. & Goris, A. The Origins of Diversity in Human Immunity. Nature Immunology
19, 209–210. doi:10.1038/s41590-018-0047-9 (2018).

112. Tsang, J. S. Utilizing Population Variation, Vaccination, and Systems Biology to Study
Human Immunology. Trends in Immunology 36, 479–493. doi:10.1016/j.it.2015.06.005
(2015).

113. Yosef, N. & Regev, A. Writ Large: Genomic Dissection of the Effect of Cellular Environment
on Immune Response. Science 354, 64–68. doi:10.1126/science.aaf5453 (2016).

114. Krammer, F. et al. Influenza. Nature Reviews Disease Primers 4. doi:10.1038/s41572-0
18-0002-y (2018).

115. Dhakal, S. & Klein, S. L. Host Factors Impact Vaccine Efficacy: Implications for Seasonal
and Universal Influenza Vaccine Programs. Journal of Virology 93 (ed Coyne, C. B.)
doi:10.1128/JVI.00797-19 (2019).

116. Krammer, F. The Human Antibody Response to Influenza A Virus Infection and Vac-
cination. Nature Reviews Immunology 19, 383–397. doi:10.1038/s41577-019-0143-6
(2019).

117. World Health Organization. A Revision of the System of Nomenclature for Influenza
Viruses: A WHO Memorandum. Bulletin of the World Health Organization 58, 585–591
(1980).

http://dx.doi.org/10.1126/science.abc2660
http://dx.doi.org/10.1038/ni.3768
http://dx.doi.org/10.1146/annurev-immunol-042617-053035
http://dx.doi.org/10.1146/annurev-immunol-042617-053035
http://dx.doi.org/10.1016/j.coisb.2019.03.003
http://dx.doi.org/10.1016/j.it.2016.08.002
http://dx.doi.org/10.1038/nri.2016.125
http://dx.doi.org/10.1038/s41590-018-0049-7
http://dx.doi.org/10.1038/s41590-018-0047-9
http://dx.doi.org/10.1016/j.it.2015.06.005
http://dx.doi.org/10.1126/science.aaf5453
http://dx.doi.org/10.1038/s41572-018-0002-y
http://dx.doi.org/10.1038/s41572-018-0002-y
http://dx.doi.org/10.1128/JVI.00797-19
http://dx.doi.org/10.1038/s41577-019-0143-6


159

118. Short, K. R., Kedzierska, K. & van de Sandt, C. E. Back to the Future: Lessons Learned
From the 1918 Influenza Pandemic. Frontiers in Cellular and Infection Microbiology 8.
doi:10.3389/fcimb.2018.00343 (2018).

119. Garten, R. J. et al. Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1)
Influenza Viruses Circulating in Humans. Science 325, 197–201. doi:10.1126/science.1
176225 (2009).

120. World Health Organization. Standardization of terminology of the pandemic A(H1N1)
2009 virus. Weekly Epidemiological Record 86, 480 (2011).

121. Houser, K. & Subbarao, K. Influenza Vaccines: Challenges and Solutions. Cell Host &
Microbe 17, 295–300. doi:10.1016/j.chom.2015.02.012 (2015).

122. Bresee, J. S., Fry, A. M., Sambhara, S. & Cox, N. J. Inactivated Influenza Vaccines in
Plotkin’s Vaccines 456–488.e21 (Elsevier, 2018). doi:10.1016/B978-0-323-35761-6.0003
1-6.

123. Luke, C. J., Lakdawala, S. S. & Subbarao, K. Influenza Vaccine—Live in Plotkin’s Vaccines
489–510.e7 (Elsevier, 2018). doi:10.1016/B978-0-323-35761-6.00032-8.

124. Poland, G., Ovsyannikova, I. & Kennedy, R. Personalized Vaccinology: A Review. Vaccine
36, 5350–5357. doi:10.1016/j.vaccine.2017.07.062 (2018).

125. Ramsay, M. Influenza: The Green Book, Chapter 19 in Immunisation against Infectious
Disease 1–27 (Public Health England, 2020).

126. Zimmermann, P. & Curtis, N. Factors That Influence the Immune Response to Vaccination.
Clinical Microbiology Reviews 32. doi:10.1128/CMR.00084-18 (2019).

127. Furman, D. et al. Systems Analysis of Sex Differences Reveals an Immunosuppressive Role
for Testosterone in the Response to Influenza Vaccination. Proceedings of the National
Academy of Sciences 111, 869–874. doi:10.1073/pnas.1321060111 (2014).

128. Henry, C., Palm, A.-K. E., Krammer, F. & Wilson, P. C. From Original Antigenic Sin to
the Universal Influenza Virus Vaccine. Trends in Immunology 39, 70–79. doi:10.1016/j
.it.2017.08.003 (2018).

129. Davis, C. W. et al. Influenza Vaccine–Induced Human Bone Marrow Plasma Cells Decline
within a Year after Vaccination. Science 370, 237–241. doi:10.1126/science.aaz8432
(2020).

130. Sano, K., Ainai, A., Suzuki, T. & Hasegawa, H. The Road to a More Effective Influenza
Vaccine: Up to Date Studies and Future Prospects. Vaccine 35, 5388–5395. doi:10.1016
/j.vaccine.2017.08.034 (2017).

131. Klimov, A. et al. Influenza Virus Titration, Antigenic Characterization, and Serological
Methods for Antibody Detection in Influenza Virus (eds Kawaoka, Y. & Neumann, G.)
25–51 (Humana Press, Totowa, NJ, 2012). doi:10.1007/978-1-61779-621-0_3.

132. Cox, R. Correlates of Protection to Influenza Virus, Where Do We Go from Here? Human
Vaccines & Immunotherapeutics 9, 405–408. doi:10.4161/hv.22908 (2013).

http://dx.doi.org/10.3389/fcimb.2018.00343
http://dx.doi.org/10.1126/science.1176225
http://dx.doi.org/10.1126/science.1176225
http://dx.doi.org/10.1016/j.chom.2015.02.012
http://dx.doi.org/10.1016/B978-0-323-35761-6.00031-6
http://dx.doi.org/10.1016/B978-0-323-35761-6.00031-6
http://dx.doi.org/10.1016/B978-0-323-35761-6.00032-8
http://dx.doi.org/10.1016/j.vaccine.2017.07.062
http://dx.doi.org/10.1128/CMR.00084-18
http://dx.doi.org/10.1073/pnas.1321060111
http://dx.doi.org/10.1016/j.it.2017.08.003
http://dx.doi.org/10.1016/j.it.2017.08.003
http://dx.doi.org/10.1126/science.aaz8432
http://dx.doi.org/10.1016/j.vaccine.2017.08.034
http://dx.doi.org/10.1016/j.vaccine.2017.08.034
http://dx.doi.org/10.1007/978-1-61779-621-0_3
http://dx.doi.org/10.4161/hv.22908


160 Bibliography

133. Pulendran, B., Li, S. & Nakaya, H. I. Systems Vaccinology. Immunity 33, 516–529.
doi:10.1016/j.immuni.2010.10.006 (2010).

134. Koutsakos, M. et al. Circulating T FH Cells, Serological Memory, and Tissue Compart-
mentalization Shape Human Influenza-Specific B Cell Immunity. Science Translational
Medicine 10, eaan8405. doi:10.1126/scitranslmed.aan8405 (2018).

135. Renegar, K. B., Small, P. A., Boykins, L. G. & Wright, P. F. Role of IgA versus IgG in
the Control of Influenza Viral Infection in the Murine Respiratory Tract. The Journal of
Immunology 173, 1978–1986. doi:10.4049/jimmunol.173.3.1978 (2004).

136. De Gregorio, E. & Rappuoli, R. From Empiricism to Rational Design: A Personal Perspec-
tive of the Evolution of Vaccine Development. Nature Reviews Immunology 14, 505–514.
doi:10.1038/nri3694 (2014).

137. Nakaya, H. I., Li, S. & Pulendran, B. Systems Vaccinology: Learning to Compute the
Behavior of Vaccine Induced Immunity. Wiley Interdisciplinary Reviews: Systems Biology
and Medicine 4, 193–205. doi:10.1002/wsbm.163 (2012).

138. Li, S., Nakaya, H. I., Kazmin, D. A., Oh, J. Z. & Pulendran, B. Systems Biological
Approaches to Measure and Understand Vaccine Immunity in Humans. Seminars in
Immunology 25, 209–218. doi:10.1016/j.smim.2013.05.003 (2013).

139. Pulendran, B. Systems Vaccinology: Probing Humanity’s Diverse Immune Systems with
Vaccines. Proceedings of the National Academy of Sciences 111, 12300–12306. doi:10.107
3/pnas.1400476111 (2014).

140. Hagan, T., Nakaya, H. I., Subramaniam, S. & Pulendran, B. Systems Vaccinology: Enabling
Rational Vaccine Design with Systems Biological Approaches. Vaccine 33, 5294–5301.
doi:10.1016/j.vaccine.2015.03.072 (2015).

141. Nakaya, H. I. & Pulendran, B. Vaccinology in the Era of High-Throughput Biology.
Philosophical Transactions of the Royal Society B: Biological Sciences 370, 20140146–
20140146. doi:10.1098/rstb.2014.0146 (2015).

142. Davis, M. M. & Tato, C. M. Will Systems Biology Deliver Its Promise and Contribute
to the Development of New or Improved Vaccines?: Seeing the Forest Rather than a Few
Trees. Cold Spring Harbor Perspectives in Biology 10, a028886. doi:10.1101/cshperspec
t.a028886 (2018).

143. Raeven, R. H. M., van Riet, E., Meiring, H. D., Metz, B. & Kersten, G. F. A. Systems
Vaccinology and Big Data in the Vaccine Development Chain. Immunology 156, 33–46.
doi:10.1111/imm.13012 (2019).

144. Siegrist, C.-A. Vaccine Immunology in Plotkin’s Vaccines 16–34.e7 (Elsevier, 2018). doi:10
.1016/B978-0-323-35761-6.00002-X.

145. Plotkin, S. A. & Gilbert, P. Correlates of Protection in Plotkin’s Vaccines 35–40.e4 (Elsevier,
2018). doi:10.1016/B978-0-323-35761-6.00003-1.

146. Tsang, J. S. et al. Improving Vaccine-Induced Immunity: Can Baseline Predict Outcome?
Trends in Immunology. doi:10.1016/j.it.2020.04.001 (2020).

http://dx.doi.org/10.1016/j.immuni.2010.10.006
http://dx.doi.org/10.1126/scitranslmed.aan8405
http://dx.doi.org/10.4049/jimmunol.173.3.1978
http://dx.doi.org/10.1038/nri3694
http://dx.doi.org/10.1002/wsbm.163
http://dx.doi.org/10.1016/j.smim.2013.05.003
http://dx.doi.org/10.1073/pnas.1400476111
http://dx.doi.org/10.1073/pnas.1400476111
http://dx.doi.org/10.1016/j.vaccine.2015.03.072
http://dx.doi.org/10.1098/rstb.2014.0146
http://dx.doi.org/10.1101/cshperspect.a028886
http://dx.doi.org/10.1101/cshperspect.a028886
http://dx.doi.org/10.1111/imm.13012
http://dx.doi.org/10.1016/B978-0-323-35761-6.00002-X
http://dx.doi.org/10.1016/B978-0-323-35761-6.00002-X
http://dx.doi.org/10.1016/B978-0-323-35761-6.00003-1
http://dx.doi.org/10.1016/j.it.2020.04.001


161

147. Pulendran, B. Learning Immunology from the Yellow Fever Vaccine: Innate Immunity
to Systems Vaccinology. Nature Reviews Immunology 9, 741–747. doi:10.1038/nri2629
(2009).

148. Cotugno, N. et al. OMIC Technologies and Vaccine Development: From the Identification of
Vulnerable Individuals to the Formulation of Invulnerable Vaccines. Journal of Immunology
Research 2019, 1–10. doi:10.1155/2019/8732191 (2019).

149. Vahey, M. T. et al. Expression of Genes Associated with Immunoproteasome Processing of
Major Histocompatibility Complex Peptides Is Indicative of Protection with Adjuvanted
RTS,S Malaria Vaccine. The Journal of Infectious Diseases 201, 580–589. doi:10.1086/6
50310 (2010).

150. Blohmke, C. J., O’Connor, D. & Pollard, A. J. The Use of Systems Biology and Immuno-
logical Big Data to Guide Vaccine Development. Genome Medicine 7. doi:10.1186/s1307
3-015-0236-1 (2015).

151. Zhu, W. et al. A Whole Genome Transcriptional Analysis of the Early Immune Response
Induced by Live Attenuated and Inactivated Influenza Vaccines in Young Children. Vaccine
28, 2865–2876. doi:10.1016/j.vaccine.2010.01.060 (2010).

152. Cao, R. G. et al. Differences in Antibody Responses Between Trivalent Inactivated Influenza
Vaccine and Live Attenuated Influenza Vaccine Correlate With the Kinetics and Magnitude
of Interferon Signaling in Children. The Journal of Infectious Diseases 210, 224–233. doi:1
0.1093/infdis/jiu079 (2014).

153. Bucasas, K. L. et al. Early Patterns of Gene Expression Correlate With the Humoral
Immune Response to Influenza Vaccination in Humans. The Journal of Infectious Diseases
203, 921–929. doi:10.1093/infdis/jiq156 (2011).

154. Nakaya, H. I. et al. Systems Biology of Vaccination for Seasonal Influenza in Humans.
Nature Immunology 12, 786–795. doi:10.1038/ni.2067 (2011).

155. Tan, Y., Tamayo, P., Nakaya, H., Pulendran, B., Mesirov, J. P. & Haining, W. N. Gene
Signatures Related to B-Cell Proliferation Predict Influenza Vaccine-Induced Antibody
Response. European Journal of Immunology 44, 285–295. doi:10.1002/eji.201343657
(2014).

156. Frasca, D. et al. Intrinsic Defects in B Cell Response to Seasonal Influenza Vaccination in
Elderly Humans. Vaccine 28, 8077–8084. doi:10.1016/j.vaccine.2010.10.023 (2010).

157. Nakaya, H. I. et al. Systems Analysis of Immunity to Influenza Vaccination across Multiple
Years and in Diverse Populations Reveals Shared Molecular Signatures. Immunity 43,
1186–1198. doi:10.1016/j.immuni.2015.11.012 (2015).

158. Nakaya, H. I. et al. Systems Biology of Immunity to MF59-Adjuvanted versus Nonad-
juvanted Trivalent Seasonal Influenza Vaccines in Early Childhood. Proceedings of the
National Academy of Sciences 113, 1853–1858. doi:10.1073/pnas.1519690113 (2016).

159. HIPC-CHI Signatures Project Team & HIPC-I Consortium. Multicohort Analysis Re-
veals Baseline Transcriptional Predictors of Influenza Vaccination Responses. Science
Immunology 2, eaal4656. doi:10.1126/sciimmunol.aal4656 (2017).

http://dx.doi.org/10.1038/nri2629
http://dx.doi.org/10.1155/2019/8732191
http://dx.doi.org/10.1086/650310
http://dx.doi.org/10.1086/650310
http://dx.doi.org/10.1186/s13073-015-0236-1
http://dx.doi.org/10.1186/s13073-015-0236-1
http://dx.doi.org/10.1016/j.vaccine.2010.01.060
http://dx.doi.org/10.1093/infdis/jiu079
http://dx.doi.org/10.1093/infdis/jiu079
http://dx.doi.org/10.1093/infdis/jiq156
http://dx.doi.org/10.1038/ni.2067
http://dx.doi.org/10.1002/eji.201343657
http://dx.doi.org/10.1016/j.vaccine.2010.10.023
http://dx.doi.org/10.1016/j.immuni.2015.11.012
http://dx.doi.org/10.1073/pnas.1519690113
http://dx.doi.org/10.1126/sciimmunol.aal4656


162 Bibliography

160. Furman, D. et al. Apoptosis and Other Immune Biomarkers Predict Influenza Vaccine
Responsiveness. Molecular Systems Biology 9, 659. doi:10.1038/msb.2013.15 (2013).

161. Tsang, J. S. et al. Global Analyses of Human Immune Variation Reveal Baseline Predictors
of Postvaccination Responses. Cell 157, 499–513. doi:10.1016/j.cell.2014.03.031
(2014).

162. Sobolev, O. et al. Adjuvanted Influenza-H1N1 Vaccination Reveals Lymphoid Signatures
of Age-Dependent Early Responses and of Clinical Adverse Events. Nature Immunology
17, 204–213. doi:10.1038/ni.3328 (2016).

163. Wilkins, A. L. et al. AS03- and MF59-Adjuvanted Influenza Vaccines in Children. Frontiers
in Immunology 8. doi:10.3389/fimmu.2017.01760 (2017).

164. Tregoning, J. S., Russell, R. F. & Kinnear, E. Adjuvanted Influenza Vaccines. Human
Vaccines & Immunotherapeutics 14, 550–564. doi:10.1080/21645515.2017.1415684
(2018).

165. Broadbent, A. J. & Subbarao, K. Influenza Virus Vaccines: Lessons from the 2009 H1N1
Pandemic. Current Opinion in Virology 1, 254–262. doi:10.1016/j.coviro.2011.08.002
(2011).

166. Syrjänen, R. K. et al. Effectiveness of Pandemic and Seasonal Influenza Vaccines in
Preventing Laboratory-Confirmed Influenza in Adults: A Clinical Cohort Study during
Epidemic Seasons 2009–2010 and 2010–2011 in Finland. PLoS ONE 9 (ed Marques,
E. T. A.) e108538. doi:10.1371/journal.pone.0108538 (2014).

167. Food and Drug Administration. Guidance for Industry: Clinical Data Needed to Support
the Licensure of Pandemic Influenza Vaccines (2007), 20.

168. Barnett, A. G. Regression to the Mean: What It Is and How to Deal with It. International
Journal of Epidemiology 34, 215–220. doi:10.1093/ije/dyh299 (2004).

169. Senn, S. Francis Galton and Regression to the Mean. Significance 8, 124–126. doi:10.111
1/j.1740-9713.2011.00509.x (2011).

170. Tu, Y.-K. & Gilthorpe, M. S. Revisiting the Relation between Change and Initial Value:
A Review and Evaluation. Statistics in Medicine 26, 443–457. doi:10.1002/sim.2538
(2007).

171. Clifton, L. & Clifton, D. A. The Correlation between Baseline Score and Post-Intervention
Score, and Its Implications for Statistical Analysis. Trials 20. doi:10.1186/s13063-018-
3108-3 (2019).

172. Cohen, J. The Cost of Dichotomization. Applied Psychological Measurement 7, 249–253.
doi:10.1177/014662168300700301 (1983).

173. Senn, S. Dichotomania: An Obsessive Compulsive Disorder That Is Badly Affecting the
Quality of Analysis of Pharmaceutical Trials in Proceedings of the International Statistical
Institute 55th World Statistics Congress (International Statistical Institute, Sydney, 2005),
14.

http://dx.doi.org/10.1038/msb.2013.15
http://dx.doi.org/10.1016/j.cell.2014.03.031
http://dx.doi.org/10.1038/ni.3328
http://dx.doi.org/10.3389/fimmu.2017.01760
http://dx.doi.org/10.1080/21645515.2017.1415684
http://dx.doi.org/10.1016/j.coviro.2011.08.002
http://dx.doi.org/10.1371/journal.pone.0108538
http://dx.doi.org/10.1093/ije/dyh299
http://dx.doi.org/10.1111/j.1740-9713.2011.00509.x
http://dx.doi.org/10.1111/j.1740-9713.2011.00509.x
http://dx.doi.org/10.1002/sim.2538
http://dx.doi.org/10.1186/s13063-018-3108-3
http://dx.doi.org/10.1186/s13063-018-3108-3
http://dx.doi.org/10.1177/014662168300700301


163

174. Altman, D. G. & Royston, P. The Cost of Dichotomising Continuous Variables. BMJ 332,
1080.1. doi:10.1136/bmj.332.7549.1080 (2006).

175. Fedorov, V., Mannino, F. & Zhang, R. Consequences of Dichotomization. Pharmaceutical
Statistics 8, 50–61. doi:10.1002/pst.331 (2009).

176. Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M. & Lee, J. J. Second-
Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. GigaScience
4, 7. doi:10.1186/s13742-015-0047-8 (2015).

177. McCarthy, M. I. et al. Genome-Wide Association Studies for Complex Traits: Consensus,
Uncertainty and Challenges. Nature Reviews Genetics 9, 356–369. doi:10.1038/nrg2344
(2008).

178. Anderson, C. A., Pettersson, F. H., Clarke, G. M., Cardon, L. R., Morris, A. P. & Zondervan,
K. T. Data Quality Control in Genetic Case-Control Association Studies. Nature Protocols
5, 1564–73. doi:10.1038/nprot.2010.116 (2010).

179. Marees, A. T. et al. A Tutorial on Conducting Genome-Wide Association Studies: Quality
Control and Statistical Analysis. International Journal of Methods in Psychiatric Research
27, e1608. doi:10.1002/mpr.1608 (2018).

180. De Lange, K. M. et al. Genome-Wide Association Study Implicates Immune Activation
of Multiple Integrin Genes in Inflammatory Bowel Disease. Nature Genetics 49, 256–261.
doi:10.1038/ng.3760 (2017).

181. Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M. & Chen, W.-M. Robust
Relationship Inference in Genome-Wide Association Studies. Bioinformatics 26, 2867–2873.
doi:10.1093/bioinformatics/btq559 (2010).

182. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using Probabilistic Estimation
of Expression Residuals (PEER) to Obtain Increased Power and Interpretability of Gene
Expression Analyses. Nature protocols 7, 500–507. doi:10.1038/nprot.2011.457 (2012).

183. Brown, B. C., Bray, N. L. & Pachter, L. Expression Reflects Population Structure. PLOS
Genetics 14 (ed Di Rienzo, A.) e1007841. doi:10.1371/journal.pgen.1007841 (2018).

184. The International HapMap 3 Consortium. Integrating Common and Rare Genetic Variation
in Diverse Human Populations. Nature 467, 52–58. doi:10.1038/nature09298 (2010).

185. Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A. & Reich, D.
Principal Components Analysis Corrects for Stratification in Genome-Wide Association
Studies. Nature Genetics 38, 904–909. doi:10.1038/ng1847 (2006).

186. Abdellaoui, A. et al. Population Structure, Migration, and Diversifying Selection in the
Netherlands. European Journal of Human Genetics 21, 1277–1285. doi:10.1038/ejhg.20
13.48 (2013).

187. Privé, F., Luu, K., Blum, M. G. B., McGrath, J. J. & Vilhjálmsson, B. J. Efficient Toolkit
Implementing Best Practices for Principal Component Analysis of Population Genetic Data.
Bioinformatics 36 (ed Schwartz, R.) 4449–4457. doi:10.1093/bioinformatics/btaa520
(2020).

http://dx.doi.org/10.1136/bmj.332.7549.1080
http://dx.doi.org/10.1002/pst.331
http://dx.doi.org/10.1186/s13742-015-0047-8
http://dx.doi.org/10.1038/nrg2344
http://dx.doi.org/10.1038/nprot.2010.116
http://dx.doi.org/10.1002/mpr.1608
http://dx.doi.org/10.1038/ng.3760
http://dx.doi.org/10.1093/bioinformatics/btq559
http://dx.doi.org/10.1038/nprot.2011.457
http://dx.doi.org/10.1371/journal.pgen.1007841
http://dx.doi.org/10.1038/nature09298
http://dx.doi.org/10.1038/ng1847
http://dx.doi.org/10.1038/ejhg.2013.48
http://dx.doi.org/10.1038/ejhg.2013.48
http://dx.doi.org/10.1093/bioinformatics/btaa520


164 Bibliography

188. Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New Approaches to Population
Stratification in Genome-Wide Association Studies. Nature Reviews Genetics 11, 459–463.
doi:10.1038/nrg2813 (2010).

189. Patterson, N., Price, A. L. & Reich, D. Population Structure and Eigenanalysis. PLoS
Genetics 2, e190. doi:10.1371/journal.pgen.0020190 (2006).

190. Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: Advanced Multi-Sample
Quality Control for High-Throughput Sequencing Data. Bioinformatics 32, btv566. doi:1
0.1093/bioinformatics/btv566 (2015).

191. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize Analysis Results
for Multiple Tools and Samples in a Single Report. Bioinformatics 32, 3047–3048. doi:10
.1093/bioinformatics/btw354 (2016).

192. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon Provides Fast
and Bias-Aware Quantification of Transcript Expression. Nature Methods 14, 417–419.
doi:10.1038/nmeth.4197 (2017).

193. Soneson, C., Love, M. I. & Robinson, M. D. Differential Analyses for RNA-Seq: Transcript-
Level Estimates Improve Gene-Level Inferences. F1000Research 4, 1521. doi:10.12688/f1
000research.7563.2 (2016).

194. Love, M. I., Soneson, C. & Patro, R. Swimming Downstream: Statistical Analysis of
Differential Transcript Usage Following Salmon Quantification. F1000Research 7, 952.
doi:10.12688/f1000research.15398.3 (2018).

195. Liu, Y., Zhou, J. & White, K. P. RNA-Seq Differential Expression Studies: More Sequence
or More Replication? Bioinformatics 30, 301–304. doi:10.1093/bioinformatics/btt688
(2014).

196. Conesa, A. et al. A Survey of Best Practices for RNA-Seq Data Analysis. Genome Biology
17, 1–19. doi:10.1186/s13059-016-0881-8 (2016).

197. Zhao, S., Zhang, Y., Gamini, R., Zhang, B. & von Schack, D. Evaluation of Two Main RNA-
Seq Approaches for Gene Quantification in Clinical RNA Sequencing: polyA+ Selection
versus rRNA Depletion. Scientific Reports 8. doi:10.1038/s41598-018-23226-4 (2018).

198. Min, J. L. et al. Variability of Gene Expression Profiles in Human Blood and Lymphoblas-
toid Cell Lines. BMC Genomics 11, 96. doi:10.1186/1471-2164-11-96 (2010).

199. Chen, Y., Lun, A. T. L. & Smyth, G. K. From Reads to Genes to Pathways: Differential
Expression Analysis of RNA-Seq Experiments Using Rsubread and the edgeR Quasi-
Likelihood Pipeline. F1000Research 5, 1438. doi:10.12688/f1000research.8987.2
(2016).

200. Law, C. W. et al. RNA-Seq Analysis Is Easy as 1-2-3 with Limma, Glimma and edgeR.
F1000Research 5, 1408. doi:10.12688/f1000research.9005.3 (2018).

201. Robinson, M. D. & Oshlack, A. A Scaling Normalization Method for Differential Expression
Analysis of RNA-Seq Data. Genome Biology 11, R25. doi:10.1186/gb-2010-11-3-r25
(2010).

http://dx.doi.org/10.1038/nrg2813
http://dx.doi.org/10.1371/journal.pgen.0020190
http://dx.doi.org/10.1093/bioinformatics/btv566
http://dx.doi.org/10.1093/bioinformatics/btv566
http://dx.doi.org/10.1093/bioinformatics/btw354
http://dx.doi.org/10.1093/bioinformatics/btw354
http://dx.doi.org/10.1038/nmeth.4197
http://dx.doi.org/10.12688/f1000research.7563.2
http://dx.doi.org/10.12688/f1000research.7563.2
http://dx.doi.org/10.12688/f1000research.15398.3
http://dx.doi.org/10.1093/bioinformatics/btt688
http://dx.doi.org/10.1186/s13059-016-0881-8
http://dx.doi.org/10.1038/s41598-018-23226-4
http://dx.doi.org/10.1186/1471-2164-11-96
http://dx.doi.org/10.12688/f1000research.8987.2
http://dx.doi.org/10.12688/f1000research.9005.3
http://dx.doi.org/10.1186/gb-2010-11-3-r25


165

202. Evans, C., Hardin, J. & Stoebel, D. M. Selecting Between-Sample RNA-Seq Normalization
Methods from the Perspective of Their Assumptions. Briefings in Bioinformatics 19,
776–792. doi:10.1093/bib/bbx008 (2018).

203. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor Package for
Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 26,
139–140. doi:10.1093/bioinformatics/btp616 (2010).

204. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: Precision Weights Unlock Linear
Model Analysis Tools for RNA-Seq Read Counts. Genome Biology 15, 1–17 (2014).

205. Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A. & Vingron, M. Variance Stabi-
lization Applied to Microarray Data Calibration and to the Quantification of Differential
Expression. Bioinformatics 18, S96–S104. doi:10.1093/bioinformatics/18.suppl_1.S9
6 (Suppl 1 2002).

206. Miller, J. A. et al. Strategies for Aggregating Gene Expression Data: The collapseRows R
Function. BMC Bioinformatics 12, 322. doi:10.1186/1471-2105-12-322 (2011).

207. Ritchie, M. E. et al. Empirical Array Quality Weights in the Analysis of Microarray Data.
BMC Bioinformatics 7, 261. doi:10.1186/1471-2105-7-261 (2006).

208. Robinson, D. G., Wang, J. Y. & Storey, J. D. A Nested Parallel Experiment Demonstrates
Differences in Intensity-Dependence between RNA-Seq and Microarrays. Nucleic Acids
Research, gkv636. doi:10.1093/nar/gkv636 (2015).

209. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics.
Nature Reviews Genetics 10, 57–63. doi:10.1038/nrg2484 (2009).

210. Ma, T., Liang, F., Oesterreich, S. & Tseng, G. C. A Joint Bayesian Model for Integrating
Microarray and RNA Sequencing Transcriptomic Data. Journal of Computational Biology
24, 647–662. doi:10.1089/cmb.2017.0056 (2017).

211. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting Batch Effects in Microarray Expression
Data Using Empirical Bayes Methods. Biostatistics 8, 118–127. doi:10.1093/biostatist
ics/kxj037 (2007).

212. Chen, C. et al. Removing Batch Effects in Analysis of Expression Microarray Data: An
Evaluation of Six Batch Adjustment Methods. PLoS ONE 6 (ed Kliebenstein, D.) e17238.
doi:10.1371/journal.pone.0017238 (2011).

213. Espín-Pérez, A., Portier, C., Chadeau-Hyam, M., van Veldhoven, K., Kleinjans, J. C. S. &
de Kok, T. M. C. M. Comparison of Statistical Methods and the Use of Quality Control
Samples for Batch Effect Correction in Human Transcriptome Data. PLOS ONE 13 (ed
Krishnan, V. V.) e0202947. doi:10.1371/journal.pone.0202947 (2018).

214. Zhang, Y., Jenkins, D. F., Manimaran, S. & Johnson, W. E. Alternative Empirical Bayes
Models for Adjusting for Batch Effects in Genomic Studies. BMC Bioinformatics 19.
doi:10.1186/s12859-018-2263-6 (2018).

http://dx.doi.org/10.1093/bib/bbx008
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S96
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S96
http://dx.doi.org/10.1186/1471-2105-12-322
http://dx.doi.org/10.1186/1471-2105-7-261
http://dx.doi.org/10.1093/nar/gkv636
http://dx.doi.org/10.1038/nrg2484
http://dx.doi.org/10.1089/cmb.2017.0056
http://dx.doi.org/10.1093/biostatistics/kxj037
http://dx.doi.org/10.1093/biostatistics/kxj037
http://dx.doi.org/10.1371/journal.pone.0017238
http://dx.doi.org/10.1371/journal.pone.0202947
http://dx.doi.org/10.1186/s12859-018-2263-6


166 Bibliography

215. Nygaard, V., Rødland, E. A. & Hovig, E. Methods That Remove Batch Effects While
Retaining Group Differences May Lead to Exaggerated Confidence in Downstream Analyses.
Biostatistics, kxv027. doi:10.1093/biostatistics/kxv027 (January 2015).

216. Ritchie, M. E. et al. Limma Powers Differential Expression Analyses for RNA-Sequencing
and Microarray Studies. Nucleic Acids Research 43, e47–e47. doi:10.1093/nar/gkv007
(2015).

217. Soneson, C. & Delorenzi, M. A Comparison of Methods for Differential Expression Analysis
of RNA-Seq Data. BMC Bioinformatics 14. doi:10.1186/1471-2105-14-91 (2013).

218. Cohn, L. D. & Becker, B. J. How Meta-Analysis Increases Statistical Power. Psychological
Methods 8, 243–253. doi:10.1037/1082-989X.8.3.243 (2003).

219. Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. A Basic Introduction to
Fixed-Effect and Random-Effects Models for Meta-Analysis. Research Synthesis Methods
1, 97–111. doi:10.1002/jrsm.12 (2010).

220. Röver, C. Bayesian Random-Effects Meta-Analysis Using the Bayesmeta R Package http:

//arxiv.org/abs/1711.08683 (2018).

221. Higgins, J. P. T., Thompson, S. G. & Spiegelhalter, D. J. A Re-Evaluation of Random-
Effects Meta-Analysis. Journal of the Royal Statistical Society: Series A (Statistics in
Society) 172, 137–159. doi:10.1111/j.1467-985X.2008.00552.x (2009).

222. Yuen, T. Accuracy and Calibration of Commercial Oligonucleotide and Custom cDNA
Microarrays. Nucleic Acids Research 30, 48e–48. doi:10.1093/nar/30.10.e48 (2002).

223. Draghici, S., Khatri, P., Eklund, A. & Szallasi, Z. Reliability and Reproducibility Issues in
DNA Microarray Measurements. Trends in Genetics 22, 101–109. doi:10.1016/j.tig.20
05.12.005 (2006).

224. Bender, R. et al. Methods for Evidence Synthesis in the Case of Very Few Studies. Research
Synthesis Methods. doi:10.1002/jrsm.1297 (2018).

225. Gonnermann, A., Framke, T., Großhennig, A. & Koch, A. No Solution yet for Combining
Two Independent Studies in the Presence of Heterogeneity. Statistics in Medicine 34,
2476–2480. doi:10.1002/sim.6473 (2015).

226. Veroniki, A. A. et al. Methods to Estimate the Between-Study Variance and Its Uncertainty
in Meta-Analysis. Research Synthesis Methods 7, 55–79. doi:10.1002/jrsm.1164 (2016).

227. Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A. & Liu, J. A Nondegenerate Penalized
Likelihood Estimator for Variance Parameters in Multilevel Models. Psychometrika 78,
685–709. doi:10.1007/s11336-013-9328-2 (2013).

228. Friede, T., Röver, C., Wandel, S. & Neuenschwander, B. Meta-Analysis of Few Small
Studies in Orphan Diseases. Research Synthesis Methods 8, 79–91. doi:10.1002/jrsm.1217
(2017).

229. Seide, S. E., Röver, C. & Friede, T. Likelihood-Based Random-Effects Meta-Analysis with
Few Studies: Empirical and Simulation Studies. BMC Medical Research Methodology 19.
doi:10.1186/s12874-018-0618-3 (2019).

http://dx.doi.org/10.1093/biostatistics/kxv027
http://dx.doi.org/10.1093/nar/gkv007
http://dx.doi.org/10.1186/1471-2105-14-91
http://dx.doi.org/10.1037/1082-989X.8.3.243
http://dx.doi.org/10.1002/jrsm.12
http://arxiv.org/abs/1711.08683
http://arxiv.org/abs/1711.08683
http://dx.doi.org/10.1111/j.1467-985X.2008.00552.x
http://dx.doi.org/10.1093/nar/30.10.e48
http://dx.doi.org/10.1016/j.tig.2005.12.005
http://dx.doi.org/10.1016/j.tig.2005.12.005
http://dx.doi.org/10.1002/jrsm.1297
http://dx.doi.org/10.1002/sim.6473
http://dx.doi.org/10.1002/jrsm.1164
http://dx.doi.org/10.1007/s11336-013-9328-2
http://dx.doi.org/10.1002/jrsm.1217
http://dx.doi.org/10.1186/s12874-018-0618-3


167

230. Gelman, A. Prior Distributions for Variance Parameters in Hierarchical Models (Comment
on Article by Browne and Draper). Bayesian Analysis 1, 515–534. doi:10.1214/06-BA117A
(2006).

231. Pullenayegum, E. M. An Informed Reference Prior for Between-Study Heterogeneity in
Meta-Analyses of Binary Outcomes: Prior for between-Study Heterogeneity. Statistics in
Medicine 30, 3082–3094. doi:10.1002/sim.4326 (2011).

232. Turner, R. M., Jackson, D., Wei, Y., Thompson, S. G. & Higgins, J. P. T. Predictive
Distributions for Between-Study Heterogeneity and Simple Methods for Their Application
in Bayesian Meta-Analysis. Statistics in Medicine 34, 984–998. doi:10.1002/sim.6381
(2015).

233. Higgins, J. P. T. & Whitehead, A. Borrowing Strength from External Trials in a Meta-
Analysis. Statistics in Medicine 15, 2733–2749. doi:10.1002/(SICI)1097-0258(1996123
0)15:24<2733::AID-SIM562>3.0.CO;2-0 (1996).

234. Viechtbauer, W. Conducting Meta-Analyses in R with the Metafor Package. Journal of
Statistical Software 36. doi:10.18637/jss.v036.i03 (2010).

235. Delignette-Muller, M. L. & Dutang, C. Fitdistrplus : An R Package for Fitting Distribu-
tions. Journal of Statistical Software 64. doi:10.18637/jss.v064.i04 (2015).

236. Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-Tailed Prior Distributions for Sequence
Count Data: Removing the Noise and Preserving Large Differences. Bioinformatics 35 (ed
Stegle, O.) 2084–2092. doi:10.1093/bioinformatics/bty895 (2019).

237. Love, M. I., Huber, W. & Anders, S. Moderated Estimation of Fold Change and Dispersion
for RNA-Seq Data with DESeq2. Genome Biology 15, 550. doi:10.1186/s13059-014-05
50-8 (2014).

238. Stephens, M. False Discovery Rates: A New Deal. Biostatistics, kxw041. doi:10.1093/bio
statistics/kxw041 (2016).

239. Chaussabel, D. et al. A Modular Analysis Framework for Blood Genomics Studies: Appli-
cation to Systemic Lupus Erythematosus. Immunity 29, 150–164. doi:10.1016/j.immuni
.2008.05.012 (2008).

240. Li, S. et al. Molecular Signatures of Antibody Responses Derived from a Systems Biology
Study of Five Human Vaccines. Nature Immunology 15, 195–204. doi:10.1038/ni.2789
(2013).

241. Weiner 3rd, J. & Domaszewska, T. Tmod: An R Package for General and Multivariate
Enrichment Analysis. doi:10.7287/peerj.preprints.2420v1 (2016).

242. Zyla, J., Marczyk, M., Domaszewska, T., Kaufmann, S. H. E., Polanska, J. & Weiner, J.
Gene Set Enrichment for Reproducible Science: Comparison of CERNO and Eight Other
Algorithms. Bioinformatics 35 (ed Wren, J.) 5146–5154. doi:10.1093/bioinformatics/b
tz447 (2019).

http://dx.doi.org/10.1214/06-BA117A
http://dx.doi.org/10.1002/sim.4326
http://dx.doi.org/10.1002/sim.6381
http://dx.doi.org/10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0
http://dx.doi.org/10.18637/jss.v036.i03
http://dx.doi.org/10.18637/jss.v064.i04
http://dx.doi.org/10.1093/bioinformatics/bty895
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1093/biostatistics/kxw041
http://dx.doi.org/10.1093/biostatistics/kxw041
http://dx.doi.org/10.1016/j.immuni.2008.05.012
http://dx.doi.org/10.1016/j.immuni.2008.05.012
http://dx.doi.org/10.1038/ni.2789
http://dx.doi.org/10.7287/peerj.preprints.2420v1
http://dx.doi.org/10.1093/bioinformatics/btz447
http://dx.doi.org/10.1093/bioinformatics/btz447


168 Bibliography

243. Bin, L., Li, X., Feng, J., Richers, B. & Leung, D. Y. M. Ankyrin Repeat Domain 22
Mediates Host Defense Against Viral Infection Through STING Signaling Pathway. The
Journal of Immunology 196, 201.4 LP –201.4 (1 Supplement 2016).

244. Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-Stimulated Genes: A
Complex Web of Host Defenses. Annual Review of Immunology 32, 513–545. doi:10.1146
/annurev-immunol-032713-120231 (2014).

245. Ogawa, K. et al. A Novel Serum Protein That Is Selectively Produced by Cytotoxic
Lymphocytes. The Journal of Immunology 166, 6404–6412. doi:10.4049/jimmunol.166
.10.6404 (2001).

246. McCarron, M. J., Park, P. W. & Fooksman, D. R. CD138 Mediates Selection of Mature
Plasma Cells by Regulating Their Survival. Blood 129, 2749–2759. doi:10.1182/blood-2
017-01-761643 (2017).

247. Martincic, K., Alkan, S. A., Cheatle, A., Borghesi, L. & Milcarek, C. Transcription
Elongation Factor ELL2 Directs Immunoglobulin Secretion in Plasma Cells by Stimulating
Altered RNA Processing. Nature Immunology 10, 1102–1109. doi:10.1038/ni.1786
(2009).

248. Morel, S. et al. Adjuvant System AS03 Containing α-Tocopherol Modulates Innate Immune
Response and Leads to Improved Adaptive Immunity. Vaccine 29, 2461–2473. doi:10.101
6/j.vaccine.2011.01.011 (2011).

249. Querec, T. D. et al. Systems Biology Approach Predicts Immunogenicity of the Yellow
Fever Vaccine in Humans. Nature Immunology 10, 116–125. doi:10.1038/ni.1688 (2009).

250. Mitchell, L. A., Henderson, A. J. & Dow, S. W. Suppression of Vaccine Immunity by
Inflammatory Monocytes. The Journal of Immunology 189, 5612–5621. doi:10.4049/jim
munol.1202151 (2012).

251. Mohanty, S. et al. Prolonged Proinflammatory Cytokine Production in Monocytes Modu-
lated by Interleukin 10 After Influenza Vaccination in Older Adults. Journal of Infectious
Diseases 211, 1174–1184. doi:10.1093/infdis/jiu573 (2015).

252. Mooney, M., McWeeney, S. & Sékaly, R.-P. Systems Immunogenetics of Vaccines. Seminars
in Immunology 25, 124–129. doi:10.1016/j.smim.2013.06.003 (2013).

253. O’Connor, D. & Pollard, A. J. Characterizing Vaccine Responses Using Host Genomic
and Transcriptomic Analysis. Clinical Infectious Diseases 57, 860–869. doi:10.1093/cid
/cit373 (2013).

254. Newport, M. J. The Genetic Regulation of Infant Immune Responses to Vaccination.
Frontiers in Immunology 6. doi:10.3389/fimmu.2015.00018 (2015).

255. Brodin, P. et al. Variation in the Human Immune System Is Largely Driven by Non-
Heritable Influences. Cell 160, 37–47. doi:10.1016/j.cell.2014.12.020 (2015).

http://dx.doi.org/10.1146/annurev-immunol-032713-120231
http://dx.doi.org/10.1146/annurev-immunol-032713-120231
http://dx.doi.org/10.4049/jimmunol.166.10.6404
http://dx.doi.org/10.4049/jimmunol.166.10.6404
http://dx.doi.org/10.1182/blood-2017-01-761643
http://dx.doi.org/10.1182/blood-2017-01-761643
http://dx.doi.org/10.1038/ni.1786
http://dx.doi.org/10.1016/j.vaccine.2011.01.011
http://dx.doi.org/10.1016/j.vaccine.2011.01.011
http://dx.doi.org/10.1038/ni.1688
http://dx.doi.org/10.4049/jimmunol.1202151
http://dx.doi.org/10.4049/jimmunol.1202151
http://dx.doi.org/10.1093/infdis/jiu573
http://dx.doi.org/10.1016/j.smim.2013.06.003
http://dx.doi.org/10.1093/cid/cit373
http://dx.doi.org/10.1093/cid/cit373
http://dx.doi.org/10.3389/fimmu.2015.00018
http://dx.doi.org/10.1016/j.cell.2014.12.020


169

256. Mentzer, A. J., O’Connor, D., Pollard, A. J. & Hill, A. V. S. Searching for the Human
Genetic Factors Standing in the Way of Universally Effective Vaccines. Philosophical
Transactions of the Royal Society B: Biological Sciences 370, 20140341–20140341. doi:10
.1098/rstb.2014.0341 (2015).

257. Linnik, J. E. & Egli, A. Impact of Host Genetic Polymorphisms on Vaccine Induced
Antibody Response. Human Vaccines & Immunotherapeutics 12, 907–915. doi:10.1080/2
1645515.2015.1119345 (2016).

258. Gelder, C. M. et al. Associations between Human Leukocyte Antigens and Nonresponsive-
ness to Influenza Vaccine. The Journal of Infectious Diseases 185, 114–117. doi:10.1086
/338014 (2002).

259. Moss, A. J. et al. Correlation between Human Leukocyte Antigen Class II Alleles and
HAI Titers Detected Post-Influenza Vaccination. PLoS ONE 8 (ed Sambhara, S.) e71376.
doi:10.1371/journal.pone.0071376 (2013).

260. Poland, G. A., Ovsyannikova, I. G. & Jacobson, R. M. Immunogenetics of Seasonal Influenza
Vaccine Response. Vaccine 26, D35–D40. doi:10.1016/j.vaccine.2008.07.065 (2008).

261. Egli, A. et al. IL-28B Is a Key Regulator of B- and T-Cell Vaccine Responses against
Influenza. PLoS Pathogens 10 (ed Gale, M.) e1004556. doi:10.1371/journal.ppat.1004
556 (2014).

262. Avnir, Y. et al. IGHV1-69 Polymorphism Modulates Anti-Influenza Antibody Repertoires,
Correlates with IGHV Utilization Shifts and Varies by Ethnicity. Scientific Reports 6,
20842. doi:10.1038/srep20842 (2016).

263. Millstein, J., Zhang, B., Zhu, J. & Schadt, E. E. Disentangling Molecular Relationships
with a Causal Inference Test. BMC Genetics 10. doi:10.1186/1471-2156-10-23 (2009).

264. Astle, W. & Balding, D. J. Population Structure and Cryptic Relatedness in Genetic
Association Studies. Statistical Science 24, 451–471. doi:10.1214/09-STS307 (2009).

265. Sillanpää, M. J. Overview of Techniques to Account for Confounding Due to Population
Stratification and Cryptic Relatedness in Genomic Data Association Analyses. Heredity
106, 511–519. doi:10.1038/hdy.2010.91 (2011).

266. Sul, J. H., Martin, L. S. & Eskin, E. Population Structure in Genetic Studies: Confounding
Factors and Mixed Models. PLOS Genetics 14 (ed Barsh, G. S.) e1007309. doi:10.1371/j
ournal.pgen.1007309 (2018).

267. Golan, D., Rosset, S. & Lin, D.-Y. Mixed Models for Case-Control Genome-Wide Asso-
ciation Studies: Major Challenges and Partial Solutions in Borgan, Ø., Breslow, N. E.,
Chatterjee, N., Gail, M. H., Scott, A. & Wild, C. J. Handbook of Statistical Methods for
Case-Control Studies (eds Borgan, Ø., Breslow, N., Chatterjee, N., Gail, M. H., Scott, A.
& Wild, C. J.) 1st ed., 495–514 (Chapman and Hall/CRC, 2018). doi:10.1201/978131515
4084-27.

268. Vilhjálmsson, B. J. & Nordborg, M. The Nature of Confounding in Genome-Wide Associa-
tion Studies. Nature Reviews Genetics 14, 1–2. doi:10.1038/nrg3382 (2013).

http://dx.doi.org/10.1098/rstb.2014.0341
http://dx.doi.org/10.1098/rstb.2014.0341
http://dx.doi.org/10.1080/21645515.2015.1119345
http://dx.doi.org/10.1080/21645515.2015.1119345
http://dx.doi.org/10.1086/338014
http://dx.doi.org/10.1086/338014
http://dx.doi.org/10.1371/journal.pone.0071376
http://dx.doi.org/10.1016/j.vaccine.2008.07.065
http://dx.doi.org/10.1371/journal.ppat.1004556
http://dx.doi.org/10.1371/journal.ppat.1004556
http://dx.doi.org/10.1038/srep20842
http://dx.doi.org/10.1186/1471-2156-10-23
http://dx.doi.org/10.1214/09-STS307
http://dx.doi.org/10.1038/hdy.2010.91
http://dx.doi.org/10.1371/journal.pgen.1007309
http://dx.doi.org/10.1371/journal.pgen.1007309
http://dx.doi.org/10.1201/9781315154084-27
http://dx.doi.org/10.1201/9781315154084-27
http://dx.doi.org/10.1038/nrg3382


170 Bibliography

269. Eu-ahsunthornwattana, J. et al. Comparison of Methods to Account for Relatedness
in Genome-Wide Association Studies with Family-Based Data. PLoS Genetics 10 (ed
Abecasis, G. R.) e1004445. doi:10.1371/journal.pgen.1004445 (2014).

270. Speed, D., Cai, N., Johnson, M. R., Nejentsev, S. & Balding, D. J. Reevaluation of SNP
Heritability in Complex Human Traits. Nature Genetics 49, 986–992. doi:10.1038/ng.3865
(7 2017).

271. Wang, J. Marker-Based Estimates of Relatedness and Inbreeding Coefficients: An Assess-
ment of Current Methods. Journal of Evolutionary Biology 27, 518–530. doi:10.1111/jeb
.12315 (2014).

272. Widmer, C. et al. Further Improvements to Linear Mixed Models for Genome-Wide
Association Studies. Scientific Reports 4. doi:10.1038/srep06874 (2015).

273. Lippert, C., Casale, F. P., Rakitsch, B. & Stegle, O. LIMIX: Genetic Analysis of Multiple
Traits. doi:10.1101/003905 (2014).

274. Speed, D., Hemani, G., Johnson, M. R. & Balding, D. J. Improved Heritability Estimation
from Genome-Wide SNPs. The American Journal of Human Genetics 91, 1011–1021.
doi:10.1016/j.ajhg.2012.10.010 (2012).

275. Maranville, J. C. et al. Interactions between Glucocorticoid Treatment and Cis-Regulatory
Polymorphisms Contribute to Cellular Response Phenotypes. PLoS Genetics 7 (ed Gibson,
G.) e1002162. doi:10.1371/journal.pgen.1002162 (2011).

276. Ackermann, M., Sikora-Wohlfeld, W. & Beyer, A. Impact of Natural Genetic Variation on
Gene Expression Dynamics. PLoS Genetics 9 (ed Wells, C. A.) e1003514. doi:10.1371/jo
urnal.pgen.1003514 (2013).

277. Shpak, M. et al. An eQTL Analysis of the Human Glioblastoma Multiforme Genome.
Genomics 103, 252–263. doi:10.1016/j.ygeno.2014.02.005 (2014).

278. Allison, P. D. Change Scores as Dependent Variables in Regression Analysis. Sociological
Methodology 20, 93. doi:10.2307/271083 (1990).

279. Clogg, C. C., Petkova, E. & Haritou, A. Statistical Methods for Comparing Regression
Coefficients Between Models. The American Journal of Sociology 100, 1261–1293 (1995).

280. Flutre, T., Wen, X., Pritchard, J. & Stephens, M. A Statistical Framework for Joint eQTL
Analysis in Multiple Tissues. PLOS Genet 9, e1003486. doi:10.1371/journal.pgen.100
3486 (2013).

281. Urbut, S. M., Wang, G., Carbonetto, P. & Stephens, M. Flexible Statistical Methods
for Estimating and Testing Effects in Genomic Studies with Multiple Conditions. Nature
Genetics. doi:10.1038/s41588-018-0268-8 (2018).

282. Li, G., Jima, D., Wright, F. A. & Nobel, A. B. HT-eQTL: Integrative Expression Quanti-
tative Trait Loci Analysis in a Large Number of Human Tissues. BMC Bioinformatics 19.
doi:10.1186/s12859-018-2088-3 (2018).

http://dx.doi.org/10.1371/journal.pgen.1004445
http://dx.doi.org/10.1038/ng.3865
http://dx.doi.org/10.1111/jeb.12315
http://dx.doi.org/10.1111/jeb.12315
http://dx.doi.org/10.1038/srep06874
http://dx.doi.org/10.1101/003905
http://dx.doi.org/10.1016/j.ajhg.2012.10.010
http://dx.doi.org/10.1371/journal.pgen.1002162
http://dx.doi.org/10.1371/journal.pgen.1003514
http://dx.doi.org/10.1371/journal.pgen.1003514
http://dx.doi.org/10.1016/j.ygeno.2014.02.005
http://dx.doi.org/10.2307/271083
http://dx.doi.org/10.1371/journal.pgen.1003486
http://dx.doi.org/10.1371/journal.pgen.1003486
http://dx.doi.org/10.1038/s41588-018-0268-8
http://dx.doi.org/10.1186/s12859-018-2088-3


171

283. Stephens, M. A Unified Framework for Association Analysis with Multiple Related Pheno-
types. PLoS ONE 8 (ed Emmert-Streib, F.) e65245. doi:10.1371/journal.pone.0065245
(2013).

284. Sul, J. H., Han, B., Ye, C., Choi, T. & Eskin, E. Effectively Identifying eQTLs from Multiple
Tissues by Combining Mixed Model and Meta-Analytic Approaches. PLoS Genetics 9 (ed
Schork, N. J.) e1003491. doi:10.1371/journal.pgen.1003491 (2013).

285. Han, B. & Eskin, E. Random-Effects Model Aimed at Discovering Associations in Meta-
Analysis of Genome-Wide Association Studies. The American Journal of Human Genetics
88, 586–598. doi:10.1016/j.ajhg.2011.04.014 (2011).

286. Lewin, A. et al. MT-HESS: An Efficient Bayesian Approach for Simultaneous Association
Detection in OMICS Datasets, with Application to eQTL Mapping in Multiple Tissues.
Bioinformatics 32, 523–532. doi:10.1093/bioinformatics/btv568 (2016).

287. Li, G., Shabalin, A. A., Rusyn, I., Wright, F. A. & Nobel, A. B. An Empirical Bayes
Approach for Multiple Tissue eQTL Analysis. Biostatistics (Oxford, England) 19, 391–406.
doi:10.1093/biostatistics/kxx048 (2018).

288. Duong, D. et al. Applying Meta-Analysis to Genotype-Tissue Expression Data from
Multiple Tissues to Identify eQTLs and Increase the Number of eGenes. Bioinformatics
33, i67–i74. doi:10.1093/bioinformatics/btx227 (2017).

289. McCaw, Z. R., Lane, J. M., Saxena, R., Redline, S. & Lin, X. Operating Characteristics
of the Rank-based Inverse Normal Transformation for Quantitative Trait Analysis in
Genome-wide Association Studies. Biometrics. doi:10.1111/biom.13214 (2020).

290. Beasley, T. M., Erickson, S. & Allison, D. B. Rank-Based Inverse Normal Transformations
Are Increasingly Used, But Are They Merited? Behavior Genetics 39, 580–595. doi:10.10
07/s10519-009-9281-0 (2009).

291. Qi, T. et al. Identifying Gene Targets for Brain-Related Traits Using Transcriptomic and
Methylomic Data from Blood. Nature Communications 9. doi:10.1038/s41467-018-045
58-1 (2018).

292. Loh, P.-R. et al. Reference-Based Phasing Using the Haplotype Reference Consortium
Panel. Nature Genetics 48, 1443–1448. doi:10.1038/ng.3679 (2016).

293. Durbin, R. Efficient Haplotype Matching and Storage Using the Positional Burrows-
Wheeler Transform (PBWT). Bioinformatics 30, 1266–1272. doi:10.1093/bioinformati
cs/btu014 (2014).

294. McCarthy, S. et al. A Reference Panel of 64,976 Haplotypes for Genotype Imputation.
Nature Genetics 48, 1279–1283. doi:10.1038/ng.3643 (2016).

295. Zhao, H., Sun, Z., Wang, J., Huang, H., Kocher, J.-P. & Wang, L. CrossMap: A Versatile
Tool for Coordinate Conversion between Genome Assemblies. Bioinformatics 30, 1006–
1007. doi:10.1093/bioinformatics/btt730 (2014).

http://dx.doi.org/10.1371/journal.pone.0065245
http://dx.doi.org/10.1371/journal.pgen.1003491
http://dx.doi.org/10.1016/j.ajhg.2011.04.014
http://dx.doi.org/10.1093/bioinformatics/btv568
http://dx.doi.org/10.1093/biostatistics/kxx048
http://dx.doi.org/10.1093/bioinformatics/btx227
http://dx.doi.org/10.1111/biom.13214
http://dx.doi.org/10.1007/s10519-009-9281-0
http://dx.doi.org/10.1007/s10519-009-9281-0
http://dx.doi.org/10.1038/s41467-018-04558-1
http://dx.doi.org/10.1038/s41467-018-04558-1
http://dx.doi.org/10.1038/ng.3679
http://dx.doi.org/10.1093/bioinformatics/btu014
http://dx.doi.org/10.1093/bioinformatics/btu014
http://dx.doi.org/10.1038/ng.3643
http://dx.doi.org/10.1093/bioinformatics/btt730


172 Bibliography

296. Listgarten, J., Lippert, C., Kadie, C. M., Davidson, R. I., Eskin, E. & Heckerman, D.
Improved Linear Mixed Models for Genome-Wide Association Studies. Nature Methods 9,
525–526. doi:10.1038/nmeth.2037 (2012).

297. Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I. & Heckerman, D. FaST
Linear Mixed Models for Genome-Wide Association Studies. Nature Methods 8, 833–835.
doi:10.1038/nmeth.1681 (2011).

298. Aran, D., Hu, Z. & Butte, A. J. xCell: Digitally Portraying the Tissue Cellular Heterogeneity
Landscape. Genome Biology 18. doi:10.1186/s13059-017-1349-1 (2017).

299. Kleiveland, C. R. Peripheral Blood Mononuclear Cells in The Impact of Food Bioactives
on Health (eds Verhoeckx, K. et al.) 161–167 (Springer International Publishing, Cham,
2015). doi:10.1007/978-3-319-16104-4_15.

300. Van der Wijst, M. G. P. et al. Single-Cell RNA Sequencing Identifies Celltype-Specific
Cis-eQTLs and Co-Expression QTLs. Nature Genetics 50, 493–497. doi:10.1038/s41588-
018-0089-9 (2018).

301. Maddala, G. S. Introduction to Econometrics 2nd ed. 631 pp. (Macmillan Pub. Co. ;
Maxwell Macmillan Canada ; Maxwell Macmillan International, New York : Toronto : New
York, 1992).

302. Kanyongo, G. Y. The Influence of Reliability on Four Rules for Determining the Number
of Components to Retain. Journal of Modern Applied Statistical Methods 5, 332–343.
doi:10.22237/jmasm/1162353960 (2005).

303. Astle, W. J. et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to
Common Complex Disease. Cell 167, 1415–1429.e19. doi:10.1016/j.cell.2016.10.042
(2016).

304. Stekhoven, D. J. & Buhlmann, P. MissForest–Non-Parametric Missing Value Imputation
for Mixed-Type Data. Bioinformatics 28, 112–118. doi:10.1093/bioinformatics/btr597
(2012).

305. Huang, Q. Q., Ritchie, S. C., Brozynska, M. & Inouye, M. Power, False Discovery Rate
and Winner’s Curse in eQTL Studies. Nucleic Acids Research 46, e133–e133. doi:10.1093
/nar/gky780 (2018).

306. Schenker, N. & Gentleman, J. F. On Judging the Significance of Differences by Examining
the Overlap Between Confidence Intervals. The American Statistician 55, 182–186 (2001).

307. Gelman, A. & Stern, H. The Difference Between “Significant” and “Not Significant” Is
Not Itself Statistically Significant. The American Statistician 60, 328–331. doi:10.1198/0
00313006X152649 (2006).

308. Shim, H. et al. A Multivariate Genome-Wide Association Analysis of 10 LDL Subfrac-
tions, and Their Response to Statin Treatment, in 1868 Caucasians. PLOS ONE 10 (ed
Aspichueta, P.) e0120758. doi:10.1371/journal.pone.0120758 (2015).

http://dx.doi.org/10.1038/nmeth.2037
http://dx.doi.org/10.1038/nmeth.1681
http://dx.doi.org/10.1186/s13059-017-1349-1
http://dx.doi.org/10.1007/978-3-319-16104-4_15
http://dx.doi.org/10.1038/s41588-018-0089-9
http://dx.doi.org/10.1038/s41588-018-0089-9
http://dx.doi.org/10.22237/jmasm/1162353960
http://dx.doi.org/10.1016/j.cell.2016.10.042
http://dx.doi.org/10.1093/bioinformatics/btr597
http://dx.doi.org/10.1093/nar/gky780
http://dx.doi.org/10.1093/nar/gky780
http://dx.doi.org/10.1198/000313006X152649
http://dx.doi.org/10.1198/000313006X152649
http://dx.doi.org/10.1371/journal.pone.0120758


173

309. Storey, J. D. & Tibshirani, R. Statistical Significance for Genomewide Studies. Proceedings
of the National Academy of Sciences 100, 9440–9445. doi:10.1073/pnas.1530509100
(2003).

310. Mikucka, M., Sarracino, F. & Dubrow, J. Costs and Benefits of Including or Omitting
Interaction Terms: A Monte Carlo Simulation 9 (The Ohio State University and the Polish
Academy of Sciences, 2015).

311. Kooperberg, C. & LeBlanc, M. Increasing the Power of Identifying Gene × Gene Interactions
in Genome-Wide Association Studies. Genetic Epidemiology 32, 255–263. doi:10.1002/ge
pi.20300 (2008).

312. Ziyatdinov, A., Vázquez-Santiago, M., Brunel, H., Martinez-Perez, A., Aschard, H. & Soria,
J. M. Lme4qtl: Linear Mixed Models with Flexible Covariance Structure for Genetic Studies
of Related Individuals. BMC Bioinformatics 19, 68. doi:10.1186/s12859-018-2057-x
(2018).

313. Raudvere, U. et al. G:Profiler: A Web Server for Functional Enrichment Analysis and
Conversions of Gene Lists (2019 Update). Nucleic Acids Research 47, W191–W198. doi:1
0.1093/nar/gkz369 (2019).

314. Kerimov, N. et al. eQTL Catalogue: A Compendium of Uniformly Processed Human Gene
Expression and Splicing QTLs. bioRxiv. doi:10.1101/2020.01.29.924266 (2020).

315. Lawrence, M., Gentleman, R. & Carey, V. Rtracklayer: An R Package for Interfacing with
Genome Browsers. Bioinformatics 25, 1841–1842. doi:10.1093/bioinformatics/btp328
(2009).

316. Foley, C. N. et al. A Fast and Efficient Colocalization Algorithm for Identifying Shared
Genetic Risk Factors across Multiple Traits. bioRxiv. doi:10.1101/592238 (2019).

317. Giambartolomei, C. et al. Bayesian Test for Colocalisation between Pairs of Genetic
Association Studies Using Summary Statistics. PLoS Genetics 10 (ed Williams, S. M.)
e1004383. doi:10.1371/journal.pgen.1004383 (2014).

318. Cervantes, J. L., Weinerman, B., Basole, C. & Salazar, J. C. TLR8: The Forgotten Relative
Revindicated. Cellular & Molecular Immunology 9, 434–438. doi:10.1038/cmi.2012.38
(2012).

319. Sullivan, A. L. et al. Serum Response Factor Utilizes Distinct Promoter- and Enhancer-
Based Mechanisms to Regulate Cytoskeletal Gene Expression in Macrophages. Molecular
and Cellular Biology 31, 861–875. doi:10.1128/MCB.00836-10 (2011).

320. Marigorta, U. M. et al. Transcriptional Risk Scores Link GWAS to eQTLs and Predict
Complications in Crohn’s Disease. Nature Genetics 49, 1517–1521. doi:10.1038/ng.3936
(2017).

321. Ongen, H., Brown, A. A., Delaneau, O., Panousis, N. I., Nica, A. C. & Dermitzakis,
E. T. Estimating the Causal Tissues for Complex Traits and Diseases. Nature Genetics.
doi:10.1038/ng.3981 (October 2017).

http://dx.doi.org/10.1073/pnas.1530509100
http://dx.doi.org/10.1002/gepi.20300
http://dx.doi.org/10.1002/gepi.20300
http://dx.doi.org/10.1186/s12859-018-2057-x
http://dx.doi.org/10.1093/nar/gkz369
http://dx.doi.org/10.1093/nar/gkz369
http://dx.doi.org/10.1101/2020.01.29.924266
http://dx.doi.org/10.1093/bioinformatics/btp328
http://dx.doi.org/10.1101/592238
http://dx.doi.org/10.1371/journal.pgen.1004383
http://dx.doi.org/10.1038/cmi.2012.38
http://dx.doi.org/10.1128/MCB.00836-10
http://dx.doi.org/10.1038/ng.3936
http://dx.doi.org/10.1038/ng.3981


174 Bibliography

322. Umans, B. D., Battle, A. & Gilad, Y. Where Are the Disease-Associated eQTLs? Trends
in Genetics. doi:10.1016/j.tig.2020.08.009 (2020).

323. Cuomo, A. S. E. et al. Single-Cell RNA-Sequencing of Differentiating iPS Cells Reveals
Dynamic Genetic Effects on Gene Expression. Nature Communications 11. doi:10.1038
/s41467-020-14457-z (2020).

324. Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-Mapping Cellular QTLs with
RASQUAL and ATAC-Seq. Nature Genetics 48, 206–213. doi:10.1038/ng.3467 (2016).

325. Wang, A. T. et al. Allele-Specific QTL Fine Mapping with PLASMA. The American
Journal of Human Genetics 106, 170–187. doi:10.1016/j.ajhg.2019.12.011 (2020).

326. Mohammadi, P., Castel, S. E., Brown, A. A. & Lappalainen, T. Quantifying the Regulatory
Effect Size of Cis-Acting Genetic Variation Using Allelic Fold Change. Genome Research
27, 1872–1884. doi:10.1101/gr.216747.116 (2017).

327. Wu, L., Shen, C., Seed Ahmed, M., Östenson, C.-G. & Gu, H. F. Adenylate Cyclase 3:
A New Target for Anti-Obesity Drug Development: ADCY3 and Anti-Obesity. Obesity
Reviews 17, 907–914. doi:10.1111/obr.12430 (2016).

328. Saeed, S. et al. Epigenetic Programming of Monocyte-to-Macrophage Differentiation and
Trained Innate Immunity. Science 345, 1251086–1251086. doi:10.1126/science.1251086
(2014).

329. Pai, A. A., Pritchard, J. K. & Gilad, Y. The Genetic and Mechanistic Basis for Variation
in Gene Regulation. PLoS Genetics 11 (ed Lappalainen, T.) e1004857. doi:10.1371/jour
nal.pgen.1004857 (2015).

330. Choudhury, M. & Ramsey, S. A. Identifying Cell Type-Specific Transcription Factors by
Integrating ChIP-Seq and eQTL Data-Application to Monocyte Gene Regulation. Gene
Regulation and Systems Biology 10, GRSB.S40768. doi:10.4137/GRSB.S40768 (2016).

331. Zeng, B. et al. Comprehensive Multiple eQTL Detection and Its Application to GWAS
Interpretation. Genetics 212, 905–918. doi:10.1534/genetics.119.302091 (2019).

332. Dobbyn, A. et al. Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and
Co-Localization with Schizophrenia GWAS. The American Journal of Human Genetics
102, 1169–1184. doi:10.1016/j.ajhg.2018.04.011 (2018).

333. Rotival, M. Characterising the Genetic Basis of Immune Response Variation to Identify
Causal Mechanisms Underlying Disease Susceptibility. HLA 94, 275–284. doi:10.1111/ta
n.13598 (2019).

334. Langford, E., Schwertman, N. & Owens, M. Is the Property of Being Positively Correlated
Transitive? The American Statistician 55, 322–325 (2001).

335. Roda, G. et al. Crohn’s Disease. Nature Reviews Disease Primers 6. doi:10.1038/s41572
-020-0156-2 (2020).

336. Cotsapas, C. & Hafler, D. A. Immune-Mediated Disease Genetics: The Shared Basis of
Pathogenesis. Trends in Immunology 34, 22–26. doi:10.1016/j.it.2012.09.001 (2013).

http://dx.doi.org/10.1016/j.tig.2020.08.009
http://dx.doi.org/10.1038/s41467-020-14457-z
http://dx.doi.org/10.1038/s41467-020-14457-z
http://dx.doi.org/10.1038/ng.3467
http://dx.doi.org/10.1016/j.ajhg.2019.12.011
http://dx.doi.org/10.1101/gr.216747.116
http://dx.doi.org/10.1111/obr.12430
http://dx.doi.org/10.1126/science.1251086
http://dx.doi.org/10.1371/journal.pgen.1004857
http://dx.doi.org/10.1371/journal.pgen.1004857
http://dx.doi.org/10.4137/GRSB.S40768
http://dx.doi.org/10.1534/genetics.119.302091
http://dx.doi.org/10.1016/j.ajhg.2018.04.011
http://dx.doi.org/10.1111/tan.13598
http://dx.doi.org/10.1111/tan.13598
http://dx.doi.org/10.1038/s41572-020-0156-2
http://dx.doi.org/10.1038/s41572-020-0156-2
http://dx.doi.org/10.1016/j.it.2012.09.001


175

337. David, T., Ling, S. F. & Barton, A. Genetics of Immune-Mediated Inflammatory Diseases.
Clinical & Experimental Immunology 193, 3–12. doi:10.1111/cei.13101 (2018).

338. Ananthakrishnan, A. N. Epidemiology and Risk Factors for IBD. Nature Reviews Gas-
troenterology & Hepatology 12, 205–217. doi:10.1038/nrgastro.2015.34 (2015).

339. De Souza, H. S. P. & Fiocchi, C. Immunopathogenesis of IBD: Current State of the Art.
Nature Reviews Gastroenterology & Hepatology 13, 13–27. doi:10.1038/nrgastro.2015.1
86 (2016).

340. Todd, J. A. Tackling Common Disease. Nature 411, 537–539. doi:10.1038/35079223
(2001).

341. Jostins, L. et al. Host–Microbe Interactions Have Shaped the Genetic Architecture of
Inflammatory Bowel Disease. Nature 491, 119–24. doi:10.1038/nature11582 (2012).

342. Liu, J. Z. et al. Association Analyses Identify 38 Susceptibility Loci for Inflammatory
Bowel Disease and Highlight Shared Genetic Risk across Populations. Nature Genetics 47,
979–986. doi:10.1038/ng.3359 (2015).

343. Kaplan, G. G. The Global Burden of IBD: From 2015 to 2025. Nature Reviews Gastroen-
terology & Hepatology 12, 720–727. doi:10.1038/nrgastro.2015.150 (2015).

344. Alatab, S. et al. The Global, Regional, and National Burden of Inflammatory Bowel
Disease in 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global
Burden of Disease Study 2017. The Lancet Gastroenterology & Hepatology 5, 17–30.
doi:10.1016/S2468-1253(19)30333-4 (2020).

345. Levin, A. D., Wildenberg, M. E. & van den Brink, G. R. Mechanism of Action of Anti-TNF
Therapy in Inflammatory Bowel Disease. Journal of Crohn’s and Colitis 10, 989–997.
doi:10.1093/ecco-jcc/jjw053 (2016).

346. Aggarwal, B. B. Signalling Pathways of the TNF Superfamily: A Double-Edged Sword.
Nature Reviews Immunology 3, 745–756. doi:10.1038/nri1184 (2003).

347. Kalliolias, G. D. & Ivashkiv, L. B. TNF Biology, Pathogenic Mechanisms and Emerging
Therapeutic Strategies. Nature Reviews Rheumatology 12, 49–62. doi:10.1038/nrrheum
.2015.169 (2016).

348. Digby-Bell, J. L., Atreya, R., Monteleone, G. & Powell, N. Interrogating Host Immu-
nity to Predict Treatment Response in Inflammatory Bowel Disease. Nature Reviews
Gastroenterology & Hepatology. doi:10.1038/s41575-019-0228-5 (2019).

349. Adegbola, S. O., Sahnan, K., Warusavitarne, J., Hart, A. & Tozer, P. Anti-TNF Therapy
in Crohn’s Disease. International Journal of Molecular Sciences 19, 2244. doi:10.3390/ij
ms19082244 (2018).

350. Lichtenstein, G. R. Comprehensive Review: Antitumor Necrosis Factor Agents in Inflamma-
tory Bowel Disease and Factors Implicated in Treatment Response. Therapeutic Advances
in Gastroenterology 6, 269–293. doi:10.1177/1756283X13479826 (2013).

351. Aitken, M., Kleinrock, M., Simorellis, A. & Nass, D. The Global Use of Medicine in 2019
and Outlook to 2023: Forecasts and Areas to Watch (IQVIA Institute, NC, USA, 2019).

http://dx.doi.org/10.1111/cei.13101
http://dx.doi.org/10.1038/nrgastro.2015.34
http://dx.doi.org/10.1038/nrgastro.2015.186
http://dx.doi.org/10.1038/nrgastro.2015.186
http://dx.doi.org/10.1038/35079223
http://dx.doi.org/10.1038/nature11582
http://dx.doi.org/10.1038/ng.3359
http://dx.doi.org/10.1038/nrgastro.2015.150
http://dx.doi.org/10.1016/S2468-1253(19)30333-4
http://dx.doi.org/10.1093/ecco-jcc/jjw053
http://dx.doi.org/10.1038/nri1184
http://dx.doi.org/10.1038/nrrheum.2015.169
http://dx.doi.org/10.1038/nrrheum.2015.169
http://dx.doi.org/10.1038/s41575-019-0228-5
http://dx.doi.org/10.3390/ijms19082244
http://dx.doi.org/10.3390/ijms19082244
http://dx.doi.org/10.1177/1756283X13479826


176 Bibliography

352. Roda, G., Jharap, B., Neeraj, N. & Colombel, J.-F. Loss of Response to Anti-TNFs:
Definition, Epidemiology, and Management: Clinical and Translational Gastroenterology
7, e135. doi:10.1038/ctg.2015.63 (2016).

353. Ben-Horin, S., Kopylov, U. & Chowers, Y. Optimizing Anti-TNF Treatments in Inflamma-
tory Bowel Disease. Autoimmunity Reviews 13, 24–30. doi:10.1016/j.autrev.2013.06
.002 (2014).

354. Flamant, M. & Roblin, X. Inflammatory Bowel Disease: Towards a Personalized Medicine.
Therapeutic Advances in Gastroenterology 11, 1756283X1774502. doi:10.1177/1756283X1
7745029 (2018).

355. Kennedy, N. A. et al. Predictors of Anti-TNF Treatment Failure in Anti-TNF-Naive
Patients with Active Luminal Crohn’s Disease: A Prospective, Multicentre, Cohort Study.
The Lancet Gastroenterology & Hepatology 4, 341–353. doi:10.1016/S2468-1253(19)300
12-3 (2019).

356. Vermeire, S., Gils, A., Accossato, P., Lula, S. & Marren, A. Immunogenicity of Bio-
logics in Inflammatory Bowel Disease. Therapeutic Advances in Gastroenterology 11,
1756283X1775035. doi:10.1177/1756283X17750355 (2018).

357. Rogler, G. Where Are We Heading to in Pharmacological IBD Therapy? Pharmacological
Research 100, 220–227. doi:10.1016/j.phrs.2015.07.005 (2015).

358. D’Haens, G. R. et al. The London Position Statement of the World Congress of Gas-
troenterology on Biological Therapy for IBD With the European Crohn’s and Colitis
Organization: When to Start, When to Stop, Which Drug to Choose, and How to Predict
Response?: American Journal of Gastroenterology 106, 199–212. doi:10.1038/ajg.2010
.392 (2011).

359. Ding, N. S., Hart, A. & De Cruz, P. Systematic Review: Predicting and Optimising
Response to Anti-TNF Therapy in Crohn’s Disease - Algorithm for Practical Management.
Alimentary Pharmacology & Therapeutics 43, 30–51. doi:10.1111/apt.13445 (2016).

360. Kopylov, U. & Seidman, E. Predicting Durable Response or Resistance to Antitumor
Necrosis Factor Therapy in Inflammatory Bowel Disease. Therapeutic Advances in Gas-
troenterology 9, 513–526. doi:10.1177/1756283X16638833 (2016).

361. Noor, N. M., Verstockt, B., Parkes, M. & Lee, J. C. Personalised Medicine in Crohn’s
Disease. The Lancet Gastroenterology & Hepatology 5, 80–92. doi:10.1016/S2468-1253(1
9)30340-1 (2020).

362. Arijs, I. et al. Mucosal Gene Signatures to Predict Response to Infliximab in Patients with
Ulcerative Colitis. Gut 58, 1612–1619. doi:10.1136/gut.2009.178665 (2009).

363. Arijs, I. et al. Predictive Value of Epithelial Gene Expression Profiles for Response to
Infliximab in Crohn’s Disease. Inflammatory Bowel Diseases 16, 2090–2098. doi:10.1002
/ibd.21301 (2010).

364. West, N. R. et al. Oncostatin M Drives Intestinal Inflammation and Predicts Response
to Tumor Necrosis Factor–Neutralizing Therapy in Patients with Inflammatory Bowel
Disease. Nature Medicine 23, 579–589. doi:10.1038/nm.4307 (2017).

http://dx.doi.org/10.1038/ctg.2015.63
http://dx.doi.org/10.1016/j.autrev.2013.06.002
http://dx.doi.org/10.1016/j.autrev.2013.06.002
http://dx.doi.org/10.1177/1756283X17745029
http://dx.doi.org/10.1177/1756283X17745029
http://dx.doi.org/10.1016/S2468-1253(19)30012-3
http://dx.doi.org/10.1016/S2468-1253(19)30012-3
http://dx.doi.org/10.1177/1756283X17750355
http://dx.doi.org/10.1016/j.phrs.2015.07.005
http://dx.doi.org/10.1038/ajg.2010.392
http://dx.doi.org/10.1038/ajg.2010.392
http://dx.doi.org/10.1111/apt.13445
http://dx.doi.org/10.1177/1756283X16638833
http://dx.doi.org/10.1016/S2468-1253(19)30340-1
http://dx.doi.org/10.1016/S2468-1253(19)30340-1
http://dx.doi.org/10.1136/gut.2009.178665
http://dx.doi.org/10.1002/ibd.21301
http://dx.doi.org/10.1002/ibd.21301
http://dx.doi.org/10.1038/nm.4307


177

365. Martin, J. C. et al. Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic
Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell 178, 1493–
1508.e20. doi:10.1016/j.cell.2019.08.008 (2019).

366. Gaujoux, R. et al. Cell-Centred Meta-Analysis Reveals Baseline Predictors of Anti-TNFα
Non-Response in Biopsy and Blood of Patients with IBD. Gut 68, 604–614. doi:10.1136
/gutjnl-2017-315494 (2019).

367. Verstockt, B. et al. Low TREM1 Expression in Whole Blood Predicts Anti-TNF Response
in Inflammatory Bowel Disease. EBioMedicine 40, 733–742. doi:10.1016/j.ebiom.2019
.01.027 (2019).

368. Verstockt, B. et al. TREM-1, the Ideal Predictive Biomarker for Endoscopic Healing in
Anti-TNF-Treated Crohn’s Disease Patients? Gut 68, 1531–1533. doi:10.1136/gutjnl-2
018-316845 (2019).

369. Burke, K. E. et al. Genetic Markers Predict Primary Nonresponse and Durable Response to
Anti–Tumor Necrosis Factor Therapy in Ulcerative Colitis. Inflammatory Bowel Diseases
24, 1840–1848. doi:10.1093/ibd/izy083 (2018).

370. Sazonovs, A. et al. HLA-DQA1*05 Carriage Associated With Development of Anti-Drug
Antibodies to Infliximab and Adalimumab in Patients With Crohn’s Disease. Gastroen-
terology. doi:10.1053/j.gastro.2019.09.041 (2019).

371. Simon Andrews. FastQC: A Quality Control Tool for High Throughput Sequence Data
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2015).

372. Dobin, A. et al. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 29, 15–21.
doi:10.1093/bioinformatics/bts635 (2013).

373. Smith, T., Heger, A. & Sudbery, I. UMI-Tools: Modeling Sequencing Errors in Unique
Molecular Identifiers to Improve Quantification Accuracy. Genome Research 27, 491–499.
doi:10.1101/gr.209601.116 (2017).

374. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An Efficient General Purpose Program
for Assigning Sequence Reads to Genomic Features. Bioinformatics (Oxford, England) 30,
923–930. doi:10.1093/bioinformatics/btt656 (2014).

375. Hoffman, G. E. & Schadt, E. E. variancePartition: Interpreting Drivers of Variation in
Complex Gene Expression Studies. BMC Bioinformatics 17. doi:10.1186/s12859-016-1
323-z (2016).

376. Cinelli, C., Forney, A. & Pearl, J. A Crash Course in Good and Bad Controls R-493 (2020),
10.

377. Aryee, M. J. et al. Minfi: A Flexible and Comprehensive Bioconductor Package for
the Analysis of Infinium DNA Methylation Microarrays. Bioinformatics 30, 1363–1369.
doi:10.1093/bioinformatics/btu049 (2014).

378. Houseman, E. A. et al. DNA Methylation Arrays as Surrogate Measures of Cell Mixture
Distribution. BMC Bioinformatics 13, 86. doi:10.1186/1471-2105-13-86 (2012).

http://dx.doi.org/10.1016/j.cell.2019.08.008
http://dx.doi.org/10.1136/gutjnl-2017-315494
http://dx.doi.org/10.1136/gutjnl-2017-315494
http://dx.doi.org/10.1016/j.ebiom.2019.01.027
http://dx.doi.org/10.1016/j.ebiom.2019.01.027
http://dx.doi.org/10.1136/gutjnl-2018-316845
http://dx.doi.org/10.1136/gutjnl-2018-316845
http://dx.doi.org/10.1093/ibd/izy083
http://dx.doi.org/10.1053/j.gastro.2019.09.041
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1101/gr.209601.116
http://dx.doi.org/10.1093/bioinformatics/btt656
http://dx.doi.org/10.1186/s12859-016-1323-z
http://dx.doi.org/10.1186/s12859-016-1323-z
http://dx.doi.org/10.1093/bioinformatics/btu049
http://dx.doi.org/10.1186/1471-2105-13-86


178 Bibliography

379. MacKinnon, D. P., Krull, J. L. & Lockwood, C. M. Equivalence of the Mediation, Con-
founding and Suppression Effect. Prevention science : the official journal of the Society
for Prevention Research 1, 173 (2000).

380. Suzuki, E., Shinozaki, T. & Yamamoto, E. Causal Diagrams: Pitfalls and Tips. Journal of
Epidemiology 30, 153–162. doi:10.2188/jea.JE20190192 (2020).

381. Piasecka, B. et al. Distinctive Roles of Age, Sex, and Genetics in Shaping Transcriptional
Variation of Human Immune Responses to Microbial Challenges. Proceedings of the National
Academy of Sciences 115, E488–E497. doi:10.1073/pnas.1714765115 (2018).

382. Hoffman, G. E. & Roussos, P. Dream: Powerful Differential Expression Analysis for
Repeated Measures Designs. Bioinformatics (ed Gorodkin, J.) doi:10.1093/bioinformat
ics/btaa687 (2020).

383. McNeish, D. Small Sample Methods for Multilevel Modeling: A Colloquial Elucidation of
REML and the Kenward-Roger Correction. Multivariate Behavioral Research 52, 661–670.
doi:10.1080/00273171.2017.1344538 (2017).

384. Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. & Schmid, M. A Review of Spline
Function Procedures in R. BMC Medical Research Methodology 19. doi:10.1186/s12874-
019-0666-3 (2019).

385. Müllner, D. Fastcluster : Fast Hierarchical, Agglomerative Clustering Routines for R and
Python. Journal of Statistical Software 53. doi:10.18637/jss.v053.i09 (2013).

386. Tibshirani, R., Walther, G. & Hastie, T. Estimating the Number of Clusters in a Data
Set via the Gap Statistic. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 63, 411–423. doi:10.1111/1467-9868.00293 (2001).

387. Salvador-Martín, S. et al. Gene Signatures of Early Response to Anti-TNF Drugs in
Pediatric Inflammatory Bowel Disease. International Journal of Molecular Sciences 21,
3364. doi:10.3390/ijms21093364 (2020).

388. Zalocusky, K. A. et al. The 10,000 Immunomes Project: Building a Resource for Human
Immunology. Cell Reports 25, 513–522.e3. doi:10.1016/j.celrep.2018.09.021 (2018).

389. Pellegrino Coppola, D. et al. Correction for Both Common and Rare Cell Types in Blood Is
Important to Identify Genes That Correlate with Age. doi:10.1101/2020.05.28.120600
(2020).

390. Boyapati, R. K., Rossi, A. G., Satsangi, J. & Ho, G.-T. Gut Mucosal DAMPs in IBD:
From Mechanisms to Therapeutic Implications. Mucosal Immunology 9, 567–582. doi:10
.1038/mi.2016.14 (2016).

391. Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and Their Roles in the Immune System.
Nature Reviews Immunology 7, 255–266. doi:10.1038/nri2056 (4 2007).

392. Martinez, F. O. The Transcriptome of Human Monocyte Subsets Begins to Emerge. Journal
of Biology 8, 99. doi:10.1186/jbiol206 (2009).

http://dx.doi.org/10.2188/jea.JE20190192
http://dx.doi.org/10.1073/pnas.1714765115
http://dx.doi.org/10.1093/bioinformatics/btaa687
http://dx.doi.org/10.1093/bioinformatics/btaa687
http://dx.doi.org/10.1080/00273171.2017.1344538
http://dx.doi.org/10.1186/s12874-019-0666-3
http://dx.doi.org/10.1186/s12874-019-0666-3
http://dx.doi.org/10.18637/jss.v053.i09
http://dx.doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.3390/ijms21093364
http://dx.doi.org/10.1016/j.celrep.2018.09.021
http://dx.doi.org/10.1101/2020.05.28.120600
http://dx.doi.org/10.1038/mi.2016.14
http://dx.doi.org/10.1038/mi.2016.14
http://dx.doi.org/10.1038/nri2056
http://dx.doi.org/10.1186/jbiol206


179

393. Villani, A.-C. et al. Single-Cell RNA-Seq Reveals New Types of Human Blood Dendritic
Cells, Monocytes, and Progenitors. Science 356, eaah4573. doi:10.1126/science.aah4573
(2017).

394. Ivashkiv, L. B. & Donlin, L. T. Regulation of Type I Interferon Responses. Nature Reviews
Immunology 14, 36–49. doi:10.1038/nri3581 (1 2014).

395. Lu, Y., Li, X., Liu, S., Zhang, Y. & Zhang, D. Toll-like Receptors and Inflammatory Bowel
Disease. Frontiers in Immunology 9. doi:10.3389/fimmu.2018.00072 (2018).

396. Corridoni, D., Chapman, T., Ambrose, T. & Simmons, A. Emerging Mechanisms of Innate
Immunity and Their Translational Potential in Inflammatory Bowel Disease. Frontiers in
Medicine 5. doi:10.3389/fmed.2018.00032 (2018).

397. Prame Kumar, K., Nicholls, A. J. & Wong, C. H. Y. Partners in Crime: Neutrophils and
Monocytes/Macrophages in Inflammation and Disease. Cell and Tissue Research 371,
551–565. doi:10.1007/s00441-017-2753-2 (2018).

398. Lügering, A., Schmidt, M., Lügering, N., Pauels, H.-G., Domschke, W. & Kucharzik, T.
Infliximab Induces Apoptosis in Monocytes from Patients with Chronic Active Crohn’s
Disease by Using a Caspase-Dependent Pathway. Gastroenterology 121, 1145–1157. doi:10
.1053/gast.2001.28702 (2001).

399. Pararasa, C. et al. Reduced CD27-IgD- B Cells in Blood and Raised CD27-IgD- B Cells in
Gut-Associated Lymphoid Tissue in Inflammatory Bowel Disease. Frontiers in Immunology
10. doi:10.3389/fimmu.2019.00361 (2019).

400. Tretina, K., Park, E.-S., Maminska, A. & MacMicking, J. D. Interferon-Induced Guanylate-
Binding Proteins: Guardians of Host Defense in Health and Disease. Journal of Experi-
mental Medicine 216, 482–500. doi:10.1084/jem.20182031 (2019).

401. Liu, S.-Y., Sanchez, D. J., Aliyari, R., Lu, S. & Cheng, G. Systematic Identification of
Type I and Type II Interferon-Induced Antiviral Factors. Proceedings of the National
Academy of Sciences 109, 4239–4244. doi:10.1073/pnas.1114981109 (2012).

402. Van Baarsen, L. G. et al. Regulation of IFN Response Gene Activity during Infliximab
Treatment in Rheumatoid Arthritis Is Associated with Clinical Response to Treatment.
Arthritis Research & Therapy 12, R11. doi:10.1186/ar2912 (2010).

403. Laukoetter, M. et al. O-014: IFN-Gamma Induces Apoptosis in Inflammation by Inhibition
of the Wnt-Pathway. Inflammatory Bowel Diseases 14, S4–S5. doi:10.1097/00054725-20
0801001-00014 (suppl_1 2008).

404. Mavragani, C. P., La, D. T., Stohl, W. & Crow, M. K. Association of the Response to
Tumor Necrosis Factor Antagonists with Plasma Type I Interferon Activity and Interferon-
β/α Ratios in Rheumatoid Arthritis Patients: A Post Hoc Analysis of a Predominantly
Hispanic Cohort. Arthritis & Rheumatism 62, 392–401. doi:10.1002/art.27226 (2010).

405. Wright, H. L., Thomas, H. B., Moots, R. J. & Edwards, S. W. Interferon Gene Expression
Signature in Rheumatoid Arthritis Neutrophils Correlates with a Good Response to TNFi
Therapy. Rheumatology 54, 188–193. doi:10.1093/rheumatology/keu299 (2015).

http://dx.doi.org/10.1126/science.aah4573
http://dx.doi.org/10.1038/nri3581
http://dx.doi.org/10.3389/fimmu.2018.00072
http://dx.doi.org/10.3389/fmed.2018.00032
http://dx.doi.org/10.1007/s00441-017-2753-2
http://dx.doi.org/10.1053/gast.2001.28702
http://dx.doi.org/10.1053/gast.2001.28702
http://dx.doi.org/10.3389/fimmu.2019.00361
http://dx.doi.org/10.1084/jem.20182031
http://dx.doi.org/10.1073/pnas.1114981109
http://dx.doi.org/10.1186/ar2912
http://dx.doi.org/10.1097/00054725-200801001-00014
http://dx.doi.org/10.1097/00054725-200801001-00014
http://dx.doi.org/10.1002/art.27226
http://dx.doi.org/10.1093/rheumatology/keu299


180 Bibliography

406. Gutierrez-Arcelus, M. et al. Allele-Specific Expression Changes Dynamically during T
Cell Activation in HLA and Other Autoimmune Loci. Nature Genetics 52, 247–253.
doi:10.1038/s41588-020-0579-4 (2020).

407. Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G. & Tak, P. P. Tumor Necrosis Factor
Antagonist Mechanisms of Action: A Comprehensive Review. Pharmacology & Therapeutics
117, 244–279. doi:10.1016/j.pharmthera.2007.10.001 (2008).

408. Gibson, D. J. et al. Review Article: Determination of the Therapeutic Range for Therapeutic
Drug Monitoring of Adalimumab and Infliximab in Patients with Inflammatory Bowel
Disease. Alimentary Pharmacology & Therapeutics 51, 612–628. doi:10.1111/apt.15643
(2020).

409. Liu, X. Methods for Handling Missing Data in Methods and Applications of Longitudinal
Data Analysis 441–473 (Elsevier, 2016). doi:10.1016/B978-0-12-801342-7.00014-9.

410. Ibrahim, J. G. & Molenberghs, G. Missing Data Methods in Longitudinal Studies: A
Review. TEST 18, 1–43. doi:10.1007/s11749-009-0138-x (2009).

411. Imhann, F. et al. The 1000IBD Project: Multi-Omics Data of 1000 Inflammatory Bowel
Disease Patients; Data Release 1. BMC Gastroenterology 19. doi:10.1186/s12876-018-0
917-5 (2019).

412. Toonen, E. J. M. et al. Validation Study of Existing Gene Expression Signatures for
Anti-TNF Treatment in Patients with Rheumatoid Arthritis. PLOS ONE 7, e33199.
doi:10.1371/journal.pone.0033199 (2012).

413. Li, S. et al. Metabolic Phenotypes of Response to Vaccination in Humans. Cell 169,
862–877.e17. doi:10.1016/j.cell.2017.04.026 (2017).

414. Breuer, K. et al. InnateDB: Systems Biology of Innate Immunity and beyond—Recent
Updates and Continuing Curation. Nucleic Acids Research 41, D1228–D1233. doi:10.109
3/nar/gks1147 (2013).

415. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P. & Mesirov,
J. P. Molecular Signatures Database (MSigDB) 3.0. Bioinformatics 27, 1739–1740. doi:10
.1093/bioinformatics/btr260 (2011).

416. Senn, S. Statistical Pitfalls of Personalized Medicine. Nature 563, 619–621. doi:10.1038
/d41586-018-07535-2 (2018).

417. Senn, S. Mastering Variation: Variance Components and Personalised Medicine. Statistics
in Medicine 35, 966–977. doi:10.1002/sim.6739 (2016).

418. Farahbod, M. & Pavlidis, P. Untangling the Effects of Cellular Composition on Coexpression
Analysis. Genome Research, gr.256735.119. doi:10.1101/gr.256735.119 (2020).

419. Leek, J. T. Svaseq: Removing Batch Effects and Other Unwanted Noise from Sequencing
Data. Nucleic Acids Research 42, e161–e161. doi:10.1093/nar/gku864 (2014).

420. Liu, Q. & Markatou, M. Evaluation of Methods in Removing Batch Effects on RNA-Seq
Data. Infectious Diseases and Translational Medicine 2, 3–9. doi:10.11979/idtm.201601
002 (2016).

http://dx.doi.org/10.1038/s41588-020-0579-4
http://dx.doi.org/10.1016/j.pharmthera.2007.10.001
http://dx.doi.org/10.1111/apt.15643
http://dx.doi.org/10.1016/B978-0-12-801342-7.00014-9
http://dx.doi.org/10.1007/s11749-009-0138-x
http://dx.doi.org/10.1186/s12876-018-0917-5
http://dx.doi.org/10.1186/s12876-018-0917-5
http://dx.doi.org/10.1371/journal.pone.0033199
http://dx.doi.org/10.1016/j.cell.2017.04.026
http://dx.doi.org/10.1093/nar/gks1147
http://dx.doi.org/10.1093/nar/gks1147
http://dx.doi.org/10.1093/bioinformatics/btr260
http://dx.doi.org/10.1093/bioinformatics/btr260
http://dx.doi.org/10.1038/d41586-018-07535-2
http://dx.doi.org/10.1038/d41586-018-07535-2
http://dx.doi.org/10.1002/sim.6739
http://dx.doi.org/10.1101/gr.256735.119
http://dx.doi.org/10.1093/nar/gku864
http://dx.doi.org/10.11979/idtm.201601002
http://dx.doi.org/10.11979/idtm.201601002


181

421. Van der Wijst, M. et al. The Single-Cell eQTLGen Consortium. eLife 9. doi:10.7554/eLi
fe.52155 (2020).

422. Efron, B. Prediction, Estimation, and Attribution. Journal of the American Statistical
Association 115, 636–655. doi:10.1080/01621459.2020.1762613 (2020).

423. Kazmin, D. et al. Systems Analysis of Protective Immune Responses to RTS,S Malaria
Vaccination in Humans. Proceedings of the National Academy of Sciences 114, 2425–2430.
doi:10.1073/pnas.1621489114 (2017).

424. Haynes, B. F. et al. Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. New
England Journal of Medicine 366 (ed Kremer, E. J.) 1275–1286. doi:10.1056/NEJMoa111
3425 (2012).

425. Zak, D. E. et al. Merck Ad5/HIV Induces Broad Innate Immune Activation That Predicts
CD8+ T-Cell Responses but Is Attenuated by Preexisting Ad5 Immunity. Proceedings
of the National Academy of Sciences 109, E3503–E3512. doi:10.1073/pnas.1208972109
(2012).

426. Fourati, S. et al. Pre-Vaccination Inflammation and B-Cell Signalling Predict Age-Related
Hyporesponse to Hepatitis B Vaccination. Nature Communications 7, 10369. doi:10.1038
/ncomms10369 (2016).

427. Qi, Q. et al. Defective T Memory Cell Differentiation after Varicella Zoster Vaccination in
Older Individuals. PLOS Pathogens 12 (ed Rooney, C. M.) e1005892. doi:10.1371/journ
al.ppat.1005892 (2016).

428. Rechtien, A. et al. Systems Vaccinology Identifies an Early Innate Immune Signature as a
Correlate of Antibody Responses to the Ebola Vaccine rVSV-ZEBOV. Cell Reports 20,
2251–2261. doi:10.1016/j.celrep.2017.08.023 (2017).

429. Avey, S. et al. Multiple Network-Constrained Regressions Expand Insights into Influenza
Vaccination Responses. Bioinformatics 33, i208–i216. doi:10.1093/bioinformatics/btx
260 (2017).

430. Avey, S. et al. Seasonal Variability and Shared Molecular Signatures of Inactivated Influenza
Vaccination in Young and Older Adults. The Journal of Immunology 204, 1661–1673.
doi:10.4049/jimmunol.1900922 (2020).

431. MAQC Consortium. The MicroArray Quality Control (MAQC)-II Study of Common
Practices for the Development and Validation of Microarray-Based Predictive Models.
Nature Biotechnology 28, 827–838. doi:10.1038/nbt.1665 (2010).

432. Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C. & Collins, J. J. Next-
Generation Machine Learning for Biological Networks. Cell 173, 1581–1592. doi:10.1016
/j.cell.2018.05.015 (2018).

433. Chibon, F. Cancer Gene Expression Signatures – The Rise and Fall? European Journal of
Cancer 49, 2000–2009. doi:10.1016/j.ejca.2013.02.021 (2013).

http://dx.doi.org/10.7554/eLife.52155
http://dx.doi.org/10.7554/eLife.52155
http://dx.doi.org/10.1080/01621459.2020.1762613
http://dx.doi.org/10.1073/pnas.1621489114
http://dx.doi.org/10.1056/NEJMoa1113425
http://dx.doi.org/10.1056/NEJMoa1113425
http://dx.doi.org/10.1073/pnas.1208972109
http://dx.doi.org/10.1038/ncomms10369
http://dx.doi.org/10.1038/ncomms10369
http://dx.doi.org/10.1371/journal.ppat.1005892
http://dx.doi.org/10.1371/journal.ppat.1005892
http://dx.doi.org/10.1016/j.celrep.2017.08.023
http://dx.doi.org/10.1093/bioinformatics/btx260
http://dx.doi.org/10.1093/bioinformatics/btx260
http://dx.doi.org/10.4049/jimmunol.1900922
http://dx.doi.org/10.1038/nbt.1665
http://dx.doi.org/10.1016/j.cell.2018.05.015
http://dx.doi.org/10.1016/j.cell.2018.05.015
http://dx.doi.org/10.1016/j.ejca.2013.02.021


182 Bibliography

434. Michiels, S., Ternès, N. & Rotolo, F. Statistical Controversies in Clinical Research: Prog-
nostic Gene Signatures Are Not (yet) Useful in Clinical Practice. Annals of Oncology 27,
2160–2167. doi:10.1093/annonc/mdw307 (2016).

435. Kwa, M., Makris, A. & Esteva, F. J. Clinical Utility of Gene-Expression Signatures in
Early Stage Breast Cancer. Nature Reviews Clinical Oncology 14, 595–610. doi:10.1038
/nrclinonc.2017.74 (2017).

436. Davey Smith, G. & Hemani, G. Mendelian Randomization: Genetic Anchors for Causal
Inference in Epidemiological Studies. Human Molecular Genetics 23, R89–R98. doi:10.10
93/hmg/ddu328 (2014).

437. Hemani, G., Bowden, J. & Davey Smith, G. Evaluating the Potential Role of Pleiotropy
in Mendelian Randomization Studies. Human Molecular Genetics 27, R195–R208. doi:10
.1093/hmg/ddy163 (2018).

438. Neumeyer, S., Hemani, G. & Zeggini, E. Strengthening Causal Inference for Complex
Disease Using Molecular Quantitative Trait Loci. Trends in Molecular Medicine 26, 232–
241. doi:10.1016/j.molmed.2019.10.004 (2020).

439. Davies, N. M., Holmes, M. V. & Davey Smith, G. Reading Mendelian Randomisation
Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ, k601. doi:10.1136/bmj.k6
01 (2018).

440. Davey Smith, G., Holmes, M. V., Davies, N. M. & Ebrahim, S. Mendel’s Laws, Mendelian
Randomization and Causal Inference in Observational Data: Substantive and Nomenclatu-
ral Issues. European Journal of Epidemiology 35, 99–111. doi:10.1007/s10654-020-0062
2-7 (2020).

441. Gusev, A. et al. Integrative Approaches for Large-Scale Transcriptome-Wide Association
Studies. Nature Genetics 48, 245–252. doi:10.1038/ng.3506 (2016).

442. Zhu, H. & Zhou, X. Transcriptome-Wide Association Studies: A View from Mendelian
Randomization. Quantitative Biology. doi:10.1007/s40484-020-0207-4 (2020).

443. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the Causal Relationship between
Imprecisely Measured Traits Using GWAS Summary Data. PLOS Genetics 13 (ed Li, J.)
e1007081. doi:10.1371/journal.pgen.1007081 (2017).

444. Wang, L. & Michoel, T. Efficient and Accurate Causal Inference with Hidden Confounders
from Genome-Transcriptome Variation Data. PLOS Computational Biology 13 (ed List-
garten, J.) e1005703. doi:10.1371/journal.pcbi.1005703 (2017).

445. Munafò, M. R. & Davey Smith, G. Robust Research Needs Many Lines of Evidence. Nature
553, 399–401. doi:10.1038/d41586-018-01023-3 (2018).

446. Taylor, D. L. et al. Integrative Analysis of Gene Expression, DNA Methylation, Physiolog-
ical Traits, and Genetic Variation in Human Skeletal Muscle. Proceedings of the National
Academy of Sciences 116, 10883–10888. doi:10.1073/pnas.1814263116 (2019).

http://dx.doi.org/10.1093/annonc/mdw307
http://dx.doi.org/10.1038/nrclinonc.2017.74
http://dx.doi.org/10.1038/nrclinonc.2017.74
http://dx.doi.org/10.1093/hmg/ddu328
http://dx.doi.org/10.1093/hmg/ddu328
http://dx.doi.org/10.1093/hmg/ddy163
http://dx.doi.org/10.1093/hmg/ddy163
http://dx.doi.org/10.1016/j.molmed.2019.10.004
http://dx.doi.org/10.1136/bmj.k601
http://dx.doi.org/10.1136/bmj.k601
http://dx.doi.org/10.1007/s10654-020-00622-7
http://dx.doi.org/10.1007/s10654-020-00622-7
http://dx.doi.org/10.1038/ng.3506
http://dx.doi.org/10.1007/s40484-020-0207-4
http://dx.doi.org/10.1371/journal.pgen.1007081
http://dx.doi.org/10.1371/journal.pcbi.1005703
http://dx.doi.org/10.1038/d41586-018-01023-3
http://dx.doi.org/10.1073/pnas.1814263116


183

447. Zheng, J. et al. Phenome-Wide Mendelian Randomization Mapping the Influence of the
Plasma Proteome on Complex Diseases. Nature Genetics 52, 1122–1131. doi:10.1038/s4
1588-020-0682-6 (2020).

http://dx.doi.org/10.1038/s41588-020-0682-6
http://dx.doi.org/10.1038/s41588-020-0682-6


184 Bibliography



185

List of Abbreviations

AC allele count

APC antigen-presenting cell

ASC antibody-secreting cell

ASE allele-specific expression

AUC area under the curve

BCR B cell receptor

BH Benjamini-Hochberg

BMI body mass index

BTM blood transcription module

CD Crohn’s disease

CDR complementarity-determining region

ChIP-seq chromatin immunoprecipitation sequencing

CPM counts per million

CRP C-reactive protein

CyTOF cytometry by time-of-flight

DAMP damage-associated molecular pattern

DC dendritic cell

df degree of freedom

DGE differential gene expression

ELISA enzyme-linked immunosorbent assay

ELISPOT enzyme-linked immune absorbent spot



186 List of Abbreviations

eQTL expression quantitative trait locus

FACS fluorescence-activated cell sorting

FC fold change

FDR false discovery rate

FWER family-wise error rate

GO Gene Ontology

GWAS genome-wide association study

HA haemagglutinin

HAI haemagglutination inhibition

HBI Harvey Bradshaw index

HIRD Human Immune Response Dynamics

HLA human leukocyte antigen

HSC hematopoietic stem cell

HWE Hardy-Weinberg equilibrium

IBD inflammatory bowel disease

IIV inactivated influenza vaccine

IMID immune-mediated inflammatory disease

INT inverse normal transformation

IV instrumental variable

LAIV live attenuated influenza vaccine

LD linkage disequilibrium

LFSR local false sign rate

LMM linear mixed model

LOCO leave-one-chromosome-out

LOR loss of response

LRT likelihood ratio test

MAF minor allele frequency
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MANOVA multivariate analysis of variance

MAR missing at random

MCAR missing completely at random

MHC major histocompatibility complex

ML maximum likelihood

MN microneutralisation

MNAR missing not at random

molQTL molecular quantitative trait locus

MR Mendelian randomisation

mRNA messenger RNA

MS multiple sclerosis

NA neuraminidase

ncRNA non-coding RNA

NK natural killer

PAMP pathogen-associated molecular pattern

PANTS Personalised Anti-TNF Therapy in Crohn’s Disease

PBMC peripheral blood mononuclear cell

PC principal component

PCA principal component analysis

PNR primary non-response

PRR pattern recognition receptor

PVE proportion of variance explained

QTL quantitative trait locus

RA rheumatoid arthritis

RBC red blood cell

REML restricted maximum likelihood

reQTL response expression quantitative trait locus



188 List of Abbreviations

RNA-seq RNA sequencing

rRNA ribosomal RNA

scRNA-seq single-cell RNA sequencing

SLE systemic lupus erythematosus

SNP single nucleotide polymorphism

T1D type 1 diabetes

T2D type 2 diabetes

TF transcription factor

TIV trivalent inactivated influenza vaccine

TLR toll-like receptor

TMM trimmed mean of M-values

TNF tumour necrosis factor

TPM transcripts per million

TRI titre response index

TSS transcription start site

TWAS transcriptome-wide association study

UC ulcerative colitis

UTR untranslated region

WES whole-exome sequencing

WGS whole-genome sequencing

WHO World Health Organization

Compiled: 2021-03-16 17:02:25Z


