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Chapter 3  

Cell-to-cell gene expression variation associated 

with mESC culture conditions. 

 

 

 

 

3.1 Introduction 

Despite their shared hallmarks of biological origin, mouse embryonic stem 

cells propagated in different in vitro environments are morphologically distinct 

and possess characteristic transcriptional and epigenetic profiles (Ficz et al., 

2013; Marks et al., 2012). Depending on how the pluripotency of mESCs is 

maintained in culture, they exhibit different characteristics. Cells cultured in 

serum/LIF are flattened, grow in a monolayer and are well-attached to the 

surface, while cells in 2i/LIF and a2i/LIF form compact three-dimensional 

colonies and tend to attach to each other more than to the surface. 

Furthermore, serum/LIF maintained mESCs are morphologically more 

heterogeneous (Marks et al., 2012; Shimizu et al., 2012; Ying et al., 2008). 
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It was shown using bulk RNA sequencing that transcriptomes of cells 

cultured in 2i and serum differ. Several developmental, metabolic and cell 

cycle related genes are differentially expressed between conditions, further 

illustrating the importance of cell culture condition in determining phenotype 

(Marks et al., 2012). The reason for the distinct transcriptomes may lie in 

different epigenomes of these cells (Angermueller et al., 2016; Ficz et al., 2013; 

Smallwood et al., 2014). Cells grown in 2i/LIF are globally hypomethylated in 

comparison to cells grown in serum/LIF (Habibi et al., 2013), and also they 

exhibit different histone modification patterns (Marks et al., 2012).  

The morphological heterogeneity of cells grown in serum/LIF led to 

attempts to understand this property of the population. Certain pluripotency 

factors such as Nanog (Chambers et al., 2007; Kalmar et al., 2009), Dppa3 

(Hayashi et al., 2008) and Rex1 (Zfp42) (Toyooka et al., 2008) exhibit 

transcriptional fluctuations, meaning that within the population there is a 

group of cells that express these genes at a low level and another 

subpopulation that expresses them highly. Cells that express low levels of 

Nanog can change their expression to high and vice versa, and these 

populations remain in a dynamic equilibrium (Kalmar et al., 2009). It was 

shown that cells that express low levels of NANOG are less pluripotent, and 

this led to the hypothesis that this population represents the differentiation-

poised states and is instrumental in regulating exit from pluripotency (Chang 

et al., 2008). 

Importantly, others have expressed concern that the phenomenon of 

fluctuations may originate from the use of fluorescent reporter systems (Chang 

et al., 2008; Faddah et al., 2013; Reynolds et al., 2012). It was suggested that 

Nanog is randomly monoallelically expressed i.e. cells stochastically switch off 



	
   77	
  

one of the alleles (Miyanari and Torres-Padilla, 2012). In cases when one of the 

alleles of Nanog is fused to fluorescent reporter protein, the population of cells 

will divide into two subgroups, cells with low levels of fluorescence, where the 

fluorescent reporter protein tagged allele is switched off, and the second 

population with high fluorescence from the active reporter allele. It is worth 

noting that some groups have shown that Nanog is expressed from both alleles 

(Faddah et al., 2013; Filipczyk et al., 2013) and this points to the conclusion that 

fluctuations are not an artefact of reporter system, but a biological 

phenomenon. 

The presence of transcriptionally heterogeneous subpopulations, prevalent 

bivalent chromatin domains, increased methylation content and reduced RNA 

polymerase pausing in serum compared to 2i mESCs has led to the notion that 

serum-maintained mESCs exist in a metastable pluripotent state (Marks et al., 

2012), implying a higher transcriptional cell-to-cell variation compared to the 

uniform ground states exhibited by the chemically defined “2i” conditions 

(Klein et al., 2015; Kumar et al., 2014). 

In this chapter I aimed to characterize in detail heterogeneity of mouse 

embryonic stem cells in different culture conditions by quantification of gene 

expression variability and comparison between three culture conditions: 

serum/LIF, 2i/LIF and alternative 2i/LIF (Shimizu et al., 2012; Ying et al., 

2008). Subsequently, I set out to understand the biological context of the 

observed variability. In more detail, the questions that I wanted to address 

involve understanding heterogeneous Nanog expression at the mRNA level 

and surveying if there are other genes that exhibit such variability. 

Furthermore, I wanted to identify transcriptionally similar subpopulations of 

cells in serum and to investigate whether Nanog-high cells from serum are 
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similar to 2i-cultured cells. I then aimed to compare the whole transcriptome 

heterogeneity between conditions to find whether it is higher in serum in 

comparison to 2i and to find genes that contribute to this heterogeneity. 

Finally, I wanted to analyse if culturing cells in the alternative 2i media leads 

to similar transcriptomes to 2i, as is suggested by their similar morphologies 

(Shimizu et al., 2012). I used single cell RNA sequencing to overcome 

limitations of previous transcriptomic analyses and to provide a high-

resolution analysis of cellular heterogeneity. 

 

3.2 Experimental design 

To examine gene expression variability and understand how serum-grown 

mESCs differ from those grown in 2i media, an F1 hybrid (C57BL/6Ncr male x 

129S6/SvEvTac female) male mESC cell line (George et al., 2007) was cultured 

in three different conditions: (1) three replicates of serum + LIF, (2) four 

replicates of 2i + LIF, and (3) two replicates of “alternative 2i” + LIF, which are 

henceforth referred to as serum (serum1, serum2, serum3), 2i (2i1, 2i2, 2i3, 2i4) 

and a2i (a2i1, a2i2) (Figure 3.1). I characterized cells in these three conditions 

by single cell RNA-sequencing using the Fluidigm C1 system. The cDNA from 

each 96-cell chip was sequenced on four lanes of a HiSeq2000. Reads were 

aligned to the Mus musculus genome (GRCm38) using GSNAP and 

subsequently reads mapped to each gene were counted using HT-Seq. 
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Figure 3.1 Experimental schematic of hybrid mESCs in three culture conditions.  
Table of experimental setup and cell culture conditions used in our study. 
 

3.3 Quality control 

Single cell mRNA sequencing experiments work with fragile cells and very 

small amounts of material. Thus it is essential to perform quality control to 

remove from analysis samples containing broken or dead cells as well as those 

exhibiting technical problems, such as pipetting errors or poor quality of 

sequencing library preparation (Ilicic et al., 2016).  

Three criteria were used to remove poor quality cells. First, I excluded 

samples that upon microscopic inspection (20x light microscope), appeared 

empty, contained double or multiple cells or showed some debris within 

capture sites of the C1 chip. Second, samples with fewer than 500,000 reads 

mapped to exons were discarded. Low numbers of reads mapping to the 

transcriptome may suggest contamination or failure in one of the steps of the 

protocol: cell lysis, reverse transcription, cDNA amplification or library 

preparation. Third, I removed cells where more than 10% of reads mapped to 

the genes encoded by the mitochondrial genome. A high percentage of reads 

mapping to the mitochondrial genome is a good indication of low quality cells. 

One possible explanation is that when the cell is broken, cytoplasm leaks out 
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during washing steps, but membrane enclosed parts of the cell such as 

mitochondria and their contents remain intact. This leads to an apparent 

enrichment of transcripts from the mitochondrial genome, as they are enclosed 

within mitochondria and are not washed out (Figure 3.2). 

 

Figure 3.2 Quality control of cells 
Quality control metrics were the number of reads mapping to exons (y axis), and the 
proportion of reads mapped to mitochondrial genes (x axis). Lines represent the 
thresholds used. Green points represent cells excluded upon microscopic examination 
of the C1 chip and black points represent cells that did not pass the thresholds.  
 

After removing poor quality cells (18.5% of all cells), 295 2i cells, 159 a2i 

cells and 250 serum cells remained. On average, I sequenced over 9 million 

reads per cell. Over 80% of reads mapped to the Mus musculus genome and 

over 60% to exons (Figure 3.3). I also performed standard bulk RNA 

sequencing using at least a million cells per sample for each condition to 

compare to single cell sequencing data of the same samples. Bulk data were 
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obtained from the same cell culture as 2i 1, serum 1, serum 2 and a2i 1, thus 

the only difference between single cell experiment and respective bulk are 

technical. 

 

Figure 3.3 Mapping statistics for each cell for each sample.  
The mean percentage of reads mapping to Ensembl exons (green), to the genome 
outside Ensembl annotated regions (blue) and unmapped reads (red) for each of nine 
experiments. (A) and (B) show results for single cell experiments while (C) and (D) for 
accompanying bulk. 
 

To assess if the single cell RNA-seq data was in agreement with the results 

from bulk experiments, I averaged gene expression levels across the single 

cells profiled in each condition and compared with bulk RNA sequencing of 

cells from the same culture. I observed that the mean expression levels of all 

genes recapitulated the bulk gene expression levels with a Spearman rank 



	
   82	
  

correlation coefficient of 0.88 for 2i, 0.89 for a2i, 0.91 for serum 1 and 0.90 for 

serum 2, and all p-values are smaller than 10-­‐15 (Figure 3.4). It is worth noting 

that for lowly expressed genes there is less correspondence, as these genes are 

not detected in all single cells, due to lower sensitivity of single cell methods 

and technical noise. 

 

 

Figure 3.4 Comparison of gene expression levels between bulk and single cells.  
2D kernel density estimation of scatter plot between expression level in bulk 
experiment and mean of gene expression from single cells in each condition. Value of 
Spearman rank correlation coefficient (rho) between bulk and mean of single cells is 
indicated in the top left corner. 
 

3.4 Variability of gene expression 

An advantage of the single cell approach is that I can investigate gene 

expression in more detail by focusing not only on mean expression values, but 

also by studying the distribution of expression levels across the population, 

capturing cell-to-cell variability in gene expression (Grun and van 

Oudenaarden, 2015).  

It was shown previously that some genes have higher heterogeneity than 

others in cells cultured in serum (Canham et al., 2010; Kalmar et al., 2009; 

Kumar et al., 2014). For example Roeder and Radtke (2009) showed that 

protein levels of OCT4 are relatively more homogeneous within a culture in 
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comparison to levels of NANOG (Roeder and Radtke, 2009). This prompted 

me to see how this compares to the mRNA expression of these genes. Indeed I 

observed that Nanog is more heterogeneously expressed than Oct4 (Figure 3.5). 

Coefficient of variation of gene expression for Nanog is 0.75 while for Oct4 it is 

0.68.  

 

 

Figure 3.5 Variability of expression of Oct4 and Nanog.  
Microscopy pictures showing fluorescently labelled Oct4 and Nanog are from Roeder 
and Radtke, 2009, and plots below show expression heterogeneity of Oct4 and Nanog 
in three culture conditions plotted using single cell mRNAseq data.  
 

Subsequently I investigated if there was a difference in heterogeneity 

depending on the culture condition that the cells originated from. Upon 

inspection of gene expression distributions of several genes it was striking to 

me that some genes like Tcerg1 do not have significantly different expression 

profiles between culture conditions (the two-sided Kolmogorov–Smirnov test 
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(KS test) p-value for 2i and a2i comparison is 0.82, and for 2i and serum 0.16). 

By contrast, some genes are more heterogeneous in one of the conditions, such 

as Ccnb1, which is more heterogeneous in 2i (P=7×10-4 by two-sided sided KS 

test between 2i and serum). Other genes, such as Nanog, Klf4 or Nr0b1, are 

more heterogeneous in serum (P<10-15 by the two-sided KS test between 2i 

and serum for genes mentioned above) (Figure 3.6). The null hypothesis of the 

KS test is that data in both samples are from the population with identical 

distribution. It compares cumulative distributions of two samples testing for 

different median, different variance or different distribution without making 

assumptions about the type of the distribution. Low p-value suggests that data 

were sampled from two populations, which have different distributions.  

Many pluripotency associated genes are heterogeneous in serum, but in 2i. There is 

exception to this pattern. More specifically, Utf1 is a pluripotency factor implicated in 

regulation of bivalent genes (Jia et al., 2012), which is more heterogeneously 

expressed in 2i than in a2i and serum. 

 

Figure 3.6 Gene expression distributions across cells 
Gene expression distributions of genes, which are noisier in 2i than serum, which are 
noisier in serum than 2i and that have similar noise profiles in serum (red), 2i (blue), 
a2i (yellow). Distributions of gene expression were smoothed using the kernel density 
estimation function in R with default parameters 
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3.5 Transcriptome-wide gene expression variability measurement  

Comparison of gene-expression variation was performed previously for 

selected genes using single molecule RNA-FISH and at the protein level with 

FACS with a few genes at a time (Raj et al., 2008). The strength of single cell 

RNA sequencing is that it allows us to investigate variability of all moderately 

and highly expressed genes at the same time from one population of cells.  

To compare the global levels of gene expression heterogeneity between the 

three different culture conditions we did not use coefficient of variation (CV) 

of the normalized read counts, because the CV of a gene depends strongly on 

its mean expression level and length of the gene, which makes it difficult to 

interpret the noise difference of a gene between conditions. In collaboration 

with Dr. Jong Kyoung Kim, to account for the confounding factor of 

expression level, we used the distance between the squared CV of each gene 

and a running median as a measure of cell-to-cell variation. This is derived 

from the scatter plot of the mean normalized read counts versus the squared 

CV values, as in (Newman et al., 2006). We refer to this expression-level 

normalized measure of noise as distance to the median (DM). To calculate DM 

genes are divided into three groups depending on their length, because longer 

genes tend to have higher CV2 in comparison to short genes. Subsequently for 

each of these groups rolling median of CV2 depending on gene expression is 

calculated. And finally for each gene the median CV2 for the expression bin 

this gene falls in is subtracted from the CV2 of this gene (Please refer to 

Chapter 2 for details). 
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Figure 3.7 Gene expression variability measured with coefficient of variation (CV) 
and distance to the median (DM)  

Plots show that there is a linear relationship between CV2 and the level of gene 
expression, while this bias is not present for DM. Colours of dots indicate length of 
each gene. 
 
 

Using DM, transcriptome-wide cell-to-cell variation is similar across the 

three culture conditions and I found that transcriptome-wide DM values are 

not significantly different across the three culture conditions (P=0.6252 by the 

Friedman rank sum test) (Figure 3.8). To compare three culture conditions at 

the same time we had to use the Friedman rank sum test, which is a 

nonparametric version of ANOVA.  It is used to find different samples within 

3 or more groups when data points are paired.   
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Figure 3.8 Gene expression variability across cells in different conditions measured 
with DM 
Comparison of global gene expression variability by showing DM distribution of all 
expressed genes in all conditions, not including 2C-like cells. 
 

Cells cultured in serum are more morphologically heterogeneous than cells 

cultured in 2i (Marks et al., 2012; Toyooka et al., 2008) and exhibit more 

variable expression of pluripotency factors, such as Nanog and Zfp42 (Canham 

et al., 2010; Hayashi et al., 2008; Kalmar et al., 2009; Martinez Arias and 

Brickman, 2011; Singh et al., 2007). Hence, I expected that global gene 

expression variability would be higher in cells grown in serum compared with 

2i. There were no reports on heterogeneity in a2i, but as morphologically a2i is 

similar to 2i, I anticipated that they would also be transcriptomically similar 

due to morphological similarities between these cells and those grown in 2i.  

I observed that expression of pluripotency genes such as Nanog or Nr0b1 is 

more heterogeneous in serum than in 2i or a2i. If these genes were to be more 

heterogeneous in serum, other genes might be more heterogeneous in 2i and 

a2i. These heterogeneous genes in 2i and a2i would balance heterogeneously 
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expressed pluripotency genes in serum leading to similar global heterogeneity. 

This prompted us to ask whether the gene expression heterogeneity levels of 

genes belonging to individual functional categories are the same or different 

between conditions.  

To explore the relative difference in gene expression heterogeneity levels for 

each functional category between the culture conditions, we first compared the 

DM values of genes in pairs of culture conditions for each Gene Ontology 

(GO) term (excluding 2i replicates containing 2C-like cells; for discussion of 

2C-like cells see chapter 4). We used paired t-test for comparison of DM 

between GO categories to show that a GO category and its child terms have 

more noise consistently in one condition compared to another. We did not 

perform an adjustment of the p-values for several reasons. The conventional 

FDR/FWER adjustment procedures can give very conservative p-values in this 

case, which means that the power of detecting GO categories showing true 

noise differences between two conditions will be too low. Additionally, we 

were interested in the consistent noise differences of a GO category and its 

child terms. In this case, the tests for GO categories are not independent and 

the multiple testing methods cannot be applied directly. 

 We found that 712 GO terms (out of a total of 19,107 terms) exhibit a 

significant difference in their noise levels in at least one pairwise comparison 

(P<0.01). For example, the expression of genes involved in “organ 

development” (P=3.3×10-­‐4) and “cell adhesion” (P=4.8×10-­‐4) are noisier in 

serum than in the inhibitory conditions (2i and a2i). These terms contain many 

of the pluripotency factors that were observed to display noisy expression 

patterns (Figure 3.9). 
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In contrast, genes involved in “cell cycle” (P=5.4×10-­‐3) and “nuclear 

division” (P=5.9×10-­‐6) have higher levels of noise in 2i compared to serum. 

When we included 2i replicates containing 2C-like cells, the conclusions are 

still valid, but marginally significant (P<0.1), possibly due to the presence of 

2C-like cells (2C-like cells identification and characterization is described in 

chapter 5). 

 

 

Figure 3.9 Gene expression heterogeneity of functional categories of genes 
Comparison of the levels of gene expression and noise for gene ontology (GO) 
categories between the culture conditions (excluding 2i replicates containing 2C-like 
cells). The logarithm (log10) of P-values from two-sided paired t-test applied to mean 
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normalized read count (x-axis) and DM (y-axis) was computed for each GO category 
and plotted against each other by multiplying the sign of the t-statistic. Boxplots show 
an example of a GO category (GO:0000280, nuclear division) that is noisier in 2i and is 
similarly expressed between the two conditions. 
 

3.6 Subpopulations of differentiating cells in serum 

Fluctuations of gene or protein expression in serum were reported 

previously for some of the genes such as Nanog (Faddah et al., 2013; Kalmar et 

al., 2009; MacArthur et al., 2012; Singh et al., 2007), Esrrb (van den Berg et al., 

2008) and Zfp42 (Toyooka et al., 2008). Our data recapitulate these 

observations. Moreover, I found new genes to be noisy, such as Nr0b1 or Tet2 

(Figure 3.6).  

Genes that show noisy expression, especially those with obvious bimodal 

expression patterns like Nanog, Klf4 or Nr0b1, may indicate the existence of 

underlying subpopulations. Indeed, hierarchical clustering of subsets using 

expression of known pluripotency genes and differentiation markers (Boyer et 

al., 2006; Cole et al., 2008; Kunath et al., 2007; Ng and Surani, 2011; Xu et al., 

2014; Young, 2011) reveals that serum-grown cells split into three distinct 

groups. These three groups differ in the expression levels of pluripotency 

factors as well as other genes. In both inhibitory conditions, Nanog and other 

pluripotency factors are less noisy than in serum. Neither 2i nor a2i 

populations contain a subpopulation structure similar to serum-cultured cells. 

All 2i cells and all a2i cells (except two) cluster separately from serum, and 

intermingle with each other. This indicates that 2i and a2i cultured cells are 

similar with respect to their expression of pluripotency genes (Figure 3.10).  
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Figure 3.10 Subpopulation structure of cells cultured in serum 
Clustering of cells in three culture conditions using a panel of pluripotency factors 
and differentiation markers. Correlations between cells and genes were calculated 
using Spearman correlation. Below the heatmap I show a model of the 
subpopulations of cells grown in serum. The schematic shows cells that express 
differentiation markers (red), cells that are primed for differentiation while remaining 
pluripotent (orange) and cells that are closest to ground state of pluripotency (green). 
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The first subpopulation of cells from serum consists of 39 cells (15%) that 

express higher levels of markers of differentiation, for example Fos or Hes1, 

and high levels of cytoskeletal genes, such as keratins (Krt8, Krt18), actins 

(Acta1, Acta2) and annexins (Anxa1, Anxa2, Anxa3). At the same time, these 39 

cells have low levels or no expression of transcription factors involved in 

maintenance of pluripotency (e.g. Nanog, Sox2 and Oct4). This suggests that 

these cells have exited pluripotency and committed to differentiation. The 

second group consists of 42 cells (17%) with somewhat lower expression levels 

of some pluripotency genes, such as Zfp42 and Sox2, and some expression of 

differentiation genes, yet high expression of Oct4 and Dppa3. These cells may 

correspond to a previously described “differentiation permissive” set 

(Chambers et al., 2007; Islam et al., 2014; Kalmar et al., 2009). Finally, the 

largest group of 169 cells (68%) expresses the highest levels of pluripotency 

factors and very low expression of keratins or actins (Figure 3.11). 

 

Figure 3.11 Gene expression differences between three clusters of cells in serum 
Gene expression distributions of genes that become downregulated (A) and 
upregulated (B) upon differentiation. Expression is shown as log2 size factor 
normalized counts. Oct4 expression is similar in cells closer to the ground state of 
pluripotency (green) and cells that are primed for differentiation (yellow), and is 
lower in cells I defined as moving towards differentiation (red).   
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To examine if cells I identified as ‘on the differentiation path’ are indeed 

doing so, I decided to compare them to the cells that differentiate towards 

neuronal progenitor cells (NPCs). It is known that if signals for pluripotency 

maintenance are removed, mESCs spontaneously differentiate towards the 

neuronal lineage (Ying et al., 2003b). I predicted that there would be a 

similarity between these subpopulation of cells from serum and cells on the 

NPC differentiation pathway. I used single cell RNA-seq data generated by Dr. 

Alex Tuck from mESC cultured in serum and the same cells at day 6 and day 8 

of an NPC differentiation time course (Bibel et al., 2007). I performed principal 

component analysis of Spearman's rank correlation coefficient between all the 

cells and I observed that cells belonging to the Nanog-low subpopulation lie 

between the more pluripotent cells and these that are differentiating towards 

NPCs (Figure 3.12). This strongly supports our earlier hypothesis that these 

cells are indeed progressing down a differentiation pathway. 
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Figure 3.12 Principal component analysis of expression data from serum and cells 
progressing towards NPC fate. 
All genes with mean normalized counts larger than 50 were considered and PCA was 
performed on the Spearman’s rank correlation matrix between cells. 

 

Identification of a pluripotent mESC population in serum, led me to ask if 

these cells are the same as the ground pluripotent state cells found in 2i 

condition. I performed PCA to see if there is overlap between these 

populations, but observed that cells cultured in each condition cluster 

separately, meaning that they have distinct transcriptomic states. PC1 

separates the culture conditions and genes that contribute the most to this 
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separation are genes involved in development as well as metabolism. Notably, 

cells from replicates of each culture condition cluster together showing that the 

separation of three culture conditions is due to biological difference rather 

than to batch effect (Figure 3.13).  

I performed GO term analysis of genes that contributes most to PC1, which 

separates the conditions (Figure 3.13 BC). GO term “positive regulation of 

mesenchymal cell proliferation” among others contains genes from WNT and 

Sonic Hedgehog pathways, several fibroblast growth factors and transcription 

factors from Forkhead family, “lung development” also contains members of 

WNT pathway, several types of growth factors including leukaemia inhibitory 

factor and transcription factors including for example Nodal. Similarly terms 

“ossification”, “neuron projection development”, and “positive regulation of 

vasoconstriction” contain genes that function also in early development or in 

development and signalling in general. Appearance of “inactivation of MAPK 

activity” term is probably related to the fact that in 2i and a2i, MAPK is 

inhibited using drug. “Cell-cell adhesion” related genes are differently affected 

in a2i, in which SRC is inhibited and one of SRC functions is phosphorylation 

of focal adhesion kinase (FAK) (Meyn and Smithgall, 2009; Shimizu et al., 

2012). Genes related to metabolism “glycolysis”, “ribosomal subunit 

assembly”, “translation” may reflect different metabolic states between serum 

and 2i as well as differences that come from different growth rates.  
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Figure 3.13 Clustering of mESCs grown in serum, 2i and a2i media 
All cells (n=704) grown in the three different culture conditions are projected onto the 
first two principal components. All genes with mean normalized read counts larger 
than 10 were considered and principal component analysis (PCA) was performed. (B) 
Distribution of genes contributing to PC1. (C) Gene ontology enrichment analysis of 
genes most strongly contributing to PC1 separation.  

 

3.7 Cell cycle variability in 2i and alternative 2i cultures 

When we compared gene expression heterogeneity of different functional 

gene categories it was unexpected to see that cell cycle genes will have lower 

gene expression variability in serum than in the inhibitory conditions, because 

all of these cells cycle (Figure 3.8). To understand where this difference comes 

from I decided to analyse cell cycle gene expression of cells in three culture 

conditions. I used Cyclebase.org database, which uses experimental data from 

synchronized cells to rank genes from these that show the most consistent and 

pronounced cycling pattern (Santos et al., 2015). I selected 20 genes that have 

most pronounced cycling behaviour in their expression with peak in G2 or M 
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phase and found their mouse orthologs. When clustering cells based on these 

genes only, I found that 2i and a2i cells separate more clearly into two groups: 

one with high expression of G2 and M genes and the other with lower 

expression of these genes, suggesting that these remaining cells are in G1 or S 

phases of cell cycle (Figure 3.14).  

 

 

Figure 3.14 Cell cycle gene heterogeneity and cell cycle phase assignment 
Heat maps showing the expression of cell cycle related genes in serum, 2i and a2i, 
with a distinct separation into G1/S versus G2/M cells in 2i and a2i, with less 
distinction between individual cells in serum. 
 

To confirm that this annotation of cell cycle phases to cells is correct, I 

estimated mRNA content of cells using ERCC spike-ins (Consortium, 2005). 

Each cell was spiked with exactly the same amount of ERCCs and thus the 

ratio of reads mapping to ERCCs to reads mapping to all mouse genes 

depends only on the amount of transcripts in the cell and the higher it is the 

lower mRNA content of the cell. To make sure that lysis buffer spiked with 

ERCC is exactly the same in all samples, for this analysis I used only batch 3 of 

the data, which was done on one day in parallel. As expected, cells in the G1 

and S phases in both 2i and a2i have significantly higher ratio of reads 

mapping to ERCCs to reads mapping to all mouse genes, meaning they have 
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less mRNA. There is significantly more mRNA in cells identified to be in 

G2/M phase in comparison to G1/S phase cells in both 2i and a2i. As the cells 

in these populations are not normally distributed I used the non-parametric 

Wilcoxon test (Figure 3.15).   

 

 
Figure 3.15 mRNA content in cells at different cell cycle stages 
Comparison of mRNA content in cells using ratio of reads mapping to ERCCs 
(constant number of molecules spiked in in three conditions) to all exon mapped 
reads. 

 

Another measure to check if the assignment is correct would be to see if 

cells from G1 and S phase have higher expression of histones. During S phase 

cell needs to double the amount of histones to package newly synthesized 

DNA, thus in G1 and S phase cell should have more histone transcripts. 

Indeed I observe that pattern in both 2i and a2i, suggesting that our 

classification of cell cycle phases is correct (Figure 3.16). 
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Figure 3.16 Histone mRNA expression in cells at different cell cycle stages 
Comparison of histone mRNA content in cells from different cell cycle stages across 
culture conditions.  
 

Cyclone is a machine learning based approach for cell cycle phase 

assignment; it can distinguish G1, S and G2/M phases (Scialdone et al., 2014). I 

used it for cell cycle phase prediction and it is in a good agreement with the 

assignment I made by clustering, 88% for 2i cells and 90% for a2i cells. In 28 

cases (9.5%) in 2i, and 11 cases (7%) Cyclone identified cells to be in S phase, 

and I in G2/M. Only one cell in 2i was identified as G1 by Cyclone and G2/M 

by clustering. And 6 cells (2%) in 2i and 5 cells (3%) in a2i were assigned by 

Cyclone as G2/M and clustering identified it as G1/S. 
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3.8 Speed of cell cycle estimation from single cell mRNA 
sequencing data of cell population 

To understand the source of the difference between 2i/a2i and serum with 

respect to the cell cycle I examined doubling rate of these cells and found that 

cells in serum and 2i showed different doubling kinetics (Figure 3.17). Within 

the first 24h the growth rate was faster in 2i than serum but later, at day 2, it 

slows down. At the time of harvest (48 hours after plating), the doubling time 

is 25 hours for 2i cells and 11 hours for serum, indicating that cells grown in 2i 

are more slowly cycling, probably due to a longer G1 phase. Degradation rates 

of mRNAs in serum and in 2i are similar, and average mRNA half time is 

about 7h, but many cell cycle genes have longer half lives (Sharova et al., 

2009). The correspondence of lengthening doubling time and increasing cell 

cycle associated gene expression noise demonstrated the robustness of single 

cell transcriptomic ‘snapshots’ of specific biological process in a cell 

population.  

 

Figure 3.17 Growth kinetics of cells in three culture conditions.  
Numbers shown are how many times cells grew between second and third day of 
culture, i.e. when cells were harvested for scRNA-seq experiment. At this point in 
culture cells cultured in serum grew slowest. 
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Additionally, I observed that the 39 and 42 cells from serum culture, which 

have begun to move forward on the differentiation pathway, have noisier 

expression of cell cycle genes. A shift in the distribution of the expression of 

G2/M genes, such as Cks2 or Cdc20 toward lower levels suggests that there are 

relatively more G1/S cells in these two groups (Figure 3.18). I inferred that 

more differentiated cells have a relatively longer G1 phase, as I sample more 

cells in G1 from this subpopulation in comparison to more pluripotent cells. 

This indicates that cells that I identified as differentiating have a longer cell 

cycle, and are proliferating more slowly than Nanog-high ground state 

pluripotent cells.  

 

 

Figure 3.18 Gene expression distributions of cell cycle genes in subpopulation of 
cells cultured in serum. 
Plots show distribution of cell cycle gene expression in cells from three 
subpopulations from serum. Cells that are on the differentiation path (red) are more 
heterogeneous than cells that are in the more pluripotent state (green). 
 

To support and demonstrate further the fact that differentiating cells that 

start to cycle more slowly have more heterogeneous cell cycle gene expression 

distribution I used the NPC differentiation time course data. The distributions 

of the expression of cell cycle genes are significantly more heterogeneous in 

differentiating cells. For some genes, such as Cdc20, one can observe bimodal 

distribution in NPC differentiated cells from day 6 and day 8.  
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Figure 3.19 Gene expression distributions of cell cycle genes in cells from NPC 
differentiation time course 
Plots show distribution of cell cycle gene expression in cells from NPC differentiation 
time course. Cells that are not differentiated (serum, light green) are more 
homogeneous than cells that are 6 or 8 days on the NPC differentiation path (darker 
green). 

 

3.9 Cell Cycle Rank for measurement of cell cycle speed 

Cell cycle gene expression is heterogeneous and this heterogeneity does not 

come only from the fact that cells are in different cell cycle phases and from the 

speed of cell cycle, but also from the heterogeneity due to the stochastic nature 

of gene expression, by bursts rather than continuously. This additional noise 

makes it difficult to see significant differences between populations, if few 

cells were sampled. For example the differences between gene expression 

distributions of cell cycle genes in subpopulation of cells cultured in serum are 

subtle if one looks at a single gene (Figure 3.18).  

To overcome this problem I developed a measure called Cell Cycle Rank, 

which allows overcoming the effects caused by stochasticity of gene 

expression. To calculate the Cell Cycle Rank, 20 genes that have highest cyclic 

expression pattern and peak at G2 or M phases were selected from 

cyclebase.org and for each of these genes cells were ranked depending on how 

highly this gene is expressed. Subsequently ranks for these 20 genes were 

summed up for each cell. Cells that have high Cell Cycle Rank, express all 20 

genes highly suggesting that they are likely to be G2/M cells, while those with 
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low rank are in G1/S phases. By summing the ranks I do not take under 

consideration the level of gene expression, so more highly expressed genes do 

not influence the result more than lowly expressed genes.  

I calculated Cell Cycle Ranks for cells differentiating to NPC and plotted the 

distributions and as expected they are more heterogeneous for cells that are 

more differentiated (Figure 3.20 A). More interestingly, when I apply this 

method to the subpopulations of cells from serum, I can clearly see that cells 

identified as differentiating have a broader distribution of Cell Cycle Ranks in 

comparison to more ground state cells (Figure 3.20 B). 

 

Figure 3.20 Cell Cycle Rank distribution 
Distribution of Cell Cycle Ranks for (A) cells from NPC differentiation time course 
and (B) subpopulation of cells cultured in serum. 
 

3.10 Conclusions 

To quantify cell-to-cell heterogeneity in gene expression levels, for the first 

time in single cell RNA sequencing analysis we applied distance to the 

median, a measure of noise that is independent of gene expression level. 

Surprisingly, we found that on a global level, cells grown in 2i, a2i and serum 

are indistinguishable in terms of transcriptome-wide heterogeneity. It was 

assumed, based on expression of a small number of pluripotency markers, that 
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cells grown in serum are more heterogeneous. I have shown, however, that the 

noise composition of specific subsets of genes is different between the culture 

conditions. The noise in 2i was not captured previously, because it involves 

different gene sets than these that display heterogeneous expression in serum. 

Cells grown in serum, as observed previously, have more heterogeneous 

expression of pluripotency factors. This derives from the existence of 

subpopulations that differ in the expression of these genes.  

Within the serum population I find that there are three clusters of cells, 

which likely correspond to different states of pluripotency versus 

differentiation. Previously, subpopulations of cells in serum were reported 

based on FACS analysis of proteins with heterogeneous abundance such as 

NANOG (Kalmar et al., 2009; Singh et al., 2007). Cells with low expression 

levels of Nanog were separated from those expressing Nanog at high levels, and 

microarray analysis of the transcriptomes of these two subpopulations was 

performed (Singh et al., 2007). This work showed that Rex1 (Zfp42), Sox2 and 

Pou5f1 are more highly expressed in Nanog-high cells, a pattern I also observe.  

Recently, single cell RNA sequencing of serum-grown mESCs (Islam et al., 

2014) showed a subpopulation with low Nanog expression. In another large-

scale study, using droplet microfluidics it was shown that there exist 

subpopulations of cells cultured in serum (Klein et al., 2015). In this study the 

authors sequenced several thousands of cells and were able to find precursors 

of different lineages in the embryo. Additionally, a qPCR study using a panel 

of 48 pluripotency markers showed that cells cultured in serum exist in two 

distinct states, with a small number of cells appearing to reside in an 

intermediate state (Papatsenko et al., 2015). I extended this analysis, and found 

three clusters, one of which represents differentiation-committed cells, one 
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represents an intermediate state and one represents a self-renewal state. I 

speculate that the first subpopulation has committed to differentiation with 

clear down-regulation of Pou5f1 and Sox2, suggestive of irreversible 

commitment. In contrast, “differentiation primed” cells with higher expression 

of Pou5f1 and Sox2 could still revert to “pluripotent” cells. Additionally, the 

proportion of cells in G1 or S phase of the cell cycle increases in the 

“differentiated” cells, suggesting that their cell cycle is slower and that they do 

not expand as quickly as the more pluripotent populations. Importantly, I 

found that cells that express high levels of Nanog in serum are not similar to 

‘ground pluripotency state’ 2i cells. 

Our results show that mESCs partition into transcriptomically distinct cell 

populations according to the growth medium (serum, 2i or a2i). Cells cultured 

in 2i and a2i are similar to each other. When compared to single cells from 

different stages of mouse embryonic development, all three sets of cultured 

mESCs are closest to cells from the blastocyst stage, which is the stage from 

which the cells were extracted originally. The 2i and a2i cultured ESCs seem 

more similar to the blastocyst cells than serum cells. This is in agreement with 

previous findings showing that cells cultured in 2i are hypomethylated due to 

inhibition of Gsk3β and MEK. Similar low level of methylation is observed in 

the preimplantation epiblast, suggesting that these cells are in the naïve 

pluripotent state (Leitch et al., 2013). Regarding metabolic state, cells cultured 

in 2i have lower expression levels of glycolysis enzymes in comparison to 

serum. 

Importantly cell cultured in 2i are not identical to blastocyst cells. This is 

expected because in vitro conditions are non-physiological especially in case of 

2i media where pluripotent state is achieved by use of kinase inhibitors. 
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Additionally, I observed that 2C-like cells are globally more similar to 

blastocysts than to 2-cell stage embryonic cells.  

A2i medium has been described as an alternative ground state that can be 

achieved through the use of a different inhibitor (Shimizu et al., 2012). As 

expected, a2i is not identical to 2i, but I believe that it is rightfully called an 

alternative ground state: on the transcriptome level, especially with respect to 

pluripotency genes, a2i cells are similar to 2i and in vivo blastocyst cells. In 2i 

and a2i media, there are no subpopulations of differentiating cells, hence the 

pluripotency genes are expressed more homogeneously. Despite these 

similarities, it is intriguing to note that a2i cells have a cellular RNA content 

similar to serum-cultured cells, while 2i cells contain about half as much RNA 

on average, independent of cell cycle stage. It should be noted that Myc is 

differentially up-regulated in a2i cells compared to 2i cells. As Myc has 

recently been shown to behave as a transcriptional amplifier of active genes 

(Lin et al., 2012; Nie et al., 2012) it provides a potential mechanic basis for the 

elevated of RNA content in a2i cells. 

More generally, I observed a relationship between variability in the 

expression levels of cell cycle genes and the length of the cell cycle. Cells 

cultured in serum have the lowest level of noise, cells in a2i medium and cells 

in 2i the highest, which correlates negatively with doubling times in culture 

(doubling times quickest for serum and slowest for 2i). For dividing 

populations where the cell cycle is very slow, such as HSCs, it is possible to 

assign cells to one of four cell cycle stages, but this is more challenging for that 

cycle more quickly (Tsang et al., 2015).  

In summary, single cell transcriptomics has allowed us to gain deep insights 

into the subpopulation structure within mES cell cultures. These results 



	
   107	
  

emphasize the power of transcriptomics at single cell resolution for 

understanding multiple biological processes. 

 

3.11 Further research 

Results and conclusions of this study lead to new questions about biology of 

stem cells and pluripotency. 

Self-renewal is a defining feature of stem cells and there are links between 

pluripotency and cell cycle, for example via Myc (Singh and Dalton, 2009), but 

it is not entirely clear what role cell cycle has in the pluripotency maintenance. 

In 2i medium cell cycle is targeted by inhibition of MAPK pathway, suggesting 

that this is essential for keeping cells pluripotent (Orford and Scadden, 2008). 

Additionally, LIF signalling via STAT3 is linked to the cell cycle regulatory 

pathways (Burdon et al., 2002). Furthermore, others and I observed that cells 

that differentiate start cycling slower, suggesting that there is a change in cell 

cycle. The link between cell cycle and pluripotency can be unravelled using 

single cell mRNA sequencing as one can assign cell cycle phases to cells and 

simultaneously monitor their pluripotency state.  

Measuring cycling speed of cells is important especially for understanding 

cancerous cell populations. It is difficult to measure it without performing 

several time course measurements and additionally in very complex 

populations as in tumours it may be particularly difficult. By performing 

single cell mRNA sequencing one can first identify cell cycle populations of 

which the tumour is composed and subsequently identify cell cycle profiles of 

these cells and measure cell cycle heterogeneity. This will give an insight into, 

which cells are multiplying faster and thus predict which population will 

proliferate most aggressively. The ultimate goal could be finding an absolute 
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rather than relative measure of cell cycle speed using the heterogeneity of cell 

cycle genes and cell cycle phase profile.  

  


