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Summary 

Cell culture conditions for embryonic stem cells are important for their 
selfrenewal capacity and for them to maintain pluripotency. Depending on the 
media that cells are cultured in, they exhibit different morphology and gene 
expression patterns. It was shown that ES cells cultured in 2i versus serum 
results in cells with more homogeneous morphology and more uniform 
Nanog expression. 
I analysed the transcriptomes of over 700 individual mESCs cultured in three 
conditions (serum, 2i and alternative 2i) using full-transcript single cell 
RNAsequencing to understand the causes of culture medium-dependent 
differences in gene expression variability. I aimed to quantify and dissect the 
cell-to-cell variation in the three conditions in an unbiased way by high-
throughput single cell mRNAsequencing and statistical data analysis in a way 
that was not possible before. 
Firstly, I found that global levels of intercellular heterogeneity in gene 
expression are indistinguishable between conditions. At the same time, 
specific groups of genes (pluripotency genes in serum, cell cycle genes in 2i) 
do differ in their noise levels across culture conditions. The heterogeneity of 
pluripotency genes in the serumcultured mES cells is a consequence of 
subpopulations of cells that are differentiating away from the pluripotent 
state. In 2i and a2i-cultured cells, the transcriptomic heterogeneity originated 
in gene expression signatures of different cell cycle stages. 
Secondly, I showed that the transcriptomic signatures of cells grown in the 
three media are distinct, with cells grown in 2i medium being most similar to 
the blastocyst cells of the early embryo. 
Additionally, I found that differences in cell cycle genes’ noise profiles 
correlate with proliferation rate, where slowly-cycling cells have broader, 
more noisy expression profiles and clearer separation between cells in G1/S 
and G2/M phases. 
Moreover, I observed a previously described but poorly understood 2C-like 
population in 2i-cultured cells. I characterized this population in detail and 
compared it to in vivo data from early stages of mouse embryo development 
to determine whether it truly is equivalent to the embryonic 2-cell stage. I 
observed that these cells globally are more transcriptionally similar to 
blastocyst cells than cells from the 2-cell stage of the embryo. 
Finally, I investigated the pluripotency gene regulatory network by analyzing 
correlations between transcription factors and chromatin-associated genes in 
the mouse ES cell data. I found two major clusters: pluripotency factors and 
differentiation regulators. In the pluripotency cluster, I identified new putative 
pluripotency regulators (Ptma, Zfp640, Zfp710). I validated these by 
knockdown with CRISPR repression technology, and demonstrated that even 
partial depletion of these genes causes a shift towards a more differentiated 
state. 
Single cell RNA sequencing allowed me to look at cell populations and genes 
in the dataset to unravel cell identities and genes that regulate processes in 
these cells. This work highlights the power of single cell sequencing whilst 
providing data and analytical approaches that will be a useful resource for 
further study.  
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Summary 

 

 

 

Cell culture conditions for embryonic stem cells are important for their self-
renewal capacity and for them to maintain pluripotency. Depending on the 
media that cells are cultured in, they exhibit different morphology and gene 
expression patterns. It was shown that ES cells cultured in 2i versus serum 
results in cells with more homogeneous morphology and more uniform Nanog 
expression. 

I analysed the transcriptomes of over 700 individual mESCs cultured in 
three conditions (serum, 2i and alternative 2i) using full-transcript single cell 
RNA-sequencing to understand the causes of culture medium-dependent 
differences in gene expression variability. I aimed to quantify and dissect the 
cell-to-cell variation in the three conditions in an unbiased way by high-
throughput single cell mRNA-sequencing and statistical data analysis in a way 
that was not possible before. 

Firstly, I found that global levels of intercellular heterogeneity in gene 
expression are indistinguishable between conditions. At the same time, 
specific groups of genes (pluripotency genes in serum, cell cycle genes in 2i) 
do differ in their noise levels across culture conditions. The heterogeneity of 
pluripotency genes in the serum-cultured mES cells is a consequence of 
subpopulations of cells that are differentiating away from the pluripotent 
state. In 2i and a2i-cultured cells, the transcriptomic heterogeneity originated 
in gene expression signatures of different cell cycle stages. 

Secondly, I showed that the transcriptomic signatures of cells grown in the 
three media are distinct, with cells grown in 2i medium being most similar to 
the blastocyst cells of the early embryo. 

Additionally, I found that differences in cell cycle genes’ noise profiles 
correlate with proliferation rate, where slowly-cycling cells have broader, 
more noisy expression profiles and clearer separation between cells in G1/S 
and G2/M phases.  
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Moreover, I observed a previously described but poorly understood 2C-like 
population in 2i-cultured cells. I characterized this population in detail and 
compared it to in vivo data from early stages of mouse embryo development to 
determine whether it truly is equivalent to the embryonic 2-cell stage. I 
observed that these cells globally are more transcriptionally similar to 
blastocyst cells than cells from the 2-cell stage of the embryo.  

Finally, I investigated the pluripotency gene regulatory network by 
analysing correlations between transcription factors and chromatin-associated 
genes in the mouse ES cell data. I found two major clusters: pluripotency 
factors and differentiation regulators. In the pluripotency cluster, I identified 
new putative pluripotency regulators (Ptma, Zfp640, Zfp710). I validated these 
by knockdown with CRISPR repression technology, and demonstrated that 
even partial depletion of these genes causes a shift towards a more 
differentiated state. 

Single cell RNA sequencing allowed me to look at cell populations and 
genes in the dataset to unravel cell identities and genes that regulate processes 
in these cells. This work highlights the power of single cell sequencing whilst 
providing data and analytical approaches that will be a useful resource for 
further study.  
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