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Chapter 5 

Transcriptomic gene regulatory network of 
pluripotency 
 

 

 

 

5.1 Introduction 

In chapters 3 and 4, I mined a set of high-throughput single cell RNA-

sequencing data to explore correlations between cells, but these data also 

provide a rich resource for analysing correlations in gene expression. Gene-

gene correlations can imply common regulatory mechanisms and functions of 

genes. I aimed to use this to develop new hypotheses about the transcriptional 

regulatory network that regulates pluripotency in mESCs, which is known to 

be highly interconnected and complex (Boyer et al., 2005; Kim et al., 2008; Loh 

et al., 2006). 

Genes and their products that regulate cellular functions are organized in 

gene regulatory networks (Hasty et al., 2001; Hecker et al., 2009; Karlebach and 

Shamir, 2008). Members of the network interact with each other to fulfil 

particular functions, and these networks are particularly important in the 

response to external stimuli and during processes such as development and 
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differentiation. If one gene product positively regulates other genes in a 

network, then an increase in the number of molecules of this product will 

cause an increase in expression of its target genes (Bowsher and Swain, 2012). I 

can observe such relationships by measuring the correlation of expression 

between two genes. In this case I assume that the level of mRNA and the level 

of protein for which it codes, correlate in a cell (Liu et al., 2016). This is true for 

most cases, however for data interpretation it is important to keep in mind that 

the presence of mRNA does not imply it being translated (Peshkin et al., 2015). 

Correlated expression implies that two genes are within the same regulatory 

module, but it does not elucidate the relationship between these genes. A gene 

pair with a high correlation coefficient may encode a transcription factor and 

its target, but directionality of this interaction cannot be inferred solely from 

these data. It is also not possible to infer whether interactions reflect direct 

causation or where two genes with correlated expression are two downstream 

targets regulated by the same factor.  

The pluripotency regulatory network has been intensively studied since the 

development of mouse embryonic stem cell cultures over 30 years ago, but our 

understanding of it remains incomplete (Boyer et al., 2005). External signals, 

such as LIF, activate STAT3, and BMP4, which in turn activate expression of Id 

(inhibition of differentiation) genes to promote pluripotency (Cartwright et al., 

2005; Hall et al., 2009; Matsuda et al., 1999; Ying et al., 2003a). Several key 

transcription factors were also identified, most well described are OCT4, 

NANOG and SOX2 (Avilion et al., 2003; Chew et al., 2005; Orkin et al., 2008; 

Rodda et al., 2005; Sharov et al., 2008). ChIP-chip and ChIP-seq data showed, 

that these and other key pluripotency genes co-occupy promoters of many 

genes, making it difficult to disentangle the wiring of the network (Adachi et 



	
   124	
  

al., 2013; Loh et al., 2006). Key pluripotency genes are also found at the 

promoters of each other suggesting that there is a complex network rather 

than a simple hierarchical structure (Kim et al., 2008; Ng and Surani, 2011; Xu 

et al., 2014). 

In this chapter I aim to use single cell mRNA sequencing to investigate the 

gene regulatory networks involved in pluripotency and to potentially identify 

new factors that play a role in pluripotency maintenance. 

 

5.2 Pluripotency gene regulatory network 

To investigate gene regulatory networks I decided to look at the 

transcription factors, which regulate gene expression, and hence are key genes 

in shaping the gene expression network.  

Focusing on transcription factors made this analysis more tractable, since 

such analysis for 48,034 genes (ENSEMBL annotation GRCm38.p4) is 

computationally intensive and requires additional filtering of pseudogenes 

and genes that arose from duplication and to which sequencing reads map 

ambiguously. Furthermore, transcription factors are the key genes that 

orchestrate the transcriptional response and changes in their expression are 

crucial in transcriptional control. To obtain a comprehensive list of 

transcription factors and chromatin modifiers I took genes from the gene 

ontology category ‘DNA binding’ from the GO database embedded at 

Ensembl Biomart (http://www.ensembl.org/biomart) and calculated the 

Spearman rank correlation coefficients for all gene-to-gene comparisons using 

data from serum cultured cells. To perform such gene network analyses one 

needs to have a perturbed system, meaning the population of cells cannot be 

homogeneous. Cells have to undergo an unsynchronized response to a 



	
   125	
  

stimulus or traverse between developmental stages. This is the case in serum 

cultures, which I showed in Chapter 3 to be more heterogeneous.  

Lowly expressed genes and genes which have stable expression do not 

correlate with genes that change expression as a response to external stimulus 

and so are not informative for the construction of gene regulatory networks. I 

aimed to select genes that correlate with other genes at least to some level. I 

tested different levels of Spearman Rank Correlation Coefficient thresholds 

and empirically found that for this case a threshold of at least below -0.35 or 

above 0.35 is sufficient to filter non-correlated genes and leave enough genes 

for further analysis (Figure 5.1).  

 

Figure 5.1 Correlation coefficient cut-off. 
Plot shows the number of genes that correlate with at least one other gene above 
Spearman rank correlation coefficient value. 
 

 

Finally, I plotted the correlations between the remaining genes as a 

heatmap, which revealed two clusters (Figure 5.2). 
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Figure 5.2 Spearman correlation matrix of transcription factors and key 
pluripotency genes.  
The heatmap shows the correlation coefficients between a set of transcription factors 
and other key genes involved in pluripotency. Above are examples of genes with 
expression patterns that correlate positively and negatively (from the left Zfp42 and 
Creb3, Zfp42 and Nanog, Tet1 and Tet2, Tet1 and Jarid2). 
 

I found that in serum cultured cells, Nanog expression correlates with other 

pluripotency factors and key regulatory genes. The Nanog-correlated genes 

include transcription factors (Esrrb, Klf4, Oct4/Pou5f1, Sox2 and Zfp42), genes 

involved in DNA methylation (Dnmt3a, Tet1, Tet2), and other genes such as 

nuclear receptor Nr0b1 and histone lysine acetyltransferase Kat6b. 
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Interestingly, Nanog expression is negatively correlated with differentiation 

regulators including transcription factors Gata3 and Klf7. These findings agree 

with known interactions in the pluripotency regulatory network, where Nanog 

regulates Esrrb (Boyer et al., 2005), Zfp42 (Shi et al., 2006), and Klf4 (Zhang et 

al., 2010).  

Beyond confirming known interacting genes, I identified correlations 

between characterized pluripotency genes and candidate new components of 

the pluripotency transcriptional regulatory network.  

I found that genes such as Ptma, which was previously implicated in 

immune response modulation (Pineiro et al., 2000), oncogene Set, which 

regulates the cell cycle and is involved in chromatin remodelling (Seo et al., 

2001), prostate cancer associated gene Etv5 (Helgeson et al., 2008) several zinc 

finger proteins of unknown functions: ZFP534, ZFP600, ZFP640, ZFP710 and 

other unknown genes, such as Gm13145, Gm13150, Gm131451, Gm13212, 

Gm13242, Gm13051, Gm13225. Interestingly genes from the last group and 

Zfp600 are clustered in the genome on chromosome 4 within one roughly 1.9 

Mb region. In this region there are predicted lncRNAs on the reverse strand 

(Gm26573, Gm26624, C230088H06Rik) spanning several genes. Single cell 

mRNA sequencing does not provide strand data information and it is possible 

that the correlation between these genes is because I detect lncRNAs from the 

opposite strand and the correlation is simply because it is one molecule. 

 

5.3 Validation of putative pluripotency genes using CRISPRi 

transcriptional silencing 

Of the novel genes that displayed highly correlated expression profiles with 

known pluripotency factors I selected 7 genes for validation: Ptma, Zfp640, 
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Zfp710, Dpy30, Set, Etv5, Kat6b. First, I mined ChIP-seq and Chip-chip data 

from the ESCAPE database (Xu et al., 2013) to check if there are potential 

interactions between these genes and the pluripotency network. This database 

provides a list of interactions between promoters and transcription factors and 

I found that the promoters of 6 out of the 7 candidate genes are bound by at 

least one of the core pluripotency genes (Figure 5.3).  

 

 

 

Figure 5.3 Pluripotency network 
Network showing known interactions of core pluripotency factors with the novel 
candidate genes. Data obtained from ChIP-seq and ChIP-ChIP experiments from 
ESCAPE database. 
 

 

To provide insight into the functional role of these genes, I attempted to 

downregulate their expression using CRISPR/dCas9 repressor targeting of 

their promoters (Gao et al., 2014). 
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The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is 

a prokaryotic immune system that was very successfully applied in eukaryotic 

cells to knock out genes (Doudna and Charpentier, 2014; Jinek et al., 2012). It 

uses guide RNA (gRNA), which consists of a short RNA matching the 

sequence of the gene of interest and a tracer, which binds to the Cas9 

endonuclease that subsequently cleaves the DNA. Importantly this way one 

can target any 20nt long sequence provided its 3’ end has a so called 

Protospacer Adjacent Motif (PAM) sequence, which is TGG for Cas9. Cleaved 

target DNA is then efficiently repaired by the Non-Homologous End Joining 

pathway, which is very error prone and introduces insertions and deletions 

that can cause frameshifts. In some cases the repair can also go through the 

Homology Directed Repair pathway, which is high fidelity and does not result 

in sequence mutations (Cong et al. 2013; Makarova et al., 2011).  

Based on this system, CRISPR interference was established (Larson et al., 

2013). The endonuclease Cas9 was mutated at the active site of its nuclease 

domain to remove its ability to cut DNA. Additionally, the catalytically 

inactive Cas9 was fused to the transcriptional repressor, Krüppel associated 

box (KRAB) domain. In this approach one uses gRNA to target dCas9-KRAB 

to the promoter or enhancer of a gene of interest and the interaction of the 

KRAB domain with the DNA causes a decrease in the level of transcription of 

this gene (Gao et al., 2014; Gilbert et al., 2014; Gilbert et al., 2013). 
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Figure 5.4 Schematic of CRISPRi 

I cloned gRNA targeting promoters of 7 selected genes (for more details 

please refer to chapter 2). Subsequently, Dr Xuefei Gao co-transfected mESCs 

with gRNA-mCherry and dCas9-BFP plasmids and double positive cells were 

purified by flow cytometry in the facility at the Sanger Institute. For each 

downregulated gene three biological replicates were made. Subsequently, I 

examined the transcriptomes of populations of transfected cells by bulk 

mRNA sequencing. On average I sequenced over 10 million reads per sample 

and 48% of reads maps to exons (Figure 5.5). In standard bulk RNA 

sequencing of mESCs I observed that about 80% of reads map to the exons 

(Figure 3.3). Lower than usual percentage of reads mapping to exons is a result 

of the fact that libraries for these samples were prepared from only 10,000 cells 

each using SmartSeq2 protocol, which involves a cDNA amplification step.  
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Figure 5.5 Mapping statistics 
Barplot shows how many reads map to exons, mouse genome and how many do not 
map for all samples in three replicates. 
 

For four out of the seven samples there was significant repression of the 

targeted gene, and I narrowed down our focus to these four genes (Figure 5.6). 

To achieve successful downregulation of gene expression it is important to 

target the right position of the promoter, but unfortunately this position 

cannot be predicted in advance. It is particularly difficult to target genes that 

have multiple alternative transcription start sites, as inhibiting one may lead to 

more expression from the alternative. Additionally, CRISPR technology 

limited me to positions that have PAM sequences immediately upstream. In 

cases where repression gives only subtle results it may not be significant due 

to the fact that I only have three samples per condition, so statistical tests have 

low power. 
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Figure 5.6 CRISPRi results 
Boxplots show the expression level of repressed genes in samples and control. Targets 
for which we achieved significant repression are in blue. Gene expression levels are 
shown as DESeq size factor normalise counts. 

 

I performed differential expression analysis between samples transfected 

with a control gRNA that does not have a target mouse genome, but instead 

targets the human Rosa26 locus and the gRNA targeting the gene of interest 

using DESeq. After multiple hypothesis testing correction I found significantly 

differentially expressed (p-value <0.05) genes in two cases: Ptma and Zfp640 

(Figure 5.7). There were 16 differentially expressed genes in the Ptma knock-

down and 7 in the Zfp640 knock-down. 

Three significantly upregulated genes in the Ptma knock-down are all 

involved in pluripotency and early embryonic development. Extracellular 
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matrix proteoglycan versican (VCAN) is an important mediator of endothelial-

mesenchymal transition (EMT) during embryoid body differentiation from 

mESCs (Shukla et al., 2010; Wight, 2002). Adhesion junction plaque protein 

dystonin (DST) was shown to be transiently upregulated upon LIF withdrawal 

(Trouillas et al., 2009) and retrotransposon-derived protein PEG10 is essential 

for early embryonic development (Ono et al., 2006). 

Among the downregulated genes most interestingly I found a key 

pluripotency regulator Fgf4 (Kunath et al., 2007; Tanaka et al., 1998). 

Additionally downregulated genes included poly (ADP-ribose) polymerase 12 

(Parp12) implicated in protein translation control and NF-κB signalling 

(Welsby et al., 2014); early growth response protein 1 (Egr1), a zinc-finger 

transcription factor that regulates cell apoptosis via the p53 pathway (Baron et 

al., 2006; Thiel and Cibelli, 2002); NAD(P)H dehydrogenase 1 (Nqo1), whose 

main metabolic function is reduction of quinones to hydroquinones, and also 

regulates the ubiquitin-independent p53 degradation pathway (Asher et al., 

2001; Ross and Siegel, 2004); and secreted frizzled related protein 1 (Sfrp1) a 

key player in the WNT pathway and a positive regulator of differentiation to 

the neuronal lineage in human mESCs (Schwartz et al., 2012). Several cancer-

related genes were also downregulated. Those include cleft lip and palate 

transmembrane protein 1-like protein (Clptm1l), which is overexpressed in 

lung cancer and has antiapoptotic activity mediated via PI3K/Akt survival 

signalling (James et al., 2014). Additional cancer-related genes were protein 

tyrosine phosphatase type IVA 3 (Ptp4a3) and proteasome activator complex 

subunit 3 (Psme3) associated with melanoma and colon cancer respectively 

(Laurent et al., 2011; Roessler et al., 2006). Finally, uracil-DNA glycosylase 

(Ung) that acts to prevent mutagenesis by base-excision repair (BER) pathway, 
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but was also shown to promote DNA demethylation (Savva et al., 1995; Xue et 

al., 2016); mitochondrial import receptor subunit TOM70 (Tomm70a); 

translation initiation factor eIF-2B subunit epsilon (EIF2B5) and 14–3-3 protein, 

YWHAH coding genes were also downregulated when Ptma was 

downregulated. 

Downregulation of Zfp640 similarly to downregulation of Ptma caused 

upregulation of Peg10 and downregulation of Egr1. In addition I also observed 

upregulation of pluripotency associated gene Dppa3 (Bowles et al., 2003; 

Waghray et al., 2015) and downregulation of three genes of unknown function: 

Gm17404, Gm10323, 2410141K09Rik. 

 

 

Figure 5.7 Differentially expressed genes in Ptma and Zfp640 downregulated 
samples 
Barplot of gene expression levels of significantly differentially expressed genes in 
Ptma and Zfp640 repressed samples (DESeq, multiple hypotheses testing adjusted p-
value < 0.05). 
 

Due to having only three replicates per condition and the relatively low 

quality of sequencing data I was able to detect only a few significantly 

differentially expressed genes. To observe if there is a trend for change in 

expression of major pluripotency and differentiation factors I plotted p-values 

obtained for comparison of the expression of this gene in the knockdown and 
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control using DESeq (Figure 5.8). In the samples with repressed Ptma, I 

observed a trend of decreased expression of pluripotency genes, and increased 

expression of genes associated with differentiation (pluripotency and 

differentiation genes are as in Figure 3.9). Zfp710 and Zfp640 show a similar 

but milder phenotype; while for Dpy30 there is no clear change in the 

expression of pluripotency genes. The lack of effect of Dpy30 downregulation 

on the pluripotency gene expression is consistent with a previous report (Jiang 

et al., 2011). Overall, these results suggest that Ptma and Zfp640, and 

potentially also Zfp710, are new candidate genes involved in regulating the 

exit from pluripotency. 
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Figure 5.8 Significance of pluripotency and differentiation genes expression 
changes in knock down samples. 
Barplots showing the logarithm of p-values for differential expression from DESeq of 
pluripotency (left) and differentiation (right) genes in the knock down samples. For 
genes that are downregulated, the numbers are negative, and positive for upregulated 
genes. The red line indicates p-value threshold of 0.05. 
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5.4 Conclusions 

My data and methodology allowed me to find new genes involved in 

the pluripotency network, which I validated using CRISPR repression (Gilbert 

et al., 2014). I found that downregulating Zfp640, Zfp710 and Ptma affected the 

expression of both pluripotency and differentiation genes. Ptma repression 

resulted in the strongest deviation from control samples, and I infer that these 

cells deviate from pluripotency towards a differentiated state.  

Interestingly, Ptma is a well-known gene encoding prothymosin alpha, 

precursor of thymosin alpha. It is mostly described in the context of 

immunology, as thymosin alpha protein was first extracted from thymus and 

were subsequently shown to modulate the immune response. It is used as a 

drug (Thymalfasin) in treatment of chronic hepatitis B and C and is used as an 

adjuvant in therapy for some types of cancer (Ciancio and Rizzetto, 2010; 

Garaci et al., 2012; Ioannou et al., 2012). Biochemically prothymosin alpha is 

unique, as it is extremely basic especially the fragment that is cleaved off to 

form thymosin alpha. This suggests it is not binding DNA directly. The mode 

of action of Ptma has been studied in cancer and immune cells, and it has been 

shown to play a role in proliferation through mechanisms involving chromatin 

remodelling and interaction with numerous pathways associated with 

pluripotency maintenance such as the JAK-STAT pathway, the PI3K/AKT 

pathway, and the NF-κB pathway, but its exact molecular mechanism is 

unknown (George and Brown, 2010; Guo et al., 2015; Romani et al., 2012; Yang 

et al., 2004). Functions of Zfp640 and Zfp710 are not described in the literature. 
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5.5 Future research 

Further experiments should be performed to understand the function of 

Ptma, Zfp640 and Zfp710 in the pluripotency network. Understanding how 

mechanistically these genes are involved in pluripotency maintenance would 

provide additional strong evidence for involvement of these genes in the 

process and would shed new light on how pluripotency and exit to 

differentiation are regulated. Unfortunately, that was not possible within this 

project timeline. 

For finding downstream targets, ChIP-seq would elucidate which 

promoters are bound by ZFP640 and ZFP710. There is an antibody for ZFP710 

available to purchase, but antibodies for ZFP640 would have to be generated 

and both have to be tested.  

It is unclear how PTMA interacts with DNA. It is highly acidic and thus if it 

binds to the DNA it is likely to be via interaction with other more basic 

proteins. ChIP-seq of PTMA and comparison to known data in addition to 

finding downstream targets may reveal which proteins it often co-localizes 

with, suggesting potential interactions. 

Previously pull-down experiments were performed using PTMA which 

identified histones as its interacting partners (Díaz-Jullien et al., 1996). It is 

possible however, that this is an artefact, because positively charged and 

abundant histones may associate non-specifically with PTMA when cells are 

lysed and chromatin is disrupted. Another paper suggested interaction of 

PTMA with oestrogen receptor (Garnier et al., 1997, Martini et al., 2000). It is 

important to perform pull-down experiments without disrupting chromatin to 

avoid potential sticking of histones to the protein. 
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Furthermore, single cell mRNA sequencing of cells with different levels of 

Ptma, Zfp640 and Zfp710 downregulation is likely to yield further information 

about the transcriptional network of these target genes pointing to their 

function within these cells. 

 

  


