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Summary 

Cell culture conditions for embryonic stem cells are important for their 
selfrenewal capacity and for them to maintain pluripotency. Depending on the 
media that cells are cultured in, they exhibit different morphology and gene 
expression patterns. It was shown that ES cells cultured in 2i versus serum 
results in cells with more homogeneous morphology and more uniform 
Nanog expression. 
I analysed the transcriptomes of over 700 individual mESCs cultured in three 
conditions (serum, 2i and alternative 2i) using full-transcript single cell 
RNAsequencing to understand the causes of culture medium-dependent 
differences in gene expression variability. I aimed to quantify and dissect the 
cell-to-cell variation in the three conditions in an unbiased way by high-
throughput single cell mRNAsequencing and statistical data analysis in a way 
that was not possible before. 
Firstly, I found that global levels of intercellular heterogeneity in gene 
expression are indistinguishable between conditions. At the same time, 
specific groups of genes (pluripotency genes in serum, cell cycle genes in 2i) 
do differ in their noise levels across culture conditions. The heterogeneity of 
pluripotency genes in the serumcultured mES cells is a consequence of 
subpopulations of cells that are differentiating away from the pluripotent 
state. In 2i and a2i-cultured cells, the transcriptomic heterogeneity originated 
in gene expression signatures of different cell cycle stages. 
Secondly, I showed that the transcriptomic signatures of cells grown in the 
three media are distinct, with cells grown in 2i medium being most similar to 
the blastocyst cells of the early embryo. 
Additionally, I found that differences in cell cycle genes’ noise profiles 
correlate with proliferation rate, where slowly-cycling cells have broader, 
more noisy expression profiles and clearer separation between cells in G1/S 
and G2/M phases. 
Moreover, I observed a previously described but poorly understood 2C-like 
population in 2i-cultured cells. I characterized this population in detail and 
compared it to in vivo data from early stages of mouse embryo development 
to determine whether it truly is equivalent to the embryonic 2-cell stage. I 
observed that these cells globally are more transcriptionally similar to 
blastocyst cells than cells from the 2-cell stage of the embryo. 
Finally, I investigated the pluripotency gene regulatory network by analyzing 
correlations between transcription factors and chromatin-associated genes in 
the mouse ES cell data. I found two major clusters: pluripotency factors and 
differentiation regulators. In the pluripotency cluster, I identified new putative 
pluripotency regulators (Ptma, Zfp640, Zfp710). I validated these by 
knockdown with CRISPR repression technology, and demonstrated that even 
partial depletion of these genes causes a shift towards a more differentiated 
state. 
Single cell RNA sequencing allowed me to look at cell populations and genes 
in the dataset to unravel cell identities and genes that regulate processes in 
these cells. This work highlights the power of single cell sequencing whilst 
providing data and analytical approaches that will be a useful resource for 
further study.  
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Summary 

 

 

 

Cell culture conditions for embryonic stem cells are important for their self-
renewal capacity and for them to maintain pluripotency. Depending on the 
media that cells are cultured in, they exhibit different morphology and gene 
expression patterns. It was shown that ES cells cultured in 2i versus serum 
results in cells with more homogeneous morphology and more uniform Nanog 
expression. 

I analysed the transcriptomes of over 700 individual mESCs cultured in 
three conditions (serum, 2i and alternative 2i) using full-transcript single cell 
RNA-sequencing to understand the causes of culture medium-dependent 
differences in gene expression variability. I aimed to quantify and dissect the 
cell-to-cell variation in the three conditions in an unbiased way by high-
throughput single cell mRNA-sequencing and statistical data analysis in a way 
that was not possible before. 

Firstly, I found that global levels of intercellular heterogeneity in gene 
expression are indistinguishable between conditions. At the same time, 
specific groups of genes (pluripotency genes in serum, cell cycle genes in 2i) 
do differ in their noise levels across culture conditions. The heterogeneity of 
pluripotency genes in the serum-cultured mES cells is a consequence of 
subpopulations of cells that are differentiating away from the pluripotent 
state. In 2i and a2i-cultured cells, the transcriptomic heterogeneity originated 
in gene expression signatures of different cell cycle stages. 

Secondly, I showed that the transcriptomic signatures of cells grown in the 
three media are distinct, with cells grown in 2i medium being most similar to 
the blastocyst cells of the early embryo. 

Additionally, I found that differences in cell cycle genes’ noise profiles 
correlate with proliferation rate, where slowly-cycling cells have broader, 
more noisy expression profiles and clearer separation between cells in G1/S 
and G2/M phases.  
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Moreover, I observed a previously described but poorly understood 2C-like 
population in 2i-cultured cells. I characterized this population in detail and 
compared it to in vivo data from early stages of mouse embryo development to 
determine whether it truly is equivalent to the embryonic 2-cell stage. I 
observed that these cells globally are more transcriptionally similar to 
blastocyst cells than cells from the 2-cell stage of the embryo.  

Finally, I investigated the pluripotency gene regulatory network by 
analysing correlations between transcription factors and chromatin-associated 
genes in the mouse ES cell data. I found two major clusters: pluripotency 
factors and differentiation regulators. In the pluripotency cluster, I identified 
new putative pluripotency regulators (Ptma, Zfp640, Zfp710). I validated these 
by knockdown with CRISPR repression technology, and demonstrated that 
even partial depletion of these genes causes a shift towards a more 
differentiated state. 

Single cell RNA sequencing allowed me to look at cell populations and 
genes in the dataset to unravel cell identities and genes that regulate processes 
in these cells. This work highlights the power of single cell sequencing whilst 
providing data and analytical approaches that will be a useful resource for 
further study.  
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Chapter 1  

Introduction 

 

 

 

 

1.1 Embryonic development 

Prenatal development in placental mammals begins with fertilization of an 

oocyte by a sperm cell in the in the ampulla of the fallopian tube. The fusion of 

these two gametes leads to formation of a diploid cell, which is called the 

zygote. Zygotes have all the genetic material that is necessary for development 

into the whole organism. The first cell division is special, because the 

chromosomes from each pronucleus (one from oocyte, one from sperm) are 

doubled, and syngamy i.e. the combination of maternal and paternal 

chromosomes only occurs during this first mitosis. During the first rounds of 

division, all embryonic cells remain totipotent, i.e. they can give rise to any 

tissue, either embryonic or extraembryonic (Chason et al., 2011; Saiz and Plusa, 

2013).  
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When the embryo reaches about 100 cells the first cell fate commitments 

happen (Wennekamp et al., 2013). At this stage, a blastocoel - cavity within the 

embryo - is formed and cells differentiate into two groups: trophectoderm cells 

that position on the outside and inner cell mass cells that are inside on the so-

called animal pole of the embryo (Figure 1.1). Further in development, during 

gastrulation, the trophoblast develops into trophectoderm, which gives rise to 

the placenta. Inner cell mass cells are pluripotent; they develop into three germ 

layers (ectoderm, endoderm, and mesoderm) of the embryo proper as well as 

the hypoblast, which later becomes extraembryonic membranes. Embryonic 

stem cells are derived from cells of the inner cell mass usually at 3.5 days after 

fertilisation. The blastocyst develops three days after fertilization and is fully 

formed on the fourth day. At this stage of development the embryo is ready 

for implantation (Saiz and Plusa, 2013; Tam and Loebel, 2007).  

 

 

Figure 1.1 Early embryo development 
During fertilisation sperm and oocyte combine to form a zygote. It divides giving rise 
to more totipotent cells. The first two lineages are formed at the blastocyst stage 
where some cells form a trophectoderm layer which encapsulates the second type of 
cells -inner cell mass or epiblast and a liquid called blastocoel. 

 

The embryo undergoes gastrulation after implantation, when the body axes 

are formed and, most importantly, forms the primitive streak with 
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differentiation of cells into germ layers via an epithelial to mesenchymal 

transition. Later, the endoderm develops into epithelia of the respiratory and 

digestive tracts, liver and pancreas. The mesoderm becomes muscles, blood, 

bones, cartilage and other connective tissues, and ectoderm differentiates into 

skin and neuronal tissues (Tam and Behringer, 1997; Tam and Loebel, 2007). 

In contrast to plants, for which totipotency has been known to be a property 

of each cell for decades (Steward et al., 1958), it was thought that mammalian 

pluripotent or totipotent cells can only be obtained from embryos until 2006. 

The discovery and development of induced pluripotent stem cells (iPSCs) 

revolutionised our understanding of pluripotency in mammals. The 

expression of four transcription factors, Pou5f1, Sox2, cMyc, and Klf4 (the 

‘Yamanaka factors’), causes differentiated cells to be reprogrammed and gain 

key features of pluripotency: self renewal and the ability to differentiate into 

different tissues (Takahashi and Yamanaka, 2006). 

 

1.2 Origins of mouse embryonic stem cell cultures 
Historically, mouse embryonic stem cell cultures (mESCs) originate from 

the cultures of teratocarcinomas, tumours of germ cells which occur more 

commonly in testis, but can also develop within ovaries (Stevens and Little, 

1954). Teratocarcinomas are a unique type of tumour, as they contain different 

types of differentiated tissues, sometimes even teeth or hair (Kleinsmith and 

Pierce, 1964; Pierce, 1967; Rosenthal et al., 1970). Within teratocarcinomas there 

are undifferentiated cells called embryonic carcinoma (EC) cells, which can 

proliferate and differentiate into all cell types of the tumour. Additionally, EC 

cells are transplantable and self-renewing, and when transplanted to a 

different animal and they still give rise to all tissues of the tumour. The EC 
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cells can self-renew and differentiate to all cell types, which are the two main 

characteristics of pluripotency. This makes them more similar to early 

embryonic cells than to germ cells (Stevens, 1970). Interestingly, if pluripotent 

cells from the early embryo are grafted onto a mouse they will develop into a 

tumour (Stevens, 1970).  

These characteristics of EC cells made it possible to establish their cultures 

in vitro already in the 1970s. The cells were cultured in the presence of blood 

serum on feeder cell layers (usually mitotically inactivated fibroblasts) and 

they maintained their pluripotency (Martin, 1975, 1980; Martin and Evans, 

1974). Importantly, EC cells are inefficient in colonizing embryos when 

injected into them due to their chromosomal abnormalities, but those without 

chromosomal abnormalities can indeed colonize embryos (Mintz and 

Illmensee, 1975). 

Successful culturing of EC cells and their similarity to embryonic cells led to 

the idea that cells from early embryos could be cultured. Indeed, using the 

same pluripotency-maintaining conditions as for culturing EC cells, mouse 

embryonic stem cells from the inner cell mass of the 3.5 day blastocyst were 

cultured (Evans and Kaufman, 1981; Martin, 1981). Soon afterwards, the first 

mouse embryonic cell lines that efficiently colonized blastocyst stage embryos 

were established (Bradley et al., 1984).  

 

1.3 Pluripotency signalling in mESC cultures 

When culturing embryonic stem cells in vitro it is important to ensure that 

they maintain their pluripotency, meaning they can divide and give rise to 

more pluripotent cells, and then with appropriate signals, they can 

differentiate into all other cell types of the organism (Davidson et al., 2015; 
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Smith, 2001). The first culture conditions were found by an empirical ‘trial and 

error’ approach and are very different from the natural environment of the 

embryo. Culturing cells on feeders in media supplemented with serum has 

some limitations. Firstly, it efficiently supports pluripotency only for mice of 

the Sv/129 genetic background or a hybrid of it (Suzuki et al., 1999). It is still 

unclear which genetic differences make the Sv/129 strain remain pluripotent 

under these conditions in comparison to C57Bl/6 or other laboratory strains of 

mice (Nagy et al., 1993). Additionally, the pluripotency of male lines is more 

successfully maintained for mouse embryonic stem cells derived using this 

culture condition; female cells tend to lose one of their X chromosomes and 

grow with a 39,X0 karyotype (Minina et al., 2010; Zvetkova et al., 2005). 

Finally, these conditions do not support growth of stem cells from other 

species such as rat and, more importantly, human (Martello and Smith, 2014).  

Designing optimal conditions for culturing pluripotent cells requires a 

thorough understanding of the extracellular signals that lead to pluripotency 

maintenance and those which lead to differentiation. Cells differentiate in the 

absence of feeders and serum, suggesting that these additions provide 

pluripotency-maintaining signals to the mESCs. Media conditioned with 

feeders or buffalo rat liver cells is able to maintain mESCs in an 

undifferentiated state for a limited time (Smith and Hooper, 1987). The key 

factor supplied by the feeder cells was later found to be a secreted protein, 

leukaemia inhibitory factor (LIF) (Smith et al., 1988; Williams et al., 1988).  

The addition of LIF to the culture removes the need for feeder cells, which 

made culturing and experimenting on mESCs more practical. 

Supplementation with LIF can also help to achieve good pluripotent cultures 

in the presence of feeders. LIF binds to the LIFR protein on the surface of 
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mESCs. This binding causes recruitment of glycoprotein 130 (GP130) and 

formation of a LIFR-GP130 heterodimer (Gearing et al., 1991). This receptor 

heterodimer recruits Janus-associated kinases (JAKs) and phosphorylates 

them. Subsequently, STAT proteins, most importantly STAT3, are 

phosphorylated, dimerise and translocate into the nucleus. There they in turn 

regulate expression of many genes including Krüppel Factors, most notably 

Klf4, which function in a gene regulatory network that regulates proliferation 

and pluripotency maintenance (Figure 1.2) (Hall et al., 2009; Matsuda et al., 

1999; Niwa et al., 2009). It was observed that cells cultured in serum 

supplemented with LIF are more heterogeneous in their morphology than cells 

cultured in the presence of feeders, suggesting that LIF is not the only signal 

supplied by the feeder cells (Onishi and Zandstra, 2015).  

 

 

Figure 1.2 LIF signalling 
LIF binds its cognate receptor LIFR which dimerises with GP130. They signal to 
several pathways that alter transcription, most importantly to the JAK/STAT 
pathway, but also via SHP-2, GAB1 and PIP3K to the AKT pathway, and further via 
GRB2 and SOS to the MAPK pathway. 

 



	   19	  

Removal of serum from the culture media causes mESCs to spontaneously 

differentiate toward the neuronal lineage (Ying et al., 2003b), implying that 

serum contains factors that inhibit this process. One of the components that 

play a role was identified to be bone morphogenic protein BMP4. It is an 

inhibitor of neuronal lineage differentiation via induction of inhibitor of DNA 

binding (Id) genes (Ying et al., 2003a). 

Another pathway implicated in pluripotency maintenance is the mitogen-

activated protein kinases (MAPK) pathway (Burdon et al., 1999). The 

phosphorylation cascade of MAPK starts by exchange of GDP to GTP bound 

to the GTPase RAS. This exchange is triggered by extracellular signals binding 

to receptors such as epithelial growth factor receptor EGFR and subsequent 

phosphorylation of intracellular SH2 domains of the receptor. The GRB2 

protein is phosphorylated during activation of EGFR, and forms a complex 

with its receptor and the guanine nucleotide exchange factor SOS, which 

promotes GDP to GTP exchange. GTP-bound RAS activates downstream 

serine/threonine kinase MAP3K (RAF), which in turn activates 

serine/threonine kinase MAP2K (MEK1/2) and subsequently 

tyrosine/threonine kinase MAPK (ERK1/2). Phosphorylated ERK1/2 is an 

important regulator of the activity of several transcription factors including 

MYC, CREB, ELK, ETS, SRF and FOS. These regulators modulate transcription 

of downstream transcription programmes, including the transcription of cell 

cycle genes (Figure 1.3). Interestingly, ERK1/2 also acts on translation by 

regulating ribosomal activity via phosphorylation of ribosomal s6 kinase (RSK) 

(Kolch, 2000). 

In addition to activating STATs, LIF signalling also activates the MAPK 

pathway, CREB and PI3K pathway (Burdon et al., 1999; Ernst et al., 1996). 
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LIFR and the receptor GP130 act indirectly via SHP-2, GAB1 and PI3K to cause 

phosphorylation of GRB2 and trigger the MAPK phosphorylation cascade 

(Burdon et al., 1999). The MAPK pathway is one of the key signalling 

pathways in any cell and it regulates several processes, most importantly the 

cell cycle (Johnson and Lapadat, 2002; Pruitt and Der, 2001; Zhang and Liu, 

2002). It may appear contradictory that LIF signalling promotes pluripotency 

via STATs and differentiation via ERK1/2. It has been proposed that the 

balance between these pathways is key for achieving self-renewal and 

maintenance of potency for differentiation (Niwa et al., 2009).  

 

 

Figure 1.3 MAPK signalling 
MAPK signalling starts with a mitogen such as EGF binding to its receptor at the 
membrane. Subsequently signal is transmitted via GRB2 and SOS to RAS, which 
causes phosphorylation of the first kinase (MAP3K) Raf, which in turn 
phosphorylates (MAP2K) Mek1/2 and then phosphorylated Mek1/2 phosphorylates 
(MAPK) Erk1/2, which regulates many transcription factors. Inhibition of this 
pathway at Mek1/2 helps maintenance of the pluripotent state. 



	   21	  

 

 

Understanding the importance of MAPK signalling led to attempts to 

interfere with the pathway with the intention of maintaining a pluripotent 

state in the absence of BMP4. Serum-free medium with addition of the small 

molecule inhibitors of MEK1/2 in the presence of LIF was shown to support 

pluripotency (Kunath et al., 2007). Similarly, inhibition of GSK3β with a small 

molecule, along with LIF was enough to maintain the self-renewal and 

differentiation potential of mESCs (Ying et al., 2008). The main effect mediated 

by GSK3β is accumulation of β-catenin and competition with the DNA 

binding protein TCF3, which is a repressor of key pluripotency genes (Figure 

1.4).  

 

Figure 1.4 Wnt signalling 
In the presence of Wnt bound to the Frizzled receptor, Dishevelled activates GSK3β 
kinase. Phosphorylation by GSK3β and subsequent ubiquitination of β-catenin by the 
destruction complex leads to degradation of β-catenin by the proteasome. Inhibition 
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of GSK3β leads to accumulation of β-catenin in the cytoplasm, and its translocation to 
the nucleus, where it competes with transcription repressors such as TCF3 causing 
gene expression. 

These discoveries led to the formulation of so called “2i medium”. This 

medium owes its name to the fact that it combines two inhibitors: an inhibitor 

of MEK1/2 and of GSK3β (Ying et al., 2008).  2i medium allows derivation and 

maintenance of all mESCs regardless of their genetic background, and also 

supports derivation of embryonic stem cells from other rodents, but not 

human (Buehr et al., 2008; Nichols et al., 2009). The key advantage of 2i 

medium is that it is chemically defined and thus standardized, which is not 

possible to achieve using feeders or serum. Serum contains molecules that act 

as differentiation factors and, if in a particular batch they are not balanced 

with factors mediating pluripotency maintenance, the cells respond by 

differentiating. Moreover, feeders can sometimes be a source of infection with 

pathogens and it is difficult to control the factors they secrete into the media. 

Cells in 2i are significantly more morphologically homogeneous than cells 

cultured in serum supplemented with LIF (Marks et al., 2012). These 

observations led to a description of the state of mESCs cultured in 2i media as 

the “ground state” of pluripotency (Ying et al., 2008).  

For use in experiments, mESCs are usually cultured on feeder layers or 

gelatine-coated dishes as the cells usually adhere to the culture surface. 

Alternatively, they can be cultured as spheroids in suspension in the presence 

of either serum and LIF (Fok and Zandstra, 2005; zur Nieden et al., 2007) or in 

a chemically defined medium supplemented with LIF and basic fibroblast 

growth factor (bFGF) (Andang et al., 2008). Within suspension cultures lacking 

anti-differentiation factors, mESCs develop into three-dimensional clusters of 

cells called embryoid bodies. These embryoid bodies recapitulate several 



	   23	  

aspects of early embryo development including formation of three germ 

layers: endoderm, mesoderm and ectoderm (Itskovitz-Eldor et al., 2000; Keller, 

1995).  

The elasticity of the surface on which mESCs grow plays an important role 

in maintaining pluripotency, and so dishes on which cells are grown are 

coated with gelatine. The properties of the surface on which cells grow are 

important, because mechanical cues of the environment are transformed into 

biochemical signals by molecules called mechanosensors, such as integrins. 

Integrins subsequently forward the signal to the cytoskeleton, but also to 

signalling pathways such as the WNT and MAPK pathways (Ishihara et al., 

2013). Inhibition of SRC removes the requirement for an elastic substrate, and 

replacing MEK1/2 inhibitors with SRC inhibitors also maintains pluripotency. 

Medium such as this is known as “alternative 2i” (Shimizu et al., 2012).  

In addition to mediation of signalling from the focal adhesion kinase (FAK), 

SRC signals to the MAPK pathway via SHC-transforming protein SHCA 

(Matsui et al., 2012). Hence, inhibition of SRC seems to have a dual role by 

affecting both MAPK pathway and adhesion signalling (Shimizu et al., 2012). 

Moreover, inhibition of SRC blocks upstream calcineurin-NFAT signalling, 

which also plays a role in endothelial to mesenchymal transition (EMT) (Li et 

al., 2011). Importantly, LIF signalling via the JAK-STAT pathway regulates the 

activity of SRC (Anneren et al., 2004). This suggests that inhibition of either 

SRC or MEK1/2 achieves a similar effect because both inhibit differentiation 

(Figure 1.5). 

 



	   24	  

 

Figure 1.5 Src signalling 
Focal adhesion kinase and Src mediate signals arising from the physical properties of 
the extracellular matrix. They signal further to different pathways including 
PI3K/AKT pathway, and via SHCA, to the MAPK pathway. Inhibition of Src leads to 
inhibition of downstream pathways, leading to a similar phenotype as inhibition of 
Mek1/2. 

 

Under appropriate in vitro conditions, when pluripotency signals from 

serum/BMP4 and feeders/LIF are removed, mESCs differentiate into several 

different cell types. Differentiation is mediated by FGF4, which binds to its 

receptor, FGFR2, and activates the MAPK pathway (Kunath et al., 2007; 

Stavridis et al., 2007). There is substantial effort being invested to find signals 

that cause differentiation towards cell types of interest (Doetschman et al., 

1985; Keller, 1995). 

The question that arises is whether in vitro culture of mESCs is equivalent to 

the physiological conditions that occur within the embryo. Typically, the 

prolonged culture of cells from differentiated tissues for long periods of time 

requires the cells to have abnormal proliferative properties either because they 

originate from tumours (e.g. HeLa cells) or they have been immortalized in 
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some other way. Under the right conditions, mESCs can self-renew 

indefinitely without immortalization, which is consistent with their 

tumorigenic potential (Suda et al., 1987). This property of mESCs seems 

unexpected because pluripotent cells do not need to multiply indefinitely in 

the embryo. The fact that mESCs are able to contribute to the embryo even 

after many rounds of division in culture suggests that they are pluripotent. 

Even if culturing caused differences between mESCs and cells of the blastocyst 

inner cell mass these differences must be reversible such that mESCs can take 

on the fate of inner cell mass cells. 

When mice are suckling previous litters and their oestrogen levels are low, 

embryos do not implant and enter a special quiescent state called diapause, 

with an almost complete halt of proliferation and metabolism (Renfree and 

Shaw, 2000). High levels of oestrogen and the presence of LIF are necessary for 

implantation in mice (Hondo and Stewart, 2004; Mantalenakis and Ketchel, 

1966; Renfree and Shaw, 2000). It has been proposed that mESCs in culture 

may represent diapaused embryos (Nichols et al., 2001). LIF signalling is 

necessary for survival of diapaused embryos and pluripotency maintenance in 

mESCs (Nichols et al., 2001). Diapause can be mimicked in mESCs by deleting 

Myc (Scognamiglio et al., 2016) suggesting that this is the factor that mediates 

proliferation. It is not apparent how this can be explained in light of the fact 

that STAT3 activates Myc (Cartwright et al., 2005), but probably the balance 

between signalling of JAK/STAT and MAPK pathways plays a crucial role. 
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1.4 Transcriptional regulators of pluripotency  

The master regulator of pluripotency is OCT4, encoded by the Pou5f1 gene 

(Pan et al., 2002; Pardo et al., 2010; van den Berg et al., 2010) that is expressed 

solely in early embryo and germ line cells. Embryos lacking OCT4 develop to 

the blastocyst stage, but the inner cell mass cells are not pluripotent and can 

only form extraembryonic tissues (Nichols et al., 1998). Deletion of Pou5f1 in 

mESCs leads to loss of self-renewal and causes them to differentiate. 

Interestingly, overexpression of Pou5f1 also leads to loss of pluripotency and 

differentiation to endoderm and mesoderm (Niwa et al., 2000). 

In addition to OCT4, the pluripotency network is regulated by homeobox 

protein NANOG (Saunders et al., 2013). OCT4 and NANOG function in 

concert and often bind promoters of the same genes (Loh et al., 2006). Deletion 

of Nanog has a similar effect to deletion of Pou5f1 and causes loss of 

pluripotency with differentiation toward extraembryonic lineages. In vivo loss 

of Nanog causes embryos at the blastocyst stage to form parietal endoderm-like 

cells and to lack epiblast (Mitsui et al., 2003; Silva et al., 2009). Ectopic 

expression of Nanog from a transgene construct causes cells to remain 

pluripotent independent of LIF signalling via the JAK/STAT pathway 

(Chambers et al., 2003). 

Nanog expression is regulated by the SRY-box transcription factor SOX2 

along with OCT4 (Rodda et al., 2005). SOX2 and OCT4 regulate transcription 

by binding to sox-oct elements in promoter and enhancers of downstream 

genes, which include many transcription factors and notably also their own 

promoters of Sox2 and Pou5f1 (Chew et al., 2005). 
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Figure 1.6 Pluripotency network 
In the current view of transcription factors regulating pluripotency, key transcription 
factors OCT4, SOX2 and NANOG are highly interconnected and regulate expression 
of each other. These genes then signal to other transcription factors important for 
pluripotency, which propagate signal to effector genes and also regulate extended 
pluripotency networks. 
 

Our current understanding of the gene regulatory network involving key 

pluripotency factors describes a highly interconnected network (Figure 1.6) 

(Boyer et al., 2005; Chickarmane et al., 2006; Kushwaha et al., 2015; Pan and 

Thomson, 2007). OCT4, NANOG and SOX2 co-occupy promoters of many 

genes, often transcription factors including themselves, resulting in feed-

forward loops (Boyer et al., 2005; Chambers and Tomlinson, 2009). 

Downregulation by shRNA of Nanog, Pou5f1, Sox2, Esrrb, Tbx3, Tcl1 and Dppa4 

also cause impairment in self-renewal (Ivanova et al., 2006). Affinity 

purification and mass spectrometry demonstrated that NANOG protein 

interacts with several transcription factors including OCT4, SALL4, SALL1, 

RIF1 and MYBBP (Wang et al., 2006). It was suggested that the function of the 

highly interconnected architecture of the network is the robust response to 
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developmental stimuli whilst dampening random gene expression 

fluctuations (Sokolik et al., 2015; Torres-Padilla and Chambers, 2014). 

 

1.5 Chromatin state and structure as regulators of pluripotency 

DNA in cells is packaged into chromatin to make it possible to fit long DNA 

molecules into the nucleus, to prevent damage of DNA and to regulate DNA 

function. The basic unit of chromatin is a nucleosome, which consists of 8 

histone molecules (2 copies each of the core histones H2A, H2B, H3, and H4) 

and 147bp of DNA wrapped around them. Histones tails are 

posttranslationaly modified to affect their interaction with DNA and other 

proteins. Methylation, acetylation, phosphorylation and ubiquitination are the 

most common, but other modifications also occur (Jenuwein and Allis, 2001; 

Strahl and Allis, 2000). Posttranslational modifications of histones regulate the 

recruitment of different regulatory proteins.  For example, methylation of 

H3K4 causes gene activation, while methylation of H3K27 and ubiquitination 

of H2AK119 lead to silencing of gene expression.  

An entire organism containing diverse cell types develops from a single 

zygote. Hugely diverse cellular functions exist despite each cell having the 

same genome. This is possible due to regulated gene expression. Chromatin 

state is very important in determining whether a particular gene is active, 

poised or silenced and is crucial in regulating the transcriptional identity of the 

cell. 

Expression of genes that regulate pluripotency maintenance and 

development is highly regulated by chromatin structure. mESCs are highly 

transcriptionally active and express many genes at low levels (Efroni et al., 

2008; Efroni et al., 2009). This promiscuous transcription is thought to mediate 
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pluripotency since low levels of differentiation factors and markers of all 

lineages are expressed (Efroni et al., 2008; Loh and Lim, 2011). This 

phenomenon is attributed to largely accessible chromatin throughout the 

genome during early stages of development (Meshorer and Misteli, 2006). 

Differentiation leads to the genes that are not needed for the particular cell 

type becoming silenced by changes in chromatin structure. This causes cells to 

acquire a particular stable identity that cannot be reversed without 

intervention, such as reprograming to induced-pluripotent stem cells (iPSCs). 

Regulation of chromatin structure occurs via different mechanisms: DNA 

methylation, modification of histones and action of ATP-dependent chromatin 

remodellers (Li et al., 2012). 

 

1.5.1 DNA methylation 

The first level of chromatin modification is DNA methylation at cytosines of 

CpG dinucleotides. There are two types of DNA methylation: (1) maintenance 

methylation by DNMT1, which methylates hemi-methylated CpGs that arise 

after DNA replication during S phase of the cell cycle and (2) de novo 

methylation by DNMT3A and DNMT3B (Okano et al., 1999; Pawlak and 

Jaenisch, 2011; Tsumura et al., 2006). After fertilization, there is a wave of 

massive demethylation of DNA, which has to be regained in the inner cell 

mass cells at the blastocyst stage of the embryo (Morgan et al., 2005). As 

mentioned above, demethylation can happen passively during DNA 

replication, but can also occur by an active process either via the activation-

induced cytidine deaminase (AID) pathway or via oxidation of 5-

methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine 

(5fC) and 5-carboxylcytosine (5caC) by the ten-eleven translocation (TET) 
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enzymes (Ficz et al., 2011; Ito et al., 2010; Koh et al., 2011; Ooi and Bestor, 

2008). 

X-chromosome inactivation, needed for female embryos to obtain the same 

gene dosage as male embryos, happens before implantation. It involves 

binding of the noncoding RNA Xist, and a subsequent major wave of histone 

modifications including loss of H3K4me2 and H3K4me3, and the gain of 

H3K9me2 and H3K27me3, as well as the ubiquitination of H2A (Galupa and 

Heard, 2015; Pollex and Heard, 2012). Somatic chromosomes are demethylated 

during preimplantation development, and afterwards methylation is regained 

through the action of DNMT3B (Watanabe et al., 2002). 

Methylation of DNA can be monitored using bisulfite sequencing, in bulk 

and recently also in single cells (Farlik et al., 2015; Guo et al., 2013; Kantlehner 

et al., 2011; Smallwood et al., 2014). Cells cultured in 2i have greatly 

hypomethylated DNA in comparison with cells in serum and, similarly to 

their transcriptomes, their methylomes exhibit heterogeneous patterns in the 

serum but not 2i cells (Angermueller et al., 2016; Ficz et al., 2013). This 

suggests that cells cultured in 2i media are closer to the pluripotent ground 

state of cells in the inner cell mass, as methylation is lowest in embryos at this 

stage of development (Smith et al., 2012). 

 

1.5.2 Histone modifications 

DNA methylation is a relatively stable modification, and is not easily 

reversed. Many genes in the inner cell mass are regulated by histone 

modification rather than methylation due to the generally hypomethylated 

state of the genome. Key signalling pathways in mouse embryonic stem cells 

regulate histone modifications. These include the JAK/STAT pathway 
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(Griffiths et al., 2011), the WNT pathway, the MAPK pathway and FGF 

signalling (Ficz et al., 2013; Habibi et al., 2013; Leitch et al., 2013). 

There are two key complexes implicated in histone regulation in ESCs: the 

Polycomb repressor complex and the Trithorax complex. Trithorax promotes 

self-renewal while Polycomb promotes developmental potency to achieve cells 

with both hallmarks of pluripotency: self-renewal and developmental potency 

(Ang et al., 2011; O'Carroll et al., 2001). 

There are two Polycomb complexes in mouse: PRC1 and PRC2. PRC2 genes 

Ezh1 and Ezh2 are members of a histone methyltransferase complex, and are 

essential for early mouse development. It is not possible to derive embryonic 

stem cells from Ezh2 knockout embryos (O'Carroll et al., 2001). The PRC2 

complex deposits histone 3 lysine 27 trimethylation (H3K27me3), a repressive 

mark, which may lead to chromatin compaction mediated by PRC1 (Boyer et 

al., 2006; Francis et al., 2004; Ringrose et al., 2004). The other proteins in the 

PRC complex include zinc finger SUZ12, EED, histone binding protein 

RBAP48 and other proteins such as JARID2 or PCLs (Margueron and 

Reinberg, 2011). 

PRC1 binds to H3K27me3, deposited by PRC2, and is composed of several 

different components; PRC1 subunits often have alternative versions. 

H2K27me3 is bound by members of the chromobox family of proteins (CBX2, 

CBX4, CBX6, CBX7 and CBX8) and the PRC1 complex may contain any of 

them. CBX7 is the most common in mESCs and it functions in preventing 

precocious differentiation (Martin, 2010). Levels of CBX7 decrease during cell 

differentiation and it is replaced by CBX2, CBX4 and CBX8 (Morey et al., 2012; 

O'Loghlen et al., 2012). The molecular mechanism involves 

monoubiquitination of the histone 2A lysine 119 (H2AK119Ub1) by the 



	   32	  

ubiquitin ligase Ring1B, and further compaction of the chromatin (Buchwald 

et al., 2000; de Napoles et al., 2004; Wang et al., 2004). Interestingly, RNA 

polymerase phosphorylated on S5 but not on S2 of the C-terminal domain can 

still transcribe genes marked by PRC with H3K27me3 (Brookes et al., 2012).  

Hierarchical model for Polycomb repression where PRC2 deposited marks 

recruit PRC1 is not the only possible pathway. Other studies shown that 

depending on the composition of the complexes recruitment of PRC1 to the 

chromatin and histone mark deposition differs (Blackledge et al., 2014; Cooper 

et al., 2014). This system is highly complex and in addition to changes in 

function mediated by subunit composition, it also involves interactions 

between PRC1 and PRC2 complexes (Cao et al., 2014) and different 

mechanisms of recruitment to the chromatin involving other types of histone 

modifications, for instance H3K9 methylation, interactions with transcription 

factors and ncRNAs (Brockdorff, 2013; Mozzetta et al., 2014; Yu et al., 2012).  

The Trithorax group protein WDR5 mediates histone 3 lysine 4 

trimethylation (H3K4me3). This modification causes recruitment of histone 

acetylases and remodelling enzymes, and positively regulates transcription 

(Ang et al., 2011; Pray-Grant et al., 2005; Santos-Rosa et al., 2003; Wysocka et 

al., 2005). Using ChIP-sequencing it was observed that upstream of some 

genes, including Hox gene clusters, there are both active (H3K4me3) and 

repressive (H3K27me3) histone marks. These genes are mostly other 

developmental regulators, and such ‘bivalent domains’ at their promoters are 

thought to mediate a poised state of transcription (Bernstein et al., 2006). Cells 

cultured in 2i have fewer bivalent domains than cells cultured in serum, in 

accordance with their more naïve state (Figure 1.7) (Marks et al., 2012). 
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Figure 1.7 Histone modifications in pluripotent and differentiated cells 
The promoters of tissue-specific genes and pluripotency genes include both active 
(H3K4me3) and repressive (H3K27me3) marks deposited by the Trithorax and PRC2 
complexes respectively. Upon differentiation, these domains either loose repressive 
marks and remain active and expressed, or in addition to H3K27me3, gain the 
compaction chromatin mark (H2AK119Ub1) by PRC1 and become completely 
silenced.  

 

Enzymes can also remove epigenetic marks. During differentiation, the Lys-

specific demethylase 1 (LSD1), which associates with the nucleosome 

remodelling and deacetylase (NuRD) complex, removes H3K27 and H3K4 

methylation marks from enhancers. These enhancers are then no longer 

occupied by transcriptional activators, and this shuts down the pluripotency 

expression programme (Adamo et al., 2011; Whyte et al., 2012).  

 

1.5.3 Chromatin remodelling 

Chromatin remodellers are typically large, multi-subunit complexes that 

have diverse functions in cells, including the regulation and maintenance of 

pluripotency. Depending on the sequence of the ATPase that they contain, 

chromatin remodellers can be divided into four families: SWI/SNF, CHD, 

ISWI and INO80 complexes. Their main mode of action is to regulate DNA 
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accessibility by disrupting the interactions between DNA and nucleosomes in 

an ATP-dependent manner (Clapier and Cairns, 2009; Narlikar et al., 2013; 

Saha et al., 2006).  

The subunit composition and function of remodelling complexes change 

during development. The exact composition of the complex tunes its affinity 

for particular target genes (Ho and Crabtree, 2010; Martin, 2010). During the 

transition from pluripotency to trophoblast-like cells, the SWI/SNF family 

complex Brahma Associated Factors (BAF) changes its composition 

dramatically (Yan et al., 2008). Additionally, the embryonic stem cell-specific 

BAF complex co-localizes with the pluripotency regulators NANOG, OCT4, 

SOX2 and STAT3, which suggests that chromatin remodelling is crucial for the 

action of core pluripotency transcription factors (Ho et al., 2009). BRG1	   (also	  

known	  as	  SMARCAD4) is a component of BAF whose downregulation results in 

differentiation and loss of expression of key pluripotency genes (Kidder et al., 

2009). Brg1 knockouts are embryonic lethal in mice due to a failure to form the 

pluripotent inner cell mass in the blastocyst (Bultman et al., 2009). In 

comparison, BRM, which is a protein that can replace BRG1 to form a 

functioning BAF, is dispensable for early development (Bultman et al., 2009).  

Nucleosome-remodelling and histone deacetylase (NURD) complexes, 

which are a subfamily of the CHD family of chromatin remodellers, also play a 

role in pluripotency maintenance. Their repressor function is mediated by 

histone deacetylases (HDACs) within the complex. These complexes also 

include ATPases (CHD3 or CHD4), metastasis-associated proteins (MTA1, 

MTA2 or MTA3), MBD methyl-CpG-binding domain (MBD2 or MBD3) and 

retinoblastoma-associated-binding protein (RbBP4 and RbBP7). Deletion of 
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Mbd3 leads to failure in development of the inner cell mass of the embryo and 

defects in differentiation of mESCs (Kaji et al., 2006; Kaji et al., 2007).  

Another complex, TIP60-P400 was also identified to function in stem cells 

by integrating NANOG binding and histone H3 lysine 4 trimethylation 

(H3K4me3) (Fazzio et al., 2008). When ISWI family NURF complex member 

bromodomain PHD-finger transcription factor (BPTF) is deleted, embryos also 

die at the early stages of embryo development and ESCs from such embryos 

are unable to form mesoderm and endoderm (Landry et al., 2008).  

Furthermore, higher order chromatin organizers, such as the insulator 

protein CCCTC-binding factor (CTCF), which organizes chromatin into 

domains, are also regulated by pluripotency factors. These are thought to play 

a role in looping chromatin in such a way that pluripotency genes are 

expressed (Kim et al., 2011).  

 

1.6 Applications of ESCs 

The main application of mouse embryonic stem cells is in the creation of 

transgenic animals (Bradley et al., 1992). mESCs are relatively simple to 

genetically engineer, and when injected into embryos they can contribute to 

the germ line, leading to chimeric embryos and subsequently offspring that 

harbour mutations created in the stem cells (Capecchi, 2005). If the injected 

stem cells contributed to the germline, these animals can pass the mutations to 

their progeny, allowing a line to be established. This approach for creation of 

transgenic animals has been common and used very successfully since 1987, 

when a mouse with a mutation in the hypoxanthine guanine phosphoribosyl 

transferase (Hprt) gene was first engineered (Doetschman et al., 1987; Hooper 

et al., 1987; Kuehn et al., 1987).   
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In vitro cell culture differentiation of mouse embryonic stem cells is used as 

a model of early embryo development, including understanding pluripotency 

and exit from it to differentiation. They are much easier to obtain than cells 

from embryos or human embryonic stem cells. Additionally they proliferate 

quickly giving rise to large amounts of cellular material, which is needed for 

some types of experiments, such as ChIP-sequencing for example.  

Furthermore, embryonic stem cells in combination with current gene 

editing technologies (such as CRISPR-CAS9) can be used to model human 

genetic variants associated with diseases to study the underlying molecular 

mechanisms (Merkle and Eggan, 2013).  

 

1.7 Human embryonic stem cells 

Human embryonic stem cells were only isolated in 1998 (Thomson et al., 

1998), because their self-renewal seems to be regulated differently than in 

mESCs. Similarly to mESCs, hESCs express POU5F1 and NANOG (Ginis et al., 

2004). However, signalling via LIF and the STAT3 pathway is not important 

for pluripotency maintenance in hESCs (Dahéron et al., 2004; Reubinoff et al., 

2000). A feeder layer of MEFs supplemented with bFGF or matrigel- or 

laminin-coated plates with addition of MEF-conditioned medium are used for 

culturing hESCs (Amit et al., 2000; Xu et al., 2001).   

There is a notion that hESC are “later” in development than mESCs, and 

they are rather similar to epiblast stem cells (EpiSC) from the mouse (Tesar et 

al., 2007). EpiSC are clearly pluripotent, but when injected into a blastocyst 

stage embryo they do not colonize it (Brons et al., 2007; Huang et al., 2012). If 

hESCs are engineered to express POU5F1, KLF4, and KLF2 transcription 

factors and are grown in the presence of LIF and the inhibitors GSK3β and 
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ERK1/2, they enter a different pluripotency state that resembles mESCs, 

suggesting that it is possible for hESCs to achieve naïve pluripotency (Hanna 

et al., 2010). 

Human embryonic stem cells have huge potential for regenerative 

therapies. Differentiation of hESCs or induced pluripotent stem cells into 

tissues that are damaged or need replacing could be a solution to problems in 

transplant medicine, including the low number of organ donors and 

histocompatibility.  

 

1.8 Sources and functions of cell-to-cell variability 

For both mESCs and hESCs, cell-to-cell variability is an intrinsic feature of 

cells in cell culture. The function of heterogeneity within embryonic cell 

population is not very clear. It was proposed that it might be a result of cells 

transiently entering differentiation-primed states (Nimmo et al., 2015).   

At the level of whole organisms, the key sources of heterogeneity are 

genetic differences. The genetic variation between organisms of the same 

species results in phenotypic variation, and is important for maintaining 

fitness of the population, especially in changing environments. Genetic 

variability is most visible and easily interpreted for simple Mendelian traits, 

such as blood type or Hemophilia A, but also for more complex traits 

including height (Wood et al., 2014) or susceptibility to type-2 diabetes (Morris 

et al., 2012). 

Interestingly, monozygotic twins who have the same genetic make-up still 

exhibit considerable phenotypic differences. The discordance between 

monozygotic twins in both phenotype and behaviour is extensively studied in 

the context of health and disease. Monozygotic embryos start to differ even at 
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the early embryonic stages with, for example, differences in the initial number 

of cells in each embryo after division, or the position after implantation 

resulting in a slightly different environment (Machin, 1996). The discordance 

between monozygotic twins that arises during their lifetime has been 

attributed to differences in epigenetic marks that become increasingly 

divergent with time (Fraga et al., 2005). Epigenetic differences lead to 

differential gene expression, subsequent differences in protein amounts and 

activities, and ultimately to phenotypic variation between organisms. 

As pointed out for mESCs and hESCs, the cells within one organism also 

differ. The most obvious differences between cells within an organism are 

encoded in the processes of development and differentiation to build tissues 

and cell types that perform different functions in the organism (Figure 1.8). 

Cell type is a poorly defined concept, but it is still used to describe these large 

functional differences between cells. A good example of a heterogeneous 

tissue with quite well defined cell types is an intestinal crypt, which is 

composed of stem cells and differentiated cells, including absorptive cells and 

several types of secretory cells such as Goblet and Paneth cells (Grun et al., 

2015). The most important differentiation mechanisms involve the response of 

gene regulatory networks to signalling by growth factors or other molecules, 

and asymmetric divisions leading to the emergence of two different daughter 

cells (Morrison and Kimble, 2006). However, these processes are not entirely 

deterministic, and stochastic events are also an important factor (Losick and 

Desplan, 2008). 

Apart from deterministic, hard-wired mechanisms that regulate cellular 

phenotypes, there are more subtle and stochastic sources of cell-to-cell 

variability (Figure 1.8). These are the main sources of heterogeneity within a 
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cell type or a seemingly homogeneous population of cells (Raser and O'Shea, 

2005). 

Firstly, cells differ due to the fact that each is in its own microenvironment 

with a particular level of nutrients, signalling molecules and environmental 

cues that affect cell state. Regional differences in the tissue, such as the amount 

of a particular signalling molecule, lead to slight differences in extracellular 

signalling, which influence intracellular signalling to different extents. Some 

signalling pathways are more robust to such changes than others. Similarly, 

the abundance of nutrients or oxygen, and interactions with other cells, shape 

cellular phenotype.  

Secondly, the internal state of cells varies according to their individual 

histories. This means that the number and activity of molecules is often not 

exactly the same between cells. The transcriptomic state of a cell depends on 

its chromatin state and signalling state. For example, cells can differ in their 

cell cycle state. The cell cycle is a very dynamic process, and the expression of 

many genes depends on it. These include cell cycle regulators that are present 

at different points of the cell cycle, such as cyclins, and also other genes related 

to cell growth (Lim and Kaldis, 2013; Nurse, 2000; Vermeulen et al., 2003). For 

example transcription of histone mRNAs is upregulated in preparation for S 

phase when they are needed for packaging the new DNA strand. Globally, the 

level of all mRNAs increases during the cell cycle when the cell grows (Qiu et 

al., 2013). Other processes that play roles are for example uneven partitioning 

of mitochondria (Johnston et al., 2012; Mishra and Chan, 2014) and other 

molecules in the cell during cell division (Huh and Paulsson, 2011). 

Thirdly, some variability emerges from the stochastic nature of biochemical 

processes. Many molecules within a cell are present as only a few copies, and 
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the reactions between them are infrequent. For example, the abundance of 

mRNA of a particular gene depends on the time at which it is measured: 

before or after a transcriptional burst. Transcription in eukaryotic cells does 

not happen at a constant rate, but in bursts. Over time, there are periods when 

the promoter of a gene is open, the transcriptional machinery is bound and the 

RNA molecules are synthesised in “bursts” or “pulses”. These are followed by 

times when the gene is OFF and RNA is not synthesised. This behaviour can 

be quantified in terms of the average size of bursts and the frequency (i.e. how 

often these bursts occur).  The extent of the cell-to-cell variability caused by 

stochastic transcription is related to the transcriptional burst size and 

frequency at the particular promoter. Mechanistically, expression bursts are 

dependent on the stochastic processes of transcription factors and RNA 

polymerase binding (Sanchez and Golding, 2013).  

Finally, one has also to bear in mind the fact that within a living population 

of cells there are on-going somatic mutations that may contribute to the overall 

observed heterogeneity.  

Before the development of high throughput single cell mRNA sequencing, 

variability between individual cells was measured by other means. For 

example, tagging a gene with a fluorescent protein and measuring the 

fluorescence of each cell using microscopy or FACS reveals cell-to-cell 

variation in the levels of particular proteins. In genetically identical cells taken 

from a homogeneous environment, heterogeneity (or “noise”) can be 

measured using two fluorescent reporters, which allows one to discriminate 

between intrinsic and extrinsic noise (Elowitz et al., 2002; Swain et al., 2002). In 

the dual reporter system, intrinsic noise is defined as independent fluctuations 
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between the two marker proteins, while extrinsic noise are coupled 

fluctuations of both markers between cells.  

From this example of an experimental definition of intrinsic versus extrinsic 

noise it follows that intrinsic noise is defined as noise within a single cell. 

Sources of intrinsic noise are usually the stochastic nature of cellular processes, 

the extent of which depends on the number of molecules involved (Rosenfeld 

et al., 2005). On the other hand, extrinsic noise describes cell-to-cell differences. 

Extrinsic noise can be caused by environmental factors or the state of the cell, 

such as the amount of particular transcription factor or cell cycle stage. 

Importantly, extrinsic noise may be global and affect all the genes in a cell or 

may affect only a subset, for example one signalling pathway.  

Although we often use the word noise to describe variability between cells, 

it does not mean it is a meaningless and undesirable phenomenon. On the 

contrary, gene expression noise has been shown to have several functions in 

cell populations. Notably, noise in gene expression functions in gene 

regulatory circuits to create bistable switches between alternative cell fates. 

Amplifying noise can cause a cell to be randomly pushed towards one of two 

decisions. The decision that is made must be subsequently stabilized within 

the circuit. Networks containing bistable switches often exhibit a mechanism 

of hysteresis, which governs the kinetics of switching (Grimbergen et al., 2015; 

Veening et al., 2008). The existence of two alternative states of cells within the 

same environment is a basis for survival and a fitness strategy of bacteria 

known as bet-hedging. Bistable switches are common in prokaryotes but they 

are also present in eukaryotes (Palani and Sarkar, 2012; Shiraishi et al., 2010). 

Heterogeneous gene expression is also implicated in developmental 

priming. Pluripotent or multipotent progenitor cells have the capability to 
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differentiate into different cellular fates. They do not lose this ability despite 

the stochastic expression of markers of lineages to which they have the 

potential to differentiate. It has been suggested that lineage priming makes it 

quicker and more efficient for cells to differentiate when the differentiation 

cues appear (Nimmo et al., 2015).  

Increase in the heterogeneity of a population is often a vital part in complex 

cellular decision-making processes (Balazsi et al., 2011). Several transitions in 

cells have been shown to function in this way, such that there is an initial 

stochastic phase followed by a deterministic phase that ensures that cells move 

fully through the differentiation or developmental trajectory. This 

phenomenon occurs during reprograming of somatic cells to induced 

pluripotent cells (Buganim et al., 2012) and during polarisation of naive CD4+ 

T cells to Th1 and Th2 subtypes (Antebi et al., 2013; Fang et al., 2013). 

In some cell types, for example neuronal cells or T helper cells, intercellular 

heterogeneity in vivo is large and there seems to be continuum of cell states 

with some metastable states that are more likely to be occupied by more cells 

(Zeisel et al., 2015). It has even been proposed by Sten Linnarsson to abandon 

the concept of cell type, as it is difficult to draw borders between states, and 

rather focus on describing the functions of each cell instead (oral 

communication).  
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Figure 1.8 Contributors to noise 
Decomposition of observed variation in scRNA-seq. Technical noise estimation based 
on synthetic spike-in molecules. Biological variation can be decomposed into (1) 
variation arising from the presence of subpopulations, (2) cell-to-cell variation in gene 
expression that can be estimated using the variance and from which transcription 
kinetic parameters can be modelled, and (3) biological variation due to cell function 
and biological processes such as cell cycle. 

 

 

1.9 Single cell mRNA sequencing technologies 

As mentioned above, heterogeneity in cell populations has been measured 

using fluorescent markers and microscopy or FACS for many years. FACS 

allows one to follow up to one or two dozen proteins at a time (Chattopadhyay 

et al., 2006), and mass cytometry increases the number of proteins to over 40 

per cell (Bendall et al., 2011). Similarly, the proximity ligation assay (PLA) 

approach is limited to a predefined list of proteins for which antibodies are 

available (Soderberg et al., 2006).  
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For the detection of RNA, single cell qPCR (Bengtsson et al., 2008; Eberwine 

et al., 1992; Taniguchi et al., 2009; Warren et al., 2006) and single molecule 

FISH (Femino et al., 1998; Raj et al., 2006; Raj et al., 2008; Tyagi and Kramer, 

1996) can be used to measure the amount of messenger RNA within a single 

cell. These approaches are also based on pre-selection of markers. Single cell 

mRNA sequencing revolutionised measurements of cellular heterogeneity, 

because it measures all highly and moderately expressed mRNAs in the cell 

and so does not require a priori knowledge about the genes of interest.  

Each single cell mRNA sequencing experiment can be divided into the 

following steps: isolation of single cells, cell lysis, reverse transcription, 

amplification of cDNA, preparation of sequencing libraries and eventually 

sequencing (Kolodziejczyk et al., 2015a) (Figure 1.9).  

The first and critically important step is to isolate single cells. Historically, 

in the first single cell mRNA experiments, single cells were selected and 

picked from the early embryo using micro pipetting (Grun et al., 2014; Tang et 

al., 2010; Tang et al., 2009). This method has an advantage that one can pick a 

cell from a particular position and virtually no cells are lost in the process. 

Suspended single cells, such as blood cells, can be sorted into wells of a 

microtiter plate using FACS (Macaulay et al., 2016), they can be separated 

using microfluidic devices such as the Fluidigm C1 (Kolodziejczyk et al., 

2015b; Mahata et al., 2014; Zeisel et al., 2015) or they can be encapsulated in 

nanoliter droplets (Mazutis et al., 2013). It is important to note that whereas 

many immune cell types naturally exist as single cell suspensions, other cells 

have to be dissociated from their tissue to become suspended. Dissociation is 

not trivial and requires enzymatic or mechanical approaches. Such treatment 
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may have an effect not only on the intactness and viability of cells, but also on 

their transcriptomes.  

The key advantage of FACS is the possibility to sort for particular 

subpopulations that can be stained using surface markers. In addition, by 

index sorting, the intensity of the fluorescence as well as values for forward 

and side scatter can be recorded for each cell. This provides information about 

protein abundance, and cell size and granularity on top of the single cell 

transcriptomes (Hayashi et al., 2010). When dealing with known, rare cell 

types (e.g. blood stem cells) FACS can capture essentially all cells from the 

population of interest and sort them into individual wells. The main 

disadvantage of using FACS to sort single cells into microtiter plates are the 

microliter reagent volumes involved, which can be prohibitively expensive in 

large-scale experiments as compared to nanoliter volumes involved in 

microfluidics (Jaitin et al., 2014).  

The Fluidigm C1 is a microfluidic platform that captures single cells (96 or 

800 cells per chip) and performs reverse transcription and amplification of 

cDNA by PCR on chip. Since all these reactions are carried out in nanoliter 

volumes, this leads to lower reagent costs (Shalek et al., 2014; Trapnell et al., 

2014; Treutlein et al., 2014). Importantly, this platform enables microscopic 

inspection of each cell upon capture, which allows identification of positions 

where multiple cells or debris were captured.  

To capture 96 cells, one requires a starting population of at least 1000 cells, 

so this method is impractical for rare populations. An important limitation of 

this method is that cells being captured have to be homogeneous in size and 

compatible with one of the available capture site sizes (5–10, 10–17, and 17–25 

microns in diameter). Nonspherical or sticky cells also do not capture well, but 
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at the same time, this capture method is much more gentle than FACS, and 

hence is better suited to delicate cell types such as neurons, megakaryocytes 

etc. 

Recently, droplet-based microfluidics methods have been published, 

namely inDrop (Klein et al., 2015) and Drop-Seq (Macosko et al., 2015). These 

protocols encapsulate single cells in aqueous droplets within a surrounding oil 

phase. These droplets can be fused with other droplets to deliver reagents to 

perform lysis, reverse transcription and PCR. Reagent can also be delivered 

into droplets using picoinjection (Lee et al., 2014b). Several thousand cells can 

be analysed in one experiment using these methods. These methods will likely 

prove especially useful for surveying cells from different tissues to identify 

new cell types and cell functions. 

Some less frequently used methods include laser capture microdisection 

(LCM), which is useful to pick cells from a particular position in a tissue. It is 

low throughput and does not necessarily guarantee that a single cell, rather 

than small group of cells is captured (Frumkin et al., 2008; Keays et al., 2005). 

Finally, nanoliter plates can be used for capturing single cells. Simply by 

adjusting the concentration of the cells in suspension, cells can be deposited 

and virtually every well will receive zero or one cell (Bose et al., 2015; Fan et 

al., 2015a). 

To solve the problems caused by dissociation of cells from within tissues, 

methods for in situ transcriptome analysis are being developed, such as TIVA 

(Lovatt et al., 2014), FISSEQ (Lee et al., 2014a; Mitra et al., 2003) or padlock 

probe-based methods (Ke et al., 2013). These methods work for a limited 

number of genes and are also limited spatially by the resolution of the 

microscope. 



	   47	  

In single cell mRNA sequencing and also other single cell protocols, the 

goal is to perform a single-tube reaction. Avoiding intermediate purification 

steps is crucial for avoiding nucleic acid losses, which reduce the sensitivity of 

the method. Captured cells are lysed by addition of lysis buffer containing 

detergent to disrupt the cell membrane. For plant or fungi cells, protoplasts 

must first be obtained by enzymatic or mechanical removal of the cell wall. 

Efficient cell lysis is important to release RNAs to the reaction and for the 

subsequent steps.  

In the next step, RNAs are reverse transcribed, and this is a key step for 

achieving high sensitivity. A major goal of this stage is to avoid reverse 

transcribing rRNAs, which are high-abundance and would dominate any 

signal from the much lower abundance mRNAs. Due to the low abundance of 

mRNAs, common mRNA purification methods cannot be used. Most protocols 

(SmartSeq (Ramskold et al., 2012), Smartseq2 (Picelli et al., 2013), STRT-Seq 

(Islam et al., 2011), QuartzSeq (Sasagawa et al., 2013)) use polyT primers that 

bind to the polyA tail of mRNAs. This way only mRNAs and polyadenylated 

non-coding RNAs are reverse transcribed.  

Alternatively, primers that are specifically designed not to bind to rRNAs 

have been used (Bhargava et al., 2013). The disadvantage of this approach is 

that there may be biases against some mRNAs. Finally, it was shown recently 

that random hexamer primers can be used (Armour et al., 2009; Fan et al., 

2015b). Provided reverse transcription is performed at low temperature, most 

rRNAs are within folded ribosomes and are not transcribed. Moving beyond 

polyA priming would be useful for analyses of non-coding RNAs, such as 

circRNAs (Fan et al., 2015b), and also bacterial RNAs, which are of course not 

polyadenylated (Kang et al., 2011).  
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Second strand cDNA synthesis can be done using the template switching 

properties of the reverse transcriptase to minimize detection of partially 

transcribed species: this approach is used in SmartSeq (Ramskold et al., 2012). 

Alternatively polyA tailing and subsequent second strand synthesis priming 

from the polyA sequence can be used, but this leads to stronger 3’ bias of read 

coverage over transcripts, meaning that there are more reads mapping to the 3’ 

end of the transcript. This originates from incomplete reverse transcription, as 

in the first single cell sequencing protocol by Tang and colleagues and the 

QuartzSeq protocol (Sasagawa et al., 2013; Tang et al., 2009).  

It is estimated that each cell contains around 10pg of mRNA (Ramskold et 

al., 2012), which will not produce sufficient cDNA for sequencing library 

preparation alone. Thus the cDNA must be amplified. This is done either by 

PCR or in vitro transcription followed by another round of reverse 

transcription. Most methods use PCR for amplification: SmartSeq(Ramskold et 

al., 2012), SmartSeq2 (Picelli et al., 2014), STRT (Islam et al., 2011), the Tang 

protocol (Tang et al., 2009), and SC3-seq (Nakamura et al., 2015). The main 

caveat of PCR is the fact that the exponential amplification that occurs may 

distort the relative amounts mRNA molecules. The alternative approach of in 

vitro transcription (IVT) was incorporated into the CEL-Seq (Hashimshony et 

al., 2012) and MARS-Seq (Jaitin et al., 2014) protocols. Amplification via IVT is 

linear but it leads to stronger 3’ biases due to the additional round of reverse 

transcription of the amplified RNA. 

Sequencing libraries are prepared from amplified cDNA using the same 

protocols as for conventional bulk mRNA sequencing experiments and can be 

sequenced on any sequencing platform.  
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The optimal single cell RNA sequencing application depends upon the 

desired application. For discovery of new cell types, tag-counting droplet 

methods with high throughput are most advisable, while for analysis of allelic 

expression or splicing one must use a protocol that provides sequencing 

coverage of the entire length of mRNA molecules. 

 

Figure 1.9 Single cell RNA sequencing workflow 
On the left, steps common to all single cell experiments are shown, and on the right, 
different approaches that can be taken for each of them. 

 

1.10 Technical variability in single cell mRNA-seq experiments 

It is important to be aware that single cell RNA sequencing is subject to 

variation introduced by the experimental process rather than genuine 

biological differences between samples – technical noise.  

Firstly, some technical noise originates from the reverse transcription step. 

The number of molecules in each cell is limited and it is estimated that only 

10% of them are transcribed to cDNA with current technologies (Islam et al., 
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2014). The molecules that are transcribed are selected stochastically. Due to 

Poisson sampling, the expression level estimation may not represent the 

original set of molecules from the cell, especially for lowly abundant mRNA 

species. Additionally, there may be a higher chance for some species of mRNA 

to be transcribed than others depending on their sequence and length of their 

polyA tails. These biases have not yet been systematically investigated. 

Secondly, there is variation in the measurement from batch to batch. This 

may be due to differences between operators, batches of reagents or other 

factors.  

Thirdly, single cell RNA sequencing data has the same biases as 

conventional RNA sequencing, such as PCR amplification bias, sequence bias 

during fragmentation and coverage biases. Importantly, more rounds of 

amplification are required than in bulk RNA sequencing providing more 

opportunities for the introduction of base substitutions. If amplification is 

performed using PCR, then PCR amplification biases are also present. It was 

also reported that reverse transcription with poly-dT priming leads to 3’ bias 

in read coverage (Mortazavi et al., 2008; Ramsköld et al.,  2012). This is also the 

case in bulk-level experiment that uses poly-dT priming.  

To estimate some sources of bias and technical error it has proved very 

useful to add (‘spike-in’) an external standard into each cell prior to lysis. 

ERCC Spike-In is the most commonly used, commercially available set of 

control molecules and it consists of 92 synthetic polyadenylated mRNA 

species of different known concentrations (Jiang et al., 2011). These were 

designed so as to lack sequence similarity to any known eukaryotic genome. It 

allows one to measure the sensitivity and accuracy of each experiment, as well 

as perform correction of some batch effects. It is also used for estimation of the 



	   51	  

extent of technical noise (Brennecke et al., 2013). ERCC spike ins can be used to 

produce a calibration curve to estimate the absolute number of molecules in 

each cell (Kivioja et al., 2012). It has to be noted that ERCC molecules do not go 

through cell lysis and are not associated with proteins, thus are not subjected 

to all the processes that cellular mRNAs are. Furthermore they are not capped, 

and they have very short polyA tails in comparison to endogeneous mRNAs. 

In addition to ERCCs, one can use unique molecular identifiers (UMIs), 

which are highly diverse, random, unique barcodes for tagging each cDNA 

molecule generated during reverse transcription (Fu et al., 2011; Islam et al., 

2014; Shiroguchi et al., 2012). They enable one to count molecules by counting 

the number of unique UMI sequences associated with each transcript instead 

of counting the number of sequencing reads that map to a particular 

transcript. This can ameliorate PCR biases (Kivioja et al., 2012). The main 

disadvantage of UMIs is that until now they have only been used for methods 

that count the 3’ end of molecules. In addition, to estimate the number of 

molecules one has to sequence deeply, and UMI methods also tend to 

overestimate noise for highly expressed genes. 

Technical variability within an experiment can be also estimated by 

performing pool and split experiments (Deng et al., 2014; Marinov et al., 2014) 

and using a known amount of standardized extracted RNA (Brennecke et al., 

2013). 

 

1.11 Single cell mRNA sequencing applications 

Single cell mRNA sequencing is an unbiased and straightforward way to 

survey cellular populations to describe the cells that are present. Tissue 

functions depend on the identity and frequencies of cell types within the 



	   52	  

tissue. By sequencing all cells in the tissue one can find new cell types that 

have not been described previously. For example, by sequencing all cells from 

intestinal crypts, a new secretory cell type was discovered (Grun et al., 2015). 

Once a new subpopulation of cells is identified, it is quite straightforward to 

identify a set of reliable cellular markers for this particular population using 

differential expression analysis, correlation analysis (Mahata et al., 2014) or 

random forest approaches (Macaulay et al., 2016) (Figure 1.10). We performed 

single cell mRNA sequencing on a population of differentiating mouse CD4+ 

T-helper 2 cells and identified LY6C1/2 as a cell surface marker for a 

population within these cells that produces steroid and appears to be 

immunosuppressive (Mahata et al., 2014). Similarly, mitotic markers of radial 

glia that allow staging them according to their cell cycle progression were 

identified (Pollen et al., 2014). 

The identification of groups of cells that have similar transcriptomes is a 

challenge (Figure 1.10). The choice of clustering approach and the similarity 

measure that is used depends on the particular biological system, the 

composition of the population and relative differences between cells. Thus, 

several approaches have to be tested to find the optimal one with good 

separation and compactness of clusters and that accurately represents the 

biological system under study. One of the indicators can be the compactness of 

clusters, measured by the sum of squares within groups, which should be 

significantly lower than that of randomly permuted data (Treutlein et al., 

2014). Usually only moderately and highly expressed genes are used, because 

lowly expressed ones have a high level of technical noise that interferes with 

clustering. Alternatively, one can use a set of highly variable genes for 

clustering (Jaitin et al., 2014). They can be identified by calculating their 
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coefficient of variation, or preferably by identifying genes that are more 

variable than is expected by chance by modelling technical noise using the 

spiked-in standards (Brennecke et al., 2013). Validation of the clusters is 

usually done by examining expression of particular cell markers and assigning 

them to clusters. 

Other commonly used methods for identification of subpopulations are 

dimensionality reducing visualisation methods such as principal component 

analysis (PCA) (Figure 1.10). Using PCA it was shown that to be able to 

separate cells from different tissues, namely as blood, epidermal, and 

pluripotent cells and neurons one needs only very shallow sequencing, and 

expression levels of 500 most expressed genes, when cells were sequenced to 

10,000 reads per cell is enough (Pollen et al., 2014). 

A nonlinear dimension-reduction method, t-distributed stochastic 

neighbour embedding (tSNE) (Van der Maaten and Hinton, 2008) is a 

machine-learning algorithm that models the data in such a way that similar 

cells are placed near each other. Importantly the distances on this plot, unlike 

on PCA do not correspond to how similar points are to each other. Initially, 

this method was slightly modified and very successfully used on mass 

cytometry data from bone marrow cell samples (Amir et al., 2013) and 

subsequently it has been adopted to single cell mRNA sequencing data to 

show subpopulations in differentiating mouse embryonic stem cells (Klein et 

al., 2015), 39 subpopulations of cells from retina (Macosko et al., 2015) or nine 

major classes of cells from mouse cortex (Zeisel et al., 2015). 

Single cell mRNA sequencing data often have many zero values due to 

dropout events (Lun et al., 2016), which may lead to misleading results in 

methods such as PCA. To address this problem a dimension-reduction 



	   54	  

approach called Zero Inflated Factor Analysis (ZIFA) was established. This 

method uses a latent variable factor analysis model and models the dropout 

rate to accommodate zeros within the data (Pierson and Yau, 2015).  

SNN-Cliq is method bases on the shared nearest neighbour (SNN) 

similarity measure. Rather than using numerical values of gene expression it 

uses ranking of similarities between gene expression values (Xu and Su, 2015). 

Other approaches for reducing the dimensionality of scRNA-seq data 

include self organizing maps (SOMs) (Kim et al., 2015a), circular a posteriori 

projection (CAP) (Jaitin et al., 2014), BackSPIN clustering (Zeisel et al., 2015), 

single-cell clustering using bifurcation analysis (SCUBA) (Marco et al., 2014). 

New methods are published regularly. 

Provided that a sufficiently large number of cells is surveyed it is possible to 

find rare or outlier cells within a population. Although rare, these cells are 

often involved in important functions and are biologically relevant. These 

include stem cells within tissues, secretory cells and rare cell populations 

within tumours, which may convey resistance to a particular drug. Once 

identified using single cell sequencing they can be enriched for using cell 

surface markers discovered in the singe cell mRNA sequencing data (Grun et 

al., 2015).  

Furthermore, single cell sequencing opens an avenue for sequencing 

unicellular organisms that cannot be cultured in conventional media and 

cannot be obtained in large quantities (Marcy et al., 2007; Gawad et al., 2016; 

Proserpio et al., 2016). Similarly, single cell mRNA sequencing was applied to 

profile early human embryos (Yan et al., 2013; Petropoulus et al., 2016), which 

are very limited and one could not easily obtain enough cells to sequence them 

using conventional methods. 
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Single cell transcriptomic data aid understanding processes where cells 

traverse from one state to another and where cellular decisions are being 

made. The transition between states can be binary or gradual and may or may 

not involve discrete intermediate states. Analysis of gene expression changes 

throughout the transition can give an insight into transcriptional waves that 

often accompany them. Key genes and transcription factors that act as 

switches to drive the process can be identified from such analyses.  

Although single cell mRNA sequencing provides only a snapshot of a 

population in given time, one can take advantage of the fact that cells are not 

synchronized and so order them along the process they undergo such as 

development or differentiation. This ordering, places the cells along an axis 

referred to as ‘pseudotime’. These approaches provide temporal resolution 

without performing time course experiments, or allow additional information 

to be extracted from time course data. Ordering cells along the process is 

performed by several algorithms developed for this purpose. The first method 

that was developed to serve this purpose was Monocle (Trapnell et al., 2014), it 

first uses independent component analysis (ICA) for dimensionality reduction 

and subsequently constructs a minimal spanning tree (MST) through the data 

points. The longest possible path through the MST is taken to represent 

pseudotime. An important limitation to Monocle is that one has to specify 

number of bifurcations that occur in the data. Waterfall is similar to Monocle 

but it uses clustering and PCA for dimensionality reduction instead of ICA, 

and then it also draws an MST to find the longest path through the cells (Shin 

et al., 2015). Moreover diffusion maps were successfully used for defining 

developmental trajectories (Angerer et al., 2015; Haghverdi et al., 2015; Julia et 

al., 2015). 



	   56	  

All above-mentioned methods assume that the process being analysed is 

directional, but there are phenomena in biology, which are oscillatory, and the 

most important example is cell cycle. For analysis of such processes Oscope 

was developed (Leng et al., 2015). It uses gene co-expression to identify, which 

genes oscillate and using them orders cells in a cyclic fashion. 

If genetic information of maternal and paternal alleles is known, as in the 

case when two genetically distinct mouse strains, such as BL6 and CAST are 

crossed, single cell mRNA sequencing can give information about expression 

of genes at allelic resolution. This gives more information than just identifying 

monoallelic and imprinted genes (Deng et al., 2014). The heterogeneity of the 

ratio between alleles in each cell gives us information about gene expression 

noise and allows dissection of the noise between intrinsic cellular processes 

and extrinsic stimuli (Kim et al., 2015b). 

Knowing the composition of noise and heterogeneity of each allele allows 

modelling of gene expression kinetics at each promoter. Kinetics of 

transcription factor binding, which result in specific burst sizes and 

frequencies can be fitted to the noise level at each promoter. If additional 

factors such as degradation rates of mRNA are known they can be 

incorporated into such models (Kim et al., 2015b).  

Finally, single cell mRNA sequencing enables investigation of gene 

regulatory networks in naturally perturbed systems. Gene regulatory modules 

can be identified by calculating correlations or by clustering cells. In such 

networks, transcripts of genes are nodes and co-expressions of these genes are 

the edges. To analyse how genes interact with each other the networks must be 

perturbed. Cells in the population can be undergoing transitions such as 

differentiation, or they can respond to an extracellular signal that affects their 
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transcription. The weighted gene co-expression network analysis (WGCNA) 

approach was developed for bulk samples (Zhang and Horvath, 2005) but it 

was also successfully used for analysis of single cell data (Moignard et al., 

2015; Xue et al., 2013). 

 

 

Figure 1.10 Identification and Characterization of Cell Populations 
(A) Identification of cell populations can be performed using principal component 
analysis (PCA) or hierarchical clustering. (B) Different approaches to subpopulation 
characterization: finding markers of cell types by analysing differential expression 
between different groups of cells; frequency of cell populations; identification of 
genes that have particular patterns during a process such as development or response 
to stimuli: genes that either increase or decrease expression throughout the process, 
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but most interestingly genes that are expressed transiently in the intermediate cell 
types, as these genes may be important for the process to proceed; differential splicing 
analysis: differential splice variants may divide population of cells in to 
subpopulations; and analysis of allele-specific expression patterns: if a sample of 
heterogeneous genetic background, such as a cross of mice from two genetically 
distant inbred lines is provided, imprinted and monoallelically expressed genes can 
be identified.  
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Chapter 2 

Materials and Methods 

 

 

 

 

2.1 Cell culture conditions 

Cell cultures were done in collaboration with Dr. Jason Tsang. The G4 

(C57BL/6Ncr x 129S6/SvEvTac) mouse hybrid (George et al., 2007) embryonic 

stem cells were obtained from Mount Sinai Hospital and were maintained on 

STO feeders in serum-containing media at 5% CO2 and 37°C. They were sub-

cloned, and a line with normal karyotype was selected based on spectral 

karyotyping analysis performed at the Molecular Cytogenetics core facility at 

the Sanger Institute for further analysis. The cells were split onto gelatinized 

plates (10cm, Corning) and expanded in serum-containing media or 

chemically defined media (standard 2i or alternative 2i) for at least three 

passages.  

The three media are as follows: 

1) Serum-containing media: Knockout DMEM (Gibco), 1X penicillin-

streptomycin-glutamine (Gibco), 1X non-essential amino acids (Gibco), 100 
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U/ml recombinant human leukaemia inhibitory factor (Millipore), 15% foetal 

bovine serum (HyClone), 0.1 mM β-mercaptoethanol (Sigma).  

2) Standard 2i media: N2B27 basal media (NDiff 227, StemCells), 100 U/ml 

recombinant human leukaemia inhibitory factor (Millipore), 1 µM PD0325901 

(Stemgent), 3 µM CHIR99021 (Stemgent).  

3) Alternative 2i media: N2B27 basal media (NDiff 227, StemCells), 100 

U/ml recombinant human leukaemia inhibitory factor (Millipore), 1 µM 

CGP77675 (Sigma), 3 µM CHIR99021 (Stemgent). 

 

Dr. Alex Tuck performed NPC differentiation time course using protocol 

published by Bibel et al., 2007 and harvested cells at day 6 and day 8. He 

prepared libraries for single cell mRNA sequencing using the protocol 

described in the section 2.2 and these samples were sequenced 150bp paired 

end on Illumina HiSeq2000. Mapping and downstream analysis was 

preformed as described in the section 2.5. 

 

 

2.2 Single cell mRNA-seq using SmartSeq and Fluidigm C1 

 

2.2.1 Single cell suspension preparation 

Cells were harvested by trypsinisation (0.05% trypsin/EDTA, Gibco) for 10 

minutes, when they reach 70-80% confluence for single cell capture. 

Subsequently they were inspected under the microscope to assure the cells are 

a single cell suspension, counted and diluted to 1.3 × 10-‐6 cells per millilitre.   
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2.2.2 cDNA synthesis and amplification 

For each culture condition, 4000 cells were loaded on to a 10-17 micron 

Fluidigm C1 Single-Cell Auto Prep IFC, and cell capture was performed 

according to the manufacturer’s instructions. The capture efficiency was 

determined using a microscope to exclude samples from the analysis with no 

or more than one cell captured or samples where in addition to cell there was 

cellular debris visible. Upon capture, reverse transcription and cDNA 

preamplification were performed in the 10-17 microns Fluidigm C1 Single-Cell 

Auto Prep IFC using the SMARTer PCR cDNA Synthesis kit (Clontech) and 

the Advantage 2 PCR kit (Ramskold et al., 2012).  

Within the C1 cells are first lysed to release RNA using Triton-X 100 in the 

lysis buffer. Subsequently reverse transcription mix is added to perform 

reverse transcription. Importantly template-switching mechanism is used to 

avoid additional steps of adapter ligation and second strand synthesis. 

The yield of the cDNA from a single cell is low, so it needs to be amplified 

before library preparation can be performed. During reverse transcription, 

adaptors are incorporated within the primers to allow amplification of full-

length transcript by PCR. Reverse transcription is primed using a poly-T 

oligonucleotide, which allows selection of polyadenylated RNA species i.e. 

mRNA and some lncRNAs; this avoids sequencing abundant rRNAs. Full-

length amplified cDNA was harvested, assessed and quantified using High 

Sensitivity DNA Kit (Agilent) and stored at -20°C. 
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Figure 2.1 Schematic of cDNA synthesis and amplification 
Polyadenylated RNAs are selected by reverse transcription with polyT primer; second 
strand is synthesized with template switching reaction. cDNA is amplified by PCR. 

 

2.2.3 Illumina library preparation using Nextera XT 

cDNA was diluted to a range of 0.1-0.3 ng/µl and Nextera libraries were 

prepared using the Nextera XT DNA Sample Preparation Kit and the Nextera 

Index Kit (Illumina) following the instructions in the Fluidigm manual “Using 

the C1TM Single-Cell Auto Prep System to Generate mRNA from Single Cells 

and Libraries for Sequencing“. Libraries from one chip were pooled, and 

paired-end 100bp sequencing was performed on 4 lanes of an Illumina 

HiSeq2000. 

 

2.3 mRNA sequencing of bulk controls 

Bulk mRNA sequencing libraries were prepared and sequenced using the 

Wellcome Trust Sanger Institute sample preparation pipeline with the TruSeq 

RNA Sample Preparation v2 kit (Illumina). RNA was extracted from 1-2 

million cells using the Qiagen RNA Purification Kit on a QiaCube robot. The 

quality of the RNA sample was checked using gel electrophoresis. For library 
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preparation, poly-A RNA was purified from total RNA using oligo-dT 

magnetic pull-down. Subsequently, mRNA was fragmented using metal-ion 

catalysed hydrolysis. The cDNA was synthesized using random hexamer 

priming, and end repair was performed to obtain blunt ends. A-tailing was 

done to enable subsequent ligation of Illumina paired-end sequencing 

adapters, and samples were multiplexed at this stage. The resulting library 

was amplified using 10 cycles of PCR, substituting the Kapa Hifi polymerase 

for the polymerase in the Illumina TruSeq kit. Samples were diluted to 4nM, 

and 100bp paired end sequencing carried out on an Illumina HiSeq2000. The 

Sanger sequencing facility performed Sequencing Quality Control. 

 

2.4 Candidate gene expression downregulation using CRISPR 

repressor 

 

2.4.1 CRISPRi plasmids and cloning 

Expression of candidate pluripotency regulators was downregulated with 

CRISPRi technology. I obtained three plasmids necessary for genome 

integration and expression of dCas9-KRAB and gRNA from Dr. Xuefei Gao. 

Two plasmids were used, one bearing gRNA linked to mCherry (Figure 2.2) 

and the second one dCas9-KRAB linked to BFP (Figure 2.3). Both expression 

cassettes are within LTR sites that are integrated into the genome using the 

hyperactive piggyBac transposase (Yusa et al., 2011) expressed from the third 

plasmid (Gao et al., 2014) (Figure 2.4).  

Oligonucleotides targeting sites at promoters of candidate genes were 

ordered from Sigma-Aldrich (Table 2.1). I diluted the oligos to 1 mM in water 

and mixed them 1:1. I took 10 µl of oligo mix and heated it up to 98°C in the 
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thermo-cycler and then lowered the temperature by 1°C every minute until it 

reached 20°C to anneal the oligos and create sticky ends for the ligation to the 

backbone. pPB-gRNA-BsaI backbone was designed in a way that there are two 

BsaI cutting sites in the position where annealed oligos need to be ligated.  

I performed restriction digestion of the plasmid using BsaI enzyme from 

New England Biolabs for 2h at 37°C. In 50 µl reaction I digested 2 µg of 

plasmid using 20U of the enzyme in 1x CutSmart buffer. Subsequently I ran a 

2% agarose gel, cut the band corresponding to the double cut plasmid and 

purified the DNA using Qiagen Gel Extraction kit. Ligation was performed for 

each insert in the same way. 0.05 µg of plasmid was mixed with 5 µl of 5 mM 

annealing product, 1U of T4 DNA ligase from Thermo Fisher in 20 µl reaction 

containing 1x ligation buffer. Ligation was done for 1h at room temperature.   

1 µl of ligation reaction was used for heat shock transformation of 25 µl of 

DH5α cells. Cells were plated on ampicillin for selection of successfully 

transformed cells and subsequently colonies were picked and grown in LB 

media and then I purified plasmids using MiniPrep kits from Qiagen. To check 

if ligation was successful I performed test digestions with BglII and XhoI (if 

successful 0.5k, 1.7kb and 3.9kb fragments were observed, if not: 0.9kb, 1.7kb 

and 3.9kb fragments) and subsequently sent plasmids for Sanger sequencing. 
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Figure 2.2 Schematic of gRNA plasmid 
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Column Name PRIMER 1 PRIMER 2 

Ptma 

Ptma-1 cttggcgccgcgtgagtcccccac aaacgtgggggactcacgcggcgc 
Ptma-2 cttgcaatagcgccgggactaggg aaacccctagtcccggcgctattg 
Ptma-3 cttgctgcgctcagccaatagcgc aaacgcgctattggctgagcgcag 
Ptma-4 cttgttcggaatcgagccaatgag aaacctcattggctcgattccgaa 
Ptma-5 cttggcgcagcgcgcgccaagccg aaaccggcttggcgcgcgctgcgc 

Set 

Set-1 cttgtgctgattggagggagggcg aaaccgccctccctccaatcagca 
Set-2 cttgtcaaagaagtttctgctgat aaacatcagcagaaacttctttga 
Set-3 cttggccgcccccttctccatcgc aaacgcgatggagaagggggcggc 
Set-4 cttgcccggcgcgcctgcgctctg aaaccagagcgcaggcgcgccggg 
Set-5 cttggccgggggcgggacttgcgc aaacgcgcaagtcccgcccccggc 
Set-6 cttgacggcgcgagcctctccggc aaacgccggagaggctcgcgccgt 
Set-7 cttgggggagcaccgcgcgggggc aaacgcccccgcgcggtgctcccc 

Zfp710 

Zfp710-1 cttgggagagcagggaagtgtggg aaaccccacacttccctgctctcc 
Zfp710-2 cttggatgagaaggggtggagcca aaactggctccaccccttctcatc 
Zfp710-3 cttgtgtgggaggaattgatgaga aaactctcatcaattcctcccaca 
Zfp710-4 cttgccagggagagcagggaagtg aaaccacttccctgctctccctgg 
Zfp710-5 cttgcctctgcgagcaggcttagg aaaccctaagcctgctcgcagagg 
Zfp710-6 cttggaaaacaaaagagagataaa aaactttatctctcttttgttttc 
Zfp710-7 cttgaagaagaaaaatcctctctg aaaccagagaggatttttcttctt 
Zfp710-8 cttgtccaggcttgcaattcgagt aaacactcgaattgcaagcctgga 

Zfp640 

Zfp640-1 cttgcaagatcactgtggctgtgc aaacgcacagccacagtgatcttg 
Zfp640-2 cttggacaaagaggcgggatcttc aaacgaagatcccgcctctttgtc 
Zfp640-3 cttgggaagcaaactttaacatta aaactaatgttaaagtttgcttcc 
Zfp640-4 cttgactggccaatcaagttcgcc aaacggcgaacttgattggccagt 

Kat6b 

Kat6b-1 cttggggctctgtgcgctgcagcc aaacggctgcagcgcacagagccc 
Kat6b-2 cttgcctcccctgagggcggtgag aaacctcaccgccctcaggggagg 
Kat6b-3 cttgcgggtgacggacagacccgt aaacacgggtctgtccgtcacccg 
Kat6b-4 cttgggcatccccgccctcccctg aaaccaggggagggcggggatgcc 

Etv5 

Etv5-1 cttgccggaggccggcgcgcagag aaacctctgcgcgccggcctccgg 
Etv5-2 cttggacgtgtgtgctctgggctg aaaccagcccagagcacacacgtc 
Etv5-3 cttgcggggatggccgccgaccaa aaacttggtcggcggccatccccg 
Etv5-4 cttgcaagaggtgatgggcagccg aaaccggctgcccatcacctcttg 
Etv5-5 cttgaaggtggctacacaggcaag aaaccttgcctgtgtagccacctt 
Etv5-6 cttgtttttcagtgcaagtaaggg aaaccccttacttgcactgaaaaa 
Etv5-7 cttgggcttttgtggtagacaggc aaacgcctgtctaccacaaaagcc 
Etv5-8 cttgttggttggttttggcttttg aaaccaaaagccaaaaccaaccaa 

Dpy30 

Dpy30-1 cttggtctgctgcccgcgggggtg aaaccacccccgcgggcagcagac 
Dpy30-2 cttgcgacgaggacggccagtcgg aaacccgactggccgtcctcgtcg 
Dpy30-3 cttgccgagcctcgcgatgcgacg aaaccgtcgcatcgcgaggctcgg 
Dpy30-4 cttgtcctcccaccgctacatcct aaacaggatgtagcggtgggagga 
Dpy30-5 cttgatttgcctcaagtctgtaaa aaactttacagacttgaggcaaat 
Dpy30-6 cttgatacatacttcttgaacaat aaacattgttcaagaagtatgtat 

 
Table 2.1 Sequences of oligonucleotides used to construct insert gRNA plasmid 
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Figure 2.3 Schematic of dCas9-Krab plasmid 

 

Figure 2.4 Schematic of piggyBac plasmid 
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2.4.2 Downregulation of target gene expression and cell sorting 

GFP-OCT4 reporter strain ES cells (Silva et al., 2008) were grown by Dr. 

Xuefei Gao in 6-well plates and transfected with plasmids (1) 5 µg of dCas9-

KRAB-BFP plasmid (2) 1 µg of hyPBase plasmid and (3) 1 µg cocktail of gRNA 

plasmids (Gao et al., 2014) targeting the gene of interest in a 1:1 ratio using 

Lipofectamine2000, Life Technologies. Subsequently, cells were cultured in 

knockout DMEM (Gibco) medium containing 15% serum and 100 U/ml LIF 

for 4 days. After 4 days cells were harvested from the culture dish using 

trypsin (0.05% trypsin/EDTA, Gibco) and the Cytometry Core Facility at 

Sanger Institute sorted BFP and mCherry double positive cells. 

 

2.4.3 Library preparation 

RNA was extracted using Qiagen RNeasy Mini kit from 10,000 mCherry 

and BFP positive cells that were sorted for each sample in triplicates. Modified 

SmartSeq2 protocol was used for reverse transcription and amplification of 

cDNA (Picelli et al., 2014), because the amount of RNA from 10,000 cells is not 

sufficient for conventional bulk library preparation protocols, which involve 

polyA species enrichment where a substantial amount of material is lost. 

Sequencing libraries were prepared using Nextera XT kit according to 

manufacturers guidelines, barcoded with Nextera XT Dual Index kit and 

sequenced on an Illumina HiSeq2500 in rapid mode. 
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2.5 Data analysis 

 

2.5.1 Sequencing reads alignment 

For each cell, 100bp paired-end reads were aligned to the Mus musculus 

genome (GRCm38) using GSNAP (version gmap-2014-05-15_v2) with default 

options (Wu and Nacu, 2010). To detect splice junctions in reads, I used a set of 

known splice sites from the GTF file for GRCm38 provided by Ensembl 

(release 73). Only reads uniquely mapped to the genome were counted for 

each gene using htseq-count and the same GTF file (Anders et al., 2014). 

Dr. Jong Kyoung Kim additionally applied location and scale adjustments 

to the normalized read counts to remove technical variation among multiple 

batches as described below. 

 

2.5.2 Normalisation and batch correction 

To remove technical variation across multiple batches, Dr. Jong Kyoung 

Kim applied location and scale adjustments to the normalized read counts by 

using the ComBat function of the sva package of R with default options 

(Johnson et al., 2007). He first log10-transformed the normalized read counts 

(after removing lowly expressed genes whose mean normalised read counts 

are less than 10) and after adding a pseudo count of 1. Secondly, he adjusted 

for batch effects using ComBat with the known batch covariate and sample 

conditions. Finally, he re-transformed the batch-adjusted expression values x 

back to the original scale (10x-‐1). If the re-transformed values were less than 0 

or the original read counts are 0, we set the re-transformed values to 0.      
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2.5.3 Quality control of cells   

To exclude poor quality libraries from downstream analysis, first I removed 

cells that correspond to empty capture sites, capture sites with multiple cells, 

or capture sites containing cell debris on the C1 chip by visually inspecting 

them under microscope. Second, it has been known that some cells suffer from 

cell rupture during the process of microfluidic cell capture (Islam et al., 2014). 

To identify these abnormal cells, I calculated two quantities for each cell: the 

number of reads mapped to exons, and the proportion of reads (of all reads 

mapped to exons) mapped to 37 genes on the mitochondrial chromosome. I 

identified two populations of cells in terms of the above two quantities and 

most of the cells corresponding to empty cells or cell debris are in one of the 

two populations. Biologically when cell is ruptured cytoplasm leaks out and 

there is a relative increase in abundance of transcripts that are enclosed within 

the mitochondria. Based on this, I set the following criteria to remove 

abnormal cells: 

1) Cells that have fewer than 500,000 reads mapped to exons 

2) Cells that have greater than 10% reads mapped to mitochondrial genes 

Finally, I compared the normalised read counts of genes between cells in the 

same condition, and found that in one cell (cell “85” in the first replicate of 

serum) there was a problem in library preparation and many genes were 

abnormally amplified (Figure 2.5). I removed the cell from further analysis. In 

summary, I have the following number of cells for the analysis: 81, 90 and 79 

for serum replicates; 82, 59, 72 and 82 for 2i replicates, 93 and 66 for a2i 

replicates, where the total number of cells across conditions is 704. 
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Figure 2.5 Correlation of gene expression levels in single cells. 
Expression levels correlate with each other as shown representatively for cells index 
86, 91, 92 and 93 (serum 1). Cell 85, as it is substantially different than any other cell, 
suggesting failure of the experimental protocol. 

 

 

2.5.4 Calculating DM as a measure of noise  

To account for the confounding effects of gene length and mean expression 

level on the CV, Dr. Jong Kyoung Kim computed the DM values for each gene 

using rolling medians of the squared CV. First, he computed gene lengths by 

taking the union of all exons within a gene based on the Ensembl annotation. 

He excluded all exons annotated as “retained_intron”. He also removed lowly 

expressed genes whose mean normalised read counts (reads per million) are 

less than 10, since we cannot distinguish biological noise from technical noise 

for these genes. Second, he computed rolling medians from the scatter plot 

between the mean normalised read counts and the squared CV values, where 
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the x- and y-axis are log10 transformed. Third, we calculated the mean-

corrected residual of the squared CV of gene i to its corresponding rolling 

median 𝑓(𝑖) such that 

𝑟 𝑖 = log!" 𝐶𝑉(𝑖)! − 𝑓 𝑖 . 

Finally, to correct for the effect of gene length on the mean corrected 

residual, he calculated the difference between the mean corrected residual of 

the squared CV of gene i and its expected residual by using the following 

formula 

𝐷𝑀 𝑖 = 𝑟 𝑖 − 𝑔 𝑖 , 

where 𝑔 𝑖  is the rolling median of gene i from the scatter plot between 𝑟 𝑖  

and log10 transformed gene lengths. To compute the rolling medians, he used 

the rollapply function of the zoo package of R (Zeileis and Grothendieck, 2005) 

and the following parameters: the number of genes in the window is 50 and 

the number of overlapping genes between adjacent windows is 25. This 

relative noise measure, which is referred to as DM, does not depend on either 

gene expression levels or gene lengths (Spearman’s ρ=0.0200 for gene 

expression levels and ρ=0.0206 for gene length in the serum condition) 

(Kolodziejczyk et al., 2015b). 

 

2.5.5 Testing the absolute level of cell-to-cell variation of a functional 

category within a culture condition 

To test whether genes belonging to a defined functional category have a 

high or low level of expression heterogeneity within a culture condition, Dr. 

Jong Kyoung Kim performed gene set enrichment analysis using the Piano 

package of Bioconductor (Varemo et al., 2013). He used the DM values for 

gene-level statistics and calculated the mean DM values as a gene-set statistic 
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for each GO term. The associations between Ensembl gene IDs and GO terms 

were obtained from the biomaRt package of Bioconductor (Kasprzyk, 2011). 

Since gene set enrichment analysis tends to bias towards large or small 

categories in terms of their number of genes, he considered only gene sets with 

between 3 and 2,000 genes. The P-value for each GO term was then computed 

by randomly taking a set of genes of the same size as in the GO term, and by 

repeating this 10,000 times. 

 

2.5.6 Testing the relative difference in expression heterogeneity of a 

functional category across culture conditions 

To explore further the difference of the three culture conditions in terms of 

gene expression noise, Dr. Jong Kyoung Kim compared two sets of DM values 

for each GO term between two culture conditions using the two-sided paired 

t-test. He only considered GO terms with at least 2 genes having DM values. 

The associations between GO terms and their offspring terms were obtained 

from the GO.db annotation package of Bioconductor  

(http://www.bioconductor.org/packages/release/data/annotation/html/

GO.db.html).   

 

2.5.7 Differential expression analysis 

I identified differentially expressed genes from bulk data and single cell 

data using the DESeq package (Anders and Huber, 2010). I considered genes 

that differed in expression by two-fold and with a multiple testing adjusted p-

value was < 0.05 to be differentially expressed. For single cell differential 

expression analysis I used each as a replicate of the condition it came from and 

I removed genes that had mean expression below 50 counts. 
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2.6 Doubling time estimation of mouse embryonic stem cells in different 

conditions 

Fifty thousands G4 mouse ES cells were plated by Dr. Jason Tsang in single 

wells on gelatinized 6-well plates, and maintained in the three culture 

conditions of interest (total 12 wells for each culture condition): serum-

containing media, standard 2i media and alternative 2i media. Three wells 

were harvested and quantified on a haemocytometer every 24 hours for 4 days 

to estimate the doubling time of mouse ES cells in each condition.  

 

2.7 Datasets 

	   Generated	  by:	   Data	  accession	  numbers	  
Single	  cell	  mRNA	  seq	  data	  of	  mESC	  
cultured	  in	  three	  conditions	  (2i,	  a2i,	  
serum)	  

Kolodziejczyk	  et	  al.,	  
2015,	  Cell	  Stem	  Cell	  

Array	  Express	  
E-‐MTAB-‐2600	  

Single	  cell	  mRNA	  seq	  data	  of	  early	  
mouse	  embryo	  development	  	  

Deng	  et	  al.,	  2014,	  
Science	  

Gene	  Expression	  
Omnibus	  	  
GSE45719	  

2C-‐like	  cell	  gene	  expression	  profiles	  
(microarray	  data)	  

Macfarlan	  et	  al.,	  2012	  
Nature	  

DE	  count	  tables	  from	  
Supplementary	  Table	  4	  

NPC	  differentiation	  time	  course	   Dr.	  Alex	  Tuck	  
(unpublished)	  

unpublished	  
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Chapter 3  

Cell-to-cell gene expression variation associated 

with mESC culture conditions. 

 

 

 

 

3.1 Introduction 

Despite their shared hallmarks of biological origin, mouse embryonic stem 

cells propagated in different in vitro environments are morphologically distinct 

and possess characteristic transcriptional and epigenetic profiles (Ficz et al., 

2013; Marks et al., 2012). Depending on how the pluripotency of mESCs is 

maintained in culture, they exhibit different characteristics. Cells cultured in 

serum/LIF are flattened, grow in a monolayer and are well-attached to the 

surface, while cells in 2i/LIF and a2i/LIF form compact three-dimensional 

colonies and tend to attach to each other more than to the surface. 

Furthermore, serum/LIF maintained mESCs are morphologically more 

heterogeneous (Marks et al., 2012; Shimizu et al., 2012; Ying et al., 2008). 
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It was shown using bulk RNA sequencing that transcriptomes of cells 

cultured in 2i and serum differ. Several developmental, metabolic and cell 

cycle related genes are differentially expressed between conditions, further 

illustrating the importance of cell culture condition in determining phenotype 

(Marks et al., 2012). The reason for the distinct transcriptomes may lie in 

different epigenomes of these cells (Angermueller et al., 2016; Ficz et al., 2013; 

Smallwood et al., 2014). Cells grown in 2i/LIF are globally hypomethylated in 

comparison to cells grown in serum/LIF (Habibi et al., 2013), and also they 

exhibit different histone modification patterns (Marks et al., 2012).  

The morphological heterogeneity of cells grown in serum/LIF led to 

attempts to understand this property of the population. Certain pluripotency 

factors such as Nanog (Chambers et al., 2007; Kalmar et al., 2009), Dppa3 

(Hayashi et al., 2008) and Rex1 (Zfp42) (Toyooka et al., 2008) exhibit 

transcriptional fluctuations, meaning that within the population there is a 

group of cells that express these genes at a low level and another 

subpopulation that expresses them highly. Cells that express low levels of 

Nanog can change their expression to high and vice versa, and these 

populations remain in a dynamic equilibrium (Kalmar et al., 2009). It was 

shown that cells that express low levels of NANOG are less pluripotent, and 

this led to the hypothesis that this population represents the differentiation-

poised states and is instrumental in regulating exit from pluripotency (Chang 

et al., 2008). 

Importantly, others have expressed concern that the phenomenon of 

fluctuations may originate from the use of fluorescent reporter systems (Chang 

et al., 2008; Faddah et al., 2013; Reynolds et al., 2012). It was suggested that 

Nanog is randomly monoallelically expressed i.e. cells stochastically switch off 
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one of the alleles (Miyanari and Torres-Padilla, 2012). In cases when one of the 

alleles of Nanog is fused to fluorescent reporter protein, the population of cells 

will divide into two subgroups, cells with low levels of fluorescence, where the 

fluorescent reporter protein tagged allele is switched off, and the second 

population with high fluorescence from the active reporter allele. It is worth 

noting that some groups have shown that Nanog is expressed from both alleles 

(Faddah et al., 2013; Filipczyk et al., 2013) and this points to the conclusion that 

fluctuations are not an artefact of reporter system, but a biological 

phenomenon. 

The presence of transcriptionally heterogeneous subpopulations, prevalent 

bivalent chromatin domains, increased methylation content and reduced RNA 

polymerase pausing in serum compared to 2i mESCs has led to the notion that 

serum-maintained mESCs exist in a metastable pluripotent state (Marks et al., 

2012), implying a higher transcriptional cell-to-cell variation compared to the 

uniform ground states exhibited by the chemically defined “2i” conditions 

(Klein et al., 2015; Kumar et al., 2014). 

In this chapter I aimed to characterize in detail heterogeneity of mouse 

embryonic stem cells in different culture conditions by quantification of gene 

expression variability and comparison between three culture conditions: 

serum/LIF, 2i/LIF and alternative 2i/LIF (Shimizu et al., 2012; Ying et al., 

2008). Subsequently, I set out to understand the biological context of the 

observed variability. In more detail, the questions that I wanted to address 

involve understanding heterogeneous Nanog expression at the mRNA level 

and surveying if there are other genes that exhibit such variability. 

Furthermore, I wanted to identify transcriptionally similar subpopulations of 

cells in serum and to investigate whether Nanog-high cells from serum are 



	   78	  

similar to 2i-cultured cells. I then aimed to compare the whole transcriptome 

heterogeneity between conditions to find whether it is higher in serum in 

comparison to 2i and to find genes that contribute to this heterogeneity. 

Finally, I wanted to analyse if culturing cells in the alternative 2i media leads 

to similar transcriptomes to 2i, as is suggested by their similar morphologies 

(Shimizu et al., 2012). I used single cell RNA sequencing to overcome 

limitations of previous transcriptomic analyses and to provide a high-

resolution analysis of cellular heterogeneity. 

 

3.2 Experimental design 

To examine gene expression variability and understand how serum-grown 

mESCs differ from those grown in 2i media, an F1 hybrid (C57BL/6Ncr male x 

129S6/SvEvTac female) male mESC cell line (George et al., 2007) was cultured 

in three different conditions: (1) three replicates of serum + LIF, (2) four 

replicates of 2i + LIF, and (3) two replicates of “alternative 2i” + LIF, which are 

henceforth referred to as serum (serum1, serum2, serum3), 2i (2i1, 2i2, 2i3, 2i4) 

and a2i (a2i1, a2i2) (Figure 3.1). I characterized cells in these three conditions 

by single cell RNA-sequencing using the Fluidigm C1 system. The cDNA from 

each 96-cell chip was sequenced on four lanes of a HiSeq2000. Reads were 

aligned to the Mus musculus genome (GRCm38) using GSNAP and 

subsequently reads mapped to each gene were counted using HT-Seq. 
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Figure 3.1 Experimental schematic of hybrid mESCs in three culture conditions.  
Table of experimental setup and cell culture conditions used in our study. 
 

3.3 Quality control 

Single cell mRNA sequencing experiments work with fragile cells and very 

small amounts of material. Thus it is essential to perform quality control to 

remove from analysis samples containing broken or dead cells as well as those 

exhibiting technical problems, such as pipetting errors or poor quality of 

sequencing library preparation (Ilicic et al., 2016).  

Three criteria were used to remove poor quality cells. First, I excluded 

samples that upon microscopic inspection (20x light microscope), appeared 

empty, contained double or multiple cells or showed some debris within 

capture sites of the C1 chip. Second, samples with fewer than 500,000 reads 

mapped to exons were discarded. Low numbers of reads mapping to the 

transcriptome may suggest contamination or failure in one of the steps of the 

protocol: cell lysis, reverse transcription, cDNA amplification or library 

preparation. Third, I removed cells where more than 10% of reads mapped to 

the genes encoded by the mitochondrial genome. A high percentage of reads 

mapping to the mitochondrial genome is a good indication of low quality cells. 

One possible explanation is that when the cell is broken, cytoplasm leaks out 
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during washing steps, but membrane enclosed parts of the cell such as 

mitochondria and their contents remain intact. This leads to an apparent 

enrichment of transcripts from the mitochondrial genome, as they are enclosed 

within mitochondria and are not washed out (Figure 3.2). 

 

Figure 3.2 Quality control of cells 
Quality control metrics were the number of reads mapping to exons (y axis), and the 
proportion of reads mapped to mitochondrial genes (x axis). Lines represent the 
thresholds used. Green points represent cells excluded upon microscopic examination 
of the C1 chip and black points represent cells that did not pass the thresholds.  
 

After removing poor quality cells (18.5% of all cells), 295 2i cells, 159 a2i 

cells and 250 serum cells remained. On average, I sequenced over 9 million 

reads per cell. Over 80% of reads mapped to the Mus musculus genome and 

over 60% to exons (Figure 3.3). I also performed standard bulk RNA 

sequencing using at least a million cells per sample for each condition to 

compare to single cell sequencing data of the same samples. Bulk data were 
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obtained from the same cell culture as 2i 1, serum 1, serum 2 and a2i 1, thus 

the only difference between single cell experiment and respective bulk are 

technical. 

 

Figure 3.3 Mapping statistics for each cell for each sample.  
The mean percentage of reads mapping to Ensembl exons (green), to the genome 
outside Ensembl annotated regions (blue) and unmapped reads (red) for each of nine 
experiments. (A) and (B) show results for single cell experiments while (C) and (D) for 
accompanying bulk. 
 

To assess if the single cell RNA-seq data was in agreement with the results 

from bulk experiments, I averaged gene expression levels across the single 

cells profiled in each condition and compared with bulk RNA sequencing of 

cells from the same culture. I observed that the mean expression levels of all 

genes recapitulated the bulk gene expression levels with a Spearman rank 
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correlation coefficient of 0.88 for 2i, 0.89 for a2i, 0.91 for serum 1 and 0.90 for 

serum 2, and all p-values are smaller than 10-‐15 (Figure 3.4). It is worth noting 

that for lowly expressed genes there is less correspondence, as these genes are 

not detected in all single cells, due to lower sensitivity of single cell methods 

and technical noise. 

 

 

Figure 3.4 Comparison of gene expression levels between bulk and single cells.  
2D kernel density estimation of scatter plot between expression level in bulk 
experiment and mean of gene expression from single cells in each condition. Value of 
Spearman rank correlation coefficient (rho) between bulk and mean of single cells is 
indicated in the top left corner. 
 

3.4 Variability of gene expression 

An advantage of the single cell approach is that I can investigate gene 

expression in more detail by focusing not only on mean expression values, but 

also by studying the distribution of expression levels across the population, 

capturing cell-to-cell variability in gene expression (Grun and van 

Oudenaarden, 2015).  

It was shown previously that some genes have higher heterogeneity than 

others in cells cultured in serum (Canham et al., 2010; Kalmar et al., 2009; 

Kumar et al., 2014). For example Roeder and Radtke (2009) showed that 

protein levels of OCT4 are relatively more homogeneous within a culture in 
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comparison to levels of NANOG (Roeder and Radtke, 2009). This prompted 

me to see how this compares to the mRNA expression of these genes. Indeed I 

observed that Nanog is more heterogeneously expressed than Oct4 (Figure 3.5). 

Coefficient of variation of gene expression for Nanog is 0.75 while for Oct4 it is 

0.68.  

 

 

Figure 3.5 Variability of expression of Oct4 and Nanog.  
Microscopy pictures showing fluorescently labelled Oct4 and Nanog are from Roeder 
and Radtke, 2009, and plots below show expression heterogeneity of Oct4 and Nanog 
in three culture conditions plotted using single cell mRNAseq data.  
 

Subsequently I investigated if there was a difference in heterogeneity 

depending on the culture condition that the cells originated from. Upon 

inspection of gene expression distributions of several genes it was striking to 

me that some genes like Tcerg1 do not have significantly different expression 

profiles between culture conditions (the two-sided Kolmogorov–Smirnov test 

0 5 10 150.
0

0.
2

0.
4

0.
6 2i

a2i
serum

0 5 10 150.
0

0.
2

0.
4

0.
6 2i

a2i
serum

Oct4

Oct4

Nanog

Nanog

log normalised read counts

de
ns

ity
 (f

ra
ct

io
n 

of
 c

el
ls

)

log normalised read counts

de
ns

ity
 (f

ra
ct

io
n 

of
 c

el
ls

)

more homogeneous in serum more heterogeneous in serum

CV (serum) = 0.68 CV (serum) = 0.75



	   84	  

(KS test) p-value for 2i and a2i comparison is 0.82, and for 2i and serum 0.16). 

By contrast, some genes are more heterogeneous in one of the conditions, such 

as Ccnb1, which is more heterogeneous in 2i (P=7×10-4 by two-sided sided KS 

test between 2i and serum). Other genes, such as Nanog, Klf4 or Nr0b1, are 

more heterogeneous in serum (P<10-15 by the two-sided KS test between 2i 

and serum for genes mentioned above) (Figure 3.6). The null hypothesis of the 

KS test is that data in both samples are from the population with identical 

distribution. It compares cumulative distributions of two samples testing for 

different median, different variance or different distribution without making 

assumptions about the type of the distribution. Low p-value suggests that data 

were sampled from two populations, which have different distributions.  

Many pluripotency associated genes are heterogeneous in serum, but in 2i. There is 

exception to this pattern. More specifically, Utf1 is a pluripotency factor implicated in 

regulation of bivalent genes (Jia et al., 2012), which is more heterogeneously 

expressed in 2i than in a2i and serum. 

 

Figure 3.6 Gene expression distributions across cells 
Gene expression distributions of genes, which are noisier in 2i than serum, which are 
noisier in serum than 2i and that have similar noise profiles in serum (red), 2i (blue), 
a2i (yellow). Distributions of gene expression were smoothed using the kernel density 
estimation function in R with default parameters 
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3.5 Transcriptome-wide gene expression variability measurement  

Comparison of gene-expression variation was performed previously for 

selected genes using single molecule RNA-FISH and at the protein level with 

FACS with a few genes at a time (Raj et al., 2008). The strength of single cell 

RNA sequencing is that it allows us to investigate variability of all moderately 

and highly expressed genes at the same time from one population of cells.  

To compare the global levels of gene expression heterogeneity between the 

three different culture conditions we did not use coefficient of variation (CV) 

of the normalized read counts, because the CV of a gene depends strongly on 

its mean expression level and length of the gene, which makes it difficult to 

interpret the noise difference of a gene between conditions. In collaboration 

with Dr. Jong Kyoung Kim, to account for the confounding factor of 

expression level, we used the distance between the squared CV of each gene 

and a running median as a measure of cell-to-cell variation. This is derived 

from the scatter plot of the mean normalized read counts versus the squared 

CV values, as in (Newman et al., 2006). We refer to this expression-level 

normalized measure of noise as distance to the median (DM). To calculate DM 

genes are divided into three groups depending on their length, because longer 

genes tend to have higher CV2 in comparison to short genes. Subsequently for 

each of these groups rolling median of CV2 depending on gene expression is 

calculated. And finally for each gene the median CV2 for the expression bin 

this gene falls in is subtracted from the CV2 of this gene (Please refer to 

Chapter 2 for details). 
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Figure 3.7 Gene expression variability measured with coefficient of variation (CV) 
and distance to the median (DM)  

Plots show that there is a linear relationship between CV2 and the level of gene 
expression, while this bias is not present for DM. Colours of dots indicate length of 
each gene. 
 
 

Using DM, transcriptome-wide cell-to-cell variation is similar across the 

three culture conditions and I found that transcriptome-wide DM values are 

not significantly different across the three culture conditions (P=0.6252 by the 

Friedman rank sum test) (Figure 3.8). To compare three culture conditions at 

the same time we had to use the Friedman rank sum test, which is a 

nonparametric version of ANOVA.  It is used to find different samples within 

3 or more groups when data points are paired.   
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Figure 3.8 Gene expression variability across cells in different conditions measured 
with DM 
Comparison of global gene expression variability by showing DM distribution of all 
expressed genes in all conditions, not including 2C-like cells. 
 

Cells cultured in serum are more morphologically heterogeneous than cells 

cultured in 2i (Marks et al., 2012; Toyooka et al., 2008) and exhibit more 

variable expression of pluripotency factors, such as Nanog and Zfp42 (Canham 

et al., 2010; Hayashi et al., 2008; Kalmar et al., 2009; Martinez Arias and 

Brickman, 2011; Singh et al., 2007). Hence, I expected that global gene 

expression variability would be higher in cells grown in serum compared with 

2i. There were no reports on heterogeneity in a2i, but as morphologically a2i is 

similar to 2i, I anticipated that they would also be transcriptomically similar 

due to morphological similarities between these cells and those grown in 2i.  

I observed that expression of pluripotency genes such as Nanog or Nr0b1 is 

more heterogeneous in serum than in 2i or a2i. If these genes were to be more 

heterogeneous in serum, other genes might be more heterogeneous in 2i and 

a2i. These heterogeneous genes in 2i and a2i would balance heterogeneously 
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expressed pluripotency genes in serum leading to similar global heterogeneity. 

This prompted us to ask whether the gene expression heterogeneity levels of 

genes belonging to individual functional categories are the same or different 

between conditions.  

To explore the relative difference in gene expression heterogeneity levels for 

each functional category between the culture conditions, we first compared the 

DM values of genes in pairs of culture conditions for each Gene Ontology 

(GO) term (excluding 2i replicates containing 2C-like cells; for discussion of 

2C-like cells see chapter 4). We used paired t-test for comparison of DM 

between GO categories to show that a GO category and its child terms have 

more noise consistently in one condition compared to another. We did not 

perform an adjustment of the p-values for several reasons. The conventional 

FDR/FWER adjustment procedures can give very conservative p-values in this 

case, which means that the power of detecting GO categories showing true 

noise differences between two conditions will be too low. Additionally, we 

were interested in the consistent noise differences of a GO category and its 

child terms. In this case, the tests for GO categories are not independent and 

the multiple testing methods cannot be applied directly. 

 We found that 712 GO terms (out of a total of 19,107 terms) exhibit a 

significant difference in their noise levels in at least one pairwise comparison 

(P<0.01). For example, the expression of genes involved in “organ 

development” (P=3.3×10-‐4) and “cell adhesion” (P=4.8×10-‐4) are noisier in 

serum than in the inhibitory conditions (2i and a2i). These terms contain many 

of the pluripotency factors that were observed to display noisy expression 

patterns (Figure 3.9). 



	   89	  

In contrast, genes involved in “cell cycle” (P=5.4×10-‐3) and “nuclear 

division” (P=5.9×10-‐6) have higher levels of noise in 2i compared to serum. 

When we included 2i replicates containing 2C-like cells, the conclusions are 

still valid, but marginally significant (P<0.1), possibly due to the presence of 

2C-like cells (2C-like cells identification and characterization is described in 

chapter 5). 

 

 

Figure 3.9 Gene expression heterogeneity of functional categories of genes 
Comparison of the levels of gene expression and noise for gene ontology (GO) 
categories between the culture conditions (excluding 2i replicates containing 2C-like 
cells). The logarithm (log10) of P-values from two-sided paired t-test applied to mean 
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normalized read count (x-axis) and DM (y-axis) was computed for each GO category 
and plotted against each other by multiplying the sign of the t-statistic. Boxplots show 
an example of a GO category (GO:0000280, nuclear division) that is noisier in 2i and is 
similarly expressed between the two conditions. 
 

3.6 Subpopulations of differentiating cells in serum 

Fluctuations of gene or protein expression in serum were reported 

previously for some of the genes such as Nanog (Faddah et al., 2013; Kalmar et 

al., 2009; MacArthur et al., 2012; Singh et al., 2007), Esrrb (van den Berg et al., 

2008) and Zfp42 (Toyooka et al., 2008). Our data recapitulate these 

observations. Moreover, I found new genes to be noisy, such as Nr0b1 or Tet2 

(Figure 3.6).  

Genes that show noisy expression, especially those with obvious bimodal 

expression patterns like Nanog, Klf4 or Nr0b1, may indicate the existence of 

underlying subpopulations. Indeed, hierarchical clustering of subsets using 

expression of known pluripotency genes and differentiation markers (Boyer et 

al., 2006; Cole et al., 2008; Kunath et al., 2007; Ng and Surani, 2011; Xu et al., 

2014; Young, 2011) reveals that serum-grown cells split into three distinct 

groups. These three groups differ in the expression levels of pluripotency 

factors as well as other genes. In both inhibitory conditions, Nanog and other 

pluripotency factors are less noisy than in serum. Neither 2i nor a2i 

populations contain a subpopulation structure similar to serum-cultured cells. 

All 2i cells and all a2i cells (except two) cluster separately from serum, and 

intermingle with each other. This indicates that 2i and a2i cultured cells are 

similar with respect to their expression of pluripotency genes (Figure 3.10).  
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Figure 3.10 Subpopulation structure of cells cultured in serum 
Clustering of cells in three culture conditions using a panel of pluripotency factors 
and differentiation markers. Correlations between cells and genes were calculated 
using Spearman correlation. Below the heatmap I show a model of the 
subpopulations of cells grown in serum. The schematic shows cells that express 
differentiation markers (red), cells that are primed for differentiation while remaining 
pluripotent (orange) and cells that are closest to ground state of pluripotency (green). 
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The first subpopulation of cells from serum consists of 39 cells (15%) that 

express higher levels of markers of differentiation, for example Fos or Hes1, 

and high levels of cytoskeletal genes, such as keratins (Krt8, Krt18), actins 

(Acta1, Acta2) and annexins (Anxa1, Anxa2, Anxa3). At the same time, these 39 

cells have low levels or no expression of transcription factors involved in 

maintenance of pluripotency (e.g. Nanog, Sox2 and Oct4). This suggests that 

these cells have exited pluripotency and committed to differentiation. The 

second group consists of 42 cells (17%) with somewhat lower expression levels 

of some pluripotency genes, such as Zfp42 and Sox2, and some expression of 

differentiation genes, yet high expression of Oct4 and Dppa3. These cells may 

correspond to a previously described “differentiation permissive” set 

(Chambers et al., 2007; Islam et al., 2014; Kalmar et al., 2009). Finally, the 

largest group of 169 cells (68%) expresses the highest levels of pluripotency 

factors and very low expression of keratins or actins (Figure 3.11). 

 

Figure 3.11 Gene expression differences between three clusters of cells in serum 
Gene expression distributions of genes that become downregulated (A) and 
upregulated (B) upon differentiation. Expression is shown as log2 size factor 
normalized counts. Oct4 expression is similar in cells closer to the ground state of 
pluripotency (green) and cells that are primed for differentiation (yellow), and is 
lower in cells I defined as moving towards differentiation (red).   
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To examine if cells I identified as ‘on the differentiation path’ are indeed 

doing so, I decided to compare them to the cells that differentiate towards 

neuronal progenitor cells (NPCs). It is known that if signals for pluripotency 

maintenance are removed, mESCs spontaneously differentiate towards the 

neuronal lineage (Ying et al., 2003b). I predicted that there would be a 

similarity between these subpopulation of cells from serum and cells on the 

NPC differentiation pathway. I used single cell RNA-seq data generated by Dr. 

Alex Tuck from mESC cultured in serum and the same cells at day 6 and day 8 

of an NPC differentiation time course (Bibel et al., 2007). I performed principal 

component analysis of Spearman's rank correlation coefficient between all the 

cells and I observed that cells belonging to the Nanog-low subpopulation lie 

between the more pluripotent cells and these that are differentiating towards 

NPCs (Figure 3.12). This strongly supports our earlier hypothesis that these 

cells are indeed progressing down a differentiation pathway. 
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Figure 3.12 Principal component analysis of expression data from serum and cells 
progressing towards NPC fate. 
All genes with mean normalized counts larger than 50 were considered and PCA was 
performed on the Spearman’s rank correlation matrix between cells. 

 

Identification of a pluripotent mESC population in serum, led me to ask if 

these cells are the same as the ground pluripotent state cells found in 2i 

condition. I performed PCA to see if there is overlap between these 

populations, but observed that cells cultured in each condition cluster 

separately, meaning that they have distinct transcriptomic states. PC1 

separates the culture conditions and genes that contribute the most to this 
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separation are genes involved in development as well as metabolism. Notably, 

cells from replicates of each culture condition cluster together showing that the 

separation of three culture conditions is due to biological difference rather 

than to batch effect (Figure 3.13).  

I performed GO term analysis of genes that contributes most to PC1, which 

separates the conditions (Figure 3.13 BC). GO term “positive regulation of 

mesenchymal cell proliferation” among others contains genes from WNT and 

Sonic Hedgehog pathways, several fibroblast growth factors and transcription 

factors from Forkhead family, “lung development” also contains members of 

WNT pathway, several types of growth factors including leukaemia inhibitory 

factor and transcription factors including for example Nodal. Similarly terms 

“ossification”, “neuron projection development”, and “positive regulation of 

vasoconstriction” contain genes that function also in early development or in 

development and signalling in general. Appearance of “inactivation of MAPK 

activity” term is probably related to the fact that in 2i and a2i, MAPK is 

inhibited using drug. “Cell-cell adhesion” related genes are differently affected 

in a2i, in which SRC is inhibited and one of SRC functions is phosphorylation 

of focal adhesion kinase (FAK) (Meyn and Smithgall, 2009; Shimizu et al., 

2012). Genes related to metabolism “glycolysis”, “ribosomal subunit 

assembly”, “translation” may reflect different metabolic states between serum 

and 2i as well as differences that come from different growth rates.  
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Figure 3.13 Clustering of mESCs grown in serum, 2i and a2i media 
All cells (n=704) grown in the three different culture conditions are projected onto the 
first two principal components. All genes with mean normalized read counts larger 
than 10 were considered and principal component analysis (PCA) was performed. (B) 
Distribution of genes contributing to PC1. (C) Gene ontology enrichment analysis of 
genes most strongly contributing to PC1 separation.  

 

3.7 Cell cycle variability in 2i and alternative 2i cultures 

When we compared gene expression heterogeneity of different functional 

gene categories it was unexpected to see that cell cycle genes will have lower 

gene expression variability in serum than in the inhibitory conditions, because 

all of these cells cycle (Figure 3.8). To understand where this difference comes 

from I decided to analyse cell cycle gene expression of cells in three culture 

conditions. I used Cyclebase.org database, which uses experimental data from 

synchronized cells to rank genes from these that show the most consistent and 

pronounced cycling pattern (Santos et al., 2015). I selected 20 genes that have 

most pronounced cycling behaviour in their expression with peak in G2 or M 
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phase and found their mouse orthologs. When clustering cells based on these 

genes only, I found that 2i and a2i cells separate more clearly into two groups: 

one with high expression of G2 and M genes and the other with lower 

expression of these genes, suggesting that these remaining cells are in G1 or S 

phases of cell cycle (Figure 3.14).  

 

 

Figure 3.14 Cell cycle gene heterogeneity and cell cycle phase assignment 
Heat maps showing the expression of cell cycle related genes in serum, 2i and a2i, 
with a distinct separation into G1/S versus G2/M cells in 2i and a2i, with less 
distinction between individual cells in serum. 
 

To confirm that this annotation of cell cycle phases to cells is correct, I 

estimated mRNA content of cells using ERCC spike-ins (Consortium, 2005). 

Each cell was spiked with exactly the same amount of ERCCs and thus the 

ratio of reads mapping to ERCCs to reads mapping to all mouse genes 

depends only on the amount of transcripts in the cell and the higher it is the 

lower mRNA content of the cell. To make sure that lysis buffer spiked with 

ERCC is exactly the same in all samples, for this analysis I used only batch 3 of 

the data, which was done on one day in parallel. As expected, cells in the G1 

and S phases in both 2i and a2i have significantly higher ratio of reads 

mapping to ERCCs to reads mapping to all mouse genes, meaning they have 
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less mRNA. There is significantly more mRNA in cells identified to be in 

G2/M phase in comparison to G1/S phase cells in both 2i and a2i. As the cells 

in these populations are not normally distributed I used the non-parametric 

Wilcoxon test (Figure 3.15).   

 

 
Figure 3.15 mRNA content in cells at different cell cycle stages 
Comparison of mRNA content in cells using ratio of reads mapping to ERCCs 
(constant number of molecules spiked in in three conditions) to all exon mapped 
reads. 

 

Another measure to check if the assignment is correct would be to see if 

cells from G1 and S phase have higher expression of histones. During S phase 

cell needs to double the amount of histones to package newly synthesized 

DNA, thus in G1 and S phase cell should have more histone transcripts. 

Indeed I observe that pattern in both 2i and a2i, suggesting that our 

classification of cell cycle phases is correct (Figure 3.16). 
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Figure 3.16 Histone mRNA expression in cells at different cell cycle stages 
Comparison of histone mRNA content in cells from different cell cycle stages across 
culture conditions.  
 

Cyclone is a machine learning based approach for cell cycle phase 

assignment; it can distinguish G1, S and G2/M phases (Scialdone et al., 2014). I 

used it for cell cycle phase prediction and it is in a good agreement with the 

assignment I made by clustering, 88% for 2i cells and 90% for a2i cells. In 28 

cases (9.5%) in 2i, and 11 cases (7%) Cyclone identified cells to be in S phase, 

and I in G2/M. Only one cell in 2i was identified as G1 by Cyclone and G2/M 

by clustering. And 6 cells (2%) in 2i and 5 cells (3%) in a2i were assigned by 

Cyclone as G2/M and clustering identified it as G1/S. 
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3.8 Speed of cell cycle estimation from single cell mRNA 
sequencing data of cell population 

To understand the source of the difference between 2i/a2i and serum with 

respect to the cell cycle I examined doubling rate of these cells and found that 

cells in serum and 2i showed different doubling kinetics (Figure 3.17). Within 

the first 24h the growth rate was faster in 2i than serum but later, at day 2, it 

slows down. At the time of harvest (48 hours after plating), the doubling time 

is 25 hours for 2i cells and 11 hours for serum, indicating that cells grown in 2i 

are more slowly cycling, probably due to a longer G1 phase. Degradation rates 

of mRNAs in serum and in 2i are similar, and average mRNA half time is 

about 7h, but many cell cycle genes have longer half lives (Sharova et al., 

2009). The correspondence of lengthening doubling time and increasing cell 

cycle associated gene expression noise demonstrated the robustness of single 

cell transcriptomic ‘snapshots’ of specific biological process in a cell 

population.  

 

Figure 3.17 Growth kinetics of cells in three culture conditions.  
Numbers shown are how many times cells grew between second and third day of 
culture, i.e. when cells were harvested for scRNA-seq experiment. At this point in 
culture cells cultured in serum grew slowest. 
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Additionally, I observed that the 39 and 42 cells from serum culture, which 

have begun to move forward on the differentiation pathway, have noisier 

expression of cell cycle genes. A shift in the distribution of the expression of 

G2/M genes, such as Cks2 or Cdc20 toward lower levels suggests that there are 

relatively more G1/S cells in these two groups (Figure 3.18). I inferred that 

more differentiated cells have a relatively longer G1 phase, as I sample more 

cells in G1 from this subpopulation in comparison to more pluripotent cells. 

This indicates that cells that I identified as differentiating have a longer cell 

cycle, and are proliferating more slowly than Nanog-high ground state 

pluripotent cells.  

 

 

Figure 3.18 Gene expression distributions of cell cycle genes in subpopulation of 
cells cultured in serum. 
Plots show distribution of cell cycle gene expression in cells from three 
subpopulations from serum. Cells that are on the differentiation path (red) are more 
heterogeneous than cells that are in the more pluripotent state (green). 
 

To support and demonstrate further the fact that differentiating cells that 

start to cycle more slowly have more heterogeneous cell cycle gene expression 

distribution I used the NPC differentiation time course data. The distributions 

of the expression of cell cycle genes are significantly more heterogeneous in 

differentiating cells. For some genes, such as Cdc20, one can observe bimodal 

distribution in NPC differentiated cells from day 6 and day 8.  
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Figure 3.19 Gene expression distributions of cell cycle genes in cells from NPC 
differentiation time course 
Plots show distribution of cell cycle gene expression in cells from NPC differentiation 
time course. Cells that are not differentiated (serum, light green) are more 
homogeneous than cells that are 6 or 8 days on the NPC differentiation path (darker 
green). 

 

3.9 Cell Cycle Rank for measurement of cell cycle speed 

Cell cycle gene expression is heterogeneous and this heterogeneity does not 

come only from the fact that cells are in different cell cycle phases and from the 

speed of cell cycle, but also from the heterogeneity due to the stochastic nature 

of gene expression, by bursts rather than continuously. This additional noise 

makes it difficult to see significant differences between populations, if few 

cells were sampled. For example the differences between gene expression 

distributions of cell cycle genes in subpopulation of cells cultured in serum are 

subtle if one looks at a single gene (Figure 3.18).  

To overcome this problem I developed a measure called Cell Cycle Rank, 

which allows overcoming the effects caused by stochasticity of gene 

expression. To calculate the Cell Cycle Rank, 20 genes that have highest cyclic 

expression pattern and peak at G2 or M phases were selected from 

cyclebase.org and for each of these genes cells were ranked depending on how 

highly this gene is expressed. Subsequently ranks for these 20 genes were 

summed up for each cell. Cells that have high Cell Cycle Rank, express all 20 

genes highly suggesting that they are likely to be G2/M cells, while those with 
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low rank are in G1/S phases. By summing the ranks I do not take under 

consideration the level of gene expression, so more highly expressed genes do 

not influence the result more than lowly expressed genes.  

I calculated Cell Cycle Ranks for cells differentiating to NPC and plotted the 

distributions and as expected they are more heterogeneous for cells that are 

more differentiated (Figure 3.20 A). More interestingly, when I apply this 

method to the subpopulations of cells from serum, I can clearly see that cells 

identified as differentiating have a broader distribution of Cell Cycle Ranks in 

comparison to more ground state cells (Figure 3.20 B). 

 

Figure 3.20 Cell Cycle Rank distribution 
Distribution of Cell Cycle Ranks for (A) cells from NPC differentiation time course 
and (B) subpopulation of cells cultured in serum. 
 

3.10 Conclusions 

To quantify cell-to-cell heterogeneity in gene expression levels, for the first 

time in single cell RNA sequencing analysis we applied distance to the 

median, a measure of noise that is independent of gene expression level. 

Surprisingly, we found that on a global level, cells grown in 2i, a2i and serum 

are indistinguishable in terms of transcriptome-wide heterogeneity. It was 

assumed, based on expression of a small number of pluripotency markers, that 
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cells grown in serum are more heterogeneous. I have shown, however, that the 

noise composition of specific subsets of genes is different between the culture 

conditions. The noise in 2i was not captured previously, because it involves 

different gene sets than these that display heterogeneous expression in serum. 

Cells grown in serum, as observed previously, have more heterogeneous 

expression of pluripotency factors. This derives from the existence of 

subpopulations that differ in the expression of these genes.  

Within the serum population I find that there are three clusters of cells, 

which likely correspond to different states of pluripotency versus 

differentiation. Previously, subpopulations of cells in serum were reported 

based on FACS analysis of proteins with heterogeneous abundance such as 

NANOG (Kalmar et al., 2009; Singh et al., 2007). Cells with low expression 

levels of Nanog were separated from those expressing Nanog at high levels, and 

microarray analysis of the transcriptomes of these two subpopulations was 

performed (Singh et al., 2007). This work showed that Rex1 (Zfp42), Sox2 and 

Pou5f1 are more highly expressed in Nanog-high cells, a pattern I also observe.  

Recently, single cell RNA sequencing of serum-grown mESCs (Islam et al., 

2014) showed a subpopulation with low Nanog expression. In another large-

scale study, using droplet microfluidics it was shown that there exist 

subpopulations of cells cultured in serum (Klein et al., 2015). In this study the 

authors sequenced several thousands of cells and were able to find precursors 

of different lineages in the embryo. Additionally, a qPCR study using a panel 

of 48 pluripotency markers showed that cells cultured in serum exist in two 

distinct states, with a small number of cells appearing to reside in an 

intermediate state (Papatsenko et al., 2015). I extended this analysis, and found 

three clusters, one of which represents differentiation-committed cells, one 
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represents an intermediate state and one represents a self-renewal state. I 

speculate that the first subpopulation has committed to differentiation with 

clear down-regulation of Pou5f1 and Sox2, suggestive of irreversible 

commitment. In contrast, “differentiation primed” cells with higher expression 

of Pou5f1 and Sox2 could still revert to “pluripotent” cells. Additionally, the 

proportion of cells in G1 or S phase of the cell cycle increases in the 

“differentiated” cells, suggesting that their cell cycle is slower and that they do 

not expand as quickly as the more pluripotent populations. Importantly, I 

found that cells that express high levels of Nanog in serum are not similar to 

‘ground pluripotency state’ 2i cells. 

Our results show that mESCs partition into transcriptomically distinct cell 

populations according to the growth medium (serum, 2i or a2i). Cells cultured 

in 2i and a2i are similar to each other. When compared to single cells from 

different stages of mouse embryonic development, all three sets of cultured 

mESCs are closest to cells from the blastocyst stage, which is the stage from 

which the cells were extracted originally. The 2i and a2i cultured ESCs seem 

more similar to the blastocyst cells than serum cells. This is in agreement with 

previous findings showing that cells cultured in 2i are hypomethylated due to 

inhibition of Gsk3β and MEK. Similar low level of methylation is observed in 

the preimplantation epiblast, suggesting that these cells are in the naïve 

pluripotent state (Leitch et al., 2013). Regarding metabolic state, cells cultured 

in 2i have lower expression levels of glycolysis enzymes in comparison to 

serum. 

Importantly cell cultured in 2i are not identical to blastocyst cells. This is 

expected because in vitro conditions are non-physiological especially in case of 

2i media where pluripotent state is achieved by use of kinase inhibitors. 
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Additionally, I observed that 2C-like cells are globally more similar to 

blastocysts than to 2-cell stage embryonic cells.  

A2i medium has been described as an alternative ground state that can be 

achieved through the use of a different inhibitor (Shimizu et al., 2012). As 

expected, a2i is not identical to 2i, but I believe that it is rightfully called an 

alternative ground state: on the transcriptome level, especially with respect to 

pluripotency genes, a2i cells are similar to 2i and in vivo blastocyst cells. In 2i 

and a2i media, there are no subpopulations of differentiating cells, hence the 

pluripotency genes are expressed more homogeneously. Despite these 

similarities, it is intriguing to note that a2i cells have a cellular RNA content 

similar to serum-cultured cells, while 2i cells contain about half as much RNA 

on average, independent of cell cycle stage. It should be noted that Myc is 

differentially up-regulated in a2i cells compared to 2i cells. As Myc has 

recently been shown to behave as a transcriptional amplifier of active genes 

(Lin et al., 2012; Nie et al., 2012) it provides a potential mechanic basis for the 

elevated of RNA content in a2i cells. 

More generally, I observed a relationship between variability in the 

expression levels of cell cycle genes and the length of the cell cycle. Cells 

cultured in serum have the lowest level of noise, cells in a2i medium and cells 

in 2i the highest, which correlates negatively with doubling times in culture 

(doubling times quickest for serum and slowest for 2i). For dividing 

populations where the cell cycle is very slow, such as HSCs, it is possible to 

assign cells to one of four cell cycle stages, but this is more challenging for that 

cycle more quickly (Tsang et al., 2015).  

In summary, single cell transcriptomics has allowed us to gain deep insights 

into the subpopulation structure within mES cell cultures. These results 
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emphasize the power of transcriptomics at single cell resolution for 

understanding multiple biological processes. 

 

3.11 Further research 

Results and conclusions of this study lead to new questions about biology of 

stem cells and pluripotency. 

Self-renewal is a defining feature of stem cells and there are links between 

pluripotency and cell cycle, for example via Myc (Singh and Dalton, 2009), but 

it is not entirely clear what role cell cycle has in the pluripotency maintenance. 

In 2i medium cell cycle is targeted by inhibition of MAPK pathway, suggesting 

that this is essential for keeping cells pluripotent (Orford and Scadden, 2008). 

Additionally, LIF signalling via STAT3 is linked to the cell cycle regulatory 

pathways (Burdon et al., 2002). Furthermore, others and I observed that cells 

that differentiate start cycling slower, suggesting that there is a change in cell 

cycle. The link between cell cycle and pluripotency can be unravelled using 

single cell mRNA sequencing as one can assign cell cycle phases to cells and 

simultaneously monitor their pluripotency state.  

Measuring cycling speed of cells is important especially for understanding 

cancerous cell populations. It is difficult to measure it without performing 

several time course measurements and additionally in very complex 

populations as in tumours it may be particularly difficult. By performing 

single cell mRNA sequencing one can first identify cell cycle populations of 

which the tumour is composed and subsequently identify cell cycle profiles of 

these cells and measure cell cycle heterogeneity. This will give an insight into, 

which cells are multiplying faster and thus predict which population will 

proliferate most aggressively. The ultimate goal could be finding an absolute 
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rather than relative measure of cell cycle speed using the heterogeneity of cell 

cycle genes and cell cycle phase profile.  
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Chapter 4  

Characterization of 2C-like cells  

 

 

 

 

4.1 Introduction 

Mouse embryonic stem cells (mESCs) are derived from the inner cell mass 

of the blastocyst, which is already separated from the trophectoderm lineage 

that becomes part of the placenta. If injected into an embryo mESCs contribute 

to all tissues of the foetus, but are extremely inefficient at colonizing 

extraembryonic tissues (Bradley et al., 1984). It was suggested that these rare 

cases of contribution to extraembryonic lineages comes from either 

contamination with trophectoderm cells or from a subpopulation of so-called 

“2C-like cells”, which have the potential to differentiate into trophectoderm 

(Macfarlan et al., 2012). 

2C-like cells are described as a very rare cell population and express some 

markers of the 2-cell stage of embryonic development such as Zscan4 family 

genes, which contain a zinc finger domain that mediates DNA binding and a 

SCAN domain responsible for oligomerisation. In the context of mouse 
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embryonic stem cells, Zscan4 genes were suggested to function in the 

maintenance of pluripotency and genome integrity (Zalzman et al., 2010). 

Other proposed markers of 2C-like cells include several transcription factors, 

some with no clearly identified function, such as Zfp352 and Zswim2 and some 

that are factors signalling to the MAPK pathway, such as heparin-binding 

growth factor 1 (Fgf1) and keratinocyte growth factor (FGF7). 2C-like cells are 

also characterized by higher expression of pluripotency factor Fbx15 

(Tokuzawa et al., 2003) and higher Tcstv1 and Tcstv3 that were shown to 

function in telomere elongation in mouse embryonic stem cells (Zhang et al., 

2016). Additionally these cells are also characterized by expression of the 

MuERV-L endogenous retrovirus and chimeric transcripts that arise via 

retroviral insertion in different places in the genome (Macfarlan et al., 2012).  

In addition to being expressed in 2C-like cells, in vivo MuERV-L expression 

is initiated during S-phase of the cell cycle of zygote, which is the onset of 

zygote genome activation (ZGA), peaks at the two cell stage and then is 

efficiently downregulated (Kigami et al., 2002).  

MuERV-L is an endogenous retrovirus, a type of transposable element that 

can duplicate and reinsert into the genome (Bénit et al., 1997). The structure of 

MuERV-L consists of long terminal repeats (LTRs) at 5’ and 3’ of the element 

and Gag and Pol genes in between them. Importantly, in contrast to 

retroviruses that can be horizontally transferred to other cells, MuERV-L does 

not contain the env gene that codes proteins that make up the capsid thus 

cannot form viral particles (Peaston et al., 2004; Schlesinger and Goff, 2015).  

 

 

Figure 4.1 Structure of MuERV-L transposable element 
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LTRs contain presumptive TATA box and polyadenylation signals for 

expression of their genes, but most interestingly LTRs serve as alternative 

promoters for several developmental genes, if the virus inserts upstream of the 

gene. In this case chimeric transcripts between MuERV-L genes and peripheral 

genes are formed. This mode of gene regulation seems to be important in early 

development when due to epigenetic reprogramming and massive 

demethylation, transposable element sequences are derepressed (Macfarlan et 

al., 2011; Peaston et al., 2004). 

It was suggested that expression of 2C marker genes is regulated by LTRs 

located upstream that lead to formation of chimeric transcripts. In adult tissues 

MuERV-L and other transposable elements are silenced via methylation, or 

histone modifications, including H3K27 methylation and H3 and H4 

acetylation, mediated by KDM1A, G9A, KAP1 and HDACs (Macfarlan et al., 

2012; Maksakova et al., 2013; Schlesinger and Goff, 2015). 

2C-like cells have downregulated expression of key pluripotency markers 

Pou5f1, Sox2 and Nanog at the protein level, but at the mRNA level they are 

indistinguishable from the rest of the population when it comes to the 

expression of these factors, suggesting regulation at the translation or protein 

degradation levels (Macfarlan et al., 2012; Schlesinger and Goff, 2015). 

To explore evidence for the existence of this rare cell type I aimed to 

identify these cells in the single cell mRNA-seq data I collected (for details 

please refer to Chapter 3) and subsequently to characterize their 

transcriptomic profiles. Furthermore, as these cells were thought to resemble 

cells of the 2 cell embryo I wanted to compare the transcriptome of 2C-like 

cells to transcriptomes of cells from early stages of development.  
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4.2 Identification and characterization of 2C-like cells in 2i 

medium 

To identify 2C-like cells in our samples, I examined the expression profile of 

genes shown previously to have at least 10-fold enrichment in 2C-like cells in 

comparison to the remaining mESCs (Macfarlan et al., 2012). Hierarchical 

clustering suggested the presence of 10 2C-like cells in 2i, and none in the a2i 

or serum culture conditions (Figure 4.2). Frequency of 2C-like cells within 

mESC culture is normally very low, often below 1%, thus the fact that I did not 

identify any 2C-like cells from a small number of cells, is not a proof of their 

absence. Most likely they are still present but at a very low rate. 
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Figure 4.2 Identification of 2C-like cells 
The first heatmap shows clustering of cells grown in 2i using markers of 2C-like state 
(Macfarlan et al., 2012). The dendrogram divides cells into two groups, one of which 
contains 10 cells expressing 2C-markers. The heatmaps below show no clearly defined 
subpopulations in a2i and serum. 
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I observed that, globally, the transcriptomes of 2C cells are altered, and only 

about 50% of reads on average map to exons, in comparison to 60% in the 

remaining population in 2i (Figure 4.3A). I hypothesized that this was due to 

greater transcription from unannotated MuERV-L sequences. I also considered 

the number of sequencing reads mapped to the MuERV-L reference sequence. 

I do indeed observe MuERV-L expression in 2C-like cells and no expression in 

the remaining cells (Figure 4.3B).  

 

 

Figure 4.3 Exon mapping reads and endogenous retrovirus expression 
(A) Boxplot showing % of reads mapping to the exons in both subpopulations of cells 
in 2i. P-value was calculated using Wilcoxon test. (B) Boxplot showing RPM (reads 
per million) mapping to the MuERV-L retrovirus in both subpopulations of cells in 2i. 
P-value was calculated using Wilcoxon test. 

 

As a further means of assessing whether this population corresponds to a 

2C-like state, I calculated mean expression of the genes identified by 

MacFarlan, (2012) as differentially expressed in 2C-like cells (Macfarlan et al., 

2012). I observed that most of the genes that were shown previously to be 
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enriched in 2C-like cells are also enriched in 2C-like cells in our experiment 

(Figure 4.4).  

 

Figure 4.4 Comparison of differential expression results to MacFarlan 
Mean expression of genes reported to be at least 2-fold upregulated or downregulated 
in 2C-like cells (Macfarlan et al., 2012) in cells that I identified as 2C-like cells and in 
the remaining 2i cells.  

 

 

4.3 2C-like cells characterization 

To characterize the 2C-like cells identified within this dataset I preformed 

differential expression analysis using DESeq and found 234 genes that are 

significantly upregulated in 2C-like cells in comparison to the rest of 2i cells, 

and 60 genes that are downregulated (Figure 4.5A, for the full list refer to 

appendix). Gene Ontology (GO) enrichment analysis did not reveal any 

significant terms within the downregulated gene set, but showed that there is 

some enrichment in upregulated genes related to metabolism (Figure 4.5B). 
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Figure 4.5 Differential expression analysis between 2C-like cells and 2i cells 
(A) Bar plot showing the number of significantly (DESeq, adjusted p-val < 0.05) 
upregulated and downregulated genes in 2C-like cells. (B) Plot shows most 
significantly enriched gene ontology terms. p-value is corrected for multiple 
hypothesis using Benjamini-Hochberg method. 

 

In addition to performing GO analysis I inspected all the genes that were 

upregulated in 2C-like cells to identify those that could bring some insight 

about the biology of these cells. There are several tens of genes without known 

function in this group and many that relate to RNA processing and 

metabolism as GO analysis suggested. Interestingly there are also several 

genes that function in the ubiquitin–proteasome pathway (Fbxo15, Arih2, 

Cand1, Rbbp6, Cul5, Cbl, Ube2t, Usp17la, Usp17lb, Usp17lc, Usp17ld) and Ca2+ 

uptake and binding related genes (Calhm3, Micu1, Guca1a, Cldn12, Cab39, 

Cacna1s). There are DNA binding genes, including the Zscan4 family and 

many zinc-finger proteins of unknown function.  

Interestingly there are several genes that function in DNA repair (C1d, Ccnf, 

Ercc4, Rad51b, Rif1) and genes that are related to viruses and retrotransposition 

(Trim28, Zfp809). In more detail, C1d and Rif1 were shown to be associated 

with non-homologous end joining mechanism of DNA repair (Chapman et al., 
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2013; Erdemir et al., 2002; Escribano-Diaz et al., 2013; Yavuzer et al., 1998; 

Zimmermann et al., 2013). Cyclin F (Ccnf) in addition to its role in regulation of 

cell cycle, functions in regulation of the DNA damage stress response 

(D'Angiolella et al., 2012). Ercc4 encodes DNA repair endonuclease XPF, which 

functions in nucleotide excision repair and DNA double-strand break repair 

(Ahmad et al., 2008; Al-Minawi et al., 2008; Niedernhofer et al., 2001). On the 

other hand, Rad51b promotes homologous recombinational DNA repair 

(Sigurdsson et al., 2001; Takata et al., 2000; Yokoyama et al., 2003). Trim28 and 

Zfp809 regulate epigenetic silencing of retrotransposons and retrotransposition 

derived regulatory elements (Rowe et al., 2013; Turelli et al., 2014; Wolf and 

Goff, 2007, 2009; Wolf et al., 2015). 

There are some genes that were shown to be important for pluripotency 

such as Dppa2 (Du et al., 2010), Mtf2 (Zhang et al., 2011), Ncoa2 (Wu et al., 

2012), Ppp1r8 (Van Eynde et al., 2004), Snw1 (Wu et al., 2011), Trim43a 

(Stanghellini et al., 2009), Zfp217 (Aguilo et al., 2015). Furthermore, I checked if 

the expression levels of Nanog, Oct4 and Sox2 are indeed the same in 2i and 

2C-like cells. There is no significant difference in expression between 2i and 

2C-like cells (Wilcoxon test p-val > 0.05) for expression of these three markers 

(Figure 4.6). 

 

4.4 Comparison to in vivo embryo cells 

As the name suggests 2C-like cells were proposed to resemble the 2 cell 

stage of the embryo. This prompted us to investigate how similar 2C-like cells 

are to 2 cell stage embryos. To do this I used single cell mRNA-seq data from 

Deng and colleagues (Deng et al., 2014) who assayed cells from each stage of 

early embryo development. I first compared 2C-like cells to the rest of cells 
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from 2i culture, cells from in vivo blastocyst and 2 cell stage of the embryo. In 

terms of expression of key pluripotency genes, such as Nanog, Oct4, Sox2 and 

Myc, 2C-like cells are most similar to 2i cells in comparison to the 2-cell and 

blastocyst stages of the embryo. On the other hand, as shown before Zscan4 

genes are exclusively expressed at 2 cell stage of the embryo and in 2C-like 

cells (Figure 4.6). 

 

 

Figure 4.6 Key pluripotency genes in 2C-like cells, 2i cultured cells and in cells 
from in vivo embryo 
Expression of key pluripotency genes in 2C-like cells (2C), and the rest of cells grown 
in 2i media (2i), cells from the 2-cell stage (2cell) and cells from the blastocyst stage 
(blast) of the embryo. 
 

For global comparison of transcriptomes of in vitro cultured mESCs and 

cells for embryos I performed principle component analysis on the Spearman's 

rank correlation coefficient between our data and data from Deng et al. It 

showed that 2C-like cells are more similar to 2i cells and blastocyst than to 

cells from the 2-cell stage of the in vivo embryo (Figure 4.7). 2C-like cells cluster 

together with 2i cells, and there are only 294 differentially expressed genes 

between 2C-like cells and the remaining 2i cells. In comparison, I find 3056 

differentially expressed genes between 2i and serum, 1700 genes between 2C-

like cells and blastocyst and 1779 between 2C-like cells and 2-cell stage cells. 

This suggests that 2C-like cells share more characteristics of mESC cultured in 

2i and blastocyst from which these cells are derived rather than cells from 2 
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cell stage embryos, although they express a few of the markers present at that 

stage. 

 

 

Figure 4.7 Comparison of mESC to cells from early embryo development 
PCA loading plot of the Spearman’s rank correlation coefficients from mESCs and 
single cells of mouse preimplantation embryos (Deng et al., 2014), showing the 
mapping of mESCs in mouse development stages.  The cells are visualized by 
loadings of the first three principal components of the Spearman’s rank correlation 
matrix between cells, where I used the same expression cut-off as that employed by 
Deng et al. 
 

4.5 Conclusions 

In 2i I observed a subpopulation, 2C-like cells, which also contribute to the 

noisiness of the 2i population. Notably, I could not identify 2C-like cells in 

serum and a2i, which is most likely because in these conditions they are 

present in frequencies significantly lower than 1% and were not sampled. As 

they are similar to the bulk of 2i cells and rare, their contribution to the global 

heterogeneity of 2i cells is much smaller than the three distinct subpopulations 
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in serum. My results show that, globally, 2C-like cells are not particularly 

similar to cells at the 2-cell stage of the embryo, as was suggested previously. 

Nevertheless, MacFarlan and colleagues showed that 2C-like cells when 

transferred into embryos contribute to both embryo and extraembryonic 

tissues, which means that they have more potency (Macfarlan et al., 2012). 

2C-like cells found in 2i, in addition to standard gene expression pattern of 

2i cells, express genes that are related to endogenous retrovirus MuERV-L 

expression that are expressed also at 2-cell stage of the embryo. It was 

suggested that repression of LTR acting as promoters is regulated by 

epigenetic silencing involving KDM1A, G9A, KAP1 and HDACs (Macfarlan et 

al., 2012). Emergence of 2C-like cells can contribute to the fact that cells’ 

epigenetic states fluctuate in the artificial environment of cell culture.  

 

4.6 Further Research 

The biological significance of 2C-like cells is debatable and it is not obvious 

whether these cells do indeed have an ability to produce all extraembryonic 

tissues being derived from the inner cell mass of the blastocyst.  

I think that they are not a good model for 2 cell stage of the embryo, but 

they can be used for studying function and mechanism of endogenous 

retrovirus, MuERV-L. During early embryo development, endogenous 

retroviruses are transiently derepressed and they insert into new positions in 

the genome, increasing genomic variability (Maksakova et al., 2006; Moyes et 

al., 2007; Wang et al., 2010). The reasons are that obtaining big numbers of 2C-

like cells is quite easy in comparison to obtaining the same number of 2-cell 

embryos. Additionally studying 2-cell stage embryos is difficult, because it is a 

very dynamic stage of development. Deconvolution of different 
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developmental processes and simultaneously happening processes involved in 

endogenous retrovirus expression and functions would be very challenging. In 

2i cultured mouse embryonic stem cells, which are homogeneous in expression 

of pluripotency genes it would be easier to focus solely on the expression 

changes that accompany activation and deactivation of MuERV-L. 
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Chapter 5 

Transcriptomic gene regulatory network of 
pluripotency 
 

 

 

 

5.1 Introduction 

In chapters 3 and 4, I mined a set of high-throughput single cell RNA-

sequencing data to explore correlations between cells, but these data also 

provide a rich resource for analysing correlations in gene expression. Gene-

gene correlations can imply common regulatory mechanisms and functions of 

genes. I aimed to use this to develop new hypotheses about the transcriptional 

regulatory network that regulates pluripotency in mESCs, which is known to 

be highly interconnected and complex (Boyer et al., 2005; Kim et al., 2008; Loh 

et al., 2006). 

Genes and their products that regulate cellular functions are organized in 

gene regulatory networks (Hasty et al., 2001; Hecker et al., 2009; Karlebach and 

Shamir, 2008). Members of the network interact with each other to fulfil 

particular functions, and these networks are particularly important in the 

response to external stimuli and during processes such as development and 
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differentiation. If one gene product positively regulates other genes in a 

network, then an increase in the number of molecules of this product will 

cause an increase in expression of its target genes (Bowsher and Swain, 2012). I 

can observe such relationships by measuring the correlation of expression 

between two genes. In this case I assume that the level of mRNA and the level 

of protein for which it codes, correlate in a cell (Liu et al., 2016). This is true for 

most cases, however for data interpretation it is important to keep in mind that 

the presence of mRNA does not imply it being translated (Peshkin et al., 2015). 

Correlated expression implies that two genes are within the same regulatory 

module, but it does not elucidate the relationship between these genes. A gene 

pair with a high correlation coefficient may encode a transcription factor and 

its target, but directionality of this interaction cannot be inferred solely from 

these data. It is also not possible to infer whether interactions reflect direct 

causation or where two genes with correlated expression are two downstream 

targets regulated by the same factor.  

The pluripotency regulatory network has been intensively studied since the 

development of mouse embryonic stem cell cultures over 30 years ago, but our 

understanding of it remains incomplete (Boyer et al., 2005). External signals, 

such as LIF, activate STAT3, and BMP4, which in turn activate expression of Id 

(inhibition of differentiation) genes to promote pluripotency (Cartwright et al., 

2005; Hall et al., 2009; Matsuda et al., 1999; Ying et al., 2003a). Several key 

transcription factors were also identified, most well described are OCT4, 

NANOG and SOX2 (Avilion et al., 2003; Chew et al., 2005; Orkin et al., 2008; 

Rodda et al., 2005; Sharov et al., 2008). ChIP-chip and ChIP-seq data showed, 

that these and other key pluripotency genes co-occupy promoters of many 

genes, making it difficult to disentangle the wiring of the network (Adachi et 
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al., 2013; Loh et al., 2006). Key pluripotency genes are also found at the 

promoters of each other suggesting that there is a complex network rather 

than a simple hierarchical structure (Kim et al., 2008; Ng and Surani, 2011; Xu 

et al., 2014). 

In this chapter I aim to use single cell mRNA sequencing to investigate the 

gene regulatory networks involved in pluripotency and to potentially identify 

new factors that play a role in pluripotency maintenance. 

 

5.2 Pluripotency gene regulatory network 

To investigate gene regulatory networks I decided to look at the 

transcription factors, which regulate gene expression, and hence are key genes 

in shaping the gene expression network.  

Focusing on transcription factors made this analysis more tractable, since 

such analysis for 48,034 genes (ENSEMBL annotation GRCm38.p4) is 

computationally intensive and requires additional filtering of pseudogenes 

and genes that arose from duplication and to which sequencing reads map 

ambiguously. Furthermore, transcription factors are the key genes that 

orchestrate the transcriptional response and changes in their expression are 

crucial in transcriptional control. To obtain a comprehensive list of 

transcription factors and chromatin modifiers I took genes from the gene 

ontology category ‘DNA binding’ from the GO database embedded at 

Ensembl Biomart (http://www.ensembl.org/biomart) and calculated the 

Spearman rank correlation coefficients for all gene-to-gene comparisons using 

data from serum cultured cells. To perform such gene network analyses one 

needs to have a perturbed system, meaning the population of cells cannot be 

homogeneous. Cells have to undergo an unsynchronized response to a 
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stimulus or traverse between developmental stages. This is the case in serum 

cultures, which I showed in Chapter 3 to be more heterogeneous.  

Lowly expressed genes and genes which have stable expression do not 

correlate with genes that change expression as a response to external stimulus 

and so are not informative for the construction of gene regulatory networks. I 

aimed to select genes that correlate with other genes at least to some level. I 

tested different levels of Spearman Rank Correlation Coefficient thresholds 

and empirically found that for this case a threshold of at least below -0.35 or 

above 0.35 is sufficient to filter non-correlated genes and leave enough genes 

for further analysis (Figure 5.1).  

 

Figure 5.1 Correlation coefficient cut-off. 
Plot shows the number of genes that correlate with at least one other gene above 
Spearman rank correlation coefficient value. 
 

 

Finally, I plotted the correlations between the remaining genes as a 

heatmap, which revealed two clusters (Figure 5.2). 
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Figure 5.2 Spearman correlation matrix of transcription factors and key 
pluripotency genes.  
The heatmap shows the correlation coefficients between a set of transcription factors 
and other key genes involved in pluripotency. Above are examples of genes with 
expression patterns that correlate positively and negatively (from the left Zfp42 and 
Creb3, Zfp42 and Nanog, Tet1 and Tet2, Tet1 and Jarid2). 
 

I found that in serum cultured cells, Nanog expression correlates with other 

pluripotency factors and key regulatory genes. The Nanog-correlated genes 

include transcription factors (Esrrb, Klf4, Oct4/Pou5f1, Sox2 and Zfp42), genes 

involved in DNA methylation (Dnmt3a, Tet1, Tet2), and other genes such as 

nuclear receptor Nr0b1 and histone lysine acetyltransferase Kat6b. 
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Interestingly, Nanog expression is negatively correlated with differentiation 

regulators including transcription factors Gata3 and Klf7. These findings agree 

with known interactions in the pluripotency regulatory network, where Nanog 

regulates Esrrb (Boyer et al., 2005), Zfp42 (Shi et al., 2006), and Klf4 (Zhang et 

al., 2010).  

Beyond confirming known interacting genes, I identified correlations 

between characterized pluripotency genes and candidate new components of 

the pluripotency transcriptional regulatory network.  

I found that genes such as Ptma, which was previously implicated in 

immune response modulation (Pineiro et al., 2000), oncogene Set, which 

regulates the cell cycle and is involved in chromatin remodelling (Seo et al., 

2001), prostate cancer associated gene Etv5 (Helgeson et al., 2008) several zinc 

finger proteins of unknown functions: ZFP534, ZFP600, ZFP640, ZFP710 and 

other unknown genes, such as Gm13145, Gm13150, Gm131451, Gm13212, 

Gm13242, Gm13051, Gm13225. Interestingly genes from the last group and 

Zfp600 are clustered in the genome on chromosome 4 within one roughly 1.9 

Mb region. In this region there are predicted lncRNAs on the reverse strand 

(Gm26573, Gm26624, C230088H06Rik) spanning several genes. Single cell 

mRNA sequencing does not provide strand data information and it is possible 

that the correlation between these genes is because I detect lncRNAs from the 

opposite strand and the correlation is simply because it is one molecule. 

 

5.3 Validation of putative pluripotency genes using CRISPRi 

transcriptional silencing 

Of the novel genes that displayed highly correlated expression profiles with 

known pluripotency factors I selected 7 genes for validation: Ptma, Zfp640, 
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Zfp710, Dpy30, Set, Etv5, Kat6b. First, I mined ChIP-seq and Chip-chip data 

from the ESCAPE database (Xu et al., 2013) to check if there are potential 

interactions between these genes and the pluripotency network. This database 

provides a list of interactions between promoters and transcription factors and 

I found that the promoters of 6 out of the 7 candidate genes are bound by at 

least one of the core pluripotency genes (Figure 5.3).  

 

 

 

Figure 5.3 Pluripotency network 
Network showing known interactions of core pluripotency factors with the novel 
candidate genes. Data obtained from ChIP-seq and ChIP-ChIP experiments from 
ESCAPE database. 
 

 

To provide insight into the functional role of these genes, I attempted to 

downregulate their expression using CRISPR/dCas9 repressor targeting of 

their promoters (Gao et al., 2014). 
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The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is 

a prokaryotic immune system that was very successfully applied in eukaryotic 

cells to knock out genes (Doudna and Charpentier, 2014; Jinek et al., 2012). It 

uses guide RNA (gRNA), which consists of a short RNA matching the 

sequence of the gene of interest and a tracer, which binds to the Cas9 

endonuclease that subsequently cleaves the DNA. Importantly this way one 

can target any 20nt long sequence provided its 3’ end has a so called 

Protospacer Adjacent Motif (PAM) sequence, which is TGG for Cas9. Cleaved 

target DNA is then efficiently repaired by the Non-Homologous End Joining 

pathway, which is very error prone and introduces insertions and deletions 

that can cause frameshifts. In some cases the repair can also go through the 

Homology Directed Repair pathway, which is high fidelity and does not result 

in sequence mutations (Cong et al. 2013; Makarova et al., 2011).  

Based on this system, CRISPR interference was established (Larson et al., 

2013). The endonuclease Cas9 was mutated at the active site of its nuclease 

domain to remove its ability to cut DNA. Additionally, the catalytically 

inactive Cas9 was fused to the transcriptional repressor, Krüppel associated 

box (KRAB) domain. In this approach one uses gRNA to target dCas9-KRAB 

to the promoter or enhancer of a gene of interest and the interaction of the 

KRAB domain with the DNA causes a decrease in the level of transcription of 

this gene (Gao et al., 2014; Gilbert et al., 2014; Gilbert et al., 2013). 
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Figure 5.4 Schematic of CRISPRi 

I cloned gRNA targeting promoters of 7 selected genes (for more details 

please refer to chapter 2). Subsequently, Dr Xuefei Gao co-transfected mESCs 

with gRNA-mCherry and dCas9-BFP plasmids and double positive cells were 

purified by flow cytometry in the facility at the Sanger Institute. For each 

downregulated gene three biological replicates were made. Subsequently, I 

examined the transcriptomes of populations of transfected cells by bulk 

mRNA sequencing. On average I sequenced over 10 million reads per sample 

and 48% of reads maps to exons (Figure 5.5). In standard bulk RNA 

sequencing of mESCs I observed that about 80% of reads map to the exons 

(Figure 3.3). Lower than usual percentage of reads mapping to exons is a result 

of the fact that libraries for these samples were prepared from only 10,000 cells 

each using SmartSeq2 protocol, which involves a cDNA amplification step.  
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Figure 5.5 Mapping statistics 
Barplot shows how many reads map to exons, mouse genome and how many do not 
map for all samples in three replicates. 
 

For four out of the seven samples there was significant repression of the 

targeted gene, and I narrowed down our focus to these four genes (Figure 5.6). 

To achieve successful downregulation of gene expression it is important to 

target the right position of the promoter, but unfortunately this position 

cannot be predicted in advance. It is particularly difficult to target genes that 

have multiple alternative transcription start sites, as inhibiting one may lead to 

more expression from the alternative. Additionally, CRISPR technology 

limited me to positions that have PAM sequences immediately upstream. In 

cases where repression gives only subtle results it may not be significant due 

to the fact that I only have three samples per condition, so statistical tests have 

low power. 
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Figure 5.6 CRISPRi results 
Boxplots show the expression level of repressed genes in samples and control. Targets 
for which we achieved significant repression are in blue. Gene expression levels are 
shown as DESeq size factor normalise counts. 

 

I performed differential expression analysis between samples transfected 

with a control gRNA that does not have a target mouse genome, but instead 

targets the human Rosa26 locus and the gRNA targeting the gene of interest 

using DESeq. After multiple hypothesis testing correction I found significantly 

differentially expressed (p-value <0.05) genes in two cases: Ptma and Zfp640 

(Figure 5.7). There were 16 differentially expressed genes in the Ptma knock-

down and 7 in the Zfp640 knock-down. 

Three significantly upregulated genes in the Ptma knock-down are all 

involved in pluripotency and early embryonic development. Extracellular 
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matrix proteoglycan versican (VCAN) is an important mediator of endothelial-

mesenchymal transition (EMT) during embryoid body differentiation from 

mESCs (Shukla et al., 2010; Wight, 2002). Adhesion junction plaque protein 

dystonin (DST) was shown to be transiently upregulated upon LIF withdrawal 

(Trouillas et al., 2009) and retrotransposon-derived protein PEG10 is essential 

for early embryonic development (Ono et al., 2006). 

Among the downregulated genes most interestingly I found a key 

pluripotency regulator Fgf4 (Kunath et al., 2007; Tanaka et al., 1998). 

Additionally downregulated genes included poly (ADP-ribose) polymerase 12 

(Parp12) implicated in protein translation control and NF-κB signalling 

(Welsby et al., 2014); early growth response protein 1 (Egr1), a zinc-finger 

transcription factor that regulates cell apoptosis via the p53 pathway (Baron et 

al., 2006; Thiel and Cibelli, 2002); NAD(P)H dehydrogenase 1 (Nqo1), whose 

main metabolic function is reduction of quinones to hydroquinones, and also 

regulates the ubiquitin-independent p53 degradation pathway (Asher et al., 

2001; Ross and Siegel, 2004); and secreted frizzled related protein 1 (Sfrp1) a 

key player in the WNT pathway and a positive regulator of differentiation to 

the neuronal lineage in human mESCs (Schwartz et al., 2012). Several cancer-

related genes were also downregulated. Those include cleft lip and palate 

transmembrane protein 1-like protein (Clptm1l), which is overexpressed in 

lung cancer and has antiapoptotic activity mediated via PI3K/Akt survival 

signalling (James et al., 2014). Additional cancer-related genes were protein 

tyrosine phosphatase type IVA 3 (Ptp4a3) and proteasome activator complex 

subunit 3 (Psme3) associated with melanoma and colon cancer respectively 

(Laurent et al., 2011; Roessler et al., 2006). Finally, uracil-DNA glycosylase 

(Ung) that acts to prevent mutagenesis by base-excision repair (BER) pathway, 
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but was also shown to promote DNA demethylation (Savva et al., 1995; Xue et 

al., 2016); mitochondrial import receptor subunit TOM70 (Tomm70a); 

translation initiation factor eIF-2B subunit epsilon (EIF2B5) and 14–3-3 protein, 

YWHAH coding genes were also downregulated when Ptma was 

downregulated. 

Downregulation of Zfp640 similarly to downregulation of Ptma caused 

upregulation of Peg10 and downregulation of Egr1. In addition I also observed 

upregulation of pluripotency associated gene Dppa3 (Bowles et al., 2003; 

Waghray et al., 2015) and downregulation of three genes of unknown function: 

Gm17404, Gm10323, 2410141K09Rik. 

 

 

Figure 5.7 Differentially expressed genes in Ptma and Zfp640 downregulated 
samples 
Barplot of gene expression levels of significantly differentially expressed genes in 
Ptma and Zfp640 repressed samples (DESeq, multiple hypotheses testing adjusted p-
value < 0.05). 
 

Due to having only three replicates per condition and the relatively low 

quality of sequencing data I was able to detect only a few significantly 

differentially expressed genes. To observe if there is a trend for change in 

expression of major pluripotency and differentiation factors I plotted p-values 

obtained for comparison of the expression of this gene in the knockdown and 
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control using DESeq (Figure 5.8). In the samples with repressed Ptma, I 

observed a trend of decreased expression of pluripotency genes, and increased 

expression of genes associated with differentiation (pluripotency and 

differentiation genes are as in Figure 3.9). Zfp710 and Zfp640 show a similar 

but milder phenotype; while for Dpy30 there is no clear change in the 

expression of pluripotency genes. The lack of effect of Dpy30 downregulation 

on the pluripotency gene expression is consistent with a previous report (Jiang 

et al., 2011). Overall, these results suggest that Ptma and Zfp640, and 

potentially also Zfp710, are new candidate genes involved in regulating the 

exit from pluripotency. 
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Figure 5.8 Significance of pluripotency and differentiation genes expression 
changes in knock down samples. 
Barplots showing the logarithm of p-values for differential expression from DESeq of 
pluripotency (left) and differentiation (right) genes in the knock down samples. For 
genes that are downregulated, the numbers are negative, and positive for upregulated 
genes. The red line indicates p-value threshold of 0.05. 



	   138	  

5.4 Conclusions 

My data and methodology allowed me to find new genes involved in 

the pluripotency network, which I validated using CRISPR repression (Gilbert 

et al., 2014). I found that downregulating Zfp640, Zfp710 and Ptma affected the 

expression of both pluripotency and differentiation genes. Ptma repression 

resulted in the strongest deviation from control samples, and I infer that these 

cells deviate from pluripotency towards a differentiated state.  

Interestingly, Ptma is a well-known gene encoding prothymosin alpha, 

precursor of thymosin alpha. It is mostly described in the context of 

immunology, as thymosin alpha protein was first extracted from thymus and 

were subsequently shown to modulate the immune response. It is used as a 

drug (Thymalfasin) in treatment of chronic hepatitis B and C and is used as an 

adjuvant in therapy for some types of cancer (Ciancio and Rizzetto, 2010; 

Garaci et al., 2012; Ioannou et al., 2012). Biochemically prothymosin alpha is 

unique, as it is extremely basic especially the fragment that is cleaved off to 

form thymosin alpha. This suggests it is not binding DNA directly. The mode 

of action of Ptma has been studied in cancer and immune cells, and it has been 

shown to play a role in proliferation through mechanisms involving chromatin 

remodelling and interaction with numerous pathways associated with 

pluripotency maintenance such as the JAK-STAT pathway, the PI3K/AKT 

pathway, and the NF-κB pathway, but its exact molecular mechanism is 

unknown (George and Brown, 2010; Guo et al., 2015; Romani et al., 2012; Yang 

et al., 2004). Functions of Zfp640 and Zfp710 are not described in the literature. 
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5.5 Future research 

Further experiments should be performed to understand the function of 

Ptma, Zfp640 and Zfp710 in the pluripotency network. Understanding how 

mechanistically these genes are involved in pluripotency maintenance would 

provide additional strong evidence for involvement of these genes in the 

process and would shed new light on how pluripotency and exit to 

differentiation are regulated. Unfortunately, that was not possible within this 

project timeline. 

For finding downstream targets, ChIP-seq would elucidate which 

promoters are bound by ZFP640 and ZFP710. There is an antibody for ZFP710 

available to purchase, but antibodies for ZFP640 would have to be generated 

and both have to be tested.  

It is unclear how PTMA interacts with DNA. It is highly acidic and thus if it 

binds to the DNA it is likely to be via interaction with other more basic 

proteins. ChIP-seq of PTMA and comparison to known data in addition to 

finding downstream targets may reveal which proteins it often co-localizes 

with, suggesting potential interactions. 

Previously pull-down experiments were performed using PTMA which 

identified histones as its interacting partners (Díaz-Jullien et al., 1996). It is 

possible however, that this is an artefact, because positively charged and 

abundant histones may associate non-specifically with PTMA when cells are 

lysed and chromatin is disrupted. Another paper suggested interaction of 

PTMA with oestrogen receptor (Garnier et al., 1997, Martini et al., 2000). It is 

important to perform pull-down experiments without disrupting chromatin to 

avoid potential sticking of histones to the protein. 



	   140	  

Furthermore, single cell mRNA sequencing of cells with different levels of 

Ptma, Zfp640 and Zfp710 downregulation is likely to yield further information 

about the transcriptional network of these target genes pointing to their 

function within these cells. 
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Chapter 6 

Concluding Remarks 

 

 

 

 

It is remarkable that a whole complex organism with myriad different cell 

types and tissues develops from one single zygote. Embryonic stem cells are 

derived from pluripotent cells within the inner cell mass of the embryo and 

they have the capacity to differentiate into all tissue types of the organism as 

well as being able to contribute to chimeric embryos. This creates a promising 

avenue for the field of regenerative medicine. Understanding the molecular 

mechanisms of pluripotency and the exit into differentiation is key for 

designing protocols to grow tissues in culture.  

Depending on cell culture condition, mouse embryonic stem cells have 

different transcriptomes and the population has a different structure. In my 

thesis, using single cell mRNA sequencing I dissected the heterogeneity of the 

population of mouse embryonic stem cells cultured in three cell culture 

conditions. Comparison with previous studies allowed me to generate a 

comprehensive picture of the gene expression variability. I confirmed that 
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genes previously suggested to be heterogeneous or fluctuating are indeed 

doing so. In serum, pluripotency and differentiation genes fluctuate as two 

modules. In cells with low expression of the pluripotency module, the 

differentiation module is high and vice versa. This corresponds to functional 

differences between cells, where some of them are more pluripotent and some 

already express the differentiation programme.  

Cells cultured in 2i medium that mediates a ground state of pluripotency 

are homogeneous for expression of the pluripotency module and do not 

express markers of differentiation. On the other hand, cell cycle gene 

expression is heterogeneous in 2i. I was able to use this heterogeneity to assign 

cells to cell cycle stages: G1/S or G2/M. Using the data presented in this 

dissertation and other previously published data (Tsang et al., 2015) I observed 

that there is a relationship between cell cycle heterogeneity and the length of 

the cell cycle. Cells that cycle quickly have homogeneous expression of cell 

cycle genes. In cells that cycle with moderate speed, such as those cultured in 

2i one can discriminate G1/S form G2/M cells. In slowly cycling cells, such as 

HSC all phases of the cell cycle can be identified and even G1 can be divided 

into early and late (Tsang et al., 2015).  

I speculate that there are two reasons for low cell cycle noise in fast cycling 

cells. Firstly, in very quickly cycling cells G1 phase is virtually non-existent 

causing lower heterogeneity. Secondly, the degradation half-lives of cell cycle 

related genes are 6-8 hours (Sharova et al., 2009). If the cell cycle is very quick 

there is not enough time for mRNAs from one phase to degrade when the cell 

enters the next phase of the cell cycle. This leads to mRNAs from one phase to 

“bleed” into the following phase. Biologically, this does not necessarily have 

much effect on cell cycle regulation, because this is achieved at the level of 
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protein signalling, mostly post-translational phosphorylation by CDKs and 

protein degradation, mostly of cyclins.  

This relationship can be exploited to estimate the speed of the cell cycle in 

heterogeneous populations. For example, cells from complex tumour tissues 

can be profiled using single cell mRNA sequencing and subpopulations can be 

identified. Subsequently, the relative proliferation rates of the subpopulations 

can be measured using heterogeneity of expression of cell cycle genes in each 

of the subpopulations. It is quite remarkable that a dynamic feature of a 

system can be measured from snapshot data such as single cell mRNA 

sequencing of one time point. 

Cells cultured in alternative 2i are similar transcriptomically to cells 

cultured in 2i, especially for expression of pluripotency genes, suggesting that 

inhibition of SRC gives rise to a similar phenotype as inhibition of MEK1/2. 

Furthermore, I identified a population of previously-reported so-called “2C-

like cells” (Macfarlan et al., 2012) in 2i medium and looked at their 

transcriptomes in relation to transcriptomes of cells from subsequent stages of 

embryo development. These cells are substantially more similar to cells from 

the blastocyst than cells from the embryo at the 2 cell stage. The 

transcriptomes of 2C-like cells are similar to those of the other cells in 2i 

culture, but in addition to the transcriptomic profile of 2i cells they express 

some additional genes. 2C-like cells arise probably due to chromatin changes 

that are forced by signals from the media the cells were cultured in. 

Derepression of endogenous retroviral elements causes expression of genes 

that are regulated by MuERV-L in addition to the transcriptomic profile of 2i 

cells. This is a useful observation, as it allows decoupling regulation of gene 
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expression by MuERV-L from changes that occur in 2 cell stage embryos, and 

the study of this process in stead-state culture.  

Finally, I discovered several potential regulators of pluripotency and 

validated that three genes, namely Ptma, Zpf640 and Zfp710 are regulators of 

pluripotency. The approach I used can be used for any biological system, for 

understanding genes that change in transitions or as a result of response to 

stimulus. 

In my work, in addition to gaining biological and mechanistic insights into 

the pluripotency of mouse embryonic stem cells, I have shown how and what 

information can be harvested from the single cell transcriptomic data. I 

measured and understood sources of heterogeneity, found and characterized a 

rare cell population, assigned cell cycle stage to cells and identified new 

players important for gene expression networks. These approaches will prove 

useful for analysis of any type of data in the future. 
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Abbreviations 

 

 

 

AID    activation-induced cytidine deaminase pathway  
ANOVA analysis of variance 
ATP   adenosine-5'-triphosphate 
BER   base-excision repair  
CAP  circular a posteriori projection 
cDNA  complementary DNA 
CEL-Seq  single-cell RNA-Seq by multiplexed linear amplification 
CHD  chromodomain-helicase-DNA-binding protein 
ChIP  chromatin immunoprecipitation 
circRNA circular RNA 
CRISPR clustered regularly interspaced short palindromic repeats 
CRISPRi CRISPR interference 
CV  coefficient of variation 
DM   distance to the median 
DMEM  Dulbecco modified Eagle's minimal essential medium 
EC  embryonic carcinoma 
EDTA  ethylenediaminetetraacetic acid 
EMT   endothelial to mesenchymal transition  
EpiSC   epiblast stem cells 
ERCC  external RNA controls consortium 
ESCAPE   embryonic stem cell atlas from pluripotency evidence 
FACS  fluorescence-activated cell sorting 
FDR   false discovery rate 
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FISH    fluorescence in situ hybridization 
FISSEQ  fluorescent in situ sequencing 
FWER  family-wise error rate 
GDP  guanosine-5'-diphosphate 
GFP  green fluorescent protein 
GO  gene ontology  
gRNA  guide RNA 
GSNAP   genomic short-read nucleotide alignment program 
GTF   general transfer format 
GTP   guanosine-5'-triphosphate  
HDAC histone deacetylase 
hESC  human embryonic stem cells 
HSC  hematopoietic stem cell 
ICA   independent component analysis  
IFC   integrated fluidic circuit 
iPSC  induced-pluripotent stem cells  
IVT   in vitro transcription 
JAK  janus-associated kinase 
KRAB   Krüppel associated box 
KS test  Kolmogorov–Smirnov test 
LB  Luria-Bertani broth 
LCM  laser capture microdissection 
LIF  leukaemia inhibitory factor 
lncRNA long non-coding RNA  
LTR   long terminal repeat 
MAPK  mitogen-activated protein kinase 
MAP2K  mitogen-activated protein kinase kinase 
MAP3K  mitogen-activated protein kinase kinase kinase 
MARS-Seq   massively parallel single-cell RNA-sequencing 
MEF  mouse embryonic fibroblast 
mESCs  mouse embryonic stem cells 
mRNA messenger RNA 
MST   minimal spanning tree 
MuERV-L  murine endogenous retrovirus L 
NFAT  nuclear factor of activated T-cells 
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NPC   neuronal progenitor cell 
NURD  nucleosome remodelling and histone deacetylase complex  
NURF  nucleosome remodelling factor 
PAM    protospacer Adjacent Motif  
PC  principal component 
PCA   principal component analysis 
PLA   proximity ligation assay 
PI3K   phosphoinositide 3-kinase 
PRC1   polycomb-group repressive complex 1 
PRC2   polycomb-group repressive complex 2  
qPCR   quantitative real-time polymerase chain reaction 
RNA  ribonucleic acid 
RPM   reads per million 
rRNA  ribosomal RNA 
SC3-seq  single-cell mRNA 3-prime end sequencing 
scRNA-seq single cell RNA sequencing 
SCUBA  single-cell clustering using bifurcation analysis 
SH2   src homology 2 domain 
SOM  self-organizing map  
SNN    shared nearest neighbour 
SRF  serum response factor 
SRY-box  sex determining region Y box 
STAT   signal transducers and activators of transcription 
STO  Sandos Inbred Mice Thioguanine/Ouabain-resistant mouse 

fibroblast cell line 
STRT-Seq  single-cell tagged reverse transcription sequencing 
TIVA   transcriptome in vivo analysis 
tSNE  t-distributed stochastic neighbour embedding 
UMI  unique molecular identifier 
WGCNA  weighted gene co-expression network analysis 
ZGA   zygote genome activation  
ZIFA   zero inflated factor analysis  
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Appendix 1 
Differentially expressed genes between 2C-like cells and 2i cells 
 
 
 
	  

Gene Name level in 2i cells level in 2C-like log2FoldChange adj p-val 

Prss23 0.00 6128.94 Inf 7.14E-05 

Hs6st2 0.03 6241.06 17.84 5.64E-04 

Gm8723 0.02 127.88 12.95 2.14E-06 

Zfp352 0.12 604.95 12.36 2.91E-03 

Trim75 0.04 123.58 11.71 4.31E-08 

AC133095.2 0.05 141.36 11.53 3.94E-04 

Pramef25 0.50 852.11 10.73 1.75E-03 

Zscan4e 0.12 202.23 10.68 4.99E-07 

AC168977.1 0.09 141.18 10.67 5.44E-06 

Trim43a 7.82 12486.60 10.64 3.77E-02 

Gm11487 0.08 110.78 10.45 3.29E-05 

Drr1 0.05 73.34 10.42 2.79E-04 

Gm8711 0.18 246.11 10.42 4.11E-06 

Olfr881 0.10 126.97 10.38 5.18E-03 

Fosl2 0.18 239.84 10.35 4.38E-02 

B020004J07Rik 0.08 96.94 10.30 1.85E-05 

Gm6803 0.69 808.99 10.20 3.72E-04 

Zscan4b 0.31 352.71 10.16 3.21E-05 

BC147527 0.17 194.73 10.15 4.60E-03 

Usp17lc 0.62 636.01 10.01 3.90E-17 

AA623943 0.22 212.87 9.95 1.03E-10 

Usp17lb 0.59 578.63 9.94 1.12E-02 

Cacna1s 0.34 322.82 9.89 4.78E-03 

Gm13078 0.16 151.30 9.85 1.35E-07 

Usp17ld 0.17 156.01 9.81 9.27E-08 

Gm11544 0.16 138.47 9.73 6.65E-07 

Gm2016 1.60 1289.77 9.66 5.67E-09 

Zscan4f 0.78 580.98 9.55 8.67E-08 

Gm11543 0.33 233.34 9.48 1.02E-10 

Gm6489 0.61 406.24 9.38 6.98E-06 

Gm20767 0.32 208.93 9.37 1.73E-09 

Gm5698 1.02 671.58 9.36 7.46E-05 

Gm5662 4.52 2858.87 9.31 8.43E-09 

Gm21936 0.66 396.86 9.24 1.37E-11 

Gm8300 2.00 1202.68 9.23 1.30E-10 

BC080695 0.84 493.98 9.20 3.91E-04 

Gm2075 0.23 130.08 9.14 6.20E-06 

Tmem92 0.37 197.25 9.06 1.70E-08 

Gm21319 0.48 250.83 9.04 9.81E-08 

Abcb5 0.70 356.64 8.99 2.27E-03 
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Gm2022 1.29 643.76 8.97 5.37E-06 

Gm21761 0.83 406.64 8.93 1.55E-04 

Gm11546 0.42 199.64 8.91 2.39E-08 

Usp17la 0.51 238.08 8.87 7.71E-06 

Zscan4d 3.36 1526.44 8.83 3.43E-04 

Gm2035 0.51 223.04 8.76 4.39E-09 

Gm12794 0.36 155.01 8.75 1.70E-06 

Gm2056 0.42 167.67 8.64 8.75E-07 

Gm4027 0.76 252.95 8.38 9.38E-07 

AF067061 0.89 281.40 8.31 3.86E-04 

Gm8332 1.90 573.06 8.24 1.92E-06 

Gm8994 3.30 868.95 8.04 4.81E-05 

Zscan4c 8.59 2227.95 8.02 6.86E-05 

BB287469 0.58 145.47 7.98 2.76E-05 

Phf11a 1.10 246.67 7.81 3.05E-08 

Gm5039 7.71 1446.34 7.55 8.38E-06 

Calhm3 0.67 124.60 7.55 3.13E-04 

Chit1 1.43 204.75 7.17 4.11E-06 

AU019990 0.75 102.87 7.09 3.43E-03 

B020031M17Rik 1.55 208.45 7.07 2.75E-03 

Guca1a 2.66 349.99 7.04 8.32E-06 

Gm5117 7.62 911.40 6.90 2.13E-02 

Mdga2 0.53 61.89 6.86 4.43E-02 

Gm16239 1.01 111.03 6.78 1.21E-02 

Arg2 2.35 214.18 6.51 1.23E-03 

Pdgfrl 5.11 414.93 6.34 1.74E-03 

Scd3 7.00 518.04 6.21 6.29E-08 

Gm16892 5.43 395.12 6.19 2.52E-02 

Gm10800 259.06 16352.73 5.98 8.87E-03 

Pdlim3 2.27 138.71 5.93 5.59E-03 

Aqp9 2.75 158.22 5.85 1.38E-03 

Limch1 6.50 350.07 5.75 8.10E-03 

Tmem132c 7.29 383.23 5.72 1.38E-04 

Ccser1 5.90 308.61 5.71 2.07E-06 

Zfp560 8.21 426.55 5.70 4.47E-05 

Arhgef26 27.17 1407.23 5.69 9.65E-06 

Gm21738 28.03 1392.64 5.63 9.25E-07 

Ctf2 4.97 242.04 5.61 1.49E-02 

Antxr1 4.93 238.82 5.60 3.94E-04 

Sh3kbp1 6.22 285.56 5.52 1.20E-04 

Gm10717 8.16 354.69 5.44 8.16E-06 

Gm26870 9.89 426.04 5.43 1.74E-06 

Neto2 9.63 383.95 5.32 3.41E-03 

Gm11168 5.76 228.28 5.31 1.95E-04 

P4ha2 12.86 447.34 5.12 1.68E-05 

Gm10722 6.76 224.68 5.06 3.94E-04 
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Gm5435 9.34 290.93 4.96 6.03E-03 

Slc35e3 18.07 466.91 4.69 1.68E-05 

Scamp1 46.94 1210.95 4.69 1.32E-05 

Gm10801 10.75 272.71 4.66 1.82E-04 

ENSMUSG00000060393 40.54 961.84 4.57 6.87E-04 

Uap1 87.02 2044.20 4.55 2.42E-09 

Gm13228 51.98 1180.16 4.50 8.95E-06 

Gm12183 125.60 2688.09 4.42 7.46E-05 

Mcm9 28.57 601.03 4.39 1.97E-05 

Dennd4c 75.34 1559.44 4.37 2.50E-07 

Gm13226 8.36 165.86 4.31 1.31E-02 

Dhtkd1 105.29 1980.85 4.23 2.71E-13 

Ercc4 163.70 3021.31 4.21 4.08E-12 

Fbxo15 1568.23 28808.76 4.20 9.66E-04 

2010315B03Rik 7.80 129.72 4.06 4.75E-02 

Prex2 79.38 1240.22 3.97 4.11E-06 

Lgals4 18.93 291.06 3.94 5.59E-03 

Ric3 27.27 417.63 3.94 3.90E-02 

Cwc22 279.65 4100.02 3.87 1.39E-06 

Nelfa 270.81 3944.80 3.86 2.52E-08 

Tanc2 17.52 249.84 3.83 2.60E-03 

Arsk 45.17 606.24 3.75 3.47E-04 

Gm13622 56.13 685.20 3.61 7.30E-08 

Fam234b 19.02 215.15 3.50 2.23E-02 

Pemt 15.81 167.33 3.40 4.38E-02 

Tbc1d23 126.18 1331.81 3.40 3.60E-07 

Dnajb14 70.39 728.76 3.37 2.68E-06 

Dcbld1 113.27 1159.11 3.36 1.27E-07 

Glrx2 95.46 973.31 3.35 2.96E-07 

1700025G04Rik 22.56 216.97 3.27 3.43E-02 

Fundc1 121.03 1130.11 3.22 2.11E-04 

Mbd5 20.93 187.38 3.16 4.14E-02 

Ppm1a 295.98 2641.47 3.16 3.74E-06 

Rxra 22.71 197.87 3.12 3.47E-02 

Tsen2 155.44 1305.13 3.07 2.07E-05 

Bola1 106.12 865.28 3.03 4.82E-08 

Cab39 222.01 1792.52 3.01 9.25E-07 

Aqr 389.52 3137.48 3.01 1.03E-10 

ENSMUSG00000095908 25.76 207.48 3.01 3.60E-02 

Zfp809 148.32 1177.65 2.99 6.46E-07 

Sdhaf3 48.71 375.25 2.95 1.83E-03 

Zfp386 108.69 818.30 2.91 1.40E-02 

Bud13 162.42 1159.31 2.84 3.01E-03 

Cbl 120.50 850.29 2.82 1.68E-04 

Robo1 53.08 372.62 2.81 2.35E-03 

Dst 954.49 6429.51 2.75 4.78E-11 
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Ddit4l 43.07 290.03 2.75 1.31E-02 

Trak2 53.03 353.68 2.74 3.95E-03 

Rad51b 39.28 258.42 2.72 2.49E-02 

Ncoa2 169.25 1089.28 2.69 2.07E-05 

Micu1 87.51 542.30 2.63 1.35E-03 

Sgms1 209.59 1294.63 2.63 1.75E-05 

Cldn12 38.47 236.50 2.62 4.43E-02 

Pcnxl4 86.69 528.92 2.61 2.28E-04 

C1d 401.64 2395.59 2.58 1.25E-15 

Sord 70.63 411.05 2.54 4.38E-02 

Coil 676.12 3894.99 2.53 6.49E-04 

Lonp2 264.29 1449.56 2.46 4.99E-07 

Cand1 482.56 2589.46 2.42 1.92E-06 

Zfp119b 69.33 354.82 2.36 3.47E-02 

Dock9 89.90 451.82 2.33 1.51E-02 

2210409E12Rik 111.38 551.79 2.31 6.00E-04 

Slc7a6os 66.22 309.70 2.23 3.18E-02 

Neo1 204.73 948.54 2.21 1.47E-03 

Gpbp1l1 263.67 1213.79 2.20 2.94E-07 

Arid4a 335.22 1519.45 2.18 1.67E-03 

Katnbl1 137.05 618.46 2.17 5.99E-04 

Daam1 87.49 394.77 2.17 1.72E-02 

Clp1 416.47 1832.57 2.14 4.26E-07 

Pcca 88.10 376.89 2.10 2.77E-02 

Zfp217 101.08 422.16 2.06 1.62E-02 

Ticrr 563.52 2344.40 2.06 5.52E-03 

Prkaa1 126.09 520.29 2.04 3.90E-02 

Ppig 838.86 3376.17 2.01 3.91E-10 

Bach1 118.92 476.26 2.00 2.10E-02 

Rimklb 266.03 1060.79 2.00 2.47E-03 

2810004N23Rik 278.95 1070.40 1.94 1.83E-05 

Rbbp6 542.32 2067.94 1.93 6.81E-06 

Cep57l1 240.55 912.16 1.92 8.91E-04 

Akap13 151.29 570.55 1.92 1.88E-02 

Diaph3 132.83 500.59 1.91 9.78E-03 

Utp23 100.59 378.44 1.91 3.39E-02 

Rbm25 3500.92 13085.13 1.90 8.77E-21 

Zfp936 329.76 1212.27 1.88 1.24E-03 

Zfp516 129.93 472.93 1.86 1.58E-02 

Spdl1 184.49 661.98 1.84 2.58E-02 

Snapc3 183.73 646.81 1.82 3.14E-03 

Arnt 134.08 459.71 1.78 4.14E-02 

Ctr9 297.36 994.12 1.74 5.99E-04 

Iars 1470.43 4875.66 1.73 4.66E-06 

Wdr70 128.85 424.10 1.72 4.73E-02 

Ppp1r8 141.75 462.93 1.71 3.14E-02 
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Pnkd 150.27 482.14 1.68 3.23E-02 

Rlf 186.31 587.43 1.66 4.22E-02 

PISD 297.47 928.34 1.64 6.03E-03 

Gtf3c3 207.22 631.64 1.61 2.99E-02 

Nup205 303.52 909.53 1.58 1.11E-02 

Atf2 466.39 1396.44 1.58 1.49E-03 

Mreg 442.39 1314.81 1.57 1.40E-03 

Snw1 728.61 2143.80 1.56 9.68E-07 

Dppa2 226.50 653.99 1.53 1.53E-02 

Scfd1 445.51 1249.17 1.49 2.13E-02 

Pnp 238.15 663.44 1.48 1.64E-02 

Zcchc17 218.56 607.37 1.47 2.95E-02 

Klf3 227.96 631.80 1.47 2.44E-02 

Cstf2t 206.47 562.88 1.45 4.65E-02 

Avpi1 386.02 1051.98 1.45 1.83E-03 

D230025D16Rik 817.24 2225.67 1.45 7.30E-03 

Papolg 293.78 794.44 1.44 3.07E-02 

Gtf2b 330.34 888.38 1.43 1.10E-02 

Ube2t 332.01 874.54 1.40 8.00E-03 

Cenpe 755.01 1912.56 1.34 5.59E-03 

Srsf5 1046.68 2626.62 1.33 4.64E-06 

Haus3 298.99 746.25 1.32 2.52E-02 

Mtf2 2331.48 5765.01 1.31 2.64E-05 

Gm26917 1840.84 4499.22 1.29 1.74E-03 

Fnip1 265.62 649.11 1.29 4.96E-02 

Klf9 384.58 939.18 1.29 1.47E-02 

Gtf2h2 346.67 817.05 1.24 4.60E-02 

Arih2 559.83 1286.21 1.20 4.96E-02 

Wtap 475.66 1090.61 1.20 1.21E-02 

Utp3 498.47 1112.17 1.16 1.40E-02 

Agpat5 374.00 828.45 1.15 4.89E-02 

Ccnf 998.52 2192.06 1.13 3.17E-02 

Map1b 1111.65 2405.68 1.11 2.13E-02 

Hmmr 732.19 1569.15 1.10 4.43E-02 

Luc7l3 661.04 1368.42 1.05 2.13E-02 

Btg1 560.61 1152.38 1.04 2.99E-02 

Arid1a 641.25 1315.52 1.04 1.79E-02 

Triml2 780.84 1592.99 1.03 2.49E-02 

Rsrc2 751.37 1507.71 1.00 1.49E-02 

Tacc3 1049.95 2065.64 0.98 3.47E-02 

Cirh1a 1481.08 2902.23 0.97 3.01E-03 

Thoc2 1023.75 2002.21 0.97 1.72E-02 

Rplp0 6898.18 13421.12 0.96 1.63E-06 

Nmd3 1249.74 2373.43 0.93 4.56E-02 

Gm9625 966.08 1795.59 0.89 2.52E-02 

Rif1 3165.71 5854.94 0.89 2.33E-04 
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Trim28 1715.70 3149.49 0.88 3.76E-03 

Cul5 1347.83 2468.83 0.87 3.80E-02 

Gm8730 1718.89 3105.61 0.85 5.97E-03 

Kif20b 1161.66 2092.99 0.85 2.39E-02 

2810474O19Rik 1902.65 3419.75 0.85 3.04E-02 

Dnttip2 1088.83 1905.36 0.81 4.38E-02 

Smc4 1211.35 2116.97 0.81 3.47E-02 

mt-Rnr1 3179.73 5483.37 0.79 7.63E-03 

Gnl3 1392.54 2380.12 0.77 3.96E-02 

Eif4a2 4343.62 6859.50 0.66 2.44E-02 

Sept2 8965.87 5590.07 -0.68 2.64E-02 

Nedd4 3371.49 1973.56 -0.77 3.20E-02 

Actr2 2977.84 1705.15 -0.80 3.29E-02 

Paics 5388.05 3083.72 -0.81 9.27E-03 

Srpk1 1870.29 1017.49 -0.88 4.38E-02 

Myl12b 1241.76 614.64 -1.01 3.77E-02 

Ywhag 895.49 410.67 -1.12 4.92E-02 

Vdac1 2577.24 1113.31 -1.21 1.91E-04 

Aamp 1004.15 417.62 -1.27 1.03E-02 

Gdf3 1260.90 502.62 -1.33 1.36E-02 

Stmn2 835.90 330.22 -1.34 1.94E-02 

Acadm 1281.21 499.48 -1.36 1.49E-02 

Apobec3 597.04 222.42 -1.42 4.52E-02 

Chchd4 735.24 270.24 -1.44 1.50E-02 

Gm11223 660.76 231.30 -1.51 1.10E-02 

Idh2 1344.63 454.15 -1.57 1.11E-02 

Tpd52 888.19 292.62 -1.60 1.02E-03 

Hmces 520.32 170.75 -1.61 1.79E-02 

Slc25a13 562.12 178.44 -1.66 1.21E-02 

Dsg2 729.58 216.19 -1.75 2.62E-02 

Lypla1 1653.09 468.62 -1.82 2.18E-05 

Tmem245 479.67 132.27 -1.86 1.60E-02 

Acaa2 342.44 90.92 -1.91 3.30E-02 

Bcat2 382.21 94.23 -2.02 9.21E-03 

Prpf6 535.01 131.76 -2.02 2.02E-02 

Anxa4 472.15 107.85 -2.13 4.19E-03 

H2-M6-ps 299.53 58.93 -2.35 8.45E-03 

Rc3h1 199.94 35.67 -2.49 4.65E-02 

Ccdc141 329.71 56.21 -2.55 4.51E-02 

Bscl2 206.23 31.46 -2.71 4.48E-02 

Laptm5 329.97 50.12 -2.72 1.36E-02 

Zfp157 265.47 36.49 -2.86 2.49E-02 

Plagl1 338.73 44.95 -2.91 3.23E-03 

Prkd3 195.26 25.41 -2.94 1.17E-02 

Armcx1 133.54 15.61 -3.10 4.96E-02 

Lefty2 425.10 47.77 -3.15 4.38E-02 
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Zfp553 152.65 16.37 -3.22 2.13E-02 

Ddx58 201.28 20.34 -3.31 2.44E-02 

Ormdl1 172.51 16.43 -3.39 2.13E-02 

Gatsl3 346.06 31.75 -3.45 2.82E-04 

Sulf1 151.42 12.59 -3.59 2.13E-02 

Crtap 110.35 8.96 -3.62 4.38E-02 

Fetub 143.64 10.85 -3.73 8.11E-03 

Rhpn2 127.34 8.05 -3.98 2.33E-02 

Msantd3 123.04 7.19 -4.10 9.27E-03 

Angptl4 134.41 3.24 -5.37 2.50E-02 

Ccdc136 63.27 1.43 -5.47 4.65E-02 

Fhl1 108.58 1.82 -5.90 1.21E-02 

Kdm4a 57.22 0.94 -5.93 4.95E-02 

Dtx1 77.76 0.83 -6.55 2.32E-02 

Rnf41 72.57 0.75 -6.60 5.79E-03 

Zfp36l2 78.67 0.74 -6.73 2.60E-03 

Ackr3 83.98 0.65 -7.00 1.38E-02 

Senp8 64.34 0.38 -7.40 6.08E-03 

2900011O08Rik 128.86 0.38 -8.41 1.63E-06 

Tmem14a 44.27 0.10 -8.84 2.94E-02 

Slc52a3 84.05 0.00 -Inf 2.06E-04 

Qpctl 46.74 0.00 -Inf 1.50E-02 

Mylip 54.75 0.00 -Inf 2.38E-03 

March2 43.88 0.00 -Inf 1.49E-02 

	  
	  


