Host-targeted antibodies effective against malaria

Treatment that disables blood cell protein wipes out infection in three days

Email newsletter

News and blog updates

Sign up

DOI:10.1084/jem.20150032
All antimalarial drugs produced to date target the disease-causing parasite, but a new study in the Journal of Experimental Medicine shows that drugs which target host proteins are also a potential avenue for new interventions.

This study targets a protein that the most deadly malaria parasite, Plasmodium falciparum, relies on to invade human red blood cells. Targeting this human protein blocks an essential interaction, and can wipe out an established malaria infection in mice in less than three days.

Targeting host factors may help researchers overcome one of the biggest challenges to malaria control: drug resistance. Drug resistance arises due to genetic changes in the rapidly-evolving Plasmodium falciparum parasite, which, in Southeast Asia, has rendered one of the current front-line antimalarials, artemisinin, largely ineffective. Researchers are battling to find a solution before the resistant strains spread to other malaria endemic areas, including Africa, a region that accounts for 90 per cent of malaria deaths worldwide. By targeting host factors, rather than the parasite factors, the researchers believe that parasites are far less likely to develop resistance to the new drug.

“This counter-intuitive approach to malaria treatment leaves the parasite powerless. If the parasite can’t bind to the surface of our red blood cells and invade, it can’t reach the next stage in its lifecycle, so it dies. There’s nothing the parasite can do to get round it, as the interaction is absolutely essential for infection to occur.”

Dr Zenon Zenonos A first author from the Wellcome Trust Sanger Institute

PfRH5, a protein required by the malaria parasite, needs to bind to basigin, a protein that is displayed on the outer surface of human red blood cells, for the cell to become infected. Blockade of the PfRH5-basigin interaction renders the parasite unable to enter red blood cells, and therefore the infection is wiped out.

“When we discovered the PfRH5-basigin interaction in 2011, we knew we had found a chink in the malaria parasite’s armour, the question was how to exploit it. Using PfRH5 in a vaccine is one approach, but we were also interested to see if we could disrupt the interaction in the opposite direction rather than by conventionally targeting the parasite. This has significant advantages in preventing the ability of the parasite to develop resistance.”

Dr Gavin Wright Corresponding author from the Wellcome Trust Sanger Institute

To study the likely human response to therapy, the antibody targeting basigin described in this study was tested in humanised mice that have had the majority of their immune cells and blood cells replaced with those from their human counterparts. In the mice, levels of infection fell to essentially undetectable levels within 72 hours of being treated with low doses of the antibody targeting basigin. Importantly, no side toxic effects were observed in the mouse models that were treated with the antibody in these experiments.

“While the cost of producing and administering these drugs is currently relatively high, our hope is that future technological advances will enable this antibody to become a feasible response to malaria on the ground. Antimalarial resistance poses a huge threat to global health and the more options we have in our armoury, the better equipped we will be to fight malaria.”

Dr Sara Dummler A first author from the Singapore-MIT-Alliance for Research and Technology

More information

Funding

This work was supported by the Wellcome Trust grant number 098051, and the National Research Foundation Singapore through the Singapore-MIT Alliance for Research and Technology’s Interdisciplinary Research Group in Infectious Disease research program.

Participating Centres

Wellcome Trust Sanger Institute, Singapore-MIT-Alliance for Research and Technology, Nanyang Technological University, Massachusetts Institute of Technology.

Publications:

Loading publications...

Selected websites

  • Singapore-MIT-Alliance for Research and Technology

    Established in 2007, the Singapore-MIT-Alliance for Research and Technology is Massachusetts Institute of Technology’s first research centre outside of Cambridge, MA and its largest international research endeavour. The centre is also the first entity in the Campus for Research Excellence and Technological Enterprise currently being developed by the National Research Foundation.

  • Nanyang Technological University

    Young and research-intensive, Nanyang Technological University (NTU Singapore) is the fastest-rising university in the world’s Top 50 and ranked 39th globally. NTU is also placed 1st amongst the world’s best young universities. The university has colleges of Engineering, Business, Science, Humanities, Arts, & Social Sciences, and an Interdisciplinary Graduate School. It also has a medical school, Lee Kong Chian School of Medicine, set up jointly with Imperial College London.

  • Massachusetts Institute of Technology

    The mission of the Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology and other areas of scholarship that will best serve the nation and the world in the 21st century — whether the focus is cancer, energy, economics or literature.

  • The Wellcome Trust Sanger Institute

    The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.

  • The Wellcome Trust

    The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.