Global human genomes reveal rich genetic diversity shaped by complex evolutionary history

Study will help identify the susceptibility of different populations to disease

Global human genomes reveal rich genetic diversity shaped by complex evolutionary history

Handprints made by ancient humans in South AmericaMatt Midgley

A new study has provided the most comprehensive analysis of human genetic diversity to date, after the sequencing of 929 human genomes by scientists at the Wellcome Sanger Institute, the University of Cambridge and their collaborators. The study uncovers a large amount of previously undescribed genetic variation and provides new insights into our evolutionary past, highlighting the complexity of the process through which our ancestors diversified, migrated and mixed throughout the world.

The resource, published in Science, is the most detailed representation of the genetic diversity of worldwide populations to date. It is freely available to all researchers to study human genetic diversity, including studies of genetic susceptibility to disease in different parts of the world.

The consensus view* of human history tells us that the ancestors of present-day humans diverged from the ancestors of extinct Neanderthal and Denisovan groups around 500,000-700,000 years ago, before the emergence of ‘modern’ humans in Africa in the last few hundred thousand years.

Around 50,000-70,000 years ago, some humans expanded out of Africa and soon after mixed with archaic Eurasian groups. After that, populations grew rapidly, with extensive migration and mixture as many groups transitioned from hunter-gatherers to food producers over the last 10,000 years.

This study is the first to apply the latest high-quality sequencing technology to such a large and diverse set of humans, covering 929 genomes from 54 geographically, linguistically and culturally diverse populations from across the globe. The sequencing and analysis of these genomes, which are part of the Human Genome Diversity Project (HGDP)-CEPH panel**, now provides unprecedented detail of our genetic history.

The team found millions of previously unknown DNA variations that are exclusive to one continental or major geographical region. Though most of these were rare, they included common variations in certain African and Oceanian populations that had not been identified by previous studies.

Variations such as these may influence the susceptibility of different populations to disease. However, medical genetics studies have so far predominantly been conducted in populations of European ancestry, meaning that any medical implications that these variants might have are not known. Identifying these novel variants represents a first step towards fully expanding the study of genomics to underrepresented populations.

However, no single DNA variation was found to be present in 100 per cent of genomes from any major geographical region while being absent from all other regions. This finding underlines that the majority of common genetic variation is found across the globe.

“The detail provided by this study allows us to look deeper into human history, particularly inside Africa where less is currently known about the timescale of human evolution. We find that the ancestors of present-day populations diversified through a gradual and complex process mostly during the last 250,000 years, with large amounts of gene flow between these early lineages. But we also see evidence that small parts of human ancestries trace back to groups that diversified much earlier than this.”

Dr Anders Bergström, of the Francis Crick Institute and an alumnus of the Wellcome Sanger Institute

“The Human Genome Diversity Project resource has facilitated many new discoveries about human history in the past two decades. It is exciting to see that with the latest genomic sequencing technology, these genomes will continue to help us understand our species and how we have evolved.”

Hélène Blanché, Head of the Biological Resource Centre at the Centre d’Etude du Polymorphisme Humain (CEPH) in Paris, France

The study also provides evidence that the Neanderthal ancestry of modern humans can be explained by just one major ‘mixing event’, most likely involving several Neanderthal individuals coming into contact with modern humans shortly after the latter had expanded out of Africa. In contrast, several different sets of DNA segments inherited from Denisovans were identified in people from Oceania and East Asia, suggesting at least two distinct mixing events. 

The discovery of small amounts of Neanderthal DNA in west African people, most likely reflecting later genetic backflow into Africa from Eurasia, further highlights how human genetic history is characterised by multiple layers of complexity. Until recently, it was thought that only people outside sub-Saharan Africa had Neanderthal DNA. 

“Though this resource is just the beginning of many avenues of research, already we can glimpse several tantalising insights into human history. It will be particularly important for better understanding human evolution in Africa, as well as facilitating medical research for the full diversity of human ancestries.”

Dr Chris Tyler-Smith, recently retired from the Wellcome Sanger Institute

Notes to Editors

* For a summary of the current consensus on human evolution, see Nielsen et al. (2017). Tracing the peopling of the world through genomics. Nature. https://www.ncbi.nlm.nih.gov/pubmed/28102248

**The Human Genome Diversity Project (HGDP)-CEPH panel is a collection of cell lines from diverse human populations for use in human genetic history and medical research. The DNA is available to the scientific community involved in population genetic studies. Cell lines and DNA are held at the Centre d’Etude du Polymorphisme Humain (CEPH) in Paris. http://www.cephb.fr/en/hgdp_panel.php#presentation

Publication:

Anders Bergström, Shane McCarthy and Ruoyun Hui et al. (2020). Insights into human genetic variation and population history from 929 diverse genomes. Science. DOI: https://doi.org/10.1126/science.aay5012

Funding:

This study was funded by Wellcome and the Francis Crick Institute.

Selected Websites
How did humankind conquer the globe?Sanger ScienceHow did humankind conquer the globe?
02 Nov 2012: Wei Wei discusses her interest into variation within the Y chromosome and her recent study on the expansion of of the human population.

‘Like sugar in milk’: Parsi populations from India and PakistanSanger Science‘Like sugar in milk’: Parsi populations from India and Pakistan
29.06.17 Qasim Ayub explains the results of a genetic analysis of the Parsi population.

What is genetic variation?FactsWhat is genetic variation?
Genetic variation is a term used to describe the variation in the DNA sequence in each of our genomes. Genetic variation is what makes us all unique, whether in terms of hair colour, skin colour or even the shape of our faces. 

Evolution of modern humansStoriesEvolution of modern humans
The origin of modern humans has probably been the most debated issue in evolutionary biology over the last few decades. 

Contact the Press Office

Emily Mobley, Media Manager

Tel +44 (0)1223 496 851

Dr Samantha Wynne, Media Officer

Tel +44 (0)1223 492 368

Dr Matthew Midgley, Media Officer

Tel +44 (0)1223 494 856

Wellcome Sanger Institute,
Hinxton,
Cambridgeshire,
CB10 1SA,
UK

Mobile +44 (0)7900 607793

Recent News

UK launches whole genome sequence alliance to map spread of coronavirus
The Wellcome Sanger Institute will collaborate with expert groups across the country to analyse the genetic code of COVID-19 samples circulating in the UK, providing public health agencies with a unique tool to combat the virus
Sanger Institute scientist wins 2021 Biochemical Society award
Roser Vento-Tormo awarded an Early Career Research Award
Sanger Institute and Wellcome Genome Campus temporarily closed to all but critical research
In response to the rapidly changing COVID-19 pandemic, the Sanger Institute and its neighbours on the Wellcome Genome Campus will close all but critical and essential operations from Friday 20 March.