Subtle differences can lead to major changes in parasites

Researchers compare the genome of two parasites to explain differences in host range and transmission strategy

Email newsletter

News and blog updates

Sign up

DOI:10.1371/journal.ppat.1002567
Groups of genes which are different between the parasites and how they relate to particular parts of the cell.

Researchers have found the subtle genetic differences that make one parasite far more virulent than its close relative.

They looked at the evolution of these parasites and found that although their genome architecture still remains similar, the two split from their common ancestor 28 million years ago, approximately four times longer than the human-gorilla split.

Toxoplasma is arguably the most successful parasite. It can spread to any cell type in any warm blooded vertebrate species. It can cause blindness and spontaneous abortion. Alternatively, the Neospora parasite can infect far fewer hosts. It is a veterinary pathogen and causes a high number of abortions in cattle, costing the UK farming industry millions of pounds a year. The parasites, though different, are closely related.

“The question we wanted to answer was; what causes this difference in virulence between Toxoplasma and Neospora? We used genome sequencing to probe the parasites for differences that might underlie the way they spread and how they have diverged.”

Dr Adam Reid First author from the Wellcome Trust Sanger Institute

The team found that a gene that helps the Toxoplasma pathogen to evade the host’s immune system and enter the cell, is missing from Neospora. The lack of this single gene means Neospora cannot evade the immune response in mice and may not be able to evade the immune response in other species. This could explain why Neospora has a more limited host range.

“Our results do not imply that Toxoplasma has in some way gained the gene, but that Neospora has actually lost the gene. We speculate that the loss of this gene in Neospora may be an adaptive change. Reducing Neospora‘s virulence may increase its chance of survival in the host species.”

Dr Arnab Pain Senior author from the Wellcome Trust Sanger Institute

The team also found that although the genetic differences between the two parasites are minor, there is a significant difference in the number of surface proteins found in both parasites. Neospora has more surface proteins, nearly twice as many as Toxoplasma, but fewer are active. Although this is difficult to interpret, the researchers hypothesise that a larger number of proteins are needed to restrict the parasite’s host range.

“We were investigating these two parasites because they represent a big problem for the farming industry and in the case of Toxoplasma – for public health too.

“Collectively, our results indicate that the ecological niches occupied by both parasites are influenced by subtle, adaptive, genetic changes. This project is an excellent example of how humans and animal medicine can learn from each other to provide better outcomes for both.”

Professor Jonathan Wastling Senior author from the University of Liverpool

The next step for the team is to examine the genomes of other parasites within the same family as Toxoplasma and Neospora to better characterise the function of the genes and surface proteins. By deciphering which of these surface proteins are involved in the cell invasion process, it may be possible to develop vaccines for both of these parasites.

More information

Funding

The work was funded by a BBSRC grant awarded to JMW and AJT with support from Wellcome Trust grant.

Publications:

Loading publications...

Selected websites

  • The University of Liverpool

    The University of Liverpool is one of the UK’s leading research institutions with an annual turnover of £410 million, including £150 million for research. Liverpool is ranked in the top 1% of universities worldwide and is a member of the Russell Group.

  • The Wellcome Trust Sanger Institute

    The Wellcome Trust Sanger Institute is one of the world’s leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.

  • The Wellcome Trust

    The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.