14 April 2010

Cataloguing cancer codes

International Cancer Genome Consortium plans to sequence 25,000 cancer genomes

The ICGC plans to decode the genomes of 25,000 cancer samples to create a resource of freely available data to help cancer researchers around the world.

The ICGC plans to decode the genomes of 25,000 cancer samples to create a resource of freely available data to help cancer researchers around the world.

zoom

The International Cancer Genome Consortium (ICGC) today set out its bold plan to decode the genomes from 25,000 cancer samples and create a resource of freely available data that will help cancer researchers around the world. The publication outlines research design and projects as well as the important ethical framework for this science.

The ICGC also announced that new projects in Italy and the European Union will contribute to efforts already underway in Australia, Canada, China, France, Germany, India, Japan, Spain, the United Kingdom, and the United States. As the UK's arm of the ICGC, the Wellcome Trust Sanger Institute will decode hundreds of breast cancer genomes as part of the Consortium's international efforts.

Other funded projects will examine more than 10,000 tumours for cancer types that affect organs including blood, brain, breast, colon, kidney, liver, lung, pancreas, stomach, oral cavity and ovary.

The paper, by over 200 authors participating in ICGC projects, is published today in the journal Nature. The paper describes how the projects will proceed, outlining the ethical framework, study design and policies. ICGC leaders will also present progress on their projects at the annual conference of the American Association for Cancer Research in Washington DC, 17 - 21 April, 2010.

"Generating comprehensive catalogues of human cancer mutations will require a tremendous amount of work and collaboration over the coming years," says Professor Mike Stratton, joint leader of the Wellcome Trust Sanger Institute's Cancer Genome Project. "By sharing ideas, resources and data across scientific and clinical disciplines, we will be able to translate advances in knowledge into real benefits for future generations of patients."

Studies of breast, liver, and pancreatic cancer have already generated datasets which are now available on the ICGC website. In a study published last year, the Wellcome Trust Sanger Institute made available the results of the first detailed search for genomic rearrangements in breast cancer genomes and complete genome sequences of a melanoma and small cell lung cancer. Other analyses of tumours conducted by ICGC members in Japan (liver cancer) and Australia and Canada (pancreatic cancer) have also been made available. The data are housed in the Data Coordination Center which is hosted by the Ontario Institute for Cancer Research in Toronto.

" By sharing ideas, resources and data across scientific and clinical disciplines, we will be able to translate advances in knowledge into real benefits for future generations of patients. "

Professor Mike Stratton

"The International Cancer Genome Consortium initiative will profoundly alter our understanding of the development of human cancer, across the spectrum of tumour types," says Sir Paul Nurse, cancer scientist and 2001 Nobel Laureate for Physiology or Medicine. "The worldwide, coordinated nature of the project and the plans for data release will facilitate efficient deployment of resources and ensure that all cancer researchers can use the information generated in a timely manner."

"The data released today can be used immediately by researchers who are working on better ways of preventing, detecting, diagnosing and treating cancer," says Professor Eric S Lander, President and Director of the Broad Institute of Harvard and MIT and a member of ICGC. "The ability to identify the genetic changes in cancer is leading to new ways to devise therapies directed at the underlying cellular mechanisms of cancer and to target the right therapies to the right patients. We are moving into an era where the prescription for cancer treatment should be based on the genetics of each patient's tumor."

The International Cancer Genome Consortium is one of most ambitious biomedical research efforts since the Human Genome Project. The Consortium will help to coordinate current and future large-scale projects to understand the genomic changes involved in cancer. ICGC member organisations and participating centres have agreed upon common standards for informed consent and ethical oversight to ensure that all samples will be coded and stored in ways that protect the identities of the participants in the study. To maximize the public benefit from ICGC member research, data will be made rapidly available to qualified investigators. In addition, all Consortium participants will agree not to file any patent applications or make other intellectual property claims on primary data from ICGC projects.

Worldwide, more than 7.5 million people died of cancer and more than 12 million new cases of cancer were diagnosed in 2007. Unless progress is made in understanding and controlling cancer, those numbers are expected to rise to 17.5 million deaths and 27 million new cases by 2050.

Once thought of as a single disease, cancer is now understood to be the result of genetic mutations in cells which disrupt normal functions leading to uncontrollable growth. Because mutations are often specific to a particular type or stage of cancer, systematically mapping the changes that occur in each cancer could provide the foundation for research to identify new therapies, diagnostics and preventive strategies.

Notes to Editors

ICGC Cancer Genome Projects

Lead Jurisdiction Funding Organisation Tumour type
Australia National Health and Medical Research Council Pancreas
Ovary
Canada Ontario Institute for Cancer Research
Ontario Ministry of Research and Innovation
Canada Foundation for Innovation
Pancreas
China Chinese Cancer Genome Consortium Gastric
European Union European Commission FP7 Breast
Kidney
France Institut National du Cancer Breast
Liver
Germany Federal Ministry of Education and Research
German Cancer Aid
Paediatric Brain
India Department of Biotechnology
Ministry of Science and Technology
Oral Cavity
Italy University of Verona
Italian Ministry of Education, University and Research
Rare Pancreatic
Japan RIKEN
National Institute of Biomedical Innovation
Liver
Spain Spanish Ministry of Science and Innovation Chronic Lymphocytic Leukaemia
United Kingdom Wellcome Trust Breast

Cancer Genome Atlas Projects

Lead Jurisdiction Funding Organisation Tumour type
United States National Institutes of Health
National Cancer Institute
National Human Genome Research Institute
Brain
Colon
Leukaemia
Lung
Ovarian

Publication details

  • International network of cancer genome projects.

    International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, Guttmacher A, Guyer M, Hemsley FM, Jennings JL, Kerr D, Klatt P, Kolar P, Kusada J, Lane DP, Laplace F, Youyong L, Nettekoven G, Ozenberger B, Peterson J, Rao TS, Remacle J, Schafer AJ, Shibata T, Stratton MR, Vockley JG, Watanabe K, Yang H, Yuen MM, Knoppers BM, Bobrow M, Cambon-Thomsen A, Dressler LG, Dyke SO, Joly Y, Kato K, Kennedy KL, Nicolás P, Parker MJ, Rial-Sebbag E, Romeo-Casabona CM, Shaw KM, Wallace S, Wiesner GL, Zeps N, Lichter P, Biankin AV, Chabannon C, Chin L, Clément B, de Alava E, Degos F, Ferguson ML, Geary P, Hayes DN, Hudson TJ, Johns AL, Kasprzyk A, Nakagawa H, Penny R, Piris MA, Sarin R, Scarpa A, Shibata T, van de Vijver M, Futreal PA, Aburatani H, Bayés M, Botwell DD, Campbell PJ, Estivill X, Gerhard DS, Grimmond SM, Gut I, Hirst M, López-Otín C, Majumder P, Marra M, McPherson JD, Nakagawa H, Ning Z, Puente XS, Ruan Y, Shibata T, Stratton MR, Stunnenberg HG, Swerdlow H, Velculescu VE, Wilson RK, Xue HH, Yang L, Spellman PT, Bader GD, Boutros PC, Campbell PJ, Flicek P, Getz G, Guigó R, Guo G, Haussler D, Heath S, Hubbard TJ, Jiang T, Jones SM, Li Q, López-Bigas N, Luo R, Muthuswamy L, Ouellette BF, Pearson JV, Puente XS, Quesada V, Raphael BJ, Sander C, Shibata T, Speed TP, Stein LD, Stuart JM, Teague JW, Totoki Y, Tsunoda T, Valencia A, Wheeler DA, Wu H, Zhao S, Zhou G, Stein LD, Guigó R, Hubbard TJ, Joly Y, Jones SM, Kasprzyk A, Lathrop M, López-Bigas N, Ouellette BF, Spellman PT, Teague JW, Thomas G, Valencia A, Yoshida T, Kennedy KL, Axton M, Dyke SO, Futreal PA, Gerhard DS, Gunter C, Guyer M, Hudson TJ, McPherson JD, Miller LJ, Ozenberger B, Shaw KM, Kasprzyk A, Stein LD, Zhang J, Haider SA, Wang J, Yung CK, Cros A, Cross A, Liang Y, Gnaneshan S, Guberman J, Hsu J, Bobrow M, Chalmers DR, Hasel KW, Joly Y, Kaan TS, Kennedy KL, Knoppers BM, Lowrance WW, Masui T, Nicolás P, Rial-Sebbag E, Rodriguez LL, Vergely C, Yoshida T, Grimmond SM, Biankin AV, Bowtell DD, Cloonan N, deFazio A, Eshleman JR, Etemadmoghadam D, Gardiner BB, Gardiner BA, Kench JG, Scarpa A, Sutherland RL, Tempero MA, Waddell NJ, Wilson PJ, McPherson JD, Gallinger S, Tsao MS, Shaw PA, Petersen GM, Mukhopadhyay D, Chin L, DePinho RA, Thayer S, Muthuswamy L, Shazand K, Beck T, Sam M, Timms L, Ballin V, Lu Y, Ji J, Zhang X, Chen F, Hu X, Zhou G, Yang Q, Tian G, Zhang L, Xing X, Li X, Zhu Z, Yu Y, Yu J, Yang H, Lathrop M, Tost J, Brennan P, Holcatova I, Zaridze D, Brazma A, Egevard L, Prokhortchouk E, Banks RE, Uhlén M, Cambon-Thomsen A, Viksna J, Ponten F, Skryabin K, Stratton MR, Futreal PA, Birney E, Borg A, Børresen-Dale AL, Caldas C, Foekens JA, Martin S, Reis-Filho JS, Richardson AL, Sotiriou C, Stunnenberg HG, Thoms G, van de Vijver M, van't Veer L, Calvo F, Birnbaum D, Blanche H, Boucher P, Boyault S, Chabannon C, Gut I, Masson-Jacquemier JD, Lathrop M, Pauporté I, Pivot X, Vincent-Salomon A, Tabone E, Theillet C, Thomas G, Tost J, Treilleux I, Calvo F, Bioulac-Sage P, Clément B, Decaens T, Degos F, Franco D, Gut I, Gut M, Heath S, Lathrop M, Samuel D, Thomas G, Zucman-Rossi J, Lichter P, Eils R, Brors B, Korbel JO, Korshunov A, Landgraf P, Lehrach H, Pfister S, Radlwimmer B, Reifenberger G, Taylor MD, von Kalle C, Majumder PP, Sarin R, Rao TS, Bhan MK, Scarpa A, Pederzoli P, Lawlor RA, Delledonne M, Bardelli A, Biankin AV, Grimmond SM, Gress T, Klimstra D, Zamboni G, Shibata T, Nakamura Y, Nakagawa H, Kusada J, Tsunoda T, Miyano S, Aburatani H, Kato K, Fujimoto A, Yoshida T, Campo E, López-Otín C, Estivill X, Guigó R, de Sanjosé S, Piris MA, Montserrat E, González-Díaz M, Puente XS, Jares P, Valencia A, Himmelbauer H, Himmelbaue H, Quesada V, Bea S, Stratton MR, Futreal PA, Campbell PJ, Vincent-Salomon A, Richardson AL, Reis-Filho JS, van de Vijver M, Thomas G, Masson-Jacquemier JD, Aparicio S, Borg A, Børresen-Dale AL, Caldas C, Foekens JA, Stunnenberg HG, van't Veer L, Easton DF, Spellman PT, Martin S, Barker AD, Chin L, Collins FS, Compton CC, Ferguson ML, Gerhard DS, Getz G, Gunter C, Guttmacher A, Guyer M, Hayes DN, Lander ES, Ozenberger B, Penny R, Peterson J, Sander C, Shaw KM, Speed TP, Spellman PT, Vockley JG, Wheeler DA, Wilson RK, Hudson TJ, Chin L, Knoppers BM, Lander ES, Lichter P, Stein LD, Stratton MR, Anderson W, Barker AD, Bell C, Bobrow M, Burke W, Collins FS, Compton CC, DePinho RA, Easton DF, Futreal PA, Gerhard DS, Green AR, Guyer M, Hamilton SR, Hubbard TJ, Kallioniemi OP, Kennedy KL, Ley TJ, Liu ET, Lu Y, Majumder P, Marra M, Ozenberger B, Peterson J, Schafer AJ, Spellman PT, Stunnenberg HG, Wainwright BJ, Wilson RK and Yang H

    Nature 2010;464;7291;993-8

Funding

This work was supported by the Wellcome Trust.

Participating Centres

  • A full list of participating centres is available at the Nature website.

Selected Websites

The Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease.

Websites

The Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

Website

Contact the Press Office

Don Powell Media and Public Relations Manager
Wellcome Trust Sanger Institute, Hinxton, Cambs, CB10 1SA, UK

Tel +44 (0)1223 496 928
Mobile +44 (0)7753 775 397
Fax +44 (0)1223 494 919
Email press.office@sanger.ac.uk

* quick link - http://q.sanger.ac.uk/2ml29tln