
Chapter 5

Genome scale motif inference in

Saccharomyces cerevisiae

The algorithmic work presented in the previous chapters, particularly the meta-

matti motif classification framework, was partly motivated by the needs of the

sequence analysis projects in which I have been involved. One part of this has

been involvement in collaborative projects, where I have analysed human and

mouse noncoding sequence with computational regulatory motif inference, scan-

ning and statistical testing tools 1, some of which I had developed for the purpose.

The more substantial part has however been the genome scale de novo regula-

tory motif inference work with the Saccharomyces cerevisiae genome that will be

discussed in this chapter.

5.1 Background

Budding yeast is an organism of great interest for regulatory genomics, given its

small genome, amenability to genetic manipulation, and relatively simple regula-

tory mechanisms including a small total number of transcription factors (Goffeau

et al., 1996). The DNA specificity of many of its TFs has been characterised

in a combination of several high throughput in vitro studies (Badis et al., 2008;

Zhu et al., 2009), providing a high quality reference set of regulatory motifs that

1Majority of this work is now published in (Lewis et al., 2009) and Murray et al. (in press)
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are useful for comparison with de novo discoveries. Information on the genomic

binding positions for many of its TFs are also known from large scale ChIP-chip

based studies (Harbison et al., 2004; Lee et al., 2002). Gene expression studies

comparing knock-out lines for nearly all of its known sequence specific TFs to

the wild-type are available (Hu et al., 2007; Reimand et al., 2010). Furthermore,

many of the target genes of these TFs are known, as a result of the above ChIP-

chip and expression studies, and literally thousands of other primary publications

that have been manually curated (Teixeira et al., 2006). The in vivo DNA speci-

ficity of many budding yeast TFs is yet to be studied in high resolution, but

nevertheless, budding yeast currently offers the best available knowledge base of

TFs, TF target genes and binding site specificity, of any eukaryotic genome.

These resources together allow us to assess the ability of de novo motif infer-

ence algorithms to find large collections of regulatory motifs on a genome scale.

Information from this large scale study is valuable most importantly because

it indicates which of the algorithms, if any, are sufficiently accurate for complex

regulatory problems that are aplenty in large genomes of multicellular eukaryotes.

5.1.1 Genome scale motif inference

Motif inference studies have traditionally been made to infer one or more recurring

signals from a sequence set – of dozens to at most a few hundred – of sequences

assumed to be co-regulated or involved in the same biological process. The rapid

expansion in the number of complete genomes and computational power has how-

ever made it possible to use motif inference for a more ambitious goal: genome

scale inference of comprehensive motif collections or ‘dictionaries’ from a signif-

icant subset of promoter sequences of a genome. I will below review a selection

of previous literature on genome scale motif inference – both ab initio methods
1, and methods which apply gene expression or sequence conservation as a guide.

See Section 1.2 for a more general discussion of motif inference methods.

To my knowledge, the earliest motif discovery study which fits the above cri-

teria of de novo genome-scale motif inference is that of Brazma et al. (1998), who

1Ab initio suggests in this context that no other information but the reference genome
sequence and the predicted transcription start sites (putative promoter locations) are used as
input for inferring the motifs.
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predicted a series of regular expression like patterns from the S. cerevisiae genome

using the SPEXS algorithm (Vilo, 1998), in an experiment where the algorithm

was run ‘blindly’ with 6,000 upstream sequences. Assessing the significance of

the found patterns, however, proved troublesome: top scoring regular expressions

are matched to TRANSFAC binding site entries, but the authors attempted to

draw few conclusions based on the found matches, except to note the surprise

at being able to discover TFBS-like patterns with sequence information alone.

Bussemaker et al. (2000) also presented a word enumeration based study where

they found 11 known matching k-mers from a genome-wide study of S. cerevisiae

promoters.

Several large, gene expression cluster-driven motif inference studies have been

published. Among the earliest were Roth et al. (1998), who successfully recapit-

ulated motifs of some of the key regulators of galactose response, heat shock and

mating type regulatory systems in the S. cerevisiae, using the Gibbs sampling

based AlignACE algorithm. Vilo et al. (2000) on the other hand used a word

enumeration based method to find 62 clustered consensus strings reported to be

match words in the SCPD database (Zhu and Zhang, 1999). Methods that go

beyond clustering genes (and applying motif inference algorithms separately per

cluster) have also been developed: Bussemaker et al. (2001) introduced a gene

expression correlation based method REDUCE, which they apply to S. cerevisiae

cell cycle regulation (Bussemaker et al., 2001). Elemento and Tavazoie (2005) use

mutual information between gene expression patterns and the absence or pres-

ence of motifs as a means to infer cis-regulatory elements, in both mammalian,

the yeast, and the Plasmodium falciparum genomes.

Whereas gene expression patterns are useful in inferring regulators which act

in a certain state of the cell, use of sequence conservation has been used as a

general ‘cell state blind’ informant for large scale motif inference. One of the

earliest studies was Kellis et al. (2003) with a study of S. cerevisiae: a whole-

genome multiple alignment of S. cerevisiae with S. paradoxus, S. mikatae and

S. bayanus, which identified highly conserved consensus strings by clustering in-

stances of shorter ‘mini-motifs’. Amongst the 78 motifs found, 28 closely match

known TFBS consensus strings. Comparative techniques were later used by the

same authors and others (Elemento and Tavazoie, 2005; Ettwiller, 2005; Jones
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and Pevzner, 2006; Xie et al., 2005, 2007).

In conclusion, different large scale approaches to inferring cis-regulatory ele-

ments have been proposed, and several of them have been applied to the S. cere-

visiae genome. In contrast to these previous studies, my perspective to inferring

motif dictionaries from the budding yeast is primarily to find out how different

previously published algorithms perform at this task, rather than setting out to

discover novel functional motifs. This assessment is now made possible due to

the availability of regulatory motifs, and sets of target genes for many of the

budding yeast TFs. This is important, because performance of de novo motif in-

ference methods have not previously been systematically assessed on biologically

relevant, realistic problems.

5.1.2 Performance inference method assessments

Publications describing regulatory motif inference algorithms typically contain a

comparison of the algorithm introduced with at least some previously published

ones. Standard assessment criteria or benchmark datasets have not surfaced, and

new methods are often compared only with a small number of common existing

methods, so it is not always clear how they compare with the state of the art. An

objective assessment of the merits of the hundreds of different available algorithms

is therefore difficult. To my knowledge, the most comprehensive de novo motif

inference algorithm benchmark, involving 13 different methods and discussed in

more detail below, has been conducted by Tompa et al. (2005). As more and more

motif inference methods are published on top of the hundreds already available,

being able to assess the performance of methods relative to each other becomes

increasingly important.

Two types of approaches have been used in previous literature for ranking

methods:

1. Finding TFBSs motifs from motifs from well studied collections of cis-

regulatory elements (Ao et al., 2004; Liu et al., 2002; Roth et al., 1998;

Thijs et al., 2002).

2. Finding TFBS motifs from synthetic sequence created by planting, or ‘spik-

ing’ motifs into background sequence. The background is usually some neu-
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tral sequence thought to be devoid of other motifs (e.g. intronic sequence).

This approach is taken for instance by Down and Hubbard (2005); Pevzner

and Sze (2000); Workman and Stormo (2000).

Measuring the performance of algorithms in either of the above cases is done

most often by counting instances of motifs above some significance level, and

comparing the overlap of the list of predicted motif instances to a reference bind-

ing site collection. The reference is either a set of known sites, if the assessment

is made with real sequence, or a known set of planted instances of the target

motif in the case of synthetic sequence. Some commonly used metrics derived

from comparing binding site matches on nucleotide and binding site level are

discussed below in Section 5.1.3. Testing a motif discovery algorithm in its ca-

pacity to find motifs from unmodified biological sequence would perhaps seem

as the most intuitive approach. However, to date, performance assessment with

unmodified biological sequence has been limited to small numbers of individual

genomic regions because of our limited knowledge of regulatory regions. Per-

haps for this reason, synthetic regulatory sequence is often used, and is also the

primary type of sequence used in the Tompa et al. (2005) assessment, detailed

below. Regardless of the sequence type, the above assessment criteria also make

the assumption that a motif inference algorithm should be able to partition se-

quences into binding sites and background sequence. The appropriateness of this

partitioning assumption is also discussed below.

5.1.3 The Tompa et al. (2005) assessment

Tompa et al. (2005) compared 13 different motif inference methods in their ability

to predict motif binding sites from mostly synthetic promoter sequence sets. The

authors assessed the algorithms with summary statistics derived from motif hit

instances predicted in the sequences. A thorough review of the assessment is

provided here, because it is the most comprehensive performance assessment of

its kind, and has been influential for performance assessments presented in later

publications. It also suffers from a number of self-professed flaws, some of which

I intend to address in the present work.

The binding site sequences used in their assessment were retrieved from the
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TRANSFAC database (Matys et al., 2006), and inserted into a mixture of the

types of background sequences: 1) randomly chosen promoter sequences from the

same genome, or 2) sequences generated from a 3rd order Markov chain. Unmod-

ified binding site sequences are used in a third type of benchmark dataset. In

total, 52 datasets were created for different TFs of fly, human, mouse, rat and

yeast (one dataset per TF), and four negative control sequence sets created from

the Markov chain background were added to the set. The benefit of testing al-

gorithms with synthetic sequences (types 2 and 3) is the controlled environment

they provide: inserted binding site positions are known, and motif frequency or

sequence length can be varied at will. This is the reason that a benchmark with

synthetic sequences, consisting of sampled TFBS hits in intronic background se-

quence, is also used in my work in Chapter 3 to allow the known motif frequency

(sequence length) to be varied in a predictable way. Making sure that synthetic

benchmarking sequence sets are realistic is not possible, especially in a genome

scale problem, because of our limited understanding of regulatory sequences. In

this case the background sequence is sampled from a 3rd order Markov chain

(trained from genomic sequence) in the Tompa et al. (2005) assessment are al-

most certainly not closely related to real promoter sequence in their properties

(nucleotide content in genomic sequence varies in discrete regions, as discussed

in Section 1.3.3).

At the nucleotide level, four types of measurements were defined, to measure

the overlap of real binding sites with those predicted:

• nTP: the number of nucleotide positions in both known sites and predicted

sites.

• nFN: the number of nucleotide positions in known sites but not in predicted

sites.

• nFP: the number of nucleotide positions not in known sites but in predicted

sites.

• nTN: the number of nucleotide positions in neither known sites nor pre-

dicted sites.
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Similar metrics were also defined for binding site overlap, with an arbitrarily

chosen 25% overlap required between the nucleotides of the sites to be considered

overlapping.

Tompa et al. (2005) then defined a number of further statistics based on

nTP , nFN , nFP , nTN . Firstly, sensitivity nSn, specificity nSp, and positive

predictive value nPPV :

nSn = nTP/nTP + nFN (5.1)

nSp = nTN/(nTN + nFP ) (5.2)

nPPV = nTP/(nTP + nFP ) (5.3)

A nucleotide level performance coefficient nPC, intended to “in some sense

average (some of) [the above] quantities”, is also reported (Equation 5.4), follow-

ing the work of Pevzner and Sze (2000).

nPC = nTP/(nTP + nFN + nFP ) (5.4)

Following Burset and Guigó (1996), the authors also report a nucleotide level

Pearson product-moment correlation coefficient (Equation 5.5), and an average

site performance sASP (Equation 5.6).

nCC =
nTP × nTN − nFN × nFP√

(nTP + nFN)(nTN + nFP )(nTP + nFP )(nTN + nFN)
(5.5)

sASP = (sSn+ sPPV )/2 (5.6)

The measures nSn, nSp, nPPV , nPC, nCC, sASP are then summarised

in three different ways per tool across the datasets: either as an average, as

a Z-score, or a ‘combined’ weighted average score where all the measures are

computed as if the real and predicted sites were part of one large dataset instead

of 56 individual ones. Most of the chosen performance measures however present

problems with the four negative control datasets with no motifs: nSn, nCC,
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sASP are not defined, and nPPV , nPC and sPPV are uninformative. Most

troubling however is that when a tool makes no prediction in datasets containing

motif instances, TP + FP = 0, causing nPPV , nCC, sPPV to be undefined

and nSn, nPC and sSN to be uninformative. The ‘combined’ average score

works around this to the extent where these predictions consisting of entirely

false negative predictions do not contribute at all. The score does however still

penalise methods which make a small number of false positive prediction against

those which attempt to make no predictions whatsoever (also pointed out by the

authors). The statistics used also leave no intuition for how any of the tools

performed on any individual dataset, and no guidance is given by the authors for

the interpretation or relative importance of the various different measures.

A further problem with the above performance measures is that if the binding

site positions called either positive or negative for a predicted binding event are

dramatically affected by the motif significance thresholds used (high significance

cutoff increases the false positive rate). Indeed, given that different experts ran

the experiments, it is possible that this assessment tested not only the ability to

detect recurring motifs with different algorithms, but also the stringency and pa-

rameter choices involved in deciding which of the potential binding site matches

to report based on the inferred motifs. The problem of inferring a motif, and

finding its binding site matches are independent in the formulation used by many

motif inference algorithms. Some Bayesian motif inference algorithms do not in

fact report individual binding site matches as part of the motif inference pro-

cess (Down and Hubbard, 2005). Furthermore, when the above binding site level

measures are computed for real promoter sequence with experimentally deter-

mined TFBSs, the quality of binding site data affects all of the above-mentioned

measures. For example, some of the false positives can in fact be true, unknown

binding sites.

The authors cite several gene finding assessments (Burge and Karlin, 1997;

Burset and Guigó, 1996; Reese et al., 2000) as the inspiration for their approach.

In those studies protein coding gene models are inserted to large sets of vertebrate

sequence. I question the analogy between gene finding and TFBS finding, and

advocate the use of comparison of motifs, rather than comparison of individual

motif matches, as the primary means to benchmark motif inference performance.
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TFBSs are several orders of magnitude shorter and lower in information, tran-

sient and turned over during evolutionary time scale, tend to co-occur, and vary

in frequency and stringency of matches, depending on the TFBS in ways that

are not well understood (see Section 1.1). Furthermore, weak binding sites which

can be very ‘distant’ matches to the motif, and therefore both difficult to find

experimentally or by scanning computational motifs, can also contribute to reg-

ulatory responses (Gertz et al., 2009). A motif match alone does not determine

if a genomic position binds a TF or not; other levels of information relevant for

regulation is stored in genomes, including for instance tissue specific epigenetic

marks and the DNA melting propensity. Making use of such additional sources

of evidence substantially improves classification of sites as either binding or non-

binding Ernst et al. (2010); Lähdesmäki et al. (2008); Ramsey et al. (2010). For

many eukaryotic TFs, even a perfect motif inference algorithm cannot predict its

binding sites accurately, in turn raising questions about the use of binding site

or nucleotide level based methods for their performance assessment.

The authors required the experts applying prediction methods to report a

single high confidence prediction. Especially when inferring motifs from real-

world genomic sequence, one cannot be sure of the absence of unexpected ‘real’

sequence motifs, which a good computational motif prediction tools should in

fact be able to report. Indeed, the authors also state that “no attempt was made

to eliminate sequences that might contain additional transcription factor binding

sites, since our ability to identify such sites accurately is limited.” Therefore,

methods which were (correctly) able to report additional motifs present in the

sequence, but where the genomic matches of the correct motif was not submitted

for analysis, can in fact be penalised for it heavily, perhaps explaining in part the

reportedly bad prediction performance seen with the real sequences. Inferring

motifs, and ranking them, should be considered independently. I would argue also

that the algorithm assessment should be made with a collection of inferred motifs

per method, instead of a single motif per method. Otherwise the assessment

measures, in part, the correctness of post-processing and motif ranking steps

which can be made by the experts – and were not detailed by the authors.

In conclusion, the design of the Tompa et al. (2005) study suffers from certain

troubling assumptions and sources of potential bias. It is also inconclusive; the
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authors do not offer direct advice or a ranking of methods based on the measures,

and point out many of the study’s shortcomings also themselves. To my surprise,

I have been unable to find later performance assessments which would directly

try to address these shortcomings, apart from Li and Tompa (2006); Sandve

et al. (2007) who mostly confirm problems apparent in the Tompa et al. (2005)

assessment, but do not offer a new thorough assessment. On the contrary, several

motif inference method publications after this paper have used the same statistical

measures or synthetic datasets provided by Tompa et al. (2005), as supporting

evidence for the favourable performance of their computational tools to previous

work (Chan et al., 2009; Fauteux et al., 2008; Gunewardena and Zhang, 2008; Hu

et al., 2006; Klepper et al., 2008; Lu et al., 2008; Peng et al., 2006; Reddy et al.,

2007; Robinson et al., 2006; Sandve et al., 2008; Wang and Zhang, 2006; Wijaya

et al., 2008; Zare-Mirakabad et al., 2009).

5.2 Materials & Method

This project had two phases: running a number of DNA motif inference algo-

rithms on a large series of genomic sequence, and then assessing the discovered

motifs. The sections below firstly describe the sequence sets used in the project

(Section 5.2.1), before giving an account of the tested motif inference algorithms

(Section 5.2.2). The remaining sections then detail the methodology of the var-

ious analyses conducted on the predicted motif sets. Notably, the performance

assessment of methods is made in a parameter free manner when possible. Motif

scanning with a motif hit significance cutoff parameter is done primarily for ex-

ploration of the data, for instance to find subsets of potentially interesting motifs

which do not match the reference motif sets (Section 5.3.6.4).

5.2.1 Sequence and annotation retrieval

The S. cerevisiae promoter sequence used in all motif inference runs consisted

of 200 base long upstream sequences from 1,000 randomly chosen protein cod-

ing genes with 5-way orthologs between the hemiascomycetous yeast species S.

cerevisiae, Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii and
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Yarrowia lipolytica. These sequence sets were collated by Dr Thomas Down.

Briefly, Ensembl Compara (Birney et al., 2004) formatted database schemas were

created of the genomic sequence data retrieved from the hemiascomycete compar-

ative genomics database Genolevures (Sherman et al., 2004). BLASTP (Altschul

and Gish, 1996) and reciprocal matching was then used to assign orthology be-

tween genes. S. cerevisiae sequences for orthologous genes were then retrieved,

and a randomly selected subset of 1,000 200 bases long promoters chosen from

the subset (other organisms were only used for selecting candidate genes).

I fetched additional sequence sets from the Ensembl database Hubbard et al.

(2009) for the purposes of assessing the motifs (e.g. positional bias in Section

5.2.7.1, or the conservation analysis in Section 5.3.6.1). Most sequence fetching

tasks were done from the Ensembl database with tools which I created with Dr

Thomas Downs help using the BioJava toolkit Holland et al. (2008). Sequences

for the assessment originated from version 57 of the Ensembl Core database. An

usage example for the nmensemblseq retrieval tool is provided below:

nmensemblseq \
−database s a c c h a r o m y c e s c e r e v i s i a e c o r e 5 7 1 j \
−host ensembldb . ensembl . org \
−user anonymous \
−port 5306 −noRepeatMask \
−noExc ludeTrans lat ions \
−prote inCoding −known \
−fivePrimeUTR 500 0 −type p ro t e i n c o d i n g

The genomic coordinates for the sequence regions were also retrieved for the

sequences, similarly using nmensemblseq, by adding the command line flag

-outputType gff. A more thorough tutorial on using this utility, as well as some

of the others included in the nmica-extra package I created during my project,

are provided in Appendix B. The sequence retrieval tools were also integrated

with the iMotifs sequence motif visualization and inference environment which I

created during my project (Piipari et al., 2010b) (Figure 5.1A,B).
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A) B)

Figure 5.1: The sequence retrieval tools included in iMotifs. A) Configuration
dialog for the 5 / 3 UTR sequence retrieval tool nmensemblseq. B) Configuration
dialog for the GFF/BED sequence feature and ChIP-seq peak retrieval tools
(nmensemblfeat and nmensemblpeakseq).
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5.2.2 Motif inference

I tested predicting motifs with all of the thirteen motif inference algorithms

from the Tompa et al. (2005) assessment, as well as SOMBRERO (Mahony

et al., 2005b), PRIORITY (Narlikar et al., 2006), MoAn (Valen et al., 2009)

and BayesMD (Tang et al., 2008). The Tompa et al. (2005) methods were chosen

because it is perhaps the most comprehensive assessment to date, and the ad-

ditional methods (NestedMICA, SOMBRERO, PRIORITY, BayesMD, MoAn)

were tested because of their reported favourable performance in comparison to

those tested in Tompa et al. (2005). The input parameters used for all of the

successfully run algorithms are described in Appendix C. All inference experi-

ments were made with the random orthologous promoter sequence set detailed

in Section 5.2.1. If possible, each algorithm was made to predict 200 motifs. In

case this was not possible, the largest motif set output by the tool was used for

evaluation.

The PWMs output by each of the programs were converted to the XMS for-

mat used by the NestedMICA suite and iMotifs, with scripts that use the libxms

Ruby bindings which I wrote Piipari et al. (2010b). Two of the algorithms which

successfully returned results use a consensus string representation of their out-

put (YMF and Oligoanalysis). These were converted to a PWM representation,

applying a very small pseudo-count of 0.001 to the motifs.

I ran all of the motif inference programs myself after consulting the publica-

tions describing the algorithms, and other available documentation regarding each

of them. This is in contrast with the Tompa et al. (2005) assessment, which was a

large collaborative project where outside experts (the authors of the algorithms)

created the motif predictions, which were assessed independently.

Conservation of noncoding sequence has been applied in some earlier studies

as a means of selecting candidate sequences for motif inference (Elemento and

Tavazoie, 2005; Hardison, 2000; Kellis et al., 2003; Xie et al., 2005). However,

I decided not to choose or weight promoter sequences for my study according

to conservation. There were several reasons for this decision. Firstly, leaving

sequence conservation aside from the motif inference step allows it to be used

as an independent way of assessing the motifs. Secondly, the traditional con-
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servation scoring methods, such as the PhastCons (Siepel et al., 2005) used in

the present study, assume an alignment between the sequences; given the small

alphabet size of DNA, and repetitive nature of genomic sequence, alignment er-

rors are inevitable. Thirdly, biologically active TFBSs are known to be turned

over quickly, and some experience near to neutral mutation rates (Kunarso et al.,

2010; Schmidt et al., 2010). Although success has been reported in studies us-

ing conservation as a criterion of choosing motifs amongst candidates (Xie et al.,

2005), it does not always lead to detection of correct ones. For instance, Li et al.

(2005) suggest that a simple conservation based significance score would lead to

the selection of an incorrect TFBS motif in 28% of cases with yeast ChIP-chip

data of Lee et al. (2002).

The rate of binding site turnover has been studied in high resolution with

ChIP-seq assaying in the CEBPA and HNF4A transcription factors, which are

strongly conserved across placental mammals (Schmidt et al., 2010). Less than

0.3% of binding events were shown to be conserved in all assayed species. A study

by Kunarso et al. (2010) finds that in the case of Oct4 and Nanog, 2.0% of sites are

conserved in sequence. The binding regions however are functionally conserved at

a much higher rate of between 50% and 10% depending on the chosen stringency

of statistical significance. The strength of binding was not seen to associate with

conservation, suggesting that the wide binding site spectrum of TFs is important

(Schmidt et al., 2010), and that weak binding sites can have a biological effect.

Several studies of human (Kasowski et al., 2010; McDaniell et al., 2010) and

yeast (Zheng et al., 2010) individuals and related yeast species (Borneman et al.,

2007) have shown results pointing in the same direction: individual TFBS events

undergo rapid divergence, but a weak conservation signal tends to be found from

a collection of TFBSs. The excess conservation of motifs is considered here,

in combination with other lines of evidence, as a potential sign of function for

computationally predicted motifs.

5.2.2.1 Unsuccessfully run algorithms

Several motif inference programs which were assessed in the Tompa et al. (2005)

assessment by the authors of each of the algorithms were unsuccessfully attempted
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to be used in the assessment, due to various reasons. Firstly, ANN-SPEC (Work-

man and Stormo, 2000) and Improbizer (Ao et al., 2004) are not distributed

in binary or source code form without request from their authors, and the web

servers provided are not suitable for discovering motifs on a genome scale. MI-

TRA (Eskin and Pevzner, 2002) was not available at the URL noted by the

authors1, and no suitable online prediction server was found. QuickScore (Eg-

nier, 2004) is only available as an online prediction server, and it was found not

to handle the large (200,000nt) input sequence size. CONSENSUS (Hertz and

Stormo, 1999) failed to compile on either 32 or 64 bit Linux or Mac OS X with

the available compiler versions (gcc 4.2 and 4.3), and I was unable to find a binary

distribution, or an online CONSENSUS prediction server suitable for the large

analysis task at hand.

MoAn (Valen et al., 2009), PRIORITY (Narlikar et al., 2006), and SeSiMCMC

(Favorov et al., 2005) were each successfully run with example data sets, but each

only allowed for a single motif to be estimated.

BioProspector (Liu et al., 2001) was attempted to be run (BioProspector -i

orthologs-sc-1000.fa -r 200 -f yeast_all.bg -n 100 -h 1). The cur-

rently distributed version of the program2 does not parse the FASTA files used

in the assessment. The file did appear to conform to the required variant of

the file format given in the program’s example file, and all of the other at-

tempted tools processed it without problems. Furthermore, the BioProspec-

tor web server (http://robotics.stanford.edu/ xsliu/BioProspector/) only allows

reporting a maximum of ten motifs (and its documentation specifically warns

against specifying too large an input sequence set), which made it inapplicable

for this benchmark (the target is 200 motifs). The same reason also made it

impossible to run MDscan from the same authors (Liu et al., 2002) 3.

The Bayesian motif inference method BayesMD, which reportedly performs

better with long promoter sequence than NestedMICA (Tang et al., 2008), was

also tested, but it failed to report any output motifs due to persistently running

1http://www.cs.columbia.edu/compbio/mitra
2‘BioProspector.2004.zip’, downloaded 1st June, 2010 from http://motif.stanford.edu/

distributions/bioprospector/)
3‘MDScan.2004.zip’, download made 1st June, 2010 from

http://motif.stanford.edu/distributions/mdscan/
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out of runtime memory, even with cluster nodes with 15.5G of allocatable memory.

5.2.3 Motif comparison

The computationally inferred S. cerevisiae motifs were compared to two differ-

ent, partially overlapping reference sets of regulatory motifs: the JASPAR 2010

database (Portales-Casamar et al., 2010), and the Zhu et al. (2009) PBM motifs

(some of which are included in the JASPAR dataset). The discovered motifs were

also compared against one another to measure the level of redundancy across the

sets.

To study the capacity of each of the motif inference methods to detect motifs

that resemble known regulatory motifs, I compared them to motifs in the JAS-

PAR 2010 database (Portales-Casamar et al., 2010). The JASPAR fungal motif

dataset was chosen as the primary gold standard comparison set because it cov-

ers the great majority of all S. cerevisiae transcription factor motifs (177 TFBS

non-redundant motifs in the database). It is an open access database, and its

curation appears to be of more uniform quality than its competitor TRANSFAC

which suffers from infrequent missing annotations such as species or publication

references. Furthermore, JASPAR 2010, unlike previous versions of the database,

includes a high coverage, non-redundant 1 set of S. cerevisiae motifs. The dataset

originates mostly from two large scale studies; The single largest set included, and

one preferred by Portales-Casamar et al. (2010) in case of conflicts, is the set of

motifs from a study by Badis et al. (2008). This study includes data for a total

of 112 TFs (107 of which are included in the non-redundant dataset, see Figure

5.2) from a combination of universal protein binding microarray assays (Berger

et al., 2006; Mintseris and Eisen, 2006), cognate site identifier (CSI) microarrays

(Warren et al., 2006), and DIP-chip (Liu et al., 2005) assays. The second large

dataset included in JASPAR 2010 is the PBM based study by Zhu et al. (2009) (89

motifs). The remaining motifs from two datasets containing primarily literature

based motifs from the SCPD binding profile database and literature (Zhu and

Zhang, 1999),and the ChIP-chip based SwissRegulon database (Pachkov et al.,

1In this context, non-redundant means that only one motif prediction is included in the set
for each TF.
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2007) as well as computationally inferred motif dataset from the genome-wide

ChIP-chip study of S. cerevisiae by MacIsaac et al. (2006). The motif com-

parisons presented in this chapter rely on these original studies and the manual

curation conducted for the JASPAR database.

0

30

60

90

120

PBM/CSA/DIP-chip PBM ChIP-on-chip Compiled
182527

107

Figure 5.2: The number of motifs from different experimental sources in the JAS-
PAR 2010 non-redundant fungal motif dataset. Note that some datasets contain
motifs for TFs covered by other datasets. The PBM/CSA/Dip-chip dataset of
Badis et al. (2008) for example contains in total 112 motifs, but only 107 of these
are used in the non-redundant dataset by Portales-Casamar et al. (2010).

I also compared the inferred motifs to the Zhu et al. (2009) PBM motifs

because they form the highest coverage regulatory motif dataset originating from

a single type of experiment in the S. cerevisiae; the Badis et al. (2008) dataset

with 112 motifs is in fact larger than the 89 motifs estimated by Zhu et al. (2009),

but Badis et al. (2008) apply a combination of three different high-throughput

methods, rather than one. A reference dataset additional to JASPAR was useful

also because some of the JASPAR motifs could in fact originate from one of

the tested algorithms (the 25 ChIP-on-chip and 18 ‘other’ motifs in JASPAR

are suspect). In contrast, the Zhu et al. (2009) motifs are all estimated from

PBM data with the Seed-and-wobble algorithm (Berger et al., 2006), and these

data should therefore not suffer from circularity in the comparison of the de novo
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predictions to a reference.

5.2.3.1 Motif clustering with the SSD metric

The pairwise sum of squared differences (SSD) metric between PWMs, intro-

duced by Down et al. (2007) (Equation 2.7 in Section 2.2.3), was computed sys-

tematically between all pairs of motifs. The distance matrix between all inferred

motifs and JASPAR reference motifs were computed. Motif-to-motif distances

allowed probing the redundancy of motifs within inferred sets with complete link-

age clustering (Johnson, 1967). All motif sets were also clustered together with

the JASPAR reference set, to summarise and visualise the trends in motif types

found by each of the algorithms.

5.2.4 Motif scanning

After predicting sequence motifs with a selection of motif inference algorithms

from the putative S. cerevisiae promoters, I scanned all putative promoter se-

quences of lengths 200bp, 500bp and 2000bp for the inferred motifs using the

nmscan program included in the NestedMICA suite (Down and Hubbard, 2005).

Sequences on the reverse strand with respect to the reference genome were reverse-

complemented. The 200bp and 500bp sequence ends were aligned to the TSS.

2000bp sequences were centered on the TSS (i.e. they contain 1000bp upstream

and 1000bp downstream sequence). The motif bit score function evaluated by

nmscan for all PWMs W at positions p in sequence S is explained in Section

1.2.1 (Equation 1.1).

I also scanned all the sequences again to report the maximum bit score

achieved in 200nt and 500nt upstream sequence regions of all S. cerevisiae genes

(the -maxPerSeq mode in nmscan). Maximum bit scores were computed because

they allow a parameter free comparison of score distributions between groups of

promoters (genes). In Section 5.2.6 the maximum bit scores achieved by promot-

ers are used to compare putative target genes of TFs to non-target genes (to see

if the maximum bit scores discriminate TF targets from non-targets).

The match positions identified are dependent on the choice of the bit score

threshold chosen for each of the motifs. Finding a meaningful statistical measure
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of significance for motifs found from genomic DNA sequence itself is an active

research problem. Approximate (Thijs et al., 2001) and even exact P -value cal-

culation of PWM matches in DNA sequence (Zhang et al., 2007) is possible for

PWMs given a sequence background with independent and identically distributed

(i.i.d.) nucleotides, but i.i.d. is not a realistic model of background genomic DNA

(Section 1.3.3). I therefore used a method for assigning the significance threshold

of motif hits which can account for varying DNA dinucleotide content (Down

et al., 2007).

In brief, the significance scores are computed with respect to a 1st order mosaic

sequence background model. I compare the score distribution of k-mers drawn

from a 1st order Mosaic sequence background model to the motif matches in each

bin (both the expected and the observed score distribution are binned on 1 bit

intervals). The benefit of this approach is that it allows a comparison to be made

to a more representative background model of nucleotide sequence than what is

commonly done (with a GC-content based background model). The drawback

is that the computation is not exact, and the scores are reliant on the score bin

sizes, and the total number of hits. This led to some difficulties, particularly with

the motifs output by MEME, which are discussed below.

The total number of motif hits identified at different confidence thresholds

varies dramatically. For instance, in the case of the 200 motifs predicted by

NestedMICA, the total genomic hit count in 200 base upstream sequences ranges

from 47, 312 with the 0.01 confidence threshold to 139, 312 hits with the 0.05

threshold. All analyses presented here were made with a stringent 0.01 cutoff.

5.2.5 Predicted binding site overlap

I computed the overlap between matches of different motifs within the inferred

sets, and with the JASPAR database motifs, with a score similar to the one used

by (Down et al., 2007) (Equation 5.7). In brief, the overlap score O, between

binding sites B1 of motif 1 and binding sites B2 of motif 2, is the fraction of

overlapping predicted sites which are hits for motif 1. O is 0 when the sets are

disjunct, and 1 when a motif matches all of the other ones sites.
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O =
|B1 ∩B2|

min(|B1|, |B2|)
(5.7)

This allows the detection of similar motifs within the inferred motif sets, and

also between the inferred and the experimentally validated JASPAR motifs. The

overlap scores were considered for binding sites at the 0.01 significance cutoff (see

Section 5.2.4 for discussion of determining motif hit significance). Overlapping

motifs were analysed in an orientation independent manner, simply as chromoso-

mal coordinate ranges with no strand information. This was done because all of

the motif inference algorithms were run in a mode which allows for matches of a

motif to occur in either orientation.

5.2.6 Association of motif hits to transcription factor tar-

get genes

A set of target genes is known for the great majority of S. cerevisiae regulatory

TFs. For many of them, there is also an experimentally verified DNA motif in

the JASPAR database. This makes it possible to judge if high-scoring matches

of the predicted motifs distinguish target promoters of their likely TFs from

non-target promoters. That is, for each computationally predicted motif with

a closely related known TFBS motif, I test if the distribution of its maximum

scoring occurrences differs between targets of the likely TF genes, and non-target

genes.

I considered three different TF target gene datasets in this work. These

datasets were:

1. YEAst Search for Transcriptional Regulators And Consensus Tracking

database (Teixeira et al., 2006). Introduced in Section 5.2.6.1.

2. TF target calls from a reanalysis (Reimand et al., 2010) of a sequence

specific TF knockout expression dataset Hu et al. (2007). Introduced in

Section 5.2.6.2.

3. The Harbison et al. (2004) dataset of genome-wide location analysis by

ChIP-chip (Iyer et al., 2001; Lieb et al., 2001). Introduced in Section 5.2.6.3.
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For all of the target gene sets (introduced below), I extracted the curated TF–

target dataset for all of the factors which also had a corresponding motif available

in the JASPAR database. For each of these JASPAR motifs, I then calculated

the closest motif from each predicted motif set (using the SSD distance metric

by Down et al. (2007)). Maximum bit scores of the computationally predicted

motifs were then compared in 500 base upstream regions of the S. cerevisiae

genome using a two-sample single-tailed Kolmogorov-Smirnov (KS) test. The

target genes of the TF, and the non-target genes, were the two different sets

whose maximum bit score distributions were compared for each motif. In the

KS test a low p-value indicates skewing of the bit score distribution of TF target

promoters to the high bit-score end when compared to non-target genes. In

addition to the two-sample KS-test, the rank-based two-sample Mann-Whitney

(MW) test was computed for the maximum bit score distributions to see if the

ranks of the maximum motif bit scores would be higher amongst the TF target

genes. The non-parametric KS and MW tests were used due to the non-normal

shape of the maximum bit score distribution.

5.2.6.1 YEASTRACT

YEAst Search for Transcriptional Regulators And Consensus Tracking database

is a curated repository of transcriptional regulatory interactions in the S. cere-

visiae genome (Teixeira et al., 2006). It currently collates a total of 12,346 TF–

target associations for 149 TFs, each derived from one of a number of possible

experimental sources, described in as many as 861 primary publications (down-

load date 18/3/2010). The possible lines of evidence accepted as support of a

target association in it are either:

1. change in the expression of the gene of interest owing to deletion or muta-

tion of the TF gene (as measured by either gene by gene or genome-wide

microarray).

2. binding of the transcription factor to the promoter region of the target gene,

as supported by a band-shift assay (Fried and Crothers, 1981a), DNAse

footprinting (Brenowitz et al., 1986), or ChIP assaying (Harbison et al.,

2004).
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In other words, the evidence sources in this dataset range from detailed in-

dividual genetic or physical interaction studies to high throughput ChIP-chip

experiments.

5.2.6.2 Reimand et al. (2010) TF knockout and expression data based

target set

Reimand et al. (2010) present a reanalysis of the sequence specific TF knockout

expression dataset by Hu et al. (2007) of 269 sequence specific regulatory factors,

including both general and specific TFs and factors involved in regulating chro-

matin state. The re-analysed dataset applied a series of corrections and process-

ing steps to the expression data which were not made by original authors. These

include a correction for non-specific background and print-tips (Huber et al.,

2002), as well as correction for multiple-testing which was not made by false-

discovery rate estimates (Reiner et al., 2003). TF target calls made by Reimand

et al. (2010) were downloaded from the ArrayExpress database (Parkinson et al.,

2009). Genes called as targets for a TF have a highly significant expression dif-

ference between the knock-out and the wild-type, with a 0.05 p-value cutoff. The

problem of possible indirect targets being included amongst the predicted target

genes is however not directly addressed by Reimand et al. (2010).

5.2.6.3 Harbison et al. (2004) ChIP-chip dataset

The Harbison et al. (2004) dataset of genomic occupancy of 203 TFs is a result of

genome-wide location analysis by ChIP-chip (Iyer et al., 2001; Lieb et al., 2001).

They made measurements in a number of growth conditions (1 to 12 conditions,

depending on the TF). I use a re-analysis of the Harbison et al. (2004) dataset by

MacIsaac et al. (2006). This dataset contains lists of ORFs likely to be regulated

by the TFs, based on conservation in other related yeasts, and a significance

cutoff of the signals identified close to the ORFs in the ChIP-chip measurements.

The analysis I present was made with the most stringent dataset provided by

MacIsaac et al. (2006): ChIP-chip signal significance p < 0.001, with the binding

site conserved in at least 2 other yeast species.
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5.2.6.4 Relationship between discovered motifs and inter-species se-

quence conservation

The relationship between discovered motifs and sequence conservation were stud-

ied with 7-way phastCons conservation scores (Nielsen, 2005; Siepel et al., 2005)

derived of an alignment of the S. cerevisiae genome with genomes of six other

Saccharomyces species (S. paradoxus, S. kudriavzeii, S. bayanus, S. castelli, and S.

kluyveri). The phastCons scores were retrieved from the UCSC Genome Browser

FTP server (sacCer2 conservation track, available at ftp://hgdownload.cse.

ucsc.edu/goldenPath/sacCer1/phastCons/, downloaded on 12/02/2010).

The conservation scores of motif match positions at the stringent confidence

cutoff of 0.01 were contrasted with phastCons scores of 10,000 randomly sampled

intergenic regions of the same lengths (10,000 regions were sampled at all lengths

between 6 and 20 nucleotides). The random intergenic regions were sampled and

retrieved from Ensembl (Hubbard et al., 2009) with the help of tools I wrote as

part of the project. See Appendix B for usage examples for some of the tools

included in the nmica-extra toolkit. The difference in conservation score distribu-

tions of the motif matches and random intergenic sequences were measured with

the single-tailed two-sample Kolmogorov-Smirnov test.

5.2.7 Relationship between discovered motifs and sequence

variation in cerevisiae strains

The S. cerevisiae reference genome was the first eukaryotic genome to be pub-

lished (Goffeau et al., 1996; Mewes et al., 1997). Because the budding yeast is

so amenable for genomic study and manipulation, and because its association to

human activity and migration, its genetic variation in and between its different

populations has also been studied. Large genetic studies began from typing mi-

crosatellites of over 600 S. cerevisiae strains (Legras et al., 2007). In this work I

however use the more recent whole genome sequencing data from 42 S. cerevisiae

strains conducted by the Saccharomyces genome resequencing project (SGRP)

(Liti et al., 2009). This study presents the 1x to 4x coverage whole-genome cap-

illary sequencing of the S. cerevisiae strains. Genotypes reported by Liti et al.

(2009) for individual positions in the multiply aligned strains were imputed using
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ancestral recombination graphs (Minichiello and Durbin, 2006) and the sequenc-

ing traces, instead of ‘trusting’ the base calls alone. On top of the low coverage

sequence, the PALAS alignment method built for assembling and aligning the

low coverage sequences is not a principled, probabilistic method with predictable

properties, but instead an ad hoc iterative algorithm. The common occurrence of

binding sites with large numbers of mismatches in aligned binding site matches

suggested that alignment errors were prevalent (Edmund Duesbury, personal com-

munication), especially between the S. cerevisie and paradoxus strains. Because

of the limitations of the low coverage data and the SNP calls derived from it, I

resorted to a simple comparative study between the SNP rates in binding sites

when compared to intergenic sequence, with the aim of detecting motifs with

likely function (those which show lower SNP rate than intergenic sequence). Only

the S. cerevisiae strains were considered (no S. paradoxus strains), with two or

less SNPs per regions of interest, as well as filtering out SNPs with less than

1 × 10−6 error probability. Putative TFBS matches with more than two SNPs

were rejected because they are most likely caused by misalignments.

I applied a simple bootstrapping based statistical test to assess the significance

of the difference of SNP rates seen in motif matches and random intergenic regions

of the matching length. This was done for each predicted motif by counting the

number of SNPs in a randomly chosen sub-selection of binding sites of the same

length as the motif, and repeating this 10,000 times. The number of binding sites

in each of the 10,000 random intergenic region sets was matched to the number of

motif hits above the significance cutoff of 0.01. The significance score was derived

as the fraction of the 10,000 sets where the mean SNP rate was higher than that

observed for the motif’s binding sites. Higher coverage Solexa based resequencing

data, which (at the time of writing) is expected soon, could allow a more detailed

analysis, for instance using the mutation spectra of motifs.

5.2.7.1 Positional bias of motifs

Regulatory motifs often match positions close to transcription start sites. Many

cases of characteristic positional biases have been described for TFs, especially

for elements bound by the general TFs, such as TATA-box (at around -30) or the
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B-recognition element (BRE) which is found immediately upstream from TATA

(Lagrange et al., 1998). An inverse linear association between the distance of

the binding site to the TSS and its effect on gene expression has been suggested

based on an in vivo study of factors acting in the liver and the immune system

(MacIsaac et al., 2010). An earlier in vitro study of differently spaced Gal4

activator sites upstream to Gal4 also suggest a simple inverse relation between

the distance of binding site to the transcription start site and its gene expression

activating effect (Ross et al., 2000). I therefore analysed the positional bias of

the computationally discovered motifs as an indicator of potential function.

I counted the motif matches in all matches overlapping 100-base windows

between -1000 to 1000 from the TSS of all known protein-coding genes in the S.

cerevisiae genome, and tested for the enrichment of sites within the region -500–0

with respect to the TSS, compared to sequence regions outside this window. I

used the exact one tailed binomial test with the null hypothesis success probability

of 0.25 (the interval -500 to 0 covers a quarter of the 2000 base sequence length

of interest). The interval was chosen because it is expected to contain the great

majority of S. cerevisiae TFBSs (Venters and Pugh, 2008).

5.2.8 Classification of motifs with metamatti

Metamotifs were constructed from the JASPAR 2010 motif dataset similarly as

described in chapter 4: motifs were labelled with their structural class, and clus-

tered at cutoff 4.0 (complete linkage clustering) using the SSD metric from Down

et al. (2007). However, in this classification exercise I did not use the structural

classification terminology from the TRANSFAC database, but instead the bind-

ing structural mode taxonomy introduced by Luscombe et al. (2000), which is

included for majority of motifs in JASPAR 2010. The Luscombe et al. (2000)

classification terminology describes ‘classes’ and ‘families’ for TFs. Classes are

defined by a manual, visual comparison of protein structures, and families by

a computational clustering of the domain structures with the SSAP secondary

structure alignment algorithm (Orengo and Taylor, 1996).

The JASPAR database was used for building a S. cerevisiae motif classifier

because it contains the largest selection of high quality training data for the S.
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cerevisiae genome; The emphasis in TRANSFAC is on vertebrate genomes, and

as of version 12.2 its non-redundant coverage of the S. cerevisiae genome is only

43 as opposed to 177 motifs in JASPAR 2010. As described in Section 1.1.1,

eukaryotic genomes have experienced lineage specific expansion of TF domains.

Therefore for an accurate organism specific TFBS motif classifier it important to

have a good coverage of the domains that are present in that genome. For example

in the case of S. cerevisiae the largest domain class is that of zinc coordinated

domains, especially the fungal specific zinc cluster (Macpherson et al., 2006) (47

of 99 S. cerevisiae zinc finger motifs belong to this family, and very few are present

in TRANSFAC).

Metamotifs were trained from each of the motif clusters with nmmetainfer

(minimum length 6, maximum length 15) and metamotif density features were

then computed per training set motif as described in Section 4. Based on the

classification labels and probabilities that the random forest classifier produces, I

computed a precision-recall curve using the ROCR R package (Sing et al., 2005),

and applied a probability cutoff to the classification decisions such to provide a

high confidence labelling of motifs.

5.3 Results & Discussion

I apply eight motif inference tools in this work primarily as a genome scale per-

formance benchmark. To my knowledge, these algorithms have not been judged

before on problems involving the prediction of large motif collections from pro-

moter sequence. The rationale in the assessment is simple: a well performing

de novo motif discovery algorithm should find as many as possible motifs closely

matching known TFBS motifs in the S. cerevisiae genome (Section 5.3.2).

5.3.1 Properties of inferred motifs

The motifs predicted by different computational methods were found to differ

clearly by visual inspection. A selection of the top matches between the inferred

motifs and motifs in the JASPAR database are shown in Figure 5.3. The closest

matches identified vary considerably between different methods. The familial
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patterns of motifs found by different methods is also apparent amongst the closest

matches; MEME, in particular, shows clear preference towards discovering GC-

rich fungal Zn cluster motifs, whereas SOMBRERO and NestedMICA show more

variability amongst the closest matches.
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The lengths, information contents and column wise average information con-

tents are summarised for reference motifs and all inferred motif sets in Table

5.4. NestedMICA predicts the shortest motifs (6.6 columns), whereas Weeder

has both the smallest information content (7.1 bits) and lowest per-column in-

formation content (0.9 bits per column). In contrast, MEME’s motifs are almost

twice as long as those of NestedMICA, at 12.6 columns, and they have the highest

information content (over three times as high on average as motifs predicted by

Weeder, at 21.7 bits). It should be noted that these motif set summary statis-

tics and the relative performance measures reported in the following sections also

depend on the chosen input parameters (Appendix C).

In terms of information content, the methods are divided to two groups: SOM-

BRERO, MotifSampler, NestedMICA and Weeder all predict motifs with smaller

information content than their closest JASPAR matches, whereas AlignACE,

Oligoanalysis, MEME and YMF have higher information content. The median

per column information content is slightly higher with the JASPAR motifs with

all but Weeder and MotifSampler. The combination of short motif lengths, with

less information in total but with higher per-column information could be ex-

plained by the computational motifs lacking ends with low information columns,

which are common in the experimentally verified motifs. The systematically low

information content seen in the case of Weeder and MotifSampler is apparent

already by visual inspection of the sequence logos: the columns tend to be less

constrained than those in the reference set, or those output by the other methods.

Oligo-analysis and YMF results are included in this study for the sake of com-

pleteness: both are word enumeration based methods, and therefore not strictly

comparable to the other methods which output a PWM, but they could be run

also on my benchmarking dataset. Oligo-analysis motifs are in fact individual 8-

mers (not IUPAC consensus strings, like those predicted by YMF). This inflates

its information and per-column average information content measures shown in

Table 5.4.
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Motif set Average length Information content Average column info content
NestedMICA (200 motifs) 6.6 9.5 1.5

AlignACE (16 motifs) 11.6 17.2 1.5

MEME (100 motifs) 12.6 21.7 1.7

MotifSampler (37 motifs) 10.0 10.0 1.0

Oligoanalysis (50 motifs)        8.0 16.0 2.0

SOMBRERO (200 motifs) 9.4 9.6 1.1

Weeder (200 motifs) 8.3 7.1 0.9

YMF (200 motifs) 8.6 14.2 1.6

JASPAR (177 motifs) 10.3 11.6 1.3

Zhu et al. (2009) PBM motifs (89 motifs) 9.6 11.7 1.3

Figure 5.4: Summary of the average lengths and information contents of the
different inferred motifs, and the two reference datasets (JASPAR and Zhu et al.
(2009) PBM motifs, shown on a grey background in the bottom).

5.3.2 Finding matches to known regulatory motifs amongst

de novo motif discoveries

The number of JASPAR motifs with matches in each of the predicted motif

sets (p < 0.05) are shown in Figure 5.5. Results appear to be rather consistent

with two different reference databases (JASPAR in Figure 5.5A, and Zhu et al.

(2009) PBM motifs in Figure 5.5B). The top performers, by a clear margin, are

NestedMICA (54 matches to JASPAR amongst its 200 motifs, 44 matches with

100 motifs), MEME (39 matches) and SOMBRERO (38 matches). NestedMICA

was tested with two different motif set sizes, in part to measure its robustness

with differing motif count, and also to allow direct comparison with MEME which

was incapable of predicting more than 100 motifs. AlignACE reports a mere 16

motifs, but surprisingly, these map to 31 JASPAR motifs; almost all of the motifs

predicted by AlignACE are in fact contributing to the JASPAR matches (14 out

16 motifs). With the (Zhu et al., 2009) PBM motifs as a reference, NestedMICA

is consistently the top performer, with SOMBRERO outperforming MEME.
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Counting reciprocal matches between the predictions and the reference motifs

is a more stringent way to assess motif relatedness (Figure 5.6). This measure

penalises motif sets containing several closely related motifs. Some of the motifs

amongst the reference motif sets are also highly similar to one another. Nested-

MICA also tops this ranking. With the JASPAR dataset of 177 motifs, it has

14 reciprocal matches, with SOMBRERO behind it, again with a clear margin

(10 reciprocal matches) and MEME and AlignACE third (both with 6 reciprocal

matches). Note again that the AlignACE program, which outputs a small motif

set and has little redundancy in its predictions (Sections 5.3.4 and 5.3.5), is more

likely to perform well by chance in this comparison than MEME with 100 motifs

with several closely related motifs. Overall, the most likely reason for low num-

bers of reciprocal matches seen is due to the partial redundancy and large size

of the experimental and inferred motif sets. NestedMICA however outperforms

MEME and AlignACE also with a 100 motif count which matches that of MEME

(9 reciprocal matches). There is little qualitative difference between the rankings

with JASPAR or Zhu et al. (2009) PBM dataset as the reference.
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The significant JASPAR and PBM motif matches suggest NestedMICA, SOM-

BRERO and MEME as the top performing methods. I also studied the overlap

between the reference motifs covered by the different methods. I did this by

computing the numbers of overlapping motifs between the top performers with

the JASPAR motifs (Figure 5.7). NestedMICA has the highest overlap with the

two other top performing methods (13 overlapped with SOMBRERO, and 9 with

MEME). The number of motifs predicted by it and not covered by the other

top performers (22 motifs) is also higher than either of MEME or SOMBRERO

(14, and 9 motifs respectively), suggesting it covers more reference motifs than

either of the other two top performers. Ten JASPAR motifs are found by all of

SOMBRERO, NestedMICA, and MEME.

The number of statistically significant matches is informative of the extent

to which the predictions cover the reference motif sets with detectably related

motifs. The distribution of SSD distances between the inferred motifs, and their

significant reference motif matches however also varies between algorithms (Fig-

ure 5.8). These results are consistent with above ranking in that NestedMICA

also tends to have the shortest median distance, with SOMBRERO ranking the

second. Once again the top performers are also consistent between the two dif-

ferent reference motif sets (JASPAR and the Zhu et al. (2009) PBM motifs).

The substantial disjunction of discoveries between the top-performing Nest-

edMICA, MEME and SOMBRERO suggests that differences exist in the types of

motifs that different algorithms are capable of finding. To study this further, I vi-

sualised the JASPAR dataset matches as a heatmap of matching or non-matching

states, labelling the JASPAR motifs with its associated structural taxonomy of

TFs, and clustering the motifs (Figure 5.9).
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Figure 5.7: Overlap of significant matches to the JASPAR database between
the three top performing motif prediction methods: NestedMICA, MEME and
SOMBRERO.
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Some clustering of shared predictions by different computational methods is

evident. Examples of JASPAR motifs predicted by different subsets of the meth-

ods are shown in Figure 5.10. Few clusters are covered by the majority of the

algorithms, in fact only four such clusters appear. However, most JASPAR motifs

in fact match by two or more methods, suggesting that consensus based predic-

tions could perhaps be developed for more successful large scale motif inference,

using combinations of different agreeing predictions. For example, SOMBRERO,

and especially MEME, succeed with a large homogeneous cluster of 15 Zn cluster

motifs (MEME identifies matches to 9, SOMBRERO to 5), to which NestedMICA

predicts only two matches (CEP3, STB4). In contrast, NestedMICA shares mo-

tifs with SOMBRERO which match the FKH1 and FKH2 forkhead motifs, and

the relatively closely related ROX1 motif, matches to which are not discovered by

any of the other algorithms. All of the top performing methods also have motifs

unique to them. Some examples of these motifs are also shown in Figure 5.10.

I studied the motif families predicted by the different methods, using the struc-

tural taxonomy provided by JASPAR. Some of these families, such as fungal Zn

clusters, or ββα-zinc fingers are present in high numbers in the yeast genome.

I separated the JASPAR motifs to groups based on their structural family, and

counted the numbers of matches to each of these families (Figure 5.11). Strati-

fication of the matches by motif family provides another natural way of ranking

the motif inference methods.

Most methods (MEME especially) appear to find several of the fungal Zn

cluster motifs (the single most abundant TF domain family in the yeast (Wilson

et al., 2008a)). The ββα zinc finger, Myb and HMG motifs are also covered

with predictions by most methods. Substantial differences between methods do

however exist. MEME, for instances, appears to be unable to find any instances

of E2F, forkhead, MADS, or NFY CCAAT-binding domains, whereas it discovers

motifs similar to the only AT-hook and RFX-like motifs present in the JASPAR

motif set. NestedMICA and SOMBRERO find the most varied collection of

motifs: 16 different structural families, whereas AlignACE only finds 12, and

MEME 11.
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Figure 5.10: Different algorithms find matches to partially overlapping subsets of
the JASPAR motif set. Example motif clusters found by different subsets of the
algorithms are presented.
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Figure 5.12 summarises the differences seen between the motif inferred by the

eight different methods, and their closest, statistically significant reference motif

matches. The properties shown are the motif lengths, information contents, and

per-column information contents, similarly as shown above in Table 5.4. Once

again, the analysis conducted with the JASPAR reference motif set is largely

consistent with the Zhu et al. (2009) PBM motif set.

139



N
es

te
dM

IC
A 

(2
00

 m
ot

ifs
)

O
lig

oa
na

ly
si

s 
(5

0 
m

ot
ifs

)

SO
M

BR
ER

O
 (2

00
 m

ot
ifs

)

W
ee

de
r (

20
0 

m
ot

ifs
)

M
EM

E 
(1

00
 m

ot
ifs

)

M
ot

ifS
am

pl
er

 (3
7 

m
ot

ifs
)

Al
ig

nA
C

E 
(1

6 
m

ot
ifs

)

YM
F 

(2
00

 m
ot

ifs
)

−20
−18
−16
−14
−12
−10
−8
−6
−4
−2

0
2
4
6
8

10
12
14
16
18
20

Le
ng

th
 d

iff
er

en
ce

 to
 re

fe
re

nc
e 

m
ot

ifs
 (c

ol
um

ns
)

●

●

●
●

●
●

●
●

●

●
●

●
●

W
ee

de
r (

20
0 

m
ot

ifs
)

N
es

te
dM

IC
A 

(2
00

 m
ot

ifs
)

M
ot

ifS
am

pl
er

 (3
7 

m
ot

ifs
)

SO
M

BR
ER

O
 (2

00
 m

ot
ifs

)

YM
F 

(2
00

 m
ot

ifs
)

M
EM

E 
(1

00
 m

ot
ifs

)

O
lig

oa
na

ly
si

s 
(5

0 
m

ot
ifs

)

Al
ig

nA
C

E 
(1

6 
m

ot
ifs

)

−15
−14
−13
−12
−11
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

In
fo

rm
at

io
n 

co
nt

en
t d

iff
er

en
ce

 to
 re

fe
re

nc
e 

m
ot

ifs
 (b

its
)

●

●

M
ot

ifS
am

pl
er

 (3
7 

m
ot

ifs
)

W
ee

de
r (

20
0 

m
ot

ifs
)

SO
M

BR
ER

O
 (2

00
 m

ot
ifs

)

YM
F 

(2
00

 m
ot

ifs
)

N
es

te
dM

IC
A 

(2
00

 m
ot

ifs
)

Al
ig

nA
C

E 
(1

6 
m

ot
ifs

)

M
EM

E 
(1

00
 m

ot
ifs

)

O
lig

oa
na

ly
si

s 
(5

0 
m

ot
ifs

)

−2.0
−1.8
−1.6
−1.4
−1.2
−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Av
er

ag
e 

co
lu

m
n 

in
fo

rm
at

io
n 

co
nt

en
t d

iff
er

en
ce

 to
 re

fe
re

nc
e 

m
ot

ifs

A
)

B
)

C
)

●
●

●
●

●●
●

●
●●●●

●
●

●
●

●

●

●

●
●

N
es

te
dM

IC
A 

(2
00

 m
ot

ifs
)

W
ee

de
r (

20
0 

m
ot

ifs
)

M
EM

E 
(1

00
 m

ot
ifs

)

O
lig

oa
na

ly
si

s 
(5

0 
m

ot
ifs

)

SO
M

BR
ER

O
 (2

00
 m

ot
ifs

)

YM
F 

(2
00

 m
ot

ifs
)

M
ot

ifS
am

pl
er

 (3
7 

m
ot

ifs
)

Al
ig

nA
C

E 
(1

6 
m

ot
ifs

)

−20
−18
−16
−14
−12
−10
−8
−6
−4
−2

0
2
4
6
8

10
12
14
16
18
20

Le
ng

th
 d

iff
er

en
ce

 to
 re

fe
re

nc
e 

m
ot

ifs
 (c

ol
um

ns
)

●
●

●

●

●
●

W
ee

de
r (

20
0 

m
ot

ifs
)

SO
M

BR
ER

O
 (2

00
 m

ot
ifs

)

N
es

te
dM

IC
A 

(2
00

 m
ot

ifs
)

M
ot

ifS
am

pl
er

 (3
7 

m
ot

ifs
)

YM
F 

(2
00

 m
ot

ifs
)

O
lig

oa
na

ly
si

s 
(5

0 
m

ot
ifs

)

M
EM

E 
(1

00
 m

ot
ifs

)

Al
ig

nA
C

E 
(1

6 
m

ot
ifs

)

−15
−14
−13
−12
−11
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

In
fo

rm
at

io
n 

co
nt

en
t d

iff
er

en
ce

 to
 re

fe
re

nc
e 

m
ot

ifs
 (b

its
)

●
●●

●
●

M
ot

ifS
am

pl
er

 (3
7 

m
ot

ifs
)

W
ee

de
r (

20
0 

m
ot

ifs
)

SO
M

BR
ER

O
 (2

00
 m

ot
ifs

)

N
es

te
dM

IC
A 

(2
00

 m
ot

ifs
)

Al
ig

nA
C

E 
(1

6 
m

ot
ifs

)

YM
F 

(2
00

 m
ot

ifs
)

M
EM

E 
(1

00
 m

ot
ifs

)

O
lig

oa
na

ly
si

s 
(5

0 
m

ot
ifs

)

−2.0
−1.8
−1.6
−1.4
−1.2
−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Av
er

ag
e 

co
lu

m
n 

in
fo

rm
at

io
n 

co
nt

en
t d

iff
er

en
ce

 to
 re

fe
re

nc
e 

m
ot

ifs

D
)

E
)

F)

F
ig

u
re

5.
12

:
D

iff
er

en
ce

s
in

le
n
gt

h
,

in
fo

rm
at

io
n

co
n
te

n
t,

an
d

co
lu

m
n
-w

is
e

in
fo

rm
at

io
n

co
n
te

n
t

b
et

w
ee

n
th

e
p
re

d
ic

te
d

an
d

th
e

J
A

S
P

A
R

re
fe

re
n
ce

m
ot

if
s.

P
an

el
s

A
,B

an
d

C
sh

ow
co

m
p
ar

is
on

s
of

th
e

p
re

d
ic

te
d

m
ot

if
s

w
it

h
J
A

S
P

A
R

m
ot

if
s.

P
an

el
s

D
,E

an
d

F
ar

e
fo

r
co

m
p
ar

is
on

s
of

th
e

p
re

d
ic

te
d

m
ot

if
s

w
it

h
Z

h
u

et
al

.
(2

00
9)

P
B

M
m

ot
if

s.
A

&
D

:
le

n
gt

h
d
iff

er
en

ce
;

B
&

E
:

in
fo

rm
at

io
n

co
n
te

n
t

d
iff

er
en

ce
;

C
&

F
:

av
er

ag
e

co
lu

m
n
-w

is
e

in
fo

rm
at

io
n

co
n
te

n
t.

140



5.3.3 TF target gene associations of the discovered motifs

I tried to associate the genomic matches of inferred motifs with known target

genes of TFs in the yeast genome (see Section 5.2.6 for details regarding the

method). I did this with a parameter-free approach, assuming no significance

threshold for the genomic matches of a motif. Each inferred motif was paired with

its closest match in the non-redundant JASPAR database. With one exception

(the MBP1:SWI6 complex), the 177 motifs in the JASPAR motif sets correspond

to individual TFs, which in turn have associated target gene data available. The

distribution of maximum bit scores are then compared with the non-targets to

identify differences. Because there is no single authoritative source of TF–target

gene pairings for the yeast genome, as discussed in Section 5.2.6, I therefore

studied three alternative datasets. It is possible to rank methods based on the

number of motifs identified by each, where a statistically significant difference is

observed between the maximum bit score distribution of the target versus the

non-target genes. Results with the three alternative datasets are shown in Figure

5.15.

An illustrative example of the maximum bit score distribution difference be-

tween target and non-target genes of a TF is shown in Figure 5.13, where motif58

from the NestedMICA 200 motif set is studied with the targets of the REB1 TF

(the REB1 motif is the closest match to motif58). There is a highly significant

difference between the maximum score distributions.

High scoring TFBS motifs are not expected to cleanly partition promoter se-

quences of the yeast to disjoint target and non-target gene sets. For instance,

motif158 from NestedMICA’s prediction set is found to be a close match to both

the CBF1 and the PHO4 helix-loop-helix domain containing TFs (Figure 5.14).

A statistically significant pattern is seen for the enrichment of motif158 with

both CBF1 and PHO4. The DNA motifs of these two factors have been previ-

ously described as being closely similar, but they are known to act under different

conditions and have partially different target gene sets; CBF1 acts under sulphur

limitation, and PHO4 under phosphorus limitation Clements et al. (2007). High

scoring motif matches of motif158 score highly for both of these only partially

overlapping gene sets. One can therefore imagine that the motifs alone – espe-
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Mann-Whitney test: p < 1 x 10
-14

Kolmogorov-Smirnov test: p < 1 x 10
-14

A)

B)

C)

Figure 5.13: Some de novo inferred motifs are able to distinguish putative TF tar-
get genes from non-target genes by the maximum bit scores achieved by the gene
promoter sequences (500bp upstream promoter sequences considered). A) Motif
83 predicted by NestedMICA is one such motif. B) The cumulative distribution
of the maximum bit scores of non-targets (blue) and targets (red) as judged by
the YEASTRACT database. C) A histogram of the bit score distributions of
non-target promoter sequences (blue) and target sequences (red).
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cially in the case of highly expanded TF families – do not have the discriminatory

power to determine the target gene relationships of a TF (see Section 1.1 for a

discussion on the various additional gene regulation mechanisms additional to TF

binding).

Figure 5.14: Motif158 is closely similar to both the CBF1 and PHO4 motifs.

Different stringency of calling genes either TF targets or non-targets can affect

this analysis: if large number of TF targets are found in the non-target set, or vice

versa, the separation between the target and non-target scores diminishes. This

can be also caused by limitations in our knowledge of targets of some less studied

TFs when compared to others, when dealing with hand-curated datasets. I con-

sidered three different TF target gene datasets in this study: a manually curated

YEASTRACT dataset (Teixeira et al., 2006), the gene expression study based

target set by Reimand et al. (2010), and the ChIP-chip data by Harbison et al.

(2004). As a fourth set, I also attempted to retrieve the TF target predictions by

Beyer et al. (2006), which are a result of integrating diverse lines of evidence into

a probabilistic TF target prediction. Unfortunately however the dataset origi-

nally made available by the authors at http://www.fli-leibniz.de/tsb/tfb

was not found anymore (authors were contacted). Several datasets were consid-

ered here because the coverage and confidence of TF–target associations included

in each of them is not necessarily uniform across the TFs that each covers. The

environmental states (e.g. growth conditions) covered by the datasets for instance

are a factor: some factors bind their targets in an environment specific manner.

According to Harbison et al. (2004), TFs fall into four groups with regards their

target gene sets:
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• Condition-invariant housekeeper TFs that bind target genes regardless of

conditions. For instance Leu3, which regulates amino-acid biosynthesis

(Kirkpatrick and Schimmel, 1995))

• Condition-enabled, for instance MSN2 which only enters nucleus to regulate

target genes when the cell is under stress (Beck and Hall, 1999; Chi et al.,

2001).

• Condition-expanded, which bind an expanded set of target genes under spe-

cific conditions. These include for instance Gcn4, which binds an expanded

set of target genes under limited nutrients (Albrecht et al., 1998).

• Condition-altered, for instance Ste12 whose targets vary depending on condition-

specific interaction partners (Zeitlinger et al., 2003).

Given the above categorisation of TFs by their ranges of target genes, one can

imagine that there is variation between TFs in the power to detect a difference

between promoters of target genes and non-target genes with high-scoring TFBS

motif matches.

The largest number of TFs with a significant difference between the maximum

bit score distributions of the target and non-target genes is seen consistently for

all the algorithms with TF calls from the YEASTRACT dataset. This could

be attributable for the manually curated YEASTRACT dataset being the most

extensive and accurate resource of TF target calls, as it considers evidence from

several sources. The ranking of motif inference algorithms relative to each other

varies considerably depending on the source of TF target calls, with NestedMICA

performing the best with the YEASTRACT and ChIP-chip based TF target

calls, both in the case of the Kolmogov-Smirnov and the Mann-Whitney tests.

AlignACE, with its mere 16 predicted motifs, also performs also remarkably well

with this metric, outperforming all of MEME, SOMBRERO and the 100 motif

NestedMICA prediction with the YEASTRACT dataset (Figure 5.15A). With

the Reimand et al. (2010) expression based target calls, AlignACE outperforms

NestedMICA with eight TFs (p < 0.05), with NestedMICA identifying only six

differences at the same significance level. AlignACE and NestedMICA share the

top rank with the Mann-Whitney test at this same significance level. Interestingly
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though the reference JASPAR motifs identify a significant difference for only

two more TFs than AlignACE, with this same dataset and statistical test. One

feasible interpretation for this general failure of a motif match based approach to

identify differences between the two populations of promoters with the Reimand

et al. (2010) TF target calls is that the target list contains indirect downstream

targets of the actual TF (possible because the dataset is expression effect based).

As an alternative to studying the closest JASPAR matches, all motifs could

have been tested ‘blindly’ against all TF target sets. This however would neces-

sitate a considerably larger number of statistical tests and make correcting for

multiple testing more difficult. Furthermore, combinatorial regulation by TFs

could potentially lead to statistical associations being called between TFs and

motifs that are unrelated in binding specificity, but which tend to co-occur in

promoters with the real motif.

5.3.4 Clustering of motifs and their binding sites

Some closely related patterns are expected amongst de novo predicted TFBS

motifs, due to the shared evolutionary history of TFs. However, when challenged

to infer a collection of motifs from a large series of genomic sequence, a motif

inference algorithm should ideally find a wide spectrum of motifs, instead of

predicting large numbers of redundant copies of a small number of patterns. I

therefore measured the relatedness of motifs, not only to the JASPAR reference

motifs, but also to other predicted motifs. I did this in two different ways: firstly

by computing distance matrices between motifs with the SSD motif distance

metric (Down et al., 2007), and secondly with an genomic match overlap score

(Section 5.3.5). To begin with, I studied motif relatedness in a visual, qualitative

way by drawing dendrograms of all of the motif sets together with JASPAR motifs

(Figure 5.16), and with each of the sets separately with JASPAR motifs (Figure

5.17).

The dendrogram of all predicted motif sets with JASPAR shows – similarly as

the analysis presented in Section 5.3.2 – that overall there are few large clusters

of experimentally validated motifs with no related predicted motifs from one of

the inferred motif sets. Redundant clusters by some of the motif predictions
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Figure 5.15: TF–target associations of the inferred motifs, when compared to
JASPAR motifs (leftmost). The bars represent the number of TFs for which
the computationally inferred motif shows a significantly different distribution of
maximum bit scores, when target and non-target genes are compared. Motif sets
are ordered by decreasing number of TFs with a significant effect. The p-values
are Bonferroni corrected (divided by 176, which is the number of TFs tested).
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are also apparent, especially in the case of YMF and Weeder. Conversely, the

clustering pattern of NestedMICA and SOMBRERO motifs shows the predicted

motifs much more ‘intertwined’ with the reference JASPAR motifs. Individual

dendrograms are drawn in Figure 5.17 for each of the motif sets to make this

pattern clearer to see.
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The motif clustering tree can be cut at different heights. I counted the num-

bers of cases where a JASPAR motif is clustered together with any of the other

methods at varying heights. By this measure, SOMBRERO and especially Nest-

edMICA perform favourably to the other algorithms (Figure 5.18).

Whereas Figure 5.18 measures inferred motif similarity to JASPAR motifs,

the closest pairings of motifs within the predicted sets can also be studied using

the distance matrix of the predicted motifs with each others (Figure 5.19). As one

would already predict based on the motif dendrograms in Figures 5.16 and 5.17,

YMF and Weeder predict considerably larger numbers of overlapping patterns

than the other methods. At the 2.0 SSD distance cutoff for example, the average

clique size of the motif distance matrix for YMF is above 40, compared to roughly

5 for Weeder, and between 2 and 1 for all of the other methods. Weeder and

YMF appear essentially incapable of large scale motif inference as conducted in

the present study, either due to my parameter choices for running the tool, or

due to intrinsic problems with the algorithms.

The empirical significance values presented in Section 5.3.2 can be estimated

for the closest pairs of motifs within each predicted sets, with the same protocol

as used for comparing predicted motifs to reference motifs in Section 5.3.2. The

‘uniqueness’ of motifs varies considerably: almost all of Weeder motifs contain

a statistically significant match, whereas MotifSampler and MEME have hardly

any statistically significant matches regardless of the significance chosen. The

JASPAR motif set also contains many motifs with close pairs; depending on the

significance scores used, roughly 45% to 75% of JASPAR motifs have at least one

match (Figure 5.20). This fraction is in fact higher for JASPAR than any of the

other analysed methods but Weeder (the consensus based YMF and Oligoanalysis

methods were omitted from the significance score analysis).

5.3.5 Comparing motifs by the overlap of their genomic

matches

I measured the fraction of overlapping binding sites shared by motifs as a mea-

sure of motif similarity, complementary to the SSD distance matrices and motif

clustering shown above in Section 5.3.4. I studied binding site overlap patterns
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Figure 5.17: Clustering of JASPAR motifs with results of A) AlignACE,
B) Weeder, C) MotifSampler, D) MEME, E) NestedMICA, F) YMF,
G)Oligoanalysis H) SOMBRERO. The motif names are coloured according to the
motif set where they originate from. They are shown as a quick visual summary
of the clustering of the inferred motifs, rather than trying to present readable
names.
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Figure 5.18: Numbers of clusters that contain at least one or more inferred, and
one or more JASPAR motifs. Four different distance cutoffs are shown.

firstly visually, using dendrograms and heatmaps. The binding site overlap of

two different inferred motif sets with the JASPAR reference motif set are shown

in Figure 5.21.

Visual inspection of the heatmaps in Figure 5.21 suggests a higher overlap

between NestedMICA and the JASPAR motifs, than between SOMBRERO and

the JASPAR motifs. I quantified the binding site overlap by counting the numbers

of motifs output by each of the eight methods, which overlap a JASPAR motif

above a binding site score overlap. I repeated this analysis with five different

overlap score cutoffs (Figure 5.22). The results are largely consistent with the

clustering based motif similarity measures, suggesting NestedMICA is the method

with the highest fraction of overlapping binding sites by this measure, followed

by SOMBRERO, Weeder and MEME. Note that this similarity measure between

the inferred and the reference motifs does not account for motif redundancy.

This is the reason that Weeder for instance receive relatively high overlap scores

with JASPAR motifs, when in fact its motifs map to a relatively small number

of known TFBS motifs in the JASPAR set. The motif match significance score

cutoff parameter, of both the reference and the inferred motifs, can also affect

the results of this analysis.

Overlap of genomic matches between motifs can also be used as another means
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Figure 5.19: Motif redundancy as judged by the motif-to-motif SSD distance. A)
Fraction of motifs which have at least one pair B) Average motif clique size.
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Figure 5.20: The fraction of motifs with at least one matching pair, at three
different significance cutoffs. The consensus string based YMF and Oligoanalysis
are omitted from this analysis, because the empirical significance score used here
does not behave reliably for PWMs derived from IUPAC consensus strings.

of measuring motif similarity within sets. To illustrate this, Figure 5.23 shows

the genomic match overlap of the SOMBRERO, Weeder and JASPAR motif sets.

As discussed in Section 5.1.3, binding site level comparisons are not necessarily

robust to the significance cutoffs used for genomic motif matches, and I do not

advocate the use of these measures for ranking inference methods.

By this measure, Weeder receives the highest ‘redundancy scores’: for instance

at the 10% overlap score cutoff, nearly all of the 200 weeder motif predictions

have at least one motif pair which overlaps (Figure 5.24). The average number

of motifs which all share a given fraction of their binding site matches (the motif

clique size) however varies dramatically depending on the chosen binding site

cutoff.

The present analysis of genomic match overlap between motifs is indeed a cau-

tionary tale of assessing motifs based on their binding site overlaps: performance

measures derived from genomic matches are not robust to the bit score signifi-

cance cutoff chosen for a motif. This is an especially pressing concern for motif

inference assessments such as Tompa et al. (2005), where experts applied many of

these same algorithms, each with independently chosen motif match significance
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Figure 5.21: Motif binding site overlap of A) SOMBRERO and B) NestedMICA
motifs. The rows represent inferred motifs, and the columns are JASPAR motifs.
They are ordered based on an euclidian distance between the overlap patterns,
with complete linkage clustering (Johnson, 1967).
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Figure 5.22: Predicted motif similarity to JASPAR motif set on the level of
binding site overlap. The bars represent the numbers of motifs which show overlap
above 0.10, 0.30, 0.70, 0.90 to JASPAR motifs with the metric described in Section
5.2.5.

parameters.

5.3.6 Looking for evidence of function for the inferred mo-

tifs

On top of the 177 TFBS motifs included in JASPAR, the yeast genome con-

tains others. The transcription factor database DBD (Wilson et al., 2008a) for

instance contains 177 likely regulatory TFs for the genome, but its DNA binding

domain model based predictions are estimated to cover only 2/3 of the genome

Wilson et al. (2008a). The Harbison et al. (2004) ChIP-chip study on the other

hand includes the binding profile of 203 putative regulatory TFs. It is therefore

possible, even likely, that the promoters used in the study contain motifs for TFs

which are not included in the 177 motifs of the JASPAR database. Therefore, I

do not believe that all the apparent false positives (which do not match reference

motifs) are false positives, and I wanted to identify a subset of particularly likely

functional motifs from these unknown motifs.

I studied three different aspects of the computationally predicted motifs as

signs of potential function: interspecies conservation (Section 5.3.6.1), SNP rate

in yeast strains (Section 5.3.6.2), and positional bias of the motifs with respect
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Figure 5.23: The overlap of genomic matches within motif sets. A) SOMBRERO
and B) Weeder motifs are shown as examples of the predicted motif sets, and
binding site overlap of JASPAR motifs are in panel C. SOMBRERO and Weeder
differ in the degree of redundancy amongst the motif set. 500bp upstream se-
quences were analysed.
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Figure 5.24: Predicted motif redundancy on the level of binding site overlap. The
bars represent the numbers of motifs which show binding site overlap with the
metric described in Section 5.2.5.
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to the closest transcription start sites (Section 5.3.6.3). The motifs which fit

all the criteria of high conservation, low SNP rate, and positional bias were then

analysed in Section 5.3.6.4. Furthermore, I attempted to use the metamatti motif

classification framework presented in Chapter 4 to predict the domain family of

the motifs as a further sign of function (Section 5.3.6.5).

5.3.6.1 Inter-species conservation of the inferred motifs

The conservation scores for all of the 200 NestedMICA motifs at a 0.05 signif-

icance level are shown in Figure 5.25, as an example. A similar analysis was

conducted also for all of the other methods (summarised in Figure 5.26). Figure

5.26 shows the fraction of motifs predicted by each method with a significantly

higher conservation rate than random intergenic sequences of the same length.

Note that for some of the methods, the fraction which matches known TFBS

motifs in the JASPAR database (Section 5.3.2) is much smaller than the fraction

which shows excess conservation. This could be explained by some of the pre-

dicted motifs being weak, undetected matches to real TFBS motifs, or artifacts

of the multiple alignment based conservation PhastCons scores. Alternatively

it could be that there are other potentially functional motifs within the motif

predictions.
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NestedMICA and Weeder show a roughly comparable fraction of significantly

conserved motifs, between 60% and 80%, depending on the significance threshold

which is varied between p < 0.01 and p < 0.0001. Overall the fraction of conserved

motifs fits between 40% to 80% for all but two methods, which are overliers in

the opposite ends of the scale; all of the YMF motifs show excess conservation,

whereas only 8 of motifs inferred by MEME are significantly conserved. The

results seen for YMF are in part explained by its highly redundant motif set,

which shows variants of essentially one evidently highly conserved motif. The

remarkably low figure of 8 motifs in the case of MEME is most likely due to

its long motifs with high information content. This in combination with the

stringent bit score cutoff determination method I used (Section 5.2.4) causes only

a small number of hits to be reported and compared with the intergenic sequence

regions, decreasing the sensitivity to detect differences between the distributions.

An inspection of the median motif hit counts indeed shows alarmingly low figures

for MEME’s motifs at the 0.01 confidence threshold used: median motif hit count

with the 200 base long upstream sequences is 2. This means that the significance

score determination method used in the present study has largely failed with the

motifs output by MEME. This, yet again, is an indication of problems associated

with genomic hit based assessment of computationally inferred motifs.

YMF (200 motifs) NestedMICA (200 motifs) Weeder (200 motifs) SOMBRERO (200 motifs) Oligoanalysis (50 motifs) MotifSampler (37 motifs) AlignACE (16 motifs) MEME (100 motifs)
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Figure 5.26: The number of motifs from each of the predicted motif sets that are
found more conserved than intergenic sequence of the same length. Three different
significance thresholds are shown. See Section 5.2.6.4 for details regarding the
statistical testing.
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5.3.6.2 SNP rates of the inferred motifs

A summary of the SNP rate analysis is shown in Figure 5.27. YMF and MEME

are at the opposites of this scale, similarly as in the case of conservation patterns

in Section 5.3.6.1. When compared with the inter-species conservation patterns,

smaller fraction of motifs inferred by any of the methods show a significant differ-

ence to intergenic sequence. NestedMICA, SOMBRERO and Weeder identify the

largest numbers of motifs with a significant difference. Similarly as in the case

of interspecies conservation, the redundancy of motifs is not taken into account

in the numbers reported, and they are not to be interpreted as a measure of the

relative performance of the tools.
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Figure 5.27: The number of motifs predicted by each of the methods with lower
SNP rates than randomly selected intergenic sequence of the matching length.
See Section for a description of the bootstrapping based significance scores.

5.3.6.3 Positional bias of motif matches close to the TSS

Many of the computationally inferred motifs were found to match preferentially

upstream of the TSS. As examples of the typical positional bias trends which were

seen, Figure 5.28 show the positional bias patterns in the case of SOMBRERO

and Weeder. A summary of the positional bias trends of all of the methods are

shown in 5.29, as the fraction of motifs with a statistically significant preference

for positions -500 to 0. It is perhaps not surprising that a positional bias is seen
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for many of the motifs, given that the motif search was made in the space of

promoter sequences that span -200 to 0 from TSSs.
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Figure 5.29: The fraction of motifs output by each of the eight methods, which
show a preference for positions -500 to 0. See Section 5.2.7.1 for details regarding
the method.

5.3.6.4 Combining the conservation, SNP rate and positional bias to

highlight potentially functional motifs

I measured three aspects of the computationally predicted motifs as a sign of

potential function: interspecies conservation, SNP rate, and positional bias of

the motifs with respect to the closest transcription start sites. These properties

do not appear to be randomly distributed amongst the motifs, with many mo-

tifs showing combinations of these features (Figure 5.30 shows SOMBRERO and

NestedMICA motifs as an example). As also found by Down et al. (2007) in the

de novo inference study of D. melanogaster regulatory motifs, a large fraction

of motifs exhibit excess inter-species conservation, when compared to other in-

tergenic sequence. The SNP rate and inter-species conservation are also closely

associated, as expected.

I selected and counted motifs predicted by each of the methods which are

not matches to JASPAR motifs, but show a combination of higher inter-species

conservation than intergenic sequence (p < 0.0001), lower SNP rate than inter-

genic sequence in S. cerevisiae strains (p < 0.0001), and preferentially match

close to the TSS (p < 0.001). Motifs which fit all of these criteria are shown in

Figure 5.31. MEME, most likely because of its low total number of hits above

the stringent bit score cutoff, did not find any such motifs.

NestedMICA found the largest number of unknown motifs of potential func-

tion (20), apart from YMF with its 182 highly redundant motifs with no sig-
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Figure 5.30: Overlap of motifs predicted by A) NestedMICA and B) SOM-
BRERO, that have lower SNP rate than intergenic sequence (p < 0.0001), higher
conservation than intergenic sequence (p < 0.0001), and are preferential placed
within -500 to 0 of TSS (p < 0.001).

nificant matches to known TFBS motifs (Figure 5.31G). I conducted literature

searches to look for potential supporting information about the function of each

of these motifs.

The TGAAAAATT motif (motif12 in the NestedMICA set, motif24 in the

OligoAnalysis set) is perhaps the most interesting of the patterns. It is found by

two previous S. cerevisiae motif inference studies (Li et al., 2005; Sudarsanam

et al., 2002) to be associated with the TF ABF1. The ABF1 motif in the JAS-

PAR database, derived from the high-throughput study by Badis et al. (2008), is

however markedly different (Figure 5.32).

Other potentially functional motifs are also amongst the set. NestedMICA

motifs motif152 and motif190 have the consensus TATAAAA and TATAAAG.

Both of these sequences have been found to bind the TATA-binding protein (Kim

and Burley, 1994; Starr and Hawley, 1991). The motifs both also show show

a highly significant orientational bias. 60% of the 1864 hits of both motif152

and motif190 in 200bp upstream sequence regions appear as TATAAAA and

TATAAAG – as opposed to TTTTATA and CTTTATA – on the same strand as

the closest ORF (p = 2.94× 10−17, binomial test).
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Figure 5.31: Motifs predicted by different methods which have lower SNP rate
than intergenic sequence (p < 0.0001), higher conservation than intergenic se-
quence (p < 0.0001), and preferential placement close to the TSS (p < 0.001).
Motifs have been aligned with iMotifs (Piipari et al., 2010b).
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Figure 5.32: The ABF1 motif in the JASPAR database. Data originates from
the CSI, PBM and Dip-CHIP based study by Badis et al. (2008).

The NestedMICA motif33 (consensus NNTAAAC) matches the motif TAAAC,

which has been suggested as the motif for the yeast TF ‘Swi five factor’, or SFF

(Pic et al., 2000; Tamada et al., 2003). The 1252 instances of this motif in 200bp

upstream sequence regions of the yeast genome show a highly significant bias

in their orientation with respect to the closest ORF (56% of its instances are

NNTAAAC, p = 8.55 × 10−5). SOMBRERO also finds a motif with a related,

weaker consensus of ATAAAC.

Motif173 from the NestedMICA set has the consensus TAATAA. It has been

described as a motif for the BAS2 homeobox TF (Rolfes et al., 1997; Tice-Baldwin

et al., 1989). Interestingly, matches of this motif are also associated with the

orientation of the closest gene (54% of its instances are TAATAA, p = 4.00×10−5).

The AAAGAAA motif (motif9 in NestedMICA’s set, motifs 8 and 32 in the

OligoAnalysis set) has been previously described in a phylogenetic foot printing

study of the S. cerevisiae genome as a motif associated with genes involved in

amino acid transport (Cliften et al., 2003). The reverse complement of motif

motif138 (TTTGTT) corresponds to the consensus string of an HMG like TF

domain (Grosschedl et al., 1994).

Several of the methods also find A- or T-rich motifs, such as AAAAAA,

AAAAAAAAA, AAATAAA or AAATAA. Although I did find publications link-

ing some of these sequence signals, or their reverse complements, to transcrip-

tional control, it could also be that the high conservation and low SNP rate

observed for these are artefacts caused by for example the genomic multiple se-

quence alignment procedures which both of the conservation and SNP rate criteria

depend on.

In summary, the motif inference methods studied here find several putatively

functional motifs not covered by the JASPAR motif set. NestedMICA – which
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is consistently the top performer in the JASPAR based performance measures

shown in Sections 5.3.2, 5.3.3 and 5.3.4 – finds a varied selection of 20 motifs with

high conservation, low SNP rate and a preference for matching close upstream to

the TSS, but with no known regulatory motif matches in the JASPAR database.

Several of the other algorithms found different subsets of these 20 motifs identified

by NestedMICA. SOMBRERO finds the second largest set of motifs which fit the

criteria (6 motifs).

5.3.6.5 Classification of the inferred motifs with metamatti

I used the metamatti motif classification framework presented in Chapter 4 to

predict the domain family of the motifs as another way of assigning function

to them (see Section 5.2.8 for a description of the method), and comparing the

motifs inferred by different methods to what is known about the yeast regulatory

motifs.

The random forest based metamatti classifier outputs a probability for each

classification decision, based on votes that each of the classes received in its

ensemble of classification trees. This allows for the classification to be made at

a chosen level of confidence. To aid the choice of the classification probability

cutoff, I plotted a number of diagnostic curves, shown in Figure 5.33. Based on

the analysis, I chose the lowest classification probability cutoffs for classifying the

motifs predicted by each of the eight de novo motif prediction methods. I set the

lowest probability at 0.60. I did this because the classification accuracy drops

dramatically below this probability, and effectively plateaus after it, whereas the

recall stays rather stable around this classification probability, but drops rapidly

from around 70%. Results were also reported at 80% classification probability.

I profiled the importances of predictor variables in a separate JASPAR motif

family classification exercise, to show that several different metamotifs per class

contribute strongly to the classification (see Section 1.3.4 for a discussion of the

variable importance measure used). The results of this analysis are shown in

Figure 5.34. For instance, all of the top ranked six features are from different

fungal Zinc cluster derived metamotifs.

The classification results at the 0.6 probability cutoff are shown in Figure 5.35.
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Figure 5.33: Performance measures of metamatti classification of JASPAR mo-
tifs. A) Precision-recall curve of 5-way JASPAR family classification training
with fungal motifs in the JASPAR database. B) Accuracy as a function of the
random forest classification probability cutoff. C) Recall rate as a function of the
classification probability cutoff.
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Figure 5.34: Variable importances of a JASPAR family classifier. The importance
measure is described in Section 1.3.4. Metamotifs derived from ten major families
of motifs in the JASPAR database were included in this exercise. One bar in the
classification represents one metamotif density feature.

Instances of only two of the motif families in the 5-way classifier were found to be

predicted above the cutoff, by any of the motif inference algorithms (Figure 5.35).

It is disappointing that only fungal Zinc cluster motifs and ββα zinc finger motifs

– which dominate the DNA binding domain of JASPAR motifs (Section 5.3.2) –

can be detected from the de novo predictions at this probability cutoff. These

two DNA binding domain families dominate the distribution of DBD families in

the JASPAR motif set. It is however reassuring to see that in cases where there

is a statistically significant close match to a JASPAR motif, the predictions are

largely consistent between the metamatti TF family prediction (6 / 8 in the case

of NestedMICA, 4 / 6 in the case of SOMBRERO, 3 / 3 in the case of Weeder),

and the family of the closest JASPAR motif match. Furthermore, NestedMICA

and SOMBRERO, which both show remarkably low distances to their closest

JASPAR matches (Section 5.3.1), output the largest numbers of motifs which

can be classified by metamatti at this confidence cutoff, followed by Weeder (18,

14 and 9, respectively).
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Figure 5.35: Metamatti classification of the predicted motifs at the 0.6 classifica-
tion probability cutoff.

5.4 Summary

The work described in this chapter deals with large scale prediction of regulatory

motifs in the S. cerevisiae genome, with the primary focus being a motif level

performance assessment of several previously published de novo algorithms. The

large scale motif comparison based performance assessment shown in Section 5.3.2

is in notable contrast to the binding site or nucleotide level assessments that is

commonplace in motif inference literature (see Section 5.1.2). The association of

a large collection of de novo predicted motifs with putative target genes (Section

5.3.3) has also not been previously tested in a comprehensive manner between

a number of algorithms. The results of the performance assessment are rather

consistent: especially NestedMICA but also SOMBRERO and MEME appear to

perform adequately in finding motifs matching known regulatory motifs. None of

the tested algorithms shows strong performance with the yeast genome to suggest

wide applicability of de novo motif inference algorithms for large scale study of

higher eukaryote regulatory genomes. NestedMICA’s 54 statistically significant
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matches to the 177 TFBS motifs in the JASPAR database is still however a

surprisingly positive result for a de novo method when it is compared to previous

work. For instance the ChIP-chip study by Harbison et al. (2004) reports a

confident motif for 31% of 203 TFs, based on the output of six motif inference

algorithms in the much easier case of finding motifs from sequence regions with

ChIP based evidence of TF binding. It is also interesting to see that the arguable

top performer of the (Tompa et al., 2005) assessment, Weeder, performs rather

weakly using the metrics presented here. Indeed, NestedMICA, SOMBRERO

and MEME are consistently the top performers in my assessment.

In addition to the performance assessment, I also profiled the conservation,

SNP rate and positional bias trends of the motifs, to find motifs unknown to the

JASPAR motif database but which are particularly likely to be functional (Section

5.3.6.4). This analysis also showed NestedMICA with the largest collection of

conserved motifs with low SNP rates and evidence for preference to genomic

positions close to TSSs. This analysis however depends on the criteria used for

determining a significance cutoff for genomic matches of motifs, a parameter

which the especially motifs predicted by MEME did not show robustness to.
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