
Chapter 3

Metamotifs in motif inference

A central goal in modelling genome regulation is the identification of TFs and

their target DNA binding sites, expressed as short nucleotide sequence motif mod-

els. This goal is becoming tractable even for higher eukaryotic genomes due to the

availability of reference genomes for numerous organisms, development of high-

throughput methods for measuring DNA interactions of transcription factors, and

with computational advances in short sequence motif inference algorithms. The

lack of sensitivity to detect weakly represented motifs from noncoding sequence

however remains a key challenge when applying computational motif inference

on a large scale. One way to tackle this problem is through informing the infer-

ence process of prior biological information of known motif families – for instance

through the use of metamotifs.

This chapter describes the addition of a metamotif based motif prior to the

NestedMICA algorithm. This modification to the algorithm diversifies its use

from hypothesis-free discovery of motif collections from large scale sequence data

to answering specific questions about possible regulators acting in the sequences

(“Is there a motif roughly like this present?”). To achieve this, I extended the

NestedMICA motif inference algorithm to accept a series of metamotifs as a po-

sition specific prior probability function for motifs. The NestedMICA algorithm

was chosen for the purpose, because it is known to perform well in large scale

motif inference tasks (Down et al., 2007; Down and Hubbard, 2005). It was

also straightforward to adapt the existing clipped simplex motif prior probability

function to a function based on column-specific biologically informative Dirichlet
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distributions. The prior function, which allows multiple types of motif families to

contribute to it simultaneously, could also be applied more generally to bias the

search space of a larger motif inference problem to ‘biologically plausible’ motifs

(instead of for instance repeat-like).

3.1 Previous work on biologically informative

motif prior functions

De novo motif inference approaches show promise in finding motifs that deter-

mine gene regulatory programs. The NestedMICA algorithm for instance has

been used in a number of regulatory genomics studies of both human and other

organisms. Examples include analysis of Polycomb and Trithorax binding sites

in Drosophila (Kwong et al., 2008), zebrafish distal enhancers (Rastegar et al.,

2008), targets of the transcription factor Ntl (Morley et al., 2009), indirect targets

of the deafness associated micro-RNA miRNA-96 in mouse (Lewis et al., 2009), as

well as transcription factors involved in determination of ES cell transcriptional

programs in mouse (Chen et al., 2008; Loh et al., 2006). NestedMICA, similar

to other de novo motif inference algorithms, however commonly suffers from lack

of sensitivity when applied to large collections of long eukaryotic promoter se-

quences where the TFBS motifs are weakly represented. This makes it difficult

to describe complete sets of regulatory motifs from sequence alone with it. I there-

fore wanted to see if prior biological knowledge in the form of familial metamotifs

could be used to improve its sensitivity. This was motivated primarily by the

work of Xing and Karp (2004) and Narlikar et al. (2006) who both showed that

tendencies in the motifs of sequence specific transcription factors can improve the

sensitivity of probabilistic motif inference algorithms. Earlier instances of biolog-

ically informed motif prior functions and position specific parameter constraints

have however also been presented.

The earliest instance of a method which uses column-specific information in a

probabilistic motif inference method was the MEME program (Bailey and Elkan,

1995), which has been extended to include an optional palindromic constraint on

the motif nucleotide weights (Bailey and Elkan, 1995); The last column is taken
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as an complemented version of the first column, the second last is the second, and

so on. The same paper also describes a Dirichlet mixture prior used specifically

in protein motif inference, inspired by the Dirichlet mixture priors developed

originally to help in deriving protein domain HMM models (Brown et al., 1993;

Krogh et al., 1994).

More advanced hierarchical Dirichlet mixture based motif models and motif

prior functions were later developed by Xing et al. in a series of papers (Xing

et al., 2003a; Xing and Karp, 2004; Xing et al., 2003b). The hidden Markov-

Dirichlet multinomial based framework, coined as ‘MotifPrototyper’ (Xing and

Karp, 2004), allows for training a family-specific prior function that is parame-

terised with column-specific weights over a small number of prototypical Dirichlet

distributions trained from a database of PWMs. This is somewhat related to

the metamotif based approach which uses column-specific Dirichlet distributions

trained from motif data. The Gibbs Recursive Sampler algorithm also reportedly

includes a column-specific Dirichlet prior, described by Thompson and Rouchka

(2003) as follows: “informed prior models provide clues to the expected patterns

in DNA binding motifs that influence but do not control posterior inference of

sites and motifs. The Gibbs Recursive Sampler permits incorporation of informed

motif priors and gives the user control over the strength of the clue.” The paper

describes no further description to the exact approach used, nor offers an assess-

ment of its performance impact. Sandelin and Wasserman (2004) present such an

assessment for the Gibbs sampler, as well as the neural network based ANN-Spec

(Workman and Stormo, 2000), which also contains an otherwise unreported fea-

ture to include target PWMs as initial neural network weights. Both ANN-Spec

and the Gibbs sampler show a measurable sensitivity gain. Median 200% and

140% sensitivity improvement for the ANN-Spec and Gibbs sampler algorithms

was observed, respectively, in an evaluation which was made roughly with similar

principles as that described in Section 3.2.2 for the NestedMICA algorithm.

Some of the previous motif prior enabled methods allow simultaneous inclu-

sion of prior information for more than one motif family during motif inference.

One example of such methods is the neural network based SOMBRERO algo-

rithm which uses prior information of PWMs for initialising a self-organising

map used for motif discovery (Mahony et al., 2005a). The most recent example is
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the Bayesian phylogenetic foot printing method, Phylogibbs-MP, which can use

PWMs as a prior (Siddharthan, 2008). The motif prior function in the PRIOR-

ITY algorithm (Narlikar et al., 2006), which is based on a series of binary logistic

regression functions trained from binding site instances, also allow multiple classes

to be specified, although the sequence model itself greedily infers motifs one by

one (with a ZOOPS-like sequence model, see Section 1.3.1); Narlikar et al. (2006)

also concede that the Gibbs sampling based parameter estimation method would

struggle beyond the tested class count of three.

3.2 Materials & Method

Below, I will introduce the metamotif based motif prior function which I incor-

porated into the NestedMICA algorithm (Section 3.2.1), and then describe the

method devised for assessing its effect on the performance of NestedMICA in

Section 3.2.2.

3.2.1 The metamotif prior function

The prior probability of motif X given a metamotif α is taken as the sum of

metamotif densities of α with all continuous motif segments contained in X that

have the same length l as the metamotif (log of the density is given by Equation

2.5). A segment of motif X refers to a motif formed from columns of the motif

starting from column i and ending at position i+ l−1. The prior probability of a

motif given a series of metamotifs is simply the sum of prior density contributions

of each of the metamotifs. A schematic showing summation of one metamotif of

five columns (l = 5) over an eight-column PWM is shown in Figure 3.1.

The prior function described above can be summarised simply as a summation

of a number of different, potentially overlapping metamotifs over the length of the

motif. There are alternative, more computationally demanding but potentially

more meaningful ways to compute a prior function with multiple metamotifs. One

possibility would be to apply the “motif probability given a series of independent,

non-overlapping metamotifs” function described in Section 2.2.4 as a motif prior

function in the NestedMICA algorithm. That is, the motif would be treated
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Figure 3.1: Metamotif densities with all offsets of the metamotif (shown above
the PWM) are summed over the length of the motif (five different offsets shown,
with different colours).

70



as an HMM of background multinomial positions and independent metamotif

segments which can be ordered freely but cannot overlap (the multiple-uncounted

motif metamotif mixture model). This formulation could potentially be more

appropriate to cases where short metamotif components are applied as a motif

prior (e.g. half sites). However, the already considerable run time that the

NestedMICA algorithm requires for completing on large sequence and motif sets

could be increased further by this prior function. This is because another costly

dynamic programming step to compute the metamotif density function would

be needed, as the prior function is computed on every iteration of the nested

sampling for all motifs in the ensemble of potentially several hundred solutions.

I therefore concentrated on the simple motif prior function presented here. This

algorithm scales well to large sequence sets, and it is unlikely that the more

complex metamotif density HMM prior would be practically useful in genome

scale motif inference tasks without substantial optimisation. The optimisation

work would likely include at least caching prior contributions of individual motifs.

3.2.2 Measuring motif inference sensitivity with synthetic

sequence

To test the performance of the metamotif prior function, I conducted simula-

tion experiments following the same principle as described for the NestedMICA

(Down and Hubbard, 2005) and the BayesMD (Tang et al., 2008) algorithms.

Human intronic nucleotide sequence fragments randomly chosen from the Homo

sapiens Ensembl database release 50 (Flicek et al., 2008) were ‘spiked’ with five

different types of motifs. The motifs used were those of ZAP1, HIF1, TBX5,

TAL1 and NF-κB transcription factors. These motifs were selected because they

showed little similarity with each other when aligned, and because this set con-

tains examples of differing motif length and information content. All sequence

sets used contained 200 sequences, and the length of the sequences was varied

between 100, 200, ..., 2000 nucleotides. The nucleotide k-mers sampled from each

of the five PWMs in the evaluation were inserted at a constant relative frequency

of 20% of the sequences, with a maximum of one motif present per sequence. In

other words, motif density was varied by inserting the motif instances to back-

71



ground sequences of different lengths. Motifs of only one kind were present in

each synthetic sequence set.

Motif inference with three types of motif prior functions were tested with the

sequences:

1. A single familial metamotif contributing to the prior function.

2. A prior function with all of the five unrelated metamotifs contributing to

the prior, with instances of only one motif family being actually present

represented in the sequences.

3. An uninformative Dirichlet prior similar to the previously published Nest-

edMICA version 0.8.

In each of the motif inference runs, the longest sequence length at which

the algorithm infers the correct motif of interest is reported as a measure of

sensitivity (p < 0.05), with motif comparison p-values computed, as described in

Down et al. (2007). In all cases, five motifs were inferred from the sequences.

Five motifs, as opposed to for example only one, were inferred, because recurring

sequence motifs tend to be found from even intronic sequences, and I therefore

cannot assume that the spiked motif would be the only motif signal present. The

sequence background model used in all evaluations of the algorithm was a 4-class

1st order trained from the 2000nt long intronic sequences with nmmakebg.

The source motifs (ZAP1, HIF1, TBX5, TAL1, NF-κB) were transformed to

metamotifs to be used in the metamotif prior function by applying a pseudocount

of 0.1 to the motif column weights, and interpreting the resulting motif nucleotide

weights as mean nucleotide weights in Dirichlet distributions with precision set

at 4.0 (metamotifs used in the experiment shown in Figure 3.2). The metamotif

priors used in the prior function evaluation were constructed from known PWMs

with a set precision and pseudocounts to assess the hypothesis testing use of

a motif prior function: user is aware of a set of potentially relevant motifs or

consensus strings present in a sequence set and wants to inform the algorithm of

them to increase its sensitivity to detect the signal.
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Figure 3.2: Synthetic metamotifs contributing to the motif prior functions used
in the assessment. Error bars represent 95% confidence intervals.
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3.3 Results & Discussion

Results of applying the metamotif based motif prior function are shown in Sec-

tions 3.3.1 and 3.3.2. Several ways to use the motif prior with the NestedMICA

suite (Down and Hubbard, 2005) and the graphical iMotifs motif inference envi-

ronment (Piipari et al., 2010b) are introduced in Section 3.3.3.

3.3.1 Performance effect of a correct motif family prior

function

Results of the motif prior comparison are shown in Figure 3.3. It is evident that

when the correct motif prior function is used on its own (the rightmost bars),

improvement in the motif inference performance is seen across the line, when

compared to the uninformative prior (the leftmost bars). When the correct motif

is introduced amongst a set of ‘decoy motif’ contributions in the prior function,

improved performance over the uninformative prior is seen with all motifs but

TBX5, which is unchanged. The effect size, in terms of the difference between

maximum sequence lengths at which the motif is detected in the informative

and uninformative cases, depends on the motif; Some motifs appear inherently

‘harder’ to discover even when a biologically informed prior function is available.

The most likely reason for the variability both in the baseline motif inference sen-

sitivity, and the effect of the informative weight matrix prior, is in the difference

in length and information content of the motifs, ranging from as high as fourfold

difference in the motif recovery length for TAL1 and NFKappa-β, to only a 1/3

improvement from 400bp to 600bp sequence between the uninformative and the

‘single’ informative metamotif prior for the TBX5 motif. The presence of ‘decoy’

metamotif patterns decreases the effect size in all cases.

3.3.2 Performance effect of an incorrect motif family prior

function

I also wanted to ensure that the metamotif prior did not have the propensity

to bias motif inference to an incorrect solution, i.e. that it does not encourage

the inference of a motif not supported by the sequence data. I tested this by

74



ZAP1 HIF1 TBX5 TAL1 NFKappa−B

S
eq

ue
nc

e 
le

ng
th

0
20

0
50

0
80

0
11

00
14

00
17

00
20

00
23

00

NMICA (uninformative)
NMICA (informative, all)
NMICA (informative, single)

Figure 3.3: Informative weight matrix prior improves NMICA’s sensitivity to re-
solve motifs present in human intronic sequence in low frequency (0.2 frequency).
The bars represent the sequence length at which a motif closely similar to the
input motif was successfully recovered (p < 0.05, empirical p-value defined in
(Down et al., 2007)).
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spiking intronic sequence with the NF-κB motif, and using the ZAP1-like meta-

motif in the prior function. No motifs similar to ZAP1 (whose instances were

not present in the sequences) were recovered from the spiked intronic sequence

between lengths 100 and 2000 (comparison with distances and p-values shown

in 3.4), indicating that the metamotif prior function does not have an adverse

effect on inference specificity. A number of other combinations of spiked motifs

and inaccurate informative metamotif prior functions were also tested, with no

observed tendency for the algorithm to infer a motif that is not supported by the

sequence data (data not shown).

Figure 3.4: The closest motif match to the invalid motif pattern (ZAP1) shown
alongside the ZAP1 motif. No pattern like ZAP1 should be seen, and indeed is
not seen. Five motifs were inferred at each sequence length (100nt, . . .,1500nt).
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3.3.3 Making the metamotif prior available

As the ultimate aim of the metamotif prior function work was to provide tools

useful for motif inference related hypothesis testing, to answer questions such

as “Are there motifs present in this sequence set that are related to what I am

expecting?”, I developed several ways in which other researchers can effectively

make use of this work that are detailed in the sections below.

It should also be noted that metamotif models inferred from motif sets with

the nested sampler framework introduced in Chapter 2 can be incorporated in a

reduced PWM representation to other motif inference algorithms which accept

PWM based motif prior functions or initialisation values, for instance the ANN-

Spec (Workman and Stormo, 2000) and Gibbs Sampler (Qin et al., 2003) variants

created by (Sandelin and Wasserman, 2004), the SOMBRERO (Mahony et al.,

2005b) variant by Mahony et al. (2005a), or Phylogibbs-MP (Siddharthan, 2008).

This is because a metamotif is a product Dirichlet distribution model of motif

families, which contains an implicit familial binding profile like average motif (see

Section 3.1 for a discussion of FBPs). Using metamotifs in external programs is

made especially easy because of the way the metamotif models are stored in

the same XML-based XMS format used by NestedMICA (Down and Hubbard,

2005) and iMotifs (Piipari et al., 2010b) to store PWMs; The metamotif’s average

column weights (the implicit ‘average motif’) are in in fact stored identically to

a PWM, and the α0 precision values are stored as additional key-value based

annotations in the file, only applicable for tools which are ‘metamotif aware’.

3.3.4 Using the metamotif prior with the NestedMICA

algorithm

Support for the metamotif prior function was integrated into the NestedMICA

suite 1 with a series of command line arguments. The metamotif prior exten-

sion to the NestedMICA tool was also designed to function with any number of

metamotif models, or input PWMs or IUPAC consensus sequences ‘converted to’

metamotifs. PWMs are treated as metamotif priors by interpreting its columns i

1The NestedMICA suite is available at http://www.sanger.ac.uk/resources/software/
nestedmica/

77

http://www.sanger.ac.uk/resources/software/nestedmica/
http://www.sanger.ac.uk/resources/software/nestedmica/


as the E[xm] of a metamotif and applying a constant precision α0 to all columns

of the metamotif. IUPAC consensus sequences are first transformed to PWMs

by applying pseudocounts and then transformed similarly as PWMs. Metamotifs

inferred with our framework can also be potentially used with other Bayesian

motif inference algorithms that model a prior distribution over motif positions.

Metamotifs could therefore be of general use in building large and complete reg-

ulatory binding site motif libraries for novel genomes. Usage examples are shown

below for the three ways in which the NestedMICA motif inference tool nminfer

can be used with metamotifs.

1. An XMS file containing metamotif models (consult NestedMICA manual

for more detail for including per-column precision information in the XMS

format):

nminfer -priorMetamotifs y.xms -seqs input_sequences.fasta \
-numMotifs 3 -minLenth 6 -maxLength 14

2. An XMS file containing motif models, with an added pseudocount and

precision parameter set to transform PWMs to metamotif models:

nminfer -priorMotifs x.xms -priorPseudocount 0.1 \
-priorPrecision 4.0 -seqs input_sequences.fasta -numMotifs 3 \
-minLength 6 -maxLength 14

3. An IUPAC consensus string, with an added pseudocount and precision pa-

rameter set to transform PWMs to metamotif models:

nminfer -consensus gataa -priorPseudocount 0.1 \
-priorPrecision 4.0 -seqs input_sequences.fasta \
-numMotifs 3 -minLength 6 -maxLength 14

Notably the IUPAC consensus string support allows inputting not only A, C,

G, T, N, R (purine), Y (pyrimidine) but also all the other degenerate symbols in

the IUPAC DNA code standard (e.g. S which corresponds to C or G).

3.3.5 Using the metamotif prior with iMotifs

The motif set visualisation environment iMotifs, which I developed during this

project (Piipari et al., 2010b), was expanded with support for the metamotif prior

78



function driven motif inference (Figure 3.5). This was done to make it easy for

a user with little prior experience of the NestedMICA suite to deploy and try it

with the informative prior extension. More information about iMotifs is available

in Appendix A.
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Figure 3.5: A NestedMICA motif inference run can be configured and run di-
rectly in iMotifs. Alternatively the NestedMICA run can be configured in iMotifs
(Analysis >Discover Motifs from Sequence) and executed in the terminal after
using the ‘Copy to clipboard’ function. A metamotif prior with one or more meta-
motifs can also be specified, either by specifying a file that contains metamotif
model(s) as an XMS formatted file, as a series of PWMs in an XMS formatted
file, or as IUPAC consensus strings. In the last two cases, pseudocounts and the
prior precision (α0) can also be specified.
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