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Abstract

Regulation of gene expression by networks of sequence specific tran-
scription factors is one of the most important control mechanisms
that defines the expression pattern of a genome. Describing tran-
scriptional regulatory networks requires a near complete knowledge
of the transcription factors present in the cell, as well the DNA bind-
ing sites to which each of the TFs is able to bind. Recent years have
witnessed advances in both directions. High coverage transcription
factor annotations have become available for many sequenced eukary-
otic genomes. Improvements have also been made in profiling DNA
specificity motifs for eukaryotic transcription factors, in vitro and in

V0.

The theme of my work has been the application and development of
computational methods for inferring regulatory motifs from promoter
sequence, and finding clues to the function of computationally inferred
DNA motifs. Functional annotation of inferred motifs led me to con-
duct a comparative study of the familial relationships between regu-
latory motifs, the conclusion of which was a probabilistic motif family
model I call the ‘metamotif’. The metamotif, I will show, allows
improved prediction of the DNA binding domain family for de novo
inferred motifs, and is an effective way of encoding prior information
about known DNA binding domain families to a motif inference algo-
rithm. The use of familial prior information improves the sensitivity
to detect regulatory motifs contained in the large promoter sequences
that are common to higher eukaryotic genomes. The metamotif guides
motif inference towards types of sequence signal that are expected a
priori to be present in the sequence set of interest, thereby improving

and supplementing traditional regulatory motif inference algorithms.



I have also assessed several published de novo DNA motif inference
algorithms by challenging them to infer a complete set of regulatory
motifs from a large series of Saccharomyces cerevisiae promoters. This
work provides a novel way to assess performance of regulatory motif
inference methods, and is made possible by the availability of an ex-
perimentally determined regulatory motif dictionary for the S. cere-
wistae genome. In addition to benchmarking motif inference methods
compared to a reference motif set, I make use of many of the rich
genomics resources available for study of the budding yeast. These in-
clude curated lists of TF target genes based on ChIP-chip and gene ex-
pression studies of wild type and knockout yeasts, a close-to-complete
list of TF motif from the JASPAR database, and a 7-way sequence
conservation score across the genome, as well as sequence variation

data from the Saccharomyces Genome Resequencing Project.

Development of sensitive regulatory motif inference algorithms con-
tinues to be important in gaining understanding of eukaryotic gene
regulation by sequence specific transcription factors. In particular I
believe that methods that integrate different sources of biological evi-
dence, such as metamotifs, gene expression and ChIP-seq, to sequence

motif inference will be highly important to the field.
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