
Chapter 4

Metamotifs in motif classification

Metamotifs are shown in the previous chapter to significantly improve the sensi-

tivity to infer motifs from sequence, when applied as a Bayesian PWM prior in

the NestedMICA algorithm. Here I will show that metamotifs can also be ap-

plied to form functional predictions for motifs. Metamotifs are applied to a motif

classification problem where features extracted from regulatory motifs (PWMs)

are used to predict the family of protein DNA binding domains which is likely

to interact with them. I will refer to this problem as ‘motif family classifica-

tion’. The features I used in my motif family classifier are metamotif densities,

and I therefore call the method metamatti, for metamotif based automated

transcription factor type inference.

4.1 Previous work on motif family classification

Motif family classification is not a new idea. In particular, the following three

studies provided an inspiration for the work described here:

• The hidden Markov Dirichlet-multinomial based MotifPrototyper frame-

work (Xing and Karp, 2004), which is also used to provide the PWM

column-specific Bayesian prior function discussed in the previous chapter

(Section 3.1). The MotifPrototyper based motif classification is presented

as a cross-validation based exercise where motifs from the TRANSFAC

database are labelled with their superclass (one of basic, zinc coordinated,
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helix-turn-helix, or β-scaffold domains, see Section 1.4.2 for a further dis-

cussion on structural taxonomies of TFs). The ability to classify motifs on

the level of their superclass is discussed by Xing and Karp (2004) mostly as

an interesting side-product of co-evolution of transcription factors and their

binding sites, and the authors do not make available the motif classifier for

other researchers to use.

• The sparse multinomial logistic regression (SMLR) based motif classifier by

Narlikar and Hartemink (2006). Similarly as above, the emphasis of this

work is not in constructing a publicly available motif family classification

tool for the research community, but to present the classification problem

as a side-product of the evolutionary pressures acting of TFs and their

binding sites. The paper also acts as a biological application to a novel

sparse, probabilistic supervised machine learning method developed by the

authors (SMLR). The classification is done, as in the case of MotifProto-

typer, to motifs in the TRANSFAC database (its six largest classes Cys2His2

and Cys4 zinc fingers, homeodomains, forkhead domains, basic helix-loop-

helices and basic zipper domains), but the classifier labels the motifs with

their TRANSFAC class (not superclass, as done by MotifPrototyper). No-

tably, the same authors also published a separate paper (Narlikar et al.,

2006) where they present an informative PWM prior enabled motif infer-

ence algorithm which also labels the discovered motifs with their domain

family. This paper is discussed in the context of motif priors in Chapter 3.

• Sandelin and Wasserman (2004) are the earliest at suggesting a computa-

tional motif family labelling method, in the same familial binding profile

paper which was discussed in the previous motif prior chapter. It is however

limited to a small number of metazoan TFs (63 in total) which are closely

similar in the clustering chosen by the authors (bZIP motifs for instance are

subdivided to three subgroups). Due to the limited scope of this classifica-

tion study, and the biased choice of the motifs in this study, I decided not

to assess my method against it (similar choice was also made by Narlikar

and Hartemink (2006)).
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In contrast to the previous studies, my goal in this work has been to both

rigorously test my method in context of the earlier work where applicable, and

to also present a tool for motif family classification that other researchers can

use in the comparative study of regulatory motifs. Indeed, metamatti can be

distributed as an R package (Section 4.3.4.1), and as a remotely available motif

classification web server (Section 4.3.5).

In this chapter I firstly introduce the metamatti classifier, and compare its

performance to two of the methods noted above: MotifPrototyper (Xing and

Karp, 2004) and SMLR (Narlikar and Hartemink, 2006). I also validate the

classification method’s performance with two independent, experimentally vali-

dated homeodomain datasets, and give a brief introduction to the usage of the

classification tool. In the next chapter I then apply the method to a series of

computationally predicted motifs, to showcase metamatti’s ability to predict

the class of de novo predicted motifs from a genome scale motif inference study.

In addition to assigning clues of function to large sets of de novo motifs, I believe

that family classification of motifs could for instance become a useful diagnostic

method when working with TFBS motifs predicted from genomic ChIP-chip or

ChIP-seq data; with it, one could test how closely motifs predicted from the DNA

fragments bound by a TF of interest match the expected familial pattern of the

DNA binding domain under study. This can be helpful in identifying the relevant

motif from potentially many that are over-represented in DNA fragments bound

in a ChIP assay. This idea has been explored by MacIsaac et al. (2006) with a

familial binding profile based method.

4.2 Materials & Method

The principle of my motif classifier is to compute the density function (Equa-

tion 2.5) of a large dictionary of familial metamotifs along the length of training

set motifs, effectively “scanning” weight matrices with metamotifs. The optimal

(maximum) and average metamotif densities of each metamotif with the motif

are then included as features in a random forest classifier that tries to infer the

TRANSFAC superfamily (Figure 4.1) or TRANSFAC family (Figure 4.2) of the

motifs. Random forest classification was chosen as the machine learning frame-
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work, most importantly because it generalises naturally to multi-class problems

and provides reliable error estimates as part of model training (Breiman, 2001b).

The framework also controls the sparsity of the feature set used for classification

(see Section 1.3.4 for an introduction to random forests).

4.2.1 Training data

All motif families with at least 10 representatives were retrieved from the TRANS-

FAC 12.2 database (Matys et al., 2006), totalling 623 motifs of 13 domain families

(see Section 1.4.2.1 for more information about the TRANSFAC database). For

the motif domain superfamily classifier comparison made with MotifPrototyper

Xing and Karp (2004) (Figure 4.1), the set of motifs was reduced further to in-

clude only motifs annotated in TRANSFAC with the four superfamilies classified

in (Xing and Karp, 2004). For the motif TRANSFAC class prediction comparison

with SMLR (Figure 4.2), only motifs of the same six major classes classified with

SMLR in Narlikar and Hartemink (2006) were included in our training set. The

feature set is discussed in Section 4.2.2.

The metamatti motif type classifier training and cross-validation were im-

plemented in the Ruby and R (Team, 2007) programming languages. Random

forest classification was done using the package randomForest (Liaw and Wiener,

2002). Pseudocounts of 0.01 were added to all training set metamotifs, and the

mtry parameter of the random forest classifier training was optimised by testing

0.1 × √p, 0.2 × √p . . . , 2.0 × √p with intervals of 0.1, where p is the number of

features in the classifier (the default value for mtry is
√
p). The ntree parameter

that controls the number of trees to grow was set at 5000.

4.2.2 The classifier feature set

Most features in metamatti are metamotif probability density scores (Table 4.1).

To compute the metamotif density features for the classifier, we chose to first

divide the motifs into sets by complete linkage hierarchical clustering (Johnson,

1967) with the SSD metric described in Down et al. (2007) and cutting the clusters

at a lenient clustering cutoff of 6.0. This resulted in 54 motif clusters. Three

metamotifs were trained from each motif cluster with nmmetainfer, resulting in
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195 metamotifs to be used in the motif classifier (examples seen in Figure 2.10).

Metamotif length was constrained between 6 and 15 columns, and the expected

usage fraction was set at 0.5.

Feature type Description
Maximum metamotif hit scores
with all of the familial metamo-
tifs

Motifs were scanned with all input meta-
motifs, and the optimal score was chosen.

Per-column average entropy Average Shannon entropy of columns.
MLE Dirichlet parameters A maximum likelihood Dirichlet dis-

tribution is estimated as described
in Minka (2003), and the parame-
ters of this distribution are used as
features(αA,αG,αC ,αT ).

Symmetric Dirichlet background
parameters

A symmetric Dirichlet distribution is es-
timated.

Table 4.1: Features used in the metamatti classifier.

4.3 Results & Discussion

The main results in this chapter are threefold: the comparisons of the developed

method with previous methods (Section 4.3.1), an independent validation of the

performance with two large homeodomain datasets (Section 4.3.2), and a brief

explanation of the publicly available implementation of the classification method

(Section ). Additionally, I also discuss the reasoning behind choosing an appro-

priate motif cluster count (Section 4.3.2.2), and compare the classifier to the more

naive option of simply scoring motifs with average motifs derived from clustered,

aligned motifs (Section 4.3.3).

4.3.1 Performance comparison with previous methods

Classification performance of metamatti was compared to two methods with

a related goal: MotifPrototyper (Xing and Karp, 2004) which classifies mo-

tifs into four TRANSFAC superfamilies (zinc coordinated, helix-turn-helix, β-
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scaffold,basic), and SMLR which classifies motifs into six major classes of TF

domains (Cys2His2 and Cys4 zinc fingers, homeodomains, forkhead domains, ba-

sic helix-loop-helices and basic zipper domains) (Narlikar and Hartemink, 2006).

4.3.1.1 MotifPrototyper

Classification accuracy comparison shows that metamatti outperforms Motif-

Prototyper (Xing and Karp, 2004) (Figure 4.1) across all four TF domain su-

perfamilies. The margin between the two methods is especially clear when one

compares metamatti with the ‘full’ dataset classification made by Xing and Karp

(2004), which contains all members of the four superfamilies in the TRANSFAC

class, as opposed to the reduced ‘major class’ set which contains all motifs with

at least 10 examples in the dataset. The metamatti classification was made

with the full dataset.

There are several possible reasons for the substantial difference in perfor-

mance. Firstly, the MotifPrototyper classification is made simply with a max-

imum a posteriori scheme: each TRANSFAC superclass corresponds to a Mo-

tifPrototyper model, and motifs are assigned to the superclass which has the

highest maximal posterior probability to be generated by the corresponding Mo-

tifPrototyper. metamatti instead uses the metamotif densities as a features in

a more sophisticated, discriminative random forest based classifier, which assigns

the class labels to a motif. Secondly, the metamotif inference algorithm I devel-

oped is not constrained to a fixed motif family column count, unlike the algorithm

utilised in MotifPrototyper which estimates model parameters from aligned mo-

tifs. The method by which motifs are aligned and trimmed to equal length is

not specified by Xing and Karp (2004). Thirdly, training several metamotifs per

motif family, metamatti also accounts for the fact that not all columns in motif

families can be accurately expressed as a single column wise probability distri-

bution. Instead, recurring patterns in a motif set can be generated by multiple

potentially shorter familial metamotif components in my model. Furthermore,

the metamotif estimation algorithm treats some motif columns as noise with a

column background model, improving the capacity to find recurring patterns from

sequence motif sets and reducing over-fitting of familial models due to reporting
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weak or nonexistent recurring trends.
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Figure 4.1: Accuracy comparison between TF domain superfamily level classi-
fication with metamatti and MotifPrototyper (10-fold crossvalidation). The
’major classes’ refers to MotifPrototyper’s reported performance for all motif
families which include at least ten motif instances (Xing and Karp, 2004) in the
TRANSFAC database (Matys et al., 2006) from the four superfamilies basic, zinc,
helix-turn-helix and β-scaffold. ’Full’ refers to a classification of all motifs in the
four superfamilies, instead of just the major classes.
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4.3.1.2 Sparse Multinomial Logistic Regression

To compare metamatti with SMLR (Narlikar and Hartemink, 2006), I conducted

the TRANSFAC class level classification with the same subset of TRANSFAC

12.2 PWMs that were classified with SMLR. The overall classification accuracy

comparison shows that metamatti has a marginally improved performance at

89.5% classification accuracy over the 87% reported for SMLR. The class-by-class

accuracy figures (Figure 4.2) and the confusion matrix of the 6-way TRANSFAC

motif family classifier (Table 4.3) however make it evident firstly that the abil-

ity of sequence motif properties to distinguish motifs by binding domain varies

considerably depending on the domain both for metamatti and SMLR, and sec-

ondly that the higher classification accuracy comes at the cost of a 14% drop

in the classification accuracy of the bHLH family (89% accuracy with SMLR,

75% with metamatti). The partially palindromic E-box motif CAGGTG ap-

pears to be the most common type misclassified in the erroneous bHLH motif

cases. Inspection of family assignments of motifs in the TRANSFAC database

shows that closely similar motifs with the CAGGTG consensus have been an-

notated with all of bHLH and C2H2 zinc finger families, highlighting a general

limitation of a sequence PWM feature based motif family classification methods.

Overall, the variability in accuracy across classes is not surprising: Luscombe

and Thornton (2002) already describe sequence-specific DNA binding motifs into

‘highly specific’ (e.g. TATA binding protein and the basic zipper domain) and

‘multi-specific‘ (e.g. homeodomain, C2H2 and Cys4 type zinc finger domains), i.e.

that different domains show different degree of constraint in the binding profiles

seen in nature, which can make some domains harder to classify even with so-

phisticated methods. Random forest classification in fact outputs a classification

probability for each of the potential classes. I in fact use this property of random

forest classification in Chapter 5 (Section 5.3.6.5) to choose a confidence level for

classification decisions, instead of reporting a class for all input motifs regardless

of the uncertainty.

Motif family prediction methods ultimately rely on the structural mode of

interaction by a protein DNA binding domain being reflected as a DNA sequence

specificity pattern, and that pattern being distinct to each motif family as a
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Figure 4.2: Accuracy comparison between the TF domain family classification
with metamatti, and SMLR (k-fold cross-validation).
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Cys4 C2H2 bHLH bZIP Forkhead Homeodomain Class error

Cys4

C2H2

bHLH

bZIP

Forkhead

Homeodomain

Totals

39 0 0 0 0 1 2.5%

0 38 3 0 1 3 15.6%

0 2 22 5 0 0 24.0%

0 3 0 78 0 4 8.0%

0 0 0 0 31 2 9.0%

2 1 1 3 0 37 16.0%

41 43 26 86 32 47

Figure 4.3: Confusion matrix of the 6-way TRANSFAC motif classification with
the metamatti classifier. Columns correspond to the real class, and rows to the
predicted class.

result of co-evolution of the two protein and its binding sites. As the above

example of CANNTG sites shows, this is not always the case in nature: certain

bHLH and Snail-like C2H2 like factors for example are thought to bind with

closely similar specificities to compete for the same binding site positions (Nieto,

2002). The familial tendencies observed for DNA binding sites of transcription

factors are thought to be due to both biophysical constraints on the possible DNA

binding site patterns of a certain binding domain and evolutionary forces that

maintain the familial DNA specificities distinct. Such forces range from functional

redundancy of paralogous factors with overlapping binding sites (Kafri et al.,

2005) to antagonistic regulation by opposing activators and repressors (Tanaka

et al., 1993). To give an example of the inherent differences between TF domains,

the C2H2 domain noted above has been found to be extremely plastic and a

number of individual zinc fingers have even combined to very long (18bp) binding

site patterns in a highly modular fashion (Dreier et al., 2001, 2000). In contrast,

the bHLH domain has been observed to be much more strongly constrained in its

DNA binding tendencies in a thorough mutagenesis study of the DNA contacting

residues of the Max transcription factor (Maerkl and Quake, 2009). Further work

is clearly needed to cover the full spectrum of binding site patterns explored by
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sequence specific DNA binding domains, which also highlights the need for models

such as the metamotif that describe recurring patterns in sequence motifs.

4.3.2 Performance measurement of two large homeodomain

datasets

The previous motif classification work, which I compare my method with, has

relied on cross-validation based estimation of classification accuracy from a single

public database (Narlikar and Hartemink, 2006; Sandelin and Wasserman, 2004;

Xing and Karp, 2004). Recent advances in protein-DNA interaction assaying

have however resulted to the availability of several new experimental regulatory

motif data sets that are not deposited in TRANSFAC. I wanted to assess the

performance of metamatti with two homeodomain motif sets recovered from

different species and via different experimental methods. The evaluation also

allowed me to compare classification error rates achieved in independent datasets

to the error rate predicted by metamatti classification for the homeodomain

motif family. I applied metamatti to the Mus musculus PWMs constructed

from the Berger et al. (2008) protein binding microarray motif data and reported

the relative frequency at which the motifs were classified by metamatti with the

homeodomain label (out of the six possible classes). Similarly, I classified motifs

from the Noyes et al. (2008a) Drosophila melanogaster bacterial one-hybrid motif

datasets.

The classification accuracy rates for both homeodomain motif sets were shown

to be high, and in good agreement with the out-of-bag accuracy estimate of 91.3%

reported by the metamatti random forest classifier during classifier training:

92.1% and 91.7% of the homeodomain motifs in the Berger et al. (2008) set of

84 motifs, and the Noyes et al. (2008a) set of 177 motifs, were correctly clas-

sified, respectively. I studied the misclassified examples from the Drosophila

melanogaster homeodomain datasets in more detail to see where the misclas-

sified motifs lie in the homeodomain specificity group clustering presented in

Noyes et al. (2008a). Interestingly, the misclassifications were shown to be atyp-

ical homeodomains which do not contain the canonical TAATTA core and fall

amongst the smaller specificity groups. The misclassified motifs included three
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TGIF-Exd-like motifs (Vis, Hth, Exd), two Iroquois-like (Ara, Mirr), one Six-

like (Optix) and an outlier from the specificity group clustering (Figure 4.4A). A

similar trend of non-canonical homeodomains being primarily amongst the mis-

classified was also noted for the Mus musculus homeodomain motifs (4.4B). This

is most likely explained by atypical homeodomain motifs not being well covered

well by the TRANSFAC 12.2 training set; No closely matching homeodomain

motifs were observed in TRANSFAC 12.2 to many of the misclassified motifs.

Figure 4.4: Misclassified homeodomain motifs in the A) Noyes et al. (2008a) and
the B) Berger et al. (2008) datasets.

4.3.2.1 Classifying homeodomain motifs by their specificity group

I also wanted to test if a metamatti-like classifier could be trained to detect more

detailed differences between motif groups than motif family or superfamily, a

question which the previous methods have not addressed. I therefore labelled the

Drosophila melanogaster homeodomain motifs with the homeodomain specificity
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groups suggested by Noyes et al. (2008a) and estimated a single metamotif with

nmmetainfer from each of the specificity groups. A single metamotif was used

because of the small total number of motifs in the training data. I then trained a

metamatti classifier with these metamotifs similarly as described above in Sec-

tion 4.2. A remarkably high accuracy of 84% (confusion matrix shown in Table

4.5), when all Noyes et al. (2008a) homeodomain motifs with 3 or more exam-

ples per specificity group were included in the classification (9-way classification).

The applicability of supervised machine learning strategies that aim to learn mo-

tif type labels more precise than the DNA binding domain family are however

currently limited by the amount of available training data. For instance, the 84

motifs in the Noyes et al. (2008a) dataset contain examples of 11 specificity groups

which are very biased to the two largest groups (Antennapedia and Engrailed,

with 25 and 15 examples, respectively), with several specificity groups containing

as few as two to four examples (Ladybird, Iroquis, NK-1, NK-2, TGIF-Exd, Bcd).

This makes classifier error estimation imprecise especially for the weakly repre-

sented classes and results in the major classes, which have as much as eightfold

as many examples present in the training dataset, to have considerable weight

in predictions over the smaller classes (such as to maximise overall classification

accuracy). Methods like metamatti can however become increasingly relevant

once more high-throughput TF DNA specificity data becomes available.
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4.3.2.2 Clustering of motifs prior to metamotif training

Clustering of the motifs, and training metamotifs from motif clusters, was moti-

vated by the requirement to choose a value for the metamotif count parameter of

the metamotif inference algorithm, and to limit the metamotif search space. In-

spection of clusters at cutoff 6.0 showed no clusters with more than three strongly

distinct recurring patterns. Although for many motif clusters there were clearly

less than three distinct recurring metamotif patterns present at the clustering

cutoff of 6.0, the metamotif inference algorithm was found to treat these cases by

either inferring closely similar duplicate metamotifs (such as metamotifs 1 and

2 in Figure 2.10A) or short metamotifs with mean nucleotide weights with low

information content, or occasionally splitting the metamotif segments in several

independent parts. This suggested that together with a sparse machine learning

strategy such as a random forests, it would be advantageous to choose a high

metamotif count that would describe the input motif set in as much detail as

possible, with the price of some potentially redundant features in the feature set

(densities for duplicate or low information metamotifs). I validated this assump-

tion by retraining the classifier with two metamotifs per cluster (a total of 130

metamotifs). The classifier trained with two metamotifs per family resulted in

a mild decrease in the classification accuracy (88.4%, as opposed to 89.5% with

three metamotifs per cluster), suggesting that the additional metamotifs were

indeed informative.

4.3.3 Comparing a metamotif density based classification

to a Cartesian distance based classifier

I assessed the importance of the metamotif density score in the metamatti clas-

sifier by comparing it to a more naive classifier where we replace the metamotif

average and maximum scores with average and maximum SSD distances com-

puted between the training set motifs and ‘average motifs’ of each of the motif

families. The average motifs used in the more naive classifier were the mean

PWMs of the metamotifs trained with nmmetainfer. They were used for clas-

sification by scoring the training set motifs with an SSD distance metric with

each of the metamotifs. We found that the classifier accuracy achieved with the
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SSD metric was lower to the metamotif density based classifier by 1.4% (accu-

racy of 88.1%), suggesting that both the metamotif mean and the column wise

precision values which contribute to the metamotif density scores are partially

responsible for metamatti’s high performance. Furthermore, I tested training a

classifier with cluster average motifs instead of the metamotif segments, result-

ing in an accuracy figure of 86.5%, suggesting that not only is the metamotif

density a suitable score, but that the motif segments identified by the metamotif

inference algorithm provide a classifier that generalises better than simply using

average motifs inferred by clustering and collapsing clustered motifs to an average

representation.

4.3.4 Making metamatti available

Once I had shown the favourable performance of metamatti with respect to

previous related methods, it became important to make the classification method

readily available. Much like with the familial PWM prior work described in the

previous chapter, I wanted to make it usable for both experienced and inexpe-

rienced users, with as low a barrier to installing and using it as possible. The

following sections describe two ways in which metamatti can be taken advantage

of.

4.3.4.1 The metamatti R package

The metamotif based classifier was initially developed as a series of R and ruby

scripts. Distributing the tool as an R package was therefore a natural choice.

The R package can be used to predict using classifiers either packaged in the

software (included as R datasets loadable with the data() function), or ones

trained with the package based on training data. The classifier training procedure

also optionally plots a precision-recall curve and a variable importance graph,

similar to those shown in Chapter 5. Furthermore, the JASPAR based classifier

noted in this example is introduced and applied in Chapter 5 (Section 5.3.6.5).

The package source code, installation instructions and documentation is avail-

able at http://www.github.com/mz2/metamatti. A brief usage example is pro-

vided below.
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#Load t h e l i b r a r y

l ibrary ( metamatti )

# Get a l i s t o f a v a i l a b l e m e t ama t t i c l a s s i f i e r s

# a l t e r n a t i v e l y way t o a c c o m p l i s h t h i s i s :

# t r y ( d a t a ( p a c k a g e =” me t ama t t i ” ) ) ’

# Due t o t h e l i c e n s i n g t e rm s o f t h e TRANSFAC d a t a b a s e ,

# t h e TRANSFAC ba s e d c l a s s i f i e r s a r e n o t made p u b l i c l y a v a i l a b l e .

# A d d i t i o n a l c l a s s i f i e r s c an h owev e r be t r a i n e d

# a s shown b e l ow .

ge tAva i l ab l eMe tamat t iC l a s s i f i e r s ( )

#” t r a n s f a c −c l a s s −6−way ” , ” t r a n s f a c −s u p e r c l a s s −4−way ” , ” j a s p a r −5−way ”

# E x t r a c t f e a t u r e s f r om you r m o t i f s o f i n t e r e s t

f e a t u r e s <−
extractMetamatt iFeatures ( " your - m o t i f s . xms " , " jaspar -5 - way " )

# t r a i n M e t a m a t t i F o r e s t ( f e a t u r e s , c l a s s i f i e r N a m e ) can be u s e d t o

# t r a i n a new random f o r e s t c l a s s i f i e r . C l a s s i f i e r t r a i n i n g w i l l

# a l s o o u t p u t a p r e c i s i o n − r e c a l l g r a ph

# ( i n t h i s c a s e j a s p a r −5−way−p r e c− r e c a l l . p d f ,

# and a g r a ph o f v a r i a b l e i m p o r t a n c e s

# ( ” j a s p a r −5−way− i m p o r t a n c e s . p d f ” )

# i n t h e w o r k i n g d i r e c t o r y .

f o r e s t <− tra inMetamatt iForest ( f e a tu r e s , " jaspar -5 - way " )

# A l t e r n a t i v e l y , you can r e t r i e v e a j a s p a r −5−way c l a s s i f i e r wh i c h i s

# p a c k a g e d a l o n g s i d e m e t ama t t i .

# B e c a u s e t h e t r a i n i n g s e t s a r e e x p o s e d a s s t a n d a r d R d a t a s e t s ,

# you can a l s o a c c o m p l i s h t h i s w i t h d a t a ( ” j a s p a r −5−way ” ) ’

f o r e s t <− getMetamattiForest ( " jaspar -5 - way " )

# P r e d i c t t h e c l a s s f o r t h e m o t i f s

# Note t h a t t h i s i s i n f a c t a f u n c t i o n f r om t h e r a n d o m F o r e s t p a c k a g e

# ( t h e p a c k a g e i s l o a d e d upon l o a d i n g t h e m e t a m a t t i ’ l i b r a r y )

preds <− pr ed i c t ( f e a tu r e s , f o r e s t )

4.3.5 The metamatti web server

In addition to the metamatti R package, I also created a simple web server

application for motif family prediction. This was done most importantly be-

cause the outside dependencies required for installing the R package can act as

a barrier of entry for inexperienced users, and because a web based applica-

tion makes it possible to expose the TRANSFAC family classification to outside

users (re-distributing the training data needed for it in the R package is impos-

sible due to the licensing terms). The metamatti server can be used with a

web browser (Figure 4.6) with a rather Spartan form based user interface. It

also responds to a JavaScript Object Notation (JSON1) based response format

to web service API calls. Documentation for using the web service API is in-

cluded alongside the freely available (LGPL licensed) source code of the project at

1http://www.json.org
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http://www.www.github.com/mz2/metamatti. It was implemented using Ruby

on Rails (http://www.rubyonrails.org).

A) B)

Figure 4.6: The metamatti motif classification web server. A) A screenshot of
the prediction submission form. A motif set is entered either by pasting it to the
form, uploaded as a file, or sent in a web service API call. B) A screenshot of the
prediction report view. The tabular reports can be copied and pasted from (for
instance to MS Excel), and they are also made available in a machine readable
tabular (tab separated value) format through the web service API.
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