
Chapter 2

Metamotifs - a generative model

for building families of nucleotide

position weight matrices

2.1 Background

1 A fundamental difficulty in studying DNA specificity of TFs is the absence of a

simple, universal recognition code from the protein sequence or tertiary structure

of the TF to its DNA recognition motif (Smith, 1998). Comparative studies of

TF domains and their crystal structures with bound DNA have shown certain

recurring rules for protein-DNA interactions (Jones et al., 1999; Kono and Sarai,

1999; Nadassy et al., 1999), for instance commonly occurring hydrogen bond

mediated interactions between the base guanine, and arginine, lysine, histidine or

serine residuess (Luscombe and Thornton, 2002). However, the stronger patterns

predictive of DNA specificity of proteins are highly TF domain family specific

(Kono and Sarai, 1999; Luscombe and Thornton, 2002). That these interactions

are domain specific, and sometimes non-additive (Badis et al., 2009; Benos et al.,

1This chapter, and the two following two, were partly published in BMC Bioinformatics
(Piipari et al., 2010a), by the author of this PhD thesis (MP), Dr. Thomas Down (TD), and
my thesis supervisor Dr. Tim Hubbard (TH). Authors’ contributions are as follows: TH, TD
and MP conceived the work, MP developed the software, performed the tests and wrote the
manuscript.
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2002a), should not come as a surprise; protein and DNA interactions form a

dynamic three dimensional network of contacts between the protein residues,

the DNA sugar–phosphate backbone, bases and water residues in the binding

interface (Luscombe and Thornton, 2002). Substantial conformational changes

of both the protein and the DNA also often occur upon binding (Kim, 1995;

Percipalle et al., 1995).

Even though a universal recognition code of protein DNA binding is unlikely

to surface, familial patterns of DNA binding specificity can still be made use of to

provide biological insight about newly presented data. The interaction rules of the

DNA-binding residues are understood well in the case of some extensively studied

domains like Cys2His2 zinc fingers (Wolfe et al., 2000). The DNA specificity of

a Cys2His2 domain can be predicted based on sequence (Benos et al., 2002b;

Kaplan et al., 2005; Mandel-Gutfreund et al., 2001; Persikov et al., 2008), and

altogether new transcription factors can be engineered by mutating the DNA

binding residues (Pabo et al., 2001). More interestingly from the point of view

of my work, however, familial patterns of DNA specificity can be taken to infer

TFBS motifs from genomic sequence with greater sensitivity. Several algorithms

have been designed that take into account previous knowledge of TF domain DNA

specificity to find motifs which fit familial patterns, or to label newly discovered

motifs to TF families with classification methods (Narlikar et al., 2006; Sandelin

and Wasserman, 2004; Xing and Karp, 2004).

2.1.1 Previous work on motif family models

The most widely applicable model for short regulatory motifs is the position

weight matrix, or PWM (see Section 1.2.1), originally introduced by Stormo

et al. (1982). Methods have been developed for comparing and clustering PWMs.

The earliest such methods were made for protein domain model comparison

(Pietrokovski, 1996). In the case of DNA motifs, clustering can be used to in-

fer information about possible function of de novo predicted motifs, such as to

find clusters of closely related motifs to known data. Although DNA binding

domains vary widely, familial tendencies exist in DNA sequence motifs that are

predictive of the family of transcription factors which bind them (Narlikar et al.,
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2006; Narlikar and Hartemink, 2006). This makes clustering useful for inferring

potential binding partners for discovered motifs of interest.

Familial binding profiles (FBP) offer perhaps the earliest solution for sum-

marising familial patterns in nucleotide PWMs (Sandelin and Wasserman, 2004).

FBPs are weighted averages of aligned sets of motifs. All motif pairs in the set are

aligned with a variant of the Needleman & Wunsch global alignment algorithm

(Needleman and Wunsch, 1970), using the score defined in Equation 2.1 to min-

imise the sum of squared deviations between the aligned motif columns amongst

a familial alignment of PWMs, allowing for a single gap (with a stringent but

arbitrarily chosen gap opening penalty). The significance of scores is measured

with an empirical distribution of motif pair scores derived from shuffled motifs

of the same length (Sandelin and Wasserman, 2004). Motifs are then added to a

multiple alignment in the order of decreasing significance, and finally the motif

columns are averaged, with contribution of each motif V weighted according to

wV = 1 − pv, where pv is the average of p-values of motif V with all the other

motifs.

S = 2−
∑

b∈{A,C,G,T}

(Mb −Nb)
2 (2.1)

FBPs for 11 metazoan transcription factor families are made available through

the JASPAR motif database (Portales-Casamar et al., 2010). However, the FBP-

based approach suffers from certain inherent limitations; Firstly it is not a proba-

bilistic method but uses an arbitrary distance metric between motif columns, ne-

cessitating an empirical significance score computation and an arbitrary weighting

of motif contributions to the FBP. Secondly, a global alignment is assumed be-

tween all motif columns, which means that only patterns common to all members

of the family can be reliably modeled in this fashion. Sandelin and Wasserman

(2004) only present FBPs for a small number of metazoan specific groups of DNA

binding domains (11 FBPs, built from a total of 63 closely related motifs). Inci-

dentally, many of the DNA binding domains in these 11 (e.g. ETS, Rel, MADS)

have been classified as ‘highly specific’ to their DNA binding sites already by

Luscombe et al. (2001), meaning that TFs in these families have a closely similar

distribution of binding site specificities (motifs) with little variation.
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More generally, motif comparison methods also suffer from the absence of a

natural distance metric between motifs, although many different metrics have

been proposed for this problem. For instance, a χ2-based distance metric was

found an effective measure by Kielbasa et al. (2005). A metric based on Pear-

son correlations of motif columns was also described in the same publication.

Various other distance metrics were suggested and systematically evaluated in a

study by Mahony et al. (2007), where a sum of squared deviations based metric

was found to be the best single metric. The asymptotic covariance between hits

of two motifs in an infinitely long sequence parameterised by its nucleotide con-

tent has also been applied as a distance measure (Pape et al., 2008). The most

recent motif distance metric and clustering methods are probabilistic and draw

special attention to the uncertainty in motif comparison and the importance of

high-information columns in measuring distances of sequence motifs: a Bayesian

probability distance metric between motif columns (Habib et al., 2008) and a

fuzzy integral based metric (Garcia et al., 2009). In this work I also explore a

probabilistic solution for comparing motifs. Unlike any of the above motif-to-

motif distance work, I however do not apply the developed method to a motif

clustering problem. Instead, I attempt to solve the supervised learning problem

of classifying motifs to their TF domain families probabilistically (Chapter 4).

Classification based learning can be arguably more informative when predicting

the likely function of motifs. This is because assigning a motif to a motif family

has an associated uncertainty. Therefore finding closely similar known motifs by

clustering does not always allow precise conclusions to be made regarding the

binding partner of a discovered motif.

Supervised learning strategies have been applied to classify motifs and infer

motifs similar to previously known motifs from novel sequences. Self-organising

maps (Kohonen and Somervuo, 2002) have been applied for classification of bind-

ing sites for the purposes of semi-supervised motif inference in the SOMBRERO

algorithm (Mahony et al., 2005a). Other notable methods include a Sparse Multi-

nomial Regression (SMLR) based binding site sequence classification described

in Narlikar and Hartemink (2006), and an application of this method to motif in-

ference; The motif inference program PRIORITY assigns an SMLR-derived prior

probability for each sequence position for its potential to fit a motif of a given
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transcription factor family (Narlikar et al., 2006).

I present here a probabilistic model for describing motif families and measur-

ing relatedness of sequence motifs – the metamotif. Metamotifs can be used to

summarise gapless alignments of motifs of a given length, similar to an FBP. In

contrast to the FBP framework introduced by Sandelin and Wasserman (2004),

I do not model the recurring patterns found amongst a related set of motifs

necessarily as a single motif alignment. Furthermore, the metamotif includes a

vector of column wise mean nucleotide weights, as well as a variance parameter

for each column. Variance is not modelled for example by the FBP or other

non-probabilistic methods. Inclusion of motif column variances as part of the

model makes it unnecessary to derive empirical significance estimates of motif

similarity. In this respect a metamotif is similar to the hierarchical profile hidden

Markov–Dirichlet multinomial model used by MotifPrototyper (Xing and Karp,

2004): both describe familiar prototypes of PWMs that are estimated probabilis-

tically with a sequence of position specific probability distributions and can yield

a Bayesian prior on the weight matrix columns (a ‘structural prior’ for the weight

matrices in the terminology used by Xing and Karp (2004)). In contrast to Mo-

tifPrototyper, however, the metamotif inference algorithm I developed (Section

2.2.4) can account for intra-motif structure such as repeating or palindromic seg-

ments by treating motifs as a series of potentially several metamotif instances (i.e.

learning several prototype patterns rather than only one), and positions emitted

by a background model. In other words, in our framework, not all positions are

generated from a single metamotif, and I additionally model some motif positions

as noise emitted by a background model.

2.2 The metamotif

A metamotif is a generative model for PWM motif columns that can be used to

represent a gapless alignment of position weight matrices. For each PWM position

i (multinomial column) there exists a Dirichlet distribution in the metamotif

column at position i. A metamotif is therefore a parameter configuration for

a product Dirichlet distribution where position i of the motif alignment model

corresponds to parameters αi. More intuitively, consider that in a metamotif,
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nucleotides at all positions have an associated average weight (depicted in Figure

2.1A as the symbol heights) and a variance (the error bars). It is in other words

a probability distribution over PWM motifs of a given length. A metamotif of

length k therefore allows drawing motifs of length k from it (Figure 2.1B), and

querying for the probability of the metamotif being the source distribution for any

motif of the same length. This is analogous to computing a probability score for

a sequence k -mer to measure the probability of the k -mer having been generated

by a PWM.
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Below I first formally define the metamotif (Section 2.2.1) and present a simple

maximum likelihood method for estimating metamotifs from aligned motif data.

In Section 2.2.2 I present a form of visualisation for the metamotif akin the

sequence logo (Schneider and Stephens, 1990), and then expand the use of the

model beyond simply constructing metamotifs from aligned motifs (Section 2.2.4).

This expansion is made possible by a Monte Carlo metamotif inference algorithm

that simultaneously estimates multiple weakly represented metamotifs from a

potentially large set of motifs.

2.2.1 Formulation of the model

A metamotif α is a matrix of L columns, each defining a Dirichlet distribution

over RK where K is the size of the alphabet (Equation 2.2).

α =


α11 . . . α1L

...
...

αK1 . . . αKL

 (2.2)

A motif X = (x1,x2, . . . ,xn) is a set of column vectors over the same alphabet.

The probability of observing the column xi from the metamotif α is given by the

density of the Dirichlet distribution with parameters αi at weights xi (Equation

2.3). The normalising constant B(α) is the multinomial beta function, expressed

in Equation 2.4 via the Gamma function.

P(xi|αi) = Dir(xi;αi) =
1

B(α)

K∏
j=1

x
αij−1
ij (2.3)

B(α) =

∏K
j=1 Γ(αj)

Γ(
∑K

j=1 αj)
(2.4)

The log probability of observing a motif of length L is then given by Equation

2.5.

log P(X|α) =
L∑
i=1

log(Dir(xi;αi)) (2.5)
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To motivate the use of the metamotif we note that the metamotif column αi

can be understood as a combination of the mean nucleotide weights E[xmk] and

precision α0m =
∑K

j=1 αj (Equation 2.6) where m ∈ [1,M ] and k ∈ [1, K] .

E[xij] = αij/α0j (2.6)

2.2.2 Visual representation of the model

The visual representations I developed for the metamotif model are both based

on the sequence logo (Schneider and Stephens, 1990). The metamotif visualisa-

tion was implemented as part of the iMotifs sequence motif visualisation en-

vironment (Piipari et al., 2010b) with Apple’s C-based Quartz API and the

Objective-C based Cocoa drawing APIs. Metamotif model visualisation was

in fact originally implemented in a Java based cross-platform motif visualisa-

tion tool mXplor, which I created as a precursor to iMotifs (available openly

at http://www.github.com/mz2/mxplor). The representation evolved from a

‘fuzzy sequence logo’, where a number of sequence logos are overlaid on top

of each other (Figure 2.2A), to a sequence logo with confidence intervals being

drawn on the motifs (Figure 2.2B). Notably iMotifs supports both the error bar

and fuzzy motif representations.

Both visual forms shown in Figure 2.2 communicate the mean weights E[X|α]

and precision α0 aspects of the metamotif. A sequence logo is drawn for PWM

with nucleotide weights E[X|α]. In the error bar enabled sequence logo in Figure

2.2B the error bars are shown to highlight 95% confidence intervals of nucleotide

weights of the Dirichlet density at αi for each symbol (Figure 2.2B).

2.2.3 Aligning motifs and estimating metamotifs from a

motif multiple alignments

Given that a metamotif is a probability distribution over motifs of length k, it

should be possible to estimate a metamotif from a series of aligned motif columns

of matching length (see for example Figure 2.1B). Indeed, during my project I

firstly designed a simple maximum likelihood metamotif inference algorithm for
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A)

B)

C)

Figure 2.2: Visual representations of metamotifs. A) A ‘fuzzy sequence logo’
representation of a metamotif drawn with mXplor. One hundred samples are
drawn per column, and sequence logos of the resulting PWMs are overlaid with
low opacity on top of each other. The symbols in the sampled PWMs are or-
dered according to the decreasing nucleotide weight of the average weights in the
distribution. B) Metamotif represented by a sequence logo with error bars (5% –
95% confidence intervals are presented with the error bars). C) The confidence
intervals presented for a metamotif, i.e. the ‘height’ of the error bars in (B), can
be configured in iMotifs.
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the purpose. It is described in brief in Figure 2.3.

Firstly, a distance distribution is computed between the input motifs accord-

ing to the column-wise sum of squared differences (SSD) motif distance metric

from Down et al. (2007), which is noted below in Equation 2.7. P and Q are

distributions from the two compared motifs, and ε is an adjustable modifier on

the exponent. When it has the value 1.0, the distance computed is the Cartesian

distance. Similar to Down et al. (2007) I use ε = 2.5.

D(P ||Q) = (
∑
s∈A

(P (s)−Q(s))2)ε/2 (2.7)

When comparing the distance, all possible offsets with at least one overlapping

column are considered between motif pairs (the unmatched columns are treated as

a multinomial distribution with uniform nucleotide weights [0.25, 0.25, 0.25, 0.25]).

Then, beginning from the closest motif pair, motifs are progressively added to

the alignment, one by one in the order of increasing distance to motifs already

present in the alignment. This is analogous to the progressive multiple alignment

strategy used in many protein sequence multiple alignment algorithms (Chenna

et al., 2003; Notredame et al., 2000). The resulting gapless alignment is simply

defined by the offsets and reverse complement operations required to minimise the

distance between the closest pairs (reverse-complementing motifs, i.e. allowing

matches on either strand, is optional). Computing the metamotif is in fact simply

a post-processing step done after aligning motif columns and cutting the motifs to

a fixed length (Step 2 in Figure 2.3): a maximum likelihood Dirichlet distribution

is computed using the Newton iteration method described in Minka (2003) due

to the lack of a closed form solution. The motif set alignment algorithm which

I implemented was also made to allow outputting an average PWM (a familial

binding profile -like construct, see Section 2.1.1), or the alignment as a series of

aligned motifs. All of these output options (a metamotif, an average motif, and

an aligned set of motifs) are also available in iMotifs (Piipari et al., 2010b).
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Figure 2.3: Schematic explaining the MLE metamotif inference algorithm. Firstly
a distance matrix is computed between the motifs (Step 0). Motifs are added
to the alignment in the order of increasing minimal pairwise distance to the
motifs already in the alignment (steps 1a,1b,1c). Note that the motif GATA-2 is
reverse-complemented upon adding it to the alignment. Motif ends are optionally
cut such as to arrive at a motif alignment with no ‘hanging end columns’ (a
minimum number of motifs with a supporting column can be defined to choose
the threshold). A MLE Dirichlet distribution is then estimated for all motif
columns using the method described in Minka (2003).
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2.2.4 Metamotif inference by nested sampling

The metamotif can be seen as a way to summarise a gapless alignment of motifs

of a certain length, to yield a probability distribution of motifs. However, my

goal in designing the metamotif framework was to describe recurring patterns

seen in sequence motif data deposited in public motif databases such as TRANS-

FAC (Matys et al., 2006), JASPAR (Portales-Casamar et al., 2010) or UniPROBE

(Newburger and Bulyk, 2009). Many sequence motif families cannot be described

accurately by global gapless multiple alignments of motifs at a fixed length. Mo-

tifs can for example consist of shorter repetitive signals, such as in the case of

the heat-shock factor (HSF) motifs (Figure 2.4D), or the basic Helix-Loop-Helix

(bHLH) motif family that are completely or partially palindromic due to their

dimeric binding mode (Anthony-Cahill et al., 1992). Inspection of the HSF motif

set shows that a global alignment of its columns does not describe the regularly

spaced five-base repeat that is observed as part of the motifs in opposing orien-

tations (aGAAn / nTTCt) (Kroeger and Morimoto, 1994). Furthermore, even

non-repetitive and non-palindromic motifs present challenges for gapless multiple

alignments: the span of informative columns contributing to familial patterns in

publicly available PWM data is often unclear because of different signal-to-noise

ratios and varying information content criteria used for calling motif ends.

I wanted to develop an inference algorithm that allows simultaneous detec-

tion of n short metamotif signals from a set of motif data, allowing for varying

length for different metamotifs, and optionally free orientation (signal present on

either strand). The metamotif count n is a fixed, user settable parameter to the

algorithm. For metamotif inference problems where n is expected to be large, the

choice for the parameter should be informed by prior information of the motif

set under study, for example clustering of the motifs to estimate a rough number

of recurring motif segments. Each metamotif has a priori an unknown length

between lmin and lmax columns, and is expected to contain one or more matches

in a fraction f of motifs. Motifs in the framework are thought to be generated

by recurring metamotif patterns, each of which is potentially shorter than any

of the motifs, and background positions that model “uninteresting” sections of

the motifs (positions not emitted by any of the metamotifs). The background
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model in the framework is the maximum likelihood (MLE) Dirichlet distribution

estimated from all the motif columns in the input data. It is computed with

the optimisation procedure described in Minka (2003), which is also used in the

simpler MLE metamotif inference algorithm described in Section 2.2.3.

Figure 2.4: Example metamotifs for forkhead (A) and HSF (B) motif families
from the TRANSFAC database (Matys et al., 2006). A) The MLE metamotif
estimated for a subset of forkhead motifs (B) in the TRANSFAC 12.2 (Matys
et al., 2006) regulatory motif database. C) Two HSF metamotifs estimated using
the metamotif nested sampling algorithm from a subset of HSF motifs (D) in the
TRANSFAC regulatory motif database.
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The metamotif inference algorithm which I developed is a variant of the Nest-

edMICA nested sampling algorithm described in Section 1.3.3. Nested sampling,

originally introduced by Skilling (2004), is a generic Bayesian MCMC sampling

strategy that allows drawing samples from a posterior distribution and directly

estimating the evidence (marginal likelihood) of the model.

The metamotif nested sampler takes recurring intra-motif structure into ac-

count and allows detection of multiple metamotifs from a set of motifs. Motif sets

are treated as a combination of short recurring patterns emitted by metamotifs,

and background positions. The recurring signal can also optionally be allowed to

be present on either strand, further improving the ability to detect repeating fea-

tures. Recurring metamotif signals of interest are modelled separately from the

“uninteresting” sections of the motifs that are taken as having been generated by

a background model. The background model is the maximum likelihood (MLE)

Dirichlet distribution estimated from all the motif columns in the input data. It

is computed with the optimisation procedure described in Minka (2003), which is

also used in the simpler MLE metamotif inference algorithm described in Section

2.2.3.

The algorithm allows estimating n metamotifs for a set of p motifs, with a

variable metamotif length between lmin and lmax columns, and an expected frac-

tion f of motifs containing any one of the n metamotifs. This is analogous to the

NestedMICA motif inference algorithm that estimates multiple motifs with vary-

ing length from an expected fraction of nucleotide or protein sequence data. The

posterior distribution being sampled is over the sets of n metamotifs and so-called

mixture matrices, given the motif data and a background model for the motifs.

The mixture (or occupancy) matrix describes the pairing between metamotifs and

motifs. The term mixing matrix is a reference to the algorithm treating pattern

recognition as an independent component analysis problem similar to the Nested-

MICA motif inference algorithm (Section 1.3.3): a likelihood function is written

for the observations (the motif set) and the motif set is assumed to be generated

as a mixture of independent metamotif contributions and noise represented by

the background model. Each element Qi,j in the n × p mixing matrix Q is a

binary indicator of the metamotif j being present one or more times in the motif

i. If the metamotif is present, Qi,j = 1, otherwise Qi,j = 0. The likelihood of
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the motif set given the metamotif set is simply the product of likelihoods of each

individual motif given the metamotif set and the mixture matrix.

2.2.5 The likelihood function

The likelihood of a motif given a set of metamotifs is calculated assuming the

motif is emitted by the multiple-uncounted motif–metamotif mixture model (a

MUMM with two metamotifs is given in Figure 2.5). This formulation allows for

each motif to contain multiple metamotifs simultaneously, without the need to

iteratively repeat sampling after masking previously inferred stronger signals.

Computing the likelihood of a motif given metamotifs under the MUMM

model involves completing one-dimensional dynamic programming from the be-

ginning of the motif to column c, closely in the same form as the protein or

nucleotide sequence likelihood function described for the NestedMICA algorithm

in Dogruel et al. (2008) (Equation 2.8).

Lc = (1− t)Bc−1Lc−1 +
t

|M |
∑
α∈M

P(Xc−1
c−lα+1)Lc−lα (2.8)

Lc represents the likelihood of all metamotif and background column arrange-

ments (paths) in the input motif up to the column c. M is the set of metamotifs

that have a mixing coefficient of 1 for the motif under consideration (i.e. meta-

motifs marked to be present in the motif in the mixing matrix Q), and |M | is

the number of metamotifs that have a mixing coefficient 1. The length of the

metamotif α is represented by lα. Bc is the probability that the motif column

at position c was emitted by the background. For the motif X of length lX the

transition probability t to a metamotif is defined as t = 1/lX, i.e. one metamotif

is expected per motif, and any motif position is equally likely to contain a tran-

sition. P(Xj
i ) is the probability that the motif segment from i to j was emitted

by a metamotif m, and it is given by the metamotif density function (Equation

2.5). A metamotif can optionally be allowed to be present on either strand to

improve the ability to detect repeating (e.g. palindromic) features. Alternating

orientation of metamotifs are achieved simply by summing the probability con-

tributions P(Xj
i ) of the metamotif α and its reverse complement at all possible
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metamotif 1

1 2 3 4

1 2 3

background

start

end

metamotif 2

Figure 2.5: The multiple-uncounted motif–metamotif mixture HMM (MUMM).
Numbered steps model the columns of the metamotif signals of interest and
the background states are responsible for the “uninteresting” positions. Motif
columns are emitted from a selection of metamotifs of varying lengths, and back-
ground positions. Note the similarity to the sequence–motif mixture model used
in the NestedMICA motif discovery algorithm for motifs embedded in sequence
(Figure 1.6).
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offsets. Incomplete metamotif hits are also accounted for (Section 2.2.7).

2.2.6 Monte Carlo sampling moves

The metamotif nested sampler algorithm evolves metamotif parameters, and the

mixture matrix state, with Monte Carlo sampling moves. Most of the proposal

types alter the metamotif column parameters. The metamotif proposals are se-

lected randomly from amongst the following set of moves:

• a small perturbation is made to a randomly selected metamotif column

nucleotide mean weight: perturbation is made according to a randomly

chosen nucleotide α weight αi, nucleotide mean weights adjusted so they

again sum to 1, and αi of the column adjusted accordingly, maintaining

precision unchanged.

• a small perturbation is made to a randomly selected metamotif column

precision α0: α0 is perturbed, and α adjusted such as to maintain the mean

nucleotide weights unchanged with a new precision.

• a small perturbation is made to a randomly selected metamotif column

nucleotide weight αi, thereby indirectly changing the precision.

• replacing a metamotif column with a new one, sampled from an uninforma-

tive simplex prior (nucleotide weights on the range [0.1, 40.0] are allowed).

• removing a column in one end of a metamotif while adding another one to

the other end.

• adjusting motif length, by adding or removing a column from either end.

The two update operations that use an alternative parameterisation of α with

precision and the mean nucleotide weights, i.e. updating the precision whilst

maintaining mean weights unchanged, and altering the mean weights whilst main-

taining the precision unchanged, proved beneficial for achieving convergence of

the algorithm. When these moves were included, the algorithm converged consis-

tently with smaller number of iterations than when only the more naive method
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of updating αi with random perturbations was included (data not shown). The

prior function over the Dirichlet distribution parameters was an uninformative

’clipped’ simplex prior: all values for the nucleotide weight parameters αi of the

distribution are allowed on the range [0.1, 40.0] and equally likely. Parameter val-

ues above or below this range are clipped such as to avoid numerical instability.

Sampling moves are also done in the space of mixture matrices by flipping

states of randomly selected elements in the mixture matrix similarly as done in

Dogruel et al. (2008) for the NestedMICA algorithm.

2.2.7 Accounting for incomplete metamotif hits

Accounting for incomplete metamotif matches in a motif is an important consid-

eration. This is because we wish to analyse data from different experimental and

computational sources where motif start or end positions have not been chosen

consistently, for instance with an information content criterion. Incomplete hits

are accounted for by adding additional “un-informative” columns in the input

motifs in both the 5
′

and the 3
′

motif ends. The un-informative columns are

multinomial distributions that match the mean nucleotide weights of the back-

ground model Dirichlet distribution. This effectively allows all possible offsets of

the metamotif that overlap the motif with at least one column, whilst associating

more uncertainty to those columns supported by only a subset of the motif data

(Figure 2.6).

2.3 Evaluating the metamotif nested sampler al-

gorithm

Performance of the metamotif inference algorithm was tested using synthetic mo-

tif sets where samples from metamotifs were inserted, or “spiked”, similarly as

done by Dogruel (2008); Tang et al. (2008) with synthetic sequences and samples

from motifs. The aim was to measure the relative frequency of metamotifs at

which the expected metamotifs could be recovered by the algorithm from syn-

thetic motif data containing metamotif instances. The evaluations were done in

two stages. The ability of the algorithm to infer a single metamotif presented to
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Figure 2.6: Incomplete hits are handled by padding the input motifs with ad-
ditional columns that fit the background model optimally. All metamotif hits
are required to be at minimum two columns long, which means that all input
motifs are (optionally) capped with lmin−1 additional columns, where lmin is the
user settable minimum metamotif length parameter (which also has a minimum
allowed value of 2).
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it was tested first (Section 2.3.1). After that, several metamotifs were presented

to the algorithm to assess the ability of the algorithm to infer multiple metamo-

tifs simultaneously (Section 2.3.2). Metamotifs were then also inferred from the

TRANSFAC database (Section 2.3.3).

To prepare the synthetic motif sets, metamotifs were first generated of exam-

ples of three structurally diverse TRANSFAC 12.2 PWM families: six forkhead

motifs (class 3.3 in TRANSFAC classification), six GATA-like Cys4 zinc finger

motifs (class 2.1) and five MADS box motifs (class 4.4) were used (source mo-

tifs shown in Figure 2.7). This was done by aligning each of the three input

motif sets with a greedy gapless sequence motif multiple alignment method re-

lated to the one utilised in STAMP motif toolkit (Mahony and Benos, 2007). A

metamotif was then estimated from the motif multiple alignments with the MLE

method from Minka (2003): MLE Dirichlet distribution was computed for motif

alignment columns (example seen in Figure 2.4A), with each motif column in the

alignment mapping to a MLE Dirichlet distribution in the resulting metamotif.
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Motifs (PWMs) from each of the three familial metamotifs were sampled

in relative frequencies of 0%, 10%, 20%, . . ., 100%, into synthetic input mo-

tif sets (separate input motif set per motif family). Each synthetic motif set

contained 60 motifs, each 20 nucleotide columns long, with a maximum of one

metamotif instance allowed per input motif. The synthetic motif columns in

the input motif sets are samples from a Dirichlet distribution with parameters

α = {0.5, 0.5, 0.5, 0.5}. The metamotif sample PWMs were inserted at random

positions within the 20 nucleotide long synthetic motifs. The metamotif infer-

ence algorithm was then run on the motif set to infer a single metamotif between

length ranges 4 and 14, allowing for the signal to be present in either orientation

(-numMetamotifs 1 -revComp -minLength 4 -maxLength 14).

Metamotif inference performance was measured qualitatively with visual in-

spection comparing the inferred metamotifs to the known spiked metamotifs,

and quantitively measuring the Cartesian distance between the metamotif mean

nucleotide weights.

2.3.1 A single metamotif

The metamotif nested sampler algorithm was used to infer metamotifs from the

synthetic motif sets to evaluate how well the spiked metamotif patterns could

be recovered. Performance was measured qualitatively with visual inspection

comparing the inferred metamotifs to the known spiked metamotifs, and quanti-

tively measuring the Cartesian distance between the metamotif mean nucleotide

weights. The visual comparison, Cartesian distances and empirical p-values for

observed metamotif-metamotif distances are presented in Figure 2.8. The evalu-

ation shows that metamotifs can be inferred from motif sets that contain them

with relative frequencies of even 10%. At a relative frequency of 40% and above

all three recovered metamotifs are very similar to the respective source metamotif

(Figure 2.8).
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2.3.2 Multiple metamotifs

The ability to predict multiple metamotifs was demonstrated in a second evalua-

tion experiment where instances of all the three motif families were inserted into

synthetic motif sets and the algorithm was required to infer three metamotifs.

It was shown that the algorithm was able to infer multiple metamotif models

concurrently with correct lengths at a relative frequency as low as 20% (Figure

2.9).
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Figure 2.9: The metamotifs predicted at relative frequency of 0.2 are shown
alongside the source metamotifs.
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2.3.3 Inferring metamotifs from TRANSFAC

I demonstrated use of the metamotif nested sampling algorithm in inferring famil-

ial metamotifs from known experimentally determined regulatory motifs from the

TRANSFAC database (Matys et al., 2006). Motifs retrieved from TRANSFAC

were first divided to clusters with the SSD distance by Down et al. (2007) with

cutoff 6.0. Three metamotifs were then inferred from each of the resulting clus-

ters. Examples of metamotifs inferred are shown in Figure 2.10. The metamotif

nested sampler algorithm was found capable of detecting several recurring pat-

terns from the motif clusters that are clear upon visual inspection of the motifs,

in addition to finding overliers from the motif sets (Figure ??B).
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Evaluation of the nested sampling based metamotif inference algorithm sug-

gests that it is able to correctly infer familial metamotif patterns. It performs

both in the case of a single recurring motif family, and in the case of motif sets

with examples of multiple motif families. This makes it potentially applicable for

instance for finding redundant motif patterns from large scale de novo inferred

sets of motif predictions from different algorithms, or for inferring a complete set

of familial metamotifs from a set of motifs. Metamotif inference is also conducted

from clustered motifs from the TRANSFAC database.

2.4 Summary

In this chapter I introduce a generative model for PWM motif columns, called

the metamotif. The metamotif is a a probability distribution over PWM motifs

of a given length. I also present a nested sampling based algorithm for inferring

metamotif parameters from a set of motifs.

All of the following chapters make use of the metamotif in one way or an-

other: Chapter 3 introduces a variant of the NestedMICA motif inference algo-

rithm with an informative motif prior based on the metamotif likelihood function

(Equation 2.5). Chapter 4 presents a motif family classification method based

around metamotifs. In Chapter 5 I then experiment with using the metamotif

based classification method with de novo discovered motifs.
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