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Abstract

The detection of positive natural selection in the human lineage is of great
interest for the understanding of modern human phenotypes and adaptations to
different environmental conditions. Although extensive genome-wide scans for
signatures of positive selection have been performed using genotype data, these
have significant limitations, illustrated by the low overlap among different
studies. Thanks to the Next-Generation Sequencing technology, near-complete
sequence data for both the whole genome and targeted regions are now available,
allowing a nearly unbiased genome-wide scan for positive selection as well as

the possibility of localizing the specific variants selected.

The theme of this PhD thesis is to detect and localize positive selection targets in

the human genome using sequencing data. This includes three projects:

(1) Localizing selection targets in candidate regions identified by LD-based
tests on genotype data, by applying frequency-spectrum based tests
(Tajima’s D, Fay and Wu's H, and a Composite Likelihood Ratio test) to
targeted resequencing data. Two regions were resequenced at high
coverage and putative selection targets were identified.

(2) A genome-wide scan of selective sweeps using frequency-spectrum based
tests on 1000 Genomes Project low coverage Pilot data. Candidate
positively selected regions and genes were identified and some
interesting examples and their plausible selected functions are discussed.

(3) A genome-wide search for regions with very recent ancestry among all
humans. Regions with shared recent coalescence times indicate positive
selection affecting all modern humans, which has an older age than the
recent positive selection identified by neutrality tests. We calculated the
Time to the Most Recent Common Ancestor (TMRCA) of low
diversity/divergence regions in the human genome, with the aim of
identifying regions with very recent common ancestor, which may have

been positively selected during early modern human evolution.
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These three projects altogether demonstrated the value and impact of low-
coverage or high-coverage, targeted or whole-genome sequencing data on
providing new insights into positive natural selection in the modern human
history, and built up the first steps of the exciting new sequencing era for the

exploration of human evolution.
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1 Introduction

1.1 The evolution and population history of modern humans

1.1.1 Homo sapiens and their close relatives

Homo sapiens, i.e. modern humans, is a unique species on the planet. We are the
most populous and widespread, compared to other species with comparable
body size, yet we have an exceptionally low genetic diversity among populations
and are therefore a single species, while other comparable widespread species
usually have sub-species in different geographical locations. An understanding of

our evolutionary history can help us understand how this situation arose.

We have close relatives among living species that share a lot of common features,
either morphologically or genetically. We are one member of the apes
(Hominoidea) superfamily. Within this, there are two families: lesser apes, or
Hylobatidae (gibbons), and great apes, or Hominidae, which are further divided
into two subfamilies: Pongidae (orangutans), and Homininae (chimpanzees,
bonobos, gorillas, and humans) (Figure 1.1). Apes share features such as higher
level of dexterity of their upper limbs providing a wider range of movement, and
no tail, compared to monkeys. Great apes are commonly believed to be the
closest living relatives to humans, though which great ape is the closest to us was
for a long time contentious. Morphological data were not enough to clearly
establish the relationships between humans and other great apes, as we share
some derived morphological features in an inconsistent way, from which the
evolutionary relationship cannot be inferred. For example, modern humans have
the thickest tooth enamel among great apes, and gorillas the thinnest, while the
tooth enamel thickness of chimpanzees and orangutans lies in the middlel. The
morphology of wrist and hand among great apes, however, are far more complex,
which resulted in many years of debate on whether human bipedalism evolved

from a knuckle-walking ancestor or from an arboreal ape ancestor?3.
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Figure 1.1 The species tree of apes. Please note that this tree is not a complete tree and some
branches of the species tree of apes are not shown. Emphasis is on great apes and only extant
genera are shown.

Genetic approaches allowed us to investigate evolutionary relationships between
humans and great apes in much greater detail. Before being able to examine
genetic materials at the molecular level, karyotypes, i.e. the structural
characteristics of chromosomes revealed by staining and observation under the
microscope, showed similarities as well as obvious differences between the
chromosomes of humans and other great apes. Humans only have 46
chromosomes, while chimpanzees, gorillas and orangutans have 48. Despite the
difference in number of chromosomes, the G-banding patterns are very similar
among the four species*. The difference in chromosome number results from an
end-to-end fusion of two small great ape chromosomes, which form the large
metacentric chromosome 2 in humans. Alignments of G-banded chromosomes
suggested the chimpanzee as the closest relative to humans, with chimpanzee
and human being a sister-group to gorilla, and chimpanzee-human-gorilla a

sister-group to the orangutan.

The investigation of genetic information at the molecular level has proven to be
the most powerful tool to unveil the evolutionary relationships between the apes,
as well as to estimate the time scale of their speciation. In 1967, Sarich and

Wilson presented the first use of molecular methods to estimate a date for the



great ape-human split>, where they measured the structural differences of serum
albumins between old world monkeys, great apes and humans, using an
immunological method called microcomplement fixation. Although this work
estimated a date of great ape-human split as 5 million years ago (MYA), which
contrasted with much older estimates from fossils, it was subsequently
supported by similar results from other molecular methods. But perhaps due to
the limitation of examining only a single locus, they were not able to resolve the
gorilla-chimpanzee-human split. Another molecular approach used was DNA-
DNA hybridization®, which compares the entire single-copy components of two
genomes, avoiding the biases of single-locus comparison. However, this method
is only effective in comparing species that have diverged for more than 10
million years, so for closely related species, like gorillas, chimpanzees and
humans, the small differences can be masked by random experimental errors

and the conclusions were much debated.

DNA sequencing brought our understanding of the evolutionary relationships
between humans and other great apes to a new era. By comparing the sequences
of the same locus from two or more species, gene trees can be constructed,
which should accurately show the evolutionary relationships among species for
that particular locus. However, gene trees do not necessarily have the same
topology as the species tree. There are different factors that contribute to the
shapes of gene trees. For example, coding regions in the genome usually have
more selective constraints; for instance, positive selection drives the frequency
of advantageous haplotypes up rapidly in a particular population or an entire
species, which may affect the shape of the gene tree on this locus. So, in the
presence of differing selective pressures, the topology of the gene tree may not
reflect the relationships between the species. Some other loci in the genome, for
example within Human Leukocyte Antigen (HLA), have undergone balancing
selection, with the result that a certain proportion of very ancient alleles is
maintained in the genome. This results in the HLA loci in some humans being
more related to chimpanzees than to other humans, or more closely related to
gorillas than to chimpanzees, which again does not reflect the species phylogeny.

In addition, incomplete lineage sorting in the ancestral species leads to random



differences in topology. As the founding populations of the species were only
subsets of the ancestral population, and thus might not have all its genetic
diversity, some alleles might not be transmitted to the next species. This would
result in the topology of the phylogenetic trees of some loci differing from the
species phylogeny. Therefore, in order to construct a species tree based on
genome sequences, multiple neutral, single-copy loci across the genome need to
be examined, and a predominant topology identified, which will most likely be
the same as the species phylogeny’. Gene trees from haploid mitochondrial and
Y-chromosomal sequences generally better reflect the species phylogenies, due
to their single sex inheritance and the lack of recombination, which result in a

smaller effective population size (Ne) and shorter coalescence times.

The draft reference sequences of chimpanzee® and gorilla® provided great
insights into the evolution of these two closest relatives to humans. 70% of the
loci showed human-chimpanzee as a clade, while the other 30% showed that
gorilla is closest to either the human or chimpanzee genome®. These studies also
concluded that, making reasonable assumptions about the mutation rate,
chimpanzees, as the closest living relative to modern humans, split from the
common ancestor of the two species about 6-7 MYA, while the human-
chimpanzee-gorilla speciation happened about 10 MYA. However, these genome
sequences also revealed the complexities of the genetic similarities and
differences among these species, demonstrated by various chromosomal
rearrangements, deletions and insertions, gene losses and gains, and so on. Apart
from the whole genome sequences, several research groups have also analyzed
particular genetic loci in multiple great apes, aiming to understand the
divergence and diversity of these species at a deeper level, including a better
understanding of the subspecies within the great apes. One example of these
studies is the genomic sequence analysis on multiple loci from 20 bonobos and
58 chimpanzees!?, which revealed the close evolutionary relationship between

bonobos and chimpanzees, with bonobos lying within chimpanzee variation.

Although we are the only extant Homo species on the planet, there were other
archaic hominin groups existing until tens of thousands of years ago, which are

believed to be sister groups of modern humans. Evidence of these archaic



hominin groups was first provided by fossil records. Neandertals, the fossils of
which have been discovered in Europe and western Asia, lived in those areas
from at least 230 thousand years ago (KYA), before Homo sapiens arrived in
Europe and Asia from Africa, and disappeared about 30 KYA!l. In southern
Siberia, a distal manual phalanx of a juvenile hominin was found in 2008 at the
Denisova Cave'?, and later DNA analysis suggested that this hominin must be a
distinct species from Neandertals or humans. The mitochondrial DNA (mtDNA)
of Neandertals was the first DNA to be extracted from the fossils and
sequenced3-15, These studies showed that the mtDNA of Neandertals share a
common ancestor with the mtDNA of present-day humans about 500 KYA?>.
Then the mtDNA of the Denisova phalanx was sequenced?!®, showing that this
Denisovan mtDNA diverged about 1 MYA from the common lineage of modern
human and Neanderthal mtDNAs. However, due to the small effective population
size of the haploid, maternally inherited mtDNA, events like genetic drift or
selection would affect the time to the most recent common ancestor (TMRCA) of
mtDNAs dramatically, so this tree would not necessarily represent the species
tree. The draft genome sequences of Neandertal and Denisova were recently
published by the same group!?17, providing more robust estimations of the
evolutionary time scale. The study of the Neanderthal genome sequence
estimated the split time of modern humans and Neanderthal populations as
about 270-440 KYA, and also claimed evidence of gene flow from Neandertals to
early modern humans in Eurasia ~50 KYA, before the split of the European and
Asian human populations, which may have resulted in 1-4% of the genomes of
people outside Africa being derived from Neandertals!’. The analysis on the
Denisovan genome sequence suggested that the ancestor of Denisovans and
Neandertals diverged from the ancestor of present Africans about 804 KYA, and
Denisovans diverged from Neandertals around 640 KYA!2. Although the
Denisova hominin did not make genetic contributions to the Eurasian human
group as broadly as Neandertals, there was evidence that they may still have
contributed 4-6% to Melanesian genomes, as well as to the ancestors of New
Guineans and Bougainville Islanders!218. However, a recent study suggested that
using geographic patterns of shared polymorphism is not an effective way to

infer archaic admixture; population structure should be taken into account, as it



can generate similar genetic patterns as those caused by interbreeding!®.
Therefore, whether or not ancient modern humans had interbred with

Neanderthals and Denisovans is still debated.

1.1.2 Modern human origins and demographic history

As mentioned, the human lineage diverged from the chimpanzee lineages about
6-7 MYA. During the long period of time until anatomically modern human
emerged about 200 KYA, there were many ancient hominin groups, some of
which are ancestors of modern humans. However, the classification of these
fossils and their relationships with Homo sapiens are much debated. The
boundaries of modern humans and other hominin species are also not clear,
based on the fossil records and very limited ancient DNA analyses. The earliest
hominin fossils, dating back to as early as 6.8-7.2 MYA, till about 4.2 MYA, are
Sahelanthropus tchadensis, Orrorin and Ardipithecus. There is uncertainty about
whether these species should be classified within the human lineage and the
relationships between them, as they all have considerable morphological
similarities with chimpanzees, e.g. body size, while they also showed signs of
hominin characteristics?9, e.g. up-right walking. Most fossils dated after about 4.2
MYA and before the appearance of the Homo genus belong to the genus
Australopithecus. Fossils of various Australopithecus species were found in
multiple sites in east and southern Africa, dating from around 4 MYA to 1.8 MYA.
The most well-known fossil of Australopithecus is the partial skeleton “Lucy”,
dated to 3.2 MYA, as well as the Laetoli footprints?!, dated to 3.5 MYA. These
belong to the species Australopithecus afarensis. The significance of these
findings is the unequivocal illustration of bipedal locomotion, which is an
important characteristic of modern humans. Due to the small body sizes, they
are called gracile (lightly built) Australopithecines. Robust (heavy built)
hominins, notable for their small brains and large jaws and chewing teeth,
belong to the genus Paranthropus. A few fossils, including the rather complete
“Black Skull” from Lake Turkana, were found in several sites in South Africa,
dating to around 1-2 MYA. It is still under debate about which species or fossils
of Australopithecus represent the ancestor of our own Homo genus, but afarensis

and africanus are candidates.



Homo erectus is sometimes considered to be the first Homo species (although
others consider the earlier species habilis to belong to this genus). The earliest
erectus fossils, dated to around 1.8-1.9 MYA, were found in Africa, which
indicates the origin of our genus in Africa. The most complete erectus fossil that
has been found is the Nariokotome Boy?2, dated to about 1.6 MYA. His body size
and shape was very similar to modern humans, though his brain size was much
smaller. H. erectus is also the earliest hominin found outside of Africa. Fossils
have been found in Indonesia (“Java man”), China (“Peking man”), and Georgia
(Dmanisi), dated back to as early as 1.6-1.8 MYA. Another Homo species, H.
floresiensis, found in Indonesia, was much smaller (about 1 meter tall). It was
believed that they were descendants of H. erectus living in areas with poorer
resources, and thus selected for dwarfism. A later Homo species, H.
heidelbergensis, found in Africa and Europe, have larger brains (~1,200 cc) than
H. erectus (~900 cc). Fossils of this species were dated to as widely as around
200-800 KYA. Thus it is considered to be a widespread and variable species that
emerged after H. erectus and gave rise to more recent Homo species, including

Neandertals and modern humans.

Anatomically modern humans are believed to emerge around 200 KYA in Africa,
though it is difficult to define modern human morphology unambiguously, so as
to distinguish them from the archaic hominins discussed earlier. The widely
accepted criteria for modern human morphological features are focused on the
extent of the globular shape of the skull and the degree of retraction of the face.
The earliest known modern human fossil is a skull found in Omo-Kibish, Ethiopia,
dated to about 195 KYA. Later crania fossils, dated to 154-160 KYA, showed
many modern human morphological features, such as large brain size and
globular braincase, but retained some archaic features, such as protruding brows.
The earliest modern human fossils found outside Africa in Europe, East Asia and
Australia are all dated later than 45 KYA, suggesting the much later appearance

of Homo sapiens in areas outside Africa.

Archaeological evidence, much more common than the fossil remains, provides
insights into hominins and modern human behavior. Hominins from as early as

2.5 MYA started to construct and use artifactual stone tools, in contrast to



natural tools, which were also used by apes and earlier hominins. Stone tools,
such as symmetrical teardrop-shaped bifaces, flake tools and choppers, dated as
early as about 1.76 MYA onwards, are widely found throughout Africa, in Europe,
and in parts of Asia except eastern Asia. More sophisticated tools, such as flakes
described as side-scrapers and points, appear in the record around 300 KYA. In
the Later Stone Age/Upper Paleolithic, blades instead of flakes, as well as tools
from other materials such as wood and bone, became more common. Although
these tools are often associated with modern humans, there is often no clear

correspondence between tool type and species.

Although fossil records and archaeological evidence both suggest the first
appearance of modern humans in Africa, the relationship between modern
humans and those who expanded out of Africa earlier has been much debated.
There were two basic simple models: (1) the multiregional model, which
proposes that modern human ancestors lived in multiple regions in the Old
World, and the human characteristics arose in parallel or at different times in
different parts of the world; and (2) the out-of-Africa model, which proposes that
all modern humans are descended from the ones who emerged in Africa and
gradually expanded to other parts of the world, while their contemporaries from
other continents did not contribute to our ancestry. Of course there are also
possibilities of intermediate models, i.e. gene flow between archaic humans in
other continents and our ancestors from Africa, and this debate, according to
some interpretations, may have partially been resolved by the sequences of the
Neandertal and Denisova genomes mentioned earlier, providing quantitative
measures of the amount of gene flow from earlier species and confirming a

minor contribution.

Fossil records and archaeological evidence of modern humans were sought to
provide direct insights into the dating of the appearance of modern humans in
different parts of the world and their origins. Modern human fossils are rare and
can be difficult to date. However, all fossils found outside Africa are now dated to
around or after 40-45 KYA, indicating that modern humans moved to Eurasia by
this time, though this conclusion is subject to revision by future discoveries due

to the incompleteness of the fossil records obtained so far. In addition, it is still



unclear what routes the out-of-Africa migrations followed. Archaeological
evidence is of limited usefulness because, as mentioned before, it can be difficult
to distinguish the archaeological remains left by modern humans and archaic
hominins, or sometimes even natural objects. Stone tools, bone tools and
artificial ornaments that are considered as “art”, which is associated with
modern human behavior, are identified as representing different cultures in
different geographical regions. In Africa, the Middle Stone Age (MSA) refers to
archaeological remains dated from about 250 KYA to 40-80 KYA, while the Later
Stone Age (LSA) describes subsequent remains until the emergence of
agriculture. Outside Africa, the equivalents are termed the Middle Paleolithic
(MP) and Upper Paleolithic (UP), respectively. Although the dating of the
archaeological deposits is often disputed, various evidence supports the
conclusion that the transition from MSA to LSA humans may have begun in
southern Africa as early as ~80 KYA, and in east Africa around 50 KYA. Outside
Africa, the transition from MP to UP appears to have happened first in West Asia
in around 47 KYA, and a few thousand years later in Europe, and subsequently in
Siberia. The migration of people to the Americas from Siberia, and to the Pacific
islands from the nearby landmasses, were more recent, occurring ~15-20 and

~5 KYA, respectively.

Around 10 KYA, the emergence of agriculture independently in several regions of
the world allowed dramatic expansions of human populations, as well as cultural
and social revolutions. Unsurprisingly, extensive changes to tool usage occurred
along with the agricultural revolution. This period is designated the Neolithic
(New Stone Age). Archaeological evidence suggested that farming practices
originated independently in multiple regions in the world, and then these
practices spread to surrounding areas. Some of the earliest evidence of
agriculture was found in the Near East, dating to about 10 KYA, the earliest
Neolithic archaeological sites became younger towards the northwest of Europe.
The earliest appearance of agriculture in northern and southern China is also
dated to around 10 KYA, and is believed to have an independent origin. In Africa,
it is widely believed that agriculture spread from the Near East into Egypt

between 9.5 and 7 KYA. In Sahara, evidence of cattle herding is dated back to



around 8 KYA, and cereal agriculture was widespread throughout the belt of
savanna south of the Sahara by 3.5 KYA. In sub-Saharan Africa, there was a series
of population movements from around 3 KYA, known as the Bantu expansion,
linked to the spread of Bantu languages from West Africa into much of east,
central and southern Africa. Archaeological, linguistic and genetic evidence has
been largely consistent in support of it; however, the details of this complex

expansion are far from clear (Figure 1.2).
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Figure 1.2 Map of human expansions. This map shows the putative migration routes and dates
of early modern human migrations from Africa to other parts of the world. Red arrows indicate
the possible routes, and estimated dates of migration are shown in blue text (KYA: thousand
years ago). Note that the migration routes and dates are still under debate and further
investigation, so are subject to updating by new findings.

There are two basic demographic models to explain the expansion of agriculture.
One is called acculturation (or cultural diffusion), which proposes a movement of
farming technology and ideas, without the migration of early farmers. In contrast,
the second model, demic diffusion (or wave of advance), proposes that the
farmers moved due to the growth of the population and local migrations. In this
model, two scenarios could have occurred: (1) gene flow between the farmers
and hunter-gatherers when the former moved to the pre-existing hunter-
gatherer populations; or (2) the migrating farmers replaced the gene pool of the

indigenous Europeans without interbreeding. While the demic diffusion model
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described by Ammerman and Cavalli-Sforza?3 has provided that basis for many
subsequent genetic studies, the expansion may be better described by a more

complex model.

Genetic approaches have made it possible to test models of human expansions
over many timescales. By looking at patterns of genetic diversities and building
genetic phylogenies, we can trace back the root of our lineages in different parts
of the world. mtDNA and the Y-chromosome were the first to be used to build
human phylogenies, because of their simple single-sex inheritance and haploid
nature. These studies generally supported the out-of-Africa model, with evidence
showing near-complete separation of African and non-African lineages, deepest
braches in African, and a star-like structure in out-of-Africa lineages2425.
Phylogenetic studies of autosomal loci also largely supported the out-of-Africa
model, but due to the complication of recombination in diploid regions,
phylogenies of specific loci can be more difficult to reconstruct. Having said that,
genome-wide studies of genetic diversity and variation patterns do provide
insights into the evolutionary relationships between modern human populations
that cannot be obtained from other evidence. If the out-of-Africa theory of
human origin is correct, we should expect the highest human genetic diversity in
Africa, with populations in other areas containing a subset of African variation,
together with their unique variants gained after moving out of Africa. Analyses of
the genetic variation of multiple human populations have confirmed that this is
largely the case in real genetic data. Furthermore, the advancement of
computational modeling approaches plus the availability of large-scale genetic
diversity data, yield dramatic increase in power for revealing human population

histories.

It is worth noting that human populations have never been completely isolated.
Admixture, i.e. the formation of hybrid populations whose genetic pool was
derived from two or more ancestral populations, happened at different levels
during different stages throughout modern human history, perhaps including
with Neandertals and Denisovans as noted earlier. Various historical, linguistic
and archaeological records as well as genetic studies have helped understand

past admixture events and the degrees of admixture. However, we should note a
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number of complexities regarding human admixture. For example, under many
admixture scenarios, the contributions of males and females in the ancestral
populations may be very different. Therefore, the estimation of the degrees of
admixtures from autosomes, X chromosome, Y chromosome or mtDNA can vary.
Also, human population admixture, especially those events that happened during
the last few thousand years, was greatly affected by different social practices, for
example, endogamy. Therefore, studies of recent human demographic events

should be considered in the context of societal and economic conditions.

Simplified demographic models have been developed based on population
genetic theories and empirical genetic data to mimic modern human population
structures and their changes over time. These models seek to best explain the
genetic diversity and variation patterns observed in current human populations,
and largely support the out-of-Africa model. Two types of demographic models
are widely used. One consists of “best-fit” models, which propose a single exit
from Africa to Europe and East Asia, followed by subsequent bottlenecks and
expansions. These models only include three main continental populations, i.e.
African, European and Asian, which are greatly simplified but sufficient for many
purposes in global genetic studies. They include parameters such as effective
population sizes at different times, migration rates, expansions and bottlenecks.
One of the most widely used best-fit models was developed by Schaffner et al.2¢,
which could generate simulated data that closely resembles empirical genetic
data in many characteristics (Figure 1.3). The other type of demographic model
consists of “serial founder” models, which propose a subset of an initial
population as the founder of a subsequent population, and after expansion, a
subset of this second population founds another population?’-30. This type of
models can accommodate more populations than the “best-fit” models, but with
fewer parameters being considered. Details of some population models and their

use will be considered further below.
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Figure 1.3 A best-fit demographic model. The widths of the bars represent relative population
sizes (noted as N in the figure). Bottlenecks are represented by dents in the bars. This figure was
adapted from Schaffner et al. 2005.

1.2 Human genome variation

1.2.1 Types of genomic variation

Any two randomly chosen people in the world share about 99.9% of their
alignable DNA sequences, which means that there is on average 0.1% sequence
difference between two human genomes. These genomic differences make major
contributions to the phenotypic variability among people, the genetic basis of
which we have not yet fully understood. The sequencing of our DNAs has helped
us to understand, at least at the genotype level, how people differ. There are
many types of genomic variation in healthy individuals, ranging from single base
pair substitutions to rearrangements of tens of megabases. Here we categorize
the genomic variation by size into three main types: (1) single base pair
substitutions, known as SNPs (single nucleotide polymorphisms) or SNVs (single
nucleotide variants); (2) one to hundreds of base pair structural variants (SVs),

including small to medium sized insertions and deletions, variation in the
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number of microsatellite units (repeats of 2-6 base pairs of DNA) and
minisatellites (repeats of 10-100 base pairs of DNA); (3) a few kilobase to a few
megabase structural variants, including large insertions and deletions,
macrosatellites, inversions, and copy number variants (CNVs). Please note that
there is no clear boundary between the last two types of variation; this
categorization is only for the purpose of helping the description and

understanding of our genomic variation (Figure 1.4).
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Figure 1.4 Types of genomic variation. A. Examples of transitions, transversions, a single base
insertion, two-base deletion, and mutation of repeat unit number of a three-base microsatellite. B.
Examples of minisatellite repeat unit number mutation, deletion and insertion of segments of
DNA. C. Examples of tandem duplication, large region deletion, and inversion.

Base substitutions, here referred to as SNPs, are the most common and well-
studied type of variation in the human genome. There are two types of base
substitution: transitions, which are the substitution of a pyrimidine base for
another pyrimidine (i.e. Cto T or T to C), or a purine for another purine (i.e. A to
G or G to A); and transversions, which, in contrast, are when a purine is
exchanged for a pyrimidine, or vice versa (e.g. A to T). Transitions are more than
twice as frequent as transversions, perhaps because chemically a purine (or a
pyrimidine) can be altered to the other purine (or pyrimidine), while it is
impossible to alter a purine to resemble a pyrimidine, and vice versa, or the

replication and correction enzymes find them more difficult to correct. Base
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substitution mutations are caused mainly by two basic processes: (1) the
misincorporation of nucleotides during DNA replication, and (2) mutagenesis
caused by chemical modifications of bases, or physical damage induced by
ultraviolet, ionizing radiation or other harmful physical or chemical exposure.
The mutation rate of single nucleotide substitutions has been estimated from
several studies. Although the estimates vary when different data or
methodologies are used, it is widely accepted that the neutral genome-wide
average base substitution rate is in the order of 10-8 per base per generation31-33.
However, it is worth noting that local mutation rates can vary up to an order of
magnitude. For example, the CpG dinucleotide is a mutation hotspot, with a
mutation rate about ten-fold higher than other sites, and a strong tendency of

mutating to TpG or CpA.

Small insertions and deletions (often called “indels”) are another common type
of variant, though the number per genome is about 10 times less than SNPs.
Deletion or insertion of one base pair was sometimes considered as a SNP, but
because the mechanisms and frequencies of the single nucleotide indels are
more similar to multi-base indels than to single base substitutions, here we
categorize them as indels rather than SNPs. Indels often occur in repetitive
sequences, the typical forms of which are microsatellites and minisatellites
(Figure 1.4). Numbers of copies of micro- or minisatellite repeat units are very
variable and have high mutation rates. Such loci are sometimes called variable
number tandem repeat loci, or VNTRs. Microsatellite unit numbers can range
from a few to tens, and typical mutation rates can be around 10-3 to 104 per
locus per generation. Interestingly, although overall mutation rate increases as
array length increases, with a small bias towards increases, this is counteracted
by the contraction rate becoming higher when the number of repeats is large,
which results in very large microsatellites (>50 repeats) being very rare.
Minisatellites not only have larger sizes, but also have a larger range of repeat
unit copy numbers (from as few as 5 to as many as 1000). They also show a
higher level of diversity, so it is rare to find two alleles the same in the
population. VNTR mutations are mainly caused by three mechanisms. (1)

Replication slippage: this happens when one or more units in the template
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strand of the DNA misalign during replication, resulting in the loss of the longer
strand (deletion) or the shorter strand (insertion). This is because repetitive
sequences can easily mispair during DNA replication. (2) Unequal crossing over
events: this also often happens in repetitive sequences, as recombination
happens unequally between the two homologous loci, causing deletions or
duplications. (3) Gene conversion: this is the nonreciprocal transfer of genetic
information, where one allele does not change, whereas the other allele converts
to the state of the unchanged allele. It is a result of homologous recombination
via the four-stranded intermediate, known as the “Holliday junction”. Gene

conversion is one of the major mechanisms of mutations in minisatellites.

Larger structural variation in the human genome has been extensively studied
recently34-36. These studies revealed a remarkable abundance of structural
variation. Many of the large structural variants are caused by non-allelic
homologous recombination (NAHR); non-homologous end joining (NHE]) and
more complex replication-associated mechanisms such as FoSTeS (fork stalling
and template switching) are other major mechanisms. Some inter-chromosomal

segmental duplications are caused by retro-transposition3e.

Due to the diploidy of autosomes (and the X chromosome in females), for every
heterozygous variant, there is a question of which allele lies on which of the two
copies of the chromosome in one individual. A haplotype is the combination of
polymorphic alleles that locate on the same DNA molecule, i.e. on the same
chromosome. Knowing the haplotypes is often very important in evolutionary
studies, as it provides valuable information about ancestry and inheritance.
Determining haplotypes experimentally can be very difficult, time-consuming
and expensive. Therefore, haplotypes of large genomic data sets are often
inferred by computational algorithms, and the widely used ones are based on the
Bayesian approach incorporating Markov chain Monte Carlo methods3’. Apart
from mutations, recombination is the main cause of haplotype diversity. Like
mutation rates, recombination rates are very variable at different genomic
locations. There are recombination hotspots and coldspots along the genome,
where recombination rates can be several magnitudes higher or lower than the

average, respectively. This creates blocks of genomic sequences where a certain
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set of alleles is often linked on the same chromosome, known as linkage or
haplotype blocks. Gene conversion also contributes to haplotype diversity by

converting part of one haplotype at a locus into the state of the other.

1.2.2 Identification of genomic variation

As the most common and simplest type of variation in the genome, SNPs are the
most well-typed and widely used genomic variants in many genetic studies.
There have been quite a few widely used methods to discover or type SNPs in
genomes, which can be broadly described in three categories: (1) enzyme based
methods; (2) hybridization based methods; and (3) sequencing. An early method
to detect SNPs was an enzyme-based approach called Restriction Fragment
Length Polymorphism (RFLP) analysis. RFLP study wuses restriction
endonucleases that cut specific restriction sites with high fidelity. By using
endonucleases that cut sites containing a SNP of interest to digest the DNA
samples amplified by the polymerase chain reaction (PCR) technique and then
running a gel electrophoresis assay to determine the lengths of DNA fragments
after digestion, samples that were or were not cut at certain sites will be
detected, indicating the presence of alternative alleles. Although this method is
simple and straightforward, it has great limitations, for example, it requires
specific endonucleases, and the specific base of the alternative allele may not be
determined from the experiment, and it is very expensive and time-consuming to
run multiple electrophoresis assays. Some other enzyme-based methods apply
the PCR technique in other ways, some of which are used in several
commercialized arrays that can detect multiple SNPs in one assay38. Other
enzyme-based methods use 5’-nuclease, Flap endonuclease or DNA ligases in the

process of SNP detection.

Hybridization-based methods detect SNPs by hybridizing complementary DNA
probes to the SNP locus. This type of method is used in the currently most widely
used genotyping technology - high-density SNP microarrays, where hundreds of
thousands of probes are arrayed on a small chip, enabling large-scale detection
of SNPs. Many commercial microarrays designed to detect different sets of SNPs

are available in the market and are widely used in various large-scale genetic
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studies. The International HapMap Project (http://hapmap.ncbi.nlm.nih.gov/)

genotyped more than three million SNPs in more than 200 individuals from four
populations, using SNP microarrays and related techniques3?, which significantly
enriched the database of human SNP variation. One genotyping technology used
in this project was the GeneChip® Mapping 500K Array set from Affymetrix Inc.
This array set contains about 500,000 human SNPs and can genotype 100
samples per week per instrument. Another company, [llumina Inc., developed a
series of SNP arrays that are able to genotype up to 5 million SNPs per sample,
with a high level of customizability. These arrays are based on Illumina’s
BeadArray technology, where SNP-specific oligonucleotides are generated by
PCR amplification using fluorescently labeled universal primers, with a
particular address sequence complementary to sequences attached to beads just
downstream of the SNP, which can be translated to a specific locus. These
fluorescent products are subsequently hybridized to beads either on a solid
matrix or in solution, depending on the specific platform, and the fluorescence on
each bead is then quantified, resulting in a signal of the SNP genotype associated

with the particular address sequence.

Most of the methods above can only detect known SNPs. The emergence of DNA
sequencing technologies, especially the Next Generation Sequencing (NGS)
technologies, brought the discovery of all SNPs in a target region, both known
and new, as well as other types of variation to a new era. The sharp drop of the
costs and increase of speed in whole genome sequencing have made it possible
to sequence whole genomes of multiple individuals. The 1000 Genomes Project

(http://www.1000genomes.org/) is aiming to provide a deep catalog of human

genomic variation by sequencing whole genomes of 2,500 individuals in 27
populations around the globe. The pilot project, published in 2010, discovered
about 15 million SNPs by the whole genome sequencing of 179 individuals from
four populations, and limited targeted exon sequencing of 697 individuals from
seven populations#0. It is expected that the main project, consisting of three
phases, will reveal far more variants. Phase 1 of the main project, sequencing just
over 1,000 individuals and completed in the summer of 2012, has discovered

~40 million variants.
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Before sequencing technologies were widely used, detection of tandem repeats
(micro- and minisatellites) was mostly done by PCR-based assays. These assays
use primers closely flanking the repeat locus, so that one or more differences of
the number of repeats could be detected by the variation in length of the PCR
products. This has a few limitations. Firstly, some tandem repeat variants have
sequence variation within the repeats, which cannot be identified by PCR.
Secondly, the resolution of PCR methods is relatively low, so some variants that
consist of a large number of small repeats may not be well distinguished. Thirdly,
PCR has limitations on the length and base composition of the sequence to be
amplified. So some large minisatellites may not be detectable. Some arrays were
also developed to detect marker microsatellites that are common and typical, in

arelatively large scale.

Structural variation, especially copy number variants (CNVs) were under-
investigated until recently, due to the complexity and lack of large-scale assays.
Array-Comparative Genomic Hybridization (known as aCGH) allowed large-scale
and moderate-resolution detection of CNVs in the genome. In this assay, DNA
fragments from samples and a reference genome are labeled by different
fluorophores, and then these fragments are mixed and hybridized to thousands
of probes on the array chip. After washing off un-hybridized fragments, the
intensity of fluorophores from the sample and the reference is measured, and
then the ratio of the intensity is calculated to detect the copy number differences
between the sample and the reference on the particular locus. Current aCGH
assays can achieve a resolution of less than 100 base pairs at breakpoints. A good
example of large-scale studies of CNVs using aCGH is the study in 2009 by
Conrad et al.3%, providing a comprehensive map of CNVs in the human genome.
Various algorithms, for example, CNV-seq*! and BIC-seq*?, have been developed
to detect CNVs from NGS data, aiming to achieve a higher resolution than aCGH.
The 1000 Genomes Pilot Project comprehensively mapped CNVs based on 185

whole-genome sequences*3.

Compared to all these assays targeting the detection of different types of
genomic variation, genome sequencing has the obvious advantage of detecting

all sorts of variation in one go, as well as being able to discover novel variants.
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NGS technologies have undoubtedly introduced a new sequencing era, with
possibilities of sequencing targeted regions or whole genomes in tens or
hundreds of samples rapidly and relatively cheaply. There are several widely
used NGS platforms in the marketplace, including Illumina/Solexa, Roche/454,
Life Technology’s SOLiD, Complete Genomics platforms, and others. The
dominant platform during my PhD project was the Illumina/Solexa Genome
Analyzer IlIx, with the capacity of sequencing up to 95 Gb per run

(http://www.illumina.com/systems/sequencing.ilmn). The company introduced

the HiSeq system in 2011, which can sequence up to 600 Gb per run. The
[llumina/Solexa sequencing systems are all based on the sequencing by
synthesis (SBS) technology. The sequencing process includes three steps: (1)
template preparation, (2) sequencing and imaging, and (3) genome alignment or
assembly. During template preparation, genomic DNA is firstly broken into
smaller sizes from which either fragment templates or, more generally, mate-
pair templates are created by ligating appropriate primers to their ends, and
then randomly distributed, clonally amplified clusters are produced on a glass
slide, which acts as a solid support to immobilize millions of spatially separated
template sites, allowing sequencing reactions on all these templates to be
performed simultaneously. The [llumina slide is partitioned into eight lanes,
allowing independent samples to be run simultaneously. During sequencing, the
cyclic reversible termination (CRT) process takes place, which uses reversible
terminators in a three-step cyclic process, including nucleotide incorporation,
fluorescence imaging and cleavage of the terminating group and the fluorescent
dye. In SBS technology, four nucleotides are labeled with four different dyes and
are present during the sequencing cycles at the same time. During each cycle, the
colours are detected by total internal reflection fluorescence (TIRF) imaging
using two lasers. Errors and biases may be introduced during the template
preparation and sequencing processes. For example, studies showed that
[llumina sequencing data have an underrepresentation of AT-rich** and GC-rich
regions*>. A common feature of NGS technologies is that the reads generated are
very short, usually ranging from tens to hundreds of base pairs, as they only
sequence a fraction of the DNA molecule at either one end or two ends, which

produces two types of reads: single-end reads and paired-end reads. Paired-end
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reads help dramatically in the alignment and the detection of SVs, as the

approximate sequence length between two ends is often known.

The last step, which is probably the most challenging one, is the alignment
and/or assembly of the genome sequences, and subsequent variant calling. Here
we only consider alignment without assembly, as when sequencing multiple
human genomes, we only need to align the reads to the human reference
sequence, so that genomic variants can be called. The accuracy and reliability of
variation detection by sequencing is highly dependent on the sequencing and
mapping quality. Random sequencing errors can be largely solved by simply
increasing the read depth, i.e. sequencing the same DNA region multiple times, so
that one or two substitution errors can be ignored at one locus, although this
may introduce higher costs and longer sequencing time. However, due to the
error-prone nature of NGS, for a single-base variant, sometime it's still
ambiguous whether a particular locus is homozygous or heterozygous. For
example, if there are 20 reads at a locus, 5 of them read A and 15 of them read C,
it would be difficult to tell whether the genotype is AC or CC, as the possibility of
5 A’s being misread as C’s may be similar to 5 C's misread as A’s. There are
several ways to resolve this issue. One is to ignore or assign lower weight on
reads with low quality, such as those reads where the SNP in question lies at
either end of the read. If there are multiple samples being sequenced, one can
also calculate the likelihood of the genotype of the individual in question by
looking at the genotypes of other individuals at the same locus. If haplotype
information is known or can be inferred, it will be very helpful in inferring the
correct genotype at ambiguous sites. While single-locus substitution errors are
relatively easy to resolve, due to the short lengths of reads produced by NGS
technologies, correct alignment is a challenge, especially in regions with indels,
repetitive regions or copy number variable loci. For example, if a locus has a 2-
base deletion, reads that contain this locus towards the two ends may be aligned
without a gap and the two mismatches may be called as SNPs instead of deletion.
In repetitive regions, reads may be able to align to multiple loci with similar
numbers of mismatches. Apart from increasing the read depth, we may choose to

ignore reads that map to multiple loci or reads that have mismatches at the two
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ends, in order to avoid possible false calls (Figure 1.5). Various bioinformatics
tools have been developed to align NGS reads to the reference sequence and call
variants, such as MAQ*6, ELAND#7 and SSAHA248, aiming to achieve a minimum
level of misalignment and high accuracy in variant calling. Target assembly tools,
for example TASR*°, were also developed to help alignments and variant calling
at loci with indels. While none of them is perfect, each algorithm demonstrates
certain strengths in different conditions>. Therefore, choosing the appropriate
alignment algorithm is critical in getting the best quality in aligning the

sequencing data and calling variants.

Example A: single base deletion may be miscalled as SNPs

reference ..ATCGTTAGTAATAGTTGAAATTAACGTTACCATGTTAGCTAAGGCTTAAACTGGA..
read 1 ATCGTTAGTAATAGTTGAAATTAACGTTACCATGCT

read 2 GCTTAGCTAAGGCTTAAACTGGA...
reference ..ATCGTTAGTAATAGTTGAAATTAACGTTACCATG*TTAGCTAAGGCTTAAACTGGA..
read 3 GAAATTAACGTTACCATGCTTAGCTAAGGCTTAAAC

Example B: three-base insertion within a microsatellite may be miscalled as SNPs
reference ...ATGCATTCAGCCTAATAATAATAATAATCGCTGAACTGGGAACTT...

read 1 ..ATGCATTCAGCCTAATAATATTAAT
read 2 ATTAATAATAATCGCTGAACTGGGAACTT...
read 3 AATAATATTAATAATAATCGCTGAACTGGGAACTT...

reference ..ATGCATTCAGCCTAATAAT***AATAATAATAATCGCTGAACTGGGAACTT..
read 4 CAGCCTAATAATATTAATAATAATAATCGCTGAACTG

Figure 1.5 Examples of misalighment and miscall. In both examples, black letters are
reference sequences, green letters are the reads where miscalls occur, and blue letters are the
reads where variants are called correctly. Magenta letters are the variants called. If there is
insertion, stars are used to fill the bases in reference sequences. In example A, a single-base
insertion ‘C’ is called as single-base substitutions in read 1 and 2, because the base is near the end
of the reads. The insertion is correctly called in read 3, because the base is in the middle of the
read, there is more context for alignment. In example B, a three-base insertion is called as SNPs in
reads 1, 2 and 3, because the insertion has only one base difference from the microsatellite unit,
and the reads do not extend beyond both sides of the microsatellite. Read 4 is correctly aligned
and the insertion is called, because it extends to non-repetitive sequences on both sides of the
microsatellite.

1.2.3 Functional impact of genomic variation

One of the most important yet challenging questions for geneticists is: which
pieces of the human genome are functional? In the early stages of genetic
research decades ago, researchers focused mainly on protein-coding genes,

which have obvious functional products - proteins. As these genes only make up
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~1.5% of the genome, it was believed that 98.5% of our genome consisted
mainly of “junk DNA”. However, more and more studies have demonstrated
functions of inter-genic or intronic sequences in the genome, and there are also a
large number of transcribed non-coding RNAs, more and more of which have
shown evidence of functionality. In order to understand how genomic variation
contributes to the phenotypic differences of modern humans, we will look at the
potential impact of different types of genomic variants in four types of genomic
regions: (1) exons, i.e. sequences that determine the amino acids of proteins; (2)
non-coding transcribed regions, i.e. sequences with RNA products that are not
translated into proteins; (3) intronic regions, i.e. sequences between exons; and

(4) inter-genic regions, i.e. sequences that do not contain any gene.

DNA sequences in exons code for proteins. Three consecutive nucleotides specify
one of the 20 kinds of amino acids, or a stop codon, which is a signal of the end of
the protein or polypeptide. Because there are four types of nucleotide, 64 types
of codons can be formed by three nucleotides. Therefore, the genetic code is
redundant, which means that multiple codons can represent the same amino
acid. SNPs in protein coding sequences, therefore, can have two different
consequences: one is to change the amino acid encoded by the codon containing
the SNP, which we describe as non-synonymous; and the other is not to change
the amino acid, i.e. the codon is still encoding the same amino acid, so we
describe this SNP as synonymous. It seems obvious that non-synonymous SNPs
should have a functional impact on the protein, while synonymous SNPs should
not. Although in most cases this is true, one should note at least two exceptions:
on one hand, change in amino acid does not always change the structure or
function of the protein. It is possible that the changed amino acid has very
similar physical and chemical features to the original amino acid, thus would not
affect the function, or that parts of the protein are tolerant of variation. On the
other hand, although synonymous SNPs do not change the amino acid, they may
affect the structure of the DNA or RNA, or the binding of enzymes during the
transcription or translation process, or create a new splice site, and thus may
still have functional impacts. However, as this kind of situation is not common, in

evolutionary studies, we normally consider non-synonymous SNPs as functional,
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while synonymous ones as not. Small indels in coding sequences can sometimes
have bigger functional impact than SNPs. Insertion or deletion of one or two
nucleotides (or any number that cannot be divided by three) in an exon causes
reading frame shift, which results in a complete change of amino acids of the
protein from the variable site onwards, and will also be likely to change the
position of the stop codon. Therefore, in most cases, the protein product of such
a mutation will not be functional. As exons are usually short and separated by
longer introns, larger SVs or gene conversions in exons may result in the removal
or addition of several exons or even the entire gene, or imbalanced dosage of a

gene.

Although we have not yet known how many RNA genes are there in our genome,
tens of thousands of them have been discovered by either experimental or
computational approaches, yet the majority of them have poorly understood
functions. Functions of non-coding RNAs (ncRNAs) seem to be very diverse and
are involved in multiple molecular processes, many of which are still poorly
understood. There are many types of ncRNAs based on their functional roles.
Here I list the relatively well-understood ones. (1) Transfer RNA (tRNA): tRNA is
involved in translation, and plays a role of transferring the right amino acid to
the growing polypeptide chain during protein synthesis. (2) Ribosomal RNA
(rRNA): rRNA is part of the RNA-protein complex called ribosome, which is the
protein-producing organelle in the cytoplasm. rRNA is the most abundant RNA in
a cell, and its genes are highly repetitive, because a large number of ribosomes
are needed for protein synthesis. (3) Small nuclear RNA (snRNA): snRNA is
present in the nucleus of eukaryotic cells. It is involved in a few different
regulatory processes, including RNA splicing, chemical modifications, e.g.
methylation or pseudouridylation of rRNAs, tRNAs and snRNAs, RNA
biosynthesis and regulation of transcription factors. (4) microRNA (miRNA):
miRNA is the reverse complement of part of another gene's mRNA, and it
changes the expression levels of one or several genes by RNA interference.
miRNAs are single-stranded and generally 21-23 bases long when they are in
their mature form. (5) Small Interfering RNA (siRNA): siRNA plays a similar role
to miRNA, but is double-stranded and derived from long double-stranded RNAs
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or small hairpin RNAs. (6) Piwi-interacting RNA (piRNA): this forms a RNA-
protein complex with piwi proteins, and the complex functions in transcriptional
gene silencing in germ line cells. piRNAs are found in mammalian testes and
somatic cells, and are 29-30 bases long. Apart from these ncRNAs, there are also
bifunctional RNAs that have two different functions, for example, some mRNAs
also act as ncRNAs, and some ncRNAs play roles in two different categories
above. Variants within the unprocessed or immature ncRNAs can still have
functional impacts, for example, altering the splicing sites, altering which strand
is functional in miRNAs, or changing the binding target of the ncRNAs. It is worth
noting that the functional impact of variants in ncRNAs is often not obvious and
difficult to identify, due to the complexity of the functional mechanisms of

ncRNAs.

Intronic regions in the human genome are those sequences between two exons
are usually removed from the transcribed RNA before translation, to generate
the mature RNA. Although the majority of introns seem to have no function,
more and more studies have revealed various functions for some introns. For
example, some sequences of introns adjacent to exons can determine the splicing
sites, which in turn affect the protein products. Some introns themselves can be
further processed to generate non-coding RNA molecules, and some even encode
proteins. Some introns are transposons, which copy themselves and insert the
copies into other locations in the genome. Some intronic sequences may regulate
nucleosome or transcriptional factor binding, which will affect the expression
level of the gene. Therefore, variation in some intronic sequences may have
functional impacts, and the most obvious one is to generate alternative splicing
sites, which is a common mechanism of generating multiple protein products
from one gene. Some intronic variants may also have an impact on the regulation

of gene expression.

Intergenic regions are sequences located between genes, and were sometimes
considered as non-functional. However, many studies have shown evidence of
regulatory functions of intergenic regions. Although it is often difficult to
distinguish regulatory regions from non-functional regions in intergenic areas,

conserved non-coding sequences (CNS) are believed to be likely to contain
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regulatory regions®!, so most studies of regulatory elements in the genome are
centered on CNS, along with other sequence features such as known regulatory
motifs and transcription factor binding sequences®2?-55. These studies have
discovered several types of regulatory regions, including promoters,
transcription factor binding sites, enhancers, insulators, and so on. Variants
within these regulatory regions may have functional impact on the expression
level of certain genes. The positioning and structural changes of nucleosomes
also regulate gene expression levels. Although the variation of this type of
regulation is mostly by the modification of histones, variants of the DNA
sequences within or nearby a nucleosome may also alter the positioning of
nucleosomes, which may have regulatory impacts. Strikingly, many Genome
Wide Association Studies (GWAS) have identified a large proportion of hits
associated with certain diseases or traits that are in intergenic regions, which
implies unknown functionality of these intergenic sequences. However, for most
of these variants, it is difficult to study their functions experimentally, and we are
yet to understand their real impacts on human traits or diseases. The ENCODE
(Encyclopedia Of DNA Elements) project, launched in 2003 by the National
Human Genome Research Institute (NHGRI), is aiming to identify all functional
elements in the human genome>¢. The project develops technologies to enable
large-scale and systematic identification and characterization of functional

elements, and has yielded fruitful results in its pilot project>’.
1.3 Footprints of natural selection on genomic variation

1.3.1 The theory of genetic drift

Most genomic variants are believed to be neutral, i.e. they have no biological
effect on the fitness of the carrier. In this case, genetic drift plays a major role in
determining the fate of a particular allele of a variant in the genome. The concept
of genetic drift was first introduced by Sewall Green Wright, one of the founders
of population genetics. It refers to the changes in frequency of an allele in a
population due to random sampling, where only chance determines which allele
is inherited by the offspring®8. Genetic drift eventually causes one allele to either

disappear or being fixed in the population, and thus reduces the level of genetic
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diversity (Figure 1.6). The effect of genetic drift is closely related to the effective
population size (N.). This concept was also first introduced by Wright, and was
defined as the minimum size of a Wright-Fisher population that shows the same
level of genetic variation as the population in question. N. is usually much
smaller than the actual population size, and can be determined either from the
variance of allele frequencies from one generation to the next, or the probability
of two alleles within an individual being descended from a common ancestor.
The smaller the effective population size, the shorter time it takes for genetic
drift to either eliminate or fix the allele in the population, and vice versa (Figure
1.7). Although the effective population size is related to the actual size of the
population (N), there are many factors that influence the relationship between
N. and N. For example, most populations experience fluctuations in the actual
population size over time, which has a great impact on the effective population
size. Other factors, such as the variation of number of offspring among
individuals, and the level of randomness in mating, all affect the effective

population size.
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Figure 1.6 Genetic drift in a population. Different colored circles represent different variants
in the population. In a Wright-Fisher population, genetic drift drives frequencies of variants up
and down by chance, and a variant will eventually disappear or get fixed in the population.
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Figure 1.7 Genetic drift in populations with different effective population sizes. This figure
shows the change of the frequency of one allele with an initial frequency of 0.5, in populations
with effective population sizes of 20 or 1000. In a population with a smaller effective population
size, it takes less time for the variant to disappear or reach fixation, and the frequencies of alleles
tend to change more dramatically from one generation to the next.

One of the fundamental models of genetic drift is the Wright-Fisher model,
developed by Wright and Sir Ronald Aylmer Fisher. This model describes the
effect of genetic drift on allele frequencies. It assumes that the generations do not
overlap, the population size is constant, and the population is randomly mating.
If the frequency of one allele of the variant is g, and that of the other is p, then the
probability of obtaining k copies of the allele that had frequency p in the last

generation is:

(2N)

ON—k
KN — k)P 1

Although this model is widely used in population genetics, its assumptions are
not at all realistic for human populations. However, for most populations, this

model is a good approximation to start with.

1.3.2 Positive (Darwinian) selection

Although genetic drift plays an important, and often dominant, role in evolution,

it is not the only force that drives the changes in allele frequencies in a
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population. Since Darwin set out his theory of natural selection as a means of
speciation and adaptation in 1859 in his book On the Origin of Species®®,
Darwinian, or positive, selection has been considered as one of the most
important driving forces of evolution. On the phenotypic level, Darwin’s concept
is very straightforward: if a new inheritable trait is useful, it will be preserved by
nature. Here “useful” refers to advantages in either survival or reproduction.
Individuals who have certain advantages, compared to other individuals with a
different phenotype who are competing on the same resources, in surviving to
the reproductive age, attracting mates, having better ability to fertilize, or
producing more offspring for other reasons, will be more likely to preserve their
traits in the population and have progeny that share the same traits. As time goes
on, the advantageous phenotypic trait will become more common, and finally
become a shared trait in the whole population. On the genetic level, frequencies
of the alleles that determine the advantageous trait will go up rapidly in the

population, and finally reach fixation (i.e. 100% frequency).

The effect of positive selection on the frequency of the advantageous allele in a
population depends on two factors: the strength of the selection, i.e. the relative
level of fitness of the advantageous genotype, and the number of generations
since the selection started. We use the selection coefficient parameter (s) to
measure the strength of a positive selection event. s is defined as the increased
percentage of offspring that the individual carrying the advantageous genotype
produces per generation, compared to individuals carrying the other genotypes.
For example, if the genotype AA has a selection coefficient of 0.1 compared to
genotype aa, and if the aa individual has 10 progeny, then the AA individual
would have 11. The higher the selection coefficient, the shorter time it takes for
the advantageous allele to reach fixation in the population. Also, the speed of
allele frequency increase tends to become slower when the allele frequency gets
higher. Therefore, the frequency of the advantageous allele is also dependent on
the number of generations since the allele started to undergo a selective sweep,

but in a non-linear fashion.

The most well-studied type of positive selection is known as a “hard” selective

sweep, where a single new mutation occurs in one individual, and this new allele
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results in some advantageous trait, so that positive selection favors the new
allele immediately after it emerges, and it increases in frequency until reaches
fixation. Another type of positive selection acts on standing variants, which
means that the allele does not have an advantage at the beginning, so its
frequency initially depends only on genetic drift. However, due to a change in the
environment or other factors, the allele becomes advantageous at some stage,
and then starts to be positively selected. This is called a “soft” selective sweep. In
the case of a soft sweep, the frequency of the selected allele also depends on the
starting frequency of the allele in the population before selection starts to act, in
addition to the other two parameters mentioned earlier. A more complicated
type of positive selection is that the advantage only happens if a combination of
certain alleles is present together within the individual. Some of these alleles
could be new mutations, while others could be standing variants. Among these
three types of sweeps, hard sweeps are the easiest to detect, due to their simple
process and clear pattern on the genetic variation. Soft sweeps are harder to
detect, especially when the standing variant had reached a relatively high
frequency before selection starts, as this will lead to the increase of frequencies
of several haplotypes, which will make the genetic pattern difficult to recognize.
The complex type of selection is the most difficult to detect, and we do not yet

know whether, or to what extent, it has influenced the history of modern humans.

There has been debate about what proportion of our genome has been positively
selected. Apart from some genome-wide analyses (discussed in section 1.4) that
have yielded rather variable results, there are some positively selected genes in
modern humans that have been widely studied and confirmed by functional
evidence. One example is the Duffy blood group locus, which has three classical
alleles: FY*A, FY*B and FY*0. FY*O has been found at high frequency in sub-
Saharan African populations, but not elsewhere. People carrying the FY*O allele
are highly resistant to Plasmodium vivax, a cause of malaria, which is a disease
common in sub-Saharan Africa and responsible for many early deaths. The FY*O
variant is a SNP in a transcription factor binding site that abolishes expression in
red blood cells and thus blocks entry of the parasite®0. Studies have shown some

evidence of positive selection on FY*O allele in sub-Saharan African
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populations®?, though the pattern is complex because the variant appears to have
arisen independently more than once®?. However, there are very few such

compelling examples of positive selection in humans supported by functional

evidence (Table 1.1).

Table 1.1 Examples of positively selected genes supported by functional evidence

Gene Location Selected function poieulgct:s:(s) Reference
FY 1921-q22 malaria resistance African Hamblin & Di Rienzo (2000)
EDAR 2q13 g:‘aar:;/ fﬂ‘.ﬁ sg)”ﬂf:i . Asian Sabeti et al. (2007)

LCT 2qg21 lactase persistence European Bersaglieri et al. (2004)
SLC45A2 5p13.3 skin pigmentation European Sabeti et al. (2007)
CYP3A5 7921.1 salt sensitivity European, Asian  Thompson et al. (2004, 2006)

FOXP2 7931 language/speech worldwide Enard et al. (2002)

HBB 11p15.5 malaria resistance African Ayodo et al. (2007)
CASP12 11g22.3 sepsis resistance worldwide Xue et al. (2006)
SLC24A5 15¢21.1 skin pigmentation European Lamason et al. (2005)
ABCC11 16qg12.1 earwax secretion Asian Xue et al. (2009)

G6PD Xq28 malaria resistance African Tishkoff et al. (2001)

1.3.3 Negative (purifying) selection

Mutations that reduce the fitness of the individual carrying them will be
negatively selected, as contrasted with beneficial alleles being positively selected.
This type of selection is also known as purifying selection, as the selection acts to
eliminate harmful alleles, and thus “purifies” the genetic locus. Purifying
selection is believed to be widespread in functionally important genes or

regulatory elements, as mutations in these elements may often be deleterious.
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Due to the linkage of nearby loci, purifying selection can result in a reduction of
variation in regions surrounding the selected locus. Negative selection is
responsible for the high level of conservation among species and low level of
variants within species in exons of many functionally important protein-coding

genesos.

1.3.4 Balancing selection

Diploid individuals have two alleles at each locus, which together may contribute
to the fitness of the individual. An individual heterozygous for the beneficial
allele often has half of the advantage in fitness of an individual homozygous for
the beneficial allele, but this is not always the case. Sometimes the heterozygous
genotype has the highest level of fitness, in which case selection would act to
maintain heterozygosity in the population. This, of course, will result in
maintaining a moderate frequency of the allele in the population, instead of
driving one of the alleles to fixation or elimination. This type of selection is
referred to as a form of “balancing selection”, where alleles are maintained at an
intermediate frequency. Another type of balancing selection is not due to the
higher fitness of heterozygous individuals, but to the low frequency allele having
a higher level of fitness. Therefore, over time, an equilibrium with intermediate
frequency will be maintained. An example of balancing selection in humans is
the major histocompatibility (MHC) locus, a large and complex region that
determines the histocompatibility of an individual and carries many genes
involved in defense against pathogens. The cell-surface proteins that are known
as the human leukocyte antigens (HLA) are encoded by genes in this locus. This
locus has shown an exceptionally high level of diversity among humans, and
some of the alleles are very ancient, even predating the chimpanzee-human split.
It is believed that this high level of diversity is caused by balancing selection.
However, it is not entirely clear whether the selection is to maintain a high level
of heterozygosity in each individual, or to maintain low or intermediate
frequencies of many alleles in the population. If the former is the case, it may be
that a large number of heterozygous MHC loci provide the individual with a
broader spectrum of antigen binding specificities, which results in a higher

ability to resist infectious diseases. If the latter case is true, relatively low
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frequencies of many alleles may prevent pathogens from evolving to evade
immune detection of those antigens encoded from high frequency alleles. It is
also possible that these two types of balancing selection both act on the HLA
genes. Again, however, there are few other examples of balancing selection in

humans supported by strong functional evidence.

1.4 Statistical approaches to detect signatures of positive

selection in the human genome

1.4.1 Linkage disequilibrium-based neutrality tests

As mentioned earlier, due to the difference in recombination rates, there are
blocks of certain variants in the genome that are often linked together on one
haplotype, known as linkage or haplotype blocks. Linkage disequilibrium refers
to the non-random associations of alleles at different loci. For two loci from
different linkage blocks in a neutral situation, we are able to calculate the
expected frequencies of any combination of alleles at these loci if we know the
frequencies of the alleles. For example, if the frequencies of allele A and allele By
at locus 1 are a; and b;, and the frequencies of allele A2 and allele B; at locus 2
are az and by, then the expected probabilities of the four possible combinations

of the two loci would be:

A aaz bia;
B> ab; bib;

If the actual frequencies of the four combinations are as expected, we say that
these two loci are in linkage equilibrium. However, in many cases, the actual
frequencies of the four combinations are less or more than the expected values.

In this case, we say that the two loci are in Linkage Disequilibrium (LD).

There are many factors that can influence the level of LD at a locus in the genome.

First of all, the variation of recombination rates causes some loci to be in higher
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LD than others. For example, loci within a recombination cold region would be
more likely to be linked than those within a recombination hot region, even if
they have similar physical distances. As linkage information is critical for many
genetic studies, genetic linkage maps, often known simply as genetic maps, have
been generated to show the position of genomic variants relative to each other in
terms of recombination frequency. The most widely used human genetic map
was produced by the International HapMap Project

(http://hapmap.ncbi.nlm.nih.gov/), and provides the genetic distances based on

more than three million SNPs across the human genome3°. LD can differ between
populations, and population structure or non-random mating can also have
impacts on the LD structure of the genome, but this effect is more likely to be
genome-wide than locus-specific. Natural selection, especially positive selection,
can have a high impact on the LD of the selected locus, and more specifically, will
cause the locus to have unusually high LD compared with neutral loci of similar

frequency.

As described earlier, if a new mutation turns out to be advantageous in fitness
for the individual carrying the mutation, the frequency of that advantageous
allele will go up rapidly in the population, and finally reach fixation or near-
fixation. Due to the linkage of surrounding alleles with the selected allele, their
frequencies will often go up along with the selected allele. As this process takes a
much shorter time compared to random drift, it often does not allow sufficient
time for recombination to break down the linkage. This will result in a long LD
block at the locus, centered on the selected allele (Figure 1.8). Therefore, by
measuring the level of LD of one particular locus in a population, a selective
sweep can be detected if the level of LD at this locus is high compared with other

frequency-matched haplotypes in the same or different populations.

As mentioned above, if genetic markers are in linkage equilibrium, their
frequencies should match the expected frequencies calculated based on the allele
frequencies. However, if the markers are in LD, their actual frequencies will be
different from expectation. To measure the level of LD, we use D to represent the
deviation of the observed frequency of one combination of the two loci in

question from what is expected. Based on the example of locus 1 and locus 2
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above, if the frequency of A1A: is fi, then D = f7 - a;az. Obviously, if the two loci
are in linkage equilibrium, D = 0. The value of D is dependent on the frequencies
of the alleles, so to measure the level of LD, we use a normalized D’, which is
(D/Dmax), where Dpmax is the maximum theoretical value of D*. The most common
measure of LD, however, is r? = D?/[a;iaz bibz], where r is called the correlation

coefficient of two loci.
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Figure 1.8 A selective sweep. Different colored lines represent different haplotypes in the
population. Blue stars are neutral mutations, and the red star is the advantageous mutation
under positive selection.

Simple measurements of LD at loci are not sufficient to detect signals of positive
selection. Other factors that may influence the level of LD need to be considered
and their effects need to be removed in order to isolate the long LD signal left by
a selective sweep. Also, the pattern of LD scores along the region of interest
needs to be considered, in order to identify the most likely selection target site.
Based on these principles, several statistical tests have been developed to detect
signals of positive selection by measuring the decay of LD scores over long
genetic distances. One of the earliest such tests is the Extended Haplotype

Homozogosity (EHH) test®5, which detects long-range haplotypes with a high
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frequency in the population. Several other tests were then developed based on
EHH, for example, the XP-EHH test calculates EHH scores in one population with
another population as a reference, which provides power to detect population-
specific positive selection®. Another test, iHS, calculates integrated EHH on
haplotypes carrying the ancestral allele or derived allele, then generates a score
based on the ratio of these two EHH scores®’. This test seems to have a higher
power for detecting selective sweeps that have not yet reached the near-fixation
stage. Although these LD-based tests have a reasonable power for detecting
signals of selective sweeps, due to the nature of LD-based tests, the regions they
detect are often a few hundred kb to a few Mb in length, so they are generally not
able to localize the selection signals into a small enough region in order to
identify the causal variants. The later developed Composite of Multiple Signals
(CMS) test, which combines multiple EHH-based tests and measures of derived
allele frequency differentiation (XP-EHH, iHS, Fst, ADAF and AiHH) to generate a

composite score, is able to increase the resolution significantly in some cases®8.

Several research groups applied LD-based tests to genotype data like those from
the HapMap project to perform genome-wide scans of positive selection. As
mentioned earlier, Sabeti et al. identified ~300 candidate positively-selected
regions from the HapMap2 data using the EHH test, including 22 strong
candidate regions, from which they further identified putative selection targets®®.
Voight et al. identified ~250 strong signals of recent positive selection using data
from the HapMap project, and generated a set of SNPs that tag these candidate
regions®’”. Wang et al. developed the LD decay (LDD) test, which looked at the
expected decay of adjacent SNP by sorting homozygosity of each high-frequency
allele, avoiding the inference of haplotypes, and used this test on the 1.6 million
SNP genotype data set from Perlegen Sciences®®. They identified ~1800 genes

with signals of positive selection??.

1.4.2 Frequency-spectrum-based neutrality tests

One of the most important genetic effects of positive selection is that it drives the
frequency of the beneficial allele to a high frequency or even fixation. Due to the

linkage of surrounding alleles with the selected allele on the same haplotype, the
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frequencies of those alleles will also go up. On the other hand, the corresponding
alleles on the other non-selected haplotypes will go down rapidly or even
disappear from the population. Therefore, alleles in the region surrounding the
advantageous allele will differentiate into either very high or very low
frequencies (Figure 1.8). In contrast, frequencies of neutral alleles are only
driven by genetic drift, so they fluctuate randomly and are not likely to have the
highly differentiated patterns. If we compare the allele frequency distributions of
a region that has undergone a selective sweep with a neutral region, then three
main differences may occur: (1) the selected region has a higher proportion of
extremely low-frequency alleles than the neutral region; (2) the selected region
has a higher proportion of extremely high-frequency alleles than the neutral
region; and (3) the selected region has a lower proportion or even absence of

intermediate-frequency alleles (Figure 1.9).

70%
—neutral —positively selected
60%
50%
40%
30%
20%
10% /
O% e
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
derived allele frequency

percentage

Figure 1.9 Derived allele frequency spectrum of a positively selected region versus a
neutral region.

Several statistical tests have been developed to detect one or more of these three
features, which, although strictly tests of neutrality, are often interpreted as
evidence of selection. One of the earliest and still most widely used such tests is
the Tajima’s D statistic’!, which compares two estimates of 6 = 4Ny, one of

which uses the number of segregating sites (S), and the other the average

pairwise differences (m), i.e. d = 0x — Os  Then the D statistic is calculated by

dividing d by its standard deviation. In theory, if the sequence fits the neutral
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model and the alleles are in equilibrium, we expect d = 0. If the absolute value of
D statistic is larger than expected by chance (i.e. the different is statistically
significant), the neutral hypothesis is rejected. However, the rejection of neutral
model by Tajima’s D can be caused by several factors, including positive selection,
negative selection, balancing selection, population expansion or bottleneck, non-
random mating, and so on. A positive Tajima's D value suggests a low level of
both low and high frequency alleles in the region, indicating either balancing
selection or a decrease in population size, or both. In contrast, a negative
Tajima's D suggests an excess of low and high frequency alleles in the region,
indicating positive selection, or population expansion. In order to use Tajima’s D
to detect a selective sweep, we need to (1) measure the significance of the
negative D value, and (2) eliminate the possibility of demographic factors (e.g.
population expansion after a bottleneck). There are two commonly used ways to
gauge the level of significance. One is to simulate a large set of regions that mimic
the real genetic data in a neutral scenario, and then calculate the D statistic on
the simulated regions. A p value can be obtained from the distribution of the D
statistic in the simulated neutral regions. The other way is to obtain an empirical
p value, in which case data on a large number of comparable regions in the
genome need to be obtained, and by ranking the D statistic of the empirical data,
outliers with significant empirical p values will be identified. There are pros and
cons of both approaches. The first method has the advantage of independency, so
is free from potential bias in the empirical data themselves. However, it cannot
rule out the possibility of being influenced by demographic effects, as the
simulated data may not take into account population structure and changes. The
second approach can effectively eliminate the demographic factors, as usually
population expansions or bottlenecks would affect the whole genome or at least
a large fraction of it, so is not likely to affect the empirical rankings. However, the
second approach cannot be strictly treated as a measure of statistical
significance, since it is unknown what fraction of the empirical data should be
the target of selection, and in this method we assume that the empirical data set
as a whole is neutral, which may not be true and therefore may introduce false

positive or false negative results. In practice, both approaches may be used to
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measure the significance, and the best way to measure the level of significance in

a certain study should be judged based on the specific conditions of the study.

Another widely used statistic is Fay and Wu's H’2, which measures an excess of
high frequency derived alleles. The H statistic is similar to Tajima's D in the sense
that it also compares two estimates of 8, but differs by taking into consideration
of whether a particular allele is derived or not when looking at pairwise
differences. Therefore an outgroup species is needed in order to determine the
derived alleles. Here h = é,r — éH , where Oyis the estimate of 8 weighted by the
homozygosity of derived variants. Another difference between the H and D
statistics is that Fay and Wu’s H measures departures from neutrality by mainly
looking at the difference between high frequency and intermediate frequency
alleles, whereas Tajima's D mainly looks at the difference between low-
frequency and intermediate frequency alleles. This makes Fay and Wu’s H less
sensitive to population expansion than Tajima's D; therefore, by comparing the
two statistics on the same region, we may be able to distinguish the effects of

population expansion from selection.

More recently developed frequency-spectrum based tests use more
sophisticated algorithms to increase the robustness to demographic factors.
These methods aim to capture the comprehensive spatial patterns of allele
frequencies in the region, instead of focusing on just one aspect’3-76. Although
some of these methods are relatively computationally expensive, they to some
extent have higher power and sensitivity in detecting selective sweeps. One
example of this new generation of tests is the Composite Likelihood Ratio (CLR)
test developed by Nielsen et al.”6. The CLR test calculates a composite likelihood
ratio by dividing the maximum composite likelihood under a neutral model by
that under a model with a selective sweep. Instead of using a pre-set neutral
model with certain demographic parameters, the null model in the CLR test is
derived from the background frequency spectrum pattern of the data set in
question. This approach has two advantages: (1) it avoids biases introduced by
simplified or unrealistic demographic models, so minimizes the effects of
demographic factors of the population in question; and (2) it eliminates the

ascertainment biases of the variant discovery process, as this kind of bias would
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occur across the whole data set and thus have been taken into account in the
neutral model. This algorithm is also faster than previous likelihood ratio-based
tests, which made it feasible to apply the test to whole-genome data sets with

large sample sizes.

Although frequency-spectrum-based tests are best used on sequencing data, they
can also be applied to genotype data in a genome-wide scale. Kelley et al. used
Tajima’s D statistic to look for outliers using the Perlegen Sciences SNP genotype
data, and found 385 genes with signals of positive selection’’. Williamson et al.
applied a composite likelihood ratio (CLR) approach based on site frequency
spectrum to the same set of data, and identified 101 regions with evidence of

positive selection’8.

1.4.3 Population differentiation based tests

When a population moves to a new environment, adaptation may take place, and
positive selection may act on mutations that help the individual better adapt to
their new environment. Human populations moving to different parts of the
world have experienced distinct climates and natural resources. Therefore, some
genetic changes may be favored in one particular population but not the others.
If one or more alleles at a particular genomic locus have highly differentiated
frequencies in different populations, or are even population-specific, positive
selection may have acted on the particular locus in one or more of the
populations. The fixation index, Fsr, first introduced by Wright, is often used to
measure such population differentiation’®. Fsris often defined as the relative
difference of the average number of pairwise difference between and within two

populations at one locus:

F — T[between-nwithin
ST

T[between
The value of Fsr ranges from 0 to 1, with a value of 0 implying complete panmixis

(i.e. no differentiation), compared with a value of 1 indicating a complete

separation between the two populations.

40



Fsr is often used in the detection of population-specific selective sweeps, with
higher values indicating a higher probability of selection. However, this method
is often criticized, as the value of Fsr is highly influenced by population structure
and demographic history, as well as the ascertainment biases of variant
discovery in different population samples. Therefore, Fsr values are often
evaluated by comparing to the genome-wide or multi-locus distribution, as
demographic factors or data biases will most likely affect the whole data set
equally. Akey et al. estimated locus-specific Fs7 compared with genome-wide
distribution, and identified over a hundred loci showing “signatures of positive
selection” with high levels of differentiation among populations8?. However, by
examining the Perlegen (~1 million SNPs) and HapMap phase I (~0.6 million
SNPs) data sets, Weir et al. showed that locus-specific estimates of Fsr are too
variable to be used in detecting selection®l. Nevertheless, when multiple
independent background loci along with appropriate criteria are used to detect

outliers, Fsr can be a good indicator of population specific selection®2.

Population differentiation was often used along with LD-based tests or other
approaches to identify positive selection in one population versus another. For
example, the HapMap project used LD-based tests in combination with Fsr to
identify regions that have undergone population-specific positive selection®3.
Oleksyk et al. used a set of 183,997 SNPs in European and African American
population samples to look at population differentiation, and identified 180
regions with evidence of positive selection in either population, validated by LD,

population divergence and other methodologies84.

1.4.4 Functional-annotation based neutrality tests

A certain allele at a genomic locus can be positively selected only if it has
functional consequences that are beneficial for the carrier. Therefore, non-
functional variants should be neutral and their frequencies should only be
affected by genetic drift or demographic factors. By comparing patterns of
functional variants versus non-functional variants in a gene or functional
element, one could potentially identify signatures of selection at this locus. The

Kq/K; ratio (also known as w, or dN/dS), for example, is often used for this
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purpose. It is the ratio of the number of non-synonymous substitutions per non-
synonymous site (K;) to the number of synonymous substitutions per
synonymous site (Ks) in a protein-coding gene. In the simplest analysis, a Ku/Ks
ratio greater than 1 indicates a sign of positive selection, since a K,/K; ratio of 1
is expected for a neutral gene. However, more sophisticated statistical analysis
needs to be performed to determine the significance of the K,/K; ratio as an
indicator of positive selection, especially when the number of substitutions is
low. Simulations or maximum likelihood analysis may be applied to distinguish

between a neutral model and a significant K,/K; ratio.

The K./K; ratio is a simple yet powerful tool to identify signatures of positive
selection in protein-coding genes, as it uses few assumptions and has a strong
functional foundation. However, it has complications and limitations. First of all,
mutation rates of different base substitutions are variable, and the codon usage
is often biased, which may result in a higher probability of certain non-
synonymous or synonymous changes. Secondly, certain synonymous changes
may have functional impact on the gene, and certain non-synonymous changes
may result in similar amino acids and thus have no functional impact on the
protein. Thirdly, the K,/K; ratio can only be applied, of course, to protein-coding
genes, so functional non-coding genes or regulatory elements, which constitute a
probably larger proportion of functional loci in the genome, are out of its radar.
Lastly, this method requires a rather strong signal of selection leading to
multiple amino acid changes in the same protein, and the two lineages being
compared need to be distant enough to allow for this accumulation of non-

synonymous substitutions.

A good example of using functional annotation to identify positively selected
genes is the study by Bustamante et al., in which the authors examined the
patterns of synonymous and non-synonymous variants in over 11,000 human
genes using sequencing data of these genes in 39 humans, as well as the
divergence from the chimpanzee genome. They identified 304 genes with

evidence of rapid amino acid evolution®3.
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1.4.5 Time to coalescence

Most of the statistical tests discussed above are aimed at detecting recent
selective sweeps, i.e. those that nearly reached or just reached fixation. These
selective sweeps are likely to have started after ~50 KYA, when human
populations from Africa had already started migrating to other parts of the world.
As mentioned earlier, anatomically modern humans first appear in the fossil
record around 200 KYA. Therefore, in order to understand which, if any, genes or
loci were selected during the earliest stages of modern human evolution (~50-
400 KYA), thus contributing to the features that make humans unique as a
species, we need to identify positive selection events happening around that time
period. These events apparently cannot be detected by the above statistical tests,
as they are by definition complete in modern humans, so new mutations and
recombination events will have erased most of the footprints on allele frequency

spectra and LD patterns left by any early selective sweeps.

By estimating coalescence times, i.e. the time to the most recent common
ancestor (TMRCA), of genomic loci among all humans and picking out genomic
regions that coalesce less than 400 KYA, we will identify loci in the human
genome that have spread through all human populations as modern humans
emerged, which would indicate that these loci might have undergone positive
selection in our lineage. The estimation of coalescence times is based on
coalescent theory, developed in early 1980s by John Kingman®. It is a
retrospective model using mathematics to describe the characteristics of the
joining of lineages back in time to the most recent common ancestor (MRCA),
which is referred to as coalescence (Figure 1.10). This theory provides the
foundation of many neutral genetic models, as well as the estimation of many
population genetic parameters, including the relationship between coalescence
and effective population size, and TMRCA. Designating the effective population
size of a certain population as N, the probability of two gene copies coming from
the same parent in the preceding generation is 1/2Ne, so the coalescence time of
the sampled lineages through previous generations follows a geometric
distribution with E = 2N.. Likewise, for k copies of the gene, the probability of k
copies reducing to (k -1) copies in the preceding generation is k (k -1)/4N., and
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the expectation for the time interval is E = 4N./k(k -1). According to these
equations, four conclusions can be drawn about the coalescence: (1) the larger
the sample size (k), the greater the rate of coalescence (k(k -1)/4N.); (2) the
larger the effective population size (N.), the slower the rate of coalescence; (3)
the time to coalescence gets longer as the process moves toward the most recent
common ancestor, as when k gets smaller, 4N./k(k -1) gets bigger; and (4) even
small samples sizes have a high probability of including the MRCA of the
population, as the probability of the MRCA of the samples being the same as that
of the population is (k- 1)/(k + 1).

past

MRCA

present current samples

Figure 1.10 The coalescent. Purple circles in each generation are those being traced backwards
in time until reaching the common ancestor.

The GENETREE algorithm, developed by Griffiths and Tavaré, uses coalescent
theory and Monte Carlo Markov Chain simulation to estimate likelihoods of
genetic data under the infinitely-many-sites model. The population mutation
parameter 6 = 4N.,u and the TMRCA of the locus and given samples can be
estimated®®. It is worth noting that GENETREE assumes no selection and
recombination, so it can only be applied to relatively short genetic regions.
Previous evolutionary studies have applied this method, yielding fruitful

results®’.
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1.5 Validation and evaluation of candidate positively selected

regions

1.5.1 Simulation as a means of assessing and validating genome-wide scans

As discussed earlier, statistical approaches applied to large genetic data sets are
powerful tools to investigate different types of selection and demographic events
that occurred in the modern human evolutionary history. However, statistical
analyses based on the empirical data alone, in most cases, are not sufficient to
lead to scientific conclusions. Values of the statistics are often “relative” rather
than “absolute”, and various uncertainties, biases and data-specific factors may
skew the statistics. For example, we could use Tajima’ D statistic to perform a
genome-wide scan on 20 human genome sequences aiming to identify regions
under positive or balancing selection. After we have got the D values across the
genome, two questions will arise: (1) what significance threshold should we use
to choose the interesting low and high D values? (2) Does a significant D value
reflect a real signal of selection? One way to answer the first question is to rank
all the D values and pick 0.5% or 2.5% (or other percentages) at each end of the
ranking as “significant” values. The main drawback of this approach is the pre-
set assumption about the proportion of outliers. If we pick 1% as significant, we
are assuming that 1% of the genomic regions under investigation are under
selection. This is rather arbitrary and will most likely introduce false positive or
false negative results, and will not answer the scientific question of what
proportion of the genome or regions under investigation are under selection,
which is often an important question for researchers in genome-wide studies. To
answer the second question, we need to eliminate all other factors that may
contribute to the statistical results. One way to attempt this is to use various
independent data sets from different sources, which ideally may not have been
influenced by the same factors that could result in a significant p value, to see
whether the results are replicable. This would require more time and resources,

and is subject to availability of data.

Since the development of coalescent theory and the advancement of the

computational capacity of computers, simulations have become a powerful tool
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in population and other genetic studies. By simulating genetic data that mimic
the real evolutionary process and population demographics, one can generate
large sets of independent data with all features accurately known, which can
then be used to assess the statistical results from empirical data. Simulation
approaches can potentially answer the above two questions convincingly
without any more empirical data or experimental studies being required. For
example, to figure out the best significance threshold for the statistical results on
a particular empirical data set, we may simulate corresponding sets of genetic
data under a neutral model and appropriate demographic parameters to see
what the data would look like without selection, and then a significance
threshold can be set based on the distribution of the simulated neutral data. In
this case, any biases of the empirical data are eliminated. If we want to figure out
whether the significant statistics are real indicators of selection, we may
simulate data under selection along with the neutral scenario, and compare the
statistics from the two conditions to assess the power and reliability of the

statistics.

Coalescent simulation was the first widely adopted approach to simulate genetic
data at the sequence level. As the name suggests, this approach is based on
coalescent theory, and it traces only the observed samples from the present
backwards in time, ignoring the rest of the population. This provides the biggest
advantage of coalescent simulation - computational efficiency. Several
coalescent simulation programmes have been developed, and examples include
ms88, SelSim®°, cosi?%, CoaSim®Y, and FastCoal®l. Most of these programmes can
simulate genetic variant data covering a few megabases or longer regions in tens
or hundreds of samples, usually within a few seconds and with a reasonable
amount of computational resource. Therefore, thousands or even millions of
simulated data sets can be generated in a speedy manner, which is very
important when p values need to be generated from the distribution of the

statistics in simulated data.

However, there are some limitations of coalescent simulations. One is that the
number of recombination and gene conversion events as well as the level of

complexity of recombination patterns that can be incorporated into the
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simulation is currently very limited. Therefore, although large genomic regions
can be simulated by assuming over-simplified recombination pattern and very
few recombination events, if a realistic recombination map is to be used, only a
few megabases can be simulated, with a much lower speed. Another limitation is
the ability to model selection events. Some of the coalescent simulation
programmes cannot incorporate selection scenarios, and those that can, for
example, SelSim, are only able to simulate the event with a single locus under
selection, and this programme is restricted to conditions like a relatively short
genomic region and small sample size, a constant population size, and a uniform

recombination rate.

These limitations can be resolved by a forward simulation approach, which
simulates genomic data forward in time from an ancestral status. Tracking the
evolutionary process forward in time allows a high level of flexibility; therefore,
complex recombination patterns and demographic parameters can be
incorporated. This approach obviously requires the simulation of the whole
population, so is computationally very expensive. Even with large computer
clusters, the speed and computational resource requirement of forward
simulations have prevented this approach from being used in generating large
data sets. However, its high flexibility is still appealing for certain studies. A few
pieces of forward simulation software have been developed. One example is
simuPOP??2, which was designed as an interactive programme, allowing users to
manipulate the models and parameters during the evolutionary process and
enabling highly flexible simulations. Later-developed forward simulation tools
incorporated rescaling techniques to enhance the computational efficiency.
Basically, these algorithms allow the user to divide population sizes and
numbers of generations by a small factor x (usually 5-10), and increase the
mutation and recombination rates by that same factor. By doing this, the
parameters at the population level (e.g. 8 = 4 Neu) remain unchanged, while the
speed of the simulation can increase up to x? fold. The simulation programmes
FREGENE®3 and mpop®* are examples of this type. The increased computational
efficiency of these programmes allows large-scale forward simulations with

selection scenarios and complex recombination patterns and demographic
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models.

1.5.2 Validation by independent data sets and/or approaches

Although simulation is a powerful tool in assessing the overall effectiveness of
statistical approaches in large data sets, after candidate regions or genes are
shortlisted, more validations are needed to verify the signals of selection. One
intuitive way is to use alternative data sets or approaches to investigate the same
question, and if the results are replicated independently, they are more likely to
be reliable. Three approaches can be taken in this type of validation: (1) using
different statistical methods on the same data; (2) using the same statistical
methods on different data; and (3) using different statistical methods on
different data. The decision of which approach to use is of course restricted by
the availability of alternative data or methods, and also depends on the purpose
of the study as well as the reliability of the data and methods that have been used.
The first approach is best suited when a new, comprehensive and high-quality
data set becomes available, which can be used in different ways, or when there
are multiple methods that capture different aspects of the features under study.
For example, the HapMap project provided a highly reliable and comprehensive
data set of human SNPs and haplotypes, which enabled genome-wide studies of
natural selection in the human genome. Voight et al. first developed a new LD-
based statistical method to detect positive selection, and applied it to the
HapMap data®’. This study generated a genome-wide map of recent positive
selection, though most of the regions were not validated by other approaches.
Sabeti et al. then applied three LD-based statistical tests to the ~3 million SNPs
from HapMap2 data®®, yielding fruitful results with a high-confidence list of
positively selected regions showing strong signals in multiple tests. The second
approach is suitable if the methods used are potentially powerful but new
and/or untested, and if there are multiple sets of data available to test the
robustness of the methods from different angles. For example, Nielsen et al.
applied their newly-developed CLR methods on both Seattle SNPs data and the
HapMap data, which are two independent data sets, to test their methods’¢. The
third approach is most desirable if a scientific conclusion is to be drawn from the

study, yet all evidence is based on limited statistical investigations on limited
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data, thus more evidence is needed. This approach can be the most powerful
among the three, since if a candidate gene shows signals multiple times in
completely independent investigations of different data sets using different
methods, it will be most convincing and less likely to be a false positive. A good
example of such a candidate is the Duffy blood group locus mentioned earlier.
Multiple independent studies revealed signals of positive and possibly other
types of selection acted on this locus®.6>78, making it a good example of recent
positive selection on disease resistance in a human population, and also
attracted interest from clinical researchers. However, caution needs to be taken
in choosing the data and methods when applying this approach, so that the
results are comparable and free from biases that may jeopardize the validity of

the comparison and validation.

1.5.3 Validation by functional studies

One of the main purposes for all the efforts made in the identification of
positively selected regions in the human genome is to aid a better understanding
of human genomic functions, as well as provide insights into studies in human
diseases and healthcare. Therefore, the real functional targets of positive
selection must be sought after candidates are identified by statistical approaches.
If a plausible functional target is identified within the candidate region, and the
function is likely to affect the carrier’s fitness, it is more plausible that positive
selection may have acted on this candidate than if no function is related to the
candidate. Therefore, looking for functional targets of positive selection within
or near the candidate regions is the ultimate way to validate statistical results.
For example, a few pigmentation-related genes showed strong signals of positive
selection in non-African populations in several studies®695%. This can be
explained by the climate differences between areas in the world. In areas with
higher temperature and more exposure to sunshine, darker skin is selected to
prevent sunburn, while in colder and less sunny areas, the skin can become
lighter in colour, perhaps to allow production of vitamin D or because of sexual
selection®7:98. A functional study on the SLC24A5 gene revealed its critical role in

human pigmentation, and a functional coding polymorphism with highly
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differentiated frequencies between African and other populations®® was

identified, which provided strong functional evidence for selection in this gene.

If a candidate region contains one or more protein-coding genes, intuitively one
of the genes would be thought as the most likely selection target. However, a
large proportion of the candidate regions from genome-wide scans of positive
selection are either too large so that functional targets cannot be pinpointed, or
lie in intronic or intergenic regions in the genome where there is no obvious
functional element. This can be seen as both a challenge and an opportunity. The
challenge is, on the one hand, the difficulty of identifying putative selection
targets in the “non-functional” region, and on the other hand, the lack of
validation of whether the statistically-significant candidates are true or false.
However, “no known function” is not equal to “no function”. The signals of
positive selection in “non-functional” regions may be seen as a sign of unknown
functional importance of the genomic regions, and thus worth pursuing further
by functional investigations. Statistical analyses can serve as a means of
identifying candidates for experimental biologists to study potential functions,
which will lead to a better understanding of functional elements in our genome.
One should also note that experimental studies often take years and require
huge amounts of resources; therefore, a high-quality list of candidates will be

tremendously helpful for enhancing the efficiency of such research.

1.6 Aim of this thesis

The main goal of this dissertation is to detect regions in the human genome that
have been positively selected during the course of modern human evolution,
taking advantage of the abundance of genome sequencing data, and to localize
the selective target to a small genomic region, so that putative functional variants
under selection can be identified. Within this general goal, this thesis is aiming to
answer three fundamental questions: (1) can sequencing data help better detect
positively-selected regions and localize selection targets when frequency-
spectrum based statistical tests are applied? (2) If the answer to the first
question is yes, can novel positively selected regions be identified and selection

targets be localized if such an approach is applied on whole-genome sequencing
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data from worldwide populations? (3) By calculating time to the most recent
common ancestor (TMRCA) from sequencing data, can we identify regions that
were selected during the early stage of modern human evolution, which are not

detectable by available statistical neutrality tests?
Three studies will be presented in this dissertation to answer these questions.

(1) Exploration of signals of positive selection derived from genotype-based
human genome scans using re-sequencing data. The aim of this project was to
localize selection targets in candidate regions identified by LD-based tests on
genotype data, by applying frequency-spectrum based tests (Tajima’s D, Fay and
Wu'’s H, and a Composite Likelihood Ratio test) to targeted resequencing data.
Two candidate regions from the HapMap2 scan for positive selection®® were
resequenced, and likely selection targets in both regions were narrowed down
from ~300 kb to ~30 kb. Plausible biological targets of selection could be

proposed for both regions.

(2) A genome-wide scan of selective sweeps using frequency-spectrum based
tests on 1000 Genomes Project low-coverage Pilot whole-genome sequencing
data. The aim of this project was to provide a map of positively-selected regions
in the human genome, with a higher power of detection and better resolution.
Comprehensive simulations were performed to understand the power of our
combined score of frequency-spectrum tests for detecting and localizing
selection targets. A high-confidence list of positively selected genes was
produced in each of the three populations (African, European and Asian), with
highlights of some strong candidates with clear functional implications.
Bioinformatic functional analyses were performed to reveal the general features
of selected genes, as well as detailed understanding of the likely selection targets

in the strongest candidates.

(3) A genome-wide scan for regions with recent common ancestry among all
humans. This project aimed to identify regions in the human genome that have
been positively selected during early modern human evolutionary history, as
regions with shared recent coalescent times indicate positive selection affecting

all modern humans, which has an older age than the recent positive selection
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identified by neutrality tests. Coalescence times were calculated using the
GENETREE package8® in 5kb windows across the genome from high-coverage
whole-genome sequencing data of 54 unrelated samples from 11 populations
around the world, produced by Complete Genomics Inc.. Simulations showed
that there might not be an excess of recently-coalesced regions in all humans,
although there are some regions with recent TMRCAs. Regions with a TMRCA of
less than 400,000 years were identified, and variants within those regions were
compared with the sequence of the Denisovan genome. Phylogenetic network

analyses were performed on some of the regions with recent TMRCAs.

These three studies together build up a basic yet comprehensive investigation of
positive selection in the human genome using sequencing data, and provide an
understanding of how the availability of multi-population, large-scale sequencing
data will propel and enable insightful human evolutionary studies that could not

be done before.
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2 Exploration of signals of positive selection derived
from genotype-based human genome scans using

re-sequencing data

2.1 Introduction

A genome-wide scan of positive selection, in which the entire genome is
examined, has been used in several studies. In some scans, such as when non-
synonymous amino-acid substitutions showing high levels of population
differentiation were chosen®3, there has been a limited prior hypothesis about
the target of selection. But genome scans can also be carried out in the absence of
any such hypothesis. Such unbiased scans have the attractive feature that they
can potentially lead to entirely unsuspected insights into the evolutionary
history, but in order to derive full benefit from them, the target of selection must
be identified. In practice, most genome scans have been based on SNP
genotyping, and methods for detecting potential selection have been primarily
based on searching for unusual LD or population differentiation patterns. Such
scans have, in some senses, been highly successful. A review summarizing the
combined results of nine such genome scans found that 5,110 distinct regions
covering 14% of the genome and 4,243 (23%) RefSeq genes showed apparent
evidence of positive selectionl?. However, although these findings are
impressive for their yield of putatively selected regions, it was notable that there
was limited overlap between the individual surveys and only 129 of the regions
(2.5%) were identified in four or more studies. This poor concordance was
described as “sobering”101 and pointed to the need for a better understanding of
the false positive and false negative rates in such scans. Indeed, other analyses
have suggested that the classic selective sweeps detected by these approaches
are unlikely to have been frequent enough to dominate overall patterns of
human genome diversity102. A second feature of some of these scans, particularly
those based on LD, is that the candidate regions identified can be very large. For

example, the HapMap2Z project listed 22 strong candidate regions with a
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combined length of ~16.7 Mb and mean size of ~760 kb®®, making it difficult to
identify the selected target and further investigate the biological implications of

the selection.

We have set out to address three questions raised by genome scans that identify
large candidate regions. First, do such candidates show evidence for selection if
alternative criteria are used? Second, to what extent can the targets of selection
be localized more precisely? And third, if more precise localization is possible,
does this lead to increased insights into the possible biological basis of the
selection? To achieve these aims, we reasoned that full re-sequence data would
provide the most information. Indeed, only technical and cost limitations have
previously hindered its use: re-sequencing complete genomes or even hundreds
of kilobases (kb) to high accuracy in population samples has not been practical
until recently*. We have thus explored experimentally the potential for
enrichment of such regions followed by next-generation sequencing to generate
suitable datasets. We chose for these trials two regions from the HapMap2
survey, which were of intermediate size (~300 kb each) and where there was no
obvious target for selection®. We show using simulations that alternative tests
for selection applied to sequence data from regions identified in such a way
should readily distinguish between neutrality and likely selection, and will
usually produce a more precise localization of the selected variant. We also show
experimentally that suitable high-quality sequence data can be generated using
next-gen technology, and finally that plausible biological candidates can then be

proposed for these selective events.

This study is published in Human Genetics193. This chapter is based on this
publication, with some modification of the contents. All simulations, statistical
and bioinformatic analyses were performed by the author of this thesis, except
the CMS calculation, which was done by Irene Gallego Romero. The PCR
experiments were done by Qasim Ayub, and the sequencing work was done by

the Sanger Institute Sequencing Team.
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2.2 Materials and Methods

2.2.1 Simulations

Two-step simulations were performed to model both neutral and positively
selected scenarios, and are summarized in Figure 2.1. In the first step, we carried
out coalescent simulations using the cosi package to generate 1 Mb long
haplotypes in a pair of ancestral populations 2,000 generations ago based on the
best-fit demographic models for African and Asian populations?6. These
haplotypes were then used as input for the second step - forward simulations,
using mpop?%. In some of these forward simulations in the Asian population, one
allele with an initial frequency of 0.0006 (default initial frequency for new
variants in the package), which would be under selection, was added in the
middle of the simulated Asian haplotypes. Four different selection scenarios with
selection coefficients (s) of 0.001, 0.004, 0.007 and 0.01 were simulated, and the
selection start time was set at 2,000 generations ago. In total, 1,000 independent
simulations were performed for each set of conditions. These used the genome-
average recombination rate of 1cM/Mb from the HapMap2, a mutation rate of
1.8x10-8 per nucleotide per generation calculated from a comparison of human
and chimpanzee sequences for the whole of chromosome 4, and a current
effective population size of 100,000. The rest of the demographic parameters
were as in Schaffner et al.’s best-fit demographic model?¢ from the package cosi.
For the purpose of computational efficiency, we re-scaled the parameters when
performing the forward simulations: effective population sizes and times were
reduced by a factor of 5, while mutation and recombination rates and selection
coefficients were multiplied by 5 (see Appendix A for parameters and
commands). Fifty chromosomes were sampled from each simulation. We call this

set of data the “simulated re-sequencing data”.

The SNPs in the “simulated re-sequencing data” were subsampled to mimic the
frequency spectrum of HapMap2 genotype data by matching the proportion of
the SNPs of HapMap2 data in each frequency bin (bin size 0.1). We call this set of
subsampled simulation data the “simulated genotype data”. XP-EHH scores®®

were calculated from the simulated genotype data and normalized using the
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mean and variance of the XP-EHH scores from the simulated genotype data in the
neutral simulation in the Asian population, using the African as the reference
population. We only retained simulations with the XP-EHH score above the 95t
neutral percentile continuously for at least 100kb surrounding the selected SNP,
which mimics the experimentally-investigated candidate regions from the survey

based on the HapMap2 data.

(Coalescent simulations)
Ancestral populations
African Asian

(Forward simulations )

Modern populations

N\, /

Without selection With selection
Asian African Asian

XP-EHH significant XP-EHH significant
< < &
Tajima’s D, Fay and) Tajima’s D, Fay and)

Wu's H, CLR Wu's H, CLR

Figure 2.1 Simulation design. Dotted boxes represent simulated haplotype samples; the star
indicates the presence of a positively selected SNP. Arrows show the performance of the analyses
described in the oval boxes.

We then returned to the corresponding simulated re-sequencing data for the
retained simulations and calculated Tajima’s D71, Fay and Wu’s H7? and Nielsen

et al.’s CLR7¢ statistics. These were calculated in 10 kb non-overlapping windows
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across the whole 300 kb region centered on the selected SNP (or equivalent
location in neutral simulations) in each individual set. The significance levels for
each of the neutrality tests were estimated based on the percentile of the test
values in the null distribution from 1,000 neutral simulations with the same
demographic model. The background frequency spectrum required by the CLR
analysis was calculated on the 1,000 independent neutral simulations with the
same recombination and mutation rates. In order to combine signals from the
three tests, we assessed the correlation coefficient between Tajima’s D and Fay
and Wu'’s H p values on the neutral simulated data, and found no correlation (r =
0.06); therefore, these two tests were treated as independent, and a combined p
value from Tajima’s D and Fay and Wu'’s H for each 10kb window was calculated
using Fisher’s method!%4, and we use this combined p value to present the

results below.

2.2.2 Target region resequencing

Two regions were picked from the HapMap?2 list of 22 regions showing strong
evidence of selection®® using the following criteria: no obvious candidate for the
selected SNP or gene; selection at least in the CHB+]JPT population; moderate
size (0.2-1 Mb). The coordinates of the chosen regions were (March 2006, NCBI
36 assembly; all genomic coordinates in Chapter 2 are based on this assembly)
chromosome 4: 158,702,285-159,016,211 (314 kb, called chr4:158Mb) and
chromosome 10: 22,587,453-22,850,110 (263 kb, called chr10:22Mb). We also
included a set of control regions, including CASP12 (13 kb) for which we had the
Sanger capillary sequencing data from a subset of the samples for the
resequencing of this study%> and 20 kb of unique sequence from the Y
chromosome, where there should be no reads mapped in females and no

heterozygote calls in males.

The target regions were then amplified from 28 CHB (Han Chinese in Beijing,
China) and 2 YRI (Yoruba in Ibadan, Nigeria) samples from the HapMap collection
in a series of long-range PCRs. In total, 49 pairs of PCR primers were designed for
chr4:158Mb, 42 for chr10:22Mb and 4 pairs for the Y chromosome to amplify 5-
11 kb PCR products with overlap of > 500 bp, using a Perl script
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(http://droog.gs.washington.edu/PCR-Overlap.html). Two previous pairs for

CASP12105 were also used. The three base pairs at the 3’ end of all primers were
confirmed not to overlap with any SNP in  dbSNP127

(http://www.ncbi.nlm.nih.gov/projects/SNP/). The primer sequences and PCR

conditions are listed in Appendix B, PCR primers and protocols. 44 out of 49
fragments from chr4:158Mb, 37 out of 42 from chr10:22Mb and all from the Y
chromosome and CASP12 were successfully amplified in initial tests. These
fragments were subsequently amplified in all samples. Three CHB provided poor
quality data for chr4:158Mb, and four for chr10:22Mb, and were excluded from
all subsequent analyses. Amplification was tested by agarose gel electrophoresis
followed by ethidium bromide staining, and approximate quantification was
performed from the band intensity. 39 out of 49 (~80%) long PCR primer pairs
worked well for 22 or more samples for chr4:158Mb, and 32 out of 42 (~75%)
for 20 or more samples for chr10:22Mb. The lab work of PCR enrichment was
done by colleague Qasim Ayub. The PCR products from each individual sample
were pooled, approximately equalizing the molar yield for the Illumina

sequencing paired end library construction.

In order to avoid artifacts in tests results due to the missing data in PCR gaps, we
used another set of data from a hybridization enrichment experiment based on a
Nimblegen custom array or solution pulldown approach!? on the same two
regions in a subset of samples (19 CHB) to fill the missing data. For chr4:158Mb
region, six gaps were filled:158,702,285-158,708,035, 158,770,931-158,783,816,
158,827,935-158,840,376, 158,880,521-158,900,211, 158,906,161-158,913,233
and 158,985,263-158,992,841. For chr10:22Mb region, six gaps were also filled:
22,624,537-22,630,034, 22,643,514-22,656,292, 22,662,169-22,675,644,
22,689,042-22,696,558, 22,761,012-22,769,435 and 22,801,106-22,813,376.

[llumina paired-end libraries of ~200 bp fragments were then constructed on
the enriched regions, and 37 bp from each end sequenced on an Illumina GAII107
platform, with one sample per lane. After filtering out duplicate reads, the
amount of mapped data ranged from 322 Mb to 572 Mb, leading to a mean
coverage per individual of ~500x to >1000x for the parts which PCR amplified

and ~ 35x to ~ 250x for pulldown regions. The paired-end sequence reads were
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mapped back to the target reference sequences or the whole genome by SSAHA2
and candidate SNPs were called by SSAHASNP#8 for the PCR amplified regions,
while MAQ#® and SAMtools'% were used for the data from the pulldown-
enriched regions. By comparing the SNP calls based on Illumina data from
CASP12 with the existing capillary sequence data and avoiding heterozygous Y
chromosome SNP calls, we set filtering criteria to filter out unreliable calls. For
the SSAHA?2 candidate SNPs from PCR enrichment, we filtered out all SNPs which
lay within the primers or SSAHASNP indel calls, had coverage less than 30, or
showed a ratio of the second-highest:total read depth of < 0.30:1 for a
heterozygous SNP call. We only consider SNPs since indel variants are not
reliably identified by this approach. For the MAQ and SAMtools candidate SNPs
from the pulldown enrichment, SNP calls were filtered individually based on
coverage, SNP score and mapping quality using criteria set based on the CASP12
and Y chromosome data. The quality of the filtered SNP data was assessed by
comparing the overlapping calls from our data with the HapMap2 genotypes
from the same individuals. There were 43 discrepancies out of 2,981
comparisons for the chr4:158Mb and 5 out of 857 for the chr10:22Mb region,
which suggested a low error rate for both regions (98.6% and 99.4%
concordance, respectively). To assess whether such error rates affect the quality
of subsequent statistical analyses, random errors were introduced into the
simulations described above, matching the error rates, and results were
compared with simulations without errors. This analysis showed that such error
rates would not affect the power of the sequence analyses (results shown in

Section 2.3.1).

We inferred haplotypes and occasional missing data using PHASE 2.137. Then the
neutrality tests and Nielsen et al.’s CLR test were performed on non-overlapping
10-20kb regions containing two or three PCR fragments chosen based on the size

of each PCR fragment and the SNP densities.

2.2.3 Bioinformatic analysis

All miRBase (Release 13) mature miRNA sequences were scanned against the

selected regions of the human genome using the MapMi algorithm10. This
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approach involves first scanning the regions for matches to mature miRNA
sequences; regions with matches to known miRNAs (allowing one mismatch)
were then excised and folded using RNAfold from the ViennaRNA package!19.
These candidate regions were scored and filtered according to how well they
fitted the stem-loop precursor structure common to miRNAs. We ran the
pipeline in stand-alone mode, using non-repeat masked genomic sequence for
increased sensitivity. The chr10:22Mb region had no significant hits for any
known miRNA; however, the chr4:158Mb region had two hits to the miR-548
family of miRNAs, discussed below. This analysis was done in collaboration with

José Afonso Guerra-Assuncdo from the European Bioinformatics Institute.

2.3 Results

2.3.1 Simulation of the power to detect and localize positive selection using

genotype-based and sequence-based tests

In order to understand whether sequencing data provide more power in
detecting and localizing selection signals, we started by comparing the power of
genotype-based and sequence-based analyses using simulations. We first
modeled the genotype-based tests mimicking those in the HapMap2 study, and in
particular, the selective events seen in the CHB+]PT by comparison with the YRI
population. To do this, we performed forward simulations under neutrality
using the YRI and CHB demographic models, and with selection coefficients of
0.001, 0.004, 0.007 and 0.01 using the CHB demographic model, as described in
section 2.2.1. Of the 1,000 simulations in each neutral and selected CHB set, there
were 16, 16, 233, 724 and 779, respectively, that met the XP-EHH filtering
criteria. These were combined into 16 significant XP-EHH results under
neutrality and 1,752 under a range of selective conditions that would reflect the
data that might be obtained from a population experiencing a variety of selective

pressures.

We next applied the sequence-based tests to the 16 neutral and 1,752 selected
datasets. There were 2 simulations among the 16 retained neutral ones that

showed at least one significant window for the combined p value (< 0.01), and 7
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for Nielsen et al.’s CLR. These numbers represent the false positive rates for the
two methods, and are significantly higher for the CLR (p = 0.048, Fisher exact
test). In the retained selected simulations, 84% (1,469 out of 1,752) for
combined p value and 85% (1,494 out of 1,752) for Nielsen et al.’s CLR showed
at least one significant window. Thus there is good power to detect this form of

selection using sequence-based tests.

To investigate the ability to localize the causal SNP using the sequence-based
tests, we first examined the test statistics averaged over all retained simulations.
The average values of both showed no pattern along the DNA in the neutral
simulations, but a strong peak centered on the window containing the selected
site in the selected set, with a gradual decrease on either side (Figure 2.2 A and
B). This indicates that, on average, the frequency spectrum-based neutrality
tests can correctly identify the location of the causal SNP, but that there is

considerable variation between simulations.

We therefore investigated this variation further by counting the occurrence of
the most significant signals in each window in different simulations. For the
combined p value, the most significant window lay within the 40 kb region (i.e.
+20 kb) surrounding the selected allele in 46% of the simulations, compared
with 68% for the CLR (Figure 2.2 C). These results show that Nielsen et al.’s CLR
performs better for localizing the selection signal, as previously reported’®.
Although the combined p value of Tajima’s D and Fay and Wu’s H and Nielsen et
al’s CLR have similar power for detecting selection (84% and 85%), we saw a
lower false positive rate on the combined p value but a better localization power
in Nielsen et al’s CLR. Therefore, we investigated the benefits of further
combining these signals. We tried using the combined p value to detect selection
and then the CLR to localize the signal. This approach did systematically increase
the accuracy of localization, although only by a small amount (Figure 2.2 D). We
also considered the subset of simulations where the combined p value and
Nielsen et al’s CLR signals lie within the same 10kb window. Although the
proportion is low (11.3%, or 198 out of 1,752 simulations), these might
represent a favorable situation with the best chance to localize the selection

signal. Indeed, this subset of simulations has about 90% chance to localize the
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selection to a 40kb region and 80% to 20kb. These results provide an overall
view of the power for localizing the signals in different scenarios and can guide

the search for the biological basis of the selection.
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Figure 2.2 Simulation results. A. Simulations were carried out under neutrality, and tests for
selection (-In combined p values for Tajima’s D and Fay and Wu’s H (top) or Nielsen et al.’s CLR
(bottom)) were calculated in non-overlapping 10 kb windows across 300 kb. Values of the test
were averaged over 1,000 independent simulations. No departures from neutrality were seen. B.
Simulations were carried out with selection (selection coefficient 0.007) and neutrality tests
applied as in A. Departures from neutrality are seen most strongly in the window containing the
selected SNP. C. The distribution of the top signal (lowest p value) in each simulation is shown
across the 300 kb region. D. Probability that the known selected variant is found at each distance
from the peak test value.

As mentioned above, there is ~1% error in the SNP calls from our sequencing
data. In order to evaluate the effect of these errors on our analyses, we added 1%
random base substitution errors to one of the datasets simulated with selection
(s = 0.007) and recalculated Tajima’s D and Fay and Wu’s H on the data with
errors. Signals were overall slightly lower, but the pattern of signals was not
affected (Figure 2.3). We therefore conclude that sequence errors at this level

would not significantly influence our conclusions.
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Figure 2.3 Test results on simulated data with 1% sequencing error rate versus no error.
Dots represent results with no error in the simulated data, and triangles represent results with
1% random substitution errors introduced in simulated data.

2.3.2 Detection and localization of positive selection signals in

experimental data

We re-sequenced two ~300 kb regions that had shown strong signals of positive
selection in the HapMap2 study in 25 (chr4:158Mb) or 24 (chr10:22Mb) CHB
individuals. The combined p value and Nielsen et al.’s CLR were calculated in
chunks spanning either two or three PCR fragments, and are plotted in Figure 2.4
A and B. In both cases, a single window carries the most significant signal from
each test: a combined p value of 0.00036 for chr4:158Mb, and 0.000015 for
chr10:22Mb, and corresponding CLR values of 47 and 62. The two windows are
located at 158,971,591-158,985,262 of chr4, and 22,755,918-22,776,116 of
chr10, with sizes of ~13 kb and ~20 kb, respectively. Based on the simulations,
this is a particularly favorable situation for localizing the selected variant, and
we have 80% confidence that the target of selection should lie in a 20 kb region

centered on these windows.
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Figure 2.4 Experimental results. These figures show localization of likely selection targets in
the chr4 and chr10 regions. A. -log e of combined p values from Tajima’s D and Fay and Wu's H
(top) and Nielsen et al’s CLR (bottom) calculated from re-sequencing data in windows
corresponding to two or three PCR fragments (10-20 kb). The most significant statistics are
shown in red, and fall into the same window overlap at ~158.98 Mb (blue highlight). B.
Corresponding analysis of the chr10:22Mb region, where the most significant signals again fall
into the same window, this time at ~22.78 Mb. C, D. Protein-coding genes from the Vega
annotation, non-coding RNA and miRNA genes, and relevant ENCODE chromatin modifications in
the two regions. E. Predicted miRNA in the chr4:22Mb target region. Two SNPs are present,
including a G>A at the end of the miRNA carried on the major haplotype (49/50 chromosomes,
selected in CHB) that may influence the strand forming the mature miRNA. F. H3K4mel
chromatin modifications indicating enhancer regions in GM12878 (second) and K562 (third)
cells, SNPs with high derived allele frequencies (fourth), predicted regulatory potential (fifth)
and 28 species conservation (bottom). Three high-frequency derived SNPs lie within candidate
enhancers in one or other of the cell lines, but high-frequency derived SNPs do not lie within
regions with high predicted regulatory potential or conservation.

2.3.3 Biological targets of selection

The final stage of our analysis was to search for possible biological targets of
selection. Such targets should most likely lie within the narrowed interval, and
carry a biologically relevant difference between the selected and non-selected
haplotypes. The 314 kb region on chromosome 4 consists entirely of intergenic
sequence, and the nearest annotated protein-coding gene is located more than

50 kb outside this region. No histone modifications indicative of promoters,
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insulators or enhancers were apparent in publically available data (Figure 2.4 C).
However, using the MapMi approachl?, we found two predicted microRNAs
(miRNAs) belonging to the mir-548 family (Figure 2.4 C). One of these lay far
from the selection signal but the other, hsa-miR-548c, lay at 158.982 Mb, within
the narrowed region (Figure 2.4 C). Strikingly, two SNPs are present within this
predicted miRNA and both show high derived-allele frequencies in the CHB
population. One of these SNPs lies within a loop in the predicted RNA and is not
predicted to have functional consequences. However, the other is the first
nucleotide of the miRNA precursor and could therefore determine which strand
is processed to form the mature miRNA and consequently change the set of

target genes (Figure 2.4 E).

The chromosome 10 region contains three annotated protein-coding genes,
COMMD3, BMI1 and SPAG6, and no miRNA genes (Figure 2.4 D). SPAG6
transcripts (e.g. SPAG6-002, OTTHUMTO00000047185:

http://vega.sanger.ac.uk/Homo_sapiens/index.html) extend into the narrowed

region (Figure 2.4 D). ChIP-seq experiments reveal extensive chromatin
modification within the 263 kb region, including H3K4me1, H3K4me2, H3K4me3,
H3K9ac, H327me3 and H3K27ac (http://genome.ucsc.edu/ ENCODE Histone

Mods, Broad ChIP-seq; Figure 2.4 D), as would be expected for a region
containing several protein-coding genes. The narrowed region contains two
peaks of H3K4me1, which could indicate an enhancer!!l. Thus SPAG6 provides a
good candidate on the basis of its location relative to the signal of selection.
Although SPAG6 contains a relatively high-frequency derived non-synonymous
SNP (rs7074847) in the YRI®, there are no non-synonymous differences
between the selected and non-selected CHB haplotypes, suggesting that selection
is more likely to be acting on an aspect of transcription than on a change in the

protein sequence.

In conclusion, based on our analyses, possible targets for selection can be

identified in both regions and there is strong functional evidence for selection.
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2.4 Discussion

2.4.1 Power of detection and localization

The first question we addressed was whether or not candidate regions identified
in genome scans for positive selection using LD-based tests on genotype data,
such as that performed by the HapMap2 project, would show supporting
evidence for selection when frequency spectrum-based neutrality tests were
applied to re-sequencing data. Such tests are sometimes considered most
suitable for detecting complete sweeps, in contrast to the partial sweeps
detected by LD-based methods, but are also highly effective in detecting partial
sweeps!12. The answer to this question, from both our simulations and the two

{

experimental examples investigated, was a clear “yes”. Significant departures
from neutrality (combined p value from Tajima’s D and Fay and Wu’s H) were
seen in 84% of the 1,752 simulations that passed the XP-EHH threshold,
contrasted with just 2 out of the 16 neutral simulations that by chance passed
(not significantly different from 0 out of 16, Fisher exact test). A similar result
was seen with Nielsen et al.’s CLR, although the false positive rate was higher.
This correspondence is unsurprising, given the similar underlying basis for the
two tests, but there was value in combining the two (see Section 2.2). In the two

regions investigated experimentally, significant values were seen in both with all

the tests applied.

The second question was the extent to which targets of selection could be
localized more precisely when using re-sequencing data. From the simulations,
we found that re-sequencing data do provide valuable additional information
about the localization of selection targets. Higher SNP density and the presence
of more rare variants make a higher resolution of signals possible. One of the
disadvantages of LD-based test is that they detect large LD blocks, which are
often several hundred kb in length. Although some frequency spectrum-based
tests can also be used on genotype data, for example Nielsen et al.’s CLR, the
window size often has to be relatively large because information from many
SNPs needs to be combined to get enough power. We applied Nielsen et al.’s CLR

using HapMap?2 genotype data, and for chr4:158Mb, it detected a signal of
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selection localized to ~40 kb, while for the chr10:22Mb region, where the
HapMap2 SNP density was high in the critical interval, the selected region was
narrowed down to a similar length to the sequencing data (Figure 2.5). A method
for combining multiple signals derived from genotype data has been described!13,
which provides a median localization to a 55 kb interval. This method identified
a chr4:158Mb interval spanning ~60kb (158,862,019-158,921,890, with top SNP
at 158,904,521), but failed to find any significant signal at chr10:22Mb®8 (Figure
2.5). We repeated the CMS analysis using the HapMap2 genotype data and
localized the chr4:158Mb signal to a similar ~58kb interval, although with a
different peak SNP (158,862,019- 158,920,326, with top SNP at 158,920,326),
and also found no signal in the chr10:22Mb interval (Figure 2.5 and Figure 2.6).
In contrast, re-sequencing followed by the application of the tests used here

provided localization to a < 20 kb interval in both cases.

HapMap?2 + peak SNP (red bar) HapMap2 + peak SNP (red bar)
I I EEEEEEE 1 [ Jrmmmmmmmm e
Tajima’s D plus Fay and Wu’'s H combined p value Tajima’s D plus Fay and Wu’s H combined p value
................................. N e
Nielsen et al.'s CLR on sequence data Nielsen et al.'s CLR on sequence data
................................. O S
Nielsen et al.'s CLR on HapMap2 data Nielsen et al.’s CLR on HapMap2 data
.................................................................................. e —
Grossman et al.'s CMS + peak SNP (red bar) Grossman et al's CMS + peak SNP (red bar)
------------ —
CMS (this work) + peak SNP (red bar) CMS (this work) + peak SNP (red bar)
----------- e
158.80 1 581.86 1 58!92 158!98 1 59!04 159.10 22.60 22{66 22!72 22!78 22!84 22.90
Chromosome 4 coordinates (Mb) Chromosome 10 coordinates (Mb)

Figure 2.5 Comparison of different approaches of signal localization. These figures show
localization of the signal of selection within the chr4 and chrl0 regions using different
approaches. The two starting regions are shown at the top (Sabeti et al. 2007), localizations using
sequence data (grey bars) or HapMap2 genotype data (white bars) by this study in the middle,
and the localization by the CMS statistic (Grossman et al. 2010 or this work) at the bottom.
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Figure 2.6 CMS results on both regions. Recombination intensities are shown as dashed lines.
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2.4.2 Functional targets of selection

The final question we set out to address was whether increased insights into the
possible biological basis for the selection could be obtained. Due to our inability
to predict the phenotypic consequences of most DNA variants, particularly when
these lie outside protein-coding regions, it is often still difficult to identify the
causal variant. Nevertheless, the narrowed region provides the best starting
point for further investigation. It is, in principle, possible that variants in a region
could be acting on distant genes, but this in practice seems rare: a study of
human eQTLs, for example, found that most lie either within or close to the genes
they affect, with only 5% lying > 20 kb away!!4. On this basis, we therefore focus

on targets close to the narrowed regions in the following discussion.

For chr4:158Mb, the above considerations and the lack of any annotated protein-
coding genes in the vicinity make a direct effect on a protein-coding gene
unlikely. Predicted miRNA hsa-miR-548c, however, provides an intriguing
candidate. Members of the hsa-miR-548 family are derived from the
transposable element Madel, present in multiple (~30) copies in the human
genomell>, Madel elements are found only in primates, and hsa-miR-548
sequences have been documented only in the human, chimpanzee and macaque
genomes, where they appear to be evolving rapidly. Since miRNAs function as
post-transcriptional regulators by binding to partially complementary target
sites in the 3’ untranslated regions of mRNAs and inhibiting their expression, a
change in the sequence of a mature miRNA could influence the expression of a
large number of genes, and a change in the strand present in the miRNA could
have even greater regulatory effects. More than 3,500 genes have been listed as
predicted hsa-miR-548 targets, enriched in functions such as cell proliferation??>.
We can thus speculate that a variant hsa-miR-548c might have been selected
because of altered target gene regulation, but the large number of hsa-miR-548
family members and potential targets makes it difficult to formulate or test more
precise predictions. Nevertheless, a link to changes in gene regulation fits well
with general thinking about the importance of regulatory mutations in human
evolution!!® and the inference of recent positive selection acting on a miRNA-

rich region on chromosome 14 devoid of annotated protein-coding genes17 .
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For chr10:22Mb, similar considerations lead to the suggestion that SPAG6 is the
most likely target of selection, and a change in the level, timing or location of its
expression as the most likely mechanism. In support of this possibility, it was
notable that a SPAG6 transcription end site lay within the narrowed region, and
Veyrieras et al.11* had reported a strong enrichment of eQTLs in the 250 bp just
upstream of the transcription end site. However, in the SPAG6 data, the closest
SNPs were 2,055 bp upstream and 843 bp downstream of the transcription end
site. In contrast, two H3K4me1 signals indicative of enhancers are located within
the narrowed region, and three high-frequency derived SNPs (rs16922285 at
22,773,002, rs11012996 at 22,773,902 and rs11012997 at 22,774,094) specific
to the selected haplotype overlap with them (Figure 2.4 F). An altered enhancer
activity thus provides the most plausible biological mechanism. SPAG6 is a
component of sperm!18, and mouse knockout models have been investigated:
50% of Spag6~- mice died within eight weeks due to hydrocephalus (fluid on the
brain); males surviving to maturity showed abnormalities of sperm structure
and mobility and were infertile!1°. Heterozygous Spag6*/- animals showed a
much milder phenotype and were fertile, but their sperm swam more slowly,
suggesting that a reduced level of SPAG6 protein can have a detectable effect on
the sperm phenotype. The hydrocephalus phenotype, however, points towards a
wider role of the protein in the function of cilia, and thus other potential modes
of selection. Nevertheless, the best candidate remains an effect on reproduction,
which would be consistent with both the inference of recent positive selection on
another sperm protein gene, SPAG4, in the CHB among other populations®’, and
the high frequency with which genes linked to reproduction are found more

generally in surveys of positive selection®367.

There are two other protein-coding genes in the interval, both > 100 kb from the
strongest selection signal. Little is known about COMMD3 itself, but diverse
functions have been ascribed to other COMMD family members, including copper
metabolism and regulation of the activity of the transcription factor NF-kB and
cell proliferation, perhaps through the ubiquitin pathway!2%. BMI1, in contrast,
has been studied extensively. It is a polycomb protein, involved in DNA repair,

chromatin remodeling and stem cell renewal, and its inappropriate over-
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expression can lead to tumor formation!?1-123, Knockout mice are viable and
homozygotes show hematopoietic, skeletal and neurological abnormalities, but
phenotypic effects in the heterozygotes were not noted!?4. In humans, a cysteine
to tyrosine substitution at position 18 leads to substantially lower levels of BMI1
protein, and is present in the general population, including in the YRI and CEU
(but not CHB) HapMap samples!25. Since increased expression of BMI1 leads to
cancer, and a decreased expression phenotype is present in HapMap populations
but has not been positively selected, both COMMD3 and BMI1 seem less strong
candidates than SPAG6 for the target of chr10:22Mb selection.

2.4.3 Conclusion

From these examples, we can conclude that the approach used here, of re-
sequencing large target regions, refining the target location and making
inferences about the biology of the selection events, is fruitful. However, it could
be improved in several ways. Re-sequencing technology is still imperfect and
data quality needs to be improved. This study required a combination of two
enrichment strategies, PCR and pulldown, to generate adequate coverage, and
such intensive effort is impractical for large-scale studies. Most urgently,
however, better statistics for localizing the target of selection using re-
sequencing are needed, and improved methods for interpreting the biological
consequences of DNA variants discovered are especially needed. But even with
the present tools, specific topics to follow up experimentally can be suggested,
e.g. comparison of sperm mobility and other sperm characteristics between
carriers of selected and non-selected haplotypes in the chr10:22Mb region. More
generally, the availability of population-scale re-sequencing data from both the
increasing number of personal genome projects'?¢ and projects such as the 1000
Genomes Project*® will make the approach used here applicable across the

genome.
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3 A survey of positively selected regions using 1000

Genomes Project low-coverage Pilot data

3.1 Introduction

Whole genome sequencing of samples from multiple human populations
provides powerful resources for studying evolution at the genomic level in an
unbiased, holistic manner. Compared to genotyping, where only known variants,
most of which have high or moderate frequencies in the population, are analyzed,
sequencing reveals the whole set of variants in a particular genome without any
ascertainment bias. This is beneficial in at least two aspects. One is the presence
of rare variants in the data. In many neutrality tests, genetic diversity and allele
frequency spectra are measured, which play important roles in the detection of
selective sweeps. In genotype data, the majority of those rare variants
(frequency less than 5%) are missing, which greatly reduces the power to detect
selective sweeps that have nearly or already completed, where there may be an
excess of rare alleles. The other aspect is the absence of bias in variant detection.
Genotyping only detects a set of variants that are determined prior to the assay,
regardless of what other variants may be present in the samples. This introduces
bias, especially when the frequency spectrum needs to be measured in different
populations. For example, if we use a certain SNP chip to measure the
differentiation between populations, although we can measure the frequency
differences of the SNPs included in this assay, we may miss a subset of
population-specific SNPs or highly differentiated SNPs in certain population(s),
depending on which population(s) the design of the SNP chip is based on. In this
case, the measure of population differentiation may be highly biased. Sequencing
data, however, can detect all these variants and thus provide the foundation of

an unbiased measure of population differentiation.

The 1000 Genomes Project is an excellent example of such resources. The Pilot 1
(low-coverage) project sequenced 179 individuals from four populations: CEU

(Utah residents with Northern and Western European ancestry from the CEPH
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collection), CHB+JPT (Chinese Han in Beijing, China and Japanese in Tokyo,
Japan) and YRI (Yoruba in Ibadan, Nigeria), with the average coverage of 2-4x40.
15 million SNPs were identified in the Pilot Project along with other types of
genetic polymorphism, which greatly enriched the database of human genomic
variation. As demonstrated in Chapter 2, a genome-wide survey of positive
selection using frequency-spectrum based methods on such sequencing data
would provide deeper insights into the extent to which positive selection has
shaped modern human genomic variation, as well as the biological targets that

may be selected during recent modern human evolutionary history.

In this chapter, neutral and positively selected simulations were performed to
gauge the level of significance, as well as provide insights into the power of
localizing selection targets, and how recombination affects the signals. A
genome-wide scan of positive selection was then carried out on the 1000
Genomes low-coverage Pilot data, and bioinformatic analyses on both the
general features of candidate genes/regions and the possible functional targets
of selection in some strong candidates were performed. The data were generated
in multiple centers as part of the 1000 Genomes Project. All the simulations,
statistical calculations and data analyses in this chapter were done by the author
of this thesis, with help from some participants in the 1000 Genomes Project. An
early version of the results were published as part of the 1000 Genomes Project
Pilot paper, and manuscript describing this work in more detail is under

preparation.

3.2 Materials and Methods

3.2.1 Simulations

We first carried out coalescent simulations using the msHOT packagel?’ to
generate 1Mb long neutral haplotypes in African, European and Asian ancestral
populations 2,000 generations ago, based on the best-fit demographic models?6
for the three populations. Then these simulated haplotypes were used as seed
haplotypes for the forward simulations using mpop®4, as described in section
2.2.1. In forward simulations, one neutral scenario (1,000 independent

simulations) and sixteen selective sweep scenarios were simulated in each
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population. Selection coefficients of 0.001, 0.004, 0.007 and 0.01, and the age of
selective sweeps of 500 generations, 1,000 generations, 1,500 generations and
2,000 generations were used in the selective sweep scenarios, with 250
simulations for every combination of these two parameters. One allele with an
initial frequency of 0.0006 under selection was added in the middle of the
haplotypes at the starting time point of the selective sweep. The genome average
mutation rate of 1.0 x 108 per nucleotide per generation was used in the
simulations. In addition, to mimic the real patterns of recombination in the
genome, we used the HapMap recombination map3° to generate a recombination
hotspot map, and regions of 1 Mb were drawn randomly from the genome and
the recombination hotspots they contained were assigned to the simulated
regions. For the purpose of comparison and understanding of the effects of
recombination hotspots on the signals of selection, we also did another set of
simulations with all parameters being the same, except that a strong
recombination hotspot (2,000-fold greater than the background recombination
rate) with 0 kb, 10 kb, 20 kb, 30 kb or 40 kb distance from the selected allele was
added into the simulated haplotypes. The rest of demographic parameters were
as in Schaffner et al.’s best-fit demographic model for the European population?®.
For computational efficiency, we re-scaled the parameters by a factor of 5, as
described in section 2.2.1. 120 chromosomes were sampled from each
simulation, to match the sample sizes of 1000 Genomes Project low-coverage

Pilot data (see Appendix C for parameters and command lines).

3.2.2 Neutrality tests on simulated data

In order to mimic the real situation of 1000 Genomes low-coverage Pilot data,
where rare SNPs are still under-ascertained, we filtered the simulated data by
matching the proportion of SNPs in each derived allele frequency bin (bin size
0.1) of the simulated data to the 1000 Genomes low-coverage Pilot data in each
population (CEU, CHB+JPT and YRI). Then three frequency-spectrum based tests,
Tajima’s D71, Fay and Wu’s H? and Nielsen’s CLR7¢ were applied to the simulated
data in 10 kb non-overlapping windows across the simulated regions. P values of
each test were calculated based on the distribution of test values of 1000 neutral

simulations in each population. In order to obtain a single score representing the
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signals of all three tests, we calculated the correlations between the p values of
every two tests in neutral simulations to see whether these tests are
independent from each other. Results showed that the absolute value of the
correlation of every pair of tests was less than 0.2. Therefore, we treated these
tests as independent, and combined the p values of each test on the same

window using Fisher’s method104.

3.2.3 Sensitivity and specificity analysis on simulated data

In order to understand the relationships between false positive rate, false
negative rate and false discovery rate of our combined tests under different p
value significance thresholds, we calculated the above rates under seven
thresholds, with 10-fold decrease for each from 4x10-3 to 4x10-9. We obtained
the false positive rate by calculating the percentage of neutral simulations that
were detected as under positive selection. The false negative rates were obtained
by calculating the percentage of 1,000 positive selection simulations with a
selection coefficient of either 0.007 or 0.01, and the age of sweep of either 1,500
or 2,000 generations. We next counted the number of candidate regions from the
1000 Genomes low-coverage Pilot data across the genome under each
significance threshold, and then calculated the false discovery rate based on the
number of false positive regions, which was calculated by multiplying the false
positive rate with the number of 300-kb regions in our empirical data, and
divided by the total number of detected positively selected regions across the

whole genome in each population.

3.2.4 Neutrality tests on 1000 Genomes low-coverage Pilot data

We segmented the whole-genome SNP data from CHB+]JPT, CEU and YRI
populations of 1000 Genomes low-coverage Pilot data into non-overlapping
windows with a length of ~10 kb, where both the starting and ending point of
each window were SNP positions. Windows that lay in regions with mapping
gaps, low mapping quality or heavily filtered SNPs, were excluded (Table 3.1).
The same neutrality tests were applied on these windows in each population as
for simulations, and p values were obtained using the same approach as for the

simulated data.
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Table 3.1 Total number of windows and total length scanned in each population.

Population  Total windows  Total length (bp)

CEU 252,348 2,390,406,461
CHB+JPT 247,432 2,302,196,289
YRI 255,289 2,450,357,355

3.2.5 Identification of candidate regions and genes

After the genome-wide combined p values of our neutrality tests were obtained,
we needed to decide which threshold of significance to use. As we aimed to get a
confident list of candidate regions, we used the stringent Bonferroni
correction!?8. We divided 0.01 by the total number of windows that we applied
the tests to throughout the whole genome, which yielded a threshold of ~4x10-8
(-loge value 17.0). We used this as a cutoff to identify significant windows in each
population. Adjacent significant windows that are less than 150 kb apart were
treated as likely to originate from the same selective sweep, and combined into a

single candidate region.

As our simulations showed that there is ~75% chance that the selection target
falls into the 100 kb region surrounding the peak signal, we identified candidate
genes from the ~100 kb region around the most significant window in each
candidate region. In regions where multiple genes were present, we treated the
gene closest to the peak signal as the candidate gene. In a few cases where two
genes either overlap with each other or have the same distance from the peak

signal, we retained both of them as candidate genes for that region.

We also looked at positions of peak signals relative to the candidate protein-
coding genes. We used three categories of positions: upstream of the gene,
within the gene, and downstream of the gene. First of all, to determine which
side of the gene is upstream or downstream, we obtained information about
whether the gene is on the forward strand or reverse strand of the DNA
sequence for each candidate protein-coding gene. Then we counted the number
of peak windows falling into each category of position. For those peaks that

cover more than one position, we used the proportion of the window in each
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position as the count. For example, if 40% of the peak window is in the upstream
sequence, and the other 60% is in the gene, we count 0.4 into “upstream” and 0.6

into “within gene” for that candidate.

3.2.6 Comparison with previous studies and bioinformatic analyses

We compared our lists of positively selected regions or genes with previous
genome-wide scans of positive selection, as well as with functional annotations.
We obtained annotations of synonymous and non-synonymous changes in the
1000 Genomes Pilot data. In order to see whether there was any enrichment or
depletion of overlaps between our candidate regions/genes and those data sets
being compared with, we randomly picked the same number of regions from the
low-coverage Pilot data accessible genome matching the lengths of the candidate
regions in each population, and counted how many of them overlap with regions
from other studies. We did this 1000 times independently and obtained a
distribution of number of overlaps in each comparison. Then we calculated p
values of the enrichments of all the compared scenarios in our candidate
positively selected region or gene lists, based on the percentile of the
distribution of overlaps in random data sets that our candidate list falls into. In
some of the comparisons and other analyses, we also looked at derived allele
frequencies (DAF) of the variants. The ancestral alleles were identified by the
1000 Genomes Project from analysis on the sequences of human (NCBI36),
chimpanzee (CHIMP2.1), orangutan (PPYG2) and rhesus macaque (MMUL_1)
genomes™ (The 1000 Genomes Project Consortium, Nature 2010, supplementary

information 13.1).

In order to further understand the relationship between the functional
consequences of non-synonymous changes and positive selection, we obtained
the Condel scores!?? of high DAF (= 0.5) non-synonymous variants in the 1000
Genomes low-coverage Pilot data computed in Ensembl release 65 by combining
the SIFT130 and Polyphen213! scores. Non-synonymous variants with higher
Condel scores are more likely to be deleterious. In order to investigate whether
Condel scores of high DAF variants in positively selected genes tend to be higher

than those in the random genes, we performed a Mann-Whitney test!3? on
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Condel scores of high DAF non-synonymous variants in the candidate gene list
versus those in the 1000 independent random sets of matched genes, using the
built-in function in the R package. P values of each comparison between the
candidate gene Condel scores and the random gene Condel scores were obtained

from the test.

We also investigated non-coding functional variants within our candidate
regions. We first obtained lists of variants with a high DAF (= 0.5) that are within
one of four types of non-coding functional elements: UTR, non-coding RNA,
enhancer, and transcription factor (TF) binding motif. The non-coding functional
annotation was obtained from the 1000 Genomes Project Phase 1 and the
ENCODE project®’. For the TF binding motif variants, we further categorized
them into two types: motif gain and motif loss. If the derived allele of a SNP has a
higher frequency in the position weight matrix (PWM) of the bound motif than
the ancestral allele, we call it motif gain. Likewise, if the derived allele of a SNP
has a lower frequency in the PWM of the bound motif than the ancestral allele,
we call it motif loss!33. We then counted the number of high DAF variants within
each of the five categories within our candidate regions, as well as within 1000
sets of random matched regions. We plotted the distribution of number of
variants in each category in the random regions, in order to see if any of them

was enriched by any of the functional elements.

We then used the online gene annotation clustering tool DAVID134 to categorize
our lists of candidate protein coding genes into functional clusters, and obtained
Bonferroni-corrected p values of enrichments in each cluster from DAVID. We
also identified genome-wide significant variants from Genome Wide Association
Studies (GWAS) that fall into our candidate regions. The list of GWAS significant
variants were obtained from the NHGRI “A Catalog of Published Genome-Wide

Association Studies!3>” (http://www.genome.gov/gwastudies/).
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3.3 Results from simulations

3.3.1 Sensitivity and specificity of selective sweep detection using low-

coverage sequencing data

Balancing the false positive and false negative rates in the identification of
statistical significance is a crucial step in a large-scale global survey of statistical
tests. As mentioned above, we chose to use the most stringent p value cutoff
(Bonferroni correction, p = 4x10-8) to identify significant windows. This, of
course, sacrifices the sensitivity of detection. An alternative measure of the p
value significance threshold is the false discovery rate (FDR). Since we are
applying the statistical tests a large number of times, even a very small false
positive rate can result in a large FDR. To measure this, we counted the number
of candidate regions under different p value thresholds, and calculated FDRs
accordingly. We found that even if the false positive rate is 0.6%, the FDR is still
as high as 4%. In order to get a highly confident list of candidate regions, we
would like the FDR to be less than 5%. A Bonferroni-corrected threshold of 4x10-
8gives us 0% and 3% FDR in CEU and YRI, respectively (YRI, Table 3.2). Although
in this case, we were only able to detect ~20% of the moderate-strength positive
selection events, we are confident that the list of candidates we picked out is
mostly real.

Table 3.2 Sensitivity and specificity under different p value significance thresholds in the
YRI population.

P value significance

threshold False positive rate False negative rate False discovery rate
4E-03 30.0% 27.3% 49.2%
4E-04 11.6% 44.0% 25.3%
4E-05 2.5% 56.7% 9.4%
4E-06 0.6% 66.1% 4.0%
4E-07 0.3% 73.9% 3.8%
4E-08 0.1% 79.4% 3.0%
4E-09 0.0% 85.0% 0.0%
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3.3.2 Power of localizing positive selection targets

We found that in our simulations, although on average the most significant
window was the one that contains the selected allele (Figure 3.1), in each
individual simulation with positive selection, the peak signal can fall into any
window across the 300 kb region with the selected allele in the middle. We found
that in our selection simulations in YRI, 79% of the time the most significant
signal is less than 50 kb away from the window with the selected allele, and this
percentage in CEU is 72% (Figure 3.2). Based on this, in our candidate regions in
the empirical data, we have more than 70% confidence that the selection target

is within 50 kb distance from the peak signal.

3.3.3 Effects of recombination hotspots on localization of selection target

Recombination during the progress of a selective sweep can result in the
breakdown of the selected haplotype, which thus disrupts the pattern of genomic
variants in the selected region. In order to understand the effects of the position
of recombination hotspots on the position of peak signals relative to the
positively selected allele, we performed five sets of simulations with s = 0.01, age
of sweep = 1500 generations, and in each set, added an extremely strong
recombination hotspot (2000-fold higher than background rate) with 0-5 kb, 10
kb, 20 kb, 30 kb and 40 kb distance from the selected allele, respectively. Our
results showed that, in general, the closer the recombination hotspot to the
selected allele, the more scattered the distribution of peak signals will be. When
the recombination hotspot is 40 kb or more away from the selected allele, the
effect on the localization power almost vanished. Not surprisingly, when there is
a strong recombination hotspot at one side close to the selected allele, the peak
signal tends to be on the other side of the selected allele (Figure 3.3). However,
in most cases, the peak signal is still most likely to be within 50 kb distance from
the selected allele. Moreover, in these simulations, we used an extremely strong
recombination hotspot, in order to make sure that recombination happens in
most of our simulated regions within the simulated period of time. In reality,
most recombination hotspots are much more moderate, thus the effects may not
be as dramatic. Therefore, when identifying selection target, choosing to use the

region within 50 kb distance from the peak signal as the target is still reasonable
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even if recombination hotspots are present. Having said that, it is still sensible to
be more cautious about the location of the putative selection target when there is

a recombination hotspot near the peak signal.
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Figure 3.1 Averaged scores in neutral and positively selected simulations. The top plot
shows average scores of each 10-kb window across the simulated neutral regions; the bottom
plot shows the same but in simulated regions with selection. The red dashed line shows the
position of the selected allele.
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Figure 3.2 Distribution of peak signals across the simulated regions with selection. Each
bar shows the percentage of peak signals falling in the particular window. The red dashed line
shows the position of selected allele.
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Figure 3.3 Distribution of peak signals in simulations with single strong recombination
hotspots. Each plot shows the distribution of peak signals under the scenario with fixed distance
between the selected allele and the recombination hotspot. The blue dashed line marks position
of the recombination hotspot, and the red dashed line marks position of the selected allele. X-axis
is the window number across the simulated region, and Y-axis is the percentage of peaks falling
into each window.

3.4 Results from 1000 Genomes Project low-coverage Pilot data

3.4.1 Genome-wide scan on 1000 Genomes low coverage data

We applied the same tests and criteria to the 1000 Genomes Project low-
coverage Pilot sequencing data in ~10-kb windows across the whole genome in
CEU, CHB+JPT and YRI populations. We identified 477, 137 and 290 candidate
regions in the three populations, respectively. In all populations, most regions
only have one significant window, but CEU have more regions with larger
numbers of significant windows than the other two populations (Figure 3.4).
Among these candidate regions, 65%, 59% and 64% (308, 81 and 187 regions)

in each of the three populations, respectively, overlap with genes (including
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pseudogenes and non-coding RNAs) within the ~100 kb region around the peak
signal, and among these, 258, 66 and 153 regions overlap with protein-coding
genes in each population, respectively. The candidate regions are highly enriched
with genes, when compared with that of randomly chosen regions across the
genome (p < 0.001). They are also highly enriched in protein-coding genes
compared to random regions (p < 0.001). Some candidate regions overlap with
multiple genes, and as we believe that each candidate region should only have
one selection target, we chose the gene(s) closest to the peak window as the
candidate gene(s). We thus identified 275, 69 and 160 protein-coding genes that
may have undergone positive selection in CEU, CHB+JPT and YRI populations,
respectively (Table 3.3; Appendix D, candidate regions and protein-coding genes
in each population). In a few cases, we identified two candidate genes in one
region, either because these two genes have the same distance from the peak
signal, or because these two genes overlap with each other. We then counted the
number of peak signals at upstream to the candidate gene, within the candidate
gene, or downstream of the candidate gene. We found that in all three
populations, the biggest proportion of peaks is within the candidate genes,

compared to upstream or downstream of the candidate genes (Figure 3.5).

Table 3.3 Number of candidate regions and genes in each population.

CEU CHB+JPT YRI

Candidate regions 477 137 290
Candidate coding genes 275 69 160
Candidate regions with non-coding genes 120 35 89
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3.4.2 Comparison of candidate regions with previous studies

We compared our set of candidate regions with the list of 722 positively selected
regions identified by at least two previous studies in Akey’s review100. We found
100, 42 and 37 regions from those 722 regions that overlap with our list of
candidate regions in CEU, CHB+JPT and YRI populations, respectively.
Collectively there are 153 regions overlapping with our candidates (Appendix E).
This is a high enrichment compared with randomly chosen regions from the
genome (p << 0.001). Interestingly, we also found that within the candidate
regions that overlap with Akey’s list, a larger proportion was found to have
evidence of positive selection in three or more previous studies (Figure 3.6). If
we make a fair assumption that the more previous studies that have confirmed
the candidate region, the more reliable the region is, then our list may represent

a better set of candidate positively selected regions than the collection in Akey’s

review.
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Figure 3.6 Overlap of our candidate regions with Akey’s review. This plot shows the
distribution of number of previous scans showing evidence of positive selection in all the
candidate regions in Akey’s review versus those overlap with our candidate regions.

3.4.3 Analysis of functional variants in candidate regions or genes

We then investigated whether or not our candidate genes were enriched with

any particular type of functional variants. We looked at the overlap of our

85



candidate protein-coding genes with the synonymous and non-synonymous
changes in 1000 Genomes Project low-coverage Pilot data*?. We found that the
percentage of non-synonymous changes with high derived-allele frequencies
(DAF = 0.5) overlapping with our candidate selected genes in CEU, CHB+]JPT and
YRI populations was 2.7%, 1.1% and 1.8%, respectively, while the percentage of
synonymous changes with high DAF overlapping with our candidate genes is
3.0%, 0.8% and 1.4% in the three populations respectively. Interestingly, non-
synonymous variants were enriched in all three populations (p = 0.005, 0.004,
0.001 in CEU, CHB+JPT and YRI, respectively), while in CEU and YRI populations,
synonymous changes were also enriched (p < 0.001, p = 0.005, respectively)
(Figure 3.7 A and B). In order to look further at the relationship between
functional consequences of the non-synonymous changes and positive selection,
we performed a Mann-Whitney test on Condel scores of high DAF (= 0.5)
variants in our candidate genes versus the 1,000 random gene sets, and obtained
1,000 p values in each population. If the Condel scores in candidate genes are
significantly higher, we should find a more-than-expected number of small p
values in the distribution of the 1000 Mann-Whitney p values. However, our
results showed that the distributions of p values are not skewed towards the
lower end in all populations (Figure 3.8). This indicates that candidate genes
may not be enriched in deleterious non-synonymous variants. It is worth noting
that here “deleterious” does not necessarily mean “harmful” to the individual; it
means that the variant can alter the structure and/or function of the protein that
the gene encodes, and the impact on the individual can be either beneficial or
harmful. Those deleterious variants with high frequencies in the populations,
however, are highly likely to have some important functional impact and are

thus worth further investigation.
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Figure 3.7 Synonymous and non-synonymous variants in candidate regions. These box
plots show the distributions of the number of synonymous (A) or non-synonymous (B) changes
in 1,000 sets of random genes that match the candidate genes. The upper and lower boundaries
of the boxes show the 75t and 25t percentile, while the upper and lower lines show 1.5 times
the IQR (interquartile range). The circles at each end of the box plots are data points that lie
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We performed Gene Ontology clustering analysis on our candidate protein-
coding genes in each population. Candidate positively selected protein-coding
genes in the CEU population are highly enriched in proteins related to cell
adhesion, signaling proteins and proteins with Ig-like C2-type 3 domain.
Candidate protein-coding genes in YRI population are enriched in proteins with
N-linked glycosylation sites, RhoGEF domains, and proteins involved in
glutamate receptor activity (Table 3.4; see Appendix F for candidate genes
within each enriched functional cluster). Perhaps due to the small number of
candidate genes in the CHB+JPT population, there were no enriched functional
clusters detected. Although functional clusters of candidate genes in each
population are slightly different, they share some important similarities in terms
of biological processes that they are involved in. All these enriched functional
annotation clusters are involved in extracellular signal transduction and
extracellular activities. More specifically, they are involved in the following three
types of biological function: (1) Neurotransmission and synaptic plasticity, which
are essential for learning and memory; (2) cell adhesion and migration, which
plays important roles in the multicellular structure during early development,
signal transduction and protein adsorption; and (3) immunological responses,
which play an essential role in fighting with pathogens. These three areas are
believed to play important roles in modern human evolution, thus it makes sense
that they are highly enriched in genes that have undergone positive selection in

the history of modern humans.

Apart from protein-coding genes, positive selection may also act on other
functional elements in the genome. In order to investigate whether there is any
enrichment of non-coding functional elements, we obtained annotation of
variants within UTRs, non-coding RNAs, enhancers, and TF motif gains and
losses. We calculated the distributions of number of such variants with higher
than or equal to 50% DAF in the 1000 Genomes low-coverage Pilot data in each
population in 1,000 sets of random regions matching our candidate regions, and
looked at where the corresponding number in our candidate regions fall into
these distributions. We found no significant enrichment of any of the five types

of non-coding functional variants in our candidate regions (Figure 3.9). There
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are three possible explanations for the lack of enrichment of non-coding
functional variants. One is that selection on these regulatory elements might
have been weaker and subtler in general, thus we were only able to identify a
small proportion of them, which may not be representative of the whole set of
positively selected non-coding functional elements. The second one is that our
annotation of non-coding functional elements in the human genome has been
very limited, in terms of both completeness and accuracy. The third one is that
we did not categorize these functional elements based on their actual biological
functions or processes. Positive selection may act on all types of non-coding
functional elements, but favor certain types of biological function. However, due
to our very limited understanding of the actual functions of those elements, we

were unable to detect the enrichment.

Table 3.4 Enrichments of functional clusters in the CEU and YRI populations.

CEU
Functional cluster No. of genes Bonferroni p-value
Cell adhesion 27 0.001
Signal 74 0.002
Ig-like C2-type 3 domain 12 0.001
YRI
Functional cluster No. of genes Bonferroni p-value
N-linked glycosylation site 60 0.0007
RhoGEF domain 6 0.01
glutamate receptor activity 5 0.04

We then investigated published significant variants in Genome Wide Association
Studies (GWAS) that fall into our candidate regions. We collected all the GWAS
significant variants (p < 5x108) and identified those that are within our
candidate regions in each population (Table 3.5). We found that a large number
of HLA variants on chromosome 6 fell into our candidate regions in the YRI
population, along with some other variants associated with infectious,

autoimmune or inflammatory diseases. In the CEU population, skin/hair/eye
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Figure 3.9 Non-coding functional variants in candidate regions. These box plots show the
distributions of the number of UTR (A), non-coding RNA (B), enhancer (C), TF motif gain (D) and
loss (E) variants in 1000 sets of random regions that match the candidate regions. The red dots
are corresponding values of the candidate regions.

pigmentation variants overlap with our candidate regions. These reflect our

general understanding of what types of traits are likely to be positively selected

90



in each continental population. However, we were not able to perform
enrichment analysis on the GWAS significant variants in our candidate regions,
for three reasons. First of all, the number of GWAS significant variants in each
trait is small in most cases, and it varies substantially from one trait to another.
So the power of detecting the enrichments in each trait is quite limited. Secondly,
it is also not practical to categorize the traits that have been investigated by
GWAS into a small number of meaningful types for enrichment analysis, as the
traits are very diverse. Thirdly, the SNPs picked from previous GWAS studies
might have some bias towards certain interesting traits, diseases or groups of
genes, so they may not represent a whole-genome view of the functional variants.
Having said that, the lists of GWAS significant variants overlapping with our
positive selection candidates still provide valuable insights into what kinds of
traits were under selection, and also give us some good candidate variants for

further functional investigations.

Table 3.5 GWAS significant variants in candidate regions in each population.

A. CEU

Chr  Position rsID Gene(s) Trait/disease SNP risk allele Fr:g::ng}/eof p value
4 15,346,199 rs11724635 BST1 Parkinson's disease rs11724635-A 0.56 1E-16
4 15,347,035 rs4538475 BST1 Parkinson's disease rs4538475-? NR 3E-09
6 30,026,078 rs2517713 HLA-A Nasopharyngeal carcinoma rs2517713-A 0.62 4E-20
6 30,051,046 rs6904029 HLA-A,HCGY9 Vitiligo rs6904029-A 0.29 1E-21
6 30,078,568 rs7758512 ZNRD1, RNF39, HLA-A HIV-1 control rs7758512-? NR 2E-08
8 19,863,608 rs325 LPL HDL cholesterol rs325-T 0.89 8E-26
8 19,863,719 rs326 LPL, C8orf35, SLC18A1 Triglycerides rs326-A 0.78 5E-12
8 19,864,004 rs328 LPL HDL cholesterol/Triglycerides rs328-G 0.09 2E-28
8 19,872,128 rs10105606 LPL Triglycerides rs10105606-C 0.68 4E-26
8 19,875,201 rs10096633 LPL Triglycerides rs10096633-G 0.88 2E-18
8 19,876,926 rs17482753 LPL HDL cholesterol rs17482753-T 0.11 3E-11
8 58,468,572 rs954295 Intergenic Longevity rs954295-C 0.39 4E-09
9 853,635 rs755383 DMRT1 Testicular germ cell cancer rs755383-T 0.62 1E-23
9 16,854,521 rs2153271 BNC2 Freckling rs2153271-C 0.41 4E-10
9 16,905,021 rs3814113 BNC2, LOC648570, CNTLN Ovarian cancer rs3814113-T 0.68 5E-19
11 117,036,941 rs10892151 Apz/:é/AASf’g??AIIA\/iIJLO_‘IA% Triglycerides rs10892151-A 0.028 3E-29
12 39,078,567 rs11564258 MUC19, LRRK2 Crohn's disease rs11564258-A 0.03 6E-21
15 26,039,213 rs12913832 HERC2,0CA2 Eye/hair color rs12913832-A 0.23 1E-300
15 46,179,457 rs1834640 SLC24A5 Skin pigmentation rs1834640-G 0.08 1E-50

B. CHB+JPT

Chr  Position rs 1D Gene(s) Trait/disease SNP risk allele Fr:g;znzr:f p value
4 6,320,957 rs4689388 WFS1, PPP2R2C Type 2 diabetes rs4689388-T 0.57 1E-08
4 6,353,923 rs1801214 WFS1 Type 2 diabetes rs1801214-T NR 3E-08
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54,538,061
1,068,187
1,085,281
88,994,267
159,850,267
31,349,088
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31,360,904
31,366,816
31,371,730
31,382,359
31,382,534
31,420,305
31,430,538
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31,444,079
32,677,669
32,681,607
32,682,149
32,684,456
32,685,358
32,686,060
32,694,832
32,700,715
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32,712,350

32,713,862

32,733,847
32,765,556

32,771,829

32,771,977
32,773,398
32,775,888
32,779,081
32,786,977
32,788,906
32,808,061
122,187,733

151,248,771

160,601,383
120,076,601
120,081,881
120,114,010
120,121,419
12,662,097
138,251,691
138,261,561

2,215,556

87,542,348

rs D

rs11898505
rs1670533
rs3796619
rs1471403
rs8396
rs13191343
rs2524054
rs12191877
rs9468925
rs2894207
rs9264942
rs10484554
rs3134792
rs2523608
rs2523590
rs7743761
rs477515
rs602875
rs615672
rs9271100
rs660895
rs674313
rs9271366
rs28421666
rs2040406
rs9272346

rs2187668

rs9273349
rs7774434

rs6457617

rs6457620
rs10484561
rs2647044
rs13192471
rs9275572
rs7765379
rs2858884
rs9398652

rs11754661

rs3127573
rs2062377
rs11995824
rs6469804
rs6993813
rs1408799
rs7849585
rs12338076

rs1006737

rs8005161

Gene(s)
SPTBN1
RNF212,SPON2
RNF212,SPON2
MEPE
ETFDH
HLA
HLA-B
HLA-C
HLA
HLA-B,HLA-C
HLA-C
HLA-C
HLA-C
HLA-B
HLA-B
MHC
HLA-DQA1
HLA-DR-DQ
HLA-DRB1
HLA-DRB1
HLA-DRB1
HLA-DRB5
HLA-DRB1
HLA-DQ,HLA-DR
HLA-DRB,HLA-DQB1
HLA

HLA-DQA1, HLA-DQB1

HLA-DQ
HLA-DQB1

HLA-DQA1, HLA-DQA2

HLA-DRB1
HLA-DQB1
HLA-DRB1
HLA-DRB1
HLA-DQA2
HLA-DRB1
HLA-DQA2
GJA1

MTHFD1L

SLC22A2
TNFRSF11B
TNFRSF11B

OPG
OPG
TYRP1
QSOX2
LHX3, QSOX2

CACNAIC

GALC, GPR65

Trait/disease

Bone mineral density (spine)
Recombination rate (females)
Recombination rate (males)
Bone mineral density (spine)
Serum metabolites
Psoriatic arthritis
CD4:CD8 lymphocyte ratio
Psoriasis
Vitiligo
Nasopharyngeal carcinoma
HIV-1 control
Psoriasis
Psoriasis
HIV-1 control
HIV-1 control
Ankylosing spondylitis
Inflammatory bowel disease
Leprosy
Rheumatoid arthritis
Systemic lupus erythematosus
Rheumatoid arthritis
Chronic lymphocytic leukemia
Multiple sclerosis
Nasopharyngeal carcinoma
Multiple sclerosis
Type 1 diabetes

Celiac disease/Systemic lupus
erythematosus

Asthma
Primary biliary cirrhosis

Rheumatoid arthritis/Systemic
sclerosis

Rheumatoid arthritis
Follicular lymphoma
Type 1 diabetes
Rheumatoid arthritis
Alopecia areata
Rheumatoid arthritis
Narcolepsy
Resting heart rate

Alzheimer's disease (late
onset)

Serum creatinine
Bone mineral density (spine)
Bone mineral density (hip)
Bone mineral density (spine)
Bone mineral density (hip)
Blue vs. green eyes
Height
Height

Bipolar disorder and major
depressive disorder
(combined)

Crohn's disease
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SNP risk allele

rs11898505-A
rs1670533-C
rs3796619-T
rs1471403-T
rs8396-T
rs13191343-T
rs2524054-A
rs12191877-T
rs9468925-?
rs2894207-?
rs9264942-C
rs10484554-T
rs3134792-?
rs2523608-G
rs2523590-C
rs7743761-?
rs477515-?
rs602875-A
rs615672-?
rs9271100-?
rs660895-?
rs674313-T
rs9271366-G
rs28421666-?
rs2040406-G
rs9272346-G

rs2187668-A

rs9273349-C
rs7774434-C

rs6457617-T

rs6457620-?
rs10484561-G
rs2647044-A
rs13192471-G
rs9275572-G
rs7765379-?
rs2858884-A
rs9398652-A

rs11754661-A

rs3127573-G
rs2062377-T
rs11995824-G
rs6469804-A
rs6993813-C
rs1408799-C
rs7849585-T
rs12338076-C

rs1006737-A

rs8005161-T

Frequency of
risk allele

0.34
0.23
0.33
0.34
0.3
0.13
0.32
0.15
0.617
0.82
0.34
0.15
NR
0.326
0.164
NR
0.69
0.68
NR
NR
0.21
0.26
0.15
0.88
0.26
0.61

0.26

0.58
0.371

0.49

0.5
0.11
0.13
0.22
0.59

NR
0.81

0.1

0.07

0.13
0.44
0.55
0.51
0.5
0.75
0.33
0.34

0.36

0.12

p value
2E-08
2E-12
3E-24
2E-08
4E-24
2E-72
2E-28
1.-100
2E-33
3E-33
3E-35
2E-39
1E-09
9E-20
2E-13
5.-304
1E-08
5E-27
8E-27
1E-12
1E-108
7E-09
7E-184
2E-18
1E-20
5E-134

1E-50/3E-21

7E-14
3E-26

SE-75/4E-17

4E-186
1E-29
1E-16
2E-58
1E-35
5E-23
3E-08
4E-15

2E-10

7E-10
4E-16
7E-09
7E-15
3E-11
6E-17
5E-14
2E-08

3E-08

4E-18



3.5 Examples of strong candidate genes and their functions

In the final section of results in this chapter, we consider examples of individual

selected genes of particular interest.

3.5.1 Examples of strong positively selected genes in a particular

population

CASP12: previous studies have shown that a stop codon SNP, rs497116, which
makes the protein non-functional, has been fixed or nearly fixed in European and
Asian populations, but is less frequent in the African population. And this was
believed to be due to positive selection acting on the inactive form of this
genel05136_[f this stop codon allele is the selection target, it should have been
selected in all three populations, as it has reached a very high frequency in all of
them. In our genome wide scan, we found strong evidence of positive selection in
the CEU population, as shown in Figure 3.10 A. In 1000 Genomes low-coverage
Pilot data, the derived (stop codon) allele is fixed in both CEU and CHB+]JPT
populations, and has a frequency of 0.924 in the YRI population. However, we do
not see strong signals in the other two populations. There are two possible
explanations. One is data bias. As this selective sweep is likely to have already
been completed in the CHB+JPT population and be nearly complete in the YRI
population, the detection power largely relies on the presence of extremely low
frequency alleles. As will be discussed later, due to the nature of low-coverage
sequencing, the extent to which singletons were filtered out in each population
was different. The variant data in the CEU population have a much higher
percentage of singletons than the other two populations, so the detection power
of this particular sweep may be higher in CEU. The other possible reason is that
the selective sweep happened independently in these three populations, and
thus the strengths and ages of the sweeps were different. This may have caused
the sweeps in the other two populations to be undetectable by our tests.
Nevertheless, it is encouraging that we have been able to obtain a very strong
signal of positive selection in this known selected gene in exactly the same
window as the selected allele, which was not detected by previous genome-wide

scans using genotype data.
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Figure 3.10 Examples of positively selected genes with signals in only one population. Blue
dashed line marks the significance threshold. Candidate genes are shown and positions of
putative selected SNPs are marked as red bars with the rs ID if applicable.

NEDD4L: This gene shows a very strong signal of positive selection in the

CHB+]PT population, but not in the other two populations (Figure 3.10 B). The
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gene encodes the enzyme E3 ubiquitin-protein ligase NEDD4-like, which is
believed to regulate the expression and function of the epithelial sodium
channell37.138 It plays a very important role in salt reabsorption. Studies have
shown that this gene is associated with salt sensitivity!3?, blood pressure!49, and
essential hypertension!#l. Interestingly, it has been reported that African-
Americans are more sensitive to salt than other groups in the US, and they
develop hypertension at younger ages, with more severe consequences. So it
appears that Africans are more sensitive to salt than other groups. Based on
these facts, it is plausible that salt-insensitivity has been positively selected
outside of Africa, due to the adaptation to the new environment. The climate was
hot and dry in most human habitats in Africa, and salt was rare in ancient times,
so retaining salt in the body was very important for the survival of humans.
However, when our ancestors moved out of Africa, the climate was cooler, and
salt was easier to access especially near the sea, so retaining salt in the body was
no longer advantageous, and sometimes could be harmful, as it may cause high
blood pressure. Therefore, there might have been a selective force favoring less
efficient salt reabsorption in out-of-Africa populations. However, if this is the
case, we should expect to see signals in both European and Asian populations.
There are two possible reasons that we did not see signals in the European
population. One is that the selective sweep might have happened earlier in
Europe than in Asia, or the strength of selective force was much higher in Europe,
so that the selective sweep had already been completed for a long time, therefore
the footprint of positive selection had faded. The other explanation might be that
the selection strength in Europe is very low, so the sweep has not reached to a
detectable stage. All in all, the strong signal of positive selection plus the
interesting functional implications of this gene makes it a very good candidate
for further studies on its roles in salt sensitivity and blood pressure, and its
association with hypertension. It may be worth doing functional analyses on
highly differentiated alleles between African and other populations within this

gene to find out which variant(s) is more likely to be the selection target.

HLA gene cluster: The HLA gene cluster on Chromosome 6 showed very strong

signals of positive selection in the YRI population (Figure 3.10 C). The HLA
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(human leukocyte antigen) system lies within the human major
histocompatibility complex (MHC). This cluster contains a large number of genes
related to the immune system of humans. There are different classes of HLA
genes, and they play important roles in disease defense, may cause organ
transplant rejections, and mediate autoimmune diseases. Many variants in this
gene cluster are associated with various autoimmune or inflammatory diseases,
including inflammatory bowel disease, HIV, Vitiligo, Ankylosing spondylitis,
Rheumatoid arthritis and so on (Table 3.5). The positive selection signals in this
locus may indicate the strong selective force of disease defense and immune

functions in the African population.

3.5.2 Candidate genes selected in multiple populations and implications for

the selected functions

ITSN2: This gene shows extremely strong signals in all three populations
(ranked within the top 10 strongest signals in each population; Figure 3.11 A).
Strikingly, the peak signals in all three populations fall into the same windows,
which is the first exon and promoter region of this gene. There are two adjacent
windows showing almost the same strength of signal. Within this ~20 kb region,
we identified 49 variants with a DAF of more than 0.9 in all three populations,
one of which is within the first non-coding exon of the gene, and others in either
intron or 3’ UTR regions (Table 3.6). This gene encodes Intersectin-2, which is
involved in the regulation of the formation of clathrin-coated vesicles!4?, and also
plays a role in clathrin-mediated induction of T-cell antigen receptor (TCR)

endocytosis'43, and may regulate T-cell mediated immune responses.

NCAM?2: This gene, neural cell adhesion molecule 2, shows very strong signals in
all three populations (Figure 3.11 B). The protein encoded by this gene belongs
to the immunoglobulin superfamily. It is a type | membrane protein and may
play important roles in selective fasciculation and zone-to-zone projection of the
primary olfactory axons. It is primarily expressed in the brain, where it is
believed to stimulate neurite outgrowth and to facilitate dendritic and axonal
compartmentalization44. Interestingly, the peak signal of the CHB+]JPT

population is more than 400 kb away from the peak signals of the other two
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Figure 3.11 Examples of positively selected genes with signals in multiple populations.
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Table 3.6 High DAF variants in peak windows of ITSN2. Chromosome coordinates are in
March 2006, NCBI36.

- ref alt ancestral CHBJPT CHBJPT -

Chr CEU position allele allele  allele CEU DAF sesifon DAF YRI position  YRI DAF
2 24435849 C T C 0.983 24435849 0.967 24435849 0.966
2 24436130 G A G 0.975 24436130 0.967 24436130 0.975
2 24436273 C T C 0.983 24436273 0.967 24436273 0.966
2 24436426 C G C 0.983 24436426 0.975 24436426 0.966
2 24436979 C T C 0.975 24436979 0.967 24436979 0.966
2 24437367 T C T 0.983 24437367 0.967 24437367 0.966
2 24437522 C G C 0.983 24437522 0.967 24437522 0.966
2 24437726 C T C 0.908 24437726 0.975 24437726 0.966
2 24438162 G A G 0.967 24438162 0.95 24438162 0.966
2 24439534 G C G 0.983 24439534 0.975 24439534 0.915
2 24439653 G A G 0.983 24439653 0.967 24439653 0.966
2 24440355 T C T 0.983 24440355 0.967 24440355 0.966
2 24440851 C T C 0.992 24440851 0.967 24440851 0.966
2 24440929 G C G 0.975 24440929 0.967 24440929 0.966
2 24440930 G A G 0.975 24440930 0.967 24440930 0.966
2 24441809 A G A 0.983 24441809 0.975 24441809 0.966
2 24442311 G A G 0.975 24442311 0.967 24442311 0.966
2 24442435 C T c 0.983 24442435 0.967 24442435 0.992
2 24442604 T G T 0.992 24442604 0.967 24442604 0.966
2 24442639 C G C 0.983 24442639 0.967 24442639 0.966
2 24444362 G A G 0.983 24444362 0.992 24444362 0.966
2 24444623 G C G 0.983 24444623 0.967 24444623 0.975
2 24445579 C T C 0.992 24445579 0.967 24445579 0.975
2 24445841 A T A 0.983 24445841 0.967 24445841 0.949
2 24445880 A G A 0.983 24445880 0.967 24445880 0.966
2 24446357 T C T 0.983 24446357 0.967 24446357 0.966
2 24446367 G A G 0.983 24446367 0.967 24446367 0.966
2 24446904 T G T 0.983 24446904 0.967 24446904 0.975
2 24447399 G A G 1 24447399 0.967 24447399 0.966
2 24447452 G A G 0.992 24447452 0.967 24447452 0.966
2 24447481 T G T 1 24447481 0.967 24447481 0.966
2 24447753 A G A 0.975 24447753 0.967 24447753 0.966
2 24448832 A G A 0.983 24448832 0.967 24448832 0.966
2 24449141 A G A 0.958 24449141 0.967 24449141 0.992
2 24449259 C T C 0.983 24449259 0.967 24449259 0.966
2 24449274 C T C 0.983 24449274 0.967 24449274 0.975
2 24449318 G A A 0.942 24449742 0.933 24449318 0.949
2 24449992 G A G 0.992 24449992 0.967 24449992 0.966
2 24450279 G A G 0.992 24450279 0.975 24450279 0.966
2 24450287 A G A 0.983 24450287 0.975 24450287 0.966
2 24450338 C T C 0.983 24450338 0.975 24450338 0.966
2 24450541 A T A 0.983 24450541 0.967 24450541 0.966
2 24451714 C T C 0.983 24450866 0.033 24451714 0.966
2 24451783 A G A 0.6 24451783 0.742 24451783 0.483
2 24451815 G A G 0.983 24451815 0.983 24451815 0.983
2 24452162 C T C 0.983 24452162 0.967 24452162 0.966
2 24452243 G A G 0.983 24452243 0.975 24452243 0.975
2 24453789 C T C 0.983 24453789 0.967 24453789 0.975

populations, although CHB+]PT p value in that window is also quite low. All peak
windows are in the intronic regions of this gene, and there are no functionally

known variants.
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SDK1: This gene also showed strong signals in all three populations (Figure 3.11
C). Interestingly, the peak signals of all three populations do not overlap, though
the peaks of CEU and YRI are quite close. The product of this gene is a cell
adhesion protein that guides axonal terminals to specific synapses in developing
neurons. Studies have shown that dysregulation of this protein may play an
important role in podocyte dysfunction in HIV-associated nephropathy14>146, [t
was also shown that a variant within this gene, rs645106, is associated with
hypertension4’ in the Japanese population. This variant is not within any of the
peaks, but is closest to the peak of the CHB+JPT population (about 100 kb

downstream).

ULK4: This gene shows strong signals in both the CEU and YRI populations, and
also low, although not significant based on our stringent threshold, p values in
the CHB+JPT population (Figure 3.11 D). The CEU and YRI peak signals are more
than 300 kb away from each other. The peak signal of the CEU population
contains one exon of the gene. Previous studied have shown a strong association
of ULK4 with diastolic blood pressure (DBP)!48. There are three linked high DAF
non-synonymous changes within this gene that show significant GWAS signals:
rs6768438, rs9816772 and rs9852991, but they are about 100kb upstream of
the peak signal in CEU and even further from the YRI signal. It is likely that this
gene plays important functional roles; however, very little is known about these

functions. Thus it is worth further functional investigation.

3.6 Discussion

In this study, we have for the first time performed a genome-wide survey of
positive selection in the human genome using low-coverage whole-genome
sequencing data. We faced two main challenges: one was how to choose the
genome-wide significance level of our tests; the other was how to localize the
selection target. To solve the first challenge, we needed to decide between a
higher sensitivity and better specificity from our scan. In this study, although we
hoped to identify as many real positively selected regions as possible, we
preferred to obtain a small list of very likely targets instead of a long list with a

high proportion of false positives. Therefore, we needed to achieve a small FDR.
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With this in mind, we looked at the FDR in our simulations under different p
value cutoffs, and decided to choose the one with an FDR less than 5% in all
three populations. Interestingly, this p value cutoff is 0.01 with Bonferroni
correction, which is considered to be the most stringent significance cutoff.
Although in this case our sensitivity is low, we are still able to identify interesting

candidate regions, and we are able to achieve a very low FDR.

Although we could measure our specificity by calculating the FDR based on the
neutral simulations, we were unable to reliably measure the specificity, i.e. the
power of our test to detect positive selection. There are two main reasons for
this. Firstly, unlike the neutral scenario, positive selection has different stages
and strengths, and we do not know the strengths and ages of the selective
sweeps that happened in the human genome. Although we could simulate
several combinations of different selection coefficients and ages of sweeps, we
are very unlikely to mimic the real situation. Secondly, in reality, there are many
other factors that can affect the selective sweep, for example, change of
environment, bottlenecks, population expansion, inbreeding, admixture, and so
on. Although in our simulations, we used the best-fit demographic model to
mimic the major population events, it was not a 100% replication of the real
population history. Therefore, although we could measure the false negative rate
of our simulation, it may not reflect the reality and may be misleading. For
example, in our simulations, we had 16 scenarios of selection, among which we
could only effectively detect selective sweeps with a selection coefficient of at
least 0.007, and an age of at least 1,500 generations. We found that in the
empirical data, we had a large number of windows with much lower p values
then the lowest p value in our selection simulations, indicating that there may
have been much stronger selection in our genome. Therefore, our simulations
could only provide general guidance of how strong the selection has to be in
order to be readily distinguished from the neutral scenario. But needless to say,

this information is crucial in our study.

It is worth noting that the number of candidate regions and genes in the
CHB+]JPT population was much smaller than the other two populations. We

believe that this was due to the lower quality data in this population. The
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proportion of singletons in the CHB+]JPT population is only about one third of
CEU and half of YRI population (Figure 3.12). If we assume that the whole-
genome frequency spectra of the European and Asian population should be
similar, this lack of extremely low frequency alleles in the CHB+]JPT population is
largely due to the heavy filtering of uncertain variants during quality control. As
our tests are looking for extreme patterns of the frequency spectra, this will
affect the strengths of our signals. Although we have filtered our neutral
simulations to match the frequency spectra of low-coverage Pilot data, this still
could not fully eliminate the bias, as the proportion of extremely low frequency
alleles will be much larger in regions under positive selection, whereas the
missing alleles in the variant calling process of the empirical data should be
pretty much randomly distributed. Therefore, more low frequency alleles will be
missing in regions with an excess number of them. Therefore, it is
understandable that the power of detection in the CHB+]JPT population was
much lower, and this should not be mistakenly interpreted as less selection in

this population.
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Figure 3.12 Frequency spectra of 1000 Genomes low-coverage pilot data in each
population.
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Although in our case, we used a very stringent p value significance threshold in
order to obtain a confident list of selected regions, the cutoff is by no means
black and white. As indicated by our simulations, relatively weak selective
sweeps or sweeps that have not yet reached a late stage, may have more
moderate p values. In fact, some genes that are known to have undergone a
selective sweep may not have very strong signals. For example, the gene EDAR,
which is related to hair thickness and tooth morphology, showed multiple
evidence of positive selection in the East Asian population in previous
studies®6:67.78149-153 [n our scan, EDAR showed a peak p value of 1.4x 107 (-loge
value 15.8) in the CHB+JPT population (Figure 3.13). Although this did not pass
our genome-wide significance threshold, it would be considered as a significant p
value if the threshold was slightly lower. Furthermore, as discussed earlier, due
to the ascertainment bias in the CHB+]JPT data, the level of significance of p
values in this population is much lower than in the other two populations
(Figure 3.13). Interestingly, the density of significant p values corresponds to the
proportion of singletons in the data in each population (Figure 3.12 and Figure

3.14). On one hand, this demonstrates the importance of extremely low-
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Figure 3.13 Signals of positive selection of EDAR gene in the CHB+JPT population. As
observed previously, the peak signal lies in an intron, and not over the non-synonymous SNP
rs3827760 often assumed to be the target of selection.

102



frequency alleles for detecting selection signals. On the other hand, it shows us
that although for a genome-wide scale study like this, we may set up a stringent
significance threshold to start with, we should not ignore the many other signals
that are not so strong but may still indicate signals of positive selection. However,
for those cases, stronger independent supporting evidence may be needed to

confirm the signals of positive selection.
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Figure 3.14 Distributions of p values in three populations. In order to show the difference of
densities of significant p values in each population, we only showed the distributions of those (-
loge p) values bigger than 12 (equivalent to p values smaller than 6.1E-6). The blue dashed line is
the significance threshold.

With a much higher density of variants in the sequencing data, we were hoping
to achieve a better resolution of signals, which may lead to higher power of
localization of selection targets. In our genome-wide scan, we used windows
sized about 10 kb, which in general contain enough variants to have the
statistical power, and at the same time are small enough for further investigation
to identify the selected variant. However, although on average, it is mostly likely
that the selected allele will fall into the window with the strongest signal, there is

still a high chance that the selected allele is elsewhere. Our simulations
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suggested that there is about 75% chance that the selected allele will be within
the ~100 kb regions centered by the peak signal, though the signal pattern is
made more complicated by recombination near the selected allele. Therefore,
although it is still not easy to localize the selection target into a very small region
or even a variant, by taking into account recombination, we were able to localize

the selected region into a reasonable size for further investigations.

The identification and interpretation of biological targets of selection has for
long been one of the biggest challenges in human evolutionary genetics. Two
main constraints limit our abilities to do so: one is the low power of current
statistical approaches to narrow down the selected genomic region, and the
other is the limited understanding of functions of our genome. We have shown
here that in some cases, selection targets can be narrowed down to a few tens of
kb, so that functional variants can be sought and investigated further. However,
due to the lack of known functional elements within many candidate regions,
biological targets of selection are often hard to identify and interpret. Follow-up
biological experiments can sometimes be done to investigate functions of
plausible selected variants, but it is often time- and resource-consuming, and
difficult to carry out on a large scale. New experimental assays to examine
biological functions of variants on a large scale will be extremely beneficial for

the investigation of biological targets of selection.

104



4 A search for genomic regions with the most recent

coalescence times in all humans

4.1 Introduction

One of the most interesting questions for human evolutionary geneticists is
whether or not there were genetic contributions to the emergence of modern
humans around 200 KYA, and to the uniqueness of modern humans compared to
other species, including archaic humans. Two hypotheses can be made. One is
that all the necessary genetic changes were already present in the genomes of
our immediate ancestors before the emergence of modern humans, and those
mutations might have occurred at different times. In combination with
environmental and social or cultural factors, they led to the emergence of
modern human traits and behaviors at the times discussed in Chapter 1. The
alternative hypothesis would be that some important mutations occurred shortly
before modern humans emerged, and those mutations were so advantageous
that they spread quickly among our ancestors, which then contributed to the
traits of modern humans and thus the emergence of our species. If the first
hypothesis were true, then there would be no or very few human-specific
variants of genes or other functional regions in the human genome that are
shared between all humans with relatively low diversity, but are not present in
this form in our immediate ancestors or sister species. In contrast, if the second
hypothesis were true, then there would have been some strong selective sweeps
in the genomes of early humans, and those sweeps would have reached fixation
in our African ancestors before fully modern humans emerged and the current
populations split. This would have resulted in shared haplotypes in all humans at
those selected loci, and those haplotypes would likely be human-specific, i.e. they

would not be present in our sister species.

Under the second scenario, the identification of such genomic loci would provide
great insights into the genetic uniqueness of modern humans. The common

statistical approaches for detecting recent positive selection, however, have
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almost no power to identify positive selection that started more than 100 KYA.
The main reason for this is that such positive selection events are likely to have
reached fixation before 100 KYA, and thus the signatures of selection on the
patterns of LD or frequency spectra would have been erased by recombination
or new mutations after the completion of those sweeps. There also would not be
any population differentiation, as those selection events should have happened
before modern human populations split. So the statistical approaches mentioned
earlier are not able to detect such older selection events. Therefore, new
approaches that do not rely on these patterns of variation in contemporary

humans need to be applied in order to identify these regions.

Because of the diploid nature of the human genome and the action of
recombination, different pieces of our genome derive from different common
ancestors. According to coalescent theory, the expected time to the most recent
common ancestor (TMRCA) of a genomic segment in a diploid population is
4N.8>154, For modern humans, although many studies have used genetic data to
estimate effective sizes, realistic effective population sizes of both
subpopulations and the global population are still unclear. Based on the Wright-
Fisher model, the global ancestral population size of modern humans is N, =
10,000, and the present-day continental populations may have an effective
population size of around 100,0002¢%, due to the recent expansion of human
populations after the agricultural revolution. If we assume 20 years per
generation, the expected average TMRCA of a particular non-recombined region
in current global human population might be around 800,000 years. However,
the TMRCA of different regions in the human genome must vary, and it is not
easy to estimate the variation of TMRCAs between different genomic regions

only based on the estimates of population parameters.

As has been noted, anatomically modern humans emerged around 200 KYA. This
ancestral human population lived in Africa (with a temporary expansion into the
Levant) until around 50-60 KYA, when a subgroup of them with fully modern
characteristics migrated out of Africa and populated other parts of the world.
Selective sweeps on alleles that contributed to modern human traits should have

occurred around the time when modern human emerged, and should have
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reached fixation before the out-of-Africa migrations. Therefore, if we trace back
to the common ancestor of one of these loci, the TMRCA should be around or
slightly more than 200,000 years. If we use the unit of 2N, generations, and an N,
of 10,000 for the human population, the TMRCA should be around or a little
more than 0.5 and less than 2, as 2 should be the expected value of TMRCA for a
diploid Wright-Fisher population. Therefore, the TMRCA of the selected locus
should be much less than what we would expect from a neutral region, so we
may distinguish these regions that had undergone a complete selective sweep
during modern human evolution from neutral regions by calculating TMRCAs of

human genomic regions and identifying the most recent ones.

In this study, we aimed to answer two questions: (1) are there regions in the
human genome that support the second hypothesis, and, if the answer is “yes”,
(2) where are these regions and what functions do they have? To achieve this
goal, we calculated TMRCAs of 5 kb non-overlapping windows in the human
genome with relatively low diversity/divergence ratio from 54 unrelated human
samples from 11 populations around the globe, using high-coverage whole-
genome sequencing data. Then we compared the distributions of TMRCAs in the
empirical data with simulated neutral regions. We also compared the variants of
humans in regions with a TMRCA of less than 2N, generations with those in a
high-coverage Denisovan genome, to see whether or not these regions have the
characteristics of strong classic selective sweeps. Public datasets were used, and

all analyses described in this chapter were performed by the author of this thesis.

4.2 Materials and Methods

4.2.1 Data

To estimate the coalescence time of a particular genomic region, we need the
complete set of single nucleotide variation in a set of unrelated samples.
According to coalescent theory, in an unstructured population the probability of
a sample size n containing the most recent common ancestor of the whole
population is (n-1)/(n+1), so even with a small sample size of 10, we would still
have a more than 80% chance to obtain the TMRCA of the whole population from

the sample. However, due to the complex structures of human populations, in
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order to obtain TMRCAs in all humans, we need samples that can represent at
least all the main continental human populations. So in order to conduct a
genome-wide survey of TMRCAs in humans, we needed high-coverage whole-
genome sequencing data from a diverse collection of human samples. When this
project started in 2010, there were 15 personal genomes sequenced at high
coverage by different research groups around the world. These include a YRI and
a CEU trio from the 1000 Genomes Project pilot 249, Venter’s!>> and Watson’s156
genomes, one Chinese genome (YH)57, two Korean genomes!>8159 two
European genomes from Complete Genomics Inc.1®?, and one Bantu and one
Khoisan individual from southern Africal®l. These individual genomes have
diverse population backgrounds, thus formed a good sample of the global human
population. We first used 13 out of these 15 individuals (excluding offspring in
the two trios) to calculate coalescence times, but found that due to the diversity
of platforms used in sequencing those genomes, and different algorithms applied
in variation calling, the data quality was not consistent from one genome to
another, and when putting these genomes together, there were a lot of genotype
gaps and violation of the infinitely-many-sites model. Therefore, it was not useful

to calculate coalescence times on these genomes.

In 2011, Complete Genomics Inc. (CGI hereafter) released 69 high-coverage
whole genome sequences from a diverse panel of samples

(http://www.completegenomics.com/sequence-data/). The consistency of

sequencing platform and variants calling algorithm, together with the stringent
quality control by CGI made this a much better data set to use for this study.
Among these 69 samples, 54 are unrelated individuals, and these individuals are
from 11 diverse populations (Table 4.1). So we decided to use these 54 genomes

for coalescent time calculations and further analyses.

Low quality sites were removed and missing genotypes were filled before using
these data for our analyses. Firstly, trialelic sites, telomere and centromere
regions, as well as sites that are not consistent with the Mendelian inheritance in
the CGI trios and the pedigree panel were excluded. Because of the highly diverse
samples, we avoided using inference algorithms to infer missing genotypes, as

inferences from a large number of mixed populations may be inaccurate. Instead,
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we filled the majority of missing genotypes using the 1000 Genomes Project
Phase 1 data in the same samples (34 samples in common)

(http://www.1000genomes.org/). We then discarded sites that still had more

than two missing genotype calls. For those with one or two missing genotypes,
we assigned either the reference or alternative allele as the genotype based on
the genotypes of other samples in the same population. After the filtering,

around 95% of the SNPs were retained.

Table 4.1 Sample information.

Population sNaOr.n::))]Ices
ASW (African ancestry in Southwest USA) 5
CEU (Utah residents with Northern and Western European ancestry) 9
CHB (Han Chinese in Beijing, China) 4
GIH (Gujarati Indian in Houston, Texas, USA) 4
JPT (Japanese in Tokyo, Japan) 4
LWK (Luhya in Webuye, Kenya) 4
MKK (Maasai in Kinyawa, Kenya) 4
MXL (Mexican ancestry in Los Angeles, California) 5
PUR (Puerto Rican in Puerto Rico) 2
TSI (Toscans in ltaly) 4
YRI (Yoruba in Ibadan, Nigeria) 9

4.2.2 Divergence and diversity

Since it was not practical to calculate TMRCA across the whole genome using
GENETREE, we first compared divergence and diversity. We calculated the intra-
species diversity in 5-kb non-overlapping windows throughout the genome
within these 54 humans by calculating the average pairwise difference per site in

each window.

In order to calculate human divergence from the ancestor, we obtained the
inferred ancestral state of each locus across the whole genome from Ensembl

(http://www.ensembl.org/). The ancestral states are inferred from the six

primates EPO (Enredo-Pecan-Ortheus) pipeline (see Ensembl website for
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details). We then identified fixed derived alleles in humans based on the 54 CGI
genomes and the ancestral alleles. Divergence per site on the same 5-kb non-

overlapping windows was calculated as for diversity.

We further filtered the data by removing windows with less than 80% ancestral
state information and/or less than 90% callable sites in the CGI data. This gave
us 277,256 5kb windows (total length ~1,386Mb), which is about 46% of the
genome. Then we calculated the diversity/divergence ratio for all these eligible

windows across the genome.

4.2.3 TMRCA calculations

Firstly, we inferred haplotypes from the genotype data of the 54 samples in each
window, using BEAGLE®62. We used the five parent-offspring trios from the CGI
sequence data (three CEU trios, one YRI and one PUR trio) to increase the
accuracy of the phasing. We then pruned the data to fit the infinitely-many-sites
model in order to build the gene tree, using the PRUNE algorithm163. Sites or
samples that did not fit the model were removed. On average, ~13% of the SNPs
were removed by PRUNE. In most windows, all samples were retained, and a
maximum of two samples were pruned out. On average, 0.08 samples were
removed per 5-kb window. We estimated the local mutation rate of each window
by comparing the human reference sequence and the chimpanzee sequence,
assuming that the split time between human and chimpanzee genomes was 7
million years ago, with 20 years per generation. We then calculated an initial
estimation of theta (4N.p, 4 times the effective population size times the local
mutation rate) using the estimated mutation rate and a human effective
population size of 10,000. We used the GENETREE®6.164-167 package to obtain the
best theta of each 5 kb window using the above estimated theta as a seed, and
then used the best estimate of theta to calculate the TMRCA using GENETREE
(See Appendix G for parameters and command lines). We used 100,000
simulations in estimating the theta, but in order to increase the accuracy of the
TMRCA estimation, we used 10,000,000 simulations in calculating the

coalescence time. All the TMRCAs are in the unit of 2N. generations.
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4.2.4 Simulations

We simulated 1000 independent 100 kb neutral regions in 54 samples, using the
cosi package?®6 and the best-fit demographic model?¢. Due to the limited
demographic models, only three main continental populations, i.e. African,
European and Asian, were simulated. We categorized the 11 populations in the
CGI samples into these three population groups, which gave us 22 Africans, 18
Europeans and 14 Asians. We first used cosi to generate a random recombination
map using the distribution of recombination rates in autosomes in the deCODE
genetic map'%8, and then used this recombination map in the simulations. A
genome-wide average mutation rate of 1.5x10-% and gene conversion rate of

4.5x10° were used. All other parameters are the same as in previous simulations.

4.2.5 Comparison with two high-coverage southern African genomes and a

high-coverage Denisovan genome

We picked all the 5-kb windows with a TMRCA of less than 2N, generations, and
combined adjacent windows into one region. Then we picked regions with at
least two adjacent windows (10 kb) to form a list of 143 regions with recent
TMRCAs. These regions have the lengths of 10 kb to 25 kb. We used this set of

regions for comparison with other genomes.

In order to investigate whether or not these regions with recent coalescence
times calculated from CGI data are likely to have undergone strong selective
sweeps during the emergence of modern humans, we compared the variants in
the 143 regions with those in two high-coverage southern African genomes - one
Bantu and one Khoisan!®l. The Bantu sample ABT was sequenced to over 30-fold
coverage using the SOLiD 3.0 platform from Applied Biosystems. The Khoisan
sample KB1 was sequenced by two platforms: 10.2-fold coverage using the
Roche/454 GS FLX platform, plus 12.3-fold non-redundant clone coverage with
long-insert libraries, and 23.2-fold using the [llumina platform6l. We used the
variation data generated by the authors. We also compared the variants with

those of a Denisovan genome, sequenced by Reich et al

(http://www.eva.mpg.de/denisova/), with approximately 30-fold coverage

using the Illumina GAIIx sequencing platform!2. First of all, we called variants
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differing from the human reference genome GRCh37 from the alignment
generated by the authors, using SAMtools%°. We used a maximum read depth of
100 as a filter (~3 times of the average read depth). We then further filtered out
heterozygous calls where the ratio of the second-highest:total read depth was
less than 0.3:1, or the second-highest read depth was less than 2. Then we
obtained all variants in the 54 CGI samples, two southern African genomes and
the Denisovan genome within the 143 regions with recent TMRCAs, as well as
100 sets of random windows matching the number of windows in the recent
coalescent regions. Firstly, we used the two southern African genomes to
validate our human-fixed derived alleles. Only those derived alleles that were
fixed in both the CGI and the southern African samples were considered as fixed
derived alleles in humans. We then counted the number of the following four
types of loci in each set of regions: (1) the derived allele was only seen in the
Denisovan genome: a “Denisovan specific variant”; (2) the derived allele was
fixed in humans but not seen in the Denisovan genome: a “human specific
variant”; (3) the derived allele was seen in both humans and the Denisovan
genome, with a frequency in the 54 humans higher than or equal to 50%: “high
DAF shared variant”; and (4) the derived allele was seen in both humans and the
Denisovan genome, with a frequency in the 54 humans less than 50%: a “low
DAF shared variant”. In order to test whether or not there was any enrichment,
we randomly picked 100 sets of windows with calculated TMRCAs, matching the
number of windows in our recent coalescent region set. Then we ranked the
numbers of these four types of derived alleles in the recent coalescent regions
against the 100 random sets of matched windows to see if any type of alleles was

enriched in the recent coalescent windows compared to the random windows.

4.2.6 Phylogenetic network analysis on regions with recent TMIRCAs

In order to further understand the relationship between the haplotypes in
humans and the Denisovan, we performed phylogenetic network analysis on
some regions with recent TMRCAs using the NETWORK softwarel’0

( http://www.fluxus-engineering.com/sharenet.htm ). Human haplotypes were

inferred using BEAGLE as described before, and heterozygous sites in the

Denisovan were assigned to the two chromosomes manually based on the
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similarities with the human haplotypes. For those Denisovan variants that are
not shared with humans, alleles were randomly assigned to the two haplotypes.
Then these haplotypes were grouped into African (ASW, LWK, MKK, YRI and
southern African), European (CEU and TSI), Asian (CHB, JPT and GIH), other
human populations (MXL and PUR), and Denisovan. Phylogenetic networks were
built, and each node was marked with colors representing the relevant

population group(s).

4.3 Results

4.3.1 Divergence and diversity

We expect that regions in the genome with low diversity compared to divergence
tend to have more recent common ancestors than regions with high diversity
compared to divergence. Therefore, we first calculated intra-species diversity
within the 54 humans, and the inter-species divergence of humans and
chimpanzees. The local diversity of 5kb windows in the 54 samples ranged from
0% to 0.39% per nucleotide, with the median of 0.07% per nucleotide. This
means that on average, in a 1-kb long region, two randomly drawn chromosomes
would be expected to have 0.7-nucleotide difference. This was in line with the
widely-accepted estimation that two random individual chromosomes would on
average have one nucleotide difference per kb. The local divergence on the same
data, based on the comparison with inferred ancestral data from six primates,
ranged from 0% to 1.27%, with the median of 0.50%. The diversity/divergence
ratio ranged from as small as 0.002 to as large as 200, with a median of 0.145.
The distribution of diversity/divergence ratio has a long tail on the right-hand

side (Figure 4.1).

4.3.2 TMRCA distribution on low and high diversity/divergence regions

As discussed earlier, for a diploid population, the TMRCA in a Wright-Fisher
population is expected to be 4N.. As the TMRCAs calculated by GENETREE are in
the unit of 2N,, we should expect an average TMRCA of 2 across the genome. To
test whether or not the TMRCAs calculated by GENETREE on these 54 samples

reflect our expectation, we calculated TMRCAs on windows with 1% lowest and
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Figure 4.1 Diversity and divergence distributions of the 5-kb windows in the CGI data.

1% highest diversity/divergence ratio, as well as those with the 20% lowest
diversity/divergence. As we would expect, the distribution of TMRCAs of the 1%
lowest diversity/divergence windows is narrow and sharp, with a median of
~1.5, while that of the 1% highest diversity/divergence windows is much wider
and flatter, with a median of ~6.3 (Figure 4.2). The TMRCA distribution of 20%
lowest diversity/divergence windows, as we would expect, is slightly fatter and
more towards the right, compared to the 1% lowest distribution (Figure 4.2).

The median of these TMRCAs is ~1.6, slightly smaller than the expected genome
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average of 2, which is as we would expect, since in general, lower

diversity/divergence regions tend to have a smaller coalescence time.
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Figure 4.2 TMRCA distributions in the CGI data. This plot shows density distributions of
TMRCAs in the 1% highest diversity/divergence windows (blue), 1% lowest
diversity/divergence windows (red), and 20% lowest diversity/divergence windows (black).

4.3.3 Validation of TMRCA estimations by simulation

In order to further understand whether or not our TMRCAs reflect the reality,
and whether they are unusual compared to neutral regions, we simulated 1,000
independent 100-kb neutral regions in 54 samples. We then compared the minor
allele frequency spectra of the CGI and simulated data, and found very similar
distributions (Figure 4.3). We next chunked the simulated regions into 20,000
windows of 5 kb, and calculated diversity. As we were unable to estimate
divergence on simulated data due to the lack of information on fixed derived
sites, we could only compare diversity of the simulated data with CGI data. We
found that the distributions were very similar, except that the simulated neutral
data lacked extremely low diversity windows (Figure 4.4), which is as expected.

We then calculated TMRCA on the windows with 1% and 20% lowest, and 1%
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highest diversity. Interestingly, the distributions of low diversity windows were
very similar to the empirical data, but the high diversity windows had a much
narrower range of TMRCAs, and there are no extremely high TMRCA windows in
the simulated data (Figure 4.5). A Q-Q plot of the 20% lowest diversity simulated
windows versus CGI windows shows quite a few outliers at the higher end, i.e.
extremely large TMRCAs, that are only present in the CGI data. In contrast, there
is only one outlier at the lower end; i.e. only one window’s TMRCA is lower than
expected from the neutral simulation (Figure 4.6). This indicates that there may
not be enrichment for outliers with low TMRCAs in our genome; i.e. there are no
more regions in the human genome with extremely recent TMRCAs than
expected from a neutral model. However, we had windows with a TMRCA of less
than 4N, generations. These windows are worth further analysis to see if they
are likely to have undergone selective sweeps. In contrast, we had some extreme
outliers on the higher end of the TMRCA distribution. The majority of these
windows, as expected, have high diversity/divergence ratio in humans. There
are three plausible explanations for this. One is that many of these regions might
have undergone balancing selection, where a high level of diversity or a
combination of ancestral and derived alleles is beneficial to the individual or the
population as a whole. Therefore, some very ancient alleles from our ancestors
were maintained in current humans. The second explanation might be that there
had been archaic admixture in the history of modern humans, which resulted in
some gene flow between humans and their sister species, so that some of their
alleles have been derived from other archaic humans. The third explanation is
simply sequencing/mapping errors in the data. Although efforts have been made
to produce a high-quality set of variant calls from the sequencing data, due to the
complexity of the genome, some variants might have been called wrongly,
especially those within highly repetitive regions, short insertion or deletions, or
copy number variants. Furthermore, because of the diverse panel of samples,
missing genotypes could not be inferred from the genotypes of other samples in
the panel. These factors might have contributed to some artifactual high-
diversity regions. In reality, these three reasons may all have played some role in

causing the outliers with extremely ancient TMRCAs. More detailed examination

116



of these “ancient regions” is needed to figure out whether these regions are truly

ancient in humans, but is beyond the scope of this thesis.
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Figure 4.3 Minor allele frequency spectra in the CGI and simulated data.
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Figure 4.5 TMRCA distributions on simulated windows with different diversity. This plot
shows density distributions of TMRCAs in the 1% highest diversity/divergence windows (blue),
1% lowest diversity/divergence windows (red), and 20% lowest diversity windows (black) in
the simulated data.
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Figure 4.6 Q-Q plot of TMRCAs in simulated data versus the CGI data. This Q-Q plot shows
the TMRCAs of simulated data (X axis) versus CGI data (Y axis), blue dashed line is the trend line.
The smaller plot on the upper left corner is the magnified Q-Q plot for the part where TMRCAs
are less than 2.
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4.3.4 Comparison of variants in low-TMRCA regions with southern African

and Denisovan genomes

Although the distribution of TMRCAs in our CGI data matches the neutral
simulations, there are still windows with TMRCAs more recent than expectation.
We identified 3259 windows with a TMRCA of less than 1 (2N, generations). If
we assume a genome-wide average recombination rate of 1x10-8 per nucleotide
per generation, and 20 years per generation, for modern humans with a history
of 200,000 years, the average length of a non-recombining segment in humans
should be around 10 kb. Of course as the recombination rates across the genome
vary a lot, the non-recombining segment lengths also vary dramatically.
Nevertheless, as a rough guide, if a region has been positively selected at the
same time when modern humans emerged, we would expect the recently
coalesced region should not be shorter than 10 kb. Therefore, we combined
adjacent windows with TMRCAs less than 1, and discarded single windows. This

resulted in 143 regions sized from 10 kb to 25 kb.

We then investigated whether or not these regions are likely to have undergone
selective sweeps during the emergence of modern humans. If they have, they
should possess two features: all humans should share one or more derived
alleles in these regions, and most of these fixed derived alleles should be human-
specific. In order to test these features in the 143 regions, we first used the Bantu
and Khoisan genomes to further filter for and confirm human-fixed derived
alleles. The Khoisan belong to the indigenous hunter-gatherer peoples in
southern Africa, and are believed to be descendants of the oldest known split
among modern human populations. If the fixed derived alleles in our 54 CGI
samples are also homozygous in these two genomes, we can be more confident

that they are very likely to be shared by all humans.

In order to investigate whether or not the fixed derived alleles in these regions
are human-specific, we should compare them with a sister species of modern
humans that diverged from humans after the human-chimpanzee split but before
the divergence of present-day populations. There are draft genomes of two non-

human archaic hominins that can serve as the sister species to modern humans:
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the Neanderthal genome sequence!” and the Denisovan genome!2. However, due
to the low coverage (< 2x) of these sequences, we could only call a variant in the
Neanderthal or Denisovan sequences if this variant is observed in humans, which
therefore would not be suitable for our purpose, as we are hoping to identify
shared and non-shared variants between humans and the archaic hominins in
those regions. Fortunately, the authors of the first Denisovan genomel? released
an additional high-coverage (average coverage ~30x) Denisovan genome
sequence data set recently, which allowed us to perform the comparison with a
good level of confidence. We counted four types derived alleles, as described in
section 4.2.5: (1) Denisovan-specific derived allele; (2) human-specific derived
allele; (3) high DAF shared derived allele; and (4) low DAF shared derived allele.
In theory, if the regions have undergone strong selective sweeps during the early
times of the human lineage, we should expect high numbers of type (1) and (2)
alleles, but no or very low numbers in type (3) and (4). However, there are some
limitations of these counts. First of all, there might be some ascertainment bias in
the data. For example, the Denisovan variants were called using the human
genome as the reference, which might have introduced some bias towards
shared alleles. Secondly, we only have one Denisovan genome, so even if we do
not see a particular derived allele in this Denisovan genome, it does not mean
that it is not present in the Denisovan population. Thirdly, although we had a
diverse panel of human samples plus two other divergent human genomes, we
still could not guarantee that the fixed derived alleles seen in these samples were
truly fixed in all humans. Therefore, the absolute counts of these alleles might
not be ideal to serve the purpose of testing the two features mentioned above.
However, we could safely form a hypothesis that if these regions have undergone
selective sweeps, type (1) and (2) alleles should be enriched in these regions
while type (3) and (4) should be depleted. In order to test this hypothesis, we
also generated 100 sets of random windows matching the number of windows in
those 143 recent coalescent regions, and compared the number of each of the
above four types of variants within the random regions and the 143 recent
coalescent regions. We found no enrichment or depletion in any of the above
categories in those 143 regions compared to random matched regions (Figure

4.7). This indicates that the regions with a TMRCA of less than 2N, generations
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were not as a whole likely to have undergone strong classic selective sweeps

when modern humans emerged.
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Figure 4.7 Comparison of numbers of four types of derived alleles in humans and the
Denisovan genome. These box plots show distributions of numbers of each of the four types of
derived alleles in 100 random sets of windows matching the recent-TMRCA windows. Red dots
are the corresponding values of the recent-TMRCA windows.

4.3.5 Phylogenetic network analysis on regions with recent TMIRCAs

To further understand whether or not the regions with recent TMRCAs are likely
to have undergone an expansion in early modern humans, we performed
phylogenetic network analysis on some of these recently coalesced regions in 54
CGI humans, two southern Africans and a Denisovan. If a particular haplotype in
a genomic region had expanded to all modern humans but not in our sister
species, we should expect to see that the branches of humans and the Denisovan
in the gene network are well-separated. For the purpose of comparison, we
looked at the phylogenetic network on the five 5-kb windows with a TMRCA of
less than N. generations, a few regions from the 143 regions with a TMRCA of

less than 2N. generations, and a few regions with a TMRCA between 2N, and 4N,
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generations. We found that there was no population cluster in the phylogenetic
networks in any of these regions, and the haplotype with highest frequency was
present in all populations (Figure 4.8, Appendix H). This indicates that these
regions all derived from one haplotype before the populations split. However,
not all the human regions are well distinguished from the Denisovan. In Figure
4.8 A, the region has a clear pattern of recent expansion from the haplotype
represented by the largest circle, and this is likely to have happened before the
out-of-Africa migrations, as this ancestral haplotype is present in all populations,
with the highest frequency in Africans. However, the Denisovan haplotypes did
not appear much further away from the human haplotypes, and in fact, some
human haplotypes have the same or a longer distance from the high-frequency
haplotypes than the Denisovan. There are two possible explanations for this.
One is that the haplotype that expanded in humans might already have existed
before the human-Denisovan split, and the other is that there had been gene flow
between humans and Denisovans, so that this haplotype in Denisovans was
derived from humans. To test these hypotheses, more knowledge about the
population history of Denisovans and their relationship with modern humans is

needed.

Some regions with recent TMRCAs do show patterns where human and the
Denisovan haplotypes are well distinguished. In Figure 4.8 B and C, the
Denisovan haplotypes were much further away from the highest-frequency
human haplotypes than any other humans, indicating that these human
haplotypes were differentiated from their sister species. In fact, Regions with
this type of pattern tend to have more Denisovan-private variants than
European-Asian-private variants. The reason is obvious: if the region in humans
differentiated from Denisovans before the human population split, Denisovans
would have more time for accumulating new mutations than the European and
Asian populations. In order to identify these regions, we compared the number
of Denisovan-private variants (variants only present in the Denisovan genome)
and European-Asian private variants (variants only present in the European and
Asian samples) in each of the 143 regions with a TMRCA of less than 2N.

generations and the 5 windows with a TMRCA of less than N. generations. We
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Figure 4.8 Phylogenetic networks of three regions with recent TMRCAs. A: region
chr1:32,660,001-32,665,000; TMRCA 0.952 N. generations. B: region chr19:16,465,001-
16,470,000; TMRCA 0.992 N. generations. C: region chr11:46,430,001:46,440,000; TMRCA 3.692

N. generations.
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identified 22 regions with a larger number of Denisovan-private variants than
European-Asian-private variants (Table 4.2). We believe that these regions are
worth further investigations on whether or not they have undergone selective
sweeps in the early stages of modern humans. It is worth noting that we were
very conservative in comparing the private alleles in Denisovans and the
European-Asian populations, since we only had one Denisovan sample but 32
European-Asian samples. With more Denisovan samples, we should expect more
Denisovan-private alleles, which means that these regions may be even more
differentiated from humans than we have seen here.

Table 4.2 Regions with recent TMRCAs and more Denisovan-private alleles than Eurasian-
private alleles. Chromosome coordinates are in GRCh37. The table also shows the number of

private variants in each population group, the TMRCAs of the regions in the unit of N.
generations and genes in those regions.

Denisovan African  Eurasian  TMRCA (N,

Cly st e ksl 49 private private private  generations) Gl
1 28,465,001 28,480,000 15 23 47 18 0.996 PTAFR
1 70,195,001 70,210,000 15 21 52 17 0.978 LRRC7
2 197,675,001 197,690,000 15 20 42 8 0.961

2 200,335,001 200,345,000 10 16 33 12 0.987 SATB2
3 110,875,001 110,885,000 10 12 29 11 0.967 PVRL3
4 84,130,001 84,140,000 10 5 29 4 0.949

6 156,030,001 156,040,000 10 14 35 9 0.983

6 157,065,001 157,075,000 10 10 31 9 0.992

8 10,970,001 10,985,000 15 11 67 8 0.988 XKR6
8 43,360,001 43,375,000 15 29 67 21 0.873

8 74,125,001 74,135,000 10 21 31 11 1.185

8 82,120,001 82,130,000 10 13 27 3 0.871

9 133,720,001 133,735,000 15 30 51 20 0.957 ABL1
10 400,001 425,000 25 82 111 44 0.921 DIP2C
10 22,105,001 22,120,000 15 13 43 12 0.963 DNAJC1
11 61,025,001 61,035,000 10 11 43 6 0.879 VWCE
12 80,370,001 80,385,000 15 13 45 12 0.926

15 25,225,001 25,235,000 10 12 40 10 0.911 SNRPN, SNURF
17 74,765,001 74,775,000 10 8 41 6 0.952 MESD11
19 15,380,001 15,390,000 10 10 27 9 0.987 BRD4
19 16,465,001 16,470,000 5 11 13 7 0.992 EPS15L1
20 54,990,001 55,005,000 15 41 50 13 0.988 CASS4

4.4 Discussion

This study has for the first time used whole-genome sequencing data from a
diverse panel of human samples to systematically estimate coalescence times
across the genome in humans, aiming to identify regions that share a very recent

common ancestor among all humans, which may indicate positive selection
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during the early stage of modern human history ~200 KYA. This approach is
complementary to the statistical tests used in Chapters 2 and 3, as well as to
other LD-based tests, and differs from them in two aspects: one is that it detects
selective sweeps that were much older than those statistical tests, and the other
is that it only detects complete selective sweeps, where the statistical tests have

very limited power.

We first set out to answer the question of whether there are regions in the
human genome that coalesce within the anatomically modern human lineage.
Assuming that (1) modern human emerged around 200 KYA, (2) the human
effective population size is 10,000 and (3) there are 20 years per generation,
these regions should have a TMRCA around N. generations. However, as these
assumptions have very limited accuracy, this threshold can only serve as a
general guideline, and a range of TMRCAs around this value should be
considered. In fact, a recent study suggested that generation times are about 29
years in humans and 25 years in chimpanzees, and also estimated the
population-split time between Neanderthals and modern humans as 400-800
KYA171, If these estimations are reasonable, and if we look for regions that
coalesce after human-Neanderthals split, then we should look for a TMRCA
between around 0.5 and 1.5 N. generations. Among our calculated TMRCAs, very
few windows had a TMRCA less than N, generations (5 out of 55,467 windows).
Our simulations suggested that this number does not differ from expectations
based on neutral assumptions. Comparisons of derived alleles with the
Denisovan genome and the phylogenetic analysis also suggested that those

regions with recent TMRCAs were not all completely human specific.

Based on these results, it seemed that we could draw the preliminary conclusion
that there is no excess of “human-exclusive” regions spreading to all humans
during the early stage of modern human history. However, there are several
limitations to this study, which may prevent us from drawing such a conclusion.
Firstly, the model used by GENETREE might be too simplistic, so the estimation
of TMRCAs might not be accurate. GENETREE assumes a Wright-Fisher
population, with no recombination, and an infinitely-many-sites model. Although

these may provide a good approximation in most cases, in order to make an
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accurate estimation of coalescence times, we may need a more realistic model.
Secondly, we do not have proper independent sister species to use as outgroups
of modern humans in this study. Ideally, we hope to have genomic information
from some hominin species that diverged from humans not too long before the
modern human emergence, and did not experience much gene flow with modern
humans. Although the high-coverage Denisovan genome provided the closest
approach to these requirements, it has limitations. For example, there might
have been substantial gene flow between Denisovans and humans'?18, and we
only had one Denisovan genome sequence to use. Thirdly, the ancestral alleles
were inferred from the primates that split from ancestors of humans several
million years ago. This timescale might be too long for our purpose in this study,
because multiple mutations will have occurred at some sites. [t may be better if

the ancestral alleles were inferred from species that are closer to humans.

Nevertheless, despite the limitations mentioned above, the results from this
study serve as a first step for the genetic understanding of early modern human
evolution. We have seen that strong classic selective sweeps might not have
played a major role in the emergence of modern humans. It is more likely that
the traits made us modern humans were the results of accumulation of
mutations throughout a long period of time, and those genetic changes might
have been present in our ancestors for a long time before modern human
emerged. However, this does not mean that positive selection did not play a role
in shaping early modern humans. Instead, this may indicate in most cases
selection might have happened on existing alleles, or in a moderate manner
rather than strong selective sweeps. In fact, by drawing gene networks of some
regions with TMRCAs of less than 4N, generations in humans and the Denisovan,
we found some that showed patterns of rapid expansion of one haplotype
specifically in humans. An example is the gene AMBRAI. A 10-kb region within
this gene had a TMRCA of less than 4 N. generations, and gene network analysis
of this region shows a clear pattern where all human halplotypes in this region
were derived from one central haplotype from the African population, which was
different from the Denisovan haplotype (Figure 4.8 C). Studies have shown that

this gene involved in autophagy and may regulate the development of the
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nervous system!72. Some other genes that overlap with the regions with recent
TMRCAs listed in Table 4.2 also seem to play important roles in humans. For
example, the gene PTAFR is a receptor for platelet activating factor, a
chemotactic phospholipid mediator that possesses potent inflammatory,
smooth-muscle contractile and hypotensive activity

(http://www.uniprot.org/uniprot/P25105 - section_comments); another gene

SATB2 may play an important role in palate formation and act as a molecular
node in a transcriptional network regulating skeletal development and

osteoblast  differentiation  (http://www.uniprot.org/uniprot/Q9UPW6 -

section_comments). These examples indicate that classic positive selection might

have shaped some genes or regions that contributed to modern human traits, but
the number of such regions is not large. Also, due to our limited knowledge about
gene functions in humans, it is often difficult to judge whether a gene is likely to
have contributed to the modern human uniqueness. Of course, more studies are
needed to understand these processes and to answer the question of what are
the critical genetic changes that made us modern humans. Apart from estimating
coalescence times of human genomic regions using more realistic models, we
could systematically build phylogenetic trees of regions in humans and our sister
species, in order to identify regions that are well-separated between the species.
Therefore, the availability of additional high-quality genetic information from

those hominin groups will be a key factor for the success of this type of study.

127



5 Discussion

5.1 The detection of positive selection: from genotyping to
sequencing

Detecting signatures of positive selection by applying statistical approaches to
genetic data has been a prolonged endeavor among evolutionary geneticists. The
advancement of sequencing technology in recent years has raised the
possibilities of larger-scale, higher-power and better-resolution detection of
positive selection in the human genome, compared to genotype data that were
previously used in such studies. Here, we discuss the benefits of sequencing data
in the detection of positive selection in the human genome, as well as the

challenges we are still facing.

Genome sequencing aims to detect all variation in the genome, with no bias
towards certain types or frequencies of variants. Although in reality this is not
achieved, sequencing does reveal many more variants with very low frequencies,
which are otherwise undetectable with genotyping techniques because they are
not included on standard chips. This provides higher power in detecting
selective sweeps that are nearly complete or have just completed, as an excess of
extremely low frequency alleles characterizes those sweeps, and genotyping may
miss those variants. For example, in our genome-wide scan of positive selection
using the 1000 Genomes low-coverage Pilot data, we detected an extremely
strong signal in the ITSNZ gene (Figure 3.11A). This signal ranks in the top 10
strongest signals in all three populations, yet was not discovered in any of the
previous genome-wide scans using genotype data. In order to understand the
data contributing to the difference between the strongest signal from the 1000
Genomes sequencing data and the HapMap genotype data, we looked at the
minor allele frequency (MAF) spectra of the ~30kb peak region (chr2:
24,430,000-24,460,000) in the 1000 Genomes low-coverage Pilot and the
HapMap Phase II data in the CEU population. Strikingly, although the number of
samples in the HapMap data is higher (90 individuals), there is only one SNP
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with a frequency of less than 1% (Figure 5.1), while in 1000 Genomes data, there
are 19 such extremely-low frequency SNPs. Even if overall SNP densities are
considered, lower-than-one-percent-frequency SNPs only account for 3% of the
total number of SNPs in the HapMap data, while they account for 16% of the total
SNPs in the 1000 Genomes data. These SNPs make great contributions to the
selection signals, as an excess of extremely low frequency alleles is one of the
most important features of a nearly completed or completed selective sweep that

most frequency-spectrum based tests are able to detect.

90

80 M HapMap

70 M 1000 Genomes

Number of variants
= N w Y Ul [e))
o o o o o o

- —

singleton 0.1 0.2 0.3 0.4 0.5
Minor allele frequency bin

o

Figure 5.1 MAF comparison of 1000 Genomes low-coverage Pilot and HapMap data in
ITSN2 peak windows.

In addition to revealing low frequency alleles, sequencing also discovers novel
variants, which genotyping does not. All genotyping techniques are based on pre-
designed assays, which means that the set of variants being genotyped are pre-
determined. This not only makes it impossible to detect new variants, but may
also inadvertently eliminate population-specific variants, which are very
important features in some population-specific selective sweeps. This is
especially true when the genotyping chips used are designed or based on one
population (in practice mostly European) that is very different from the one

being investigated.
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Although sequencing provides better data for the detection of positive selection
in the human genome, there are still challenges needing to be addressed in order
to achieve a comprehensive understanding of which regions in the human
genome have truly undergone classic selective sweeps during modern human
evolution. The first challenge is the lack of realistic demographic models for
many populations. Demographic factors, for example population expansion,
bottlenecks and admixture, can have great impact on the patterns of signals of
selection in the genome, which may result in false negative or positive detection.
In order to allow for these effects, demographic histories of the populations
under investigation need to be modeled in simulations, so that the p values
obtained reflect real departures from neutrality under that demographic model
and thus plausible signals of selection. Great efforts have been made in
developing demographic models for some of the main continental populations,
such as African, European and Asian as represented in HapMap, yet for specific
sub-populations or populations with admixture, due to the lack of sufficient data
and the complexity of population structure, very few satisfactory models have
been developed to mimic their population histories. Therefore, the elimination of
demographic effects without a model of population history remains a challenging

task.

The second challenge faced by us is the determination of p values and their
significance thresholds. In genome-wide scans of positive selection, p values are
usually generated by either of two means: one is from the distribution of test
values of simulated neutral data, and the other is from the distribution of test
values in the empirical data. Among previous genome-wide scans of positive
selection, both simulation-based p values and empirical p values were used. For
example, Sabeti et al. used 10 Gb simulated data to determine the significance
cutoff of their test values®®, whereas Voight et al. treated the 1% most extreme
values as significant in their iHS test®’”. There are pros and cons in both
approaches. Using simulated data is powerful and unbiased if realistic
demographic models are used in the simulations, and adequate quality control
techniques are used to make sure that the simulated data mimic the empirical

data in a neutral scenario. Because the simulated data are independent of the
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empirical data under investigation, they can provide an objective view of what
proportion of the genome has been under positive selection, and this may differ
between populations. However, as mentioned earlier, if the demographic models
used do not reflect the real population history, simulations can be unrealistic,
and by using them to generate p values, a large number of false positive results
can be generated, which may be in fact caused by demographic effects, and some
real positive selection signals may also be disguised. Using empirical
distributions, in contrast, is not confounded by demographic effects, as those
would have impact on the whole genome, or at least a large proportion of it,
instead of specific regions. “Outliers” whose test values are higher than the vast
majority of regions in the genome can be identified, so any baseline effect on the
whole genome is eliminated. However, empirical p values cannot answer the
very important question of what proportion of the genome has been positively
selected, as the threshold of outliers is set artificially. Therefore, in reality, either
of these two means can be used according to the particular study, and sometimes
both simulation-based p values and empirical p values are used to complement
each other. After p values are calculated, which value should be the threshold of
significance is the next question that is critical in the detection process.
Traditionally, the simplest way has been to set an artificial baseline threshold for
the p value, which is usually 0.05 or 0.01, and then correct it from multiple
comparisons by using the Bonferroni correction, the Benjamini-Hochberg
procedurel’3, or other similar approaches. In a global-scale study like a genome-
wide scan of positive selection, a Bonferroni correction tends to be very
conservative, which results in greatly reduced power of detection. However,
using a looser threshold has a danger of high FDR in a large-scale study where
the number of times the tests are applied is very high, since even a very small
false positive rate can result in hundreds or thousands of false positive
detections. Therefore, it is crucial to calculate the FDR under different thresholds,
and use one that gives a satisfactory FDR for the particular study. That being said,
there is always a tradeoff between specificity and sensitivity of any statistical
evaluation based study, and one needs to decide which one should have more
weight based on the purpose of the study. Also, p values are always relative, so

there is no black-or-white cutoff. One needs to consider multiple factors and
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other sources of evidence to judge whether a region or gene shows real signals of

positive selection.

The third challenge is the limited range of selective sweeps that are detectable by
current statistical approaches. As demonstrated by our simulations, all
frequency-spectrum-based tests have high power only for classic selective
sweeps that are relatively strong and have reached a late stage (selected allele
frequency more than ~70%) or have just completed. For weak sweeps (for
example, selection coefficient is 0.001), or early stage sweeps, or sweeps that
have completed a long time ago, the power of detection is very low. This is also
true for many LD-based tests, for example, EHH®3, as the principles behind these
statistical tests are similar: they look for patterns of the genetic variation that
reflect the footprint of a selective sweep, which only exists under certain
conditions. When selective sweeps are wealk, it takes a long time for the selected
allele to reach a high frequency, so it is more likely that new mutations,
recombination or gene conversion will break down the patterns of the selective
sweep in the genomic sequence. Therefore, it is very difficult to distinguish them
from neutral regions, the variation patterns of which are determined by genetic
drift and demographic effects. Likewise, if the sweep is at its early stage, the
patterns are likely to be undistinguishable from the neutral scenario; and if the
sweep had completed hundreds of generations ago, new mutations and
recombination may have erased the patterns. Some other tests, for example, XP-
EHH®¢ and iHS®’, utilize the population differentiation of allele frequencies or
long haplotypes, to detect selective sweeps that are population specific. These
tests are more robust in detecting selective sweeps with different stages and
strengths, but are not able to detect sweeps that are not population specific.
Therefore, by using the current statistical tests, we are likely to miss selective
sweeps that are out of the detectable range, and the development of

methodologies to detect those sweeps remains a challenge.

Finally, using low-coverage sequencing data in the detection of positive selection
can also be a challenge. Large sequencing projects, for example, the 1000
Genomes Project, sequence a large number of individuals in many populations

around the globe. Due to their primary aim of discovering SNPs in the most cost-
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effective way, these whole genome sequences mostly have low coverage, for
example, 2-4x. This is often insufficient to call a variant at a certain locus in a
single individual, especially if it is heterozygous. The common way to deal with
this issue is to split variant discovery and genotyping into separate steps. First,
evidence for a non-reference variant in the pooled data from all individuals is
sought. Then the most likely genotype at each variable locus is inferred by
referring to other samples in the same population and the LD of nearby sites.
Although this approach has been proven to be able to impute fairly accurate
genotype calls effectively, the error rates are still high in heterozygous sites of
low-frequency alleles. Therefore, although low-coverage sequencing data are a
good starting point for genome-wide investigations of positive selection, it may
be helpful to subsequently re-sequence some candidate regions at much deeper
coverage, in order to obtain the full set of variants in the region to eliminate any

bias and to enhance the chance of identifying the selection targets.

5.2 The localization of selection targets

The detection of signatures of selective sweeps is just the first step in the
exploration of positive selection in the human genome. After finding the signals,
we need to identify which loci or alleles were favored by natural selection. This is,
in most cases, not an easy task, as most candidate positively selected regions are
tens or hundreds kb in length, and sometimes, especially when LD-based tests
are applied, even several Mb long. Three types of approaches were commonly
used to localize selection targets. One is by identifying the strongest signal from
the statistical tests, a second is by looking for derived alleles with a high
frequency in the selected population but not in the non-selected population, and
a third is to look for derived variants that have clear functional impact. These
approaches are usually complementary to each other, so are often used together
whenever possible, to localize selection targets, and finding the strongest
statistical signal is often the first step. Using frequency-spectrum based tests on
sequencing data improves localization power in at least two aspects. One is the
higher resolution of the signals. Due to the much higher density of variants in
sequencing data compared to genotype data, statistical tests can be applied on a

smaller genomic region, so that the density of the signals is higher. This
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obviously helps to identify a peak signal covering a smaller region so that looking
for the target variant is easier. The other advantage is the completeness of
discovery of the variants in the region. As discussed before, sequencing data
contain almost all variants in a given genomic region, while genotype data only
contain a small proportion of the variants. Furthermore, most of the missing
variants in genotype data have low minor allele frequencies (MAF), and in near-
complete selective sweeps, the selected variant usually has a low MAF. Thus
there is a high chance that the genotype data do not include the variant under
positive selection, which makes it even more difficult to localize the target.
Furthermore, by combining signals from multiple tests, real strong signals can be
amplified, while moderate signals, or signals in only one test, which are more
likely to be false, can be diluted or eliminated. In our studies, we combined three
independent frequency-spectrum based neutrality tests, therefore increased the
power of localizing the signals. Similarly, a previous study combined multiple
LD-based tests and DAF differentiation scores to generate a compound score,
called composite of multiple signals (CMS)%8. Their results also showed
significant enhancement in the power of localizing the selected variants in the

candidate regions.

As demonstrated by our simulations, although peak signals are on average
enriched at the locus containing the selected allele, there is still a high chance
that they are located far away from the selection target. This is most likely due to
recombination happening during the course of selective sweep, or other
mutational effects that break down or blur the patterns. If recombination
hotspots exist close to the selected locus, peak signals can be further away from
the selection target and their strength can be reduced. Therefore, knowing the
location and intensity of recombination hotspots is critical when trying to
localize selection targets. Although the localization power is significantly
reduced when recombination hotspots are close to the selection target, by
having this information, one can extend the length of the candidate target region

under investigation, so that the real selection target will not so readily be missed.

Another way to help localize selection target is to focus on loci with high derived

allele frequencies (DAF), as the selected allele is most likely to be a derived allele
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with a relatively high frequency in a detectable classic selective sweep. This has
two potential challenges. One is that there are often quite a few such high-
frequency derived alleles due to hitchhiking effects, and it is almost impossible to
figure out which one is the selection target without other information. The other
is that sometimes the information about ancestral status of some loci is
unavailable, inaccurate or lost due to recurrent mutation, and in these cases,
derived alleles cannot be identified reliably. When selection signals are only
present in one population but not the other, we can also compare DAFs in these
two populations, and those that have a high DAF in the selected population but
not the other are likely to be at or near the selection target. This approach of
course requires adequate sample sizes from both populations and that the

variation calling methods do not skew the allele frequencies.

Functional information is potentially very helpful for narrowing down the
potential candidates for selection targets. For example, if there is a high-
frequency allele that changes an amino acid in a target region, it is quite likely
that this allele has been positively selected, especially if we know that this amino
acid change has a functional impact. However, this scenario is unfortunately very
rare. In most cases, we have no or very little information about functions of
variants, especially if the variants are not in or close to protein-coding regions.
Although researchers have been gradually improving annotation of the human
genome, for example with projects like ENCODE>¢, we still only know very little
about the functional elements, and this remains a challenge for us when trying to
identify the selection targets. On the other hand, even in cases where there are
genes or known functional elements at or near the selection signals, due to the
fact that the candidate regions are often quite long, and the hitchhiking effect of
selective sweeps, there may be many variants nearby the selection target that
show very similar features as the selected variant, which makes it challenging to

distinguish the real selected variant from the hitchhiked variants.

5.3 Biological interpretation of alleles under positive selection

The aim of identifying positively selected regions and localizing selection targets

in the human genome is to understand which functional changes have undergone
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positive selection. As mentioned earlier, this is often a two-way process. On one
hand, known functional variants or fixed derived mutations from ancestors,
especially those likely to affect the individual’s fitness, are good candidates for
further investigation of whether or not these changes have undergone positive
selection. On the other hand, signals of positive selection in functionally
unknown regions of the genome may indicate the functional importance of those

regions, and are thus worth further investigation of their biological functions.

Some traits or biological functions are considered more likely to be positively
selected than others. These traits are often involved in reproduction, metabolism,
disease resistance, environment-related morphological features (e.g. skin color,
hair thickness), and so on. These can be categorized into three types: (1)
biological functions that are directly involved in reproduction, for example,
sperm mobilityl74; (2) traits related to adaptations to the climate, natural
environment and life style, for example, pigmentation of skin and hairt%°?; and
(3) resistance to debilitating or life-threatening diseases, for example,
malarial7>176, Genes within each of the three categories have been identified as
positively selected recently in modern human evolutionary history, yet there are
more to be discovered. In most of these cases, positive selection signals were
revealed after the functional impact of the variants within those genes were

discovered, or the functions of the genes where the variants lie were known.

Although the identification of functional targets of selection is challenging, as
discussed in Section 5.2, there are many bioinformatic and experimental
approaches that can reduce the number of candidate variants or even discover
the real target. The advancement of technologies and accumulation of new
findings has been constantly contributing to these approaches in at least three
ways. Firstly, more and higher quality data have made it possible to obtain a
nearly complete set of variants in a large number of samples. This can be
beneficial in two ways: one is to prevent biases of the variants data that may lead
to false results, and the other is to provide more population-genetic information
on the variants, which can help identify the variants that show unique patterns.
Secondly, more advanced modeling techniques and statistical algorithms can

help narrow down the number of candidate variants, which of course makes it
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easier to further identify the real target. Thirdly, a constantly improved
understanding of functions of the human genome is providing valuable
information to assist the identification of possible selection targets. Furthermore,
experimental functional studies on model organisms and humans are yielding
fruitful results that significantly improve our understanding of functions of our
genes. For example, the Knockout Mouse Project (KOMP), initiated by the
National Institutes of Health (NIH) in the US, aims to generate a comprehensive
and public resource comprised of mice containing a null mutation in every gene
in the mouse genomel!”’. Similarly, the Zebrafish Mutation Project (ZMP,

http://www.sanger.ac.uk/Projects/D_rerio/zmp/) at the Wellcome Trust Sanger

Institute aims to create a knockout allele in every protein-coding gene in the
zebrafish genome. These resources will certainly add knowledge to the
understanding of human gene functions, and lead to the systematic studies of
human gene functions and phenotypes. Researchers have raised the concept of
“Human Phenome Project”’1’8, proposing comprehensive databases of human
phenotypic data. Many research groups around the world are carrying out GWAS
on various human traits and diseases, which are constantly contributing to our
understanding of the functions of human genomic variants. A combination of
these bioinformatic tools, large-scale experimental projects and databases is

leading to progress in understanding positive selection in modern humans.

5.4 Impact of the studies in this thesis

Next Generation Sequencing (NGS) technologies have provided geneticists with
seemingly unlimited possibilities for exploring our genomes in a large-scale and
comprehensive manner. Being in one of the greatest genomics institutions and
one of the largest sequencing centers in the world has provided me with the
access to cutting-edge technologies, high-quality large data sets, and high-impact
research projects, for example, the 1000 Genomes Project. The three projects
during my PhD study were all based on NGS data, and for the first time used
these exciting data sets to explore positive selection in the human genome in a
holistic and comprehensive manner. There are three major impacts that my PhD
research has made to the field of human evolutionary genetics, which are

discussed below.

137



The project discussed in Chapter 2 provided, for the first time, an understanding
of how large-scale sequencing data may benefit the detection and localization of
positive selection. All previous large-scale studies of positive selection were
based on genotype data. As discussed earlier, due to the fact that genotyping
techniques only detect a subset of “known” variants, genotype data may miss a
large proportion of low-frequency variants, which will severely reduce the
power to detect and localize selection signals. By resequencing at a very high
coverage two regions that showed strong signals of positive selection from a
genome-wide scan on genotype data, we demonstrated that using frequency-
spectrum based tests on sequencing data can not only detect the signals, but also
effectively increase the power to localize the signal, for example, by ten-fold in
both regions we investigated. This study provided the first insight into how we
can maximize the benefits of sequencing data in studies of positive selection in

the genome.

In Chapter 3, several sets of simulations using various scenarios were presented,
aiming to understand how recombination affects signals of positive selection,
and the sensitivity and specificity of detecting selection signals, as well as
localizing positive selection using sequencing data. This study demonstrated the
effects of recombination hotspots on the localization of selection signals. It
benefits the research community by showing the importance of considering the
recombination rates of the region in question when trying to localize selection
signals, and also by providing general guidelines on how well a selection target

can be localized by the frequency-spectrum approach.

Our genome-wide scan using 1000 Genomes low coverage Pilot sequencing data
provided a list of candidate regions in the human genome that may have
undergone positive selection in the course of modern human evolution. This is
the first map of positive selection in the human genome generated from whole-
genome sequencing data. As Chapter 2 and the simulations in Chapter 3
demonstrated, this map has a higher resolution in terms of the positions of
selection targets, and provides higher power in detecting selective sweeps that
may not be detected from genotype data. This new generation map of positive

selection in the human genome will benefit the research community in at least
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two ways. On the one hand, it provides a valuable resource for further
evolutionary studies of specific types of human genes, regulatory elements or
functions that have been evolving under recent positive selection in the human
lineage. On the other hand, it provides guidance on studies of human genomic
functions and discoveries of new functional elements in the human genome. If a
genomic region shows strong signals of positive selection, it is very likely that
the region is or has been functionally important, even if we do not yet know what
functional roles the region plays. Functional studies usually involve extensive
wet lab experiments that are costly and time-consuming. Therefore, some prior
knowledge about which regions in the genome are more likely to be functional is
critical when choosing candidates for experimental functional studies. The list of
candidate positively selected regions from our scan is a good list to choose from,
for example, the regions ranked at the top of the extremely low p values (see
Appendix D for candidate regions and p values) should be worth further

functional investigation.

The coalescence project described in Chapter 4 is a pioneering investigation of
whether we can identify genomic regions with recent coalescence times using
sequencing data and find ones that are uniquely shared by all humans and not by
Neanderthals and Denisovans. Such regions may have played critical roles in
making humans as what we are today, and may have been favored by positive
selection in the critical early stage of modern human evolution when modern
behavior was evolving. However, these regions cannot be detected by standard
neutrality tests, as the signatures of positive selection will have been erased by
new mutations and recombination over time. Although our results showed that
such recently-coalesced regions are not abundant in modern humans, we were
able to identify regions with recent TMRCAs in humans that were differentiated
from the Denisovan genome, which potentially may have played important roles
in shaping modern humans. Although more in-depth investigations are needed
to further understand the recently coalesced regions in the human genome, this
is the first time that this type of techniques has been used on a genome-wide
scale, and will certainly shed new lights on our understanding of early modern

human evolution.
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5.5 Future directions

Human evolutionary genetics has entered an exciting era with numerous
opportunities to better understand how humans have been evolving during the
last hundreds of thousands of years. Thanks to the advancement of new
technologies, whole-genome or targeted sequencing data of individuals from
many populations across the world have become available and more are coming
out all the time. These data help researchers to better understand human
population histories, recombination and mutation patterns and population
differences. They also provide more power for researchers to investigate
selection in the human genome, as discussed earlier. However, current
methodologies for detecting positive selection do not take into account all these
new factors. Therefore, more comprehensive algorithms or statistical
approaches need to be developed, taking the new knowledge and sequencing
data into account, in order to maximize the benefit of sequencing data, and
achieve detection of positive selection with higher power and lower false

positive or false negative rate.

While my PhD research focused on hard sweeps, which are the most
straightforward form of positive selection to detect, the new data sets available
should make it possible to detect more complex sweeps, for example, soft
sweeps. Extensive simulations and modeling are necessary to figure out the most
effective way to detect soft sweeps. In fact, these can be developed based on the
simulations and knowledge gained from the studies of hard sweeps, and this will
be an important area in the near future. In fact, researchers have been studying
potential selection on standing variants related to some human polygenic traits
that showed population differentiation. For example, a recent study showed
evidence of positive selection on standing alleles associated with increased
height in Northern Europeans compared to Southern Europeans!’®, by
systematically comparing allele frequencies of those variants in these two

populations.

As discussed in earlier chapters, understanding the functions of positively

selected regions is the most important and exciting, yet most challenging step in
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studies of positive selection in humans. Most of the regions showing signals of
positive selection have no obvious candidate functional elements, and it remains
a big challenge for us to demystify their functions. Traditional experimental
studies of human cells or model organisms to investigate functions of genes are
probably the most reliable approaches. These studies, however, usually take
months or years to investigate a single locus and are difficult to scale up.
Therefore, they may not be the most efficient way for large-scale functional
studies, especially for regulatory elements, functions of which may be indirect,
subtle and not easy to observe. Array and RNA sequencing techniques have
enabled large-scale studies of gene expression in different tissues or organs,
which provides power to large-scale functional studies, although this may be just
the first step of the investigation of gene functions by detecting eQTLs. Various
computational approaches for functional studies have also been developed.
These approaches usually use available experimental data sets to identify
general features of certain functional elements, and then construct algorithms to
identify novel ones from the genome. These approaches are of course less
reliable than experimental studies, but they are better-suited to large-scale
studies of regulatory elements, which otherwise are difficult to design
experiments for. To maximize the effectiveness and efficiency of functional
investigation of candidate selected genes, we need to combine computational
and experimental approaches. Generally speaking, computational methods can
serve as a preliminary filtering tool to help choose the right candidates or the
right direction for the design of wet-lab experiments. In fact, this process can be
very dynamic, as results from experimental studies can feed back to the
computational part of investigation, which will again guide the next steps of
experiments. Therefore, we need to link computational and experimental studies
more closely in order to maximize the effectiveness and efficiency of functional

studies.

Many current or previous studies of candidate genes focused on a single gene or
a few functionally related genes. However, to understand a complete biological
process, it helps to identify genes involved in a certain pathway or network. It is

possible that a biological process, rather than a specific gene, has been positively
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selected. In this situation, many of the genes involved in the pathway or network
may have been selected, and each of them may only have played part of the role
and the selection strength on each gene may be relatively weak. Therefore, it is
worth grouping genes into their pathways and networks to understand the
functional targets of positive selection. In fact, researchers have studied positive
or other forms of natural selection in some gene networks in humans!80.181, For
example, by investigating genetic adaptations of the human antibacterial innate
immunity network, Casals et al. found different patterns of selection on genes at
different positions of the network, and that functional classes involved in
autoinflammatory and autoimmune diseases are enriched with evidence of
balancing selection8. As more and more studies have revealed pathways and
networks of genes in lots of biological processes, and such databases have been
built up and enriched®?, a next step is to utilize this knowledge to understand

more about the functional targets of positive selection.

In the last four years, the field has moved from the first tentative attempts to
sequence whole human genomes to established whole-genome sequencing
platforms and global-scale sequencing projects. Sequencing data are no longer
the limiting factor for studies of positive selection. In the next few years, more
and better-quality whole-genome sequences from more populations and even
more sister species of humans, along with more advanced computational models,
will enable more exciting discoveries on positive selection in humans, and

provide more insights into the understanding of modern human evolution.
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Appendix A

Parameters and commands for Chapter 2 simulations
cosi parameters:
#random_seed 1001
# in bp.
length 1000000
# per bp per generation
mutation_rate 1.9e-8

recomb_file ../cosi_files/rec_r1

# population info
pop_define 1 european
pop_define 4 asian

pop_define 5 african

#european
pop_size 1 7700

sample_size 1 10

#asian
pop_size 4 7700

sample_size 4 1540
#african

pop_size 524000

sample_size 5 4800

153



pop_event split "asian and european split" 14 0
pop_event bottleneck "OoA bottleneck” 1 1499 .085
pop_event split "out of Africa" 51 1500

pop_event change_size "african pop size" 5 15000 12500

mpop commands:
# mpop commands for Asian population (selection coefficient 0.007)

./mpop -i mpop_input_r1_Asian -o mpop_out_r1_Asian_1-N 1540 -S -m 0.09 -r 0.46 -s
0.01-h05-g1;

./mpop -i mpop_out_rl_Asian_1 -o mpop_out_rl_Asian_2 -N 145 -g 1;
./mpop -i mpop_out_rl_Asian_2 -o mpop_out_rl_Asian_3 -N 1540 -g 318;
./mpop -i mpop_out_rl_Asian_3 -o mpop_out_rl_Asian_4 -N 20000 -g 80;
./mpop -i mpop_out_rl_Asian_4 -o mpop_out_r1l_Asian -N 50 -g 0;

# mpop commands for African population (neutral)

./mpop -i mpop_input_r1_African -o mpop_out_r1_African_1 -N 4800 -m 0.09 -r 0.46 -g
360;

./mpop -i mpop_out_r1_African_1 -o mpop_out_r1_African_2 -N 20000 -g 40;

./mpop -i mpop_out_rl_African_2 -o mpop_out_r1_African -N 50 -g 0;

154



Appendix B

Chapter 2 targeted resequencing of two regions: PCR primers and

protocols

PCR enrichments*:

PCR product PCR
coordinates product
Primer Name Primer sequences F=start, R=end size (bp)

Regionl_1F TCTATCTCCTCCCTTACCCTTTG chr4:158702285
Regionl_1R GATTCTTTCAGTGTTGATCTGGG chr4:158708600 6316
Regionl_2F TAATGCACCTTTGTTCTTGGTCT chr4:158708036
Regionl_2R CTTGTAGTCCCATCATCTCCTTG chr4:158715605 7570
Regionl_3F ACCTCTCCCTACTCCCAGAGTC chr4:158715109
Regionl_3R ATCTGCCATGAATACAGAAAGGA chr4:158722818 7710
Regionl_4F CTCCATGACTTTAGAGGCTACGA chr4:158722140
Regionl_4R GAAGTAGGGTTGGAGAGGGTCTA chr4:158730090 7951
Regionl_5F TCCTCCTATCTTGTCTCTTGCTG chr4:158729433
Regionl_5R GAGAAAGAAATTGTGTTGCATCC chr4:158735391 5959
Regionl_6F AGCCAGCCACACTTACTATGAAC chr4:158734888
Regionl_6R GCAACTTCCCTCTAATATGCCTT chr4:158741661 6774
Regionl_7F AAATGGACTGTGCTTTCAAAGAG chr4:158740885
Regionl_7R GTATTTGTCCTTCTGTGCCTGAC chr4:158747831 6947
Regionl_8F AAACGATTGACAGAGTGAAGAGC chr4:158747100
Region1_8R CCAGTCAGAAATATTGCAAGTCC chr4:158753068 5969
Regionl 9F CTGGAATTTCTTATCCTCGTCCT chr4:158752465
Regionl 9R AGGTCTCGGATTACAGACATGAA chr4:158758682 6218
Region1_10F GCAAGCTTCTCAATGGAGTTAAA chr4:158757964
Region1_10R TTGGGTGGAGAAGAAGTAATGAA chr4:158767669 9705
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Region1_11F
Region1_11R
Region1_12F
Region1_12R
Region1_13F
Region1_13R
Region1_14F
Region1_14R
Region1_15F
Region1_15R
Region1_16F
Region1_16R
Region1_17F
Region1_17R
Region1_18F
Region1_18R
Region1_19F
Region1_19R
Region1_20F
Region1_20R
Region1_21F
Region1_21R
Region1_22F
Region1_22R
Region1_23F
Region1_23R
Region1_24F
Region1_24R

Region1_25F

AAGACCTGGAATCAGTAGAAGGG

GGAGATTTACCAAGGCTTCACTT

CTCACTATGGATATTGACGAGGC

CCTTAATTTCGTTCTCCTGCTTT

GGGCTCCTCACTTACCCAGTAG

TGCTTCCGAAATTATTGTTCTGT

ACAGCTGCCATTCAATAAATGTT

TGCCAGGTAACCTAGATGAGGTA

TGACTGACCATTATTGACCATGA

TAGCTATGATTGATTGGGTGCTT

TTGAACAGACGAATGAATGATTG

TTTATGCTAATTGGCTCTGGGTA

TCTTTATCTTGCCAGTTGAGCAT

TATTTGTGTTCCCTTTCCTGCTA

GTGAGAATTCATCTCAAAGCCAC

GGAAGCTATTTACAGTTTGCCCT

CAGTAAGCCCAAATGTTAAGGTG

ACCTGACTTTATTTCCCTCTTCG

GGATGCTGATCAATACCTGATGT

CTACTTACGGCAACTCACAGCTT

AGGAATGCTCAGTTCTTGTTCTG

TTATTTCTGAGGGCTCTGTTCTG

CATGGAAACTGAATAACCTGCTC

ACAAGGATTCTCATTTGAGTGGA

GGAAGTTGAAAGATGAATAGAACAAA

ACGGTCAATATTCTCTCCTCACA
ATCATGAGCCAAGTAAGCACAAT
GGCACCTATGTGAAATCTGACTC

ATGCCTTGCTTTCATAACTCTTG

156

chr4:158762445

chr4:158772142

chr4:158770930

chr4:158778727

chr4:158777605

chr4:158785309

chr4:158783817

chr4:158791494

chr4:158790760

chr4:158797058

chr4:158796560

chr4:158802768

chr4:158802175

chr4:158808423

chr4:158807818

chr4:158815385

chr4:158814909

chr4:158822313

chr4:158821535

chr4:158829166

chr4:158827934

chr4:158836728

chr4:158834952

chr4:158840977

chr4:158840377

chr4:158847471

chr4:158846985

chr4:158853923

chr4:158853372

9697

7798

7704

7678

6299

6209

6249

7568

7405

7632

8794

6026

7095

6939



Region1_25R
Region1_26F
Region1_26R
Region1_27F
Region1_27R
Region1_28F
Region1_28R
Region1_29F
Region1_29R
Region1_30F
Region1_30R
Region1_31F
Region1_31R
Region1_32F
Region1_32R
Region1_33F
Region1_33R
Region1_34F
Region1_34R
Region1_35F
Region1_35R
Region1_36F
Region1_36R
Region1_37F
Region1_37R
Region1_38F
Region1_38R
Region1_39F

Region1_39R

CGGAAAGTCTAATTTGAACAACG
TCAAACTGAGTCTCTGGGAATGT
TGGCTGGTAACTCATTAGGTCAT
CACACAATTTATCCAACATCCCT
TTACATTGATTGGATGCAGTGAG
CTGAGGAATACTGCCGTATCAAG
ACCAATCCCAGTCCTTTATGAAT
GCAAAGCTAATTCGATACACCTG
TCAAGATCAAATGCAGTCAGAGA
CAAAGGTAATTGTGAGGTGAAGG
TTGGGAGTTGAAGCTGGTATAAA
TTCCTCTCTGTAAATGTGGCAAT
AGTTTGAACAAAGCAGCAGGTAG
GCTTGTCTATGCTTCACGAAGTT
TTCTATCGCAATACTCCCTTTCA
CACCAGGCTACAGTTTCTTCATC
CATTGCTCCACATTCTCATTACA
CTGAAGTGTGTAGAATGGTGCTG
TTGAATCCACAAGGTGAAGCTAT
AAGGATCATTTCTCTGCCCTAAC
TTATTAGTGGTGCTTTCAGGGAA
CAGTGGGTACTCTATGTTGAGGC
CCTCTTCATGGTACAGATTCCTG
AGGTCCAACTATAGGAGGAGTGG
AATCACAAGTCAAGGGAGATTCA
TGAGCAGTGTGAGAGTGGACTAA
GTGGGATGGACACATATTCTGTT
AGAGCTCCCTTCTCTCTGACATT

TTCTGTGAGATTCCAACCCTTTA
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chr4:158860928

chr4:158859085

chr4:158868003

chr4:158866183

chr4:158874110

chr4:158872529

chr4:158881348

chr4:158880521

chr4:158887599

chr4:158886844

chr4:158894432

chr4:158893844

chr4:158901107

chr4:158900212

chr4:158907520

chr4:158906161

chr4:158913779

chr4:158913234

chr4:158920243

chr4:158919497

chr4:158927302

chr4:158926740

chr4:158934735

chr4:158934050

chr4:158940035

chr4:158939317

chr4:158945415

chr4:158944781

chr4:158951872

7557

8918

7928

8819

7079

7589

7264

7308

7619

7010

7806

7996

5986

6099

7092



Region1_40F

TGAGAATTTAGGTGAGGCTGTGT

chr4:158951262

Region1_40R TCTTTCCTTCTCTCAGCCCTACT chr4:158958029 6768
Region1_41F TTTGACAGAAGGGAAGTAAACCA chr4:158956621
Region1_41R GAGCTTGTCTTCATGCTCTGAAT chr4:158966261 9640
Region1_42F AGAAGGAACTCTCCAGCTGATCT chr4:158964566
Region1_42R TTTGGCATAAACCACTCCTCTAA chr4:158972100 7535
Region1_43F GCCCATCCATGTATGTTCTGTAT chr4:158971591
Region1_43R CACCCTGAAAGCATTCTTAATTG chr4:158979627 8037
Region1_44F CATCCACCAAGGTTATAGCTCAG chr4:158979058
Region1_44R ATGGAGAAGAATGGACAAACTCA chr4:158986215 7158
Regionl_45F CATAGTGCTTCAAGATGTCCTCC chr4:158985263
Region1_45R TAAAGACAGCCTACAGAATGGGA chr4:158994297 9034
Region1_46F CCCACTGTTCACCTTACAGACTC chr4:158992842
Region1_46R TGCCAAGATAATTGTTAGAGGGA chr4:158999198 6356
Region1_47F GGACAATGACACTATGCTTCACA chr4:158998528
Region1_47R ACATCCTCCTAGCACTAACTCCC chr4:159006314 7786
Region1_48F AAATCCAACATTAGAGCGACAAA chr4:159004387
Region1_48R ATGCGACAGAAAGAGAATCAGAG chr4:159010873 6487
Region1_49F CACTTGCTCATGAACTAAAGCCT chr4:159010262
Region1_49R GATCCTCAAATGGTGAGTCTGTC chr4:159016211 5950

*PCR protocol: Xue et al. 183

In total, 49 pairs of PCR primers were designed for chr4:158Mb, 42 for
chr10:22Mb and 4 pairs for the Y chromosome to amplify 5-11 kb PCR products
with overlap of >500 bp, using a Perl

script

(http://droog.gs.washington.edu/PCR-Overlap.html). Two previous pairs for

CASP12 105 were also used. The three base pairs at the 3’ end of all primers were
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confirmed not to overlap with any SNP in  dbSNP127

(http://www.ncbi.nlm.nih.gov/projects/SNP/). The primer sequences and PCR

conditions are listed in above table. Forty-four out of 49 fragments from
chr4:158Mb, 37 out of 42 from chr10:22Mb and all from the Y chromosome and
CASP12 were successfully amplified in initial tests. These fragments were
subsequently amplified in 28 CHB and 2 YRI samples from the HapMap collection.
Three CHB provided poor quality data for chr4:158Mb, and four for chr10:22Mb,
and were excluded from all subsequent analyses. Amplification was tested by
agarose gel electrophoresis followed by ethidium bromide staining, and
approximate quantification was performed from the band intensity. Thirty nine
out of 49 (~80%) long PCR primer pairs worked well for 22 or more samples for
chr4:158Mb, and 32/42 (~75%) for 20 or more samples for chr10:22Mb. The
PCR products from each individual sample were pooled, approximately
equalizing the molar yield for the Illumina sequencing paired end library

construction.
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Appendix C

Parameters and commands for Chapter 3 simulations

cosi parameters:

#random_seed 1001 # Specifies a particular random number seed
# in bp.

length 300000

# per bp per generation

mutation_rate 1.0e-8

recomb _file rec_file
# population info
pop_define 1 european
pop_define 4 asian
pop_define 5 african
#european

pop_size 1 100000
sample_size 1 120
#asian

pop_size 4 100000

sample_size 4 120

#african
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pop_size 5100000

sample_size 5 120

pop_event migration_rate "afr->eur migration" 51 0 0.000032
pop_event migration_rate "eur->afr migration" 1 50 0.000032
pop_event migration_rate "afr->as migration" 5 4 0 0.000008
pop_event migration_rate "as->afr migration" 4 5 0 0.000008
#pop_event admix "african american admix" 3 15..2
#pop_event split "african toaa" 53 7.0

pop_event change_size "agriculture - african” 5 200 24000
pop_event change_size "agriculture - european” 1 350 7700
pop_event change_size "agriculture - asian" 4 400 7700
pop_event bottleneck "african bottleneck"” 5 1997 .008
pop_event bottleneck "asian bottleneck” 4 1998 .067
pop_event bottleneck "european bottleneck” 1 1999 .02
pop_event sweep "European selection” 1 0 0.01 0.5 0.9
pop_event split "asian and european split" 1 4 2000
pop_event migration_rate "afr->eur migration" 51 1996 0
pop_event migration_rate "eur->afr migration" 1 5 1995 0
pop_event migration_rate "afr->as migration" 5 4 1994 0
pop_event migration_rate "as->afr migration" 4 5 1993 0
pop_event bottleneck "OoA bottleneck” 1 3499 .085
pop_event split "out of Africa" 51 3500

pop_event change_size "african pop size" 5 17000 12500

mpop commands:

Neutral:
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CHBJPT:

./mpop -i ms_out_Eurasian -o mpop_tmp1 -N 3080 -m 0.015 -r rec -g 19;
./mpop -i mpop_tmp1 -o mpop_tmp2 -N 290 -g 1;

./mpop -i mpop_tmp2 -o mpop_tmp3-N 3080 -g 300;

./mpop -i mpop_tmp3 -0 mpop_tmp4 -N 40000 -g 80;

./mpop -i mpop_tmp4 -o mpop_out -N 120 -g 0;

CEU:

./mpop -i ms_out_Eurasian -o mpop_tmp1 -N 3080 -m 0.015 -r rec -g 5;
./mpop -i mpop_tmp1 -o mpop_tmp2 -N 287 -g 1;

./mpop -i mpop_tmp2 -o mpop_tmp3-N 3080 -g 324;

./mpop -i mpop_tmp3 -o mpop_tmp4 -N 40000 -g 70;

./mpop -i mpop_tmp4 -o mpop_out -N 120 -g 0;

YRIL:
./mpop -i ms_out_African -o mpop_tmp1 -N 9600 -m 0.015 -r rec -g 360;
./mpop -i mpop_tmp1 -o mpop_tmp2 -N 40000 -g 40;

./mpop -i mpop_tmp2 -o mpop_out -N 120 -g 0;

Selection coefficient = 0.01, age of sweep = 2000 generations:
CHBJPT:

./mpop -i ms_out_Eurasian -o mpop_tmp1 -N 3080 -m 0.015 -r rec -S -s 0.05 -h 0.5 -g
19;

./mpop -i mpop_tmp1 -o mpop_tmp2 -N 290 -g 1;
./mpop -i mpop_tmp2 -o mpop_tmp3-N 3080 -g 300;
./mpop -i mpop_tmp3 -0 mpop_tmp4 -N 40000 -g 80;

./mpop -i mpop_tmp4 -o mpop_out -N 120 -g 0;

CEU:
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./mpop -i ms_out_Eurasian -o mpop_tmp1 -N 3080 -m 0.015 -r rec -S -s 0.05 -h 0.5 -g 5;
./mpop -i mpop_tmp1 -o mpop_tmp2 -N 287 -g 1;

./mpop -i mpop_tmp2 -o mpop_tmp3-N 3080 -g 324;

./mpop -i mpop_tmp3 -o mpop_tmp4 -N 40000 -g 70;

./mpop -i mpop_tmp4 -o mpop_out -N 120 -g 0;

YRI:

./mpop -i ms_out_African -o mpop_tmp1 -N 9600 -m 0.015 -r rec -S -s 0.05 -h 0.5 -g
360;

./mpop -i mpop_tmp1 -o mpop_tmp2 -N 40000 -g 40;

./mpop -i mpop_tmp2 -o mpop_out -N 120 -g 0;
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Chr

Appendix D

Candidate regions and genes in each population

Coordinates are in NCBI36.

Region start

797099
10068896
13821389
27831079
35355105
53228676
53788087
66419956
76884112
86596670
86596670
101748396
102471628
103207706
104387351
105857859
106474162
117217385
118134064
151028501
154773501
161195217
162325660
163721017
166615355
181833404
181833404
183788556
187028219
187987903
190884961
206899055
212081680
212827867

Region end

906801
10178302
13931321
27940924
35464358
53338605
53897937
66529521
76994105
86706639
86706639
101970549
102611505
103327893
104573771
105967516
106584135
117327315
118264087
151159115
154893188
161304900
162434777
163830863
166725170
181942458
181942458
183908552
187158523
188148535
191004182
207008768
212191240
212937843

Peak start

847099
10118896
13871389
27881079
35405105
53278676
53838087
66469956
76934112
86646670
86646670
101798396
102541801
103268059
104459973
105907859
106524162
117267385
118184064
151099455
154834024
161245217
162375660
163771017
166665355
181883404
181883404
183848976
187088277
188037903
190945032
206949055
212131680
212877867

Peak end

856801
10128302
13881321
27890924
35414358
53288605
53847937
66479521
76944105
86656639
86656639
101808232
102551773
103277893
104468954
105917516
106534135
117277315
118193499
151109115
154843188
161254900
162384777
163780863
166675170
181892458
181892458
183858552
187097830
188047844
190954182
206958768
212141240
212887843
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Peak p
value

2.29E-08
1.96E-08
5.17E-09
5.47E-09
1.36E-08
2.00E-09
6.93E-09
1.20E-08
6.54E-09
3.51E-09
3.51E-09
2.33E-09
4.81E-09
3.59E-09
9.67E-10
4.12E-10
1.36E-08
4.30E-09
9.06E-09
1.31E-10
4.42E-09
1.98E-10
5.87E-09
3.10E-09
2.09E-08
1.87E-08
1.87E-08
2.17E-10
5.68E-09
2.52E-08
1.77E-08
2.54E-09
3.35E-08
1.42E-08

Gene EnsemblID

ENSG00000187634
ENSG00000130939
ENSG00000116731
ENSG00000126709
ENSG00000116560
ENSG00000116171
ENSG00000174332
ENSG00000184588

n.a.
ENSG00000122417
ENSG00000137975

n.a.

n.a.
ENSG00000060718
n.a.

n.a.

n.a.
ENSG00000134247
ENSG00000196505
ENSG00000163206
ENSG00000183856
n.a.

n.a.
ENSG00000162763
n.a.
ENSG00000143344
ENSG00000173627
n.a.

n.a.

n.a.
ENSG00000127074
n.a.

n.a.

ENSG00000117724

Gene name

SAMD11
UBE4B
PRDM2
IFI6
SFPQ
SCP2
GLIS1
PDE4B
n.a.
ODF2L
CLCA2
n.a.
n.a.
COL11A1
n.a.
n.a.
n.a.
PTGFRN
GDAP2
SMCP
IQGAP3
n.a.
n.a.
LRRC52
n.a.
RGL1
APOBEC4
n.a.
n.a.
n.a.
RGS13

n.a.
CENPF
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Region start

219734611
232425142
234895573
236273131
6148356
7533894
21596445
24385849
39917077
69025791
69025791
83128877
107231463
121376537
150814344
167686338
182245152
195721849
224178700
237029301
355682
3835933
4050353
7018406
7296272
8482559
11925199
14825904
15972893
29593202
40617631
41645755
58659078
59781034
66556933
89800572
97896644
99217131
104252756
107434455
111775748
112565463
113254707
124864552
136816358

Region end

219854641
232534909
235004711
236403322
6268236
7643810
21841341
24504568
40027005
69134554
69134554
83238859
107340791
121486418
150924100
167796283
182439132
195831681
224288695
237139132
773168
3945844
4170446
7128393
7406271
8592440
12035027
14935524
16082532
29773402
40894999
41755115
58768392
59890749
66665955
89910474
98017341
99327009
104362666
107544376
111882789
112675318
113364412
124973930
136926078

Peak start

219784611
232475142
234945573
236323131
6198356
7583894
21646445
24435849
39967077
69075791
69075791
83178877
107281463
121426537
150864344
167736338
182295152
195771849
224228700
237079301
426407
3885933
4110452
7068406
7346272
8532559
11975199
14875904
16022893
29643202
40667631
41695755
58709078
59831034
66606933
89850572
97957359
99267131
104302756
107484455
111825748
112615463
113304707
124914552
136866358

Peak end

219794242
232484909
234954711
236333113
6207722
7593810
21655066
24445846
39977005
69084554
69084554
83188859
107290791
121436418
150874100
167746283
182305057
195781681
224238695
237089132
436102
3895844
4120446
7078393
7356271
8542440
11985027
14885524
16032532
29652970
40677443
41705115
58718392
59840749
66615955
89860474
97967341
99277009
104312666
107494376
111832789
112625318
113314412
124923930
136876078
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Peak p
value

5.86E-09
4.62E-09
1.53E-08
2.28E-10
1.10E-09
1.23E-08
5.01E-12
2.03E-10
3.09E-08
2.67E-10
2.67E-10
2.47E-08
8.59E-10
8.08E-09
2.50E-08
2.62E-08
2.13E-11
1.86E-08
3.11E-11
2.46E-08
7.65E-11
8.43E-09
3.55E-09
3.53E-08
5.74E-09
3.17E-08
4.46E-09
6.04E-09
4.36E-09
7.48E-09
2.99E-09
3.59E-08
1.16E-08
7.59E-09
7.96E-09
3.23E-08
8.19E-09
2.23E-08
2.53E-08
1.75E-09
2.83E-08
3.98E-08
2.29E-08
2.86E-08
3.16E-08

Gene EnsemblID

n.a.
ENSG00000183780
ENSG00000077522

n.a.

n.a.

n.a.

n.a.
ENSG00000198399
n.a.
ENSG00000169605
ENSG00000169604
n.a.

n.a.
ENSG00000074047
n.a.
ENSG00000163092
ENSG00000162992
n.a.

n.a.
ENSG00000132321
ENSG00000134121
ENSG00000144455
n.a.
ENSG00000196277
n.a.
ENSG00000071282
ENSG00000157152
ENSG00000154783
n.a.
ENSG00000144642
n.a.
ENSG00000168038
ENSG00000163689
ENSG00000189283
ENSG00000144749
n.a.
ENSG00000080224
ENSG00000196578
n.a.

n.a.

n.a.

n.a.
ENSG00000114529
ENSG00000065534

n.a.

Gene name

n.a.
SLC35F3
ACTNZ2

n.a.
ITSN2
n.a.
GKN1
ANTXR1
n.a.
n.a.
GLI2
n.a.
XIRP2
NEUROD1
n.a.
n.a.
IQCA1
CHL1
SUMF1
n.a.
GRM7
n.a.
LMCD1
SYN2
FGD5
n.a.
RBMS3
n.a.
ULK4
C3orf67
FHIT
LRIG1
n.a.
EPHA6
OR5AC2

n.a.
C3orf52
MYLK

n.a.
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Region start

144995803
147407375
157455823
174493364
175277765
177707190
178886726
187149342
190059450
191940911
193235593
194163940
195632688
196051892
3505256
4938663
5261778
14278140
15278537
24338604
32806311
33216406
34349592
38403778
42316679
43008451
55697521
57067392
60560440
64226667
64772668
67269221
71736097
71736097
74361956
75543994
75931273
79977676
79977676
84281633
85482704
89092930
93758997
94797451
96065573

Region end

145115822
147517084
157565750
174603316
175387764
177816865
178996686
187258965
190189991
192050897
193345464
194364328
195742208
196161845
3615203
5048572
5505182
14387761
15388271
24448532
32936928
33326273
34479595
38513647
42426548
43128526
55891731
57176318
60670150
64336107
64882457
67378380
71845931
71845931
74512708
75653814
76041154
80087610
80087610
84391554
85591519
89202832
93868355
94907355
96175204

Peak start

145055942
147457375
157505823
174543364
175327765
177757190
178936726
187199342
190109450
191990911
193285593
194304531
195682688
196101892
3555256
4988663
5352718
14328140
15328537
24388604
32877427
33266406
34409609
38453778
42366679
43058451
55757643
57117392
60610440
64276667
64822668
67319221
71786097
71786097
74411956
75593994
75981273
80027676
80027676
84331633
85532704
89142930
93808997
94847451
96115573

Peak end

145065822
147467084
157515750
174553316
175337764
177766865
178946686
187208965
190119392
192000897
193295464
194314328
195692208
196111845
3565203
4998572
5362388
14337761
15338271
24398532
32886928
33276273
34419485
38463647
42376548
43068071
55766818
57126318
60620150
64286107
64832457
67328380
71795931
71795931
74421185
75603814
75991154
80037610
80037610
84341554
85541519
89152832
93818355
94857355
96125204
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Peak p
value

6.06E-10
2.45E-08
2.91E-08
1.25E-08
2.31E-08
2.94E-09
1.96E-09
1.40E-08
6.72E-09
3.86E-08
3.08E-09
1.32E-09
1.82E-08
7.44E-09
1.45E-08
1.42E-08
1.65E-09
3.16E-09
3.03E-08
7.18E-09
4.69E-10
8.53E-09
2.04E-09
2.70E-08
1.65E-09
2.04E-09
9.58E-11
2.37E-08
1.95E-09
4.77E-09
3.29E-08
3.71E-09
1.40E-08
1.40E-08
5.95E-09
3.95E-08
1.31E-08
2.69E-09
2.69E-09
1.42E-08
8.85E-09
3.97E-08
9.60E-09
5.56E-09
1.92E-08

Gene EnsemblID

ENSG00000181804
ENSG00000114698
ENSG00000169282

n.a.
ENSG00000169760

n.a.

n.a.
ENSG00000171656
ENSG00000145012

n.a.
ENSG00000114279

n.a.
ENSG00000133657

n.a.
ENSG00000216560

n.a.
ENSG00000152953

n.a.
ENSG00000109743
ENSG00000109610

n.a.

n.a.

n.a.
ENSG00000174123
ENSG00000124406

n.a.

n.a.
ENSG00000196503
n.a.

n.a.
ENSG00000205678
n.a.
ENSG00000132467
ENSG00000018189
n.a.

n.a.
ENSG00000174808
ENSG00000138756
ENSG00000163291
n.a.

n.a.
ENSG00000118762
ENSG00000152208
n.a.

ENSG00000138696

Gene name

SLC9A9
PLSCR4
KCNAB1
n.a.
NLGN1
n.a.
n.a.
ETV5
LPP
n.a.
FGF12
n.a.
ATP13A3
n.a.
n.a.
n.a.
STK32B
n.a.
BST1
S0D3
n.a.
n.a.
n.a.
TLR10
ATP8A1

n.a.
UTP3
RUFY3
n.a.
n.a.
BTC
BMP2K
PAQR3
n.a.
n.a.
PKD2
GRID2
n.a.
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Region start

96856764
134308254
148389178
156963127
163364280
163663033
165662952
167365959
168404471
171478904
172691703
176393686
178045518
179180564
180031210
180379745
182020705
186586040
186586040

888770
4195348
5251501
6149837

11405272

11754601

13602516

15068086

16291882

18046735

20108845

23609527

26369074

29692634

30484474

31453154

31453154

33000096

34402524

38021327

53958992

54902588

55766947

67955416

75151384

97070120

Region end

96966688
134437993
148499112
157082944
163474168
163772877
165772885
167485922
168514387
171745218
172811785
176746676
178155489
179290500
180141029
180530927
182140717
186695933
186695933

998682
4326216
5361050
6259708

11513912

11916207

13712488

15177819

16411560

18156677

20217295

23719495

26478948

29802426

30594443

31562933

31562933

33109984

34512413

38131205

54068710

55012059

55875700

68072958

75261335

97220944

Peak start

96906764
134368280
148439178
157013127
163414280
163713033
165712952
167415959
168454471
171528904
172741703
176443686
178095518
179230564
180081210
180439785
182081056
186636040
186636040

938770
4266360
5301501
6199837

11455272

11856492

13652516

15118086

16341882

18096735

20158845

23659527

26419074

29742634

30534474

31503154

31503154

33050096

34452524

38071327

54008992

54952588

55816947

68005416

75201384

97162942

Peak end

96916688
134377531
148449112
157022938
163424168
163722877
165722885
167425306
168464387
171538771
172751630
176453372
178105489
179240500
180091029
180449666
182090717
186645933
186645933

948682
4276216
5311050
6209708

11463912

11866207

13662488

15127819

16351531

18106677

20167295

23669495

26428948

29752426

30544443

31512933

31512933

33059984

34462413

38081205

54018710

54962059

55825700

68015396

75211335

97170944

167

Peak p
value

3.90E-09
1.21E-09
2.21E-08
2.51E-09
2.18E-08
8.85E-09
1.12E-08
8.65E-10
2.77E-08
3.81E-09
2.54E-08
2.98E-09
5.98E-10
1.21E-08
8.48E-09
1.18E-09
2.01E-08
5.95E-09
5.95E-09
3.66E-08
1.21E-10
3.20E-08
3.74E-08
3.55E-08
3.11E-11
3.90E-08
2.60E-08
3.96E-09
2.35E-10
1.74E-08
1.16E-08
2.04E-09
5.32E-09
1.32E-08
2.65E-08
2.65E-08
2.14E-08
4.78E-10
3.11E-08
2.74E-08
3.19E-08
5.86E-09
2.63E-10
2.75E-08
1.06E-08

Gene EnsemblID

n.a.
ENSG00000138650
n.a.
ENSG00000023843
n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.
ENSG00000168491
ENSG00000154553
ENSG00000188818
n.a.
ENSG00000145536
n.a.
ENSG00000169862
n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.
ENSG00000113360
ENSG00000082213
n.a.

n.a.

n.a.

n.a.
ENSG00000177058
n.a.

n.a.

n.a.

n.a.

Gene name

n.a.
PCDH10
n.a.

ACCN5

n.a.
CCDC110
PDLIM3
ZDHHC11
n.a.
ADAMTS16
n.a.

CTNND2

n.a.

RNASEN

C5orf22
n.a.
n.a.
n.a.
n.a.

SLC38A9
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Region start

99506633
100710045
100927427
102002354
109214330
111946180
115908166
116405732
117899353
121071350
126209968
144884095
147361224
147566850
159112961
168674391
175034965

2031068
3808344

10675596

29470141

30022655

30022655

30755426

30755426

34095971

40298670

40493514

43507550

51550467

56563975

57648043

58818960

71801383

72283845

73805330

75527921

78105977

85292936

95457138

97524281
102420908
103306890
121576846
124072425

Region end

99616542
100840352
101047459
102112090
109324059
112055873
116017795
116515721
118009270
121234503
126462023
144992878
147471200
147676554
159232971
168784360
175144944

2140862
3917849

10785508

29580071

30132654

30132654

30865118

30865118

34205789

40418882

40603300

43617547

51670722

56673746

57757862

58928887

71911333

72393767

73966332

75637322

78215941

85401929

95567100

97634118
102530890
103427375
121697335
124234953

Peak start

99556633
100780449
100977427
102052354
109264330
111996180
115958166
116455732
117949353
121121350
126259968
144934095
147411224
147616850
159173066
168724391
175084965

2081068
3858344

10725596

29520141

30072655

30072655

30805426

30805426

34145971

40348670

40543514

43557550

51600467

56613975

57698043

58868960

71851383

72333845

73865381

75577921

78155977

85342936

95507138

97574281
102470908
103367406
121637341
124175144

Peak end

99566542
100790352
100987371
102062090
109274059
112005873
115967795
116465721
117959270
121131298
126266104
144942878
147421200
147626554
159182971
168734360
175094944

2090862
3867849

10735508

29530071

30082654

30082654

30815118

30815118

34155789

40358454

40553300

43567547

51610364

56623746

57707862

58878887

71861333

72343767

73875098

75587322

78165941

85351929

95517100

97584118
102480890
103377375
121647335
124184953

168

Peak p
value

3.89E-08
1.98E-10
3.92E-10
2.39E-09
9.91E-10
6.96E-09
2.92E-08
3.02E-08
2.00E-08
4.34E-11
7.17E-10
2.16E-09
3.71E-09
1.41E-08
5.64E-10
2.04E-09
1.95E-08
1.17E-09
2.50E-08
1.72E-08
6.31E-09
3.94E-08
3.94E-08
1.83E-08
1.83E-08
5.31E-09
1.21E-09
1.27E-08
1.37E-08
1.41E-09
2.87E-08
1.82E-08
1.20E-08
2.61E-09
5.93E-09
2.63E-10
7.22E-09
2.97E-08
1.33E-08
3.18E-08
1.29E-08
2.63E-08
7.08E-11
1.25E-08
8.87E-09

Gene EnsemblID

n.a.

n.a.

n.a.

n.a.
ENSG00000112893
n.a.
ENSG00000092421
n.a.

n.a.

n.a.
ENSG00000173926
n.a.
ENSG00000133710
ENSG00000178172
n.a.

n.a.
ENSG00000113749
ENSG00000112699
n.a.
ENSG00000111846
ENSG00000112462
ENSG00000204623
ENSG00000204622
ENSG00000196230
ENSG00000137312
ENSG00000124493
n.a.
ENSG00000156564
ENSG00000171462
ENSG00000170927
ENSG00000151914
n.a.

n.a.

n.a.

n.a.
ENSG00000185760
n.a.

n.a.

n.a.

n.a.
ENSG00000186231
ENSG00000164418
n.a.
ENSG00000146350
ENSG00000188580

Gene name

n.a.
MANZ2A1
n.a.

SEMAG6A

Mar-03
n.a.
SPINK5
SPINK6
n.a.
n.a.
HRH2
GMDS
n.a.
GCNT2
OR12D3
Céorf12
HLA-]
TUBBP2
FLOT1
GRM4
n.a.
LRFN2
DLK2
PKHD1
DST

n.a.
KLHL32
GRIK2
n.a.
Cé6orf170
NKAIN2



Region start

125760855
128435397
131672420
132479486
137332672
145265416
150643133
1211748
3349469
3688578
10067005
18395394
19093001
19437502
27995905
30172426
30797248
32286745
38567244
38887364
42336317
46043377
48479572
78616613
79049197
80886668
86760734
86760734
93306422
96169763
107961491
109257448
112927739
120256851
134888399
135322320
136841043
139165373
145185621
145531771
145978272
152157001
155550844
208415
1705411

Region end

126018604
128544982
131782151
132589184
137442017
145375412
150762907
1321585
3459397
3797977
10176870
18504697
19202990
19557610
28105595
30292686
30906903
32396675
38675831
38997130
42446204
46153174
48589536
78726128
79158088
80996120
86870643
86870643
93416374
96279575
108071157
109367225
113037473
120397509
134998230
135432160
137051779
139275331
145295288
145683118
146088244
152378499
155660839
318356
1815223

Peak start

125810855
128485397
131722420
132529486
137382672
145315416
150703492
1261748
3399469
3738578
10117005
18445394
19143001
19497666
28045905
30222426
30847248
32336745
38617244
38937364
42386317
46093377
48529572
78666613
79099197
80936668
86810734
86810734
93356422
96219763
108011491
109307448
112977739
120306851
134938399
135372320
136992020
139215373
145235621
145623501
146028272
152207001
155600844
258415
1755411

Peak end

125820802
128494982
131732151
132539184
137392017
145325412
150712907
1271585
3409397
3747977
10126870
18454697
19152990
19507610
28055595
30232347
30856903
32346675
38625831
38947130
42396204
46103174
48539536
78676128
79108088
80946120
86820643
86820643
93366374
96229575
108021157
109317225
112987473
120315576
134948230
135382160
137001779
139225331
145245288
145633118
146038244
152216725
155610839
268356
1765223

169

Peak p
value

6.44E-09
5.86E-09
4.60E-09
1.24E-08
1.63E-09
3.22E-09
5.46E-09
1.07E-08
1.32E-08
1.34E-08
3.94E-09
4.17E-09
3.81E-08
3.73E-09
1.19E-09
2.03E-08
1.66E-08
3.58E-08
2.64E-08
1.47E-08
1.06E-08
9.18E-09
1.22E-08
4.04E-09
5.45E-10
1.63E-09
1.21E-08
1.21E-08
1.33E-08
2.24E-08
3.42E-08
1.86E-09
8.09E-09
4.15E-09
1.49E-08
2.74E-09
8.31E-09
4.21E-09
3.29E-09
3.63E-09
1.51E-08
5.74E-09
8.66E-09
3.69E-08
2.23E-08

Gene EnsemblID

n.a.
ENSG00000152894
n.a.

n.a.
ENSG00000016402
n.a.
ENSG00000009765
ENSG00000164853
ENSG00000146555
n.a.

n.a.
ENSG00000048052
ENSG00000146618
n.a.
ENSG00000153814
n.a.
ENSG00000106121
ENSG00000154678
ENSG00000078053
ENSG00000006715
n.a.

n.a.
ENSG00000179869
ENSG00000187391
n.a.

n.a.
ENSG00000182165
ENSG00000005471
ENSG00000105825
ENSG00000127922
ENSG00000128590
n.a.

n.a.
ENSG00000106025
ENSG00000155561
n.a.
ENSG00000157680
ENSG00000059377
n.a.
ENSG00000174469
n.a.
ENSG00000133627
n.a.
ENSG00000182366
ENSG00000104728

Gene name

n.a.
PTPRK
n.a.
n.a.
IL20RA
n.a.
IYD
UNCX
SDK1
n.a.
n.a.
HDAC9Y
FERD3L
n.a.
JAZF1
n.a.
C7orf67
PDEIC
AMPH
VPS41
n.a.
n.a.
ABCA13
MAGI2
n.a.
n.a.
TP53TG1
ABCB4
TFPI2
SHFM1
DNAJB9
n.a.
n.a.
TSPAN12
NUP205
n.a.
DGKI
TBXAS1
n.a.
CNTNAP2
n.a.
ACTR3B
n.a.
FAMB87A
ARHGEF10
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Region start

2012608
2805335
5089077
9715838
15971622
16558329
17745658
18537864
19774737
21035976
23872153
30040446
34429457
35652255
39384731
43282130
51648670
53198222
56092434
58405055
75090808
82752068
90213031
101654683
102425851
102665235
108836877
123762254
124847797
125030117
125030117
828249
9068470
12422510
15034374
16060688
16493888
16834638
23423526
25141263
26520067
29746957
33156428
75515677
78889455

Region end

2122585
2914910
5199074
9824929
16465601
16668184
17855653
18657976
19882676
21145846
24053220
30254387
34538406
35869146
39515235
43401494
51758579
53308206
56202352
58514501
75200595
82861800
90322251
101764371
102535707
102774334
108946357
123871894
124957595
125139840
125139840
937949
9178227
12532330
15144031
16170630
16654533
16944635
23533213
25251193
26629986
29856465
33264833
75625498
78999267

Peak start

2062608
2855335
5139077
9765838
16021622
16608329
17795658
18587864
19824737
21085976
23993884
30195378
34479457
35723988
39455323
43332130
51698670
53248222
56142434
58455055
75140808
82802068
90263031
101704683
102475851
102715235
108886877
123812254
124897797
125080117
125080117
878249
9118470
12472510
15084374
16110688
16596474
16884638
23473526
25191263
26570067
29796957
33206428
75565677
78939455

Peak end

2072585
2864910
5149074
9774929
16031379
16618184
17805653
18597648
19832676
21095846
24003220
30204387
34488406
35733305
39465235
43342076
51708579
53258206
56152352
58464501
75150595
82811800
90272251
101714371
102485707
102724334
108896357
123821894
124907595
125089840
125089840
887949
9128227
12482330
15094031
16120630
16604533
16894635
23483213
25201193
26579986
29806465
33214833
75575498
78949267

170

Peak p
value

2.86E-09
2.20E-08
2.12E-09
1.48E-08
3.61E-09
3.95E-08
1.08E-08
4.24E-09
2.68E-08
4.78E-09
1.19E-09
7.39E-09
6.82E-09
8.39E-10
1.43E-09
1.55E-09
2.51E-09
3.95E-08
2.19E-08
1.15E-08
1.98E-09
1.98E-08
6.97E-10
1.33E-08
2.71E-09
7.18E-09
3.38E-08
1.41E-08
4.01E-09
1.20E-08
1.20E-08
2.84E-08
8.33E-10
2.69E-08
3.09E-08
3.10E-08
6.02E-10
2.22E-09
1.16E-09
1.85E-09
8.75E-09
8.91E-09
1.40E-08
2.15E-08
2.49E-08

Gene EnsemblID

ENSG00000036448
ENSG00000183117
n.a.

n.a.
ENSG00000038945
n.a.
ENSG00000104760
ENSG00000156011
ENSG00000175445
n.a.

n.a.
ENSG00000104671
n.a.
ENSG00000156687
ENSG00000197475
ENSG00000188877
ENSG00000147481
ENSG00000147488
ENSG00000206579
n.a.
ENSG00000154589
ENSG00000164695
n.a.
ENSG00000174226
n.a.
ENSG00000083307
n.a.
ENSG00000178764
ENSG00000176853
ENSG00000214814
ENSG00000181171
ENSG00000137090
ENSG00000212829
n.a.

n.a.

n.a.
ENSG00000173068
n.a.

n.a.

n.a.

n.a.

n.a.
ENSG00000122711
n.a.

ENSG00000197969

Gene name

MYOM2
CSMD1
n.a.
n.a.
MSR1
n.a.
FGL1
PSD3
LPL
n.a.
n.a.
DCTN6
n.a.
UNC5D
n.a.
POTEA
SNTG1
ST18
XKR4
n.a.
LY96
CHMP4C
n.a.
SNX31
n.a.
GRHL2
n.a.
ZHX2
FAM91A1
FER1L6
C8orf54
DMRT1
RPS26P3

n.a.
SPINK4
n.a.

VPS13A
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Region start

86242046
92846673
101043505
106948244
114690945
124528802
125932298
457451
2964799
9500977
10338229
28448769
52636659
55947070
57976303
58447738
59350285
67839770
68095045
72364993
77030367
80845369
91042186
91042186
107959593
118102470
119927194
121821212
122491162
122845219
129358894
130720206
132063026
19599663
20333900
21498292
38081876
42656749
43967603
58330409
59269972
59269972
60117880
62313644
79189185

Region end

86351675
92956032
101152971
107058151
114810936
124638591
126041700
567339
3074760
9610968
10448024
28558609
52746506
56056778
58086266
58556956
59460215
67960010
68205021
72474888
77139863
80955098
91152142
91152142
108069331
118212240
120036247
121940070
122601064
122965152
129478427
130830092
132193172
19709441
20443811
21608073
38397628
42766347
44077272
58440287
59379867
59379867
60237203
62423505
79298636

Peak start

86292046
92896673
101093505
106998244
114740945
124578802
125982298
507451
3014799
9550977
10388229
28498769
52686659
55997070
58026303
58497738
59400285
67900085
68145045
72414993
77080367
80895369
91092186
91092186
108009593
118152470
119977194
121881671
122541162
122905267
129418898
130770206
132113026
19649663
20383900
21548292
38131876
42706749
44017603
58380409
59319972
59319972
60167880
62363644
79239185

Peak end

86301675
92906032
101102971
107008151
114750746
124588591
125991700
517339
3024760
9560968
10398024
28508609
52696506
56006778
58036266
58506956
59410215
67910010
68155021
72424888
77089863
80905098
91102142
91102142
108019331
118162240
119986247
121890070
122551064
122915152
129428427
130780092
132122982
19659441
20393811
21558073
38141394
42716347
44027272
58390287
59329867
59329867
60177422
62373505
79248636

171

Peak p
value

9.67E-10
1.73E-08
2.79E-08
3.24E-08
2.42E-09
2.33E-08
6.06E-09
2.24E-08
8.02E-09
4.16E-10
3.87E-09
2.56E-08
1.91E-08
2.35E-08
1.81E-09
1.41E-08
3.51E-08
8.10E-10
2.66E-08
5.61E-09
3.91E-08
2.08E-08
1.73E-08
1.73E-08
3.67E-09
3.25E-08
4.24E-09
1.49E-08
2.24E-08
2.88E-10
5.64E-09
2.66E-09
1.98E-09
1.44E-08
1.32E-08
1.71E-08
7.65E-11
2.98E-08
1.46E-08
2.16E-10
3.84E-08
3.84E-08
4.66E-09
3.53E-08
1.36E-08

Gene EnsemblID

n.a.

n.a.

n.a.
ENSG00000070214
ENSG00000119457
ENSG00000148215

n.a.
ENSG00000151240

n.a.

n.a.

n.a.
ENSG00000150054
ENSG00000185532
ENSG00000150275

n.a.

n.a.

n.a.
ENSG00000183230
n.a.

n.a.
ENSG00000148655
ENSG00000165424
ENSG00000107798
ENSG00000119917
n.a.
ENSG00000203837
ENSG00000165669
n.a.
ENSG00000120008
n.a.
ENSG00000186766
n.a.

n.a.
ENSG00000166833
ENSG00000185238
ENSG00000165973
n.a.

n.a.
ENSG00000205126
ENSG00000156689
ENSG00000166900
ENSG00000166902
ENSG00000181995
ENSG00000133316

n.a.

Gene name

n.a.
n.a.
n.a.

SLC44A1
SLC46A2
OR5C1
n.a.
DIP2C
n.a.
n.a.
n.a.
MPP7
PRKG1
PCDH15
n.a.
n.a.
n.a.
CTNNA3
n.a.
n.a.
C10orf11
ZCCHC24
LIPA
IFIT3
n.a.
PNLIPRP3
C100rf84
n.a.
BRWD2
n.a.
FOXI2
n.a.
n.a.
NAV2
PRMT3
NELL1
n.a.
n.a.
ACCSL
GLYATL2
STX3
MRPL16
Cllorf64
WDR74

n.a.



Chr

11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13

Region start

87039769
94189954
94189954
98546472
104211100
108856049
115314545
117032884
133741819
133741819
8514544
10216569
10940252
15367046
15642821
27468053
27829119
37373017
39042747
42947052
43903077
47976799
51471942
53447620
53672209
57487096
82082786
90069420
92512995
104744718
111651772
124796117
125697760
127336467
129970602
18826967
21811159
33045825
37735362
38709451
41080309
59019597
67205241
69250850
69935300

Region end

87149407
94340418
94340418
98656077
104320241
108965664
115424243
117142563
133851594
133851594
8749273
10357713
11050194
15551364
15752509
27578003
27938883
37482558
39152452
43056574
44012159
48086591
51591311
53557566
53782077
57596550
82192689
90188955
92622599
104854597
111761376
124905655
125807745
127446321
130080381
18936302
21920958
33155700
37897881
38819343
41190243
59129025
67315076
69381120
70045211

Peak start

87089769
94281500
94281500
98596472
104261100
108906049
115364545
117082884
133791819
133791819
8689395
10297834
10990252
15491436
15692821
27518053
27879119
37423017
39092747
42997052
43953077
48026799
51532039
53497620
53722209
57537096
82132786
90119420
92562995
104794718
111701772
124846117
125747760
127386467
130020602
18876967
21861159
33095825
37817996
38759451
41130309
59069597
67255241
69310997
69985300

Peak end

87099407
94290418
94290418
98606077
104270241
108915664
115374243
117092563
133801594
133801594
8699273
10307713
11000194
15501364
15702509
27528003
27888883
37432558
39102452
43006574
43962159
48036591
51541311
53507566
53732077
57546550
82142689
90129118
92572599
104804597
111711376
124855655
125757745
127396321
130030381
18886302
21870958
33105700
37825888
38769343
41140243
59079025
67265076
69320981
69995211

172

Peak p
value

2.92E-08
8.28E-10
8.28E-10
3.93E-08
5.27E-09
1.72E-08
2.90E-09
8.07E-10
7.41E-09
7.41E-09
1.00E-08
7.14E-09
1.98E-10
7.99E-09
1.65E-08
2.82E-08
9.22E-09
3.81E-08
8.62E-09
5.99E-09
1.31E-08
1.28E-08
1.19E-10
9.93E-09
1.00E-08
5.07E-09
1.25E-08
3.52E-09
1.65E-08
3.23E-08
5.77E-09
9.75E-09
1.76E-09
6.75E-09
6.14E-10
1.23E-08
6.31E-09
9.43E-09
5.96E-09
1.47E-08
1.32E-08
4.14E-10
1.65E-09
6.02E-10
2.64E-08

Gene EnsemblID

n.a.
ENSG00000166025
ENSG00000150316

n.a.
ENSG00000204403

n.a.

n.a.
ENSG00000177103
ENSG00000149328
ENSG00000109956
ENSG00000197614
ENSG00000139112
ENSG00000212127
ENSG00000151490
ENSG00000151491
ENSG00000165935
ENSG00000087448
ENSG00000139117
ENSG00000188906
ENSG00000139173
ENSG00000177119
ENSG00000178401
ENSG00000170423
ENSG00000172551
ENSG00000123307
ENSG00000139263

n.a.
ENSG00000011465
ENSG00000220515

n.a.
ENSG00000089169

n.a.
ENSG00000189238

n.a.
ENSG00000111452
ENSG00000132958

n.a.

n.a.
ENSG00000120686
ENSG00000183722
ENSG00000102763

n.a.

n.a.
ENSG00000150361

n.a.

Gene name

n.a.
AMOTL1
CwWc15
n.a.
CASP12
n.a.
n.a.
DSCAML1
GLB1L2
B3GAT1
MFAPS5
GABARAPL1
TAS2R14
PTPRO
EPS8
C120rf70
KLHDC5
CPNE8
LRRK2
TMEM117
ANO6
DNAjC22
KRT78
MUCL1
NEUROD4
LRIG3
n.a.

DCN

n.a.
GPR133
TPTE2
n.a.
n.a.
UFM1
LHFP
KIAA0564
n.a.
n.a.
KLHL1



Chr

13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16

Region start

78100336
88515298
90985406
92591140
102790532
103029936
104117902
107473958
33332299
39502985
44235814
51451495
56863240
66785355
78298536
79894340
80497989
83493714
89445739
92505675
97037280
102737704
105544863
105896339
24522549
25983676
31915235
34045559
42143313
46107395
50280355
58233152
66850000
91574654
98331160
6192831
7465646
8237634
8431090
46456451
50453993
52889717
56644417
76961320
81740232

Region end

78210043
88696158
91095220
92700988
102900338
103264439
104227897
107583809
33475474
39633018
44503667
51561385
56973172
66895034
78408276
80004336
80607253
83603697
89565316
92615092
97146999
102847561
105652736
106004171
24632371
26093570
32024854
34155535
42263882
46216678
50389827
58342375
66959768
91684241
98451106
6302510
7575546
8357193
8695537
46587768
50563859
52999318
56753769
77071263
81860227

Peak start

78150336
88575469
91035406
92641140
102840532
103204988
104167902
107523958
33415622
39563054
44285814
51501495
56913240
66835355
78348536
79944340
80547989
83543714
89495739
92555675
97087280
102787704
105594863
105946339
24572549
26033676
31965235
34095559
42193313
46157395
50330355
58283152
66900000
91624654
98381160
6242831
7515646
8297823
8635588
46527985
50503993
52939717
56694417
77011320
81790232

Peak end

78160043
88585278
91045220
92650988
102850338
103214439
104177897
107533809
33425474
39573038
44295703
51511385
56923172
66845034
78358276
79954336
80557253
83553697
89505678
92565092
97096999
102797561
105602736
105954171
24582371
26043570
31974854
34105535
42203285
46166678
50339827
58292375
66909768
91634241
98390857
6252510
7525546
8307193
8645537
46537768
50513859
52949318
56703769
77021263
81800178

173

Peak p
value

1.43E-08
1.82E-09
1.96E-08
3.90E-08
3.11E-08
7.73E-10
1.65E-08
8.43E-09
3.46E-09
9.36E-10
1.64E-08
1.73E-08
3.43E-08
3.86E-08
3.02E-08
1.58E-08
1.85E-08
4.67E-09
1.48E-09
3.81E-09
1.67E-10
1.14E-08
1.37E-08
2.05E-08
9.68E-09
1.32E-09
9.65E-09
4.91E-10
1.17E-08
5.27E-09
1.60E-08
2.46E-08
6.04E-09
1.92E-09
8.01E-09
3.99E-08
1.13E-08
4.72E-09
2.59E-09
1.67E-08
2.11E-08
2.56E-08
1.66E-08
3.50E-09
5.64E-10

Gene EnsemblID
ENSG00000152193

n.a.
ENSG00000179399
ENSG00000183098

n.a.

n.a.

n.a.

n.a.
ENSG00000129521
n.a.

n.a.
ENSG00000186469
ENSG00000139977
ENSG00000072415
ENSG00000021645
n.a.
ENSG00000165409
n.a.
ENSG00000140025
ENSG00000100605
n.a.

n.a.

n.a.
ENSG00000214398
ENSG00000166206
ENSG00000104044
ENSG00000198838
n.a.
ENSG00000171877
ENSG00000188467
ENSG00000128833
n.a.
ENSG00000140350
n.a.
ENSG00000140470
n.a.
ENSG00000078328
n.a.
ENSG00000067365
n.a.

n.a.

n.a.
ENSG00000070761
ENSG00000186153
ENSG00000140945

Gene name

RNF219
n.a.
GPC5
GPC6

n.a.
EGLN3
n.a.
n.a.
GNG2
NAT12
MPP5
NRXN3
n.a.
TSHR
n.a.
Cl4orf143
ITPK1

n.a.
GABRB3
0CA2
RYR3
n.a.
FRMD5
SLC24A5
MYO5C
n.a.
ANP324
n.a.
ADAMTS17
n.a.
n.a.
n.a.
C1l60rf68
n.a.
n.a.
n.a.
C160rf80
wwox
CDH13



Chr

16
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
20
20
20

Region start

83598485
21088013
37028879
51318754
56142640
60365115
60778059
63844587
72195918
28618964
36029899
53189468
59529215
64138301
64754914
65711578
68603842
71520972
11669484
11898124
33747932
36767849
39135597
41007576
45223926
48579080
48579080
51237331
52471796
52471796
56427836
57575452
59434571
59736464
951502
6241475
19170791
20622014
24173207
41716665
43279190
44708708
44708708
49288547
52190430

Region end

83708477
21198002
37138251
51428539
56252518
60474458
60907702
63954520
72325982
28791790
36139593
53299216
59639135
64248289
64958486
65821486
68713818
71640987
11778917
12007462
33869312
36884574
39255304
41117442
45374319
48688321
48688321
51347303
52580956
52580956
56536923
57716035
59544505
59846379
1061318
6351403
19280743
20731953
24293349
41826636
43399244
44818465
44818465
49398425
52422425

Peak start

83648485
21138013
37078879
51368754
56192640
60415115
60848310
63894587
72266413
28732104
36079899
53239468
59579215
64188301
64804914
65761578
68653842
71581089
11719484
11948124
33797932
36827973
39185597
41057576
45314937
48629080
48629080
51287331
52521796
52521796
56477836
57636087
59484571
59786464
1001502
6291475
19220791
20672014
24223207
41766665
43329190
44758708
44758708
49338547
52362487

Peak end

83658477
21148002
37088251
51378539
56202518
60424458
60857702
63904520
72275982
28741790
36089593
53249216
59589135
64198289
64814826
65771486
68663818
71590987
11728917
11957462
33807586
36834574
39195195
41067442
45324319
48638321
48638321
51297303
52530956
52530956
56486923
57646041
59494505
59796379
1011318
6301403
19230743
20681953
24233177
41776636
43338818
44768465
44768465
49348425
52372425

174

Peak p
value

2.73E-08
1.31E-08
2.57E-09
7.16E-10
6.68E-09
5.28E-09
1.98E-10
9.55E-09
8.53E-09
2.52E-10
1.01E-08
3.43E-08
1.01E-08
1.25E-08
5.60E-10
1.81E-09
3.16E-08
4.17E-09
2.16E-08
3.98E-08
1.88E-09
1.42E-09
1.92E-08
8.14E-10
4.80E-09
1.21E-09
1.21E-09
1.49E-08
1.97E-08
1.97E-08
3.91E-08
8.83E-10
9.68E-09
4.88E-09
1.04E-08
5.52E-09
1.89E-08
3.55E-08
4.23E-10
2.99E-08
1.23E-08
3.91E-09
3.91E-09
2.89E-08
1.90E-08

Gene EnsemblID

ENSG00000153786
ENSG00000034152
ENSG00000173812

n.a.
ENSG00000141376
ENSG00000120063

n.a.
ENSG00000141337
ENSG00000182534
ENSG00000166960

n.a.
ENSG00000119547
ENSG00000166396

n.a.
ENSG00000150636
ENSG00000150637
ENSG00000166342

n.a.
ENSG00000197933
ENSG00000197054

n.a.

n.a.
ENSG00000186008
ENSG00000167595
ENSG00000197782
ENSG00000131126
ENSG00000124466
ENSG00000204866
ENSG00000197405
ENSG00000134830

n.a.
ENSG00000167555
ENSG00000204577
ENSG00000187095
ENSG00000125818

n.a.
ENSG00000185052
ENSG00000188559

n.a.
ENSG00000101057
ENSG00000124107
ENSG00000172315
ENSG00000197496

n.a.

n.a.

Gene name

ZDHHC7
MAP2K3
EIF1
n.a.
BCAS3
GNA13
n.a.
ARSG
MXRA7
C18orf34
n.a.
ONECUT2
SERPINB7
n.a.
CCDC102B
CD226
NETO1
n.a.
ZNF823
ZNF763
n.a.
n.a.
n.a.
C19orf55
ZNF780A
TEX101
LYPD3
IGFL2
C5AR1
GPR77
n.a.
ZNF534
LILRA6
LILRA2
PSMF1
n.a.
SLC24A3
C200rf74
n.a.
MYBL2
SLPI
TP53RK
SLC2A10
n.a.

n.a.



Chr Region start

20 57837075
20 58623432
21 21295000
21 22932648
21 27938947
21 29727785
21 30380160
21 35817141
21 37893505
22 24480901
22 32730938
CHB+JPT

1 37025194
63942953
64184683
75416996
103469185
109758910
179416676
181805606
181805606
194034592
206138351
245170726
4161943
7544018
15042617
24383855
37629764
81642954
86420650
107132184
151224799
177424441
188528149
194687010
202052305
215921581
223625575
17757230
18971639
97781565
99331808
109057897
110294094
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Region end

57947032
58743393
21404989
23042420
28048735
29837153
30489836
35926909
38003502
24590850
32840882

37133411
64052760
64293968
75526492
103578851
109868628
179526507
181915529
181915529
194144585
206248286
245280081
4271354
7653585
15152501
24503789
37739660
81752433
86530548
107252362
151334526
177533521
188638106
194817154
202162058
216031383
223755822
17867059
19080822
97890978
99441778
109167716
110403858

Peak start

57887075
58683447
21345000
22982648
27988947
29777785
30430160
35867141
37943505
24530901
32780938

37075194
63992953
64234683
75466996
103519185
109808910
179466676
181855606
181855606
194084592
206188351
245220726
4211943
7594018
15092617
24433855
37679764
81692954
86470650
107182184
151274799
177474441
188578149
194737010
202102305
215971581
223695838
17807230
19021639
97831565
99381808
109107897
110344094

Peak end

57897032
58693393
21354989
22992420
27998735
29787153
30439836
35876909
37953502
24540850
32790882

37083411
64002760
64243968
75476492
103528851
109818628
179476507
181865529
181865529
194094585
206198286
245230081
4221354
7603585
15102501
24443679
37689660
81702433
86480548
107191113
151284526
177483521
188588106
194746818
202112058
215981383
223705822
17817059
19030822
97840978
99391778
109117716
110353858

175

Peak p
value

2.15E-08
1.24E-09
6.10E-10
1.98E-09
1.36E-09
1.23E-09
3.09E-10
2.92E-09
2.25E-09
9.59E-09
2.61E-08

1.44E-10
8.65E-09
3.12E-09
1.35E-09
8.47E-09
3.05E-10
2.53E-10
3.83E-08
3.83E-08
6.22E-09
2.39E-10
7.94E-09
9.47E-09
6.78E-09
3.62E-09
1.57E-09
9.21E-09
9.19E-09
2.24E-08
7.87E-10
4.69E-09
4.74E-09
1.73E-08
4.07E-11
3.38E-08
1.74E-08
4.62E-10
2.06E-08
5.05E-09
1.94E-08
1.07E-08
2.94E-09
3.76E-08

Gene EnsemblID
ENSG00000196074

n.a.
ENSG00000154654
n.a.

n.a.
ENSG00000171189
ENSG00000156282
n.a.
ENSG00000157542
ENSG00000133454

n.a.

ENSG00000163873
ENSG00000185483
n.a.
ENSG00000137968
n.a.
ENSG00000143028
ENSG00000179452
ENSG00000162704
ENSG00000143344
n.a.
ENSG00000174059
ENSG00000197472
n.a.

n.a.

n.a.
ENSG00000198399
ENSG00000163171
n.a.
ENSG00000115548
n.a.

n.a.

n.a.

n.a.

n.a.
ENSG00000155754
ENSG00000115414
n.a.
ENSG00000131374
n.a.

n.a.
ENSG00000198068
n.a.

ENSG00000114487

Gene name

SYCP2
n.a.
NCAM2
n.a.
n.a.
GRIK1
CLDN17
n.a.
KCNJ6
MY018B

n.a.

GRIK3
RORI1
n.a.
SLC44A5
n.a.
SYPL2
n.a.
ARPC5
RGL1
n.a.
CD34
ZNF695
n.a.
n.a.
n.a.
ITSN2
CDC42EP3
n.a.
JMJD1A

n.a.

n.a.
ALS2CR11
FN1
n.a.
TBC1D5
n.a.
n.a.
OR5H15
n.a.

MORC1



Chr
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Region start

136796133
146472561
155702265
160810006
164187145
6288142
17250145
19648308
32612876
41648592
70013085
86616416
135610281
159516223
167024921
170916232
176524029
178028544
178841769
8941824
97214622
117563179
124457396
127902655
137003365
141304610
25155429
63776582
67166270
112815920
129338050
3992147
19431848
49162814
54604266
101468685
110928160
119178681
131201425
155367424
10846529
11780143
50218674
56934254
120373469

Region end

136906087
146582522
155812163
160919764
164297136
6408528
17360122
19758257
32722011
41835140
70122666
86725866
135720147
159637555
167134656
171026110
176633194
178158603
178951541
9051609
97324613
117693097
124567289
128012328
137113016
141413293
25265396
63886531
67276239
112925256
129447104
4101869
19541741
49271468
54714221
101578345
111037066
119288390
131311164
155477353
10956442
11890010
50338697
57044165
120483155

Peak start

136846133
146522561
155752265
160860006
164237145
6338142
17300145
19698308
32662876
41719050
70063085
86666416
135660281
159577788
167074921
170966232
176574029
178078544
178891769
8991824
97264622
117623357
124507396
127952655
137053365
141354610
25205429
63826582
67216270
112865920
129388050
4042147
19481848
49212814
54654266
101518685
110978160
119228681
131251425
155417424
10896529
11830143
50278737
56984254
120423469

Peak end

136856087
146532522
155762163
160869764
164247136
6348095
17310122
19708257
32672011
41728350
70072666
86675866
135670147
159587555
167084656
170976110
176583194
178088424
178901541
9001609
97274613
117632864
124517289
127962328
137063016
141363293
25215396
63836531
67226239
112875256
129397104
4051869
19491741
49221468
54664221
101528345
110987066
119238390
131261164
155427353
10906442
11840010
50288697
56994165
120433155

176

Peak p
value

1.69E-08
2.04E-10
5.66E-09
5.02E-09
8.85E-09
1.32E-09
4.34E-09
1.02E-08
2.20E-08
5.46E-10
8.97E-09
8.25E-09
3.01E-10
1.27E-10
9.55E-09
3.74E-08
1.15E-08
1.57E-09
2.14E-08
1.67E-08
7.33E-09
4.50E-09
1.22E-08
2.80E-08
8.45E-09
2.17E-09
1.27E-08
1.15E-08
4.07E-11
3.33E-08
2.23E-08
1.63E-09
2.70E-08
1.34E-08
7.81E-09
2.17E-08
3.93E-11
3.92E-08
3.69E-10
1.63E-08
3.98E-08
2.21E-10
1.07E-08
2.47E-08
2.05E-09

Gene EnsemblID

n.a.

n.a.

n.a.
ENSG00000151967
n.a.
ENSG00000109501
ENSG00000047662
n.a.

n.a.
ENSG00000014824
ENSG00000213759
ENSG00000138639
n.a.

n.a.
ENSG00000038295
n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.
ENSG00000146021
ENSG00000113552
ENSG00000168405
n.a.

n.a.

n.a.
ENSG00000196569
ENSG00000146555
n.a.

n.a.
ENSG00000170419
ENSG00000160967
ENSG00000184903
n.a.

n.a.
ENSG00000204876
ENSG00000171044
ENSG00000205882
n.a.
ENSG00000147507

n.a.

Gene name

n.a.
n.a.
n.a.
SCHIP1
n.a.
WES1
FAM184B
n.a.
n.a.
SLC30A9
UGT2B11
ARHGAP24

n.a.
KLHL3
GNPDA1
CMAH
n.a.
n.a.
n.a.
LAMAZ
SDK1
n.a.
n.a.
VSTM2A
CUX1
IMMPZL
n.a.
n.a.
n.a.
XKR6
DEFB134
n.a.
LYN

n.a.



Chr
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Region start

120935575
10600129
11045707
16551692
75961384

123769116

131607709

3902232
55577106
55782701
59322139
82071433
87117583
127061186
4718977
23620797
25087541
25971643
37908714
39263416
39692796
87138674
96698477
97528280
32672358
53231280
53231280
84618003
97169923

129969331
45225436
60298813

104456061

105018750
40336454
61892963
61892963
86513328
98336682

5482839
79629749
81746275
8891763
36944831
53182090

Region end

121045403
10709873
11165140
16660889
76071044

123878892

131717544

4012090
55687093
55892539
59575727
82253516
87226925
127170208
4828330
23730561
25208180
26090783
38018331
39372951
39802176
87248425
96807835
97638256
32782327
53340940
53340940
84727973
97278998

130079205
45333565
60408388

104566048

105128603
40446426
62002122
62002122
86623194
98446142

5592836
79739291
81854494
9001519
37054809
53291839

Peak start

120985575
10650129
11095707
16601692
76011384

123819116

131657709

3952232
55627106
55832701
59402926
82121433
87167583
127111186
4768977
23670797
25137541
26021643
37958714
39313416
39742796
87188674
96748477
97578280
32722358
53281280
53281280
84668003
97219923

130019331
45275436
60348813

104506061

105068750
40386454
61942963
61942963
86563328
98386682

5532839
79679749
81796275
8941763
36994831
53232090

Peak end

120995403
10659873
11105500
16610889
76021044

123828892

131667544

3962090
55637093
55842539
59412905
82129901
87176925
127120208
4778330
23680561
25146942
26031382
37968331
39322951
39752176
87198425
96757835
97588256
32732327
53290940
53290940
84677973
97228998

130029205
45283565
60358388

104516048

105078603
40396426
61952122
61952122
86573194
98396142

5542836
79689291
81804494

8951519
37004809
53241839

177

Peak p
value

7.94E-09
1.97E-09
2.33E-12
1.24E-08
5.75E-09
2.53E-09
1.48E-08
1.11E-11
1.69E-09
7.64E-09
6.56E-11
1.34E-09
1.84E-08
3.95E-08
1.32E-08
5.83E-09
7.38E-09
5.98E-10
8.80E-09
3.73E-09
7.02E-09
1.43E-08
5.68E-09
7.40E-09
2.36E-08
5.61E-10
5.61E-10
5.94E-11
1.40E-08
3.46E-08
7.00E-09
3.47E-08
3.36E-09
7.58E-09
2.39E-09
2.60E-08
2.60E-08
1.31E-09
8.46E-09
1.45E-08
1.22E-08
6.43E-11
1.57E-09
3.60E-08
6.13E-10

Gene EnsemblID
ENSG00000155792

n.a.

n.a.
ENSG00000173068
n.a.
ENSG00000175764
ENSG00000136878
n.a.
ENSG00000150275
n.a.

n.a.
ENSG00000133665
n.a.

n.a.
ENSG00000167346
n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.
ENSG00000087470
ENSG00000135447
ENSG00000135413
ENSG00000198774
n.a.
ENSG00000111452
ENSG00000215475
n.a.

n.a.

n.a.
ENSG00000214013
ENSG00000103657
ENSG00000035664
ENSG00000140538
ENSG00000140470
n.a.
ENSG00000140905
ENSG00000140945
ENSG00000065320
ENSG00000186847
ENSG00000181610

Gene name

DEPDC6
n.a.
n.a.

BNC2
n.a.
TTLL11
USP20
n.a.

PCDH15

n.a.
DNM1L
PPPIRIA
LACRT
RASSF9
n.a.
GPR133
SIAH3
n.a.
n.a.
n.a.
GANC
HERC(1
DAPK2
NTRK3
ADAMTS17
n.a.
GCSH
CDH13
NTN1
KRT14
MRPS23



Chr

17
17
18
18
18
18
18
18
19
19
20
20
20
21
21
YRI

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3

Region start

56131340
65545487
11005451
53823966
59506677
61582394
63684655
70573244
6087442
36749293
11938626
22404140
31120574
20989362
21707908

4870735
13823309
20413206
36934932
42809335
59811568
73159742
79829438
86419276
99855589
106377980
155242061
173448741
184419087
191738540
213667620
221394736
246384277
24382278
54476778
84191980
114848255
132735607
141894443
182246665
205719400
536594
2373053
5320406

Region end

56240825
65655093
11115425
53933503
59616415
61702170
63794519
70683006
6197373
36858184
12048402
22513528
31230422
21099246
21816420

4980651
13933241
20522555
37097131
42918788
59921231
73269292
79949721
86528838
100046207
106487733
155351428
173558687
184529045
191848404
213777582
221504627
246494129
24502243
54586707
84311960
114958065
132855558
142004338
182369058
205828370
646563
2482381
5430190

Peak start

56181340
65595487
11055451
53873966
59556677
61632394
63734655
70623244
6137442
36799293
11988626
22454140
31170574
21039362
21757908

4920735
13873309
20463206
37037187
42859335
59861568
73209742
79889943
86469276
99966739
106427980
155292061
173498741
184469087
191788540
213717620
221444736
246434277
24432278
54526778
84241980
114898255
132785607
141944443
182296665
205769400
586594
2423053
5370406

Peak end

56190825
65605093
11065425
53883503
59566415
61642103
63744519
70633006
6147373
36808184
11998402
22463528
31180422
21049246
21766420

4930651
13883241
20472555
37047131
42868788
59871231
73219292
79899721
86478838
99976721
106437733
155301428
173508687
184479045
191798404
213727582
221454627
246444129
24441844
54536707
84251876
114908065
132795561
141954338
182306170
205778370
596563
2432381
5380190

178

Peak p
value

9.07E-11
1.40E-09
9.09E-10
5.42E-10
4.61E-09
7.88E-09
8.11E-09
2.16E-08
1.45E-09
3.01E-08
4.46E-09
2.92E-08
9.59E-09
3.26E-09
5.02E-09

8.07E-09
4.48E-10
1.10E-08
1.91E-09
2.70E-08
6.47E-09
8.16E-09
3.87E-09
3.96E-08
8.25E-11
4.08E-10
3.18E-09
1.74E-11
1.94E-09
2.65E-08
3.91E-08
1.05E-08
2.86E-09
1.94E-11
2.70E-08
3.48E-09
7.01E-09
2.37E-09
7.28E-09
1.81E-10
1.14E-09
4.57E-09
2.66E-08
2.13E-08

Gene EnsemblID

ENSG00000141376
ENSG00000153822
n.a.
ENSG00000049759
ENSG00000166396
ENSG00000081138
n.a.
ENSG00000215421
ENSG00000130377
n.a.

n.a.
ENSG00000125798
ENSG00000186191
n.a.

ENSG00000154654

n.a.
ENSG00000116731
ENSG00000158816
ENSG00000163873
ENSG00000186409
ENSG00000172456

n.a.

n.a.

n.a.
ENSG00000156869
n.a.
ENSG00000132694
ENSG00000116147
ENSG00000143341
n.a.

n.a.
ENSG00000143502
ENSG00000177233
ENSG00000198399
ENSG00000115306
n.a.
ENSG00000175497
n.a.
ENSG00000168702
ENSG00000162992
ENSG00000116117
n.a.
ENSG00000144619

n.a.

Gene name

BCAS3
KCNj16
n.a.
NEDD4L
SERPINB7
CDH7
n.a.
ZNF407
ACSBG2
n.a.
n.a.
FOXA2
C200rf186
n.a.

NCAM2

n.a.
PRDMZ2
VWAS5B1
GRIK3
n.a.
FGGY
n.a.
n.a.
n.a.
FRRS1
n.a.
ARHGEF11
TNR
HMCN1
n.a.
n.a.
SUSD4
ORZ2M3
ITSN2
SPTBN1
n.a.
DPP10
n.a.
LRPI1B
NEUROD1
PARD3B
n.a.
CNTN4

n.a.
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Region start

23081221
36364625
41349401
43693436
64426658
75304187
78245678
79104378
95290048
95751850
99247597
104242065
105261477
108157665
141867812
146485421
149306627
167698224
179975850
184434340
189887078
190943750
193191467
197331035
983248
3500900
8971648
11616229
14278121
17782634
21263121
35748496
42709663
43806692
55388408
57065485
58080145
63343946
64015330
88950767
88950767
93811847
97557869
100210496
108083711

Region end

23202040
36494650
41459183
43801778
64536323
75414076
78355243
79213990
95399666
95861845
99357585
104352042
105371078
108267642
141977715
146594742
149416518
167807954
180085645
184544050
189996944
191053505
193301396
197441026
1093172
3621054
9081406
11726216
14387775
17912613
21372734
35858336
42819646
43916412
55497816
57175425
58190090
63453869
64125212
89060764
89060764
93921502
97790761
100330411
108193607

Peak start

23142243
36414625
41399401
43743436
64476658
75354187
78295678
79154378
95340048
95801850
99297597
104292065
105311477
108207665
141917812
146535421
149356627
167748224
180025850
184484340
189937078
190993750
193241467
197381035
1033248
3550900
9021648
11666229
14328121
17832634
21313121
35798496
42759663
43856692
55438408
57115485
58130145
63393946
64065330
89000767
89000767
93861847
97730837
100270745
108133711

Peak end

23152040
36424144
41409183
43751778
64486323
75364076
78305243
79163990
95349666
95811845
99307585
104302042
105321078
108217642
141927715
146544742
149366518
167757954
180035645
184494050
189946944
191003505
193251396
197391026
1043172
3560375
9031406
11676216
14337775
17842088
21322734
35808336
42769646
43866412
55447816
57125425
58140090
63403869
64075212
89010764
89010764
93871502
97740761
100280411
108143607

179

Peak p
value

1.08E-09
8.25E-11
2.20E-09
2.54E-08
1.77E-09
8.48E-09
7.75E-09
2.04E-09
7.15E-09
1.67E-08
8.66E-09
1.93E-10
2.11E-08
2.86E-10
1.92E-08
1.81E-10
2.48E-08
2.84E-08
4.38E-09
1.91E-10
2.79E-08
1.54E-08
1.40E-08
1.81E-08
1.97E-08
1.03E-08
2.09E-08
3.61E-08
1.98E-08
8.48E-09
3.79E-08
2.26E-10
3.38E-09
4.00E-09
3.62E-09
3.65E-08
1.06E-09
1.29E-08
8.39E-09
1.54E-08
1.54E-08
1.91E-09
5.04E-09
3.38E-11
1.36E-08

Gene EnsemblID

n.a.
ENSG00000144681
ENSG00000168038
ENSG00000011198
ENSG00000163638

n.a.

n.a.
ENSG00000169855
ENSG00000178694

n.a.
ENSG00000196578

n.a.
ENSG00000214405

n.a.
ENSG00000155890

n.a.

n.a.

n.a.
ENSG00000197584
ENSG00000053524
ENSG00000145012
ENSG00000073282

n.a.
ENSG00000163958
ENSG00000178222
ENSG00000163956
ENSG00000186146

n.a.

n.a.

n.a.
ENSG00000185774
ENSG00000047365
ENSG00000215203
ENSG00000183783

n.a.
ENSG00000196503

n.a.

n.a.

n.a.
ENSG00000152595
ENSG00000183199
ENSG00000152208

n.a.
ENSG00000198099
ENSG00000155011

Gene name

n.a.
STAC
ULK4

ABHDS5
ADAMTS9
n.a.
n.a.
ROBO1
NSUN3
n.a.
OR5AC2

n.a.

n.a.

n.a.

TRIM42

n.a.

n.a.

n.a.

KCNMB2
MCF2L2

LPP
TP63

n.a.

ZDHHC19
RNF212
LRPAP1

DEFB131

n.a.

n.a.

n.a.

KCNIP4
ARAP2
GRXCR1
KCTD8

n.a.
ARL9

n.a.

n.a.

n.a.
MEPE

HSP90AB3P
GRID2

n.a.
ADH4
DKK2
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Region start

119894987
131910075
138091938
143671542
148291906
153392228
157265631
159758019
159758019
162172027
163615182
176361854
176790390
184204236
189969174
190658887
4255299
18324455
21505816
23155746
65647250
71514708
83807680
94619514
103953314
104967588
117597895
117763488
128649555
141305842
151213949
152869545
160127170
163518471
166345073
174377023
29434364
30433695
30844975
31345585
32669640
38950190
48315912
57420721
63776582

Region end

120075813
132020008
138201765
143781515
148475054
153502206
157375276
159867896
159867896
162281987
163725014
176471559
176900273
184313605
190079118
190819031
4365223
18434442
21655905
23265626
65780812
71624621
83917381
94729254
104062812
105076529
117707254
118019158
128759390
141415580
151323931
152989663
160257093
163628135
166454989
174486770
29554196
30543670
30954911
31455426
32859076
39060170
48580494
57767987
63886526

Peak start

119944987
131960075
138141938
143721542
148415209
153442228
157315631
159808019
159808019
162222027
163665182
176411854
176840390
184254236
190019174
190739050
4305299
18374455
21565840
23205746
65720959
71564708
83857680
94669514
104003314
105017588
117647895
117959270
128699555
141355842
151263949
152919545
160187277
163568471
166395073
174427023
29484364
30483695
30894975
31395585
32719640
39000190
48520533
57698266
63826582

Peak end

119954789
131970008
138151765
143731515
148425054
153452206
157325276
159817896
159817896
162231987
163675014
176421559
176850273
184263605
190029118
190749027
4315223
18384442
21575831
23215626
65730812
71574621
83867381
94679254
104012812
105026529
117657254
117969158
128709390
141365580
151273931
152929422
160197053
163578135
166404989
174436770
29494303
30493670
30904911
31405426
32729569
39010170
48530494
57707862
63836526

180

Peak p
value

4.92E-11
5.68E-09
1.84E-08
2.12E-09
4.79E-11
2.83E-10
1.37E-09
7.97E-09
7.97E-09
2.79E-08
4.34E-09
3.73E-08
3.38E-11
7.42E-09
3.34E-09
1.14E-09
1.33E-09
2.15E-08
9.29E-09
2.28E-09
2.16E-09
2.00E-08
1.52E-08
2.25E-08
2.55E-09
1.95E-08
1.27E-09
1.14E-08
5.72E-09
1.95E-08
5.66E-10
5.98E-10
1.61E-10
1.41E-08
5.64E-11
3.47E-08
2.02E-09
9.33E-09
3.09E-08
3.38E-09
2.71E-10
2.67E-09
1.55E-08
7.48E-09
2.72E-09

Gene EnsemblID
ENSG00000150961

n.a.

n.a.

n.a.

n.a.
ENSG00000109670
n.a.
ENSG00000205208
ENSG00000171503
n.a.

n.a.

n.a.
ENSG00000150625
ENSG00000151718
n.a.

n.a.

n.a.

n.a.
ENSG00000198014
n.a.
ENSG00000205619
ENSG00000113048
n.a.
ENSG00000175471
n.a.

n.a.

n.a.

n.a.

n.a.
ENSG00000113552
ENSG00000145888
ENSG00000155511
ENSG00000118322
n.a.

n.a.

n.a.
ENSG00000112462
n.a.
ENSG00000214894
ENSG00000204525
ENSG00000179344
ENSG00000124721
n.a.

n.a.

n.a.

Gene name

SEC24D

n.a.
FBXW?7
n.a.
C4orf46
ETFDH

n.a.
MRPS27
n.a.

MCTP1

n.a.
GNPDA1
GLRA1
GRIA1
ATP10B
n.a.
n.a.
n.a.
OR12D3
n.a.
n.a.
HLA-C
HLA-DQB1
DNAH8
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Region start

64056119
66513711
75710972
75932671
75932671
77147061
82353052
85803437
95133876
109231959
120421792
122083715
124400554
140346414
151154546
154853049
157990558
158409833
160592439
168799357
169488931
170511524
3735339
4163560
17913563
18439265
19430315
29893633
35376998
41972250
42335633
53396948
54410200
55320648
64855038
91012764
92435168
118474018
125428929
133069253
134848292
139169143
140963597
146943839
158732284

Region end

64166056
66623618
75832458
76042343
76042343
77257059
82462699
85913316
95243862
109371825
120531600
122193546
124510298
140456180
151263329
154962780
158100241
158519226
160702211
168909344
169598810
170621330
3845287
4273457
18106534
18549221
19540260
30003330
35497388
42081762
42445581
53506758
54529392
55430641
64964875
91121597
92545093
118614637
125538905
133229109
134967619
139278799
141073140
147053376
158852296

Peak start

64106119
66563711
75772925
75982671
75982671
77197061
82403052
85853437
95183876
109281959
120471792
122133715
124450554
140396414
151204546
154903049
158040558
158459833
160642439
168849357
169538931
170561524
3785339
4213560
17963563
18489265
19480315
29943633
35426998
42022250
42385633
53446948
54470275
55370648
64905038
91062764
92485168
118554731
125478929
133170018
134908327
139219143
141013597
146993839
158792304

Peak end

64116056
66573618
75782458
75992343
75992343
77207059
82412699
85863316
95193862
109291853
120481600
122143546
124460298
140406180
151213329
154912780
158050241
158469226
160652211
168859344
169548810
170571330
3795287
4223457
17973313
18499221
19490260
29953330
35436796
42031762
42395581
53456758
54479392
55380641
64914875
91071597
92495093
118564637
125488905
133179109
134917619
139228799
141023140
147003376
158802296

181

Peak p
value

1.25E-09
4.55E-09
2.11E-08
3.55E-08
3.55E-08
3.09E-08
2.95E-08
3.48E-08
3.61E-08
2.40E-09
1.08E-08
2.94E-08
2.84E-08
1.23E-08
1.77E-08
7.90E-09
6.16E-09
2.23E-08
2.49E-08
2.95E-09
2.33E-08
1.99E-08
1.74E-09
2.02E-08
2.51E-09
1.05E-09
1.05E-08
1.58E-08
1.10E-09
1.51E-08
8.62E-10
5.19E-09
8.08E-10
1.45E-11
2.04E-08
2.57E-09
1.31E-09
5.68E-09
2.87E-09
2.45E-10
5.37E-09
4.18E-10
6.74E-11
7.56E-10
1.68E-09

Gene EnsemblID
ENSG00000146166

n.a.

n.a.
ENSG00000111799
ENSG00000112695

n.a.

n.a.

n.a.

n.a.
ENSG00000118690
n.a.

n.a.
ENSG00000188580
n.a.
ENSG00000120278
ENSG00000153721
ENSG00000175048
ENSG00000122335
ENSG00000112499
ENSG00000112562
n.a.
ENSG00000112584
ENSG00000146555
n.a.
ENSG00000071189
ENSG00000048052
n.a.
ENSG00000136193
n.a.
ENSG00000106571
n.a.

n.a.

n.a.
ENSG00000132434
ENSG00000169921
n.a.

n.a.

n.a.

n.a.
ENSG00000131558
ENSG00000155561
ENSG00000059377
ENSG00000127359
ENSG00000174469

n.a.

Gene name

LGSN
n.a.
n.a.

COL12A1
COX7A2

ARMC2
n.a.
n.a.

NKAINZ
n.a.

PLEKHG1

CNKSR3

ZDHHC14
SERAC1
SLC22A2

SMoc2

n.a.
FAM120B
SDK1
n.a.
SNX13

HDAC9

n.a.
SCRN1
n.a.
GLI3
n.a.
n.a.
n.a.

LANCLZ

n.a.
EXOC4
NUP205
TBXAS1
KIAA1147
CNTNAPZ2

n.a.
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Region start

1702312
3654876
3906844
4594679
5710355
23016243
32897840
79200198
82332049
85398122
92489226
120051706
127158213
130241742
130816197
132362634
134440359
135926238
137092623
138496674
9680605
10388782
12037077
12652157
15955008
24653105
31644278
44684944
91690411
100412521
107308722
107308722
138250273
138822720
138822720
25169318
47057619
55093068
57604041
58913807
68147491
92049635
107134271
109003054
118507959

Region end

1812271
3764742
4016736
4704634
5820327
23126155
33007836
79310061
82441679
85518354
92598877
120161675
127268063
130351579
130926195
132472596
134550339
136036101
137212194
138606420
9790514
10498677
12147065
12762146
16064891
24763039
31754115
44794637
91800172
100522373
107417306
107417306
138356368
138930998
138930998
25279195
47167276
55202990
57723632
59023667
68256569
92159497
107244178
109112833
118617886

Peak start

1752312
3704876
3956844
4644679
5760355
23066243
32947840
79250198
82382049
85458531
92539226
120101706
127208213
130291742
130866197
132412634
134490359
135976238
137142623
138546674
9730605
10438782
12087077
12702157
16005008
24703105
31694278
44734944
91740411
100462521
107358722
107358722
138300273
138872720
138872720
25219318
47107619
55143068
57664215
58963807
68197491
92099635
107184271
109053054
118557959

Peak end

1762271
3714742
3966736
4654634
5770327
23076155
32957836
79260061
82391679
85468354
92548877
120111675
127218063
130301579
130876195
132422596
134500339
135986101
137152586
138556420
9740514
10448677
12097065
12712146
16014891
24713039
31704115
44744637
91750172
100472373
107367306
107367306
138306368
138880998
138880998
25229195
47117276
55152990
57673632
58973667
68206569
92109497
107194178
109062833
118567886

182

Peak p
value

1.62E-08
5.43E-10
2.18E-09
9.24E-09
1.14E-08
1.10E-09
3.44E-08
1.11E-08
1.90E-08
9.92E-10
1.76E-08
2.73E-08
2.24E-08
4.31E-09
1.04E-08
1.63E-08
1.67E-09
1.93E-08
6.95E-10
3.61E-08
7.64E-09
1.67E-09
2.49E-08
1.88E-08
2.29E-08
2.10E-09
2.44E-08
2.62E-08
3.98E-08
4.75E-09
3.38E-09
3.38E-09
7.29E-09
1.76E-08
1.76E-08
8.03E-09
5.69E-09
4.29E-10
4.23E-09
3.30E-08
3.31E-08
1.31E-08
2.75E-08
1.19E-08
2.26E-08

Gene EnsemblID

ENSG00000104728

n.a.

n.a.

n.a.

n.a.
ENSG00000173530
n.a.

n.a.
ENSG00000164687
n.a.

n.a.
ENSG00000184374
n.a.

n.a.
ENSG00000147697
n.a.
ENSG00000008513
n.a.

n.a.

n.a.

n.a.

n.a.

n.a.
ENSG00000107165
ENSG00000164989
n.a.

n.a.

n.a.

n.a.
ENSG00000136928
ENSG00000106701
ENSG00000106692
ENSG00000165661
ENSG00000177943
ENSG00000107223
ENSG00000099256
ENSG00000198250
n.a.

n.a.

n.a.
ENSG00000183230
n.a.

n.a.

n.a.

ENSG00000188316

Gene name

ARHGEF10

n.a.
TNFRSF10D
n.a.
n.a.
FABP5L2
n.a.
n.a.
COLECI10
n.a.
n.a.
GSDMC
n.a.

ST3GAL1

n.a.
TYRP1
C9orf93
n.a.
n.a.
n.a.
n.a.
GABBR2
FSDI1L
FKTN
QSox2
MAMDC4
EDF1
PRTFDC1
ANTXRL
n.a.
n.a.
n.a.
CTNNA3
n.a.
n.a.
n.a.

C100rf134



Chr

10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14

Region start

134207902
5007434
6015825
6753243
34336403
48255938
55119145
55119145
58322153
71924296
93804371
93804371
97528804
98832809
126138569
2190860
10945041
17722238
41400616
43420652
57301424
72491600
86107277
113947438
124356881
125356974
18795614
25176123
28986360
42430804
45940089
51855900
62485115
67284250
100825274
21811403
22482624
37655799
54006122
68858623
69034751
72302462
76462869
87461459
105942432

Region end

134412074
5117204
6125787
6873391
34446297
48387052
55229067
55229067
58432053
72034209
93913922
93913922
97638753
98942728
126248207
2300493
11167569
17832178
41510579
43530560
57411025
72611625
86217091
114057220
124466320
125466886
18905535
25285418
29096326
42540355
46050084
51965708
62595091
67393806
100945266
21921291
22592369
37765761
54115972
68978676
69144401
72412083
76572825
87571399
106052419

Peak start

134278316
5057434
6065825
6813393
34386403
48305938
55169145
55169145
58372153
71974296
93854371
93854371
97578804
98882809
126188569
2240860
10995041
17772238
41450616
43470652
57351424
72541600
86157277
113997438
124406881
125406974
18845614
25226123
29036360
42480804
45990089
51905900
62535115
67334250
100885429
21861403
22532624
37705799
54056122
68918680
69084751
72352462
76512869
87511459
105992432

Peak end

134287774
5067204
6075787
6823391
34396297
48315892
55179067
55179067
58382053
71984209
93863922
93863922
97588753
98892728
126198207
2250493
11004915
17782178
41460579
43480560
57361025
72551447
86167091
114007220
124416320
125416886
18855535
25235418
29046326
42490355
46000084
51915708
62545091
67343806
100895266
21871291
22542369
37715761
54065972
68928676
69094401
72362083
76522825
87521399
106002419

183

Peak p
value

3.45E-10
1.41E-08
4.43E-10
1.79E-08
1.06E-08
3.94E-09
3.75E-08
3.75E-08
8.66E-09
2.46E-10
3.48E-08
3.48E-08
1.40E-08
1.77E-08
6.92E-09
8.07E-09
1.82E-08
9.18E-09
1.10E-09
1.45E-09
3.59E-09
1.14E-09
7.17E-10
1.48E-08
3.05E-08
6.52E-09
9.58E-09
1.74E-08
2.39E-08
3.69E-10
2.24E-09
1.22E-08
8.65E-09
7.20E-09
5.51E-09
5.73E-09
3.14E-08
3.52E-08
1.38E-08
2.00E-10
8.14E-10
7.67E-09
1.92E-08
8.04E-10
2.73E-08

Gene EnsemblID

ENSG00000068383
ENSG00000176787
n.a.

n.a.
ENSG00000121691
ENSG00000176547
ENSG00000181927
ENSG00000174982
ENSG00000156689
ENSG00000186642
ENSG00000020922
ENSG00000168876
n.a.

n.a.

n.a.
ENSG00000151067
ENSG00000212127
n.a.

n.a.
ENSG00000184613
n.a.

n.a.

n.a.

n.a.
ENSG00000139364
n.a.

n.a.
ENSG00000132932
ENSG00000139514
ENSG00000133106
ENSG00000136141
ENSG00000136100
n.a.

n.a.
ENSG00000198542
n.a.
ENSG00000100802
ENSG00000139874
ENSG00000100532
ENSG00000100632
ENSG00000175985
ENSG00000205683
ENSG00000119669
ENSG00000054983
ENSG00000187156

Gene name

INPP5A
OR52E2
n.a.
n.a.
CAT
OR4C3
OR4P4
OR4S52
GLYATLZ
PDEZ2A
MRE11A
ANKRD49
n.a.
n.a.
n.a.
CACNAIC
TAS2R14

n.a.
TMEM132B
n.a.
n.a.
ATP8A2
SLC7A1
EPSTI1
LRCH1
VPS36
n.a.
n.a.
ITGBL1
n.a.
C14o0rf93
SSTR1
CGRRF1
ERH
n.a.
DPF3
C14orf4
GALC

n.a.



Chr

15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
17
17
17
17
18
18
18
18
18
19
19
19
19
19
19
19
19
19
20
20
20
20
21
21
21
21

Region start

21711179
25872564
57479321
83658565
93371423
93607440
95867099
7005291
8082635
8576022
9090535
10229060
22817413
46790944
59901557
74887489
75724465
80663239
21091602
23649233
23649233
48778049
11654262
48518185
49678230
71336451
74017896
1518037
21556254
33428608
33814772
34459241
36871058
43457904
52474978
56816295
18733277
24163282
51860627
58592629
21293678
27493692
29759048
35819529

Region end

21821057
25982406
57589164
83768373
93481402
93716802
95976469
7115269
8192555
8706045
9200491
10337712
22988761
46900813
60011534
74997217
75834452
80773163
21213130
23768988
23768988
48887499
11764260
48628069
49788193
71446441
74127878
1627456
21676350
33548642
33924767
34569238
36981031
43567429
52583615
56926116
18839699
24293922
51970421
58702351
21403136
27603684
29878999
35929507

Peak start

21761179
25922564
57529321
83708565
93421423
93657440
95917099
7055291
8132635
8646123
9140535
10279060
22877911
46840944
59951557
74937489
75774465
80713239
21141602
23709249
23709249
48828049
11704262
48568185
49728230
71386451
74067896
1568037
21606254
33488767
33864772
34509241
36921058
43507904
52524978
56866295
18783277
24233949
51910627
58642629
21343678
27543692
29819050
35869529

Peak end

21771057
25932406
57539164
83718373
93431402
93666802
95926469
7065269
8142555
8656045
9150491
10287712
22887894
46850813
59961534
74947217
75784452
80723163
21151092
23718988
23718988
48837499
11714260
48578069
49738193
71396441
74077878
1577456
21615861
33498642
33874767
34519238
36931031
43517429
52533615
56876116
18789699
24243922
51920421
58652351
21353136
27553684
29828999
35879507

184

Peak p
value

1.83E-08
2.22E-09
2.77E-08
9.70E-09
4.12E-09
4.09E-09
3.00E-09
1.73E-08
2.50E-08
7.08E-11
7.41E-09
2.45E-08
1.78E-12
1.12E-09
2.33E-08
1.87E-08
2.50E-09
6.43E-09
1.24E-08
1.96E-08
1.96E-08
5.42E-09
1.88E-09
1.41E-08
6.28E-09
3.88E-09
3.10E-08
7.77E-09
8.48E-09
9.10E-09
3.29E-09
1.11E-08
1.66E-08
5.59E-10
4.57E-09
1.42E-08
4.15E-09
9.10E-12
7.26E-09
2.22E-10
2.53E-08
2.83E-08
6.23E-09
4.01E-09

Gene EnsemblID

n.a.
ENSG00000104044
ENSG00000157470
ENSG00000170776

n.a.

n.a.

n.a.

n.a.

n.a.
ENSG00000067365
ENSG00000182831

n.a.
ENSG00000122254
ENSG00000102910

n.a.
ENSG00000152910
ENSG00000103111
ENSG00000135698
ENSG00000034152
ENSG00000160629
ENSG00000109072

n.a.
ENSG00000141404
ENSG00000187323

n.a.

n.a.

n.a.
ENSG00000181588
ENSG00000213976

n.a.
ENSG00000205243

n.a.

n.a.
ENSG00000099337
ENSG00000134830

n.a.
ENSG00000149443

n.a.

n.a.

n.a.
ENSG00000154654
n.a.
ENSG00000171189

n.a.

Gene name

n.a.
0CAZ2
FAM81A
AKAP13

n.a.
C1l6o0rf68
Cl6orf72

n.a.
HS3ST2
LONP2
n.a.
CNTNAP4
MON1B

MPHOSPH6
MAP2K3
TMEM199

VTN
n.a.
GNAL
DcC

n.a.
KCNK6
GPR77

n.a.
C200rf78
n.a.
n.a.
n.a.
NCAM2
n.a.
GRIK1



Appendix E

The table below lists regions in Akey’s review that overlap with our candidate
regions, and the number of previous genome-wide scans that identified the

region as positively selected. Coordinates are in NCBI36.

Chr Start End No. of scans
1 35091347 36450032 7
1 52834684 53397600 5
1 63896341 64300000 4
1 73110567 73763239 2
1 75412213 75792745 4
1 102950280 103520567 5
1 186911638 187544804 2
1 187734833 188413044 2
1 212836722 213574853 2
1 245200000 245400000 2
2 5937460 6624193 2
2 21520822 21691853 2
2 39873524 40313548 2
2 69000000 69100000 2
2 83200000 83491853 3
2 84300000 85001443 7
2 86420824 86700685 3
2 107252946 107707862 4
2 121388162 121500000 2
2 167488441 167829843 3
2 177021882 178332739 8
2 194388441 194872739 4
2 195445042 197337972 5
2 215700000 216047276 4
2 237100000 237806446 4
3 17174903 17918047 7
3 43171008 43826735 3
3 59659140 59859140 2
3 66549620 66649620 2
3 108648481 109250364 5
3 110200000 110400000 3
3 124800000 124908517 3
3 144980752 145392790 4
3 189890333 190421069 3
3 195600000 195700000 2
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Chr
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Start
1000000
3500000
14117624
32715092
33453829
41100000
60433581
71712335
85052048
93711845
96559478
99861845
135100000
147933837
159500000
165478100
170733084
171504228
172390869
176402530
177900000
11428374
21591332
54919872
75118302
100585818
109051683
116900000
124199397
141324037
48261123
56600000
67209702
95545225
102261123
125797887
129300000
132524241
144769146
158164208
3616258
19000000
28092602
30117938
100190728

End
1100000
3600000
14591044
33416543
34600000
42012240
60833044
71739976
85711845
93911845
96900000
100861845
135637586
148461845
160383102
165764287
171062639
172245075
173690711
177137450
178108882
11964581
22138852
55028135
75321300
101100000
109351683
118039500
124569221
141367520
48400000
56700000
67610632
95800000
102461123
126100000
129400000
132708765
145480251
158660281
3831778
19100000
28200000
30486920
102393972

No. of scans
2
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Chr
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Start
118426018
119136728
135077048
136703651
145499216

9245944
10630705
16087027
20836402
34000000
35611003
50212593
50580000
56962654
82065718
12500000
15900000
24300000
25922398

2950000
55489628
58559648
92000000

107024983
118125403
23600000
24900000
37368196
39594336
48292267
10900000
42500000
48000000
84396635
18774831
21669520
33055423
37603687
51800000
62067478
67150000
102845482
103955437
104398149
104950261

End
118562339
119800000
135518370
137238735
145879474

9900000
11614773
16507429
21282410
35059528
36378014
50500000
52150000
57180754
82400000
12800000
16100000
24679974
27000000

3100000
55857080
59725403
92100000

107512933
118276595
23730424
25092267
38750000
40051695
48392267
11100000
43185479
48300000
85067701
19612163
22133385
33455792
38490126
51909915
62850000
67350000
103213227
104200000
104598149
105324693

No. of scans
2
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Chr Start End No. of scans

14 44280000 44770503 6
14 56700000 57000000 3
14 66779712 66900000 2
14 87235602 87763024 2
14 89492048 89579438 2
14 105800000 105900000 2
15 25800000 26378746 6
15 42200000 42300000 2
15 45937993 46804624 6
15 49844415 50441408 3
15 61145232 62319917 9
15 86550993 87140285 3
16 22840948 23040948 2
16 45959870 47212009 5
16 76927006 77155299 4
17 55211782 56901284 6
17 60400000 60500000 2
18 28600000 29361325 7
18 61600000 61700000 2
18 64675139 64941495 3
18 65689235 66040000 5
19 11875627 12000000 2
19 43400000 43600000 2
19 45194869 45300000 2
20 19831968 20720000 3
20 31200000 31300000 2
20 57849002 58049002 2
21 29719326 30020705 2
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Appendix F

This table shows genes within each enriched functional cluster in the CEU and

YRI populations. Genes are shown in Ensembl ID.

Functional e, Bonferroni
of Genes
cluster p-value
genes
CEU

ENSG00000138650, ENSG00000164853, ENSG00000183230
ENSG00000140945, ENSG00000138696, ENSG00000152894
ENSG00000169760, ENSG00000156282, ENSG00000174469,
ENSG00000177103, ENSG00000165973, ENSG00000118762
27 0.001 ENSG00000169862, ENSG00000077522, ENSG00000169604
ENSG00000060718, ENSG00000112699, ENSG00000134121,
ENSG00000021645, ENSG00000146555, ENSG00000151914,
ENSG00000170927, ENSG00000150275, ENSG00000154654
ENSG00000137975, ENSG00000150637, ENSG00000145012
ENSG00000138650, ENSG00000152208, ENSG00000144749
ENSG00000104974, ENSG00000183117, ENSG00000162763,
ENSG00000138696, ENSG00000152894, ENSG00000174808
ENSG00000174469, ENSG00000156687, ENSG00000109743,
ENSG00000126709, ENSG00000016402, ENSG00000154589
ENSG00000124159, ENSG00000204866, ENSG00000149328,
ENSG00000169604, ENSG00000102763, ENSG00000092421,
ENSG00000169605, ENSG00000134121, ENSG00000188467,
ENSG00000021645, ENSG00000214510, ENSG00000203837,
ENSG00000105825, ENSG00000151490, ENSG00000166342
ENSG00000131126, ENSG00000164418, ENSG00000150275,
ENSG00000124493, ENSG00000179399, ENSG00000172551,
Signal 74 0.002 ENSG00000137975, ENSG00000165409, ENSG00000166206,
ENSG00000111452, ENSG00000011465, ENSG00000150637,
ENSG00000133710, ENSG00000140945, ENSG00000169760
ENSG00000175445, ENSG00000156564, ENSG00000107798,
ENSG00000177103, ENSG00000145536, ENSG00000165973,
ENSG00000144455, ENSG00000171189, ENSG00000109610,
ENSG00000060718, ENSG00000142549, ENSG00000196277,
ENSG00000183722, ENSG00000183098, ENSG00000122711,
ENSG00000146555, ENSG00000170927, ENSG00000134247,
ENSG00000197614, ENSG00000104760, ENSG00000141337,
ENSG00000187095, ENSG00000154654, ENSG00000080224,
ENSG00000174123, ENSG00000124107, ENSG00000140470,
ENSG00000009765, ENSG00000139263.
ENSG00000154654, ENSG00000134121, ENSG00000144749

Cell
adhesion

ighk;CZ- 12 0.001 ENSG00000104974, ENSG00000146555, ENSGO0000065534,
(Kgﬁahl ' ENSG00000036448, ENSG00000177103, ENSG00000134247,

ENSG00000139263, ENSG00000142549, ENSG00000187095
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No.

Functional Bonferroni
of Genes
cluster p-value
genes
YRI

ENSG00000152208, ENSG00000139364, ENSG00000163638,
ENSG00000174469, ENSG00000112562, ENSG00000163956,
ENSG00000112499, ENSG00000143341, ENSG00000204525,
ENSG00000112462, ENSG00000109072, ENSG00000187323,
ENSG00000155011, ENSG00000150625, ENSG00000165661,
ENSG00000152910, ENSG00000169855, ENSG00000173530
ENSG00000151067, ENSG00000158816, ENSG00000155511,
ENSG00000179344, ENSG00000152595, ENSG00000107165,
ENSG00000145888, ENSG00000008513, ENSG00000116147,

;;iﬁsiﬁon o0 00007  ENSG00000099337, ENSG00000099338, ENSG00000106692,

o ENSG00000122254, ENSG00000168702, ENSG00000198542,
ENSG00000177233, ENSG00000171189, ENSG00000143502,
ENSG00000197584, ENSG00000184374, ENSG00000139514
ENSG00000156869, ENSG00000175497, ENSG00000184613,
ENSG00000144619, ENSG00000134830, ENSG00000146555,
ENSG00000212127, ENSG00000176787, ENSG00000139874
ENSG00000196578, ENSG00000054983, ENSG00000166363,
ENSG00000154654, ENSG00000177943, ENSG00000174982,
ENSG00000136928, ENSG00000176555, ENSG00000163873,
ENSG00000197865, ENSG00000176547, ENSG00000104044

RhoGEF . 001

domain : ENSG00000170776, ENSG00000104728, ENSG00000198399
ENSG00000120278, ENSG00000132694, ENSG00000053524

glutamate

receptor 5 004 ENSG00000152208, ENSG00000155511, ENSG00000171189

activity ENSG00000136928, ENSG00000163873.
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Appendix G

Command lines for GENETREE

Generate tree structure:
./seq2tr seq2tr_input seq2tr_output;

Estimate the best theta:
./genetree seq2tr_output seed_theta 100000 6666 -f surf_output -g seed_theta/10
seed_theta*10 500 -m mg_3pop -y 100 -2 -x 1000 > estimate_theta_out;

Estimate TMRCA:

./genetree seq2tr_output estimated_theta 10000000 6666 -m mg_3pop -y 100 -x 1000 >
estimate_TMRCA_output;
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Appendix H

Phylogenetic networks of two regions with recent TMRCAs. A: chr1:28,465,001-
28,480,000; TMRCA 1.992 N. generations. B: chr1:28,920,001-28,940,000; TMRCA

1.962 N. generations.
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