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Abstract 
 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) for histone marks         

has been widely used to characterize non-coding elements of the genome which            

control gene expression and can contribute to disease (Trynka et al. 2013).            

Although, ChIP-seq is a well established method, depending on the mark and both             

availability and the type of cellular material the protocol can be challenging and             

sensitive to technical variability (Park 2009). This can result in inaccurate read            

coverage or low sequencing depth. Methods such as epigenetic imputation (Zhou &            

Troyanskaya 2015; Alipanahi et al. 2015; Ernst & Kellis 2015; Bock & Lengauer             

2008), which statistically infer missing or unobserved regions of the non-coding           

genome, can be used to potentially improve the overall quality of the data. In this               

study, I evaluated the software tool ChromImpute using public and internal data from             

various T cell populations to evaluate the performance of imputation.  

 

Firstly, I tested ChromImpute using data from different T cell populations, including            

CD4+ Effector Memory, CD4+ Central Memory, CD4+ Regulatory T cells, CD3+           

Thymocyte, CD3- Thymocyte, CD4+ Alpha Beta T cells, generated as a part of the              

BLUEPRINT consortium (Adams et al. 2012). For these samples, I imputed five            

chromatin marks: H3K27ac, H3K4me1, H3K4me3, H3K9me3 and H3K27me3 using         

the ROADMAP (Bernstein et al. 2010) and ENCODE (ENCODE Project Consortium           

2012; ENCODE Project Consortium 2004) reference data. Next, I applied          

ChromImpute to data from three regulatory T cell (Treg) samples generated in our             

lab, using a combination of BLUEPRINT and in-house data as a reference            

compendium. To evaluate the imputation performance, I focused on the H3K27ac           

and H3K4me1 marks, as these marks had the greatest sequencing depth. Finally, I             

imputed data for an additional 11 Treg samples to assess if ChromImpute is able to               

preserve genotypically driven variability.  
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This study provided insights into the performance of ChromImpute for histone           

ChIP-seq data. My results indicate that ChromImpute preserves global structure of           

chromatin while reducing noise, filling in missing data and correcting for experimental            

biases. ChromImpute also reduces the impact of technical variability in ChIP-seq           

data. However, I observe that imputation does not capture the genotypic variability.  
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 1. Introduction 
 
The immune system comprises of multiple molecules, cells and organs, working           

together to protect the host from harmful pathogens (Akira et al. 2006). The             

recognition of foreign and harmful organisms by the immune system is not            

straightforward, and there are multiple mechanisms involved in preventing immune          

activation against healthy cells or harmless foreign antigens, like food (Wang et al.             

2014). Autoimmune diseases arise from a malfunction along this intricate network of            

interactions (Rioux & Abbas 2005) and are a grappling problem due to their             

debilitating nature and large treatment costs (Rosenblum et al. 2015). Cytokine           

antagonists, such as TNF- , have shown great efficacy in remediating common           

autoimmune diseases (Kriegler et al. 1988; Colombel et al. 2007; Rutgeerts et al.             

2005; Furst 2010). However, treatment is often received after the disease is in a late               

stage of pathogenesis and to improve current therapeutic alternatives it will be            

important to understand what triggers the initial development of disease.  

 

Some autoimmune diseases are characterized by an imbalance between effector T           

cells and regulatory T cells (Tregs) (Bluestone et al. 2008). Tregs play a key role in                

immune homeostasis as major suppressors of activated T cells and non-functional           

Tregs are thought of as a major player in the downstream cascade of autoimmune              

disease (Kronenberg & Rudensky 2005; Sakaguchi et al. 2008; Li & Zheng 2015).             

Tregs control and regulate T cell activation which in turn helps to maintain             

self-tolerance (Sakaguchi et al. 1995). As such, understanding the role of genetics in             

the development of Tregs is critical in unravelling the reason for Treg malfunction             

and autoimmunity. Many studies have begun to investigate the influence of genetics            

on Treg dysfunction (Guerini et al. 2012; Pidasheva et al. 2011; Raychaudhuri et al.              

2012; Zhou et al. 2011) and have identified certain genetic polymorphisms in genes             

such as CTLA-4, STAT3, FOXP3, and IL-2, which may affect the development and              

function of Tregs (Fletcher et al. 2009; Encinas et al. 1999; Holland et al. 2007;               

Atabani et al. 2005).These findings have also implicated the polygenic nature of            
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autoimmune diseases, which has motivated the expansion of Genome-wide         

association studies (GWAS) have discovered that many disease associated single          

nucleotide polymorphisms (SNPs) fall in non-coding regions of the genome          

(Wellcome Trust Case Control Consortium et al. 2010). These regions often carry            

epigenetic marks and can play a role in regulating gene expression (Trynka et al.              

2013; Trynka & Raychaudhuri 2013).  

 

Given these findings, to understand disease it will be crucial to characterize the             

epigenome of immune cell types. Specifically, understanding how polymorphisms         

affect the function of Tregs could help elucidate the mechanisms behind           

inflammatory cascades in autoimmune disease. However, Tregs are a rare cell type            

and profiling them can be expensive, labor intensive and error prone (Pierini et al.              

2014). One major issue is the scarcity of sequencing data from rare cell populations              

such as Tregs (Librado & Rozas 2009). Genotype imputation methods have been            

developed to help boost power, and recover missing data in various GWAS (Y. Li et               

al. 2009). However, only recently have methods to analyze and impute epigenetic            

information been developed (Ernst & Kellis 2015; Zhou & Troyanskaya 2015). These            

methods can be used to impute data for rare immune cell types, thus capturing              

better epigenetic profiles. Applying this approach to Tregs would help us build a             

foundation for functionally characterizing this cell type and its role in autoimmune            

disease. 

 

In this chapter, I will summarize the current understanding of GWAS and give an              

introduction to imputation and epigenomics in Treg cells. I will then discuss some of              

the limitations of assaying various epigenetic marks and show how these may be             

resolved using imputation methods. 

 

1.1 Challenges in studying complex diseases 
1.1.1 The genetic architecture of common diseases 
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Genome-wide association studies (GWAS) are a type of study designed to           

determine which genetic variants are associated with a given trait (for example, a             

disease) and have been widely used to study common diseases. GWAS works by             

comparing the genotypes of individuals affected by the disease with the genotypes of             

a control group of individuals and are based on the concept of linkage disequilibrium              

(LD), the association between various alleles at different loci in a given individual             

(which is determined by ethnicity) (Bush & Moore 2012). Generally speaking, loci            

that are close together in the genome have a strong LD. Since these alleles are               

present on these haplotypes they tend to be inherited more often together, which             

leads to these alleles being correlated together. A haplotype is a group of alleles that               

are inherited in unison from one parent (Gabriel et al. 2002). Based on this concept,               

one can select a fraction of common variants in a population and rank them based               

on a p-value, which is a function of the number of independent variant tests              

performed (Schork et al. 2013). Next, rare variants can be inferred from already             

sequenced fragments and be imputed based on the genotyped common variants.           

This methodology provides a framework for mapping variants associated to the           

disease. When performing GWAS, individuals are mostly genotyped based on their           

SNPs, as SNPs are the most common form of genetic variation (Martin et al. 2000).               

Because of the large number of genetic variants in the genome and the relatively              

small contribution of each of them to disease, GWAS studies generally need large             

cohort sizes; the larger the sample size, the more accurately one can detect small              

effect sizes i.e. the statistical power increases (Spencer et al. 2009).  

 

During the last decade, GWAS have identified thousands of associations between           

diseases and SNPs (Visscher et al. 2017). These studies have revealed that often             

diseases are caused by the added effect of multiple alleles spread across the             

genome (complex traits) (Raychaudhuri 2011) and that such phenotypes are often           

polygenic (Das et al. 2006). Additionally, most common complex diseases also have            

a significant environmental component (Ramos & Olden 2008).  
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1.1.2 Interpretation of disease associated variants is challenging  

Though GWAS studies have revealed many different disease associations, there are           

several challenges that remain. The majority of variants identified in these studies            

are unlikely to be disease causative (Anderson et al. 2011). This is partly because of               

the low power and resolution GWAS studies have for variants of small effect sizes              

(Manolio et al. 2009). This makes it difficult to translate results from GWAS studies              

into detailed functional mechanisms underlying disease (Edwards et al. 2013). Even           

though a number of etiologies have been uncovered through associated genes and            

pathways, there remains a wide gap between these studies and clinically relevant            

associations (Manolio 2013; Varmus 2010; Evans et al. 2011). 

 

Moreover, many disease associated SNPs fall in intergenic and intronic, non-coding           

regions of the genome (Blattler et al. 2014; Freedman et al. 2011; Tehranchi et al.               

2016). As such, functional follow up on these regions is challenging. There is no              

knowledge of which gene these non-coding variants affect or by which mechanism            

they affect it. Moreover, many of these variants have effects which can be cell-type              

specific (Korte & Farlow 2013). However, often we do not know the gene expression              

in specific cell populations that may be directly affected by the variants. Thus, it has               

become crucial to go beyond associated loci and investigate what is mechanistically            

occurring in these regions and in which cell type those effects are observed. All of               

these hurdles require careful consideration and will be vital in ultimately using human             

genetics to drive translational medicine.  

 

1.2 Epigenetics can be used to study non-coding regions  
1.2.1 Gene expression and cell function are regulated at the epigenetic level 

In the eukaryotic cell nucleus, chromatin is made of packed DNA that is wrapped              

around an octamer of histones known as nucleosome (Lorch et al. 2010). Gene             

expression is dependent on how densely packed chromatin is, a characteristic called            

chromatin accessibility (Tsompana & Buck 2014). The positioning of nucleosomes in           

a genome affects the accessibility of the transcriptional machinery to elements such            
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as transcription factor binding sites at gene promoters and enhancers          

(Radman-Livaja & Rando 2010). In addition, the binding of transcription factors           

themselves affect the accessibility of chromatin (Thurman et al. 2012). Changes in            

chromatin accessibility influence the function of a cell through regulation of gene            

expression (Shu et al. 2011; Korber et al. 2004; Schones et al. 2008).  

 

Within a histone complex, there are four basic histones that form the octamer: H2A,              

H2B, H3 and H4 (Karli et al. 2010). These histones can undergo post-translational             

modifications, which are associated with changes in chromatin accessibility and          

regulatory function (Bannister & Kouzarides 2011; Kouzarides 2007; Rea et al.           

2000). These modifications can be categorized as repressive methylations or          

activating methylations/acetylations (Figure 1.1) (Barski et al. 2007; Liang et al.           

2004; Benevolenskaya 2007; Rosenfeld et al. 2009). 

 

Figure 1.1 Histone modifications used in epigenetic imputation project This          

table represents the different histone modifications that were tested in the Tier 1             

ChromImpute (Ernst & Kellis 2015) study. These histone modifications have diverse effects            

on transcription and are well documented in several experiments (Barski et al. 2007; Liang et               

al. 2004; Benevolenskaya 2007; Rosenfeld et al. 2009; Gates et al. 2017; Lauberth et al.               

2013; Liu et al. 2015).   
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1.2.2 Chromatin profiling can be used to functionally annotate non-coding          

regions  

Regulatory chromatin state can be inferred by profiling the histone marks or            

transcription factors occupying the chromatin, using chromatin immunoprecipitation        

followed by sequencing (ChIP-seq or ChIPmentation) (Schmidl et al. 2015; O’Geen           

et al. 2011). Another assay developed for profiling open chromatin regions is the             

transposase-accessible chromatin followed by sequencing (ATAC-seq) (Buenrostro       

et al. 2013). ChIP-seq against histone marks assays regions tagged by a specific             

chromatin modification, first histone proteins are cross-linked with the DNA bound to            

them. Following the cross-linking, the cells are lysed (cell membranes are broken)            

(Landt et al. 2012). Next sonication is used to shear the DNA in the region (O’Geen                

et al. 2011). Then, chromatin is immunoprecipitated using antibodies against the           

chromatin mark of interest, proteins are removed and DNA is sequenced (Landt et             

al. 2012). ChIPmentation follows the same process as ChIP-seq but combines it with             

sequencing library preparation done by Tn5 transposase (Schmidl et al. 2015). 

 

ATAC-seq uses the Tn5 transposase to randomly insert sequencing adaptors in           

accessible regions of a chromatin sample. The Tn5 acts on DNA located within             

regions of open chromatin. The resulting cutting sites have specific Tn5 adapters            

that can then be amplified via PCR (Buenrostro et al. 2013) and ultimately             

sequenced. 

 

Over 90% of disease associated GWAS variants are non-coding and ChIP-seq is a             

proficient method to begin to annotate non-coding regions (ENCODE Project          

Consortium et al. 2007; Zhang & Lupski 2015; Robertson et al. 2007; Mikkelsen et              

al. 2007; Valouev et al. 2008; Hrdlickova et al. 2014). To drive towards the              

mechanistic cause of disease, GWAS and ChIP-seq can be combined to find which             

SNPs are more likely to be active and also in a given cell type. ChIP-seq has been                 

able to identify enhancers and different active elements in specific tissues (Visel et             

al. 2009). Different tools, such as the GREAT method (McLean et al. 2010) or the               
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JASPAR database (Portales-Casamar et al. 2010), have been built on the foundation            

of ChIP-seq to find transcription factor binding sites.  

 

1.2.3 High-throughput chromatin profiling has technical limitations 

Often times, running chromatin assays can be time intensive and costly. For            

example, despite several improvements since its first use it in 2007, ChIP-seq is still              

biased towards GC rich fragments during library preparation, selection and sequence           

amplification (Quail et al. 2008). And whether a library is prepared for paired-end or              

single-end sequencing can also influence the quality of the reads generated (Chen et             

al. 2012), which can add to the financial burden when designing a ChIP-seq             

experiment. Moreover, when there is an inadequately small number of reads,           

enriched regions became ill defined (Park 2009; Zhang & Pugh 2011). This causes             

the minimum viable sequencing depth for any human samples to be around 40-50             

million reads, which can be costly (Jung et al. 2014).  

 

Given the previous limitations, designing and conducting ChIP-seq assays can be           

expensive and time consuming. Consortia such as ROADMAP (Bernstein et al.           

2010), ENCODE (ENCODE Project Consortium 2004; ENCODE Project Consortium         

2012) and BLUEPRINT (Adams et al. 2012) have generated large amounts of            

epigenetic data across many different cell types. These datasets have shown that            

chromatin marks tend to correlate with each other, which makes a strong case for              

using imputation to aid in epigenetic profiling using chromatin assays, as described            

in the next section (Stunnenberg et al. 2016; ENCODE Project Consortium 2012). 

 

1.3 Imputation can be used to improve epigenetic profiling 
1.3.1 Imputation is routinely used to improve genotyping quality 

High-throughput technologies such as genotyping or epigenetic profiling often exhibit          

technical biases. One way to minimise their impact is by applying imputation. For             

instance, genotype imputation has been used to augment GWAS studies, boost           

power, fine-map associations and help draw conclusions across various GWAS (Y.           
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Li et al. 2009). Fine-mapping is the process of associating causality to disease             

variants with standardized probabilities (Spain & Barrett 2015). Imputation does so           

by predicting genotypes that are not directly assayed in different samples (Marchini            

& Howie 2010). Providing genotype information for every individual base pair in the             

genome is infeasible due to expense and time cost (Mertes et al. 2011). Imputation              

can help address these issues by taking a SNP microarray that surveys a subset of               

different SNPs and predicts the genotypes (Howie et al. 2009). Genotype imputation            

is built off of common haplotype structure, where a reference of these haplotypes is              

used to predict missing genotype values in a set of individuals where a set of               

genotyped SNPs exists (Browning & Browning 2007). After generating this set of            

imputed SNPs, the number of associations can be tested with a larger set of SNPs.               

With increased power, the causal variants in the set of SNPs can be targeted further               

for analysis (NCI-NHGRI Working Group on Replication in Association Studies et al.            

2007).  

 

One common issue that has limited GWAS studies is the diversity in both genotyped              

samples and haplotype references (Hunter & Kraft 2007). However, the increasing           

diversity of HapMap 3 consortium (The International HapMap 3 Consortium et al.            

2010) has helped further improve imputation references (Trynka et al. 2013). Due to             

these advancements, imputation has become a standard practice when performing          

GWAS, as sequencing and genotyping can themselves be expensive and prone to            

errors (Visscher et al. 2017). This method has provided pivotal planning for scientists             

to conduct experiments by genotyping a selection of variants in a sample and             

imputing the remainder ones (Roshyara et al. 2016). It is worth noting that many              

different protocols which capture functional information such as microarrays,         

RNA-seq, ChIP-seq and, ATAC-seq, also contain missing values (Troyanskaya et al.           

2001) and can thus benefit from imputation. 

 

A typical genotype imputation model begins with separating the data into: 1) typed in              

the reference and in the study, 2) untyped in the study but typed in the reference.                
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The SNPs typed in the study are next matched to see if there is a reference                

haplotype that best fits them (Troyanskaya et al. 2001). It is then assumed that the               

SNPs untyped in the study follow the same structure as the reference and hence the               

SNPs are imputed (Y. Li et al. 2009; Marchini & Howie 2010; Troyanskaya et al.               

2001).  

 

A substantial proportion of imputation methods are based on Hidden Markov Models            

(HMMs). HMMs assume the existence of a series of events, where the probability of              

any given event depends only on the state of the previous one (Bini et al. 2005). The                 

adjective “hidden” refers to the idea that the state of an event can be unobserved               

(i.e. hidden). HMMs have been applied to a variety of problems in biology, for              

example DNA motif prediction (Eddy 1998; Krogh 1998) and genotype imputation.           

Genotyping methods based on hidden Markov models generally estimate the          

haplotype (phasing) of each individual from the reference panel only (Howie et al.             

2012). One pitfall to this approach is that it does not take into account the study size                 

when trying to provide missing information (Spencer et al. 2009). Other imputation            

algorithms use machine learning principles to learn from a set of features and more              

accurately predict missing values (Jerez et al. 2010). The most robust imputation            

methods rely on a combination of these two approaches (Cantor et al. 2010).  

 

It is important to verify if the imputation correctly predicted missing values and to test               

if the results obtained are valid. A common way to filter out false-positives is by               

running imputation over many iterations. Afterwards, SNPs are ranked by the           

number of iterations in which they appear and the most frequent SNPs are retrieved.              

Next, one can take a population level approach by looking at the distribution of              

sampled SNPs in each individual and the estimated allele counts that result from             

averaging each SNP occurrence over each iteration, using an r2 type metric (Y. Li et               

al. 2009; Marchini & Howie 2010). One dilemma with these commonly used metrics             

are that rare genotypes may be removed after many iterations. In an effort to capture               

these true-positive SNPs, one can break down each genome into smaller subsets            
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before imputation. Selecting a subset of SNPs when making quality assessments           

allows granular control to keep rare SNPs (Hoffmann & Witte 2015). As frequentist             

association tests are known to inherently lose rare SNPs, overall study design to             

account for rare SNPs is crucial (Pei et al. 2010). Understanding population structure             

when collecting information is also paramount to fine-mapping these SNPs (Marchini           

& Howie 2010).  
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Figure 1.2 Imputation in GWAS General procedure for imputing genotype information.           

First, samples are phased at the genotyped SNPs. Next, SNPs are compared to the              

reference haplotypes (ex. HapMap 3 (The International HapMap 3 Consortium et al. 2010)).             

Sample haplotypes are matched to the best mixture of the reference haplotypes available.             

Finally, values for missing SNPs are predicted (McCarthy et al. 2016).  

 

1.3.2 Imputation can be applied to epigenetic data 

Imputation can also be applied to less traditional applications such as profiling of             

chromatin accessibility or chromatin marks. ChromImpute is a software designed to           

impute epigenetic marks (Ernst & Kellis 2015) with the aim of alleviating some of the               

issues that arise when obtaining epigenetic information. These issues include the           

financial and time cost, as well as not being able to fully map every histone mark in                 

every tissue/cell type, which often leads to lack of power due to insufficient coverage              

(Rivera & Ren 2013). Additionally ChromImpute can be used to correct noise from             

general chromatin assays. The ChromImpute method is based on the fact that            

histone marks tend to be correlated such that the signal from different marks can be               

used to impute signal from histone marks that are missing or have errors (Ernst &               

Kellis 2010).  

 

Given a large reference of histone marks compiled across a diverse set of tissues              

and cell types, ChromImpute provides a platform for imputation of various           

epigenomic signal tracks based on the data generated within an individual           
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experiment. Signal tracks represent the read coverage across a genome. These are            

broken up into 25 base pair (bp) bins genome-wide and each signal is averaged              

within the bins to provide an abstraction of the value. Because of the large number of                

assayed tissue types and histone marks, the ROADMAP and BLUEPRINT projects           

provide the most complete reference panels for ChromImpute (Ernst & Kellis 2015).  

 

The software prioritizes a set of “main” histone marks (Tier 1 marks) which have the               

most observed data in the reference panel. These marks constitute the basis for             

imputation and consist of H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K9me3,         

H3K27ac, H3K9ac and DNA accessibility (Ernst & Kellis 2015).  

 

One major difference arises when evaluating broad and narrow histone          

modifications. Broad modifications generally span the entire gene range whereas          

narrow modifications seem to only span transcription factor binding sites (Starmer &            

Magnuson 2016). Additionally, when studying broad histone marks the obtained          

signal can be low even at large sequencing depths (Jung et al. 2014).  

 

As the nature of imputation in ChromImpute is very different to that of genotype              

imputation software, the metrics for evaluation are also different. ChromImpute takes           

advantage of five key metrics to evaluate the overall efficacy of imputation: 1) a              

genome wide correlation between imputed (predicted) and observed data, 2)          

percentages of the top 1% 25 bp-bins of observed data that are also in the top 1% of                  

the imputed bp-bins when ranked by signal intensity, 3) the percentage of the top 1%               

25 bp-bins of imputed data that are also in the top 5% of the observed bp-bins when                 

ranked by signal intensity, 4) the area under the curve (AUC) of a receiver operating               

characteristic curve when recovering 25 bp-bins in the top 1% of the observed data              

after ranking on imputed signal, and 5) the AUC when recovering 25 bp-bins in the               

top 1% of the imputed data after ranking on observed signal. 
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Figure 1.3 ChromImpute method This software begins by taking different samples (e.g.            

E1, E2, E3) and tabulating each of them based on the different marks within a given sample                 

and then finding other samples with the same mark. Once that process has finished              

regression trees are built around the different marks assayed in a given sample. Additionally,              

the method utilizes the different samples for a given histone mark. By taking an ensemble               

based approach (combining the different regression trees) to calculate predictions, the           

algorithm does not have to worry about taking in any information from the target mark. After                

each regression tree is combined the imputation for a given histone mark for a given sample                

can be calculated using ChromImpute (Ernst & Kellis 2015). 
 

1.4 Thesis outline and goals 

The main objective of this thesis is to perform and evaluate the imputation of              

epigenetic marks in a rare cell type (Tregs) at large scale. Given the importance of               

Tregs in autoimmune diseases, it is becoming markedly clear that the different            

genomic data generated holds valuable insight into the biology of the cells. Using             

statistical techniques like imputation to improve data recovery and quality holds a            

crucial importance in further studies. Using ChromImpute, I imputed several Tier 1            

histone marks in Treg cells and analysed the results to determine the advantages             

and limitations of routinely implementing imputation in ChIP-seq experiments.  
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Aims 
To evaluate if imputation can improve ChIP-seq reference catalogues while 
preserving inherent data structure 
To assess whether imputation can be used in ChIP-seq analysis of genetic 
variability 
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 2. Methods 
2.1 Samples 
The following protocol and design were carried out by Dafni Glinos, a PhD student in               

the lab and Dr. Natalia Kunowska, a Senior Research Assistant in the lab. 

 

1. Setup: The ChIPmentation-seq (ChM-seq) protocol (Schmidl et al. 2015) was          

performed on 100,000 sonicated Treg cells. After sorting and isolating Treg           

cells, those same cells were resuspended in full medium (IMDM, 10%FCS) at            

1-2 million cells per ml.  

2. ChIP-seq protocol:  

a. ChIP-seq libraries were generated using Illumina TruSeq index tags,         

while ChM-seq libraries were generated using the Nextera dual index          

tags.  

b. They cross linked cells by resuspending in a 1% formaldehyde          

solution. 

c. Following a 5 minute incubation at 37 the cells were quenched with            

glycine for 5 minutes to achieve a 125 mM concentration. 

d. They lysed and sonicated cells using the iDeal ChIP-seq kit for           

histones (Diagenode) as instructed by the manufacturer. 

e. They performed immunoprecipitation (IP) using the same kit. For this          

step, they used ChIP-seq grade antibodies against the histone marks          

H3K27ac (Diagenode), H3K27me3 (Abcam), H3K4me1 (Active Motif)       

and H3K4me3 (Active Motif). 

 

f. They prepared sequencing libraries as instructed by the iDeal         

ChIP-seq protocol. When doing ChIPmentation-seq, the two previous        

steps were combined by adding the Nextera Tn5 transposase after the           

IP step. 
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3. Sequencing: Samples were loaded for sequencing on a HiSeq 2500          

instrument and V4 chemistry using standard 75 bp paired-end reads. In total            

there were 14 ChIPmentation-seq libraries that averaged 62 million reads per           

sample. 

4. Data pre-processing: After data acquisition, the Sequencing Facility at the          

Wellcome Sanger Institute demultiplexed the sequencing data and mapped it          

to the human genome. Sequencing files were released in CRAM format. 

 

2.2 ChIP-seq data processing 
I re-mapped the reads from build 37 (GRch37) to the human reference genome build              

38 (GRCh38) using bwa mem algorithm (Li 2013), and converted the aligned reads             

into BED (Kent et al. 2002) format. Only uniquely mapped reads were kept and              

duplicates were removed using samtools version 1.3.1 (H. Li et al. 2009). 

 

The mapped reads were built into a signal track in bedgraph format using MACS2              

(Zhang et al. 2008). The method uses input data i.e. control data, which is generated               

by treating samples the same way in the ChIP-seq protocol but without the addition              

of the antibody against the target epitope. The method then computes if the local              

average read coverage is statistically different compared to the control background.           

This data is referred to as observed data. This step is meant to render the output                

signal tracks to correct for any biases in the different samples.  

 

2.3 Imputation reference panel  
ChromImpute takes the information from the reads as input and converts it into             

smaller fragments, in the Convert step. Specifically, during the Convert step the            

software takes the signal track and averages the read coverage over 25 bp bins              

across the genome. 

 

The construction of the reference panel was performed in two steps. First I built the               

reference panel with the Roadmap (Bernstein et al. 2010) and ENCODE data            
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(ENCODE Project Consortium 2012; ENCODE Project Consortium 2004) as         

specified in the ChromImpute paper (Ernst & Kellis 2015). For that I used 129 cell               

types and 8 histone marks: DNase, H3K27ac, H3K27me3, H3K36me3, H3K4me1,          

H3K4me3, H3K9ac, H3K9me3. Second, I added the BLUEPRINT (Adams et al.           

2012) data to the reference. For that I selected cell types within the general T cell                

population: CD4+ Effector Memory, CD4+ Central Memory, CD4+ Regulatory T cell,           

CD3+ Thymocyte, CD3- Thymocyte, CD4+ Alpha Beta T cell. I used any given mark              

that was available, and the marks that I used were: H3K27ac, H3K27me3,            

H3K36me3, H3K4me1, H3K4me3, H3K9ac, H3K9me3.  

 

The number of reads for each of the cell types varied greatly; most of the reads

came from CD4+ Alpha Beta T cells as these represented the vast majority of the               

total samples. I aimed to have between 100 to 160 million reads per mark per cell                

type as that was the general baseline required to prevent any bias towards a specific               

cell type/mark combination. If there were more than 160 million reads available, I             

would randomly subsample the different read files to reach the total of 160 million              

reads. For example, the CD4+ Alpha Beta T cells had 31 samples with over one               

billion reads. Thus the percentage of reads sampled was far less than for other cell               

types (Figure 2.1.A). Overall, I constructed the reads based on what was available;             

many cell types had a lower number of reads (Tregs, Effector Memory). If there were               

less than 160 million reads in the entire cell type, I used them all in the reference                 

(Figure 2.1.B).  
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A) Percentage of reads used 

 
 

B) Number of reads sampled 

 

Figure 2.1 Reads assembly broken down by cell type and histone mark The             

Blueprint reference panel reads were assembled using downloaded FASTQ (Cock et al.            

2010) files from: https://www.ebi.ac.uk/ega/user/login. The files were then converted into          
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BAM (H. Li et al. 2009) format and combined and added to the existing consortium. A)                

describes the percentage of reads used in the reference and B) illustrates the total number               

of reads sampled in each histone mark.  

 

2.4 Imputation 

There are four steps in the imputation pipeline. The first step is to compute the global                

distance between each of the observed data signal tracks and the reference signal             

tracks for the same histone mark, using a genome wide signal correlation between             

the imputed and observed tracks. For this, I used the ComputeGlobalDist method in             

ChromImpute. The obtained output was a list of samples ranked by the correlation             

with the observed sample signal track in the reference panel for the given histone              

mark. The second step, GenerateTrainData, generates training data by using the           

signal tracks from the same sample with different marks. This step is meant to              

capture any specific sample information and requires that at least 2 histone marks             

are assayed for any given sample. The training data is then combined with the most               

similar samples, up to ten samples, based on the same histone mark. In the third               

step, the model is trained using regression trees, this corresponds to the Train             

command. Each of the different signal tracks are transformed into a regression tree             

that is used to compute imputed signal at a given position. Finally in the fourth step,                

the different trees are then applied, Apply, onto the observed signal track and using              

an ensemble approach, the information from each tree is combined and averaged.            

The final result is a signal track with imputed signal. There is no correction for read                

depth or any biases, and samples that may be deeply sequenced may impute in a               

different way than samples with low sequencing depth.  

 

2.5 Evaluating reference panel  
In order to understand the effectiveness of the reference panel, I performed a signal              

track recovery analysis to evaluate which marks performed best during imputation.           

The marks with the best recovery were H3K27ac, H3K4me3 and H3K4me1 as there             

is the most reference data for these marks. For that I use the Eval tool, provided by                 
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the ChomImpute. The output of this analysis are several metrics for each sample             

and histone mark combination, including: the fraction of the observed top x percent             

signal track in the imputed top x percent signal track and vice versa; the genome               

wide correlation between the observed and imputed signal tracks; the area under the             

ROC for predicting the top x imputed signal with the observed signal; and the area               

under the ROC for predicting the top x observed signal with the imputed signal. Here               

x represents a value that a user can specify for ChromImpute.  

 

2.6 Downstream computation of observed and imputed peaks 
In order to call peaks, and generate the initial signal track, I used the MACS2 (Zhang                

et al. 2008) software. To generate signal tracks I used the commands: macs2 callpeak              

-t <index_file> -f BEDPE -n <temp_peaks_file> -g hs --nomodel -B --SPMR along with             

macs2 bdgcmp -t <bdg_reads> -c <bdg_input> -o <bedgraph_output> -m ppois -S           

<s_value>. In order to call narrow peaks I used this command: macs2 bdgpeakcall -i              

<bedgraph_input> -c <cutoff> -l <min_length> -g <max_gap> --outdir <output_dir> -o          

<output_peak_file>. To call broad peaks use the same command but swap bdgpeakcall with             

bdgbroadcall.  

 

I used BEDTools (Quinlan & Hall 2010) to analyze the generated peaks. To compare              

which peaks were shared as well as unique to the imputed and observed datasets I               

used the intersect, command. An example command to find 20 percent overlap in             

two sets of peaks is: bedtools intersect -a Observed.bed -b Imputed.bed -f 0.2 -r -wo >                

20percentInBoth.bed. To convert BAM files to BED format I used the following            

command: bedtools bamtobed -bedpe -i <bam_file> > <bed_file>. 

 

I used ChIPSeeker (Yu et al. 2015) to provide gene annotations and follow up with               

functional analysis on the different peak files. I also used the UCSC known genes              

version 3.4.0 to annotate genes (Hsu et al. 2006). Exentensive documentation can            

be found here:   

https://bioconductor.org/packages/release/bioc/vignettes/ChIPseeker/inst/doc/ChIPs

eeker.html. 
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I used several Python libraries for analysis: Pybedtools (Dale et al. 2011) as an API               

for BEDTools, Pandas (Mc Kinney n.d.) for data table manipulation, matplotlib           

(Hunter 2007) and seaborn (Waskom et al. 2014) for plotting and graphs, PyPlink to              

handle PLINK (Purcell et al. 2007) files with respect to genotype data, Pathos             

(McKerns et al. 2012) for multiprocessing and code optimization, NumPy (Oliphant           

2006) and SciPy (Millman & Aivazis 2011; Oliphant 2007) for statistics and general             

mathematics. I used iPython (Perez & Granger 2007) and Jupyter Notebooks           

(Kluyver et al. 2016) for quick code prototyping as well. I used Pandas to handle all                

of my data, which allowed for ease to use relational database concepts with tables              

loaded in RAM (Random Access Memory). I used SKlearn (Pedregosa et al. 2011)             

to perform a Linear Regression as well as normalization within the generated            

Pandas dataframes. 

 

I used the UCSC Genome Browser (Kent et al. 2002) to manually verify peak overlap               

and compare and contrast observed and imputed peak information. 

 

The code for the ChromImpute pipeline along with every Python script I developed 

for analysis is available at: 

https://gitlab.internal.sanger.ac.uk/TrynkaLab/ChromImpute. 
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 3. Results 
3.1 Overview 
In this study I focused on understanding how imputation can augment different            

experimental ChIP-Seq assays. In this chapter, I will explore the results of the global              

structure of chromatin when ChromImpute is applied to Treg data, over various            

histone marks. I will then examine the impact of ChromImpute on the technical             

variability of the ChIP-Seq assay. Additionally, I examine the best MACS2 peak            

parameters to use when working with imputation data. Finally, I describe the effects             

of imputation on genotypic variance when analyzing a selection of peaks with eQTL             

effects.  

 

3.2 Imputation preserves ChIP-seq data structure globally 
To determine whether ChromImpute preserves the global structure of chromatin data           

in addition to reducing noise, I examined ChIP-seq data from 3 samples of regulatory              

T cells generated by the Trynka lab. The histone mark assayed was H3K27ac. I              

used the H3K27ac mark as the basis for our evaluation as this mark was the most                

complete and had the best recovery for Tregs in the BLUEPRINT and the Trynka              

Lab samples (Figure 3.1). Peaks called with a p-value lower than 10-5 were analyzed              

using ChIPseeker. I use the term “observed” when referring to the data before any              

imputation had been performed on it.   
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A) Recovery of base pair bins in Blueprint samples 

 
B) Recovery of base pair bins in Trynka Lab samples 

 

Figure 3.1 Imputation accuracy This metric evaluates the top one percent of signal bins              

in the imputed data that is also in the observed data. The Blueprint samples, A) showed the                 

highest recovery in H3K27ac and H3K4me3 marks reads used in the reference. Similarly,             

the Trynka lab samples B) showed the most recovery in H3K27ac, H3K4me3 and H3K4me1              
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marks. Recovery is defined as how much of the top observed signal track is preserved in the                 

imputed signal track. 

 

I found that more peaks overlap with transcription start sites (TSS) in imputed             

compared to observed data (Figure 3.2). Observed samples showed significant          

variability in read count frequency. For example, D170 had the highest read count             

frequency and the lowest sequencing depth. However, upon imputation all samples           

showed a similar distribution around the TSS.  

 

Next, I investigated the location of imputed and observed peaks. I performed this             

analysis on sample D176, which had the highest sequencing depth. I observed an             

increase in peaks located in proximal promoters (within 1kb of the TSS) in imputed              

compared to observed data (Figure 3.3).  
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Figure 3.2 Peak overlap with TSS I overlapped peaks to the nearest TSS position within               

+/- 3kb window. The imputed peaks overlapped closer to the TSS. Results correspond to              

each respective sample (color code) for the H3K27ac mark. The top panel contains the              

imputed peaks, while the bottom contains the observed peaks. 

 
 
 
 
 

31 



 

 

Figure 3.3 Peak annotation relative to gene features. Peaks were annotated by            

distance to a TSS using UCSC HG 38 known genes (Hsu et al. 2006). When there were                 

multiple peak annotations, the annotation within closest distance to the TSS was chosen.             

This distribution was able to capture more promotor peaks in the imputed data, but in doing                

so neglected to capture as much enhancer data. This may clean up spurious peaks, but in                

the process re-align them with promoter regions. 
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A) Pathway enrichment for H3K27ac comparing imputed vs observed peaks
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B) A set of randomly associated peaks for H3K27ac 

 

Figure 3.4 KEGG Pathway Enrichment analysis Genes within 3kb to ChIP-seq peaks            

were annotated via pathway enrichment analysis using the Kyoto Encyclopedia of Genes            

and Genomes (KEGG) database. Circle areas represent the gene ratio, which is proportional             

to the number of genes that overlap a specific pathway. Colors represent the adjusted              

p-value of enrichment for the respective gene set. The KEGG pathway in A) highlights the               

Treg specific pathways found in contrast to B) a set of random peaks that were picked. This                 

was analyzed for the H3K27ac mark. The imputed pathways seemed to be more focused to               

the biology of the T cell. 
 

In order to understand if imputed peaks were relevant to the biology of Treg cells, I                

performed pathway enrichment analysis using KEGG (Figure 3.4). I observed          

noticeable additions in the imputed Treg peaks, including Th17 differentiation.          

Pathways that were dropped included Oocyte meiosis, Sphingolipid and HIF-1          

signaling pathway, and Phosphatidylinositol signaling system. However, the majority         

of pathways are preserved between the two datasets. I concluded that imputation            
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eliminated noisy peaks, while preserving the inherent characteristics of active          

chromatin in Tregs. The noisy peaks annotate to pathways that are not necessarily             

specific to T Cells and those false peaks are removed based on the distribution of               

the peaks on the specific gene annotations.  
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3.3 Imputation reduces technical variability in ChIP-seq data 
I was interested in understanding the effect of ChromImpute on the technical            

variability of ChIP-seq assays. Thus, I imputed ChIPmentation data from 11 Treg            

samples and two histone marks: H3K4me1 and H3K27ac. My assumption was that,            

since samples were from the same cell type and chromatin mark, they should be              

similar in signal track structure and contain a similar set of peaks. I observed that the                

observed and imputed data had on average 10,100 and 13,600 number of peaks,             

respectively. However, imputation markedly reduced the variability in number of          

peaks compared to observed data (Figure 3.5). I performed Bartlett’s test for equal             

variances which returned a statistically significant value to indicate that the variances            

between the number of peaks were indeed different. 

 

Figure 3.5 Comparison of variance in imputed and observed data.The total           

number of peaks per sample called across 11 ChIPmentation samples for the observed and              

imputed data. Bartlett’s test for equal variance revealed a p-value of 3.18 x 10-5. 
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I then asked if the imputed and observed data contained the same set of peaks, as                

well as how much signal intensity varied in observed and imputed peaks. I             

intersected the 11 imputed samples and the 11 observed samples using an overlap             

threshold of 20% between two features. This resulted in a common set of peaks,              

detected in both observed and imputed data. Since each peak had an associated             

signal intensity, I then calculated the variance in peak signal intensity across            

biological replicates in both data sets. I sorted each of the peaks by variance to               

visualize the differences between the two sets of peaks. To control for outliers I              

analyzed, 80% of the shared peaks (Figure 3.6). I observed that signal intensity             

varied 50% less in imputed than it did in observed peaks. 
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A)  
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B)  

 

 

 

Figure 3.6 Distribution of variance for imputed and observed peaks. I identified            

peaks that were shared between observed and imputed data by intersecting peaks from 11              

samples (minimum overlap of 20 percent). A) The distribution of peak variance for signal              

intensity for 80 percent of the peaks. B) I analyzed the variance of signal intensity to provide                 

mean, standard deviation and variance. * indicates a p-value < 0.05 and ** indicates a               

p-value < 0.005 using a two sample t-test to calculate the p-values.   
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A)  

B)
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C)  

  

Figure 3.7 Variance between imputed and observed signal track I decomposed           

observed and imputed signal intensity tracks into 100,000 base pair bins and calculated the              

variance in observed and imputed signal intensity across the 11 biological replicates.            

Variance was calculated using the same bin at the same genome position for the observed               

and imputed samples (y- and x-axis respectively) A). The zoomed in plot B) captures the               

variance difference between imputed and observed. Marginal density plots C) display           

regions of high density within the observed and imputed data for the zoom in.  

 

I wanted to understand what was driving the differences between observed and            

imputed signal tracks. In order to answer this question, I decomposed the observed             

and imputed signal track for each sample into 100,000 base pair bins. The imputed              

signal tracks varied far less than the observed tracks  (Figure 3.7).  
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A) Observed 

 
B) Observed without D177 
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C) Imputed 

 
Figure 3.8 Heatmaps of Unweighted Pair Group Method with Arithmetic Mean           

clustered imputed and observed data. To visualize the similarity between the           

observed and the imputed data I performed Unweighted Pair Group Method with Arithmetic             

Mean (UPGMA) clustering on signal intensity in 100,000-bp bins throughout the wholeɸ            

genome. A) All observed samples, including the low quality sample (D177, most left outlier              

sample); B) Observed samples excluding the low quality D177 sample; C) Imputed samples             

including the low quality D177 sample, which after imputation is no longer an outlier and               

clusters closely with the D109 sample. 
 

Finally, I asked if imputation preserved inter-individual variability. I organized          

observed and imputed signal tracks into heatmaps which included the 11 Treg            

samples previously analyzed (Figure 3.8). The tracks were ordered by hierarchical           

clustering of Euclidean distances. I found that signal intensity varied more in the             

observed samples than it did in the imputed samples (Figure 3.8.A). This            

inter-individual variation in observed samples was evident even after removing the           
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outliers (D177) (Figure 3.8.B). Moreover, the dendrogram of samples obtained using           

the observed signal intensities showed a completely different order to the           

dendrogram of imputed samples (Figure 3.8.C). Thus, I concluded that when           

ChromImpute is applied to a set of signal tracks from different individuals, the             

imputed tracks are much more alike and the inter-individual variation is lost.  

 

3.4 Imputation corrects for experimental biases and missing data 
Often times experimental errors can hinder different experimental assays, and often           

generate false results. I asked whether ChromImpute could help correct for these            

false results and prevent any type of introduced errors or missing data. When             

visualising the data, I noticed that two Treg ChIP-seq samples had lost any read             

pileup spanning the PTPRC gene (Figure 3.9.A). Furthermore, other ChIPmentation          

samples processed did show signal over this gene (Figure 3.9.B). When the data             

was imputed, ChromImpute was able to recover this signal (Figure 3.9.A). The file             

was corrupted and did not include the expected signal. Thus, ChromImpute is able to              

fill in missing information and ultimately build strong reference signal tracks for any             

further analysis downstream. 
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A) Recovery of signal via imputation

 
B) Expected signal without any errors  

 

Figure 3.9 Recovery of signal through imputation. Samples D170 and D176 are two             

individuals for which I observed a loss of intensity signal over a Treg critical CD45 gene,                

PTPRC for histone mark H3K27ac. The location of this gene is at chromosome             

1:198,639,040-198,757,283. A) Upon imputation the signal was recovered in both the           
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replicates. Moreover, when other Treg samples are processed, the signal is very evident B)              

indicating the error likely stemmed from a mishap in the assay. 

 

3.5 Imputation data should be assessed with a broad peak caller 
Peak calling provides a critical basis for evaluating regions of importance in various             

sequencing protocols. I wanted to evaluate how well the MACS2 peak caller            

performed on observed and imputed ChIPmentation data. In particular, I set out to             

evaluate the difference between narrow and broad peaks.  

 

When calling peaks, generally two types peaks can be obtained according to the             

cut-off stringency. Narrow peak calling identifies peaks at a higher significance           

threshold and hence has implications with signal tracks that do not meet certain             

thresholds. Imputation often times attempts to clean up any noisy signal within 25             

base pair bins and dampens the over signal intensity. This can affect the             

downstream peak calling analysis if the signal track has many peaks and troughs             

over a short distance. When visualising our signal tracks, I noted that narrow peak              

calling operates at such a high stringency level, that many peaks become            

fragmented into smaller regions. This is because the stringency criterion for several            

bins is not satisfied (Figure 3.10). 

 

 
Figure 3.10 Imputation disarranged narrow peaks The sample has been called with            

narrow peaks, which are the bands below the signal tracks. The imputed peaks have been               
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broken into many small pieces in comparison to the observed track, and was observed in all                

the different histone marks. The location is chromosome 2:105,744,897-105,894,274. 

 

 
Figure 3.11 Comparing imputed and observed peaks with a narrow peak caller            
Narrow peaks were called for both H3K4me3 histone marks for the same sample (D176).              

After calling, peaks were intersected if the overlap between the peaks was larger than 20               

percent. Each of the peaks for the mark would have observed peaks shattered into multiple               

smaller peaks after the imputation. 

 

Next, I asked if this phenomenon was observed genome wide. I overlapped imputed             

and observed peaks called with a narrow peak caller. The overlap was done by              

genomic coordinate. I found that larger observed peaks tended to get fragmented            

into smaller peaks after imputation, regardless of the histone mark (Figure 3.11).  
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Figure 3.12 Comparing imputed and observed peaks with a broad peak caller            
Broad peaks were called for both H3K27ac and histone marks for the same sample (D176).               

After calling the broad peaks, the imputed peaks would either increase in length or decrease               

in length. Namely, the shattering seems to disappear when using the broad peak caller. 

 

I then performed the same analysis using a broad peak caller, and intersected the              

observed and imputed peaks. Peaks obtained in this way seemed to gain length in              

the imputed data as well as have similar characteristics to the observed peaks             

(Figure 3.12). It is therefore recommended to use a broad peak caller when             

analyzing imputed data. 

 

3.6 Imputation disrupts genotypic variability 
I was interested to see if ChromImpute would preserve or disrupt genotypic            

variability in a ChIPmentation data set. I tested both histone QTLs and eQTLs that              

were initially selected based on their p-values which correspond to the probability of             
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their effects on gene expression (which are different from 0). I only test those SNPs               

within a window from the gene (+/- 500kb). Next, I found which eQTLs had a minor                

allele frequency of at least 30% in our 11 ChIPmentation samples before getting a              

list of 947 eQTLs. Thus, I picked significant eQTLs that had previously been found              

as strongly correlated to peaks in a given region. Following the collection of these              

eQTLs, I then calculated the average signal intensity for those eQTL and the             

corresponding peaks. The signal intensity was normalized using a Min-Max          

normalization (Appendix 2), which scaled the signal intensities between 0 and 1. This             

was done on both observed and imputed tracks for every sample. The values were              

then associated by genotype value where 0 indicates homozygous dominant, 1           

represents heterozygous and 2 represents homozygous recessive. I used linear          

regression to estimate the effect size (beta) for each eQTL and genotype. The effect              

sizes were plotted for imputed and observed signal intensities (Figure 3.13). I            

observed that effect sizes were less variable for the imputed compared to the             

observed data.  

 

A)  
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B)  
Figure 3.13 Comparison between observed and imputed beta values calculated          

for eQTLs Investigation of the genetic effects are maintained by the imputation. A selection              

of 947 peaks that showed strong histone QTL effects (p-value < 0.05) with common minor               

alleles (minor allele frequency > 0.3). The effects were estimated for Treg samples. Plots              

here compare the effect sizes of this selection of QTLs for a subset of 11 ChIPmentation                

samples for the observed and the imputed data. Plot A) represents the entire plot while plot                

B) represents the zoomed in plot. The low correlation between the betas indicates that upon               

imputation the genetic effects are significantly reduced. 

 

There were a few outlier points (Figure 3.13) where the signal intensity had varied              

between the observed and imputed beta’s. I picked any points with a beta value              

larger than 0.2 to visualize the difference in signal intensity between observed and             

imputed. The signal intensity between the observed and imputed genotypes were           

fairly random in nature. I observed that many times the imputed signal would either              

reverse the beta trend or generally lose any genotype specificity, whereas the            

observed data would have very clear trends and effect sizes (Figure 3.14). 
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Figure 3.14 eQTL distributions of beta values between observed and imputed           

signal intensity values Distribution of the signal intensity values from 11 individuals for             

selected examples of QTL effects after the imputation. In the first example the outlier is not                

very strong, however the latter examples signify where the beta values significantly differ             

from the observed. Each of the given violin plots represents the outlier beta from linear               

regression. Each x-value corresponds to the allele type, with the y-value representing the             

signal intensity. Imputation does not strengthen any type of genotypic correlation and in fact              

seems to bear no resemblance to the observed data. 

 

I therefore concluded that ChromImpute does not preserve the genotypic variability,           

as the genetic effects are often dampened or non-existent. 
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3.7 Imputation applied to understand Treg biology 
I was interested to see if imputation was able to recapitulate signal specific to Tregs.               

The challenge of capturing specific signal within a rare cell type is acutely felt, and I                

wanted to see if imputation amplified overlap for specific Treg genes, as well as any               

new genes. 

 

I used one of the 3 marks with the best recovery, H3K4me3, to analyze different               

signal tracks for imputed versus observed for two Treg samples (D117 and D176). I              

then compared the signal track intensity between the imputed and observed signals            

where they overlapped a specific Treg gene. I also included a more broad T Cell               

gene to understand how specific the imputation effects would go, to uncover any             

specific biological findings. 

 
A)
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B) 

 
C) 
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D)

 
Figure 3.15 Comparison between observed and imputed signal track for key           

TReg genes Investigation of the key Treg genes are maintained or boosted by the              

imputation. A selection of 2 different Treg samples for the histone mark H3K4me3. Plots              

here compare the signal track of for the two samples with observed and imputed. Plot A) and                 

plot B) evaluate FOXP3 and IL2RA, both highly specific genes to the Treg population,              

displayed a lot less noise, however lost relative signal with respect to the overlap for the                

gene. Plot C) evaluated another important Treg gene, CTLA4, but had dampened effects             

after imputation. The final plot D) was able to find strong signal in the imputed IKZF2 signal                 

track which codes for a specific transcription factor commonly found in T Cells, zinc finger               

protein Helios.  
 
I selected 3 key genes specific to Tregs: FOXP3, IL2RA and CTLA4. After plotting              

the difference peaks in the UCSC genome browser, I noticed that imputation was             

able to amplify the peaks that were surrounding the area (Figure 3.15A-C).            

However, any overlap with the Treg specific genes were reduced relatively in signal             

strength. The gene IKZF2, which is a more general T Cell gene, was amplified and               

the noise surrounding the gene was reduced (Figure 3.15D). I concluded that the             
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ChromImpute software is able to find signal intensity in broader cell populations but             

loses a sense of granularity when it comes to rare and specific populations. 

 
 

4. Discussion and Conclusions 
In this thesis, I evaluated ChromImpute applied to multiple datasets and showed the             

improvements made to histone mark ChIP-seq data as well as potential drawbacks. I             

provided several benchmarks of ChromImpute against various datasets, and applied          

ChromImpute to a standard genotypic evaluation. The results suggest that          

epigenetic imputation improves the quality of epigenetic sequencing information that          

may be lost from errors during any sequencing steps.  

 

I began by addressing the question of whether or not the global structure of ChM-seq               

data was preserved after imputation. I showed that this structure is generally            

maintained when compared to the imputed data as shown by a common set of              

pathways which are enriched in Treg ChM-seq peaks, and by a reduction of noise              

when mapping signal to TSS. I then showed that imputation successfully minimizes            

technical variability, as is evidenced by a reduction in peak variance between            

observed and imputed peaks. Imputation also corrected for missing signal track in            

the observed data; this was clearly the case for the CD45 locus (a gene known to be                 

expressed by all Tregs), which recovered its missing signal intensity after imputation.            

Finally, I found that imputed epigenetic data should generally be analyzed with a             

broad peak caller in order to provide the best results. This is because imputation              

provides a very fine-grained signal correction, which causes narrow peaks to be            

called at every peak and trough, instead of at a global maxima.  

 

One limitation that I explored in this thesis was ChromImpute’s ability to account for              

genotypic variability. ChromImpute generally dampened any differences in intensity         

observed between individuals. Additionally, when testing for genotype differences         

and comparing to acetylation QTLs, the directions of effects were fairly random, with             

some beta’s being reversed for no apparent reason. This could be explained by the              
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ChromImpute software is able to find signal intensity in broader cell populations but             

loses a sense of granularity when it comes to rare and specific populations. 

 
 

4. Discussion and Conclusions 
In this thesis, I evaluated ChromImpute applied to multiple datasets and showed the             

improvements made to histone mark ChIP-seq data as well as potential drawbacks. I             

provided several benchmarks of ChromImpute against various datasets, and applied          

ChromImpute to a standard genotypic evaluation. The results suggest that          

epigenetic imputation improves the quality of epigenetic sequencing information that          

may be lost from errors during any sequencing steps.  

 

I began by addressing the question of whether or not the global structure of ChM-seq               

data was preserved after imputation. I showed that this structure is generally            

maintained when compared to the imputed data as shown by a common set of              

pathways which are enriched in Treg ChM-seq peaks, and by a reduction of noise              

when mapping signal to TSS. I then showed that imputation successfully minimizes            

technical variability, as is evidenced by a reduction in peak variance between            

observed and imputed peaks. Imputation also corrected for missing signal track in            

the observed data; this was clearly the case for the CD45 locus (a gene known to be                 

expressed by all Tregs), which recovered its missing signal intensity after imputation.            

Finally, I found that imputed epigenetic data should generally be analyzed with a             

broad peak caller in order to provide the best results. This is because imputation              

provides a very fine-grained signal correction, which causes narrow peaks to be            

called at every peak and trough, instead of at a global maxima.  

 

One limitation that I explored in this thesis was ChromImpute’s ability to account for              

genotypic variability. ChromImpute generally dampened any differences in intensity         

observed between individuals. Additionally, when testing for genotype differences         

and comparing to acetylation QTLs, the directions of effects were fairly random, with             

some beta’s being reversed for no apparent reason. This could be explained by the              
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ChromImpute algorithm only considering signal information from other samples or          

marks in 25 base pair windows. This would cause any specific genotype effects to be               

completely expunged during imputation.  

 

Other limitations of ChromImpute concern the bias of the reference panel to the             

construction of imputed signal tracks. If there are only a few cell types in the               

reference panel that are closely related to the samples of interest, those cell types              

will have the biggest influence on the imputed signal track. However, if the reference              

panel is not diverse in cell types, this can cause samples to lose their inherent               

features upon imputation. Additionally, if the reference contains samples with a           

mixture of cell types, the imputed signal tracks will be composed of signal from the               

same mixture of cells. The deconvolution of these cells is important to maintain the              

correct signal composition. Imputation depends heavily on the composition of the           

reference, and this reference can bias the imputed signal tracks. As was uncovered             

when trying to isolate specific signal intensity for genes with regards to Tregs,             

ChromImpute was not able to recapitulate that signal. This was due to the reference              

panel not having enough diversity for Tregs in that given mark. The imputed data              

was able to capture and isolate signal for a more broad T Cell gene, however. In                

order for ChromImpute to provide use in this area, the need for incorporating             

genotype information is a must. These drawbacks to imputation limit its use in             

population scale genetic studies.  

 

Despite its drawbacks, ChromImpute can be of immense use for analyzing aspects            

of an experiment which are independent of inter-individual variability, or for           

overcoming technical biases. As sequencing costs remain high and sample access           

is scarce, it is important to have tools which help us maximize the quality of data                

obtained from sequencing experiments. Imputed signal tracks may be useful as a            

reference catalogue of functional chromatin regions, or as additional samples if           

needed. For example, if there is a need for any synthetic replicates, ChromImpute             

can provide an average profile which can increase the overall power of an             
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experiment. The very nature of the algorithm detects different correlations amongst           

the samples with different histone marks, which provides the basis of the imputation.  

 

There are several features which should be added in the future to make             

ChromImpute an integral step in epigenetics data analysis. Firstly, in order to            

alleviate the problem of low quality samples and reads in the reference biasing the              

imputation, a quality control (QC) check can be implemented. This control would set             

a minimum threshold for the number of reads needed for every sample to be part of                

the reference conglomerate. Secondly, an automatic check on the composition of the            

reference can be added in order to alert the user of samples that may be over or                 

underrepresented. Lastly, when interpreting the results an automated script can be           

used to evaluate the accuracy of imputation. This evaluation would be based on he              

metrics defined in ChromImpute and would rank imputed signal tracks by accuracy.  

 

In order to apply imputation to population scale studies, genotype information should            

be accounted for. The ability to capture the inter-individual variability within histone            

marks is extremely difficult to evaluate. The nature of imputation relying on haplotype             

structure can not be applied here, due to the dynamic nature of chromatin.             

Chromatin remodeling affects what can be expressed and if one is expected to             

capture genotypic information, it would be vital to have a conserved structure. This             

hindrance makes this method to attempt to preserve genotype very difficult.  

 

There are other types of data that can be used to try to find target genes to provide                  

power for these studies. For instance using some type of chromosome conformation            

capture type data (e.g. 3C or HiC) may provide use if augmented into the method. If                

the 3D structure of certain non-coding regions is known, that can help add insight              

into the interactions of a given fragment of a genome. Further, one can then build               

another point of inference or at the very least eliminate certain possibilities of what              

the genome enrichment would look like given the given chromatin structure at that             

given point in time.  
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Overall the ChromImpute software adds much needed value to any scientists           

benchside. Epigenetic imputation can be particularly useful in scenarios where          

experimental assays are costly and time consuming. This tool serves an important            

purpose and imputed signal tracks can provide a strong reference point and add             

power to epigenetic studies.  
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6. Abbreviation List 

 

Treg Regulatory T Cell 

ChIP-seq Chromatin immunoprecipitation 
followed by sequencing 

TNFα Tumor necrosis factor - alpha 

GWAS Genome-wide association studies 

SNPs Single nucleotide polymorphisms 

LD Linkage disequilibrium 

ATAC-seq Transposase-accessible chromatin 
followed by sequencing 

HMM Hidden markov models 

ChM-seq ChIPmentation-seq 

GRCh38 Human reference genome build 38 

BED Browser extensible data 

MACS Model-based analysis of chIP-seq 

ENCODE Encyclopedia of DNA elements 

3C Chromosome conformation capture 

BAM Binary alignment map 

ROC Receiver operating characteristic 
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RAM Random access memory 

UCSC University of California - Santa Cruz 

TSS Transcription start sites 

KEGG Kyoto encyclopedia of genes and 
genomes 

UPGMA Unweighted pair group method with 
arithmetic mean 

PTPRC Protein tyrosine phosphatase, 
receptor type, C 

QTL Quantitative trait locus 

QC Quality control 
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