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CHAPTER 4  

 Maps of open chromat in h ighl ight 

cel l  type-speci f ic patterns of 

regulatory sequence var iat ion at 

haematological t ra i t  loc i .  

  
 Col laborat ion note: 

Section 4.2: Katrin Voss1,2 and I conceived the experiments. Primary myeloid cells were 

prepared by Katrin Voss and Jonathan Stephens1,2. Cornelis A. Albers1–3 and Augusto 

Rendon1,2,4,5 helped with raw sequencing data analyses. Cornelis A. Albers performed peak 

normalisation and hierarchical clustering. Augusto Rendon analysed the overlap of open 

chromatin and histone mark peak data sets, as well as gene expression profiles during in vitro 

differentiation of cord blood-derived haematopoietic stem cells. I performed FAIRE assays, 

sequencing data analysis, ontology and pathway analyses, and interpreted the results. 

Section 4.3: Cornelis A. Albers and Augusto Rendon performed enrichment analyses. On 

behalf of the HaemGen Consortium, Pim van der Harst6,7, John C. Chambers8–11 and Nicole 

Soranzo3 provided genome-wide association data sets of haematological traits. I performed 

ontology and pathway analyses, and contributed towards the interpretation of the results. 
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4.1.    Int roduct ion 
 

In Chapter 3, I provided initial evidence that FAIRE is a valuable tool in mapping NDRs at selected 

genetic loci associated with haematological traits, and in identifying candidate functional variants for 

experimental validation. 

 

To generalise this approach to the whole genome, the work in this chapter creates genome-wide maps 

of open chromatin in primary human myeloid cells using FAIRE combined with next-generation 

sequencing (FAIRE-seq). NDRs are mapped in megakaryocytes (MKs) and erythroblasts (EBs), the 

precursor cells of platelets and erythrocytes, respectively, as well as monocytes (MOs). We then define 

global cell type-specific patterns of gene regulatory variation at genetic loci associated with platelet and 

erythrocyte phenotypes. 

 

 

4.2.   Funct ional character isat ion of open chromat in prof i les in human 
myelo id cel ls 

 

Cord blood-derived CD34+ haematopoietic progenitor cells (HPCs) from two unrelated individuals 

were differentiated in vitro into either MKs in the presence of thrombopoietin (TPO) and interleukin-

1β (IL-1β), or EBs in the presence of erythropoietin (EPO), interleukin-3 (IL-3) and stem cell factor 

(SCF). MOs were purified from the peripheral blood of another two individuals (Section 2.2). In 

addition, we generated FAIRE-seq data in the megakaryocytic cell line CHRF-288-11 (two biological 

replicates), and obtained FAIRE-seq ENCODE data (The ENCODE Project Consortium, 2011) for the 

erythroblastoid cell line K562. Figure 4-1 gives an overview of the study design. 

 

 
 

F igure 4-1. Overview of the study design. 
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I determined FAIRE peaks marking NDRs using a Gaussian kernel density estimator implemented in 

the software F-Seq (Boyle, Guinney, et al., 2008). In order to reduce false positive peak calls, regions of 

collapsed repeats were removed, as described in Pickrell et al., 2011 (Section 2.5). For each data set, I 

excluded the top and bottom one percentile of the peak score distribution (in log10-transformed peak 

score units). Peaks at the extremes of the peak score distribution may contain outliers due to 

sequencing errors that could bias downstream analyses. We then stratified the remaining peaks into 

four equally sized ‘intensity bins’ according to their score (Figure 4-2). The number of intensity bins 

was chosen arbitrarily, but assigning four resulted in a large number of peaks per bin. This is important 

for the power in subsequent statistical analyses. In addition, we expected that the FAIRE signal would 

be reasonably stratified across the four bins. An overview of the number of peaks per intensity bin for 

each cell type is reported in Table 2-5. 
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F igure 4-2. Overlap of NDRs across pr imary cel ls and their representat ive cel l  l ines. The peak 

score distribution and ‘intensity bins’ for all studied cell types are shown (A–J). The top and bottom one 

percentile of the peak score distribution was excluded. The remaining peaks were stratified according to their 

normalised score into four equally sized intensity bins. As the peaks in Bin 1 showed limited overlap with the 

peak set of the same cell type obtained in the other individual/preparation, we focused on the top three bins 

(Bins 2–4) for biological interpretation. (K) Venn diagram of the overlap of FAIRE peaks (all bins considered) 

across the primary cell types using the ‘stringent’ peak calling cut-off. 

 

We first investigated to what extent individual myeloid cell types have distinct open chromatin 

signatures, and whether NDRs of different peak score have different functional properties. As the next-

generation DNA sequencing platform provides a large dynamic range and high sensitivity using 

discrete, digital sequencing read counts, we hypothesised that a sub-classification of FAIRE peaks based 

on peak score may allow more precise downstream functional analyses. 

 

Pearson’s correlation coefficients were calculated for peak scores between biological 

replicates/individuals in independent FAIRE experiments (Figure 4-3). Note that only overlapping 

peaks were considered for correlation analyses. The correlation coefficients between biological 

replicates were 0.66 and 0.89 in K562 and CHRF-288-11 cells, respectively. Between individuals, the 

correlation coefficients were 0.50, 0.61 and 0.70 in MOs, EBs and MKs, respectively. These analyses 

indicated that peak score is reproducible across samples of the same cell type. 
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F igure 4-3. Pearson’s correlat ion of peak score between independent FAIRE experiments. 

Correlation coefficients were calculated for scores of overlapping peaks between biological replicates (cell lines) 

or individuals (primary cells). Peaks unique to replicates/individuals were not included in these analyses. 

 

We constructed distance matrices based on the overlap of peaks across cell types (Figure 4-2), and 

assessed the uncertainty of the clustering using bootstrap resampling (Suzuki & Shimodaira, 2006). We 

differentiated between peaks of higher peak score (represented in Bin 4; Figure 4-4 A) and lower score 

(represented in Bin 2; Figure 4-4 B). We did not consider the NDRs in Bin 1, as these displayed limited 

overlap between replicates/individuals and may be enriched for noise (Figure 4-2). Irrespective of the 

peak score, we found that the clustering of the primary cells based on the open chromatin profiles is 

dominated by cell type rather than individual. This reflects the corresponding haematopoietic lineage: 

MKs and EBs share a common cell progenitor, which in turn derives from a common myeloid 

progenitor that also gives rise to MOs (Section 1.9). We compared the open chromatin profile of MKs 

and EBs with the cell lines CHRF-288-11 and K562, respectively, which are commonly used as models 

for these primary cells. We found no co-clustering indicating that open chromatin structure of 

immortalised lines does not fully reflect that of primary cells (discussed in Section 4.5). This lack of co-

clustering was more prominent when we only considered the high-intensity peaks (Bin 4) compared to 

low-intensity peaks (Bin 2). Many of the NDRs found in MKs are present in CHRF-288-11 cells; 

however, we identified a large number of additional NDRs in the CHRF-288-11 cell line that overlapped 

with K562 cells but not with MKs (Figure 4-2). 
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F igure 4-4. Character isat ion of open chromatin prof i les of pr imary human megakaryocytes 

(MKs), erythroblasts (EBs) and monocytes (MOs). Dendrogram of the hierarchical clustering of the 

overlap of FAIRE-derived NDRs across primary cells and immortalised cell lines. For assessing the relationship 

of the cell types, we used (A) peaks of higher peak score (represented in Bin 4) and (B) peaks of lower score 

(represented in Bin 2). The hierarchical cluster analysis was performed using the R package Pvclust (Suzuki & 

Shimodaira, 2006) (distance: binary; cluster method: complete). The uncertainty of the clustering was assessed 

using bootstrap resampling. Abbreviations: au: approximately unbiased P-value; bp: bootstrap probability 

value. 

 

Next, for each cell type I pooled the sequence fragments of the two replicates/individuals, and 

processed the data as described above. I applied the Genomic Regions Enrichment of Annotations Tool 

(GREAT) (McLean et al., 2010) to aid the functional interpretation of NDRs of different scores by 

analysing the annotations of the single closest flanking gene (Appendix, Table 8-2). In MKs and EBs, 

NDRs in Bin 2 and 4 were enriched in cell type-specific and housekeeping genes, respectively. In 

contrast, in MOs I observed an enrichment of cell type-specific gene sets proximal to NDRs of both 

Bins 2 and 4 (Appendix, Table 8-2). One possible explanation for this difference could be that mature 

MOs, as studied here, do not proliferate (Geissmann et al., 2010). 

 

I examined the location of NDRs of different bins relative to promoter regions, i.e. within 5 kb upstream 

of TSSs. I observed that for both MKs and EBs, but not MOs, the NDRs in Bin 4 were more often 

located at promoter regions than NDRs in Bin 2 (Figure 4-5). 
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F igure 4-5. Distance of NDRs to the closest TSSs. The genomic distances between FAIRE peaks and 

transcription start sites were exported from GREAT (McLean et al., 2010). The density graph was plotted with a 

bandwidth of 5,000. 

 

In MKs and EBs, we further investigated these observations by performing ChIP combined with high-

throughput next-generation sequencing of the histone modifications H3K4me3 and H3K4me1, 

marking active promoters and enhancers, respectively (Figure 4-6). In both cell types, NDRs of higher 

score overlapped with gene promoters proximal to TSSs, whereas NDRs of lower score overlapped with 

enhancer elements distal to the closest TSS. NDRs that did not overlap with histone marks were more 

likely to be low-scoring and far from promoters. 

 

 
 

F igure 4-6. Overlap of H3K4me3 (promoter) and H3K4me1 (enhancer) h istone marks with 

NDRs ident i f ied in (A) MKs and (B) EBs with respect to NDR score and distance to the 

closest TSS. The peak bins are indicated with a dashed grey line. In MKs, we identified 79,049 and 17,402 

regions of enrichment of H3K4me1 and H3K4me3, respectively. In EBs, 66,410 and 16,871 H3K4me1 and 

H3K4me3 peaks were identified, respectively. 
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We then examined if cell type-restricted NDRs mark lineage-specific elements involved in regulation of 

expression of genes relevant to blood cell lineage commitment. We assessed the expression levels of the 

single closest gene to each lineage-specific NDR, interrogated over several time points during in vitro 

differentiation of HPCs into MKs and EBs (Table 4-1) (Gieger et al., 2011). In MKs, these transcripts 

were more likely to be upregulated during MK differentiation relative to all expressed transcripts (fold 

enrichment: 1.13; P=2.01x10-30, two-tailed chi-squared test). In EBs, we observed the same effect 

directionality for transcripts during EB differentiation (1.20; P=1.37x10-61). Transcripts close to MO-

specific NDRs were downregulated during both MK and EB differentiation with a fold enrichment of 

0.92 and 0.88, respectively. Interestingly, transcripts close to NDRs shared between MKs and MOs were 

also upregulated during MK differentiation (1.16; P=2.65x10-6); I annotated the corresponding genes 

(n=382) using the Ingenuity Knowledge Base and found an enrichment of genes in the canonical 

pathway ‘Fcγ receptor-mediated phagocytosis in macrophages and monocytes’ (P=2.6x10-3, Benjamini-

Hochberg corrected for multiple testing; n=11 genes). 

 

Table 4-1. Trends of up- or downregulat ion of genes close to FAIRE peaks during 

haematopoiet ic di f ferent iat ion. Different classes of NDRs are defined based on their presence in different 

cell types. We report fold enrichment as the fraction of upregulated genes near NDRs of a given class versus 

the total fraction irrespective of NDR class. Gene expression was measured during haematopoietic 

differentiation into mature (A) MKs and (B) EBs. 

 
Cel l  type(s) 

containing NDRs 

Number genes ↓ Number genes ↑ P-val ( two-tai led 

chi-squared test) 

Fold enrichment 

(A) Dif ferent iat ion into megakaryocytes 

EB 3,490 3,909 7.64x10-02 0.98 

MK 2,777 4,282 2.01x10-30 1.13 

MK/EB 1,294 1,631 3.90x10-02 1.04 

MK/MO 274 457 2.65x10-06 1.16 

MK/MO/EB 1,093 1,242 5.17x10-01 0.99 

MO 5,611 5,553 2.59x10-18 0.92 

MO/EB 368 326 2.75x10-04 0.87 

(B) Dif ferent iat ion into erythroblasts 

EB 3,209 4,190 1.37x10-61 1.20 

MK 3,928 3,131 7.19x10-06 0.94 

MK/EB 1,487 1,438 2.03x10-02 1.05 

MK/MO 435 296 4.06x10-04 0.86 

MK/MO/EB 1,180 1,155 1.80x10-02 1.05 

MO 6,520 4,644 1.67x10-30 0.88 

MO/EB 357 337 4.17x10-01 1.03 

 

 



CHAPTER 4 

81 

4.3.   Cel l  type-speci f ic enr ichment of haematological t ra i t -associated 
SNPs in NDRs 

 

We assessed the enrichment of genetic associations with platelet and erythrocyte phenotypes in NDRs 

in a cell type-specific context, using data from two meta-analyses of platelet count and volume (Gieger 

et al., 2011), and red blood cell parameters (van der Harst et al., 2012). These GWA meta-analyses are 

the largest conducted so far for these traits. Notably, nearly three-quarters of the 143 identified GWA 

signals are located at non-coding genomic regions (Gieger et al., 2011; van der Harst et al., 2012). We 

quantified the enrichment of P-values below 0.005 in cell type-specific NDRs using the genome-wide 

distribution of P-values as the baseline (Section 2.6). This analysis therefore explicitly considers the 

contribution of potential regulatory sequence variants in NDRs that do not reach the threshold of 

genome-wide significance (P=5x10-8). As before, we excluded the NDRs in Bin 1. We calculated 

bootstrapped P-value distributions of sequence variants imputed from the 1000 Genomes Project data 

set (The 1000 Genomes Project Consortium, 2010) (Figure 4-7). We defined three classes of NDRs: 

merged (determined from pooled sequence fragments of two individuals), intersected (called 

independently in two individuals) and cell type-specific (based on the merged NDR set). The definition 

of these different NDR classes allows for stratification of the different properties of each NDR class. 
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F igure 4-7. Bootstrapped quanti le-quanti le distr ibut ions. Data points in black represent the 

distribution of P-values for all 2.6x106 imputed SNPs. Enrichment values in the primary cell types shown in 

Figure 4-8 are relative to this distribution. Enrichments are shown for three classes of NDRs: (A) merged 

(determined from pooled sequence fragments of two individuals), (B) intersected (called independently in two 

individuals) and (C) cell type-specific (based on the merged NDR set). Data points: red: EB; blue: MK; green: 

MO. Abbreviations: PLT: platelet count; MPV: mean platelet volume; Hb: haemoglobin; PCV: packed cell 

volume; RBC: red blood cell count; MCHC: mean cell haemoglobin concentration; MCH: mean cell 

haemoglobin; MCV: mean cell volume. 

 

For the merged NDR set (Figure 4-8 A), we found that SNPs associated with erythrocyte traits 

consistently showed the strongest enrichment in NDRs in EBs, although weak enrichment was also 
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seen in NDRs in MKs and MOs. Platelet trait associations were enriched in NDRs in all three studied 

cell types. For both platelet count and volume, the enrichment in NDRs in MKs was stronger than in 

EBs, but surprisingly was also marked in NDRs in MOs. For the intersected NDR set (Figure 4-8 B), a 

set of high-confidence NDRs, the strongest enrichment for platelet trait associations was found in 

NDRs in MKs, and for erythrocyte traits in NDRs in EBs. This trend was not observed in the merged 

and cell type-specific NDR sets. For cell type-specific NDRs (Figure 4-8 C), we found strong 

enrichment of SNPs associated with all of the six erythrocyte traits in EB-specific NDRs. 

 

 
 

F igure 4-8. Enr ichment of associat ions with platelet and erythrocyte phenotypes in NDRs 

across quantitat ive haematological tra its, cel l  types and NDR classes. For each trait, the 

enrichment of associations (genomic inflation) in MKs, EBs and MOs are indicated. Enrichments are shown for 

three classes of NDRs: (A) merged (determined from pooled sequence fragments of two individuals), 

(B) intersected (called independently in two individuals) and (C) cell type-specific (based on the merged NDR 

set). The enrichment was quantified as relative genomic inflation at the 0.005 quantile, i.e. the ratio of the P-

value at the 0.005 quantile of the SNPs overlapping NDRs in one of the three cell types and the P-value at the 

0.005 quantile of the full set of 2.6x106 imputed SNPs (Figure 4-7). This controlled for population 

stratification. Error bars indicate standard deviations (s.d.). Grey data points represent non-significant 

enrichment (the mean is within 2 s.d. of zero). The dotted vertical lines at 100 indicate no enrichment at the 

NDRs for a given trait. Abbreviations: PLT: platelet count; MPV: mean platelet volume; Hb: haemoglobin; PCV: 

packed cell volume; RBC: red blood cell count; MCHC: mean cell haemoglobin concentration; MCH: mean cell 

haemoglobin; MCV: mean cell volume. 
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Mean cell haemoglobin and mean red cell volume, which are highly correlated (r=0.91; Table 4-2), 

showed substantially stronger enrichment compared to the other four erythrocyte traits, suggesting 

that these traits may be governed by processes that are regulated at an intracellular level. The strong 

enrichment of platelet trait (particularly platelet count) associations in MO-specific NDRs may indicate 

a role for MOs in influencing the platelet phenotype. Alternatively, it could reflect the role of cell types 

not studied in this work that share these NDRs. 

 

Table 4-2. Pearson’s correlat ion coeff ic ients between erythrocyte tra its. Full details of these 

analyses are reported in van der Harst et al., 2012. Platelet count and volume are negatively correlated, with 

Pearson’s r=-0.49 (gender-adjusted) (Gieger et al., 2011). Abbreviations: Hb: haemoglobin; MCH: mean cell 

haemoglobin; MCHC: mean cell haemoglobin concentration; MCV: mean cell volume; PCV: packed cell 

volume; RBC: red blood cell count. 

 

 Hb MCH MCHC MCV PCV RBC Number of associated loci 

Hb 1.00 0.23 0.08 0.22 0.96 0.75 11 

MCH  1.00 0.46 0.91 0.09 0.47 19 

MCHC   1.00 0.07 0.21 0.25 8 

MCV    1.00 0.20 0.42 23 

PCV     1.00 0.80 4 

RBC      1.00 10 

       75 

 

To shed light on the properties of the genes closest to MO-specific NDRs that contained a platelet 

count-associated SNP (P<10-4; n=61 genes), I performed canonical pathway analyses using the Ingenuity 

Knowledge Base. I detected a modest enrichment of genes involved in ‘haematological system 

development and function’ (range, P=4.62x10-2–9.94x10-2, Benjamini-Hochberg corrected for multiple 

testing; n=7 genes) and ‘cell-to-cell signalling and interaction’ (P=4.62x10-2–9.94x10-2; n=9). Notably, 

these genes included THBS1 (encoding thrombospondin 1) and WASL (Wiskott-Aldrich syndrome-

like), which have a role in the activation of blood platelets (Dorahy et al., 1997; Falet et al., 2002). 

 

In order to identify candidate functional SNPs underlying platelet and erythrocyte QTLs, I intersected 

the composite map of open chromatin (Bins 1–4) obtained in each cell type, with the GWA lead SNPs 

(P<5x10-8 from Phase II HapMap) and their proxies (r2>0.8 in the 1000 Genomes Project data set) at the 

68 platelet and 75 erythrocyte QTLs previously described (Gieger et al., 2011; van der Harst et al., 2012). 

For this analysis, Bin 1 was included in the analysis (Table 2-5). As any potential functional candidate 

SNPs were to be functionally characterised in downstream analyses, I thought to retain as many 

variants in NDRs as possible in this first step. Using these criteria, I retrieved 1,680 and 4,632 SNPs at 
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platelet and erythrocyte QTLs, respectively. At 25 (37.3%) and 31 (41.3%) of the platelet and erythrocyte 

QTLs, respectively, I found at least one trait-associated SNP located within an NDR across the three 

cell types (Figure 4-9 A,B; Appendix, Table 8-3). 

 

At platelet QTLs, significant (P<5x10-6) overlap with NDRs in MKs and MOs was observed (albeit only 

when the top ranking peaks were considered). The extent of overlap with NDRs in EBs was not more 

than expected by chance when compared to 100,000 sets of SNPs. These were matched for number of 

loci identified in each trait and allele frequency, and augmented with proxy SNPs (hereafter termed 

‘random loci’) (Figure 4-9 C). At erythrocyte QTLs, we found significant (P<5x10-6) overlap with NDRs 

in EBs, but not with NDRs in MKs or MOs (Figure 4-9 D). When compared with immortalised cell 

lines representing MK and EB lineages, the same trends of enrichment were observed in the relevant 

trait. 

 

 
 

F igure 4-9. Genome-wide signif icant s ignals associated with platelet and erythrocyte 

phenotypes at s ites of open chromatin in pr imary cel ls and immortal ised cel l  l ines. Number of 

GWA loci harbouring (A) platelet- and (B) erythrocyte trait-associated SNPs in NDRs in MKs, EBs, MOs, 

CHRF-288-11 and K562 cells. The strongest enrichment of genome-wide significant sequence variants at 

(C) platelet and (D) erythrocyte QTLs was found in NDRs in MKs and EBs. However, the enrichment was 
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equally clear in NDRs in the megakaryocytic cell line CHRF-288-11 and erythroblastoid cell line K562, 

respectively. 

 

It is important to note that about half of the overlaps would be expected by chance. This was 

determined by calculating the enrichment of the number of loci with at least one overlap with an NDR, 

relative to random loci when all peaks are considered (Figure 4-10). However, the statistical 

enrichment suggests that intersection of trait-associated SNPs with NDRs is likely to provide an 

informative ranking for selection of candidate variants for functional follow-up experiments. 

 

 
 

F igure 4-10. Fold enr ichment of the number of loci with at least one over lap with an NDR 

compared to the median of 100,000 random sets of loci. The enrichment is shown at (A) platelet and 

(B) erythrocyte loci. The extent of overlap with NDRs in each cell type at the association loci was assessed by 

comparison to random loci. Increasing numbers of FAIRE peaks ranked by peak score were overlapped with 

the candidate SNPs, in order to examine the effect of differences in peak calling thresholds across multiple cell 

types. Note that the enrichment is high for high-scoring peaks and settles at about 2-fold enrichment providing 

an upper bound of the enrichment expected by chance when irrelevant sets of SNPs are intersected. 

 

We investigated whether maps of open chromatin can be used to retrieve trait-associated sequence 

variants below the genome-wide significance threshold, without increasing the expected number of 

false positive associations. For these analyses, the false discovery rate (FDR) for SNPs in cell type-

specific NDRs was estimated as a function of the genome-wide significance level. Specifically, the FDR 

was estimated as the ratio of the expected number of SNPs from the null and the observed number of 

SNPs that are located in a cell type-specific NDRs and have a P-value below the genome-wide 

significance threshold. The expected number of SNPs from the null was estimated by the product of the 

total number of SNPs in NDRs for a given cell type, regardless of the association P-value. Indeed, the 

FDR for mean red cell volume-associated SNPs in EB-specific NDRs was lower than the genome-wide 

average (Figure 4-11). This suggests that the maps of open chromatin make it possible to consider 
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variants below the genome-wide significance threshold, without increasing the expected number of 

false positive associations. 

 

 
 

F igure 4-11. Est imated fa lse discovery rates (FDRs) for mean red cel l  volume-associated 

SNPs in cel l  type-specif ic NDRs. The FDR for SNPs (solid lines) in cell type-specific NDRs (left y-axis) 

was estimated as a function of the significance level (x-axis). The number of SNPs (dashed lines) associated at 

a given significance level is shown on the right y-axis. The plot shows that the FDR for SNPs in EB-specific 

NDRs (solid red line) was lower than the genome-wide average (solid black line). For the genome-wide FDR 

estimate, all SNPs (both within and outside NDRs) were used. This gives the baseline FDR estimate to which 

the FDR estimates for SNPs in cell type-specific NDRs were compared. 

 

 

4.4.    Ident i f icat ion of candidate funct ional SNPs at p late let QTLs 
 

To provide evidence that the SNPs we identified using the above approach are indeed valid functional 

candidates, I performed electrophoretic mobility shift assays (EMSAs) in nuclear extracts from the cell 

line CHRF-288-11. EMSAs are based on the principle that DNA-protein complexes migrate more 

slowly than non-bound DNA in a native polyacrylamide or agarose gel, resulting in a ‘shift’ in migration 

of the labelled DNA band. To control for differences between primary cells and cells from an 

immortalised line, I selected all platelet trait-associated SNPs (n=16) in NDRs found in both MKs and 

CHRF-288-11 cells (n=13). Importantly, 8 of these 13 NDRs also coincided with binding sites of 

transcription factors key in regulating megakaryopoiesis (Tijssen et al., 2011), namely FLI1, GATA1, 
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GATA2, RUNX1 and SCL (also known as TAL1), suggesting physiologically relevant regulatory 

elements (Table 4-3). For 10 of the 16 platelet trait-associated SNPs, I observed by visual inspection of 

the blot, differential nuclear protein binding between alleles in EMSA studies. For the remaining 6 

SNPs, I observed either comparable protein binding between allelic probes or no binding at all 

(Figure 4-12). 
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Figure 4-12. Electrophoret ic mobi l i ty shift  assays (EMSAs) for platelet candidate funct ional 

SNPs. The following 16 platelet candidate functional SNPs at 12 NDRs found in both CHRF-288-11 

megakaryocytic cells and primary MKs were tested in EMSAs: (A) rs1006409, (B) rs1107479, (C) rs11731274, 

(D) rs11734099, (E) rs17192586, (F) rs2015599, (G) rs2038479, (H) rs2038480, (I ) rs214060, (J) rs2735816, 

(K) rs3214051, (L) rs3804749, (M) rs55905547, (N) rs6771416 and (O) rs7618405. Probes harbouring either 

the reference or alternative allele of the candidate functional SNP are shown in lanes 1–4 and lanes 5–8, 

respectively. For competition assays, specific (lanes 3 and 7) and unspecific (lanes 4 and 8) unlabelled probes 

were added in a 100- or 200-fold molar excess over the labelled probes (lanes 2 and 6). Red rectangles 

indicate differential protein binding of the EMSA probes containing the reference and alterative allele of the 

candidate functional SNP. 

 

I then annotated the 16 SNPs using the RegulomeDB, a database containing known and predicted 

regulatory elements in the human genome, and found 15 SNPs to coincide with at least one 

RegulomeDB feature (Table 4-3). Finally, I performed in silico transcription factor binding site analysis 

using the transcription factor affinity prediction (TRAP) method (Thomas-Chollier et al., 2011) and 

found 15 SNPs that affect a transcription factor binding motif (Appendix, Table 8-4). Of the 10 SNPs 

that showed differential protein binding, all but one overlapped with a RegulomeDB feature and 

affected a predicted transcription factor binding site. 
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Table 4-3. Summary of the funct ional evidence obtained for platelet candidate funct ional SNPs through FAIRE, ChIP and EMSA experiments, as 

wel l  as the RegulomeDB. aThe marked SNPs were located in the same NDR at the indicated GWA locus. Values reported for binding in EMSA studies represent the 

mean signal density ratios of the CHRF-288-11 nuclear protein binding to EMSA probes containing either allele of the candidate SNP. The allele contained in the probe with 

the stronger nuclear protein binding is reported in parentheses. RegulomeDB scores were retrieved from http://www.regulomedb.org/help#score; Abbreviations: Ref: 

reference allele; Alt: alternative allele; TF: transcription factor. 
 

Candidate functional SNP NDR cel l  type (Bin) GATA1/2, SCL, RUNX1 or 

FLI1 binding site in MKs 

Binding in EMSA RegulomeDB Annotat ion 

ID Ref/alt GWA locus    Score Supporting data 

rs1006409a A/G MLSTD1 MK (2) – 1.169 (Ref) 2B TF binding + any motif + 

DNase footprint + DNase peak 

rs2015599a G/A MLSTD1 MK (2) – 1.459 (Ref) 4 TF binding + DNase peak 

rs1107479 C/T PTGES3-BAZ2A MK (4)/EB (4)/MO (1) – 1.111 (Alt) 1F eQTL + TF binding or DNase peak 

rs3214051 G/A PTGES3-BAZ2A MK (4)/EB (4)/MO (3) FLI1 equal 4 TF binding + DNase peak 

rs11731274a T/G KIAA0232 MK (1) GATA1 + GATA2 + RUNX1 + SCL none 4 TF binding + DNase peak 

rs11734099a G/A KIAA0232 MK (1) GATA1 + GATA2 + RUNX1 + SCL equal 4 TF binding + DNase peak 

rs17192586 G/A RAD51L1 MK (3)/EB (1) RUNX1 2.167 (Alt) 4 TF binding + DNase peak 

rs2038479a C/A DNM3 MK (3) – 3.353 (Ref) 5 TF binding or DNase peak 

rs2038480a A/T DNM3 MK (3) – 1.444 (Alt) 5 TF binding or DNase peak 

rs214060 C/T LRRC16 MK (3) – 1.216 (Alt) 4 TF binding + DNase peak 

rs2735816 G/C BRF1 MK (1) – equal 5 TF binding or DNase peak 

rs3804749 C/T PDIA5 MK (4) SCL equal 5 TF binding or DNase peak 

rs4148450 C/T ABCC4 MK (2) RUNX1 2.943 (Alt) 4 TF binding + DNase peak 

rs55905547 A/G CTSZ-TUBB1 MK (3) GATA1 + SCL equal – – 

rs6771416 G/A KALRN MK (2)/EB (1) GATA1 + SCL 2.249 (Alt) 2B TF binding + any motif + 

DNase footprint + DNase peak 

rs7618405 C/A SATB1 MK (4)/MO (1) GATA1 + RUNX1 + FLI1 + SCL 1.638 (Ref) 4 TF binding + DNase peak 
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As an example, rs4148450 (associated with platelet count) (Gieger et al., 2011) was located at an MK-

specific intronic NDR of ABCC4. The open chromatin region coincided with a RUNX1 transcription 

factor binding site (Figure 4-13). ABCC4 encodes the ATP-binding cassette (ABC) protein ABCC4, 

also known as multidrug resistance protein 4 (MRP4). Several studies indicated that ABCC4 is involved 

in the accumulation of the platelet-activating signalling molecule adenosine diphosphate (ADP) in 

platelet-dense granules (Jedlitschky et al., 2004; Jedlitschky et al., 2010). Our data suggested the non-

coding SNP rs4148450 to be the functional variant at the 13q32.1 platelet count locus. 

 

 
 

F igure 4-13. Functional fo l low-up of the ABCC4  p latelet count locus. (A) Coverage profiles of 

FAIRE-seq data in MKs, EBs, MOs, CHRF-288-11 and K562 cells. An open chromatin region found only in 

MKs and CHRF-288-11 cells contained the platelet count-associated SNP rs4148450 (r2=1.0 with GWA lead 

SNP rs4148441). The SNP was contained within a RUNX1 transcription factor binding site in MKs (Tijssen et 

al., 2011). (B) Electrophoretic mobility shift assays in megakaryocytic cells showed differential nuclear protein 

binding to probes containing the C- and T-allele of rs4148450, where only the probes containing the T-allele 

were not competed by unspecific competitor probes. Further functional studies are required to elucidate the 

molecular mechanism underlying the ABCC4 association locus. 

 

 

4.5.    Discussion 
 

We generated genome-wide maps of open chromatin in primary human MKs, EBs and MOs and used 

these to define enrichment patterns of GWA signals of quantitative haematological traits in NDRs in a 
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cell type-dependent manner. We showed that analyses in primary cells are important for biological 

interpretation of NDRs. Although immortalised cell lines are valuable tools for discovery of NDRs, 

there were clear differences in the chromatin structure compared to primary cells (Figures 4-2, 4-3 

and 4-4). These differences may arise through serial subculturing of immortalised cell lines, resulting in 

a more homogenous cell population. The primary cell cultures may be composed of a mixture of cell 

types, or of the same cell type but at different differentiation stages. We found that NDRs of different 

score (peak height) have different functional features, in particular their location relative to the TSS and 

overlap with different histone modification marks. Therefore, the sectioning of peaks into different 

intensity bins allows more precise downstream functional analyses. 

 

The relative strength of the enrichment of association signals in NDRs highlighted distinct patterns 

across the phenotypic traits and cell types examined. These analyses allowed us to dissect the 

haematological trait associations in different potential effector cell types within the myeloid lineage. To 

provide further support to these findings, we are currently expanding the enrichment analyses using 

GWA signals of fasting glucose and FAIRE-seq data in human pancreatic islets. 

 

There are likely to be many true association signals below the genome-wide significance threshold for 

well-powered studies such as the two large GWA meta-analyses we examined here (Gieger et al., 2011; 

van der Harst et al., 2012; Appendix, Table 8-3). We showed that considering trait-associated SNPs – 

both above and below the genome-wide significance threshold – located within NDRs, can enhance the 

ability to identify gene sets underlying processes relevant to the phenotype. Indeed, NDRs have the 

potential to reduce the false discovery rate for SNPs selected at a given threshold of significance 

(Figure 4-11). Integration of such variants in network analyses and subsequent functional studies may 

provide valuable biological insights. Importantly, the enrichment of associations in NDRs suggests that 

maps of open chromatin may be valuable for prioritising variants underlying association signals that are 

in high linkage disequilibrium. To quantify this, GWA signals not located in an NDR may be tested in 

EMSAs. GWA signals in NDRs that did not reach the genome-wide significance threshold may also be 

tested. As a substantial fraction of the overlaps with NDRs can be attributed to chance, integration of 

additional epigenetic marks will further improve the power of this approach to identifying functional 

variants at GWA loci. 

 

We tested 16 candidate regulatory variants at 12 known platelet QTLs in EMSA studies, and provided 

evidence that the majority (62.5%) of the tested SNPs exerted their effect through 

disruption/introduction of protein binding sites. This suggests that the impact of trait-associated 

sequence variants on protein binding sites may prove to be a key molecular mechanism at non-coding 
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regions. However, additional studies are required to establish the underlying molecular mechanisms 

through which these SNPs affect the platelet phenotype. In Chapter 5, I describe suitable strategies for 

establishing biological mechanism at GWA loci. 

 

A more complete catalogue of chromatin profiles will be needed to address whether the candidate 

functional SNPs indeed have truly cell type-specific effects (i.e. out of all possible cell types). This can 

only be addressed by large collaborative efforts such as the ENCODE (The ENCODE Project 

Consortium, 2011), BLUEPRINT (Adams et al., 2012) and Roadmap Epigenomics Projects (Bernstein et 

al., 2010). Incorporation of these genome- and epigenome-wide data sets in a multitude of different 

primary cell types will greatly facilitate the functional interpretation of non-coding trait-associated 

SNPs in terms of effector cell type and underlying molecular mechanism. 

 




