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Abstract

A number of large genomes have now been sequenced, and biologists are now faced with

the challenge of identifying all the functional pieces of sequence, and understanding how they

contribute to the development and life of the organism. While identification of protein coding

genes, and annotating their products, has been progressing well, there are a great many open

questions relating to the regulatory regions which control the expression of these genes.

Here, I investigate the question of identifying and annotating promoters, one of the

most important regulatory signals in the genome, which mark the points where transcription

is initiated, and regulate the transcription of genes. I present a new computational method,

EponineTSS, which can predict transcription start sites in bulk genomic sequence data with

excellent sensitivity and specificity. Unlike the existing methods, it gives an indication of the

actual location of the transcription start site. Comparisons with available experimental data

suggest that the positional accuracy of these predictions is very good. Results from this method

are included as part of the Ensembl human genome annotation.

Having located transcription start sites for genes, I also discuss the use of results from

comparative genomics the estimate the extent of the functional promoter region upstream of

the start site. I show that the extent of promoters is very variable, and that promoter size is

correlated with the function of the gene for whose regulation it is responsible. Genes associated

with developmental processes tend to have particularly large, and thus presumably complex,

promoters, with the homeobox transcription factors among the most extreme examples.

I also introduce sparse Bayesian learning, a recently developed approach to supervised

machine learning which can be applied to the training of a wide range of model types, and

embodies the principle of selecting the simplest possible model to explain the observed data.

I demonstrate a new technique which makes sparse Bayesian learning much more scalable,



allowing it to be applied to very large and complex problems, and present a convenient, freely

available Java library which provides a general-purpose implementation of this technique. This

library was used here in the training of the transcription start site predictor, but has a wide range

of applications in computational biology and beyond.
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Chapter 1. Introduction

Large scale analysis of genomes remains a very new field of study. The publication

at the end of 1998 of the 102 megabase C. elegans genome provided our first glimpse at a

near-complete sequence for a multicellular organism [C. elegans Sequencing Consortium 1998].

This was followed in 2001 and 2002 by draft sequences for the human [IHGSC 2001] and

mouse [MGSC 2002] genomes respectively. Both of these are – at least in terms of number of

nucleotides – around 30 times larger than C. elegans. Since then, the rate of genome sequencing

has continued to accelerate and many more sequences have been published, including a number

of additional vertebrates. This genomic revolution has promised great developments, both in

terms of pure science and in practical developments in the fields of medicine and commercial

biotechnology. However, unlocking this potential requires additional experimental work, and

also high-throughput analysis and data-mining methods.

The function of the genetic material in the cell is part of the field known as molecular

biology. The core processes of molecular biology can be seen as a pipeline of information

flowing from the genomic DNA molecules, via a pool of RNA messengers (the transcriptome)

to the set of proteins which mediate most of the cell’s biochemical functions (the proteome).

This has become known as the central dogma of molecular biology, and a schematic of the

information flow is shown in figure 1.1. This model is something of a simplification, since

while the primary role of RNA is to provide an intermediate stage in information flow between

DNA and protein, many RNA molecules perform important functions – catalytic, structural or

regulatory – in their own right [Eddy 2001].

An alternative, sequence-centric, view of this process is given in figure 1.2. A primary

transcript is produced from the region between the transcription start and termination sites,

1
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miRNAs
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Figure 1.1. Flow of biological information from the genome to the proteome. In this case, the pre-mRNA can be
spliced in two possible ways, leading to different protein products.

then introns are spliced out. Note that this diagram is somewhat schematic: in real mammalian

genes, introns are usually much longer than exons, and most genes have a number of introns. In

many cases, different sets of introns can be spliced to give alternative products from the same

primary transcript [Ladd and Cooper, 2002]. As well as interrupting the coding regions, introns

often occur in the 5’ untranslated region, but only very rarely in the 3’ UTR [Pesole et al. 2001].

Finally, at least in some cases, a single gene has more than one possible transcription start site

(for example, [Laurinn et al 2000]), although it is not certain just what fraction of genes possess

this extra dimension of complexity.
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Figure 1.2. Illustrative diagram showing the basic structure of a eukaryotic protein-coding gene.

In bacteria, the basic flow of information is similar, but the details are a little simpler:

since there is no distinct nucleus, there is no specific export step. Bacterial messenger RNAs

generally have no introns, removing the need for the splicing step, but eliminating the possibility

for multiple splice variants from the same primary transcript. The rest of this thesis, however,

concentrates exclusively on the molecular biology of eukaryotic cells, and in particular on the

recently sequenced mammalian genomes.

Having identified the basic form of the molecular biology pipeline, the challenge to

biologists today is to gain a full understanding of how pure, digital, information encoded as

a string over the four-letter DNA alphabet leads can define the biochemistry (and larger-scale

properties) of a living organisms. Clearly, this knowledge will play a major part in understanding

the action of genetic diseases, particularly the polygenic diseases which cannot be traced back to

a single,obvious, defect in a single gene [Wright et al. 2003].As our understanding of molecular

biology grows, it also seems likely that an increasing range of manipulations and interventions

will be possible. For instance, detailed understanding of the pathways which lead cells in higher

organisms to form tissues and organs could ultimately lead to in vitro production of replacement
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organs [Risbud 2001]. A good test of the state of biological knowledge would be to build a

computational model the processes of life in sufficient detail that it is possible to predict the

effects of any perturbation in the genome.

To date, most analysis of the genome sequences has focused on the protein-coding regions

– those portions of the sequence which are expressed as messenger RNAs and act directly as

templates for protein synthesis. At a basic level, at least, these pose rather easy targets for study:

there is a simple, well-defined code which relates groups of three nucleotide “symbols” in the

DNA genome (or the RNA messenger) to one amino acid “symbol” in the protein product.

This is often called the universal genetic code, since it is conserved with only a few minor

variations throughout all known branches of terrestrial life. Detecting coding sequences is a

fairly well-understood problem. Typical methods combine a model of coding sequence (often

expressed as a table of hexamer frequencies) with additional logic to detect likely splice sites

[reviewed in Mathé et al. 2002]. A rather different approach, which emphasizes just how

distinctive coding genes can be from the genomic background, is described in [Pocock 2001].

Here, an unsupervised machine learning approach is used to partition the genome of Plasmodium

falciparum (a malarial parasite) into several classes, with no a priori definition of what these

classes should actually represent. This approach consistently identified the parasite’s coding

regions as a single, distinct, class.

Detecting vertebrate genes – which tend to be large entities with many big introns

separating relatively small (often less than 100 nucleotides) fragments of actual

coding sequence – is arguably the greatest challenge in gene prediction. However, a

combination of purely computational methods such as the widely used Genscan algorithm

[Burge and Karlin, 1997] with experimental evidence such as Expressed Sequence Tag (EST)

sequences [Adams et al. 1991] can give good quality gene annotation. For the human genome,

a manual curation process is currently underway to create a definitive annotation set, but in the

mean time there are also fully-automated methods, notably the Ensembl [Hubbard et al. 2002]

annotation pipeline, which uses a range of experimental data (protein, cDNA, and EST
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sequences) plus some computational input to provide a good quality first-pass annotation set.

While Ensembl was created primarily to analyze human sequences, the annotation pipeline is

now routinely applied to a number of other metazoans.

Before the sequencing of the human genome, there was a great deal of speculation about

the number of human genes – especially once the C. elegans gene was published, confirming

that this simple nematode worm has around 19,000 genes. Estimates from 30,000 to 120,000

human genes have been widely circulated, with many commentators favouring the higher end

of this range (see, for example, [Fields et al. 1994]). A final figure will have to wait for more

comprehensive curated annotation of the genome, but at the time of writing, the current Ensembl

human genome release (version 13.31) contains predictions for 24,847 protein-coding genes.

Ensembl annotation methods are, by design, relatively conservative so this is probably an

underestimate, but many researchers today expect a final count of around 30,000 protein-coding

genes. Relatively speaking, this is only a small increase compared to the worm. This number

does not seem to reflect the apparent difference in complexity between the human body (with

around 1310 cells and a complex nervous system) and the worm (with a fixed developmental

pathway culminating in an organism with just over 310 cells). The conclusion here has to be that

while the set of building blocks for a human may not be substantially larger than that for some

much lower organisms, the networks of regulatory molecules which process information during

the developmental process and mark out the parts of the body are substantially more complex.

To understand biology, and especially developmental processes, it will be important to look at

complete networks as well as their individual building blocks.

All the processes shown in figure 1.1 are regulated to a greater or lesser extent, either by

proteins, small molecules (usually interacting with DNA via a protein), or by regulatory RNA

molecules such as the micro-RNAs (miRNAs) [Lewin 2000, Grosshans and Slack, 2002]. So

the interplay of the cell’s current population of proteins and RNA influences the population at

some point in the future, providing the basis for regulatory networks. The basis for most of the

known regulated processes in molecular biology – transcription, alternate splicing, and RNA
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stability – involves interactions between the regulator model and specific regulatory regions of a

nucleic acid molecule, which might be either the genomic DNA or an RNA transcript. In either

case, sequences which function as regulatory targets share the genome with (and in some cases,

such as exonic splice enhancers, actually overlap) the protein-coding regions [Blencowe 2000].

Therefore, they can be seen as a second genetic code which conveys information about when,

where, and how much of a protein should be produced. Today, our techniques of genome

analysis make it possible, given some raw sequence data, to identify protein-coding genes

and to predict the sequence of the protein they code for. This can then be compared with

known protein sequences to give at least some indication of the protein’s likely structure and

function. An important step towards complete understanding of the genome will be to perform

an analogous process on the regulatory regions: first to identify these regions in bulk genomic

sequence, and then to “read” the regulatory codes, gaining some information about the set of

regulator molecules which interact with a particular region, and thus where it fits into the cell’s

regulatory network.

1.1. Objectives of this project

An important direction for computational biology over the coming years is to develop

methods for identifying and decoding regulatory regions in genomic sequences – especially

large and complex genomes, such as those of vertebrates. The order here is significant: it is

necessary to identify the regions of interest before detailed study and decoding are possible.

For this reason, in this project I concentrated primarily on this first identification step. I also

decided to focus on one particular class of regulatory signals: the promoters, which are located

near (primarily upstream of) the transcription start site and regulate transcription initiation.

While these are certainly not the only significant type of regulatory region in the genome, they

are clearly vitally important since every gene has one. This property also means that the set of

examples available for study is large, and that it is reasonably to assume that every point in the

genome which can be shown to function as a transcription start site (TSS) must have some kind
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of associated promoter region.

Having chosen this objective, chapter 3 of this thesis describes a novel method for

predicting transcription start sites: the key points around which promoters are organized. A

second predictive method is described in chapter 4. Chapter 5 discusses how sequence from

a second species – in this case, mouse – can be used to highlight regions of extremely high

evolutionary conservation which are believed to indicate the cores of the functional promoter

regions.

I also hoped that, in achieving my primary objective, I would develop technologies that

will prove useful in the coming years for dissecting regulatory regions, identifying the sequences

which make these regions targets for particular regulatory pathways, and therefore providing

the knowledge to start actively decoding novel regulatory regions. Chapter 2 describes a recent,

highly versatile, approach to machine learning which can be shown, on the basis of results in

chapters 3 and 4, to be effective for sequence analysis problems. This approach may well be

applicable to further analysis of regulatory regions.

The remainder of this chapter gives a brief background on the current state of knowledge

about promoter regions, and discusses some tools and resources which were helpful for

studying them.

1.2. What is a promoter

Briefly, a promoter is a region of DNA sequence close to a gene’s transcription start site,

at which molecular events occur leading to the initiation of transcription. They are sometimes

described as cis-regulatory regions, as opposed to trans-regulation which implies regulators

situated some distance from the gene itself. Needless to say, few if any promoter regions, even

in the simplest organisms, blindly trigger the production of new transcripts. Even single cells

will have many genes which must be turned on and off under specific circumstances, for example
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enzymes forming the pathways for metabolizing various different energy-source compounds.

And no protein is required in an unlimited amount, so feedback mechanisms which turn off

transcription once an adequate concentration has been achieved will make the cell function

more efficiently Multicellular organisms require proportionately more complex regulation – at

a minimum, each cell type will have its own pattern of gene expression, and there is usually also

extra complexity in the form of signaling mechanisms exchanging information between cells and

tissues. A number of enhancer sequences, which control the rate of transcription from locations

some distance from the transcription start site (and thus represent a form of trans-regulation)

have also been identified. While these are clearly an important part of the transcriptional

regulation machinery, their location further from the transcription start site and the fact that many

genes may not have any associated enhancer region at all mean that they are currently rather

difficult to study, and they are not considered further in this thesis.

Promoters have been studied in the laboratory for many years, first in bacteria

[Pardee et al. 1959] and then in eukaryotic cells. A wide variety of experimental

techniques have been used, including directly mapping the interactions of proteins to DNA

[Galas and Schmitz, 1978], and attempting to carry out transcription in vitro [Hayashi 1965]. In

some senses, promoter biology is advancing reasonably well. Given a gene, and some laboratory

time, it is often possible to clone the promoter region then couple it to a reporter gene – typically

either a fluorescent protein or an enzyme which produces a coloured product – to identify

the expression pattern. It is then possible to delineate the actually boundaries of the promoter

experimentally, for example by performing targeting deletions. A number of strong (in the sense

of causing high levels of transcription) promoters with useful and well-characterized expression

patterns are available “off the shelf”, and are used to drive the expression of transgenes for

experimental purposes, or in practical biotechnology applications. This is especially relevant in

plants, where a small number of promoters, such as the Cauliflower Mosaic Virus promoter, are

used for many purposes. However, for this kind of application it is usually sufficient to treat the

promoter as a black box, assuming that if it gives a particular expression level and pattern for
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one gene, it will do the same for a second gene in the same (or even a related) organism. This

does not directly improve our ability to decode arbitrary promoters, or to engineer new promoters

from scratch to achieve a specific expression pattern. In addition, promoter cloning and

delineation remains a fairly complex and labour-intensive process. And methods for determining

the expression pattern, which are generally most effective when dealing with reasonably high

levels of expression, may fail for genes which are only expressed at the level of a few copies

per cell, or which are only active under a very small range of circumstances. It seems unlikely

that the full set of promoters from any complex organism will be identified in this manner in the

foreseeable future.

Some promoters have been studied in much more detail, to the level of understanding

many of the interactions between DNA and protein. Simple model organisms, notably yeast,

are the convenient and popular choice for this kind of research, although more complex model

organisms,and even human cell lines,have been studied in some cases. To date, this kind of work

has been our most important source of understanding in how promoters and the transcriptional

machinery actually function. While it is unlikely that the full repertoire of promoters will be

studies in depth by individual experiments, there is now an approach to mapping protein-DNA

interactions, at least at a moderate resolution, which appears amenable to high-throughput

application. Briefly, preparations of chromatin are fragmented, then the fragments associated

with a protein of interest are precipitated using appropriate antibodies. DNA fragments extracted

from the precipitate can then be mapped back to the genome by hybridization onto a DNA

microarray [Ren et al. 2000]. The future significance of this technique, known as ChIP-on-chip,

is discussed in the concluding chapter of this thesis.

Eukaryotic cells actually have three different forms of RNA polymerase, the enzyme

responsible for transcribing RNA from DNA. Two of these, polI and polIII have only very

specialized roles relating to transcription of certain noncoding RNA genes. All protein-coding

RNAs, and many others, are transcribed by polII ,making this the most interesting (and best

studied) of the three. Studying the complexes which the polII core forms with DNA, it is
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found to be associated with a wide range of proteins. The bulk of these are characterized as

transcription factors (TFs) [Lewin 2000]. There proteins containing DNA-binding domains from

one of several large families such as the zinc finger and leucine zipper families, and recognize

particular elements in promoter regions. The structure of one transcription factor (PU.1, a form

of helix-turn-helix factor), bound to a short synthetic DNA molecule, is shown in figure 1.3. This

was drawn from the PDB entry 1pue [Kodandapani et al. 1996].

Figure 1.3. X-ray structure of transcription factor Pu.1 (shown in red) bound to a synthetic DNA substrate (green).

Transcription factors are very common: the GO annotation of Ensembl human gene

predictions (see page 28) lists 1028 transcription factors, and since not every gene is annotated in

this way, this is almost certain to be an underestimate. Also involved in polII complexes are the

general transcription factors (GTFs) and adapters, which do not necessarily recognize specific

DNA sequences, but are required parts of the functional transcription complex. A naive view of

transcription initiation is shown in figure 1.4.

In fact, we know that figure 1.4 is a significant over-simplification in several respects.

Genomic DNA in its natural context is certainly not a simple linear molecule, and the
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TFs bind to DNA

Recruit GTFs

Recruit polII

Initiation

Figure 1.4. A (simplistic) overview of keys steps in transcription initiation at a polII promoter.

transcription factors discussed here are unlikely to have unimpeded access to their binding sites.

The DNA double-helix is packaged at several levels. Firstly, units of around 150 nucleotides

are coiled around octamers of the core histone proteins to form nucleosomes, which can be

seen as “beads” on a string when viewed under the electron microscope. The structure of a

nucleosome has been determined by X-ray crystalography [Luger et al. 1997] and is shown in

figure 1.5. The DNA is then packaged further by weaker associations with histone H1to form the

chromatin fibre [Kornberg 1999]. While this system may have evolved primarily to protect the

DNA and make it easier to move the chromosomes around during cell division, it must clearly

impact on all other processes which involve interaction with the DNA. A number of systems

have been identified which alter DNA packaging, including enzymes which add and remove

acetyl groups from the histone cores, and remodeling complexes which appear to physically

move nucleosomes along the DNA molecule. Many of these enzymes have been found in

complexes with polII and transcription factors [Brownell et al. 1996]. One conclusion to draw

from this is that it is generally wrong to think of transcription initiation as an isolated event.
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When a transcription complex is recruited to a promoter, as well as triggering the production of

a single RNA copy, it also makes more permanent changes to the chromatin around the promoter,

facilitating initiation of subsequent transcripts [Kadonaga 1998].

Figure 1.5. X-ray structure of DNA (shown in green) coiled around an octamer of core histone proteins (red).

Another issue with the model of figure 1.4 is that many of the components of the

transcription complex appear to exist in complexes – called holoenzymes by analogy to

complexes involved in bacterial transcription mechanism – even when not associated with DNA

[Carey 1995]. Holoenzymes were first observed in budding yeast, but have since been found in

other species as well [Myer and Young, 1998]. Instead of a model where proteins are recruiting

one at a time to a transcription complex, it is now thought that large parts of the complex arrive

in a single step [Barberis and Gaudreau, 1998]. Presumably there is still some initial binding of

individual TFs to the DNA which starts the process and causes recruitment of the holoenzyme.
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One final complication, especially in higher eukaryotes, is that covalent modifications

can occur to the DNA nucleotide residues themselves, so in effect the alphabet of genomic

DNA is actually larger than the four letters normally considered. In mammals, almost all

occurrences of the dinucleotide 5’-cytosine-guanine-3’ (usually written CpG) are modified

to use methylcytosine in place of cytosine. Demethylation of CpG sites is associated with

promoter activation [Razin 1998]. When transcription begins at a previously inactive promoter,

demethylation seems to accompany chromatin remodeling. In addition to the permanent

regulatory signals encoded in the DNA sequence, promoters have a state, and can be switched

between inactive (methylated CpG, tightly packaged chromatin) and active (demethylated,

with more “open” chromatin structure) states. Information stored as patterns of DNA or

histone modifications, rather than directly in the DNA sequence, is often described as epigenetic

information [Holliday 1987].

Nevertheless, the naive model of transcription initiation remains a useful view to bear in

mind when working with promoters. It suggests that, at a sequence level, a promoter will consist

of a cluster of discrete sites at which the transcription factors bind. In the most naive view,

sequence between TF binding sites is irrelevant, but in practice there might also be constraints on

this: obvious possibilities are signals which control the positioning of nucleosomes to maximize

accessibility of the TF binding sites, and compositional biases around the TSS which make it

easier for the transcription complex to “open” the DNA helix. Moreover, individual transcription

factors must make contact with other proteins in the transcriptional complex. This means that

some TFs might have preferred positions in the complex, and their corresponding binding sites

in the promoter region will function more effectively if they are in particular positions (relative

either to the transcription start site, or to one another).

1.3. Resources for studying promoters

Since I was addressing this project from a computational point of view, I have been
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reliant on published experimental work to provide useful sets of data which can be analyzed in

order to learn more about promoters. Particularly valuable are large collections of data, either

compendiums of individual experimental results, or the output from single high-throughput

data collection exercises. The following resources are highly relevant to the study of eukaryotic

promoters, and were considered throughout this project.

1.3.1. EPD: the eukaryotic promoter database

The Eukaryotic Promoter Database [Périer et al. 2000, EPD, http://www.epd.isb-sib.ch/]

is, as the name suggests, a collection of promoter sequences from a range of organisms in the

eukaryotic domain. Sequences are accepted according to a set of fairly demanding criteria,

which are set out in the user manual [http://www.epd.isb-sib.ch/current/usrman.html].Notably,

transcription start sites must be mapped experimentally, and researchers submitting entries are

expected to identify the main TSS with an accuracy of ±5 bases. The one exception to this is

for promoters which are identified purely on the basis of a strong homology to a previously

characterized sequence. However, when using databases such as EPD for training or testing

sequence analysis methods, it is normal to work with a non-redundant subset of the sequences,

so all sequences which were accepted into the database on the basis of homology should be

discarded anyway.

Although EPD is named as a promoter database, it does not necessarily give information

about what biologists would consider to be promoter regions. A basic EPD entry just specifies

a transcription start site (which is presumed to corresponds roughly to the downstream ends of

the promoter regions). This is not necessarily a defect:the concept of a transcription start site

can be defined fairly rigorously, and experimental techniques for TSS mapping, such as primer

extension [Green and Roeder, 1980], are well known and accepted. On the other hand, it is

somewhat harder to say where the exact boundaries of an active “promoter region” lie, and even

the previously described strategy of making a series of targeting deletions is unlikely to give an

absolutely precise definition of the required region.



1.3. Resources for studying promoters 15

One point to note about EPD is that its contents are the results of fairly laborious

experimentation, and it is therefore quite small. Recently, it has been growing extremely

slowly. Release 62, dating from 2000, contained 389 mammalian promoters (after discarding

near-duplicates).Two years later, in release 71of the database, the number of distinct mammalian

promoters had only grown to 400. Very recently, the database has grown much more rapidly, with

over 2000 promoters in release 73, but the balance consists almost entirely of TSS predictions

made on the basis of full-length cDNA sequencing projects, as described below. These methods

have clear advantages in that they are comparatively easy to implement in high-throughput

environments, but it is not yet clear that they offer TSS mapping of the accuracy offered by

“traditional” EPD entries. Therefore, researchers may still wish to work with the traditional

entries. I made significant use of EPD in this project, but all work on this database pre-dated the

addition of the cDNA-based entries.

1.3.2. Full-length cDNA sequences

Complementary DNA (cDNA) is a general term for any DNA molecule produced from

an RNA template by the enzyme reverse transcriptase – an enzyme which is required in the

life-cycle of the retroviruses, but which has also proved to be a very valuable molecular biology

tool. In practice, cDNAs of interest are generally DNA copies of messenger RNAs, produced in

the laboratory as a method of studying the transcriptome. Sequencing of cDNAs has been taking

place for many years. Initially, the emphasis was on sequencing just representative portions of

the mRNA molecules, giving expressed sequence tag (EST) sequences [Adams et al. 1991]. But

several recent projects have attempted to clone and sequence the complete length of messenger

RNAs. The issue here is to distinguish between cases where the cDNA represents the full

length of mRNA found in the cell, and those where it is truncated for some reason. Likely

causes for truncation are the reverse transcriptase dissociating before reaching the end of the

mRNA, or simple degradation of the RNA (which is chemically rather unstable in vitro). Recent

projects such as the FANTOM collection of mouse cDNAs [Kawai et al. 2001] and DBTSS, a
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similar human project [Suzuki et al. 2002], have used an approach called cap-trapping. This

takes advantage of the fact that all eukaryotic mRNAs have a specially modified nucleotide

residue (the cap) present at their 5’ ends. This is added by specialized capping enzymes which

are thought to function cotranscriptionally [Proudfoot et al. 2002]. A technique exists in

molecular biology to attach oligonucleotide markers specifically to RNAs which possess this cap

nucleotide, as illustrated in figure 1.6. Once this step has been performed, cDNAs are produced

as normal, then cloned into plasmids using a protocol which requires the presence of a particular

tag sequence – matching that of the oligonucleotide which was added in the cap-trap stage.

In this way, it is possible to build a library consisting primarily of 5’-complete cDNA clones

[Maruyama and Sugano, 1994].

Full−length mRNA has 5’ cap

Truncated RNA has 5’ phosphate

Phosphate removed with alkaline phosphatase

Cap broken down, leaving phosphate

Marker oligonucleotide ligated to phosphate

1.

2.

3.

4.

P

P

Figure 1.6. A protocol for oligonucleotide-labeling of mRNAs with intact cap structures, used to preferentially
clone full-length mRNA sequences.

If it was effective, full-length cDNA sequencing would be an attractive way to determine

transcription start sites. However, it is not a complete solution to the problem: firstly, it may be

difficult to isolate cDNAs from genes which are expressed at low levels, or from rare variants

transcribed from alternatives sites. Second, there remain questions about the effectiveness of

the cap-trapping procedure. Cap-trapped sequences were used in this project, but rather than
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assuming that the 5’end of one of these clones always reflects a true transcription start site, some

caution was taken to use only those clones which appear most likely to be complete. Some results

which seem to justify this cautious approach are given in chapter 3.

1.3.3. TRANSFAC

TRANSFAC is a database of known transcription factors and their binding sites – both

natural sites identified by in vivo study of promoters and synthetic oligonucleotides to which

the factors have been shown to bind in vitro [Matys et al. 2003]. The database is made up of

several parts:

• A database of known transcription factor proteins (transfac)

• A database of binding sites for many of these factors (tfsite)

• A database of position weight matrices (see section 1.4.1) describing the preferred binding

sites of a few factors where a sufficiently large number of distinct binding site sequences

are known (tfmatrix)

The database of factors is clearly of interest when studying gene regulatory networks. Using the

database of sites is more difficult: this contains a large number of entries (8414 in release 3.4)

with binding site sequences varying for 2 to 128 bases in length (strongly biased toward the low

end of that range). This is a diverse set of sequences: it includes all 1024 possible 5-letter DNA

“words”, over 99% of the 6-letter words, and 84% of 7-letter combinations. Even considering

9-mers, almost 13% of them can be found in, so the probability of any sequence of less than

10 bases being present in tfsite is high. While I noted the existence of TRANSFAC, is was not

directly useful in the course of this project.

1.4. Existing computational methods for studying promoter
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Before this project, a number of attempts had been made to develop methods which

could automatically annotate promoters regions or transcription start sites in eukaryotic DNA.

Several attempts were made in the pre-genomic era to apply well-known sequence analysis

methods such as hidden Markov models [Audic and Béraud-Columb 1997] and neural networks

[Knudsen 1999] to the problem of promoter prediction. Work in this era was reviewed in

[Fickett and Hatzigeorgiou 1997]. The authors of that review also performed an evaluation of the

available methods on a small set of newly-published test sequences. This independent evaluation

had the advantage that all the test sequences were obtained after the evaluated methods were

published, making that the test entirely impartial since none of the test sequences could have

been used when training and developing the prediction methods. However, the test set consisted

only of 18 sequences, all of which were rather short (12 were less than 2 kilobases in length), and

with some clear problems for any promoter recognition software – in one case, the mapped TSS

was only 28 bases from the start of the sequence, giving little information for any method which

looks for upstream signals. The evaluated methods all performed better than would be expected

for random predictions, but in all cases, specificity was low. In the modern era of sequencing,

where researchers often want to look at whole mammalian genomes rather than 2kb regions of

interest, specificity is a vital requirement, as discussed in [Scherf et al. 2000].

Below, I discuss three specific methods of promoter recognition: one based on a machine

learning approach, and two which are more biologically motivated. These methods will appear

again in chapter 3 of this report, as benchmarks used when evaluating the EponineTSS method.

1.4.1. Well-known motifs and Position Weight Matrices

There are a number of short sequence motifs which have been associated with transcription

initiation. Most of these are believed to represent preferred binding sites for one particular

transcription factor. Few of these are 100% specific – in other words, there is not one single

sequence which is recognized, but instead there are several choices of allowable nucleotide for

at least some positions in the motif. Given a large number of examples, a good way to represent
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knowledge about a motif is a Position Weight Matrix (PWM). This is a matrix where each

element represents the probability of a given nucleotide occurring at a particular position in the

sequence. In other words, each column of the matrix is a probability distribution over the DNA

alphabet. A PWM can be viewed as a probabilistic model of a fixed-length sequence:

→
W (S)−−

|W|∏
i−−1

W i(Si) (1.4.1)

Where |W | is the length of the PWM, and W i is the i’th column of the matrix. The higher the

probability of a given sequence under this model, the more similar the sequence is to the “ideal”

motif, and therefore the higher the probability that it will function as a binding site. This is the

zeroth order model: each position in the sequence is assumed to be independent of all the others.

Here,
→
W and

←
W are used to indicate weight-matrix scores for the forward and reverse DNA

strands respectively.

Considering a PWM (or other motif description)as a probabilistic model offers an approach

for learning optimal PWMs from a set of sequences. A PWM can be seen as a degenerate

form of a hidden Markov model [Durbin et al. 1998]. HMMs are state machines where each

state has an associated emission spectrum over some alphabet of possible observations. In

a PWM, the transitions between the states are fixed: after observing the nucleotide at each

position, the machine always moves to the next state. But by adding a few additional states to

the HMM, it is possible to build a model which emits a variable number of bases of flanking

sequence on each side of the motif (figure 1.7). The set of parameters for an HMM which

maximize the probability for a set of sequences (often called the maximum likelihood estimate

of the parameters) can be found by applying the Baum-Welch algorithm [Durbin et al. 1998].

A concrete implementation of motif-learning using this approach is provided by the MEME

package [Bailey and Elkan 1994].

It should be pointed out that the assumption of bases being independent in a motif is

unlikely to be true in most cases. When proteins bind to DNA, they often significantly deform
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Figure 1.7. Hidden Markov Model of a motif (states m1 to m5) embedded in a longer sequence.

it, so mechanical properties of the DNA other than the actual base sequence will be significant

– in particular, the flexibility of the double helix. This property is determined largely by

interactions between neighbouring base pairs. Models which take these, and perhaps also longer

range interactions, into account can be expected to better predict the binding of a protein to a

given sequence [Barash et al. 2003]. However, since non-independent models have many more

parameters than simple PWMs, they require more example sequences to learn effectively.

Sequence motifs are commonly displayed in logo form – see, for example, figure 1.8. Here,

each column of a PWM is rendered as a stack of symbols, with more height given to the most

probable symbols. The total height of the stack is proportional to the Shannon information

content of the distribution:

S −− log2(|A|) +
∑
n∈A

P(n) log2
1

P(n)
(1.4.2)

WhereA is the alphabet we are considering. This quantity is related to entropy, and is measured

in bits. For a four-letter alphabet such as DNA, values can range from 0 (for a completely

uniform distribution, i.e. P ( n ) −− 0 .2 5 for every base) to 2 bits (for the case where only a

single base is allowed). Therefore, tall stacks indicate strong constraints on the bases which are

acceptable at a given position, while short stacks show positions with only a marginal preference

for any particular base. Completely non-informative positions appear blank in the logo.

The TATA box is the best known element of eukaryotic promoter sequences, and was
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recognized more than 20 years ago in early experiments with eukaryotic gene expression

[Corden et al. 1980]. The TATA binding protein (TBP) is known to associate with the TATA

box, when it is present. However, this association is weak, and TBP (which plays a central

role in transcriptional complexes) is actually present even when no TATA box can be found

[Rigby 1993]. The definitive TATA box PWM was learned by applying an maximum likelihood

algorithm to sequences from EPD, and was published, along with several other motifs, in

[Bucher 1990]. The logo form of this is shown in figure 1.8.

Figure 1.8. Logo view of a Position Weight Matrix model of the TATA box (redrawn from data on the EPD
website)

The TATA PWM has been used on its own as a promoter prediction method, and was one of

the candidate methods included in [Fickett and Hatzigeorgiou 1997]. Further information about

the performance of this method appears in chapter 3.

PWMs are a widely used technique in computational biology, and are by no means

specific to promoter research: another common application is to model the sequences around

splice-junction sites in gene prediction programs. Profile HMMs are close relatives of PWMs,

which allow small insertions and deletions relative to the expected consensus sequence,

and are used by the Pfam project to identify families of evolutionarily-related proteins

[Bateman et al. 2002].

1.4.2. CpG islands

As previously mentioned, the the cytosine in the dinucleotide 5’-cytosine-guanine-3’ can

be covalently modified with a methyl group. Indeed, in mammalian genomes, this is extremely

common and the vast majority of CpGs are methylated. CpG methylation is believed to convey
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some information, since DNA is methylated in the course of some mechanisms of gene silencing

[Razin 1998]. However, storing extra epigenetic information by methylation does not come

without a cost. Cytosine bases are prone to deamination. Deamination of normal cytosine yields

uracil, which is not normally present in DNA, and can be efficiently recognized and repaired.

But the deamination product of methylcytosine is thymine, a normal DNA base. This leaves a

thymine-guanine pair in the DNA helix, which may be detected and resolved by mismatch-repair

mechanisms. This kind of DNA repair is much less efficient than the rapid detection and

elimination of uracil, and a substantial proportion of methylcytosine-to-thymine mutations

survive to be replicated. Sequencing of mammalian genomes has shown that CpG dinucleotides

are rather rare. If bases in DNA were independent of their neighbours, we would expect the

frequency of CpG dinucleotides to be given by:

FCG
−− FCFG (1.4.3)

In fact, over almost any stretch of mammalian sequence, FGC is vastly lower than this expected

value. But some regions of the genome contain much higher CpG levels than average: these are

called CpG islands, and are known to be associated with the 5’ends of genes [Larsen et al 1992].

It has been further suggested that genes associated with strong CpG islands have “housekeeping”

functions – in other words, they encode proteins which are ubiquitous throughout many cell types

and developmental stages [Brandeis et al. 1993].

The accepted definition of a CpG island, taken from

[Gardiner-Garden and Frommer, 1987], is a region of at least 200 bases where:

• At least 50% of bases are G or C

• The observed content of CpG dinucleotides is at least 60% of the “expected” figure from

equation 1.4.3 for a random sequence with the same single-nucleotide composition as the

region under consideration

A number of programs exist to detect CpG islands in genomic DNA sequences using the criteria
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given above, and these are commonly used by curators annotating gene structures. When the 5’

end of a gene structure annotated primarily on the basis of cDNA or EST evidence falls close to

a CpG island, this is a good indication that the structure is not badly truncated. However, CpG

islands do not provide strong information about the actual position of the transcription start site.

The CpG dinucleotide is palindromic: reading the other DNA strand in the 5’-to-3’ direction,

you will also see C followed by G. This means that for a given region of sequence, FCG will be

the same for both strands, so the predicted CpG islands give no information about the direction

of transcription.

1.4.3. PromoterInspector

PromoterInspector is a recent method for predicting promoter regions which works on

the basis of detecting multiple motifs [Scherf et al. 2000]. It was trained based on sequences

extracted from EPD, using a brute force method to determine sets of motifs which are over- or

under-represented in promoter regions relative to the genome as a whole. In this case, the motifs

are not represented as PWMs, but as simple strings, where some of the positions can be wildcard

characters. This is equivalent to a degenerate PWM, where all columns have an information

content of either 2 bits (requiring an exact match) or 0 bits (non-informative). This is likely to be

less sensitive than allowing all possible PWMs, but has the advantage that it is possible to rapidly

enumerate the complete set of patterns up to a given length, and count their occurrences in a set

of training data. This makes the brute-force training approach practical.

By design, PromoterInspector does not give direct information about transcription start

sites. Instead, it marks “promoter regions” on the genome. However, since the positive training

set consisted simply of blocks of sequence 500 bases upstream of EPD transcription start sites,

rather than mapped, active, promoter regions, there is no particular reason to believe that the

boundaries of the predicted promoter regions correspond to the portion of the sequence which

is actually biologically significant. A more conservative description would be “regions likely to

contain core promoter elements”. Like CpG island predictors, PromoterInspector also gives no
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information about the direction of transcription.

1.5. Other resources used in this project

The field of bioinformatics is characterized by large, complex data sets. For

bioinformaticians concentrating on sequence analysis, the most significant recent developments

have been the publication of various genome sequences, with the draft sequences of higher

organisms such as human, mouse, and Fugu being particularly exciting. The availability of

genome data is, of course, vital to this project. But the scale of genome data – plus complications

specific to bioinformatics, such as the regularly changing assemblies of draft genome data

– mean that they are relatively difficult to manage and work with. The following tools and

resources were invaluable in the course of this project.

1.5.1. BioJava

BioJava is an open source library of tools and components for developing bioinformatics

applications [The BioJava development group, http://www.biojava.org/]. It draws some

inspiration from earlier projects like Bioperl [Stajich et al. 2002], but follows rather different

design approaches, and places more emphasis on supporting developers working on new analysis

methods, rather than manipulating output from existing tools. Most of the code in current

versions is aimed at manipulating and analyzing sequence data, but future versions are expected

to improve support for other data types, and integration of data sets from disparate sources. In

use, BioJava has proved quite scalable: it is quick and convenient to work with small pieces of

sequence data, but exactly the same Application Program Interfaces (APIs) can also be applied

to much larger sets of data. With extensions like bj-ensembl, described below, it is easy to handle

and query databases larger than the computer’s memory.

One defining pattern in BioJava development has been the use of query languages in



1.5. Other resources used in this project 25

preference to defining large sets of getFooByBar() accessor methods. The strongest example

of this is the handling of annotated sequence, which can be queried using the FeatureFilter

language:

// Locate all gene annotations on the positive strand,

// overlapping the specified region

Sequence seq = loadSequence();

FeatureHolder features = seq.filter(

new FeatureFilter.And(

new FeatureFilter.ByType("gene"),

new FeatureFilter.And(

new FeatureFilter.OverlapsLocation(

new RangeLocation(1000, 2000)

),

new FeatureFilter.ByStrand(

Strand.POSITIVE

)

)

);

Simply allowing features to be requested based on a single criterion (type, or location) can be

highly inefficient when working on large datasets, since this would require the program above

to fetch all features in the requested region, then throw away all those which aren’t genes on

the positive strand. On the other hand, providing accessor methods for all the combinations

of criteria which users might wish to access quickly gives unwieldy APIs which are hard to

learn, and even harder to maintain and test effectively. By passing in an object which represents

a query, users can naturally combine all the available filters operators using the and, or, and

not operators, and easily ask complex questions. The underlying implementations can either

implement the query system directly, or transform the query into some other language – for

example, some BioJava database front ends can directly transform FeatureFilter objects into

SQL queries. Plans are currently underway for BioJava 2, which will provide a single, more

consistent, query language for a wide variety of data types while following a similar spirit to the

BioJava 1.x FeatureFilters.

I have been involved in BioJava development since the pre-1.0 development which began
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in late 1999. During this time, I have worked on many areas of the code base, although I have

a specific interest in handing of annotated sequence data, and database interfaces such as the

BioSQL [OBDA, http://obda.open-bio.org/] and Ensembl (see below) access modules. BioJava

code was used extensively in implementing the methods described in this project, and also for

the large number of one-off scripts and small programs which were needed to prepare data sets

and to analyze and present the results.

1.5.2. Ensembl

Ensembl began as a project to carry out a first-pass automatic annotation of the human

genome, and the scope has since expanded to cover a wide range of eukaryotic genomes,

and provide sophisticated web-based interfaces for accessing and querying these resources

[Hubbard et al. 2002, Clamp et al. 2003]. The most notable aspect of the Ensembl data is the

high-quality set of gene predictions, which are produced by a hybrid method using a range of

evidence type, aligned to the genome using the Genewise tool [Birney 1999] and est2genome

[Mott 1997], and also some ab initio computational predictions. The gene-builder module,

which combines these data and produces final predictions of gene structures, is considered

to have a very low rate of overprediction, particularly in comparison with the purely ab initio

methods. Ensembl predictions are all given ID numbers, starting ENSG for predicted genes,

ENST for distinct transcriptions, ENSE for individual exons, and ENSP for protein products.

These IDs are stable: if a gene predicted on the current assembly exactly matches one on a

previous number, the ID is reused. For computational biologists working with large sets of

predicted genes, ENS* IDs can be a convenient tool, avoiding traditional arguments about

gene nomenclature, and allowing newly predicted genes to be uniquely identified even if no

nomenclature has yet been defined.

All Ensembl data – both the raw sequence and the results of the gene build and other

analyses – is stored in a relational database. In the course of this project, I developed a module

called bj-ensembl, which plugs into the main BioJava libraries and provides seamless access to
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the core Ensembl databases using the standard BioJava interfaces. In the example below, only

the first two lines of code are specific to programs working with an Ensembl database. All the

querying code is applicable to other types of database, or even (given enough memory to load a

whole genome!) objects loaded from normal flat files.

// Connect to an Ensembl database

Ensembl ens = new Ensembl(/* database details */);

SequenceDB chromomsomes = ens.getChromosomes();

// Find all CpG islands in a particular region

Sequence chr = chromosomes.getSequence(22);

FeatureHolder cpgs = chr.filter(

new FeatureFilter.And(

new FeatureFilter.ByType("cpg"),

new FeatureFilter.OverlapsLocation(

new RangeLocation(20000000, 21000000)

)

)

);

// Find transcripts of a particular gene

FeatureHolder trans = chromosomes.filter(

new FeatureFilter.ContainsAnnotation(

Ensembl.TRANSCRIPT_GENEID,

"ENSG00000135457"

)

);

Ensembl data was used heavily throughout this project. It proved valuable both as a simple

database containing genomic sequences in a more convenient form that flat files, and as a source

of high-quality gene predictions.

Ensembl data is presented via a sophisticated web interface, which includes a graphical

sequence viewer (contigview) as well as many different report pages. It is possible to add

extra “tracks” of information to contigview displays using by publishing the data using the

DAS protocol [Dowell et al. 2001]. I developed a BioJava-based DAS server called Dazzle
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[Down and Pocock 2001]. I used Dazzle and contigview to visualize many results from this

project in their genomic context.

1.5.3. The Gene Ontology (GO)

The Gene Ontology is a controlled vocabulary for the annotation of genes

[The Gene Ontology Consortium 2000]. It is divided into three portions:

• Molecular functions (e.g. “DNA binding”)

• Biological processes (e.g. “Transcription”)

• Cellular components (e.g. “Nucleus”)

Terms in GO are accompanied by human-readable definitions. These aim for rigour, with the

hope that data annotated with GO terms by one group will be directly comparable with results

from another group, who might be working on another species and come from a quite different

background. For a computational biologist who wishes to ask questions along the lines of “are

the genes in this (large) set more likely than average to perform some specific function”, statistics

based on GO annotation are expected to be far more robust than alternatives, such as lexical

analysis of keywords in human-written gene descriptions.

Rather than just offering a flat set of terms, GO also defines relationships between them.

These are what mark out GO as a kind of ontology, rather than merely a controlled vocabulary.

The relations in GO are either is-a or part-of . Both types are transitive, i.e. if A is-a B and B

is-a C then A is-a C. This property is useful, since it means that it is reasonable to consider the

set of all “descendants” of a given term (the transitive closure). This operation makes it possible

to take data annotated with a complex vocabulary such as GO and slice it up at an arbitrary level.

So a gene annotated with the molecular function “zinc-mediated transcriptional activator” will

be pulled out by a specific query fr that particular term, but also for more general queries, such

as “transcriptional regulation” or “nucleic acid binding”. Both the relation types are directed,
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Figure 1.9. Example of a directed acyclic graph of Gene Ontology terms.

so each relationship can be considered to link a parent and a child term. Each term can be in

relation to more than one parent, so the ontology forms a directed acyclic graph, as illustrated in

figure 1.9.

Of course, a vocabulary is not useful on its own, but becomes relevant when it is used to

describe objects of interest. Some genome projects, such as those for Drosophila and fission

yeast, now use GO terms in all their curated annotation. For mammalian genomes, the current

state of the art in GO annotation comes from the GOA project [Camon et al. 2003]. The basis

of this project is curated annotation of selected Swissprot and Interpro entries with GO terms.

Other protein sequences are then annotated on the basis of similarity to entries with curated GO

terms. This annotation has been picked up by the Ensembl project, who use it as the basis for GO

annotation of their gene predictions. Whenever GO annotation is used in this project, this refers
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to GOA results which have been mapped to Ensembl genes in this way.



Chapter 2. Sparse Bayesian Learning

Supervised machine learning is a generic term for methods which take some set of labeled

data – that is, items of data about which we have some special knowledge, such as whether

or not a DNA sequence comes from a gene’s promoter region – and build some kind of

model which can be used to predict the label values for additional, unseen data. This is quite

different to unsupervised machine learning methods, which are used to detect patterns in sets of

unlabeled data.

In principle, simply storing away (memorizing) the training data would count as a valid

method of machine learning, but this is only likely to be of use if all the unseen data is very

similar to pieces of data which have already been seen. Much more interesting are methods

which can generalize – build a model which contains less information than the complete

training set, but which still match the labeling on the supplied data. Learning methods with

good generalization properties are intuitively more likely to correctly interpret unseen data

which is significantly different from any of the pieces of training data, and practical experience

throughout the history of machine learning has backed up this intuition. Depending on the

exact techniques used, the internal model state of a machine learning system may be amenable

to inspection or visualization by human users, who can recognize the generalizations made by

the method, and perhaps gain some additional understanding of the problem in hand. Returning

briefly to the question of classifying sequences (covered in much more detail in chapter 3), a

memorization-type solution might simply encode the complete set of training data, but would

probably only make trustworthy predictions for sequences which showed strong similarity along

their full length to a sequence in the training set. A more general solution would be to identify

some common short motifs or compositional biases which occur in promoter regions. This could

yield a much more widely applicable model, and also one which would be of direct interest to

31
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researchers wishing to understand transcription initiation.

It should be noted that generalizing learning machines are not automatically “transparent”

in terms of being able to extract the rules which have been learned in a form which can be

presented to humans. This criticism has been made in particular about machine learning systems

based on neural network approaches. While “black box” prediction systems, when suitably

validated, can be useful tools, it is always preferable to understand the basis for the predictions

that are made. It is therefore worth specifically considering the issue of transparency when

developing or choosing new machine learning technologies.

This chapter introduces one particular approach to supervised learning, called Sparse

Bayesian Learning, which based on recent theoretical developments by MacKay and Tipping.

Later sections discuss a specific “user oriented” implementation of the Sparse Bayesian Learning

approach (as opposed to development implementations in simple test harnesses), which is

available as a Java library routine, and can be applied to a wide range of real-world machine

learning applications.

2.1. Generalized Linear Models (GLMs)

Generalized Linear Models are common mathematical devices, by which the value

of a real function is represented as the weighted sum of a number of basis functions

[McCullagh and Nelder 1983]. The general formulation is:

η(x)−−
∑

i
βiφi(x) + K (2.1.1)

Where β represents a vector of weights, φ is the set of basis functions, and K is a constant. The

basis functions can be any real-valued function of x. In the mathematical literature, x is normally

a vector, and a common choice of basis function is a hyperspherical Gaussian around some point

in the appropriately-dimensioned space (commonly called the radial basis function). However,
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since the GLM only refers to φ(x), x could actually be any type of data – including strings or

even records of structured data – so long as a suitable family of basis functions can be defined.

Analogous to the radial basis function, these functions will typically be simple functions of a

distance metric from some point in a hypothetical “data space”.

It is common to refer to the high-dimensional space implied by a list of basis functions

as feature space. The common theme of generalized linear modeling is to pick a projection

from the natural data space, where the distribution of data may be non-linear (and potentially

extremely complex), into a feature space where a linear model is a good fit to the data. Obviously,

this means that the choice of feature space is important, and requires either problem-specific

knowledge or an appropriate automatic method – this is discussed further in the next section.

This basic form of a GLM is normally applied as a regression system – to estimate the

value of a continuous function. However, for many machine learning tasks, it is more interesting

to investigate class membership. As an example relevant to this thesis, a DNA sequence x

might belong to the class P (promoter) or not-P. GLMs are applied to classification problems

using a link function. For binary classification tasks, the logistic function (figure 2.1) is a

common choice:

π −− σ(η)−− 1
1 + −ηe

(2.1.2)

This function has the desirable property that 0 ≤ π ≤ 1. By fitting appropriate values for β, π is

an estimate of p(x ∈ P), our posterior belief that x is a promoter given the learned model.

It is also possible to use multiple GLMs to separate data into more than two classes. In this

case, each class is modeled by its own set of weights, and the probability of a data point being a

member of class c is given by the multinomial link function:

πc
−−

ηce
C∑

c′−−1

ηc′e
(2.1.3)
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Figure 2.1. Plot of the logistic function (equation 2.1.2).

This multi-GLM formulation could, for instance, be used to build a classifier capable of

distinguishing between promoter sequences which are active in several different biological

environments.

One point to note about GLM classifiers is that while, given suitable values of β, they

can serve as probabilistic models, they are not “end-to-end” probabilistic in the sense of some

types of hidden Markov model, where every parameter in the model can be interpreted a

probability. The values of the individual basis functions need not be probabilities themselves,

and it is the responsibility of the training algorithm to fit a model where the output value has a

probabilistic interpretation.

In its simplest form, training a GLM simply means picking a set of values for β and

K. For regression questions, the best-known algorithm for this is the least-squares method

[Lawson and Hanson 1995], an analytical approach which simply minimizes the square of

the error at each point of training data. This method is not directly applicable to classification

problems, but comparable methods do exist: for example, iterated reweighted least squares
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[Nabney 1999]. However, all these methods are only useful if the data has already been

transformed into a suitable feature space.

2.2. Feature selection using pruning priors

The utility of machine learning algorithms is severely limited if users have to apply large

amounts of domain-specific knowledge to project the data into a small, meaningful, feature

space. Therefore, it is interesting to consider methods which can work in very high-dimensional

feature spaces and automatically select smaller, informative subspaces. Methods which combine

selection of features with learning an optimal set of parameters are called sparse learning

algorithms. The classic example of a sparse learning algorithm, and to date the most widely

used, is the Support Vector Machine (SVM) [Schölkopf et al. (eds.) 1999], which can learn

one particular class of generalized linear model in a sparse manner, often reducing a candidate

feature space with thousands of basis functions down to just a handful. However, the restrictions

on problems which can be solved with support vector machines are rather stringent: instead of

supplying an arbitrary collection of basis functions, the user must supply a single kernel function

K(x,y), whose value is the inner (dot) product of x and y when projected into the desired feature

space. The basis functions of the learned GLMs are always of the form φi(x)−− K(x, xi), where

xi is one of the examples from the training data set. An alternative way of looking at this is that

the algorithm works on the Gram matrix: a square matrix A where:

Aij
−− K (xi, xj) (2.2.1)

In addition, Mercer’s condition, which forms part of the derivation of the support vector

machine algorithm, states the kernel function – and thus the Gram matrix – must be positive

definite, i.e.:
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⊥

z Az ≥ 0 (2.2.2)

for any vector, z, with a length matching the edge size of the square matrix. Proving that an

arbitrary function satisfies this condition can be a demanding requirement, and presents a barrier

to simply plugging new types of kernel into the SVM framework.

While SVMs have proved to be effective tools for some biological problems (see, for

example, [Furey et al. 2000]), the constraints on the forms of models which can be learned

can be problematic. Most well-known kernel functions are applicable only to numerical data.

Some effort has been made to develop kernel functions which can be applied to alternative data

types, such as strings [Jaakkola and Haussler 1999] and graphs [Kondor and Lafferty, 2002],

but the requirement to prove that the function used is positive definite makes this problematic,

and prevents people without strong mathematical backgrounds from developing new SVM

applications. Perhaps more seriously, the kernel view of GLMs does not allow models to be

learned with basis functions that pick truly arbitrary sub-spaces of the training data space (for

example, just considering dimensions 5, 8, and 10 of vector data, or only one region of a long

string), since only the set of basis functions implied by the training data are available. Very

recently, a “kernel-like” learning system has been developed which adjusts an additional set of

scaling variables to select informative dimensions [Krishnapuram et al. 2003], but unlike the

approach described below this is only applicable to vector data.

For these reasons, it is interesting to consider alternative forms of learning which can be

used to train arbitrary GLMs while achieving sparsity comparable or better than that of SVMs.

One extremely promising approach which fulfills these requirements is the Relevance Vector

Machine (RVM) [Tipping 2000]. This was originally presented as a direct (and competitive, on

the basis of performance on standard machine learning test problems) alternative to the SVM,

with basis functions implied from a single kernel function and a set of training data. However,

unlike the SVM there is no technical reason why this formulation is necessary, and it is entirely
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feasible to implement an RVM-like learning method which uses arbitrary basis functions.

Briefly, the RVM is a Bayesian probabilistic view of training a GLM as defined by equation

2.1.1. In other words, the question is, given a list of training data, X, and a corresponding list of

labels or expected outcomes, t, to find probable values of the weights vector, β which make the

model outputs match the supplied labeling.

The basis of all Bayesian statistics is Bayes’ theorem:

P(a|b)−− P(a)P(b|a)
P(b)

(2.2.3)

This says that, given some prior knowledge of the probability of a (P(a)), and the conditional

probability of b given a (the likelihood, P(b|a)), it is possible to calculate the probability of a

given b. In cases where there is no prior knowledge whatsoever, a flat (non-informative) prior

distribution can, of course, be specified. The evidence term, P (b), is generally treated simply

as a normalizing constant. Bayes’ theorem supports a modeling view of statistics and learning:

if a is the parameters of the model, b is the training data, and the likelihood function P(b|a)

encapsulates the logic of the model, Bayes’ theorem offers us a probability distribution over

possible values for the model parameters.

For a two-way classification model, with training data labeled as either positive (tn
−− 1)

or negative (tn
−− 0), and treating each element of the training set independently, a likelihood

function – the probability of that set of labeled data given a particular set of model parameters

– can be written as:

P(t | X , β)−−
N∏

n−−1
σ(ηn

tn) (1− σ(ηn
1−tn)) (2.2.4)

where ηn is the linear model output for the thn example in the training set. It is possible to write

comparable probabilistic formulations for regression problems by specifying some probability
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distribution for errors relative to the model output, then proceed in an analogous fashion, but

regression problems fall outside the scope of this thesis.

The second part of the Bayesian inference process is the prior distribution over the

parameters being inferred. In general, the preferred choice is a non-informative prior, implying

that before the inference operation we have no knowledge of what the parameters are likely to be.

However, in this case there is a prior preference: if possible,we want to learn sparse models. This

is encoded in the RVM by using a more sophisticated prior. The basic prior is an independent

Gaussian distribution,G, over the weight of each basis function:

P(β)−−
∏

i
G(βi | 0, −1αi ) (2.2.5)

The “RVM trick” is to define the inverse variances of these Gaussian distributions, α, as

variables, and to infer their values as well. It is therefore, of course, necessary to provide an

additional hyperprior over values of these priors. For the hyperprior, a conventional choice of

non-informative prior is used: a very broad gamma distribution. Since the parameters of this are

chosen such that the distribution is essentially flat over a wide range of “reasonable” values of α,

the exact choice of function is in fact irrelevant except for issues of computational convenience.

This form of prior is known as an automatic relevance determination (ARD) prior, and was first

proposed (in a somewhat difference application, relating to the training of neural networks) in

[Mackay 1994].

The inclusion of an ARD prior has been described as an Occam term, since it rewards

simplicity: when the α parameter tends to infinity, the probability of β values close to zero

becomes extremely high, as can be seen by extrapolating figure 2.2. So for a basis function

which cannot directly contribute to the likelihood of the data, the joint likelihood of the data

and the β parameters is maximized by setting α to a large value and β to zero. As we shall
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see, inferring likely parameters for this model requires an iterative process. After a number

of cycles, some of the α values become large. That means that the corresponding weight

parameter, βi, is well-defined with a value extremely close to zero. When α exceeds some large

threshold, we can assume that the corresponding dimension of feature space is irrelevant, and not

making a substantial contribution to the calculations. At this point, it is reasonable for practical

implementations of the algorithm to simply drop that dimension from further calculations. In

this way, sparse models are obtained. In addition, the computational cost of each iteration falls

with the number of dimensions under consideration.
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Figure 2.2. Plots of the Gaussian distribution,G(βi | 0, −1αi ), for various values of α.

Given this probabilistic view of the problem, Bayes’ theorem provides us with the

distribution of probable values for the weights:

P(β | X , t)−−
∫
α
P(β|α)P(α)P(X , t|β)

P(X , t)
(2.2.6)

Note that the α parameters are hidden variables of the model, and not of direct interest.

Therefore, this formula marginalizes α by integrating over all possible values. This is the
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standard Bayesian approach to handling all parameters whose values are not specifically required

in the inference.

Unfortunately, like most Bayesian problems, formula 2.2.6 is not directly tractable, due to

problems evaluating the evidence term, P(X, t). Therefore, it is necessary to take one of a variety

of approximate methods in order to obtain likely values for β and α. The simplest approaches

to solve such problems are Monte-Carlo methods, which make it possible to draw samples from

the posterior distribution P(β | X , t). The basic Monte-Carlo method is the Metropolis-Hastings

algorithm [MacKay 2003]. The principle here is that if we wish to sample from the probability

distribution P(x), we perform a random walk within this distribution, then take some of the states

which are visited as samples from the distribution. So long as a sufficiently large number of steps

are made between samples, they will be independent samples from P(x). To perform the random

walk, it is necessary to offer a proposal distribution, Q(x ′ | x) which suggests states to try next

conditioned on the current state, x, and to be able to easily sample from this distribution. For each

step, a new state, x′ is proposed by drawing a sample from Q(x′ | x), and the following quantity

is calculated:

α−− P(x′)
P(x)

Q(x | x′)
Q(x′ | x)

(2.2.7)

If α ≥ 1, the new state is always accepted. Otherwise, the new state is accepted with probability

α. There are two important points here: firstly, the exact distribution chosen for Q is not

important: the second term of equation 2.2.7 counteracts any bias in the set of states which are

proposed. However, a bad proposal distribution may mean that very few proposals are accepted

and the random walk proceeds very slowly. Secondly, since it is only necessary to calculate the

ratio P(x′)/ P(x), it is not necessary to calculate any constant terms in P, so the evidence term of

distributions such as 2.2.6 can be neglected.

I wrote a naive implementation of the Relevance Vector Machine algorithm which used

the basic Metropolis-Hastings algorithm. This was able to solve simple problems, such as that
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shown in figure 2.3, but required several minutes of processor time. Figure 2.3 also shows off an

attractive side effect of using probabilistic classification methods: each prediction comes with a

confidence level. While points close to the training data are shown in deep red or blue, indicating

close to 100% confidence in the prediction, points that are some distance from training data

of either class appear in paler shades, indicating a much lower confidence. Non-probabilistic

methods such as support vector machines cannot provide this information.

Some methods exist for optimizing Monte-Carlo simulations: for example, Skilling’s

leapfrog [MacKay 2003]. For this project, I did not follow this course further, since the alternative

method described below gave good performance and worked well on the problems I considered.

However, further investigation of Monte Carlo RVM implementations might be interesting in the

future, for cases where the variational solution cannot be applied.

Figure 2.3. Example of sparse Bayesian learning in Cartesian 2-space. The data points chosen as centers for the
final set of basis functions are highlighted in green.

An alternative approach is to use free-form variational inference [MacKay 1995]. This

is a recent approach to Bayesian inference whereby an intractable posterior distribution

is approximated by alternative, simple, probability distributions. Analytical formulae can

be obtained which minimize the difference between the true and approximating posterior

distribution. A variational approximation of the RVM posterior distributions is given in

[Bishop and Tipping 2000]. Like many variational inference solutions, this uses a factorisable
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posterior distribution (i.e. independent distributions for all parameters).Although the variational

approximation yields formulae to analytically determine the moments of one approximating

distribution given values for the other, it is still necessary to iterate the process a number of

times in order to fit all the parameters to the data. The variational RVM approach can be applied

effectively to both regression and binary classification problems. However, for classification

problems it relies on transforming the logistic function to a convex form, which allows a linear

approximation to be made using Jensen’s inequality. This appears not to be practical in the

case of the multinomial function, therefore multi-class problems must still be solved using an

alternative method such as Metropolis-Hastings.

Implementations of the RVM methodology which iteratively apply the variational

estimators from [Bishop and Tipping 2000] are able to solve problems of the scale of figure 2.3

in a timescale of around 10 seconds on a typical desktop computer. Unlike Monte-Carlo models,

it is possible to specify a clearly objective stopping criterion, halting iterations once the training

process has “converged” (i.e. the moments of the approximating distributions no longer change

significantly from one cycle to the next).

2.3. A pragmatic approach to handling large spaces

In principle, we would like to provide as little prior knowledge as possible about which

feature spaces to consider when solving a problem, instead allowing a sparse trainer such as

the RVM to pick freely from a wide range of possible basis functions. Unfortunately, even

when using the variational approximations to avoid the inefficiencies of a sampling strategy,

computational costs become significant. The progressive simplification of the problem means

that it is difficult to quantify the full computational complexity since the size of the matrices

varies from cycle to cycle. However, scaling is quite substantially worse than linear, as can be

seen in figure 2.5.
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Here, a pragmatic approach to handling large sets of candidate basis functions is suggested:

a working set is first initialized with a subset of basis functions, picked at random from the pool

of candidates. The trainer runs as previously described, and as before some α values increase to

a level such that it is possible to remove the associated basis functions from further consideration.

Once the size of the working set drops below a designated low water mark, additional basis

functions are added from the pool. At this point, all α and β values are reinitialized and training

continues. In this way, the working set fluctuates between high and low water marks until the

pool is exhausted, at which point the trainer continues to run until the weights and priors no

longer change significantly between cycles (i.e. convergence) to give a complete model.

To evaluate the performance benefits of this method, I considered a simple classification

problem in Cartesian 2-space. This involved two equal-sized classes of points sampled from

two Gaussians, with a substantial space between them. Basis functions were generated in an

“SVM-like” manner, with a radial basis function centred on each point in the training data. Thus,

the size of the basis-value matrix of the sparse Bayesian trainer increases with the square of

dataset size. As shown in figure 2.4, an optimal model requires only two basis functions, and

gives 100% classification accuracy on the training data.

A range of problem sizes were tested, from 50 points in each class (i.e. 100 basis functions)

to 300 points. I compared the basic full-set training method with the incremental method,picking

a high water mark of 20 basis functions and a low water mark of 15. Timings are shown in

figure 2.5. For small problems, the incremental training approach is in fact significantly slower,

due to the increased number of cycles and the need to periodically restart the training process

as more basis functions are added. However, the scalability of the method to large problems is

substantially better.

It is interesting to note that, while in all cases all the training data was correctly classified,

the full-set training runs with 300 points did not learn the simple 2-basis function model seen

with smaller training sets, but instead converged before all unnecessary basis functions had
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Figure 2.4. Example of a data set used for testing of training speed.
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Figure 2.5. Training time vs. problem size for full-set and incremental sparse Bayesian learning.

been removed. However, the incremental trainer consistently learned a sparse model for the
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same dataset with no complications. I believe that this indicates the limits of either the linear

algebra routines used by the trainer, or the numerical precision of the hardware on which

it was running. Errors caused by lack of precision (often described as numerical instability)

are a common problem in numerical computation, and large linear algebra computations are

a frequent source of trouble. By keeping the size of individual computations down, using the

small-working-set variant of the RVM neatly sidesteps these problems and makes it possible to

tackle large problems.

Incremental training does have one potential drawback: if the chosen working set sizes

are insufficient to cover the actual complexity of the problem in hand, it is possible for the

training process to become “stuck” in a state where adding extra basis functions could increase

classification accuracy, but it it not possible to remove any functions from the current set.

The implementation described here applies some simple checks to detect the stuck state and

can, when appropriately configured, automatically increase the user-specified high and low

watermarks, but this mechanism has not been intensively tested, so it is suggested that some care

is taken in picking appropriate watermark values.

Having made the step toward the approach of gradually sifting through a large set of basis

functions, it is only a small additional step to consider an implementation which generates new

basis functions on the fly during the training process. In principle, this can allow exploration

of infinite sets of basis functions. This is particularly feasible in cases where there are clear

correlations between basis functions. For instance, a radial basis function with centre (10.0, 10.2)

and variance 10 will have outputs that are highly correlated to a second radial basis function

with centre (10.0, 10.0) and equal variance. This means that if the first function is found to be

informative for modeling a particular problem, it is likely that the second will also be effective.

Therefore, after some period of training, it is likely to be worthwhile proposing more candidate

basis functions which are correlated to those currently in the working set.
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2.4. A general-purpose Sparse Bayesian trainer

During this project, and especially the work described in chapter 3, the most useful form

of sparse learning was the variational implementation of binary classification. I implemented

this, and several other algorithms, for the Java 2 platform, as described in chapter 1. I used a

number of APIs from the COLT library [Hoschek et al. 2000], which offer high-performance

implementations of common linear algebra operations for Java programmers. Java code using

COLT is often little more verbose than dedicated mathematical programming environments such

as Matlab. Source code for the RVM library is available under the terms of the GNU lesser GPL

on request from Thomas Down.

It is possible for programmers to make use of the trainer without detailed knowledge of the

inference process and how it is implemented internally. Basis functions are provided by writing

one or more implementations of the BasisFunction interface

package stats.glm;

public interface BasisFunction {

/**

* Return a feature value for a particular object.

*

* @throws ClassCastException if this BasisFunction cannot

* be evaluated for an object of

* this type.

*/

public double evaluate(Object o);

}

These BasisFunction objects can in principle work with any object in the Java virtual machine.

Obviously, it is the user’s responsibility to ensure that the basis functions match the supplied

training data.

Training data is supplied using the SVMTarget class, part of a support vector machine

toolkit which was previously developed by the author, and is included in the BioJava library.
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Reusing code in this way saved duplicated development effort, and makes the Sparse Bayesian

trainer more accessible for people who already use BioJava.

The final part of the system is the BasisSource interface, which is, as its name suggests,

a source of BasisFunction objects. For conventional use, the supplied ListBasisSource simply

provides basis functions from a pre-defined list, until it is exhausted. For training systems

which use sampling approaches, developers will have to write their own implementation of

BasisSource, providing the desired sampling moves.

All these elements are presented to the training code, which returns a model object including

the chosen set of basis functions and their weights:

// Initialize

SVMTarget target = loadTrainingData();

BasisSource basisSource = new ListBasisSource(basisFunctions);

VRVMTrainer trainer = new VRVMTrainer();

// Train model

GLMClassificationModel model;

model = trainer.trainClassification(

target,

basisSource,

new SimpleTrainingListener()

);

// Print results for test data

for (Iterator i = testData.iterator(); i.hasNext(); ) {

Object testDataPoint = i.next();

System.out.println(

testDataPoint.toString() +

" -> " +

model.positiveProbability(testDataPoint)

);

}

The final parameter in the call to the trainer is an implementation of a simple callback interface

which receives status notifications during the training process. This is especially useful if the
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trainer is to be embedded in a user-oriented application, since it makes it easy to hook up some

graphical feedback of training progress.

2.5. Sparse Bayesian Learning Discussion

Sparse Bayesian Learning using the automatic relevance determination prior offers a

convenient and principled approach towards developing machine learning systems which

actively penalize unnecessary complexity in the model, and consequently build the simplest

model which can still give a good fit the training data. While the connection is not absolutely

straightforward, both intuition and experience tell us that sparsity usually translates to

making generalizations about the supplied data (rather than overfitting or memorizing it) and

consequently making good predictions from unseen pieces of data – a valuable property in

any learning system. Moreover, since the model output is a probability value, it is possible to

distinguish between cases where enough information is available to make a confident prediction

and cases where a piece of data is only marginally more likely to fall in one class than the other.

It is principled to apply an arbitrary threshold to these scores and, for example, consider only

those predictions with 99% confidence.

Throughout this chapter I have concentrated on one specific form of Sparse Bayesian

Learning – binary classification GLMs. This was the form which I found directly useful in the

course of this project. It is possible to apply the Automatic Relevance Determination principle

of sparse learning to other problems – for example multi-way classifiers, but in some cases it is

no longer possible to use the elegant analytical approximations obtained by variational inference.

Developing these forms of learning into practical methods suitable for widespread application

will mean investigating alternative approaches to the inference problem. Optimizations which

allow independent samples to be drawn from a Monte Carlo simulation with less computation

than is needed for the basic Metropolis-Hastings approach would seem to be a profitable

direction to explore.
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I have implemented and tested a practical implementation of Sparse Bayesian classification.

This is freely available as a Java library. Using the simple interfaces described in this chapter, it

is possible to write new types of basis function, and thus apply the trainer to new types of data,

without requiring substantial knowledge of variational inference or the internal implementation

details of the method. This library is used without further description as the “learning engine”

driving the sequence analysis methods described in chapters 3 and 4. The results in these chapter

additionally provide validation of the method, and show that it is extremely effective when

applied to non-vector data (genomic contexts and genomic sequence fragments respectively).

They also show that, subject to the choice of basis functions, RVM-based learning methods

can be quite transparent, with models which can be viewed and related back to biological

processes. Other researchers have applied exactly the same library to quite different problems.

For example in [Pocock 2001], the RVM trainer was used to classify microarray gene expression

data from samples taken before and after treatment of a tumour with doxyrubicin. The basis

functions chosen indicated a small set of representative genes whose expression levels changed

dramatically and consistently when cells were treated with this drug. This application does,

however, also show off one limitation of sparse learning systems: to discover the complete set

of genes implicated in the process, rather than a minimal informative subset, it is necessary to

post-process the results using a clustering algorithm.
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My initial objective here was to build a system which can predict transcription start sites

in bulk genomic DNA sequences. For this problem, selectivity is vitally important: of all the

possible positions in the human genome – around 3 billion in total – only a tiny proportion are

expected to be actual transcription start sites, so even a low rate of overprediction, taken on a

position-by-position basis, could still lead to a extremely large number of false positives across

the genome as a whole, giving results which are of little value either to laboratory researchers

wishing to perform directed promoter-mapping experiments,or as a starting point for performing

other computational analyses.

There have been a number of attempts to develop computational methods of promoter

prediction (see page 17). Older methods, predating the availability of large volumes of vertebrate

genome sequence, tended to suffer from limited selectivity [Fickett and Hatzigeorgiou 1997,

Scherf et al. 2000]. A more recent method, PromoterInspector [Scherf et al. 2000], aimed to

provide a rather higher degree of selectivity, but it makes predictions for regions of the genome,

giving an approximate area for the promoter but little specific information about the actual

transcription start site. This program also has rather limited use for genome annotators, since it

is a proprietary product. While a free web-based interface exist, users are only allowed to run a

small number of analyses each month.

In order to develop a new prediction method, I wished to build a realistic model, preferably

probabilistic in nature, of the sequence around transcription start sites. As well as providing

a valuable predictive tool, using suitable machine learning methods to build such a model can

also provide additional insights into the structures being investigated. Modeling approaches

50
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are popular in sequence bioinformatics: in particular, Hidden Markov Models (HMMs) are

widely used [Durbin et al. 1998], for example in the field of gene prediction where models

such as Genscan represent the state of the art [Burge and Karlin, 1997]. In simple terms, HMMs

can be viewed as two components. Firstly, the model architecture consists of a set of states

and valid transitions between them. Secondly, a parameterization gives actual transition and

emission probabilities. Given a specific architecture, the Baum-Welch optimization method

offers a straightforward algorithm for finding a parameterization to optimally fit a given dataset,

but learning architectures is much harder. HMMs such as the Genscan gene model have rather

complex architectures, dedicated to a particular task and consciously designed and tested for this

purpose by the method’s developers. A less specialized approach is offered by profile HMMs,

such as those used to build the Pfam protein family database [Bateman et al. 2002]. These

have architectures built from simple repeating units. The Pfam models are built from multiple

sequence alignments, and the “backbone” of states in the profile HMM represent the consensus

of this alignment. This approach works very well for protein families, where all the members

are evolutionarily related to one another, generally via point mutations and relatively small

insertions and deletions, but profile models cannot be considered as a truly general approach to

sequence analysis.

In this case, I decided that basic HMM methods were not an optimal approach for modeling

promoters. Based on existing knowledge of transcription initiation (see chapter 1), promoters

appear to be loosely-connected sets of motifs, rather than evolutionarily-related variants on a

single theme, which suggests that Pfam-like profile models are not applicable. Other forms of

HMM could potentially be designed which modeled motifs individually, and left some flexibility

in their positions, and indeed steps have been taken in this direction by the Meta-MEME program

[Grundy et al. 1997]. However, it is difficult, for example, to model the case of two motifs

which must occur together, but in either order (and might perhaps even overlap). Moreover, it

is likely that any non-trivial model architectures would have to be built either by hand or using

heuristic methods, which potentially constrains the range of architectures which could viably
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be explored.

I wished to search for interesting signals in as unconstrained a fashion as possible. I

therefore set the following requirements for a new method, to be used for modeling transcription

start sites (and hopefully extensible to other significant sites in biological sequence data):

• The model should be applicable to individual points (in their context) in a sequence, making

accurate location of point features such as transcription start sites possible.

• The model should be modular, and built up from specific signals, rather than simply treating

a whole sequence as a monolithic entity (as a profile HMM does).

• Any “architectural” aspects of the model must be learned automatically from supplied

training data, preferably in the same process as the learning of individual signals, rather than

a two-step process like Meta-MEME.

This set of requirements was not directly met by any existing methods, so I began the

development of the Eponine Anchored Sequence method, described below.

3.1. The Eponine Anchored Sequence (EAS) model

The Eponine Anchored Sequence model is a new approach to probabilistic sequence

analysis which is capable of learning a complex overall model architecture and a set of

small-scale sequence features in a single process. Mathematically, it can be represented as a

generalized linear model, as described in the introduction to chapter 2.

EAS is a classification model which is designed to be applied to genomic contexts – that is,

individual points within a large genome. In practice,genomic contexts are presented to the model

as a large piece of sequence data and an integer defining the anchor point under consideration.

When searching for features in bulk sequence, the same sequence is presented many times while

scanning the anchor point along its length. The basic element of an EAS model is the positioned
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constraint (hereafter, PC). This consists of:

• A preferred sequence motif, defined as a DNA position-weight matrix (page 1.4.1). Briefly,

this is a list of columns, each defining one base of the motif, represented by a probability

distribution over the DNA alphabet.

• A probability distribution over integer offsets relative to the anchor point, which defines

the expected localization of the motif. In the work presented here, these distributions were

always discretized Gaussians (i.e. the result of integrating the Gaussian probability density

function over unit intervals). Gaussians were chosen because of their familiarity, and a

smooth shape that made Gaussian-based models less prone to overfitting than functions

with abrupt changes, such as square waves. However, any distribution over integers could

in principle be used here.

To obtain a score for a PC on a given genomic context, the program scans over all positions in the

sequence which are assigned a non-infinitesimal probability by the chosen position distribution.

For each position, the probability of the sequence motif starting at that position being emitted by

the chosen weight matrix is evaluated. The final score is given by:

φ(C)−−
log(

∞∑
i−−−∞

P(i)
→
W (C, i))

|W|
(3.1.1)

where C is a genomic context, P is a position distribution, and
→
W (C , i) is a DNA weight matrix

probability for offset i relative to the anchor point of C. Note the division by |W |, the number

of columns in the weight matrix (i.e. the length of the sequence motif which it defines). This

is important, since this method allow motifs with a wide range of lengths – with the trainer

implementation described here, the length varies between 2 and 20 columns. The RVM trainer

has a weak bias towards selecting basis function with higher absolute magnitudes. Normalizing

the scores allows unbiased selection between motifs of different lengths. It is somewhat

analogous to the whitening process often used to pre-process data for SVM classifiers, where all
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the training vectors are normalized to constant length [Schölkopf et al. (eds.) 1999].

A single PC describes an individual sequence motif and its relationship to a point in a

sequence, but a set of them can be combined to describe more complex structures. Figure 3.1

shows a schematic of a model combining three positioned constraints (note that in this schematic

form, which is used throughout this chapter, the weight matrices are represented by single

consensus sequences, which show the most likely symbol at each position in the motif). If the

final output score is defined as a weighted sum of individual PC scores, the combined model is

a generalized linear model over genomic contexts, with the PCs as basis functions. Therefore,

it is possible use the sparse Bayesian learning methods from chapter 2 to reduce a large set of

candidate PCs down to a sparse model containing a small, informative subset.

Figure 3.1. Example schematic architecture of an Eponine Anchored Sequence model.

There are several points to note about this approach to sequence modeling:

• While this description of the model architecture emphasizes detection of single,

well-defined “words” in the sequence, since the overall PC score is based on a sum of

weight matrix scores across a region, it is also possible to represent general compositional

biases of a region by picking a PC with a short weight matrix and a very broad position

distribution.

• It is quite acceptable for the distributions of two or more PCs to overlap. Since arbitrary

weights are assigned in the training process to fit the model to the training data, any issues
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with double-counting of a particular piece of information are corrected automatically

• While in this work, the models consist purely of PCs of the form defined above, it is possible

to include completely different forms of basis function in the model. Once again, the

training process will weight different types of evidence appropriately.

One limitation of the basic EAS model is that it is not able to capture interactions between pairs

of motifs. Consider two motifs: A is found in the range [50:100] relative to an anchor point,

while B is found in the range [30:80]. However, the spacing between the two motifs is much

more conserved: always in the range [18:22]. An EAS model can capture the two motifs, and

their broad position distributions, but misses the additional information in the covariance of the

two motifs’positions. Including this information while maintaining the useful property of each

motif being a single basis function would break the restrictions on generalized linear models,

and therefore prohibit the use of the closed-form training algorithm from chapter 2. A possible

solution would be to use more complex basis functions, each of which represented a small

“scaffold” of several motifs, with particular spacings between them. This makes the space of

possible basis functions far more complex. This makes the training procedure substantially more

complex, and was not found to be helpful for the problem considered. Scaffolds are used in the

alternative model described in chapter 4.

3.1.1. Learning EAS models

The space of potentially interesting PCs is extremely large. Even taking a highly simplified

view, restricting the constraints to simple motifs rather than weight matrices and the position

distributions to Gaussians of a constant width, there are over one million PCs representing

six-base motifs with distributions centred at positions in the range [-250:50] relative to the

anchor point. This space it too large to search exhaustively. Of course, in practice the EAS

framework allows for an infinite (limited only by numerical precision on the probability values)

number of PCs. Fortunately, as in the case of radial basis functions discussed in the chapter 2,
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the space of possible basis functions is highly correlated. Making a small change to, say, one

of the probabilities in a weight matrix will give a second PC whose output on a given sequence

is correlated with the first. For this reason, exploring regions of a conceptual “PC-space” in the

neighborhood of constraints which have already proved to be informative is likely to reveal even

more informative constraints.

Taking advantage of these correlations,EAS models were trained using the two-class sparse

Bayesian GLM trainer described in chapter 2, with a sampling strategy to create new basis

functions. When the size of the working set fell below the low water mark, the trainer selected

sampling strategies at random from the following set:

• Constructing a new PC, not based on the current set. This is performed by the following

algorithm:

i. First, select a context at random from the training set (either positive or negative,

without bias).

ii. Pick some point relative to that context’s anchor point.

iii. From that point, take a sequence motif of between 3 and 6 bases in length, and

construct a weight matrix which optimally matches that consensus sequence, but

includes some degree of uncertainty.

iv. Construct a PC using the newly selected weight matrix with a Gaussian position

distribution of random width, centred at the position at which the motif was originally

found.

Obviously, PCs selected in this way will strongly match the training example from which

they were originally derived. This is closely analogous to selecting radial basis functions

centred on points in the training data set, as used in the examples in chapter 2.

• Selecting an existing PC and adjusting the emission spectrum of one column of its
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weight matrix, by sampling from a tightly-focused Dirichlet distribution centered on the

current values.

• Adding an extra column to either the start or the end of an existing weight matrix, up to a

maximum number of columns (in this case 20).

• Removing the start or end column from an existing weight matrix, down to a minimum of

two columns

• Adjusting the width parameter of a Gaussian position distribution

• Adjust the centre position for a Gaussian position distribution

For an initial period of 200 cycles, only the first sampling rule (creation of novel basis functions)

was used. After this point, the full range of sampling strategies were available, and training

proceeded by a mixture of sampling and introduction of novel PCs.

3.1.2. Implementation and validation of EAS

The EAS model system, and the various sampling rules described above, were

implemented running on the Java 2 platform, using components from the BioJava library

[The BioJava development group, http://www.biojava.org/] to load and manipulate sequence

data and probability distributions. Training was performed using the Java variational RVM

training library described in chapter 2.

Before commencing work on real datasets, I wished to validate the training mechanism

to ensure that it could build viable classifiers, and that it would correctly recover known

information from the training set. Therefore I constructed a synthetic dataset consisting of

unbiased random sequence (i.e. a list of samples from a uniform distribution over the alphabet of

DNA symbols) into which were inserted three motifs: “GCAAT”, “TAGGAT”, and “ACGTAC”

with some variability (for each motif-instance, either zero, one, or two bases were changed

relative to the consensus pattern), and some variability (5 bases in either direction) in the position
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with respect to the anchor point. Clearly, this dataset provides a good target for modeling with

the EAS framework, since its construction closely matches the principles which were assumed

when designing the model. Therefore, this test is simply a validation of the implementation and

training method, rather than confirming that EAS will be able to answer real biological questions.

The training data consisted of 100 of these synthetic sequences as positive examples, and 100

unspiked unbiased random sequences as negative examples.

Models were trained for 3000 cycles using the VRVM training module described in chapter

2, in small working set model with a high water mark of 27 basis functions and a low water

mark of 24. Monitoring of the trainer showed that the working set reached low water mark

and was topped up every 5 to 10 cycles of training, with no cases of ‘stuck’ training (where no

further basis functions can be removed). Checkpoints of the trainer state were stored every 100

cycles for later evaluation. The final model is shown in figure 3.2. After 3000 cycles, the three

motifs used to build the synthetic dataset were recovered perfectly. This was generally quite

reproducible, although in some cases the first or last base of one of the motifs would be missed.

However, recovery of information from this training set was generally excellent, indicating

that the RVM-based training approach can be applied to sequence data, and that the pragmatic

sampling strategy is able to successfully train models of this complexity.

Figure 3.2. Schematic of an EAS model learned from the synthetic dataset, showing the three spiked motifs.

To monitor the progress of the training, and also to verify that overtraining did not reduce

the predictive power of the model, I tested the checkpoint models produced while training the

model in figure 3.2. Figure 3.3 shows two learning curves indicating the proportion of data

which was correctly classified by the various checkpoint models. In the first curve, a threshold
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probability of 0.5 is used – in other words, all sequences are assigned to either the positive

or the negative class. By the end of the training process, almost all of the data is assigned

to the correct class by this criterion. The second curve only counts positive test sequences

as correctly classified if the model P(positive) > 0.99, and similarly P(positive) < 0.01 for

negatives. Any example with an intermediate model output is counted as unclassified. Early

in the training process, few sequences receive such a high-confidence classification, but after

1000 cycles, around 80% of the data is correctly classified with this level of confidence. The

proportion increases only very slightly after this. The sequences which are never classified with

high-confidence predictions are mainly examples from the positive class with large numbers

of mismatches in the spiked motifs. While both learning curves fluctuate slightly, there do not

appear any substantial increases in the proportion not correctly classified. This suggests that

overtraining is not a serious problem with this type of model.
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Figure 3.3. Learning curves for the training of an EAS model on the synthetic dataset.

Finally, I tested the predictive power of the learned model by plotting a receiver operating

characteristic (accuracy vs. coverage) curve, shown in figure 3.4. Accuracy remains at 100%

up to a coverage of 94% showing that, with a suitably chosen threshold, the model is a powerful
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predictive tool when working with this kind of data.
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Figure 3.4. Accuracy vs. coverage (ROC) curve for a model trained on the synthetic dataset.

3.2. Training a transcription start site model

As discussed in chapter 1, sources of data about the precise location of vertebrate

transcription start sites are relatively limited. For initial training, 389 mammalian promoters

were extracted from release 62 of the EPD database [Périer et al. 2000]. I used the

standard EPD web tools to download a non-redundant (defined by EPD as <50% sequence

identity) set of sequences, extracting sequence data in the interval [-499:100] relative to the

experimentally-mapped transcription start sites. Of these sequences, 50 were held aside for later

use as an independent test set. This left 339 sequences which were used for training purposes.

Around half of the EPD sequences were of human origin, but none used in the training set could

be mapped to human chromosome 22 – this is important since chromosome 22 sequence was

used as test data for some of the evaluation procedures used later in this chapter.
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The trainer also requires a set of examples which are representative of the negative

(non-promoter) class. For this purpose, I used fragments selected at random from the final

introns of multi-intron genes on human chromosome 20. Introns early in a gene may often

contain alternate transcription start sites [Laurinn et al 2000], but it seems unlikely that this

will be the case for final introns, making them a good choice as representative non-promoter

sequences. All negative and positive sequences were of the same length, and I picked an equal

number of negative and positive sequences.

Models were trained using the procedure described previously, except that training was

continued for 5000 cycles. Training typically took less that three hours on a typical personal

computer (300MHz Pentium II CPU).Once again, there were no cases where the training process

got stuck. A typical model from this process was selected as the EponineTSS_1 model, and

is shown in figure 3.5. Unlike the models trained from the synthetic data, the learned models

contained PCs which were assigned negative weights in the generalized linear model. These are

shown in blue in the schematic diagrams. The obvious interpretation of these is that the presence

of a particular motif at a particular position actually makes it less likely that this is a promoter

sequence. Whether these are genuine negative signals, or whether they are simply artifacts of

the training process remains to be seen, although results later in the the chapter appear to favor

the latter possibility.

Inspecting this model, it can be seen that all learned PCs target sequences less that 150

bases upstream of the anchor point, despite the inclusion of 500 bases of upstream sequences

in the training set: this model is targeting a rather compact area of sequence. This result also

confirms that the sparsity properties of RVM learning can indeed be extended to the field of

sequence analysis. There are two motifs with distribution means at -29 and -30 which are

both A/T rich. I believe that these are related to the TATA box described in classical promoter

literature [Bucher 1990]. These, or similar, motifs were detected at around this position in all

models inspected, with the presence of two A/T-rich PCs with strongly overlapping distributions

occurring very frequently. Most of the other PCs in the model are C/G-rich (note several
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Figure 3.5. The EponineTSS_1 model, trained from 389 mammalian sequences from EPD.

A/T-rich motifs which have been assigned negative weights in the GLM, signaling a preference

for “not A/T” in that region). However, the exact sequences and positions of these PCs varied

substantially between training runs. I believe that this instability was due to lack of training data,

or possibly the inclusion of some strongly atypical promoters in the positive set. In order to

improve the quality of the learned models, I therefore decided to consider alternate sources of

training data.

3.3. Model refinement using mouse cDNA sequence data

An alternative source of data, which became available during the course of this project,

is the results from high throughput cap-trapped cDNA sequencing projects, such as the mouse

FANTOM project [Kawai et al. 2001]. These projects use a molecular biology trick, outlined

on page 16, to preferentially clone cDNA copies of full-length messenger RNA molecules. In

principle, full-length cDNA sequencing seems an attractive way to discover transcription start
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sites. However, there is still some uncertainty remaining as to whether cap-trapped cDNA

clones really tell us about the true transcription start site, or if there is still a degree of truncation

despite the cap-trap method. To demonstrate the causes for concern, I considered 68 human

genes which had transcription start sites annotated in both EPD release 71 and DBTSS, a human

full-length cDNA project based on similar technology to FANTOM. The sequences were

mapped onto the current human genome assembly using the SSAHA fast sequence-matching

package [Ning et al. 2001]. In many cases, the expected transcription start sites from the two

methods differed significantly: a histogram of offsets is shown in figure 3.6. While the fact that

differences can be seen is not entirely surprising – many cases of alternate transcription start sites

have been observed in eukaryotes, and I believe that this is probably a common phenomenon

– it is surprising, and a possible cause for concern, that the transcription start site according to

DBTSS is more likely to be downstream of EPD than vice versa.

Figure 3.6. Histogram showing offsets of DBTSS start sites relative to those of corresponding EPD entries.

While the number of genes considered here is unfortunately rather too small to draw

particularly strong conclusions, it appears that there seem to be approximately equal number of

cases where DBTSS and EPD evidence for transcription start sites differs by a significant amount

(>150 bases). These are likely to reflect bona fide alternate transcription start sites. However,

when a small difference occurs, it appears that the DBTSS evidence is likely to be truncated.

There are several plausible ways in which truncated mRNAs could be accidentally tagged by

the cap-trapping process. Firstly, it is possible that the phosphatase treatment may not go to
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completion, leaving some capless mRNAs which retain their 5’ phosphate groups. Second, it is

possible that some RNA degradation could occur between the removal of the cap and the ligation

of the tag – RNA is, after all, a rather unstable molecule and can undergo spontaneous hydrolysis.

Despite these concerns, cap-trapped cDNAs still offer an interesting window onto the cell’s

transcriptome, but some care should be taken when using them as evidence of TSS position.

Simply sequencing cDNAs does not, by itself, give promoter sequences. However, in

addition I had access to a repository of raw trace sequences [http://trace.ensembl.org/] which, at

that time, contained around 1x coverage of the mouse genome, produced in the early phases of

the the whole-genome shotgun sequencing effort [MGSC 2002]. Each trace was simply is simply

the result of a single sequencing run, so the error rate is likely to be higher than that for assembled

sequence. But modern sequencing methods are fairly accurate, and I considered trace data to

be good enough for training this kind of model. To identify promoters in the trace repository, I

searched 100 base fragments from the 5’ ends of 19168 FANTOM cDNA sequences against the

full set of sequences, again using SSAHA.

Using this procedure, I was able to retrieve trace sequences containing an exact match for

9958 cDNA ends. Of these, 3813 traces had at least 150 bases upstream of the mapped cDNA

end. These were used as the basis for the second-round training set. But as shown above, it seems

likely that many of these cDNAs may be slightly truncated. Therefore, I used the EponineTSS_1

model to scan the sequence 20 bases upstream of the mapping point for the cDNA 5’ end, to

filter this set and create a dataset whose entries are very likely to represent true transcription start

sites. When an EponineTSS_1 prediction with a score of at least 0.999 occurred in this region,

the sequence was accepted and the TSS annotation was adjusted to the point with the highest

EponineTSS_1 score.

Finally, this process left a set of 599 mouse sequences with at least 130 bases of upstream

sequence, anchored with a high degree of confidence at the true transcription start site. As

before, a negative training set of equal size was built using final-intron sequences, and the
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VRVM trainer was run using the same configuration as before. The learned model, known as

EponineTSS_2, is shown in figure 3.7.

Figure 3.7. The EponineTSS_2 model, trained from 599 mouse sequences.

This model is dramatically simpler than the previous versions from figure 3.5. I note a single

clear motif (position -30) which would appear to represent the TATA box. This is closely flanked

by two C/G-rich motifs. Finally, there is a preference for C/G enrichment, primarily in the region

immediately downstream of the transcription start site. I presume that this part of the model is

detecting a signal related to the previously reported CpG islands in promoter regions – however,

this model taken as a whole is clearly more than a straightforward CpG island detector. In this

case, all learned PCs were given positive weights in the GLM. This suggests that the PCs with

negative weights seen previously may have been artifacts, or reflect problems with the training

data.

3.4. Validation and testing of EponineTSS

I was not able to identify a single, self-contained, dataset which tested every aspect of

the EponineTSS model. The EPD database contained accurately mapped transcription start

sites, but did not cover any single large region of genomic sequence. On the other hand, while
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Motif Centre Weight

-42 6.23

-30 8.64

-21 3.52

47 12.3

Table 3.1. The four position weight matrices used in the EponineTSS_2 model.

curated annotation of finished human genomic sequence was underway, this did not include

such accurate localization of transcription start sites. I therefore used a two-stage evaluation

procedure to consider accuracy both in terms of detecting the exact position of transcription

initiation and the rate of overprediction in bulk genomic sequence.

3.4.1. Testing on human chromosome 22: bulk genomic performance

Since genome sequencing is now a large-scale operation, it is important that analysis tools

perform well across large stretches of sequence, rather than just small regions being subjected

to individual detailed analysis. Therefore, I assessed the performance of the EponineTSS

model on human chromosome 22. This was an early milestone in the human genome finishing

process, and at the time of its publication was the largest continuous piece of finished sequence
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[Dunham et al. 1999]. When I was developing the EponineTSS models, version 2.3 of the

chromosome 22 annotation [Dunham, personal communication] was the best-annotated large

region available. Unlike some other regions, where annotators have concentrated entirely on

annotating the coding regions of genes, chromosome 22 includes many annotations of complete

transcribed regions, including full UTRs, based on EST and cDNA evidence and experimentally

validated using the Rapid Amplification of cDNA ends technique [Schramm et al. 2000]. While

this still is not guaranteed to pinpoint the actual TSS, it at least increases the chance of finding

the correct first exon in genes with interrupted 5’ UTRs.

Unfortunately, not all genes were validated to an equal degree. Out of 618 annotated genes,

284 were marked “GD_mRNA”, indicating that they are presumed complete gene structures

with supporting experimental evidence. I therefore believed that the true TSS is likely to lie

close the the annotated 5’end of these structures. The remaining annotations are not necessarily

complete, and I wished to treat them with a degree of caution. In particular, it is quite possible

that a prediction made some distance upstream of one of these structures could be the true

transcription start site, if the true first exon is missing from the gene structure. Therefore, I

decided to construct a large synthetic DNA sequence – a pseudochromosome – consisting

exclusively of those portions of chromosome 22 where the annotation which could be treated

with reasonable confidence.

The pseudochromosome was constructed by selecting all regions containing GD_mRNA

genes (including as much flanking sequence as possible), while rejecting regions containing

partial and unverified genes (figure 3.8). The problematic case occurred when a GD_mRNA

gene appeared adjacent to a partial gene in the opposite orientation, with both genes transcribed

outwards from a common intergenic region: a pair of divergent genes. In most cases, these

are assumed to be entirely separate transcription units, although there are thought to be

some closely spaced cases where two genes are transcribed from a single regulatory region

[Asakawa et al. 2001]. When preparing the pseudochromosome, the intergenic region of

divergent pairs was split midway between the two gene structure annotations.
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Annotated mRNA

Annotated coding sequence

Regions accepted for pseudochromosome

Figure 3.8. Selection of regions to include when the pseudochromosome sequence.

A pseudochromosome constructed in this way should be reasonably representative

of chromosome 22 as a whole. This is, however, considered to be a relatively gene-dense

chromosome by the standards of the human genome as a whole [Dunham et al. 1999], so some

care should be taken when extrapolating results to other systems.

Both the EponineTSS_1 and EponineTSS_2 models were run across the

pseudochromosome at a range of thresholds, from 0.97 (extremely low stringency) to 0.99999

(only a very small number of predictions). Most predictions fell into small clusters, with

sizes generally in the range of 50-1000 bases. These clusters seem likely to reflect alternate

transcription start sites of a single, but since there is some uncertainty in the actual TSSs of

the chromosome 22 genes, and no annotation of alternate TSSs, it was not possible to directly

validate this hypothesis. Instead, all predictions were subjected to single-linkage clustering,

joining all predictions at a distance of 1000 bases or less. Around 60% of clusters included

predictions on both positive and negative DNA strands, so the strandedness of predictions was

ignored at this point – this is discussed later. I counted coverage as the proportion of genes which

had a prediction cluster overlapping a window stretching 2kb upstream of the annotated start,

and accuracy as the proportion of prediction clusters which overlapped one of these windows.

Receiver operating characteristic curves for both models are shown in figure 3.9. Note that at

thresholds giving coverages of less than about 0.1, the total number of predictions considered
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was rather low, therefore the accuracy figures for the points on the extreme left of the curves

should be treated as relatively poor estimates.
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Figure 3.9. Accuracy vs. coverage for two EponineTSS models on the pseudochromosome.

From figure 3.9, it is clear that the EponineTSS_2 model is significantly and unambiguously

the better of the two predictive models, in terms of giving a substantially higher accuracy for a

given coverage across a wide range of thresholds. Moreover, the accuracy of the EponineTSS_2

model reaches a plateau of around 73% at a threshold of 0.999, and does not vary significantly

from this when used at higher thresholds. The maximum accuracy of the EponineTSS_1model

is very similar, but is only achieved at a much lower coverage. I therefore chose to use the

EponineTSS_2 model at a threshold of 0.999 as the final “product” of this approach.

While I do not consider this dataset to be an ideal test of positional accuracy, it remains

interesting to see how well the predictions correspond to the annotated gene starts. Therefore,

predictions from the EponineTSS model were placed into 50bp-wide bins according to their

position relative to the annotated start of the nearest GD_mRNA gene, giving the density

histogram in figure 3.10. While there is some variation in position, the vast majority of
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predictions are within 1000 bases of the annotated start, and the distribution is sharply peaked

around 0. In a large proportion of cases, the predictor and the curated annotation agree quite

well.
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Figure 3.10. Density of prediction from the EponineTSS_2 model relative to annotated gene starts.

More recently, a new (version 3) assembly of chromosome 22 has been published, and I

obtained an updated version of the gene annotation, described as version 3.1b [Dunham et al.,

personal communication]. This included more GD_mRNA confirmed gene structures, and also

improved annotation of pseudogenes and non-coding RNA genes. A new pseudochromosome

was prepared using the same protocol as before, excluding all genes except those designated

GD_mRNA. The resulting sequence was similar to the original pseudochromosome, but was

slightly longer (19.3Mb), and included an additional 76 GD_mRNA genes, bringing the total to

360. Running the EponineTSS_2 model with a threshold of 0.999 gave a coverage of 54.4% –

not a significant difference from the 53.5% obtained with the earlier annotation – but accuracy

had increased slightly from 73.5% to 77.6%. Plotting the full ROC curve (figure 3.11) shows that

the accuracy was consistently a little higher over a wide range of coverage values. This suggests

that at least some of the false positives are real transcription start sites which will no longer
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appear as false positives as the standard of annotation improves.
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Figure 3.11. Accuracy vs. coverage for the EponineTSS_2 model on pseudochromosomes based on old (2.3) and
new (3.1b) curated annotation of chromosome 22.

3.4.2. Testing on EPD: calibration of positional accuracy

The specifications for the EPD database require transcription start sites to be mapped

experimentally to an accuracy of ±5 bp, making it the most precise resource available for

evaluating the positional accuracy of the model’s predications. I used the EponineTSS_2 model

to scan the 50 EPD entries which were not used in the phase-one training process. A histogram

of the prediction positions relative to mapped TSSs is shown in figure 3.12.

The results show a clear peak, with predictions clustered in the interval [-10:20] relative

to the EPD-specified transcription start site – only a little more than the ±5 base pair tolerance

specified for EPD mapping. Since EPD is a resource made up from data submitted or published

by a large community of researchers, it is not known for certain if the ±5 criterion is actually true.

However, this result suggests that EponineTSSpredictions are very likely to be within 10 bases of

the true TSS. If EPD mapping is slightly less accurate than stated, it is possible that EponineTSS
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Figure 3.12. Density of EponineTSS_2 predictions relative to the annotated TSS of EPD entries.

accuracy may be higher than this. A second, much smaller, peak occurs around -40 relative to

the true TSS: this might represent a common spacing for alternate transcription start sites, but

it could also be noise in the results – especially since 50 sequences represents a relatively small

test set.

3.4.3. Comparison with other methods

I compared EponineTSS specificity and coverage on the human pseudochromosome

sequence. Three other methods were considered:

• A generic CpG island detection program, as described on page 22, which was run by the

chromosome 22 analysis group [Dunham et al. 1999].

• The PromoterInspector program [Scherf et al. 2000], a dedicated method for prediction of

promoter regions.

• A DNA weight matrix for the TATA box, derived by alignment of EPD sequences
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[Bucher 1990].

Due to availability restrictions, I could not download PromoterInspector and directly scan the

chromosome 22 sequence, and limitations on the web-based version of the program prevented

scanning large pieces of sequence. However, the authors had previously published a set of

predictions on chromosome 22 [Scherf et al. 2001], and I was able to extract the complete

set of predictions from their web pages. Unfortunately, these predictions were published in

full-chromosome coordinates for an earlier assembly of chromosome 22, while I was keen

to use the more recent version 2 assembly, which had better gene annotation with many more

GD_mRNA confirmed gene structures. Without the ability to rerun PromoterInspector, it

was not possible to make a direct comparison. Therefore, I extracted DNA sequences for the

region of each prediction from the original assembly and used SSAHA [Ning et al. 2001] to

find perfect matches on the version 2 assembly. In this way, I mapped 99.4% of the original

PromoterInspector predictions. Therefore I believe that results given here for PromoterInspector

should be representative.

The TATA box weight matrix (shown graphically in figure 1.8) was downloaded from

the EPD website [EPD, http://www.epd.isb-sib.ch/]. From this website, I also obtained a

recommended log-odds score threshold of -6.5. However, scanning the full pseudochromosome

with this threshold gave 39869 predictions – far more than any of the other methods considered

here. Moreover, these were distributed quite uniformly across the chromosome and I was not

able to reduce them to a more reasonable number by clustering. Therefore, I experimented with

alternative thresholds, and found that a log-odds score of -2.6 gave 540 predictions, a number

more in line with the other methods considered here.

Accuracy and coverage figures on the pseudochromosome were assessed as before, and

results for all four methods are shown in table 3.2. I note that, at either of the thresholds tested, the

accuracy of the TATA weight matrix is extremely low – this is clearly not an acceptable methods

for finding promoters in a genomic context
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Method Predictions True

positives

False

positives

Coverage

(%)

Accuracy

(%)

Eponine 215 152 57 53.5 73.5

Pro’spector 278 157 100 55.3 64.0

CpG 306 187 116 65.8 62.1

TATA -2.6 540 37 500 13.0 7.4

TATA -6.5 39869 283 37581 99.6 5.7

Table 3.2. Sensitivity and selectivity of various promoter-prediction mechanisms on the human pseudochro-
mosome.

The three remaining methods all offer much higher levels of accuracy, indicating that

they can distinguish promoters from bulk genomic DNA. The coverage of all three methods

is relatively similar. Moreover, the sets of genes detected by these methods are strongly

overlapping, as shown in figure 3.13. This seems significant, since the three methods under

consideration are technically quite different (although EponineTSS and PromoterInspector both

used the EPD database during training).When this is taken in the context of the prior observation

that further increasing the coverage for the EponineTSS_2 model means a severe loss of

accuracy (figure 3.9, I believe that this indicates some significant difference between promoters

which are detected by the methods considered here and those which are not.

3.5. Analysis of cases where promoters were not detected by EponineTSS

At least in this test test region, the EponineTSS model was able to detect just over

50% of promoters. Noting that this set seemed to be largely common with other ab initio

promoter-prediction method, I suspected that promoters could be subdivided into several classes,

only one of which was being detected here – and which was also correlated with the previously

noted phenomenon of CpG islands. I was therefore interested to see if I could learn anything else

about this subset of genes, and also about the promoters which cannot currently be detected.
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Figure 3.13. Intersection of “correct” predictions of promoters by EponineTSS, PromoterInspector, and
CpG islands.

3.5.1. Modeling of non-detectable promoters

An obvious first step in analyzing the non-detectable promoters is to attempt to model

them using the same approach as previously. At the time, the best candidate training set for

this task was the set of mouse promoters previously derived from the FANTOM cDNA set.

While previously, the EponineTSS_1 model was used to positively select a subset of these

with detectable promoters, here a model was trained on sequences which do not receive any

prediction. Unfortunately, in this case there was no obvious approach to align the training

sequence at the transcription start site, so any model learned was unlikely to give the same

positional accuracy as those considered so far. Once again, human final intron sequences were

used as a negative set. When this process was carried out, a non-empty model was learned,

suggesting that there is some information in this training set. However, the models are rather
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complex, and had few consistent features between training runs. An example is shown in figure

3.14.

Figure 3.14. Model trained on negative-selected FANTOM data.

This model was tested on the pseudochromosome, using the same approach as before:

see accuracy vs. coverage in figure 3.15. Regardless of threshold, this model gives a far lower

accuracy than those considered previously – certainly too low to be a useful predictive tool on a

genomic scale. To determine whether the model has captured any information about promoters

at all, I compared it with the results from an entirely random predictor (i.e. assigning each point

on the pseudochromosome a random score sampled from a uniform distribution over the interval

[0.0:1.0]). This is the second trace in figure 3.15. This comparison shows that the negatively

selected model does capture some information, but has very low predictive power compared to

the previously described models.
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Figure 3.15. Accuracy vs. coverage for model trained on negative-selected FANTOM data, with random
predictions for comparison.

I attempted to amplify the information contained in this preliminary model by using it

to positively select a subset from the FANTOM dataset. However, the second-stage models

produced in this way were not substantially simpler than the first-stage model, nor did they give

a better prediction accuracy.

3.5.2. Correlation of promoter-detectability with gene type and function

I wished to determine if the distribution of promoters detected by the EponineTSS

model was entirely random, or whether some classes of genes were much more likely to be

regulated by detectable promoters than others. This question is particularly significant in the

light of previous reports that CpG islands are associated primarily with “housekeeping” genes

[Larsen et al 1992].

I concluded that the set of 284 chromosome 22 genes was too small to get a reliable

impression of any correlation. Therefore, the complete set of Ensembl gene predictions for the
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NCBI_30 assembly of the human genome was used – a total of 27,628 predicted transcripts from

22,980 predicted genes. The EponineTSS_2 model was used with a threshold of 0.999 to scan

the entire genome. Transcripts were classified as:

• Found if a TSS prediction occurred within 2000 bases of the predicted gene start. This set

consisted of 3765 transcripts.

• Uncertain if a TSS prediction occurred within 25,000 bases, but not within 2000 bases.

This set consisted of 10948 transcripts.

• Unfound if no predictions occur within 25,000 bases. This remaining set consisted of

12915 transcripts.

The existence of the uncertain category aims to cover at least the majority of cases where the

first (perhaps entirely non-coding) exon is missing from the gene prediction. Here, the uncertain

cases are ignored and the emphasis is on comparing the found and unfound categories. It seems

very likely that in many cases the predictions for the uncertain transcripts were, in fact, correct.

However, the found category was sufficiently large that I did not consider it necessary to count

the uncertain cases.

I wished to avoid lexical processing of gene description strings if possible. Instead, I relied

on terms from the controlled vocabularies for molecular functions and biological processes

provided by the GO project [The Gene Ontology Consortium 2000]. Automatic GO annotation

is available for the bulk of Ensembl predicted transcripts, via. the GOA annotation of the

Swissprot database [Camon et al. 2003].

I counted the proportion of both the found and the unfound transcript sets which was

covered by each term in the GO ontologies. As well as counting terms applied by the GOA

annotation, I counted all ancestor terms through the is-a and part-of relationships recorded in the

GO database. For example, a gene annotated with the term GO:0003700 (“transcription factor”),

as shown in figure 3.16 would also be counted as “transcription regulator”, “DNA binding”,
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Figure 3.16. Example GO term lineage.

“nucleic acid binding”, and “binding”. Counting all levels of the ontology in this way avoids

questions about which levels of the ontology would be most appropriate for comparing the two

sets of genes.

This process resulted in a list of 3746 GO terms. These were ranked by the difference

between the proportions of found and unfound transcripts labeled with the term (see tables 3.3

and 3.4). This means that a term which labels around 10% of both the found and unfound sets

will appear near the middle of the listing. But conversely, a term which labels one found gene

and no unfound genes will also appear close to the middle – a useful property, since a difference

of a single gene is not statistically significant. The two tables show the sets of terms with the

largest positive and negative differences respectively, and show terms which exhibit a clear and

indisputable correlation with EponineTSS detectability. In the found column, a frequency of

0.01 corresponds to an actual count of 38 transcripts, while in the unfound column, a frequency

of 0.01 means 129 transcripts. So most of the entries shown here are based on hundreds of

transcripts, and are clearly significant.

Looking first at the list of terms overrepresented in the found category (i.e. large positive

difference), near the top of the list we find “cell growth and/or maintenance”, “metabolism”, and

“enzyme”. These are classically considered to by housekeeping functions, and seem to support
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GO term name Freq. (unfound) Freq. (found) Diff.

cell growth and/or maintenance 0.581 0.674 0.092

metabolism 0.400 0.488 0.087

ligand binding or carrier 0.439 0.507 0.067

DNA binding 0.118 0.176 0.057

enzyme 0.307 0.360 0.052

nucleic acid binding 0.193 0.243 0.050

nucleotide binding 0.101 0.148 0.046

purine nucleotide binding 0.101 0.147 0.046

nucleobase, nucleoside, nucleotide and nucleic acid metabolism 0.152 0.192 0.040

transferase 0.103 0.141 0.038

transcription 0.089 0.126 0.036

transcription regulator 0.052 0.088 0.036

transcription, DNA-dependent 0.088 0.123 0.035

transcription factor 0.046 0.080 0.034

protein metabolism and modification 0.147 0.182 0.034

protein modification 0.063 0.096 0.032

transcription regulation 0.083 0.115 0.032

kinase 0.049 0.081 0.032

phosphotransferase, alcohol group as acceptor 0.044 0.075 0.030

intracellular signaling cascade 0.065 0.091 0.026

transcription, from Pol II promoter 0.016 0.042 0.026

protein binding 0.070 0.096 0.025

protein kinase 0.035 0.061 0.025

ATP binding 0.078 0.103 0.024

cell organization and biogenesis 0.030 0.054 0.024

phosphate metabolism 0.046 0.070 0.024

adenyl nucleotide binding 0.079 0.103 0.023

guanyl nucleotide binding 0.022 0.046 0.023

protein serine/threonine kinase 0.022 0.045 0.022

developmental processes 0.086 0.106 0.020

cell cycle 0.046 0.065 0.019

GTP binding 0.017 0.036 0.018

transport 0.107 0.126 0.018

cell cycle control 0.014 0.031 0.017

transcription regulation, from Pol II promoter 0.008 0.025 0.017

Table 3.3. GO terms applied preferentially to found genes.
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GO term name Freq. (unfound) Freq. (found) Diff.

receptor 0.158 0.073 -0.085

response to external stimulus 0.135 0.058 -0.076

transmembrane receptor 0.122 0.046 -0.076

signal transducer 0.225 0.149 -0.075

defense response 0.090 0.025 -0.064

cell communication 0.325 0.265 -0.060

immune response 0.082 0.023 -0.058

response to biotic stimulus 0.095 0.037 -0.058

integral membrane protein 0.227 0.169 -0.058

G-protein coupled receptor 0.069 0.014 -0.055

rhodopsin-like receptor 0.060 0.009 -0.051

G-protein coupled receptor protein signaling pathway 0.081 0.033 -0.048

cell surface receptor linked signal transduction 0.105 0.061 -0.044

response to pest/pathogen/parasite 0.047 0.016 -0.031

defense/immunity protein 0.027 0.003 -0.024

perception of abiotic stimulus 0.032 0.009 -0.023

sensory perception 0.031 0.009 -0.022

integral plasma membrane protein 0.097 0.075 -0.021

response to wounding 0.028 0.007 -0.021

perception of external stimulus 0.043 0.022 -0.021

response to abiotic stimulus 0.042 0.021 -0.020

biological_process unknown 0.056 0.036 -0.019

RNA-directed DNA polymerase 0.018 3.969 -0.018

RNA dependent DNA replication 0.018 3.969 -0.017

cell adhesion 0.043 0.025 -0.017

signal transduction 0.206 0.188 -0.017

ligand 0.039 0.023 -0.016

stress response 0.055 0.039 -0.015

innate immune response 0.020 0.005 -0.014

perception of chemical substance 0.015 7.939 -0.014

chemosensory perception 0.015 7.939 -0.014

cytokine 0.023 0.008 -0.014

cellular_component unknown 0.057 0.042 -0.014

inflammatory response 0.019 0.005 -0.013

olfactory receptor 0.013 0.0 -0.013

Table 3.4. GO terms applied preferentially to unfound genes.
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some connection between housekeeping and CpG-island-related promoters. However, the list

also includes “transcription factor” and “protein kinase” – in fact, proportionately these terms

are overrepresented by a much greater factor than “metabolism”. Yet expression of these genes

is likely to be more restricted than that of metabolic enzymes.

Amongst the underrepresented terms, perhaps the most dramatic example is the “olfactory

receptor” term, which makes up 1.3% of the unfound set, yet does not occur at all in the found

set. Many other types of receptor also appear in this list. “G-protein coupled receptor” makes

up 6.9% of the unfound set yet only 1.4% of the found set. Part of this is explained by the

olfactory receptors (which are G-protein coupled), but other sub-types are also dramatically

underrepresented. Other terms in this list include “immune response”.

The term showing the most dramatic difference – olfactory receptors – is perhaps the easiest

to explain. The human genome is thought to contain well over 300 functional olfactory receptor

genes [Crasto et al 2001], although not all of these are predicted by Ensembl. There are also

many pseudogenes. But only one allele of one receptor locus is expressed in any particular

olfactory neuron [Chess et al 1994]. The choice of receptor is presumed to remain constant

throughout the neuron’s life. This seems to suggest that there is some specialized mechanism

to select one particular olfactory receptor allele and promote the transcription of that – and

no other – allele. Logic suggests that there might be advantages in using an atypical promoter

system for these genes, since it lowers the probability of accidental transcription, compared to a

common type of promoter sequence. Similar arguments could also apply to some components

of the immune system. In addition, Ensembl identifies at least some of the fragments of the

immunoglobulin light and heavy chains as genes, yet these would not be expected to have

promoters at all, since they will only be expressed in cells where recombination events have

occurred to create a complete immunoglobulin gene.

Some of the overrepresented terms are rather more surprising. Genes annotated as

“metabolism” or “enzyme” fit well with the intuitive notion of housekeeping genes. Many
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of these are required by most or all cell types for day-to-day survival. But the presence of

transcription factors and other genes that play predominantly regulatory functions in this

set does not fit this model and shows that the notion of a “housekeeping” gene is, at least,

somewhat simplistic.

Another possible explanation for the difference is that gene products are required by the

cell in radically different amounts. Many enzymes which catalyze key metabolic reactions are

needed in significant amounts, simply to provide adequate throughput on a particular metabolic

pathway. On the other hand a membrane-bound receptor can adequately perform its function

with only a few copies present per cell. But once again, this fails to explain the presence of

transcription factors on the overepresented list, since they are not generally expected to be

present in large quantities.

3.6. EponineTSS discussion

The results shown here demonstrate that a novel sequence analysis model, based on some

previous suggestions of promoter structure, is able to capture information from a suitable training

set. Representing the model within the GLM framework allowed a standard “learning engine”,

which did not itself contain any domain-specific knowledge, to drive the training procedure,

selecting and weighting the final set of model elements. While the emphasis here has been on

modeling the sequence around transcription start sites, similar approaches might be suitable for

other point features in the genome, and indeed the code is currently being tested for the prediction

of transcription termination sites [A. Ramadass, personal communication].

The EponineTSS model is able to predict a substantial proportion of transcription start

sites (over 50% of the pseudochromosome test set) with a comparatively low level of apparent

overprediction (over 70% accuracy on a representative subset of human chromosome 22). This

combines better accuracy than existing methods with a comparable level of coverage. The
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EponineTSS scanner is fast and efficient, making it a convenient method for first-pass promoter

annotation on bulk genomic sequence – and as such, it has been integrated into the Ensembl

project’s standard vertebrate analysis pipeline.

I find it striking that accuracy on the original pseudochromosome seems to peak at 73%,

and neither re-trained versions of the EponineTSS model, nor any other method, were able

to substantially exceed this. I believe that as our understanding of the genome improves,

at least some of the false-positive prediction clusters will turn out to correspond with real

promoters. Certainly, the improvement in accuracy when evaluating against the new version 3.1b

chromosome 22 annotation seems to support this idea. On the other hand, it seems unlikely that

all the remaining false positives correspond to protein coding genes: one possible explanation

would be these promoters drive the expression of functional but noncoding RNA genes, such as

the regulatory micro-RNAs [Grosshans and Slack, 2002], and it will be very interesting to watch

as methods are developed which can more sensitively detect noncoding RNA genes, to see if

some of EponineTSS’ false positives turn out to be correct predictions.

Similarly, I note that this method, and many others, fail to predict more than 50-60%

of promoters, at least without greatly increased rates of false-positive predictions, and that

all current ab initio promoter-finding methods seem to detect similar subsets of promoters. I

can show that the promoters correctly detected by this method are associated with a rather

biased selection of genes. Olfactory receptor genes, whose expression is confined to small

sub-populations of olfactory neurons, never have detectable promoters. This bias seems to

extend to other types of receptor genes (I presume that many of these also have rather restricted

expression patterns), and to components of the immune system. At the other extreme, enzymes

are more likely than average to have a detectable promoter. This fits well with the existing

suggestion that housekeeping genes have CpG-island promoters. But the same results also

show detectable promoters associated with some of the key regulatory mechanisms of molecular

biology: protein kinases and transcription factors. I suggest that, while most of these are not

ubiquitously expressed, they are likely to be more widely expressed, in general, than the receptor
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genes. Firstly, gene regulation is largely combinatorial, and it is a collection of transcription

factors, rather than one single switch, which promoters gene expression. Secondly, regulators

and signal-transducers are often re-used for multiple tasks in different cell types – for example,

the MAP-kinase cascade [Nishida and Gotoh, 1993]. So while the idea that standard promoters

are associated with housekeeping genes would certainly seem to be an oversimplification, it may

well be true that promoters which include some standard core elements – and are detected by the

methods considered here – tend to have more widespread expression patterns than those which

do not.

One explanation for this is that the sets of training data used here (EPD and FANTOM)

are significantly biased towards particular types of genes. This is an interesting possibility

since PromoterInspector was also trained from EPD and exhibits the same bias as EponineTSS.

There is more discussion of this in chapter 4. Assuming that the training set is not biased,

another possibility is that there is some kind of functional bias in the correctness of Ensembl

gene predictions, with certain types of gene more likely to have complete or near-complete UTR

annotations, which are consequently more likely to match the TSS predictions. Alternatively,

some types of gene may be particularly prone to duplication as pseudogenes, some of which

are being predicted as false-positives by Ensembl but which lack functional promoters. Both

of these hypotheses will become easier to test once curated annotation is available for a large

fraction of the genome. The final possibility is that there is a genuine distinction between a

“detectable” class of promoters, located by EponineTSS and PromoterInspector and generally

associated with CpG islands, and the remaining promoters, which look quite different in

sequence terms.

During the development of this method, I briefly experimented with two extensions to the

basic EAS model. The first variant allowed PCs containing ‘scaffolds’ of two or more weight

matrices, and was similar in implementation to the scaffold-based models in chapter 4. A second

variant replaced simple position weight matrices with first order weight matrices, where the

emission distribution at each position was conditional upon the symbol observed in the previous
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position. This allowed dependencies between neighbouring bases to be modeled, as discussed

on page 19. Both these variants allowed models to capture substantially more information than

the basic EAS model, but did not give better performance for this particular task. This does

not, however, rule out the possibility that they might be useful for some other sequence-analysis

tasks.

So far, I have not been able to train a model to effectively detect the remainder of promoters.

This may be due to limitations in the available training data (in particular, the fact that I could

not precisely localize the true transcription start sites for the FANTOM promoters).However, it is

also probable that the group of hard-to-detect promoters might be subdivided into several distinct

types, without any strong common features. This could explain the complexity of the model in

figure 3.14: the model includes elements from a number of unrelated different promoter types.

In the future, this question could be addressed by taking a mixture-modeling approach which

builds separate models for clusters of data in the training set, rather than forcibly fitting it to a

single model.

One additional limitation is that the current models do not seem to effectively predict

the direction of transcription from a given promoter, since the majority of prediction clusters

include predictions on both strands. In some cases, such clusters can be explained by

considering divergent genes, transcribed outwards from a single compact promoter region. A

number of cases like this have been described, primarily in bacteria but also in eukaryotes,

but there certainly are not enough divergent protein-coding genes to explain the large number

of bidirectional clusters. One explanation would be that the “core” promoter signal seen here

really does not provide substantial information about the direction of transcription, and that

directionality is conferred by additional signals which are specific to individual promoters

rather than being shared among large numbers of different promoters. Another, more radical,

view is that divergent promoters such as that described in [Asakawa et al. 2001] – cases where

a pair of closely-spaced genes are transcribed outwards from a single regulatory region – are

more common than has so far been realized. While it is very unlikely that a large number of



3.6. EponineTSS discussion 87

genes have a so-far undiscovered protein-coding partner, it is much more plausible that there

are many additional regulatory micro-RNAs, which could form divergent pairs with coding

genes. Once again, until micro-RNAs can be accurately predicted, or experimentally detected in

a high-throughput fashion, this will have to remain a tentative suggestion. In the mean time, it

may still be useful to consider EponineTSS results when searching for novel RNA genes.



Chapter 4. Learning from comparative
genomics

Comparative genomics is the study of similarities and differences between two or more

genome sequences. In its simplest form, it is based on the assumption that regions of the genome

which perform important biological functions are more likely to be conserved between species

than non-functional “junk”. This is intuitively quite logical, since at least some proportion

of mutations in functional regions would be expected to have deleterious phenotypes, and be

selected against, while mutations in non-functional areas should have no phenotype, positive or

negative. The availability of the mouse genome, with close similarities to human, has caused

much excitement in this field. In fact, there are a variety of genomes which make attractive

targets for comparison – for example, the pufferfish Tetraodon nigroviridis has been proposed as

a useful target for vertebrate comparative genomics, especially because of its small genome size,

presumably containing little non-functional DNA [Roest et al. 2000].

To date, the main application of comparative genomics, at least in vertebrates, has been

in the prediction of coding genes, with approaches such as Exofish [Roest et al. 2000] and

Twinscan [Korf et al. 2001], and DoubleScan [Meyer and Durbin, 2002] utilizing similarity

information from a variety of distances to predict genes with a greater confidence that purely

ab initio methods, while still not requiring direct experimental data. Protein coding regions

are among the best conserved regions, and sensitivity can be increased further by using

an alignment model such as WABA [Kent and Zahler, 2000] which recognizes that certain

nucleotide changes, mainly in the last position of a codon, are synonymous and have no effect

on the final protein sequence. This sensitivity allows distant comparisons such as human-fish

to yield interesting information. But other types of functional region also show conservation,

and other types of comparative genomic application are being developed, for example in the

88
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prediction of functional non-coding RNA genes [Rivas and Eddy 2001, di Bernado et al. 2003],

where the expectation is that the secondary structure of the RNA will be more conserved than its

actual sequence.

The human and mouse genomes show quite substantial similarity. An initial survey of these

was published along with the draft mouse genome [MGSC 2002]. Briefly, coding genes are – as

expected – among the most strongly conserved regions, but homologous regions can be observed

throughout the genome. In total, it is possible to align up to 40% of the mouse genome to human

[Schwartz et al. 2003], but it seems likely that at least some of this is just random “comparative

noise” – regions of sequence which serve no particular purpose but which, purely by chance,

have not yet accumulated enough mutations to make their relationship unrecognizable.

However, it seems clear that some of the noncoding-but-similar regions, especially those with the

highest levels of sequence identity between the two species, must have biological explanations.

Here, I suggest an alternative approach to comparative genomics, and present an example

of its application in the analysis of mouse-human homologies. I chose to take a set of

so-far-unexplained regions of strong similarity between two species, and try to identify what they

have in common. This could be described as an ignorance-driven approach to scientific research,

and is significantly different from the traditional approach of proposing hypotheses then testing

them. However, it is an attractive way to explore large data sets. To make this strategy feasible,

I used a machine learning approach in order to detect significant patterns in the chosen set of

sequences. There have been some prior indications that this might prove to be a useful strategy.

In the malarial parasite, Plasmodium falciparum, unsupervised training of a rather simple hidden

markov model can partition the genome into several portions, each modeled by one state of

the HMM. Moreover, some of the learned model states effectively identify expressed regions

– and the direction of transcription – without having to supply any prior knowledge of what a

Plasmodium gene might look like [Pocock 2001].

The HMMs of [Pocock 2001] just detect fairly simple biases in the frequency of either
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single nucleotides or pairs of nucleotides in particular regions of the genome. This was effective

in one case, but I wished to develop a method which could capture more complex information

about regions of the genome, and this motivated the development of the Eponine Windowed

Sequence model family.

4.1. The Eponine Windowed Sequence (EWS) model family

Previously, I introduced the Eponine Anchored Sequence (EAS) model, which was a

generalized linear model classifier for points within a large sequence. From a biological point

of view, this kind of point classifier is a principled way to look at questions like transcriptional

activation, since while the signals may be spread over a considerable area, their activity is focused

on a single point or small set of points. However, it is often not possible to exactly define the

points that are interesting. This is particularly true in this case, where a training set of sequences

is being proposed as “interesting” purely on the basis of similarity to another species, with no

prior knowledge of function. As well as having no indication of which point (if any) should

be used as an anchor point, there will not even be any indication of the orientation in which the

sequence should be considered.

The Eponine Windowed Sequence model is a generalized linear model approach to

sequence analysis, following many of the same principles as EAS, and sharing many details

of practical implementation, but it is directly applicable to regions of sequence. EWS models

were designed to be trained with the previously described variational RVM library, using the

same sampling-based strategy as EAS. The EWS model as used in this chapter is adirectional by

design, but if it is to be applied to data from alternative sources, where the functional orientation

of the training sequences is known, directionality could be reintroduced with only the most trivial

changes in the computation.

In the first version of EWS, each basis function consists of a single position-weight matrix
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(see definition, page 19). The basis function score is a normalized sum of the position-weight

matrix probability (see page 19) at every position along the window of sequence under

consideration:

φ(S)−−
|S|−|W|+1∑

i−−1
(
→
W (S, i) +

←
W (S, i))

|W|4
|S|− |W| + 1

(4.1.1)

Where |S| is the length of sequence S and |W| is the length of PWM W. Dividing the scores by |S|

− |W|+ 1, the number of positions at which a motif of length |W|could begin, makes this scoring

function independent of the exact size of the windows under consideration, making training on

examples with a range of lengths possible. Like the basis functions of the EAS model, scores

are also normalized for motif length: the |W|4 term avoids the basis function outputs taking very

small values, which could cause numerical precision issues in the training algorithm.

Since the basis function space for this model was somewhat smaller than for EAS, a simpler

strategy could be adopted for making initial choices of basis functions. Rather than starting with

fragments picked from the training sequence, it was practical to enumerate all possible words

of a specified starting length. These were shuffled onto a queue in a random order. When the

trainer required a new basis function, a word was taken from the head of the queue and a new

PWM proposed which preferentially matches this word. Once the queue is empty, the words are

re-shuffled for another cycle through the pack. Once motifs have been proposed, the remaining

sampling moves in the training procedure were similar to those used for EWS: weight matrices

can be altered by re-sampling the columns from Dirichlet distributions, or can be shortened

by dropping a column from either end. In this case, extensions of existing weight matrices are

not permitted, so all the PWMs in the final model will have a length less than or equal to the

starting length.

The second version extends EWS to capture larger-scale patterns in sequences. In

this case, each basis function is a scaffold consisting of one or more PWMs, each with an

associated position distribution relative to a scaffold anchor. In principle, distributions such
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as the discretized Gaussian extend to infinity, but in practice it is reasonably to apply some

cut-off: for instance, only considering the portion of the distribution which includes 99% of

the total probability mass. The probabilities of all points outside this region are assumed to be

infinitesimal and ignored. Now that the distributions have finite size, for a given scaffold there

is a pair of integers, n and m, such that when the scaffold anchor is placed in the interval [n :

m], the non-infinitesimal parts of all the position distributions fall entirely within the length

of a particular target sequence. A score for scanning this scaffold across the sequence can be

given by

φ(S)−− Z
m∑

i−−n

(
K∏

k−−1

( ∞∑
j−−−∞

Pk(j) (
→

Wk(S, i + j) +
←

Wk(S, i + j))

))
(4.1.2)

where Pk is the k’th position distribution and Wk is the k’th weight matrix in the scaffold. Z is

the normalizing constant:

Z −−
K∑
k

|Wk|
4

m− n + 1
(4.1.3)

For the case when the scaffold only contains one PWM with a narrow distribution, the results

will be the same as those from equation 4.1.1. So this can be considered a direct extension to

the basic EWS model that can capture information about sets of motifs with correlated positions.

Since the scaffold scores are only evaluated in the regions where the whole scaffold fits onto the

sequence window, there is a risk of introducing edge effects. A possible future solution to this

would be to use windows that are a little larger than the actual region, of interest, and use “soft

boundaries” where scores from the edges of the window are given less weight than those at the

centre. To train scaffold-based models, some additional sampling rules are needed:

• Combine the sets of motifs from two scaffolds, with randomly chosen offsets between

the two

• Take a scaffold with two or more PWMs and return the scaffold with one of those PWMs
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(picked at random) removed

• Alter the position or width of one of the relative position distributions in a scaffold.

The inclusion of scaffolds which could, for example, model two transcription factor binding

sites with some preferred spacing between them, makes this second variant look more similar to

EAS. In the implementation used here, scaffolds were limited to a maximum of three motifs. An

example EWS-scaffold model is illustrated in figure 4.6.

4.2. Training from non-coding homologies between human and mouse

Here, I used the EWS model to investigate a set of strong non-coding homologies between

the human and mouse genomes. A number of methods have been developed for aligning

two genomes [Schwartz et al. 2003]. These methods all use optimized sequence-search

algorithms which trade some sensitivity for better computational performance. Nevertheless,

whole-genome alignment is a computationally very demanding task, so I was keen to use an

existing publicly-available set of results rather than running a new set of analyses.

At the time, the main set of publicly downloadable mouse-human alignments was provided

by the Ensembl project in their ensembl-compara database [Clamp et al. 2003, A. Ureta-Vidal,

personal communication]. This data was produced by first using the Exonerate program

[G. Slater, unpublished] to perform a very rapid search for strong matches between the two

genomes, which were used as “seeds” for the alignment process. When two seed hits occurred

close to one another on both genomes, attempts were made to extend the alignments further

by running bl2seq [Tutsova and Madden, 1999] (an implementation of the blast algorithm

specialized for aligning two sequences rather than searching a database) on the regions of

sequence lying between pairs of adjacent seed hits on the respective assemblies.

The compara database from Ensembl release 5 contained results from this protocol on

release 5.28 of the draft human genome and release 5.3 of the mouse whole-genome shotgun
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assembly. This gave 559,670 regions of similarity, covering a total of almost 93 megabases.

While this is a substantial amount of sequence in absolute terms, it represents only 3.4% of

the sequenced bases in the mouse genome, and somewhat less than that for the larger, more

completely sequenced, human genome. The individual regions ranged from 20 to 8581 bases in

length, and from 71% to 100% nucleotide identity. The bulk of the sequences are towards the

lower end of this length range, as shown in figure 4.1

Figure 4.1. Length distribution of sequence regions aligned between human and mouse by ensembl-compara
version 5.

One of the strongest contributors to the fraction of sequence in the compara data set was

protein-coding genes. These represent a reasonably well-understood fraction of the genome,

and were already known to be well conserved, so for the purposes of this particular study

they were considered as “uninteresting”. Therefore, all similarity regions which overlapped

an Ensembl gene prediction in either species were excluded. Note that the UTRs of predicted

transcripts were also excluded at this point, but these might in fact make an interesting target

for detailed analysis in the future using similar techniques to those presented here. Compara

sequences overlapping repetitive elements, as detected by the RepeatMasker program

[Smit and Green, unpublished] were also removed at this point, but these represented a very

small fraction of the total. This is partially due to the use of repeat masked sequence in the

seeding stage of the alignment process, but also since some of the largest families of repeats,
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such as the Alu elements of the human genome, proliferated fairly recently in evolutionary time,

and therefore only occur in one lineage.

The final restriction which must be applied is a minimum length threshold, since short

sequences contain only a small number of sequence words, and are thus unlikely to give

interesting results when analysed with the EWS model. For this experiment, I arbitrarily picked

a sequence window size of 300 bases. Sequences which were shorter than this were discarded,

while longer sequences were trimmed, and only a (randomly selected) 300-base portion from

each sequence was used. This clearly removed a large number of sequences from consideration.

However, this still left 75332 sequences, so there was little incentive in this case to analyze the

shorter regions of similarity, or attempt to extend them with more sensitive alignment methods.

In fact, training an EWS model on a dataset of that size would have been prohibitively slow

(the limiting factor actually being the vast number of PWM score evaluations, rather than the

actual RVM learning algorithm), so for this experiment I picked random subsets of size 2000,

4000, and 6000 to use as training datasets. Since EWS is still a binary classification model, a

negative dataset was also required. In this case, randomly chosen non-coding, non-repetitive

fragments from human chromosome 20 were used. This gave a roughly equal mixture of intron

and intergenic sequence, with a small number of UTR sequences.

Single motif EWS models were trained from each of these sets with proposed words of

length 5. The final motif sets from three runs are shown in table 4.1. These sets vary significantly

from run to run, raising the serious possibility that the training process was not actually detecting

any specific signal. The models were initially tested by scanning a two megabase region of

human chromosome 22, considering non-overlapping 300 base windows. The scores for models

1 and 2 from table 4.1 are plotted in figure 4.2. While the two models do not agree precisely, a

strong correlation can be seen. This can be quantified by calculating the Pearson correlation

coefficient, in this case r−−0.89, which confirms the visual impression of a strong, but not perfect,

correlation between the models. This correlation value was typical for other pairs of models

tested.
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Positive forward Positive reverse Negative forward Negative reverse

aaagc gcttt aaaaa ttttt

aatta taatt atttg caaat

agc gct ccacc ggtgg

catac gtatg cgtgc gcacg

cccac gtggg ctagc gctag

ccgc gcgg ctca tgag

cggta taccg cttac gtaag

gacga tcgtc gatgc gcatc

gcga tcgc gcgac gtcgc

tcaca tgtga gggaa ttccc

tccaa ttgga tagga tccta

tata tata

Positive forward Positive reverse Negative forward Negative reverse

aacac gtgtt aaaaa ttttt

atgga tccat aaata tattt

attag ctaat attc gaat

attg caat caccc gggtg

cagc gctg ccca tggg

cagta tactg ccga tcgg

ccgac gtcgg ctagc gctag

cgaaa tttcg cttac gtaag

cgac gtcg gacca tggtc

cgcca tggcg gtga tcac

ctccc gggag gttga tcaac

cttta taaag tagca tgcta

tcaca tgtga

Positive forward Positive reverse Negative forward Negative reverse

aacgc gcgtt aataa ttatt

aactt aagtt accca tgggt

aataa ttatt ag ct

agccg cggct caac gttg

agcg cgct cctga tcagg

atatc gatat ctagc gctag

atgac gtcat ctttc gaaag

attag ctaat gcgc gcgc

catca tgatg ggaca tgtcc

cga tcg

cgaca tgtcg

ctgtc gacag

cttta taaag

gctga tcagc

Table 4.1. Words learned from three EWS models trained from mouse-human homologies.
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Figure 4.2. Scatter of scores from two different EWS models.

Given these strong correlations, it seems reasonable to assume that the training process

locked on to some specific signal in the homology dataset. In order to get some impression of

what this might be, I used one of the models to scan 300 base windows, with 200 base overlaps

between adjacent windows, across the whole of chromosome 22, and set a threshold of 0.95,

giving 985 high-scoring windows – a reasonable number for visual inspection. These were

published using a DAS protocol server [Dowell et al. 2001] and viewed, together with other

types of annotation, using the Ensembl genome browser. Some typical displays are shown

in figure 4.3. Note that there is only one track of EWS predictions in each image, since the

EWS model is adirectional, and its predictions cannot be placed on one or other DNA strand.

Since these results were just taken from human chromosome 22, which is well covered with

manually-curated gene annotations, the figures show the curated gene structures (available in

Ensembl as “Vega transcripts” [http://vega.sanger.ac.uk/]) rather than Ensembl predictions.

This examination gave some indication of what the EWS models might be learning. Firstly,

it is clear that the model has not learned a signal characteristic of coding genes – always a

concern, since while homologies overlapping existing Ensembl genes were removed from the
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Figure 4.3. Ensembl contigview displays for selected portions of human chromosome 22, showing windows with
high scores for one of the homology models (labeled “ews1_0.95”), and predictions from the EponineTSS_2 model
(labeled “Eponine”).
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training set, it seems likely that at least a small number of coding sequences will have remained,

reflecting false negatives from the Ensembl gene prediction pipeline. The bulk of predictions do

not significantly overlap annotated exons, and for those which do it is almost always the first exon

of a gene, which often consists largely or entirely of 5’untranslated sequence. The fact that this

experiment did not pick up a protein-coding signal can be seen as evidence that there is probably

not a large amount of undiscovered coding sequence in the genome. It is, however, clear that the

predictions are concentrated near the start of genes. Moreover, they are strongly correlated with

predictions from the EponineTSS_2 model.

Based on this visual inspection, I provisionally concluded that the learned models were

acting as promoter predictors, a result which was later backed up by the evaluation in the next

section. It is not initially obvious exactly what aspect of the promoter signal is being detected

by these models. Considering table 4.1, there are a number of words in this set which include

the 5’-cytosine-guanine-3’ dinucleotide: 11 such words with positive weights, against just 3

with negative weights. CpG dinucleotides are known to be significantly in promoters, both by

inspection of the EponineTSS models, and from previous knowledge of CpG islands. However,

given the number of motifs which were learned, it seems unlikely that this method is relying

solely on this signal. It seems more plausible to think that the learned set of motifs consists

of some CpG island signals, plus additional motifs reflecting common transcription factor

binding sites.

One approach to check for transcription factor binding sites in the model is to compare

the learned motifs with the TRANSFAC database [Matys et al. 2003]. Unfortunately, this

proved not to be practical. The set of binding sites in the TFSITE database actually includes all

1024 possible 5-base nucleotide sequences. Obviously, most of these are embedded in longer

sequences, but it means that there is no way to rigorously compare TRANSFAC with the set of

5-base motifs listed here. Moreover, moving to slightly longer motifs would not improve the

situation significantly: of the 4096 possible hexamers, only 15 cannot be found in TFSITE.
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4.3. Evaluating the function of mouse-similarity models as promoter predictors

To test the EWS models as a practical mechanism for predicting promoters in genomic

DNA, I took the same approach previously used to evaluate the EponineTSS predictor. The

models were used to scan the pseudochromosome described on page 67, again using overlapping

300 base windows, and the set of high-scoring windows was compared with the curated

annotation using the same criterion of accepting predictions within 2kb of the annotated

transcript start. Once again, receiver operating characteristic curves (accuracy vs. coverage)

were plotted. As already shown, the learned models varied somewhat between training runs. I

therefore trained three models from each dataset and calculated the mean and standard deviation

statistics of the accuracy score at a range of coverage figures. Results of this analysis for models

trained on two of the datasets are shown in figure 4.4. For higher levels of coverage the models

from the 4000 sequence set gave significantly higher accuracy. However, training from the 6000

sequence set did not give any further improvement (data not shown for clarity reasons, since the

results closely overlapped those for 4000 sequence models).
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Figure 4.4. ROCs for EWS models trained from sets of 2000 or 4000 human-mouse homologies.
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To optimize the initial word-length, a second set of models were trained using proposed

words 6 bases in length. These all offered lower accuracy than the 5-base models, but the

difference decreased with larger sets of training data. For models trained with 6000 sequences,

the differences were minimal. Thus, it seems that models including longer motifs require

larger amounts of data to train effectively. But it was not possible to improve the prediction

performance significantly significantly above what could be achieved using 5 base words.

One of the 4000-sequence, 5 base word models was selected for further study: from now

on, this is labeled as EponineHomol_1. The full set of motifs in this model are shown in table

4.2. At a threshold of 0.97, this gave a coverage on the pseudochromosome of 41% and an

accuracy of 68%. These figures are both a little lower than those for the EponineTSS_2 model,

but still indicate significant predictive power. In fact, the accuracy is slightly higher than that

for the EponineTSS_1model at a comparable coverage level. Of course, the two are not directly

comparable since the EponineTSS models also give information on the actual position of

transcription initiation, while the models discussed here simply indicate regions of 300 bases or

more which are likely to lie in the vicinity of transcription start sites.

Next, I investigated which promoters were detected by the EponineHomol_1model. Of the

284 gene starts on the pseudochromosome,116 were correctly predicted by the EponineHomol_1

model at the chosen threshold. 107 of these were also detected by EponineTSS_2 (see figure

4.5. If the two methods made predictions entirely independently, the expectation would be that

only 62 out of 116 would coincide by chance, so this would seem to be evidence for a significant

correlation. As discussed previously, the set of promoters found by EponineTSS_2 could quite

plausibly be biased either by the set of promoters which had been submitted to EPD, or by

the set of mRNAs which were successfully cloned in the FANTOM project. Neither of these

dataset-related biases could have had any effect on the training of the EponineHomol_1 model.

Thus, this coincidence suggests that the distinction between the “found” and “unfound” sets of

genes discussed in chapter 3 must have some deeper biological significance.
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Positive Negative

Table 4.2. Logo view of the motifs used in the EponineHomol_1 model.
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Figure 4.5. Intersection of transcription start sites correctly predicted by the EponineTSS, EponineHomol, and
CpG methods.

Given a functional predictive system, it is always interesting to investigate methods to

increase the system’s predictive accuracy. Two different approaches were taken with the hope

of generating better EWS promoter models. The first was to use the extended version of EWS,

with extra sampling rules to construct “scaffolds” of several PWMs. Potentially, these scaffolds

should be able to capture much more information than simple motifs could: two or more PWMs

with very narrow position distributions, close to one another, could effectively model a large

transcription factor binding site, while slightly broader and more distant distributions might

reflect sites for factors which bind cooperatively. Training on the same datasets as before,

scaffold-EWS learns significantly more complex models than those seen previously: the total

number of basis functions used in the model was typically slightly higher than for motif-EWS,

and around half of these basis functions were scaffolds of two or more motifs. One example

is shown in figure 4.6. Unfortunately, the additional information did not appear to improve the
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predictive power of the models in the chromosome 22 test system.

The second approach takes the view that the training data might be the limiting factor

in performance of these models. The set of mouse-human homologous sequences is likely to

be a relatively complex data set, and while it clearly contains substantial amounts of promoter

sequence, it is also likely to include fragments of coding genes which were missed by Ensembl

predictions, RNA genes, UTRs, splicing regulators, and probably other types of functional

sequence, as well as some regions which are included purely by chance conservation. In an

attempt to make a cleaner data set, the EponineHomol_1 model was used to select a training

set of 4000 sequences with scores over 0.95. This was used as before to train both EWS-motif

and EWS-scaffold models, with initial words of length either 5 or 6, which were then tested on

chromosome 22.Once again, the ROC curves were very similar to those seen previously. Despite

the enrichment of the training data, it was not possible to increase the classification power of

this method. This suggests that performance may be limited by a fundamental problem with

classification based on fixed-sized windows of sequence. This is considered further in the

discussion section.

4.4. An attempt to discover a second signal in mouse-human homologies

Following the success of discovering one signal in conserved noncoding sequences, I

attempted to use the same approach to discover more, distinct, signals. To do this, a new training

set was prepared, following the same principles as previously, but including only sequences

which received low scores (<0.25) with the EponineHomol_1 model. A set of 2000 sequences

was selected, henceforth referred to as the reverse-selected set. Models were trained from this

set using the same procedure as before. To confirm that this reverse-selection protocol gives

models which do detect novel sequences, the models were tested on the same two megabase

region as previously. Figure 4.7 shows the scores for a typical reverse-selected model against

those for EponineHomol_1. There is a slight negative correlation between the two axes, so
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Positive Negative

Figure 4.6. A set of basis functions learned by training the EWS-scaffold system on human-mouse homologous
sequences. Each cell of this table shows an individual basis function, made up of between one and three
sequence motifs.
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clearly this model is substantially different from EponineHomol_1, and indeed any of the

models which were trained without using the reverse-selection protocol. One of these models,

EponineHomol_2, was selected for further characterization. A logo view of the motifs in this

model can be seen in table 4.3.
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Figure 4.7. Scores for a model trained from the reverse-selected dataset vs. EponineHomol_1.

Predicting high scores for different localized sequence windows does not necessarily

mean that the model makes very different predictions when considered on a genomic scale.

In fact, once again this model appears to localize in promoter regions (see some examples in

figure 4.8). The predictions shown in the third panel are somewhat anomalous: the majority of

EponineHomol predictions were accompanied by an EponineTSS prediction. When evaluating

the EponineHomol_2 model as a promoter predictor on the pseudochromosome, it gave an

accuracy of 42% at a coverage of 50%, less effective than EponineHomol_1 but still useful, and

comparable to EponineTSS_1.

Perhaps more surprisingly, the set of promoters detected by EponineHomol_2 is correlated

with that found by EponineHomol_1. As figure 4.8 shows, predictions from the two models
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Positive Negative

Table 4.3. Logo view of the motifs in the EponineHomol_2 model.
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Figure 4.8. Contigview displays showing both EponineHomol_1 and EponineHomol_2 predictions.
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are often very close together (although generally not precisely co-localized). The strong

intersection between the sets of genes found by the two models (and also EponineTSS_2, and

CpG islands) can be seen in figure 4.9. So while it is interesting to find that it is possible to learn

a second promoter model, it appears not to be a great help in completing the task of predicting

transcription start sites for every gene in the genome.

EpoTSS Homol_1

Homol_2
19/28

69/70

34/37

4/6

20/95 unfound

18/22

21/23 3/3

Figure 4.9. Intersection of “correct” promoter predictions from EponineTSS, EponineHomol_1, and EponineHo-
mol_2. In each compartment, the first figure indicates the number of start sites which were also detected by a CpG
island predictor, while the second figure gives the total number.

4.5. Comparative Genomics Discussion

This method began as an ignorance-driven approach to find interesting signals in pieces of

sequence conserved between the human and mouse genomes. But visual inspection of results,

followed by comparison with annotated gene starts on the pseudochromosome, makes it clear

that the learned models are effective promoter predictors. Based on the criteria of accuracy
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and coverage on the pseudochromosome, the models described in this chapter are slightly less

effective than the EponineTSS_2 model from chapter 3. Moreover, they do not give predictions

of the actual transcription start site, one of the defining features of EponineTSS. Nevertheless,

the results in this chapter are impression, and potentially significant for the future of genomics.

The EponineTSS model represents a “shoulders of giants” approach to promoter prediction: the

model is, in effect, distilled information from the 339 EPD sequence entries which were used in

the training process. Each of these represents a considerable amount of time, effort, and expense

in laboratory work.

The models described in this chapter, however, are based on purely computational analysis

of genome sequences. While the difficulty of sequencing a genome should, of course, not

be underestimated, a number of genomes have now been completed, and techniques such as

preparation of shotgun libraries and assembling the resulting data are now quite well developed.

In just a few years, whole-genome shotgun sequencing in bacteria has become an almost routine

operation, and it seems hard to imagine that this will not eventually happen for higher organisms,

too. To date, most eukaryotic genome sequencing (at least in terms of public and academic

projects) has focused on the so-called model organisms, species which have a well-established

tradition of experimentation – often (but not always) including laboratory molecular biology

work. But once genomes are sequenced in organisms which do not have this tradition and

background, it becomes more important to be able to “bootstrap” biological knowledge on the

basis of genome sequences. The results in this chapter show this kind of bootstrapping in action,

learning information about an organism’s promoters with rather limited a priori information.

Such techniques will be particularly applicable if sequences are produced for several different

species in a previously uninvestigated clade.

This experiment was also interesting in terms of the surprisingly close agreement

of promoter-detection results on chromosome 22 between the EponineTSS_2 and

EponineHomol_1 prediction systems. Since the training of the EponineHomol_1 model was

entirely independent of the databases used to train EponineTSS, it is now possible to discount
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the possibility that the set of promoters found by these models is biased by the contents of the

training set. The remaining explanations are either a number of the chromosome 22 annotations

being significantly truncated at the 5’ end, or that many of them are really psuedogenes with no

functional promoter, or that promoters can be split into two classes, only one of which is detected

by these prediction methods. If the latter hypothesis is true, it seems likely that promoters in the

second class have far less in common with one another than those in the first, hence the difficulty

training models to detect them.

Given that a rather simple model gave good specificity as a promoter predictor – perhaps

surprisingly good, given the rather ad hoc nature of the training, and especially the fact that a

substantial fraction of the training data was probably non-promoter sequence – it is interesting

that various attempts to train better models using longer motifs, sets of motifs on scaffolds, and

enriched training sets did not give a further improvement. This suggests that the training may

not, in fact, be the limiting factor defining this method’s performance. An alternative view is

that there are inherent limitations in the use of fixed-size windows. Some promoters might have

all their signals focused into a very small region of sequence – perhaps significantly less than

300 bases – while others are likely to be more diffuse. Therefore, there is no ideal window size

to catch all the signals of all promoters while not diluting the signals of the smaller promoters.

The ideal solution to this issue is to use windows of variable width. This has the added benefit

that, given a suitably comprehensive model, it could offer at least some information about the

boundaries of promoter regions. One algorithm for scanning a sequence with variable sized

windows was proposed in [Byng 2001] (although this used a rather simpler sequence model,

just counting occurrences of specific nucleotide words). It would be be interesting in the

future to combine a variable-window approach to scanning sequences with a sparse Bayesian

training method.

The final part of this project was an attempt to peel away the first signal detected by this

approach, and retrain the same type of model on a new dataset from which that first signal had

been removed. This exercise was successful to the extent that it produced a new model whose
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scores were not substantially correlated with the first signal. It is interesting that the second

signal to be extracted from this data also appeared to come from near the transcription start

site. It is also significant that this second promoter-area model includes motifs containing the

CpG dinucleotide, and appears to be making predictions for the same class of CpG-associated

promoters. Predictions from the second model often lie very close to, but not necessarily

overlapping, the predictions from the first model, suggesting that they are modeling different

parts of large promoter regions. This failure to detect large numbers of non-CpG promoters adds

more weight to the hypothesis that non-CpG promoters do not form a single group with some set

of strong motifs in common with one another. It may, in fact, be necessary to treat each of these

individually, rather than identifying stereotypical signals which are found in all promoters.



Chapter 5. Evolutionary conservation of
promoter regions

Like the previous chapter, this part of the project relies on the availability of fairly complete

sequences for more than one genome, and also on the basic tools which make it possible to

compare them. However, while chapter 4 made a global examination of non-coding regions

which were conserved between the mouse and human genome, using a machine learning

approach to extract characteristic patterns from them, the analyses in this chapter are far more

focused, and concentrate specifically on the conservation of sequence in the promoter regions of

already-known genes.

With the availability of high quality sequence data for both the human [IHGSC 2001]

and mouse [MGSC 2002] genomes, a lot of interest has turned to the comparison of the two.

Automatic gene predictions are available across both genomes – for example, those from

the Ensembl project [Hubbard et al. 2002]. There is also curated annotation for substantial

parts of the human genome [http://vega.sanger.ac.uk], but not yet for much of the mouse

sequence, so this was not used here. By comparing the predicted protein sequences from

these gene sets and identifying reciprocal best hits, likely pairs of orthologous genes – genes

which are evolutionarily related and perform the equivalent roles in the two species – can be

found. However, it is clear that protein coding sequences are not the only important pieces of

information in the genome, so here I consider the evolution and conservation of the promoter

sequences which regulate the expression of those genes.

Initial comparative analyses included in the publication of the mouse genome

[MGSC 2002] have shown that there is a degree of sequence conservation between human

promoters and those of the corresponding mouse gene. The results in chapter 4 offer further

113
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evidence that at least some parts of promoter regions must be conserved between species.

Here, the aim was specifically to investigate the conservation of these promoter sequences.

There are a number of interesting questions about promoter evolution: to what extent do the

functional elements of promoters remain conserved between species? Is conservation between

“orthologous” promoters more or less significant than the appearance of shared motifs between

promoters for two unrelated genes which happen to require similar expression patterns. And

finally, can any clear examples be found where a promoter which drove the expression of one

gene in the first species is associated with an entirely different gene in the second.

To investigate this, I first identified a set of promoters pairs, based on orthology

of their associated protein-coding regions, then performed an all-against-all promoter

sequence comparison and determined how effectively the expected pairs are recovered. In

execution, this strategy is quite similar to protocols used to assess protein-alignment methods

[Brenner et al. 1998]. In this case, the results from an all-against-all comparison will indicate

whether the conserved signals are specific to particular promoters, or reflect more general themes

which appear in many promoter regions.

In the short history of bioinformatics, a wide range of software has been developed for

the comparison and alignment of biological sequences. Most of them have, at their core,

some kind of dynamic programming methodology [for review, see Birney 1999], but there

are many different implementations, designed and tuned for different purposes. The clearest

distinction is between global alignment algorithms (the classic example being the method

from [Needleman and Wunsch, 1970]) which attempt to find the best match along the full

length of two sequences, and local aligners (e.g. [Smith and Waterman, 1981]) which detect

the best-matching portions of two sequences, even if the remainder of the sequence shows no

similarity whatsoever. Additionally, some methods, for example the ssearch program, perform

an exhaustive search of alignment space using a fairly pure implementation of the dynamic

programming algorithm, while others such as Blast [Altshul et al. 1997] use optimizations –

specifically, an initial seeding stage which searches for words which match exactly between
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the query and subject sequences – to detect the majority of matches quickly, at the expense

of some sensitivity. In general, there is a trade-off of speed for sensitivity, with full dynamic

programming at the extreme of good sensitivity, and methods like SSAHA [Ning et al. 2001]

concentrating entirely on speed. Blast falls between these extremes. These optimizations are

normally achieved by first searching for a small cluster of symbols which all match exactly, then

extending this in both directions using more sensitive methods. A variety of sequence search

methods have been evaluated by the MaxBench system [Leplae and Hubbard, 2002], but this is

based on performance when aligning protein sequences, which is not necessarily equivalent to

aligning regulatory DNA.

In this case, I chose to use the well-known blastn nucleotide search and alignment tool

[Altshul et al. 1997]. Since this is a local alignment method, and is seeded by words which match

exactly between the two sequences, it specifically detects well-conserved blocks, rather than

attempting to align large pieces of sequence with only marginal similarity. Its default parameter

set, which was used here, further emphasizes the detection of highly conserved regions.

5.1. Alignment of promoter regions

Based on human release 8.30a and mouse release 8.3c, the compara databases from

Ensembl release 8 [Clamp et al. 2003] identified 19914 orthologous gene pairs, based on

reciprocal best hits in an all-against-all blastp (protein sequence) search. Note that while these

results are stored in the same compara database as the nucleotide alignments discussed in chapter

4, the protein comparisons are performed quite independently.

Since the aim was to specifically investigate conservation of promoter regions, it was

important to work only with those sequences where it was possible to extract the true promoter

region with a good level of confidence, and to avoid contamination of the set with other types of

conserved sequence – in particular, unannotated coding regions. I therefore applied a rigorous
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procedure to select a high-confidence subset of the data. From the initial compara set of 19914

orthologous pairs, I selected those cases where both the mouse and the human gene had only

a single predicted transcript. This avoided cases with alternate transcripts, which might have

additional upstream exons, and also simplified the evaluation schemes applied later in this

chapter by removing scope for double-counting of alternate transcripts with starts close to

one another. This left 8989 pairs – still a good-sized dataset for large scale evaluation. I then

picked the subset where the human sequence had an EponineTSS [Down and Hubbard, 2002

and chapter 3] transcription start site prediction in the interval [-200:+50] relative to the start of

the Ensembl-predicted transcript. This gave a set of 2442 pairs. The agreement of Ensembl’s

(evidence-based) UTR predictions with the computational results from EponineTSS means

that these positions should have a very high probability of reflecting true transcription start

sites, which in turn means that sequence upstream of this point is likely to primarily have

promoter functionality.

For each selected pair pair, mouse sequence was extracted from -5500 to +500 relative to the

Ensembl-predicted gene start, and human sequence was extracted for the 5000 bases upstream

from the predicted TSS. Note that the mouse sequence was longer at each end than the human

sequence. This means that, when aligning human sequences to mouse sequences, cases where

the mouse sequence is slightly longer (perhaps due to a repeat insertion) should still give good

alignments, and possible edge effects from the alignment algorithm will be reduced. In the

case of two closely-spaced pairs of divergent genes, the extracted windows overlapped. These

cases were recorded to ensure that matches to the overlapping regions were not counted as false

positives. The human sequences were masked for known repeat sequences using the standard

RepeatMasker method [Smit and Green, unpublished], and also for possible extra regions

of coding sequence as predicted by the Genscan algorithm [Burge and Karlin, 1997]. These

additional coding regions could be alternate first exons from genes with alternate transcription

start sites (which may not have been recognized in the Ensembl gene build), or they may be

pseudogenes. In either case, it is not appropriate to include them in the sequence comparison
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when searching for promoter regions.

Finally, each human sequence was searched against the full set of mouse sequences using

the blastn [Altshul et al. 1997] program (release 2.2.2) with its default alignment parameters:

Word size 11
Score threshold 30

Reward for match (N) +1

Penalty for mismatch (M) -3

Table 5.1. Default blastn parameters used

It should be noted that with this parameterization, the magnitude of the penalty for a single-base

mismatch is much greater than the reward for a correct match. This means that alignments will

not be extended through regions with a low percentage identity. This implies that the algorithm

is running with less than maximal sensitivity, but is desirable in this case: the mouse and human

genomes are relatively similar to one another, and a degree of background synteny can be seen

across many regions, which does not necessarily indicate any functional reason for conservation

but simply the fact that the species diverged recently enough that there have not been enough

mutations to make related sequences unrecognizable, even where there is little or no evolutionary

pressure to maintain a particular sequences. The parameters used here will highlight the most

conserved portions of sequence between the two species.

To investigate the efficiency of gene pairing based on promoter sequences, all pairs of

human and mouse sequences for which a blastn alignment was produced were scored by the

total number of bases in aligned regions in the interval [-2000:0] relative to the human TSS,

counting alignments to any part of the 6kb mouse sequences. This somewhat unconventional

scoring strategy was motivated by the observation that, in many cases, there were several distinct

blocks of aligned sequence. There is no justification in the blast scoring scheme for combining

the blast scores for these individual blocks by addition, so in order to count the contributions of

all the blocks, it was necessary to use an alternative scheme. This approach also made it easy
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to calculate scores which only considered alignments of some portion of the sequence, without

actually having to re-run the alignment method. The highest-scoring pair in this set had 1308

out of 2001 aligned bases – over 65% of its total length.

Those pairs which matched the previously-defined protein orthology were considered to

be “correct” pairings, while all others were considered “incorrect”. In two cases, apparently

incorrect pairings were seen because the upstream regions of divergent genes overlapped. These

cases were ignored. The relationship between number of correct and incorrect pairs as a score

threshold was varied is shown in figure 5.1. It can be seen that promoter-based and protein-based

pairings agree extremely strongly up to a coverage of just over 40% (which occurs at a threshold

of 50 total aligned bases), beyond which correspondence falls rapidly. This indicates the point

at which blocks of detectable similarity become comparable in size with the blocks of similarity

which occur either entirely by chance, or because of small, common, functional elements –

either individual transcription-factor binding sites, or perhaps small clusters of sites. There are,

however, a small number of cases where an incorrect pair is detected with a score much higher

than noise. Examination of these sequences revealed a number of low complexity regions (in

one example, “gaatgaatgcaggatgcagtgag”) that were not being masked by the dust filter built

into the Blast software. A more detailed scan for low complexity sequence was made using the

etandem program from EMBOSS [Rice et al. 2000], searching for tandem repeats between 4

and 24 bases long. Masking these regions and realigning the sequences eliminated a number of

probable false positive matches, giving the second trace of figure 5.1.

This process of building an all-against-all score matrix then counting those pairs where the

score is greater than a specified threshold is closely analogous to the method of single-linkage

clustering. In the case of protein sequences, a number of projects have studied clustering of

sequences based on pairwise alignment scores. Clusters are often observed, and have been

well studied. In this context they are generally called families, and are presumed to reflect

evolutionarily related genes. Ensembl gene predictions are allocated to families using the

TRIBE-MCL clustering algorithm [Enright et al. 2002]. In mouse release 8.3c, the 22,444
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Figure 5.1. Agreement of promoter orthology with protein orthology. Panel a shows coverage (proportion of
sequences correctly paired) at high levels of accuracy, with and without additional repeat-masking using etandem.
Panel b shows a wider range of coverages, and only includes the results with etandem masking.
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predicted genes were assigned to 11,579 families. If strong clusters of promoter sequences could

be observed, these would appear as a gradual fall-off of the accuracy value in figure 5.1 as more

distantly related clusters join together. Instead, this plot shows very few strong pairs which do not

agree with the protein best-hit relationships, right up to the point where the accuracy collapses.

The promoter-pairs which do not agree with the protein-defined orthology were compared with

the Ensembl family data for the mouse protein set. At a low threshold of 20 aligned bases, 1283

pairs were detected which were not in the protein orthology set, but just one of these was a match

to another mouse promoter for a gene in the same family. Based on this result, I suggest that there

is little significant large-scale similarity between non-orthologous promoters, even when they are

driving the expression of closely related genes.

Without detailed laboratory experimentation, there is currently no available method to

accurately determine the boundaries of promoter regions on bulk genomic sequence, therefore

these results are open to the criticism that this strategy might be detecting similarities which

remain by chance in regions of sequence which are, after all, believed to be related to one another.

For the same reasons, it was not possible to build a corresponding control set of sequences

which are close to genes but provably not involved in gene regulation: as well as the extent

of promoter regions being uncertain, enhancer regions – which are thought to be similar to

promoters in terms of their general architecture, and are certainly likely to be conserved between

species – can be found throughout the genome. However, making the assumption that the bulk of

regulatory elements,particularly in genes which have simple regulation mechanisms,are situated

quite close to the transcription start site, it is reasonable to compare pairing results based on

homologies in the previously considered window of [-2000:0] (relative to the TSS) against those

further upstream in the range [-4000:-2000]. While the second set is very likely to contain some

promoter elements, the number is expected to be rather smaller than in the region immediately

upstream. The results of this comparison are shown in figure 5.2. This gives the same basic shape

of a plateau followed by a rapid collapse in accuracy, but note that the collapse occurs at around

half the coverage seen with a window closer to the TSS. It is, of course, believed that promoter
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elements still occur (albeit somewhat less frequently) 2kb and more from the TSS, and that this

explains the bulk of the 20% of genes which are paired correctly based on the [-4000:2000]

window, but this result gives a lower bound on the information contributed by promoter elements.

Finally, I note that, although the plateau region shows a generally very good agreement between

pairings from protein sequences and [-4000:2000] DNA sequences, the agreement is not quite

so strong as that seen for the [-2000:0] region, suggesting that blocks further upstream might be

more frequently shared between separate promoters.
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Figure 5.2. Comparison of orthology in the windows [-2000:0] and [-4000:-2000]

5.2. Relationship of promoter alignments to regulatory roles

The extent of alignments between orthologous promoters varies substantially, with many

cases having no significant alignment (above blastn’s default threshold of 30 bits, which

corresponds to a 15-base exact alignment), but others having several large sections of aligning

sequence, in some cases covering over 50% of the 5kb region. The set of 2442 alignments

include 1312 individual alignment blocks of 100 bases or more. Across this set, there is an

average 88% nucleotide identity, with 414 blocks over 90% identity and 81 over 95% identity.
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These are extremely well conserved pieces of sequence.

To investigate the significance of this variation, I made use of Gene Ontology (GO) terms

[The Gene Ontology Consortium 2000], which are applied to the majority of Ensembl gene

predictions on the basis of annotations by the GOA project [Camon et al. 2003]. Dividing

promoters into groups with high (200 bases or more) and low total numbers of aligning bases,

I counted GO terms which were overrepresented in the annotation of high-scoring sequences

(tables 5.2 and 5.3). This approach is closely related to the comparison of found and unfound

promoters in chapter 3. Some clear correlations can be observed in these tables: at the top

of the high-alignment list, and overrepresented by factors of around 2, are genes involved in

transcription and developmental processes. At the other extreme, genes taking part in the cell’s

basic metabolic activities are found predominantly in the short-aligning set. Genes annotated

with the GO biological process ontology term for ‘cell cycle’ are also found predominantly in

this set.

Focusing on genes annotated with the process term “transcription, DNA dependent”

(figure 5.3) it can be seen that there is still a wide variation in number of aligning bases, but the

proportions with larger amounts are consistently higher than that for the gene set as a whole. In

particular, 8.0% of these promoters have 1000 bases or more of aligning sequence, compared to

2.4% for the set as a whole.

An more detailed way to view the variation is to look at the parts of the sequence which

are actually aligning. A compact representation of this for the “transcription, DNA dependent”

genes appears in figure 5.4, with each line of the figure representing one of the 250 upstream

regions which matched the this term, and the red blocks indicating regions which show strong

similarity to the orthologous mouse sequence. This figure also clearly shows that many genes

have multiple aligning blocks, sometimes spaced quite widely apart in the 5kb region. For

the cases where a moderate amount of sequence is aligning, this is generally, but not always,

concentrated close to the transcription start site, fitting in with the view that promoter elements
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GO term name Freq. (short) Freq. (long) Diff.

transcription, DNA-dependent 0.088 0.173 0.085

transcription 0.088 0.173 0.085

transcription regulator 0.069 0.142 0.073

developmental processes 0.059 0.127 0.067

embryogenesis and morphogenesis 0.044 0.105 0.060

DNA binding 0.080 0.137 0.057

nucleobase, nucleoside, nucleotide and nucleic acid metabolism 0.145 0.195 0.049

histogenesis and organogenesis 0.037 0.086 0.048

cell communication 0.218 0.258 0.039

ligand binding or carrier 0.366 0.404 0.038

nucleic acid binding 0.150 0.188 0.038

ectoderm development 0.017 0.054 0.036

cellular_component 0.558 0.590 0.031

biological_process 0.638 0.663 0.025

transcription factor 0.021 0.045 0.024

cell 0.505 0.528 0.023

Gene_Ontology 0.741 0.763 0.022

molecular_function 0.662 0.683 0.020

receptor 0.040 0.061 0.020

transcription regulation 0.022 0.042 0.019

integral membrane protein 0.063 0.079 0.016

protein kinase 0.036 0.052 0.015

defense response 0.013 0.028 0.015

mesoderm development 0.017 0.032 0.015

membrane 0.180 0.195 0.014

cation channel 0.009 0.023 0.014

metal ion transport 0.017 0.032 0.014

chromosome organization and biogenesis (sensu Eukarya) 0.004 0.018 0.013

transcription, from Pol II promoter 0.023 0.037 0.013

voltage-gated ion channel 0.005 0.018 0.013

response to biotic stimulus 0.026 0.039 0.012

DNA packaging 0.004 0.017 0.012

ion channel 0.013 0.025 0.012

protein modification 0.055 0.068 0.012

nuclear organization and biogenesis 0.006 0.018 0.012

Table 5.2. GO terms which are overrepresented in the long-aligning promoter set.
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GO term name Freq. (short) Freq. (long) Diff.

enzyme 0.267 0.209 -0.057

cytoplasm 0.153 0.105 -0.047

biosynthesis 0.064 0.028 -0.035

cell cycle 0.055 0.027 -0.028

oxidoreductase 0.033 0.006 -0.026

hydrolase 0.109 0.085 -0.024

catabolism 0.055 0.034 -0.021
nucleus 0.037 0.018 -0.019

transporter 0.089 0.071 -0.017

RNA metabolism 0.025 0.008 -0.017

mitotic cell cycle 0.027 0.011 -0.015

nucleotide binding 0.107 0.091 -0.015

purine nucleotide binding 0.107 0.091 -0.015

protein transport 0.041 0.027 -0.014

DNA replication and chromosome cycle 0.015 0.001 -0.013

macromolecule catabolism 0.038 0.025 -0.013

amino acid and derivative metabolism 0.017 0.005 -0.012

intracellular 0.432 0.420 -0.012

G-protein coupled receptor protein signaling pathway 0.022 0.010 -0.012

RNA binding 0.018 0.006 -0.012

S phase of mitotic cell cycle 0.013 0.001 -0.011

monovalent inorganic cation transporter 0.013 0.001 -0.011

hydrolase, acting on acid anhydrides 0.045 0.034 -0.011

hydrolase, acting on acid anhydrides, in phosphorus-containing anhydrides 0.045 0.034 -0.011

protein degradation 0.036 0.025 -0.011

cell fraction 0.052 0.040 -0.011

RNA processing 0.017 0.006 -0.011

protein binding 0.059 0.049 -0.010

macromolecule biosynthesis 0.025 0.015 -0.010

inner membrane 0.015 0.005 -0.010

ion transporter 0.019 0.010 -0.009

amino acid metabolism 0.011 0.001 -0.009

RNA splicing 0.011 0.001 -0.009

lipid metabolism 0.026 0.017 -0.009

cation transporter 0.017 0.008 -0.009

Table 5.3. GO terms which are overrepresented in the short-aligning promoter set.
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Figure 5.3. Histograms of sequences binned by number of bases of promoter sequence included in blastn
alignments to the orthologous promoter.

are close to the transcription start site. It is possible that some exceptions to this rule reflect

alternative promoters.

Dot plots provide a detailed view of the similarities between two sequences.

A number of mouse-human pairs were examined in this way, using the dotter tool

[Sonnhammer and Durbin, 1995]. Representative examples from the top, middle, and bottom of

figure 5.4 appear in figures 5.5, 5.6, and 5.7 respectively. In all cases, the 5kb region of human

sequence is represented on the horizontal axis, while 6kb of orthologous mouse sequence is

shown on the vertical axis, and dark dots indicate sequence similarity. The most interesting of

these plots is figure 5.7, which shows that similarity does, indeed, continue right across the 5kb

upstream region. The line of dark points does not quite follow a perfect diagonal, indicating that

there have been some minor insertion or deletion events. However, there is no evidence of either

major rearrangement or local inversions.

Of course, “transcription, DNA dependent” is a rather broad category (including over 10%

of the gene set considered here). The long-aligning subset is dominated by transcription factors,

with four homeobox genes in the top ten. At the other extreme, the group of promoters with no
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Figure 5.4. Aligned regions from 250 transcription-associated genes, sorted by number of aligning bases.
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Figure 5.5. Dot plot between human and mouse upstream regions with low similarity.
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Figure 5.6. Dot plot between human and mouse upstream regions with moderate similarity.
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Figure 5.7. Dot plot between human and mouse upstream regions with strong similarity.
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detectable alignment at all includes subunits of polII RNA polymerase.

5.3. Discussion of promoter conservation

I this chapter, I have shown that 40% of human promoter sequences have an equivalent

with at least one strongly conserved block in the mouse genome which can be detected and

distinguished from background noise using the common blastn method. Once low-complexity

sequences are masked, there are very few cases where a comparably strong match is observed to

a sequence other than the promoter of the orthologous gene. I believe that promoter sequences

evolve in a manner which is closely linked to the genes they control, and do not see evidence

to suggest that a widespread exchange of promoters between genes has occurred, at least in

the timescale of the divergence between human and mouse. However, between more distantly

related genes, as identified by the TRIBE-MCL clustering, there is little or no identifiable

promoter similarity. This suggests that gene duplication (presumably followed by a change in

either function or expression pattern of one copy) is likely to be accompanied by fairly radical

changes in the promoters. This is interesting but not entirely surprising, since, following

a gene duplication, if both copies are to remain active, one must rapidly change to fill some

alternative role in the organism, otherwise there is unlikely to be any selection pressure against an

accumulation of mutations in one of the copies, eventually leaving a pseudogene. There do not

appear to be any large contiguous conserved elements – for example, very complex regulatory

modules – which appear in multiple promoters, since these would appear as non-orthologous

pairings in this analysis. This is not, of course, inconsistent with the existence of short conserved

elements (such as individual transcription factor binding sites, or perhaps even small modules

consisting of two or three such sites).

Given the fall-off of similarity when looking further from the transcription start site, I am

confident that the bulk of the alignments produced by this method reflect bona fide functional

sequence, rather than background synteny. The observed correlation between alignment length
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and gene function adds further support to this view.

As previously mentioned, there is currently no purely computational method to delineate

promoter regions (as opposed to transcription start sites) – while PromoterInspector and the

EponineHomol models from chapter 4 do predict regions rather than specific TSS points,

given the methods used for training these models there is no reason to think that the predicted

region accurately matches the region of sequence which has biological regulatory significance.

Similarly, experimental delineation of full promoter regions cannot yet be performed in a

high-throughput way across the genome. However, the extremely high level of nucleotide

identity in many of the blocks detected by this approach, combined with the increased number

of conserved blocks closely upstream of the transcription start site, gives a strong indication that

these blocks represent functionally important elements – presumably promoter signals. This

seems to be further reinforced by the results from chapter 4 which show that a promoter signal

can be learned from a random selection of blocks of mouse-human similarity. This means that

these high-similarity blocks would seem to be good initial targets for further computational

work to discover individual regulatory motifs and modules and learning more about regulatory

mechanisms.

The utility of having an approach to highlight promoter regions is not confined to

computational methods. One currently promising experimental method of investigating

DNA-protein interactions in a relatively high-throughput manner is ChIP-on-chip: chromatin

immunoprecipitation followed by hybridization with probes on a DNA microarray

[Ren et al. 2000]. While it is possible to place a large number of probes on a microarray, reasons

of cost and convenience mean it is still important to be selective. From figure 5.4, it is clear that

even among the promoters for one family of genes, some only have large conserved blocks close

to the transcription start site, while others show conservation right across the 5kb region studies

here. In fact, re-aligning longer sequences for a few individual promoters suggested that some of

these might extend 8kb or more upstream of the TSS. Clearly, it is worth including probes much

further upstream for these genes.
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And additional interesting observation from this study is that there is a fairly clear

correlation between the length of aligning sequence in a promoter region and the function of

the gene regulated by that promoter. I can envisage two possible causes for this. Firstly, in

order to fulfill their roles, some genes require many more regulatory “inputs” than others – in a

graphical view of a regulatory network [Pilpel et al. 2001], some genes will appear as hubs with

many connections, while others will appear as leaf nodes. Large numbers of inputs seem likely

to correspond with large regions of functional promoter sequence, containing many different

transcription factor binding sites. Secondly, even within the functional regions, some promoters

may be more labile than others – radical changes can occur without compromising the basic

viability of the organism. Both these factors may be significant. I note that cell-cycle genes tend

to have short-aligning promoters, yet they represent a well-conserved biological process, where

correct regulation is important for survival. However, the regulation of these genes may be quite

simple: they need only be expressed in response to very specific signals at one particular point

in the cell cycle. In budding yeast, a set of nine cell-cycle regulators have been identified, and

most cell-cycle-regulated genes (including these regulators themselves) only respond to a small

subset of these regulators [Simon et al. 2001]. If the situation in vertebrates is similar, then is

seems likely that a relatively compact promoter, with a small number of conserved transcription

factor binding sites, could be sufficient to express the required regulatory logic. In conclusion, I

suggest that promoter size gives a good indication of a gene’s “regulatory complexity”, and gives

some prediction of the gene’s function.

Overall, I believe comparative genomics presents interesting opportunities for research

into promoters and regulatory regions, especially in terms of defining the boundaries of

functional regions so that they can be studied in more detail with other methods, such as the

learning techniques from previous chapters. In the future, it will be interesting to consider more

sensitive methods for aligning promoters. However, simply increasing the sensitivity is not a

panacea, since it increases the risk of detecting similarities between sequences where there is

not actually any functional reason for conservation. There has been some interest in methods
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to distinguish between alignments covering regulatory regions and alignments between regions

of change conservation. In [Elnitski et al. 2003], a number of classification methods are used

to distinguish between a training set of known regulatory elements and some conserved neutral

sites (actually ancient transposons). Some of these methods are effective, but it seems likely

that they will only be applicable to relatively long aligned regions – not the short, very strongly

conserved blocks discovered by the blastn alignments here. The biggest benefits from this

approach may be for identifying regulatory possible regulatory regions – such as enhancer

elements – far from known genes and transcription start sites, rather than in the analysis is

proximal promoters.

Another possible direction of research is to investigate promoter-specific sequence

comparison methods, which might give superior performance to generic alignment techniques:

for instance, conventional aligners would not give good a good score for a pair of sequences

where localized rearrangements or small inversions had taken place, yet these two sequences

might actually include the same repertoire of transcription factory binding sites, and have

similar effectiveness and specificity as promoters. In defense of “simple” alignment algorithms,

however, inspection of the dot plots accompanying this chapter, and several similar plots not

shown here, did not show strong evidence for rearrangements or inversions. Finally, it may

be that mouse-human comparisons do not represent the optimal evolutionary “distance” for

detecting promoter regions. As more genomes are completed, other species may take over as

targets for regulatory comparative genomics, or perhaps comparisons of more than two species

will be used to improve the confidence of the results. Data from the ENCODE project, which

will select various regions from the genome then sequence their equivalents in a large number of

different vertebrates [ENCODE, http://www.genome.gov/Pages/Research/ENCODE/], should

provide a good testbed to determine the most informative pairs of genomes to compare, and the

added value of considering more than two species at once.
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In this project, I developed a number of methods which give information about the location

of promoter regions and transcription start sites in mammalian genomes. The EponineTSS

method from chapter 3, based on a novel machine learning approach, offers state-of-the-art

performance in predicting promoters, including information about the transcription start site, and

is now used as part of the Ensembl genome annotation pipeline. Making use of a rather different

source of information, in chapter 5 I have shown that simple methods of comparative genomics

between the human and mouse genomes can reveal highly conserved blocks of sequence –

including blocks of 100 bases or more with 95% nucleotide identity – which seem likely to

correspond to functional promoter regions. These two methods are strongly complementary:

EponineTSS can be used to predict transcription start sites, which give an indication of the 3’end

of the promoter, and then information from comparative genomics can be used in conjunction

with this to indicate how far upstream the functional region is likely to stretch. This combined

approach meets my objective of providing promoter detection methods which can be used to

support more detailed future analyses of promoter signals.

A third strand of this project, covered in chapter 4, was also related to human-mouse

comparative genomics but took a very different approach, considering the complete set of

non-coding similarities between the two species. Interestingly, but not entirely surprisingly, this

also led me to a promoter signal, and provided a second predictive method which could be used

for scanning genomes, albeit with somewhat lower accuracy than EponineTSS, and no direct

predictions of the transcription start sites. While the advantages of EponineTSS mean that the

models trained from homologies will probably not be useful in themselves as predictive tools,

the principle that it is possible to learn such a predictor from raw comparative data is intriguing,

and might prove helpful in “bootstrapping” genomic knowledge if sequencing is carried out in

134
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clades of organisms which don’t have a prior tradition of genetic or molecular biology research,

and consequently no body of knowledge to draw on when annotating their genomes. In addition,

I still believe that with improvements – perhaps including automatic choice of windows rather

than using a fixed window of arbitrary size – the sensitivity of this method might be increased

sufficiently that, once all the promoter regions have been stripped out of the training set, it might

identify other types of functional non-coding region in the genome.

When evaluating the EponineTSS method, I found that it detected primarily CpG-enriched

promoters. Moreover, the set of promoters detected overlapped strongly with the set detected by

another computational method,PromoterInspector. This could be explained away by the fact that

both EponineTSS and PromoterInspector were trained on promoters from the EPD database, and

there might be some bias in the entries of this database. However, it was subsequently found that

the EponineHomol 1 and 2 predictors, which were not trained using any information from EPD,

also preferentially detected the same subset of promoters. This suggests that there is one group

of promoters which are based around a common set of core signals (captured in the EponineTSS

model). There also appear to be other types of promoter which do not follow this pattern.

Attempts were made with both the EAS and EWS model families to train models on a dataset

which had these core promoter sequences removed, in the hope that this might reveal a second

type of core promoter. Neither of these attempts produced a model which could be usefully

applied to detecting a distinct set of promoters, which suggests that there may not be an single

alternative core promoter, but that each of these atypical promoters is different. As discussed in

section 3.5.2, the distribution of the core promoters is not entirely uniform: metabolic enzymes,

protein kinases, and transcription factors are all likely to have common core promoters, while the

majority of receptors and immune system components are apparently transcribed from atypical

promoters. This distinction illustrates one more level of complexity in the regulatory story.

To support the sequence analysis requirements of this project, I investigated the

recently developed field of Sparse Bayesian Learning algorithms, and developed a practical

implementation of a Sparse Bayesian binary classification system. This can be applied either as a
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one-step method similar to the previously described Relevance Vector Machine [Tipping 2000],

or using a novel incremental approach which offers a pragmatic method of sparse learning from

very large sets of basis functions and even, given suitably correlated basis function, a possibly

infinite family of basis functions. This library code proved to be a good basis for the learning

applications described in chapters 3 and 4, but it is a general-purpose implementation and has

been applied to other tasks, including analysis of microarray gene expression data. In addition,

the Eponine Anchored Sequence system from chapter 3 has been applied as-is to other problems

such as prediction of transcription termination sites [A. Ramadass, personal communication],

and I hope that it will find many further applications in the future.

Finally, during the course of this project I had many opportunities to work on the

infrastructure of genomics and sequence analysis. Throughout the time, I was involved in the

development of the BioJava toolkit (section 1.5.1), which provided a foundation for all the

applications and experimental programs which I developed here. I was also involved in the early

development of the DASprotocol [Dowell et al. 2001], and wrote a BioJava-based server for this

protocol [Down and Pocock 2001]. I used DAS on a number of occasions to view results from

my analysis methods in a genomic context. For some parts of this work, I made direct use of

Ensembl’s relational databases, either by direct SQL queries or using the bj-ensembl library.

At the conclusion this project, I remain interested in the mechanisms of transcriptional

regulation, and how regulatory sequences can be decoded in silico. Understanding transcriptional

regulation would be relatively easy if we could firstly accurately determine the structure of

every protein produced by the genome, and then predict interactions between those proteins

and the nucleic acids. Realistically, though, the current state of the art in structure prediction

still leaves much to be desired [Moult et al. 2001], and while Richard Lavery’s group have

had some successes in physical modeling of DNA-protein complexes (see, for example,

[Harvey et al 2003]), their methods currently require a high-resolution structure of the full

complex before predictions of binding specificities can be made. Therefore, to further our

understanding of promoters and gene regulation, it seems important to continue direct study of
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the sequences themselves, and also take advantage of any experimental techniques which can

give better information about gene expression patterns and the factors which influence them.

One such experimental approach is direct study of which proteins bind to which regions of

DNA sequence. Ideally, the results from high throughput experiments of this kind could give

the same kind of information as simulation of DNA-protein interactions, and have the advantage

that they can be performed with real chromatin, rather than the idealized situation of a single

protein interacting with a “naked” DNA helix. The results of my comparative promoter analysis

are currently being considered in planning a new experimental study, using a combination of

chromatin immunoprecipitation and microarray techniques [Ren et al. 2000] to localize the in

vivo binding locations of proteins to DNA. A comparison approach based on that described here

will be used as an indicator of how much sequence upstream of each gene under consideration

should be tiled onto the array. Since each probe on the array requires an individual PCR reaction

with custom primers [D. Vetrie, personal communication], optimizing the choice of probes could

help to maximize the number of genes which can be studied for a given budget.

Returning to computational methods, this project has introduced some powerful tools

for classifying sequence data. Both the EWS and EAS models are flexible sequence analysis

techniques which have the advantage that the motifs learned by the model are immediately

visible for user examination. It may prove possible to apply these, or similar, methods to

classification of promoters based on expression patterns, thus learning the signals which

confer those particular patterns. An obvious extension for this purpose is to use a multi-class

variant of the training algorithm, so that a number of different patterns can be considered in a

single training run. A more radical variant of this approach, and one which I am interested in

developing, is to extend this approach to unsupervised machine learning, where patterns are

discovered in previously unlabeled data. In this case, the aim is to learn both the “labeling”

(which groups of genes share either complete or – more likely – partial expression patterns)

and the sequence-based signals which regulate this. This is a demanding problem, with no

off-the-shelf solution. However, if promoter sequences are treated as a “mixture” of sequence
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motifs or regulatory modules, identifying the set of modules present in a large set of promoters

shows some similarities to the well-known problem of Independent Component Analysis (see,

for example, [Miskin 2000]). I believe it will be possible to adapt an approach analogous to ICA

to conceptually de-mix promoter regions.
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