
1 
 

 

 

 

The role of regulatory variation in sculpting gene 
expression across human populations and cell types 

 

 

Antigone Dimas 

 

Darwin College 

University of Cambridge 

August 2009 

 

 

 

This dissertation is submitted for the degree of Doctor of Philosophy 

 

                                 



2 
 

DECLARATION 

This  dissertation  describes  my  work  undertaken  in  the  group  of  Dr  Manolis 
Dermitzakis, at  the Wellcome Trust Sanger  Institute,  in  fulfilment of  the requirements 
for  the degree of Doctor of Philosophy, at Darwin College, University of Cambridge. 
This thesis is the result of my own work and includes nothing which is the outcome of 
work done in collaboration, except where indicated in the text. The work described here 
has not been  submitted  for a degree, diploma or any other qualification at any other 
university or institution. I confirm that this dissertation does not exceed the page limit 
specified by the Biology Degree Committee. 

 

Antigone Dimas 
Cambridge, August 2009 
 



3 
 

ABSTRACT 

Genetic variants  that  influence  expression  levels of genes have a key  role  in  shaping 

phenotypes.  From  cell  type definition during development,  to  sculpting  higher  level 

traits,  within  and  across  populations,  in  health  and  disease,  the  importance  of 

regulatory variation is emerging rapidly. The goal of this thesis was to identify genetic 

variants that shape gene expression  levels (expression quantitative trait  loci or eQTLs) 

across different human populations and cell types. Three general aspects of regulatory 

variation were  addressed:  a)  impact  of  interactions  between  regulatory  (eQTLs)  and 

protein‐coding variants  (non‐synonymous SNPs or nsSNPs) on gene expression  in cis 

and  trans,  b)  fine‐scale  architecture  of  the  cis  regulatory  landscape,  c)  cell  type 

specificity of eQTLs. To do this, I performed association of transcript levels (as a proxy 

to gene expression) with SNP genotypes and  identified eQTLs using two resources: a) 

the HapMap Project  for which expression was quantified  in  lymphoblastoid cell  lines 

(LCLs)  of  geographically  diverse  populations  and  b)  the GenCord  Project  for which 

expression was  quantified  in  fibroblasts,  LCLs  and  T‐cells  of  a  single  population  of 

European descent. 

HapMap was used  to explore a specific model of epistasis between eQTLs and 

nsSNPs, in which the functional impact of nsSNPs is modulated by regulatory variants 

nearby.  From  a  total  of  8,233  nsSNPs  interrogated,  1,502  (18.2%) were  found  to  be 

differentially expressed  (DE), with  important  implications  for protein diversity  in  the 

cell. Modification in cis also had an impact on gene expression in trans with a subset of 

DE nsSNPs being associated with expression variation of other genes in the genome. 

To explore the architecture of the cis regulatory landscape and given the need to 

identify functional variants, I designed a framework to dissect and fine‐map regulatory 
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variation. Using HapMap, and upon correction  for  the correlated structure of variants 

in the genome,  it was found that over 19% of genes have multiple cis eQTLs, but also 

that  single  eQTLs  can  regulate  the  expression  of  multiple  genes.  The 

multidimensionality and complex architecture of cis regulation was further highlighted 

by showing that  interactions between genetic variants  in cis  influence gene expression 

levels. 

Cell type specificity of regulatory variation was addressed using GenCord and it 

was  found  that over 83% of  independent cis eQTLs were unique  to a single cell  type. 

Importantly,  LCL  eQTLs  replicated  well  across  studies  with  over  80%  of  HapMap 

eQTLs  replicating  in GenCord,  an  observation  that  demonstrates  the  usefulness  and 

stability of  large collections of LCLs. GenCord cell type‐specific cis eQTLs were found 

to  span  a  wide  range  of  distances  from  the  transcription  start  site  (TSS)  of  genes 

mirroring  the  distribution  of  known  enhancer  elements.  Furthermore,  a  correlation 

between number of cis eQTLs identified for a given gene and number of transcripts was 

detected. 

Given the role of gene expression in shaping phenotypic variation in health and 

disease, elucidating the nature of regulatory variation is crucial. Especially in the case of 

disease,  integrating  regulatory  information with  the  results  of  genome‐wide  disease 

association  studies  is  a  promising way  forward  and will  help  unravel mechanisms 

leading to disease pathogenesis.  
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1 INTRODUCTION      

In this chapter I will:  

 Define gene expression as the transfer of information from DNA to 

mRNA and then into protein.  

 Explain that gene expression is a complex, quantitative trait with 

naturally occurring variation in its patterns and levels. These patterns 

have a key role in defining and maintaining cell types, and in shaping 

higher level phenotypes in the normal and disease ranges.  

 Give a brief overview of the process of gene expression.  

 Outline that this process can be regulated at many levels, the most 

important of which is transcription initiation which involves the action 

of cis and trans regulatory elements.  

 Argue that a component of variation in expression levels is heritable 

and arises as a consequence of genetic variation in cis and trans -acting 

regulatory elements. 

 Outline strategies employed to uncover genetic variants responsible 

for expression variation.  

 State the aims of this thesis.  

1.1 WHAT IS GENE EXPRESSION? 

The process by which a gene gives rise to a functional product is called gene expression 

(Lewin 2008). Gene expression enables the phenotypic manifestation of genes, results in 

the production of a protein or a functional RNA molecule (e.g. rRNA, tRNA, 

microRNA) and is necessary for cells to operate.  
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Gene expression is a complex trait shaped by genetic (Monks, Leonardson et al. 

2004; Morley, Molony et al. 2004; Cheung, Spielman et al. 2005; Stranger, Forrest et al. 

2007; Stranger, Nica et al. 2007), epigenetic (Eckhardt, Lewin et al. 2006; Petronis 2006), 

and environmental (Gibson 2008; Idaghdour, Storey et al. 2008) factors. Interactions 

between genetic factors (Brem, Storey et al. 2005; Dimas, Stranger et al. 2008), as well as 

those between genetic factors and the environment (Gibson 2008) also affect the 

expression levels of genes. As a result, this phenotype exhibits continuous variation 

among individuals and has the properties of a quantitative trait (Dermitzakis 2008).  

In this thesis I address protein-encoding genes whose expression can be divided in 

two stages: transfer of information from DNA to RNA (transcription) and transfer of 

information from RNA to protein (translation). A number of mechanisms control these 

processes, including chromatin condensation, alternative splicing, DNA methylation, 

transcription initiation, mRNA stability, translational control, post-translational control 

and protein degradation. In eukaryotic cells the most common point of control is 

transcription initiation (Stranger and Dermitzakis 2005). In the following sections I 

discuss the role of gene expression in shaping phenotypes, I give a brief overview of 

this biological process and outline how it is controlled. 

1.2 GENE EXPRESSION DEFINES PHENOTYPES 

The idea that gene expression levels play a role in shaping phenotypes is not new. In 

her doctoral thesis, Marie-Claire King revolutionized evolutionary biology by proving, 

through the comparative study of proteins, that human and chimpanzee genomes are 

99% identical. In their landmark paper, King and Wilson (1975, pg 107) stated that 

human and chimpanzee macromolecules “are so alike that regulatory mutations may 

account for the biological differences between these species”. In the following sections I 

discuss that naturally occurring variation in expression levels is widespread, that 
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expression patterns define and maintain cell types and sculpt higher level phenotypes 

in the natural and disease ranges.   

1.2.1 Naturally occurring variation in gene expression levels 

Developmental biology was one of the first fields that recognised the importance of 

expression patterns in shaping phenotypes. Spatially and temporally regulated 

expression is critical for the complex developmental programmes that result in the 

highly specialised cell types of higher eukaryotes. Following development and 

differentiation, the control and maintenance of appropriate levels and patterns of gene 

expression are vital cellular processes. Although expression of genes in the right 

quantity range, at the right time and in the right place is largely responsible for normal 

functioning of cells, biological systems can also display remarkable robustness. In most 

species studied (including yeast, fruit flies, mice, and humans) ample tolerance of 

naturally occurring variation in expression levels has been detected (Hartman, Garvik 

et al. 2001; Jin, Riley et al. 2001; Brem, Yvert et al. 2002; Schadt, Monks et al. 2003; 

Stranger and Dermitzakis 2005; Stranger, Forrest et al. 2005; Boone, Bussey et al. 2007; 

Gibson 2008). In a cross between two strains of yeast for example, profound differences 

in gene expression were found, with nearly half (2,698 out of 6,215) of all the genes in 

the genome being differentially expressed (DE) (Brem, Yvert et al. 2002). A study 

exploring human natural gene expression variation in 16 individuals of European and 

African descent found that 83% and 17% of genes were DE among individuals and 

populations respectively (Storey, Madeoy et al. 2007). In another study, three 

populations of apparently healthy Moroccan Amazigh (Berbers) were found to differ 

for over a third of their leukocyte transcriptome (Idaghdour, Storey et al. 2008). Taken 

together these results demonstrate that naturally occurring variation in expression 

levels is widespread within species. 
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1.2.2 Gene expression patterns define cell type specificity 

Although there is space for expression variation, temporal and spatial regulation of 

gene expression patterns is critical for defining cell types during development in higher 

eukaryotes. Furthermore gene expression patterns have a role in the maintenance of 

cellular and tissue function following differentiation. Some examples are discussed 

below.  

1.2.2.1 Gene expression defines cell type during development 

Mammalian skeletal muscles are highly distinctive cells whose differentiation is 

triggered by expression of specific myogenic proteins including MyoD, Myf5, myogenin 

and Mrf4. The potency of these proteins was highlighted in a study where their 

expression in skin fibroblasts triggered muscle differentiation (Alberts 2008). Eye 

development also illustrates the developmental role of gene expression. In Drosophila, 

mice and humans this process involves highly regulated expression patterns of the gene 

Ey (Drosophila) and Pax-6 (vertebrates). Ey expression triggers the formation of a specific 

cell type, but also of an entire organ, composed of different cell types and arranged in 

three dimensional space (Alberts 2008). 

The critical role of expression patterns even for very closely related genes was 

demonstrated in an experiment where the transcription factor (TF) gene SOX10 was 

deleted in mouse embryos and replaced with SOX8, a closely related gene that has 

overlapping expression patterns (Kellerer, Schreiner et al. 2006). SOX10 has a role in 

neural crest development and is defective in the human Shah-Waardenburg syndrome. 

It is essentially expressed in neural crest derivatives that form the peripheral nervous 

system and in the adult central nervous system (Bondurand, Kobetz et al. 1998). Both 

genes perform very similar functions and regulate processes such as enteric nervous 

system development and oligodendrocyte differentiation. Despite their similarities, 
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SOX8 phenotypic rescue of SOX10 deficiency was variable for different tissues: 

development of glial cells and neurons in the sensory and sympathetic parts of the 

peripheral nervous system was almost normal, but melanocyte development was as 

defective as in SOX10-deficient mice. Furthermore rescuing of defects in enteric nervous 

system development and oligodendrocyte differentiation was limited. These results 

highlight the importance of tissue-specific gene expression and demonstrate that the 

extent of functional equivalence depends on cell type (Kellerer, Schreiner et al. 2006). 

1.2.2.2 Cell type-specific patterns of gene expression in differentiated cells 

Once cells have undergone differentiation, expression profiles remain critical for 

maintenance of cellular function. In one of the first studies to explore genome-wide 

expression signatures, over 1,000 expressed sequence tags (ESTs) were sampled in 30 

tissues (Adams, Kerlavage et al. 1995). Substantial tissue specificity of gene expression 

was detected with only eight genes sharing ESTs across all tissues, and 227 genes being 

represented in at least 20 tissues. A subsequent study interrogated transcription levels 

in 46 human and 45 mouse tissues, organs, and cell lines spanning a broad range of 

biological conditions (Su, Cooke et al. 2002). Only 6% of the genes interrogated were 

found to be ubiquitously expressed and hierarchical clustering identified groups of 

genes with specific expression patterns in nearly all tissues examined. Another study 

explored expression patterns of human orthologue genes from chromosome 21 in mice 

using RNA in situ hybridization and reverse transcriptase polymerase chain reaction 

(RT-PCR) (Reymond, Marigo et al. 2002). Patterned expression was observed in several 

tissues including those affected in trisomy 21 phenotypes (central nervous system, 

heart, gastrointestinal tract, and limbs). Taken together these examples underline that 

gene expression is a phenotype displaying extensive cell type and tissue specificity.  
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1.2.3 Gene expression shapes normal range phenotypes 

Variation in expression levels is to a large extent responsible for shaping higher level 

phenotypes in the normal range. In Drosophila expression variation in the 

developmental gene Svb underlies trichome pattern differences between species 

(McGregor, Orgogozo et al. 2007). Expression patterns of the Hox gene Ubx outline 

trichomes on the posterior femur of the second leg (Stern 1998), and male-specific wing 

pigmentation spots in D. biarmipes are a consequence of varying expression levels of the 

yellow pigmentation gene y (Figure 1 a) (Gompel, Prud'homme et al. 2005). In Geospiza 

(Darwin’s finches) diverse beak shape and morphology is in part due to expression 

differences of the gene Bmp4 (Abzhanov, Protas et al. 2004). Expression patterns in the 

mesenchyme of upper beaks correlates with beak morphology (Figure 1 b) and when 

misexpressed in chicken embryos, Bmp4 causes morphological transformations that 

parallel the beak morphology of the large ground finch G. magnirostris. 

The predominant differences in branching patterns in domesticated maize (Zea 

mays mays) and its wild ancestors, the teosintes (Z. mays parviglumis and mexicana) arise 

in part from expression differences of the gene tb1 (Clark, Wagler et al. 2006). In 

Gasterosteus aculeatus (sticklebacks), expression variation of the developmental gene 

Pitx1 in pelvic and caudal fin precursors results in pelvic reduction and major skeletal 

changes (Shapiro, Marks et al. 2004). Modified gene expression levels of the prairie vole 

gene V1aR give rise to differences in receptor distribution patterns in the brain. This is 

thought to affect a range of socio-behavioural traits, including social recognition and 

investigation, social odour tasks and parental care (Hammock and Young 2005). 
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Figure 1. Variation in gene expression levels and patterns underlies phenotypic differences. 

a) Like butterflies, different species of Drosophila decorate their wings with a great diversity of 

spots and patterns. Expression of a single gene produces pigmentation patterns and acts as a 

molecular switch that controls where pigmentation is deployed. This finding explains how 

expression can be controlled to produce the seemingly endless array of patterns, decoration and 

body architecture found in animals. Photo by N Gompel and B Prud’homme (from 

http://www.news.wisc.edu/newsphotos/fruitfly.html). b) Expression differences of Bmp4 give 

rise to beak morphology differences in Geospiza. G. difficilis is the most basal species of this 

genus, and the rest of the species form two groups: ground and cactus finches, with distinct 

beak morphologies. At stage 26 (middle panel) Bmp4 is strongly expressed in the mesenchyme 

of the upper beak of G. magnirostris and at lower levels in G. fortis and G. conirostris. No Bmp4 

was detected in the mesenchyme of G. difficilis, G. fuliginosa, and G. scandens. At stage 29 (right 

panel) Bmp4 continues to be expressed at high levels in the distal beak mesenchyme of G. 

magnirostris. Broad domains of Bmp4 expression are detectable in G. fuliginosa and G. fortis. A 

small domain of Bmp4 expression is also found in the distal mesenchyme of G. conirostris, and 

weaker expression is seen in G. scandens and G. fortis (red arrows). Adapted from (Abzhanov, 

Protas et al. 2004).  

 

http://www.news.wisc.edu/newsphotos/fruitfly.html


22 

 

In humans the ability to digest lactose, the main carbohydrate in milk, declines 

rapidly after weaning. This is due to decreasing levels of lactase-phlorizin hydrolase, 

which metabolises lactose and is encoded by the gene LCT. Adult expression of LCT 

results in the ability to digest milk and other dairy products in adulthood (lactase 

persistence or lactose tolerance) and differences in LCT levels lead to the differences in 

lactase persistence observed in a number of populations across the world (Tishkoff, 

Reed et al. 2007) (Figure 2). Overall these examples highlight the role of gene expression 

in shaping natural range phenotypes.  

 

 
Figure 2. Lactase persistence differences across human populations are due to differences in 

adult expression of lactase. a) The degree of lactase persistence is represented by a pie chart for 

each geographic region (LP: lactase persistence, LIP: lactase intermediate persistence, LNP: 

lactase non-persistence). b) Proportion of compound genotypes of variants that influence levels 

of LCT (G/C-13907, T/G-13915 and C/G-14010). The pie charts are in the approximate 

geographic location of the sampled individuals. Adapted from (Tishkoff, Reed et al. 2007). 
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1.2.4 Gene expression can shape disease phenotypes 

Variation in gene expression can have a detrimental impact on cells and tissues if 

expression profiles are perturbed beyond the range of tolerance (Hartman, Garvik et al. 

2001; Stranger and Dermitzakis 2006; Nica and Dermitzakis 2008; Cookson, Liang et al. 

2009). Many-fold over-expression of C-MYC can lead to Burkitt’s lymphoma (Boxer and 

Dang 2001), a reduction of APC expression is associated with a pronounced 

predisposition to hereditary colorectal cancers (Yan, Dobbie et al. 2002) and partial or 

complete loss of α-globin expression can lead to α-thalassaemia (Weatherall 1998). 

Subtle changes in gene expression can also contribute to disease phenotypes, as is the 

case for Type 1 diabetes, whose manifestation depends on the genetic background of 

individuals (Eaves, Wicker et al. 2002). Type 1 diabetes was one of the first instances 

where genetic variation driving gene expression was shown to be associated with 

disease risk (Bennett, Lucassen et al. 1995; Kennedy, German et al. 1995). The insulin-

linked polymorphic region (ILPR), mapping 5’ of the INS gene is composed of a series 

of tandemly-repeated sequences that contain high affinity binding sites for the TF Pur-1. 

Allelic variation in these sequences was shown to influence INS transcription levels and 

risk for diabetes. Table 1 (Cookson, Liang et al. 2009) summarises cases from the 

literature and public databases in which trait and disease phenotypes arise in part due 

to variation in expression levels. 

The link between human tissue-specific gene expression and pathological 

manifestations has been demonstrated in multiple studies. Lage et al. (2008) mapped 

2,000 disease genes to the tissues they affect and identified 1,500 disease-associated 

complexes. The expression patterns of complex components were analysed and disease 

genes were found to be over-expressed in the normal tissues where defects eventually 

cause pathology. For example a complex involved in XY sex reversal was found to be 

testis-specific and was down-regulated in the ovaries. Tissue specificity of expression 
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was identified for complexes with a role in Parkingson disease, cardiomyopathies and 

muscular dystrophies.  

 

 

Table 1. Trait and disease phenotypes with an identified gene expression component. 

Disease-linked associations with significant expression quantitative trait loci (QTLs) from the 

literature and public databases From (Cookson, Liang et al. 2009). 
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Tissue specificity in disease pathology has also been addressed from an 

evolutionary standpoint in a study exploring the relationship between disease genes, 

tissue specificity, and evolutionary rates (Winter, Goodstadt et al. 2004). Cell type 

specificity is known to correlate positively with gene evolution rates and ubiquitously 

expressed, slowly evolving housekeeping genes were found to be under-represented in 

human disease. Genes with a role in disease on the other hand, had secreted protein 

products and were highly expressed in tissues such as liver, kidney and lung. This 

observation is likely due to the effects of purifying selection and may assist in 

prioritization of candidate genes.  

A recent study highlighted the role of a single TF in regulating markedly different 

cell type-specific programmes (Servitja, Pignatelli et al. 2009). HNF1A controls tissue-

specific genetic programmes in pancreatic islets and the liver, and its deficiency causes a 

severe β-cell phenotype (HNF1A-deficient diabetes), but only subtle abnormalities in 

other tissues. The final phenotypic outcome of Hnf1a deficiency in mice was highly cell 

type-specific and resulted from an integrated failure of multiple direct and indirect 

functions of this gene in pancreatic islets and liver. Due to the breadth of Hnf1a-

dependent transcriptional programmes, the authors suggest that correction of defects 

causing β-cell dysfunction should not focus on restoring individual target gene activity, 

but should aim at manipulating proteins or pathways acting on the β-cell HNF1A-

dependent programme. Taken together these examples outline the multiple effects of 

gene expression patterns and the role of gene regulation in determining disease risk.  

1.3 THE MECHANISM OF GENE EXPRESSION 

In eukaryotic cells, protein-encoding genes are transcribed in the nucleus by RNA 

polymerase II. The RNA transcript produced is the messenger RNA (mRNA) which acts 

as an intermediary between the gene and the protein product. A further step, known as 
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translation, is necessary to convert the information carried by the mRNA into a protein 

(Clark 2005). In the following section I outline the process of gene expression for 

protein-encoding genes (summarised in Figure 3). 

 

intron

Transcription

mRNA processing

Transport

Translation

intron

intron

NUCLEUS

CYTOPLASM

DNA

5’ 3’
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mRNA

Ribosome

Protein
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Figure 3. The process of gene expression for protein-encoding genes. RNA is transcribed from 

a DNA template by RNA polymerase II in the nucleus to produce pre-mRNA (transcription). 

The pre-mRNA undergoes a series of processing steps including splicing, 5’ capping and 3’ 

polyadenylation (mRNA processing). Processed mRNA molecules are transferred from the 

nucleus into the cytoplasm (transport) where they engage with ribosomes and other 

components of the translational machinery that direct polypeptide synthesis (translation). 

Adapted from (Clark 2005). 
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1.3.1 Transcription 

RNA polymerase II uses nuclear DNA as a template and ribonucleoside triphosphates 

to produce pre-mRNA molecules in a 5’ to 3’direction. Chain elongation is achieved by 

the addition of ribonucleoside monophospate residues to the free hydroxyl group at the 

3’ end of the growing pre-mRNA chain (Strachan and Read 2004). This process gives 

rise to the primary transcript (or pre-mRNA), an RNA molecule complementary to the 

full sequence of the gene (exons and introns).  

1.3.2 mRNA processing 

The pre-mRNA undergoes a series of processing steps in the nucleus including splicing, 

5’ capping and 3’ polyadenylation. Splicing is mediated by the spliceosome, a large 

RNA-protein complex, which recognises sequences at exon/intron boundaries (splice 

junctions). Intronic RNA segments are removed by endonucleolytic cleavage and exonic 

segments are joined end-to-end (spliced). The end product is a shorter RNA product 

(mRNA) that contains the information encoding a protein (exons). Alternative splicing 

can bring together different combinations of exons to produce versions of the 

polypeptide product (isoforms).  

Further mRNA processing involves addition of a methylated nucleoside, 7-

methylguanosine (5’ cap) to the first 5’ nucleotide of the RNA transcript, as well as 

addition of a 3’ polyA tail. 5’ caps and 3’ polyA tails facilitate transfer of mRNA 

molecules to the cytoplasm, ensure RNA stability, and assist recognition by the 

translational machinery (Strachan and Read 2004). In some instances in somatic cells, 

mRNA molecules undergo RNA editing, which results in a coding sequence difference 

between mRNA and DNA sequence. mRNA editing of APOB gene transcripts in the 

liver for example introduces a stop codon in the mRNA transcript and gives a much 
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shorter product from the one generated by the unedited mRNA molecule in the 

intestine (Navaratnam, Bhattacharya et al. 1995; Lewin 2008). 

1.3.3 mRNA transport and translation  

Following post-transcriptional processing, mRNA molecules migrate from the nucleus 

to the cytoplasm where they engage with ribosomes and other components of the 

translational machinery that direct polypeptide synthesis (Strachan and Read 2004). The 

central part of mRNA molecules encodes the amino acid sequence whereas 5’ and 3’ 

mRNA ends are untranslated regions (UTRs) (transcribed from the first and terminal 

exons respectively) with a role in binding and stabilizing mRNA on ribosomes.  

Assembly of polypeptides from their constituent amino acids is governed by the 

triplet genetic code with successive groups of three nucleotides (codons) in the linear 

mRNA sequence encoding an individual amino acid. Decoding of mRNA is mediated 

through tRNA molecules that bear specific trinucleotide sequences (anticodons) and 

covalently bound amino acids. Recognition of the complementary codon on the mRNA 

ensures that the appropriate amino acid is inserted in the growing polypeptide chain. 

Translation products are frequently modified, usually through covalent attachment of 

hydroxyl, phosphoryl, carbohydrate and lipid groups to amino acid side chains. Upon 

modification, polypeptides may undergo cleavage to generate smaller, mature proteins 

(e.g. β-globin, plasma proteins, neuropeptides) (Strachan and Read 2004).  

1.4 REGULATION OF GENE EXPRESSION 

As discussed, gene expression is influenced by genetic, epigenetic, and environmental 

factors that give rise to expression differences between species, populations and cell 

types. Furthermore, interactions between genetic factors (Brem, Storey et al. 2005; 

Boone, Bussey et al. 2007; Dimas, Stranger et al. 2008) as well as those between genetic 
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factors and the environment (Gibson 2008) have a key role in shaping expression levels. 

Although expression regulation involves multiple levels, in eukaryotes the most 

common point of control is initiation of transcription. For the purposes of this thesis the 

products of transcription (mRNA levels) were regarded as a proxy to gene expression 

(see section 2.3). 

1.4.1 Transcriptional regulation of gene expression 

The simplest model of transcription of protein-coding genes in eukaryotes involves 

recruitment of RNA polymerase II, which recognises and binds to combinations of short 

DNA sequences in the proximity of a gene. These sequence elements, are referred to as 

cis-acting and serve as recognition signals for TFs that engage in gene expression 

regulation by guiding and activating the polymerase (Strachan and Read 2004). 

Transcription initiation is influenced by DNA sequences located further away (or on 

another chromosome) from the gene whose activity is being regulated. These sequences 

are known as trans-acting and encode proteins that influence transcription levels (e.g. 

TFs). In this thesis cis regulatory elements are defined as those mapping within a 2 Mb 

window centred on the probe midpoint or the transcription start site (TSS) of a gene 

(see section 2.4) and trans-acting regulatory elements are those mapping outside this 2 

Mb window or on another chromosome. 

Multiple cis and trans elements act in conjunction with each other to control 

transcription initiation and mRNA levels for a given gene (Stranger, Forrest et al. 2005; 

Stranger, Nica et al. 2007; Dimas, Deutsch et al. 2009). The identity of regulatory 

sequences, the TFs present, and their binding affinities all play an important role in 

transcription initiation. Mutations altering the nucleotide sequence of any of these 

elements, or the nucleotide sequence of the transcript (affecting its stability), may have 

substantial effects on mRNA transcript levels (Stranger and Dermitzakis 2005). The 
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genomic distribution and complexity of cis and trans sequence elements, as well as the 

architecture of the regulatory landscape is an area of active research and a substantial 

effort is underway to annotate regulatory elements in the genome. A pilot project in 

which 1% of the genome was studied (Birney, Stamatoyannopoulos et al. 2007) revealed 

that the distribution of regulatory sequences is variable, with elements being scattered 

across the genome. In the following paragraphs I describe well-studied regulatory 

sequence elements, proteins and RNA molecules. 

1.4.1.1 Promoters 

Promoters are short sequence cis-acting elements that cluster in the immediate 

upstream region of a gene’s coding sequence, often within 200 base pairs (bp) of the 

TSS, and control transcription initiation. RNA polymerase and a number of general TFs 

bind to the promoter region of a gene, which is typically made up of different 

components, to form the basal transcription complex. Upon binding, the polymerase is 

activated and RNA synthesis is initiated. Well-studied promoter elements are discussed 

in Box 1. 
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Box 1. Promoter elements. Adapted from (Strachan and Read 2004). 

 

1.4.1.2 Enhancers 

Enhancers are positive control sequence elements, located at variable and often 

considerable distances from a gene, that increase the basal level of transcription 

initiated through promoter elements. They are short DNA sequences and may contain 

several elements recognised by TFs in a ubiquitous or tissue-specific manner 

(Heintzman, Hon et al. 2009; Visel, Blow et al. 2009). Upon TF binding, the DNA 

between the enhancer element and the promoter loops out and allows the proteins 

bound to the enhancer to interact with the basal transcription complex (Strachan and 

Read 2004). A well-studied enhancer is the locus control region (LCR) located 50-60 

kilobases (kb) upstream of the β-globin gene whose expression it activates. 
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1.4.1.3 Silencers 

Silencers have similar properties to enhancers, but act to reduce expression levels by 

inhibiting the transcriptional activity of genes. They have been reported in various 

positions relative to human genes: close to the promoter, upstream of the TSS, and 

within introns. Classical silencer elements are position-independent sequences that 

direct an active transcriptional repression mechanism (Strachan and Read 2004). 

Negative regulatory elements are position-dependent sequences that exert passive 

repression of transcription and often act by interfering with activators rather than by 

obstructing the movement of RNA polymerase.  

1.4.1.4 Insulators 

Insulators (boundary elements) are regions of DNA spanning a few hundred to a few 

thousand bases (typically 0.5-3 kb) which block the spreading of agents that affect 

transcription in a positive or negative manner, and divide chromosomes into regulatory 

neighbourhoods (Clark 2005). They contain clusters of GC rich sequences that bind 

multiple copies of zinc-finger proteins known as insulator binding proteins (IBPs). In 

many cases their action can be countered by methylation of GC sequences.  

1.4.1.5 Response elements 

Response elements are usually located a short distance upstream of promoter elements 

(1 kb upstream of the TSS) and are responsible for modification of transcription in 

response to environmental stimuli. Response elements can respond to specific 

hormones (e.g. retinoic acid or steroid hormones such as glucocorticoids) or to 

intracellular second messengers such as cyclic AMP (Strachan and Read 2004).  
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1.4.1.6 Transcription factors 

RNA polymerase II transcribes genes following binding of TFs to specific regulatory 

DNA within the gene and its vicinity. TFs are typically regarded as trans-acting 

elements and may bind to the promoter region around genes or to distant enhancer 

sequences. Activators are TFs that stimulate transcription and repressors are those with 

antagonistic effects. TFs can be general (e.g. components of the basal transcription 

complex such as TFIIB or TFIID) or tissue-specific (e.g. HNF1A which controls tissue-

specific expression in pancreatic islets and the liver). General TFs are required for 

transcription from all promoters occupied by RNA polymerase II and their binding 

results in basal levels of transcription. Specialised TFs modulate basal transcription 

levels and influence the activity of specific gene sets, usually in a tissue-specific manner.  

1.4.1.7 MicroRNA 

MicroRNAs (miRNAs) are single stranded, 21–24 nucleotide, regulatory RNA 

molecules abundant in animals, plants and viruses (Flynt and Lai 2008). They are 

encoded by genes from whose DNA they are transcribed, but are not translated into 

protein. Instead each transcript is processed into a short stem-loop structure called a 

pre-miRNA and finally into a functional miRNA. miRNA molecules are fully or 

partially complementary to mRNA molecules and their main function is to down-

regulate gene expression through partial base pairing with their target mRNAs. Base 

pairing either inhibits translation of target mRNA molecules or speeds up 

deadenylation causing mRNA degradation (Williams 2008).  

1.4.2 Other mechanisms of gene expression regulation 

Although transcription is the primary means of expression regulation, gene activity can 

be modulated post-transcriptionally, through mechanisms involving mRNA processing, 
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transport and stability at the mRNA level, as well as translation, processing, targeting 

and stability at the protein level. Furthermore, expression regulation can be achieved 

epigenetically through DNA methylation, histone modification and the action of non-

coding RNA molecules. A detailed overview of these mechanisms can be found in 

Genes IX (Lewin 2008).  

1.5 GENETIC VARIATION IN GENE EXPRESSION 

As described, gene expression is a complex, quantitative trait controlled at many levels 

and sculpted by numerous factors. In this thesis I address the genetic component of 

expression variation, or the fraction of transcript level differences that arises as a 

consequence of genetic variation in DNA sequences. Broadly speaking, genetic 

variation influencing gene expression can manifest itself in four major ways: gene 

expression differences among populations, among individuals in a population, among 

tissues, and in response to environmental factors. In this section I outline a number of 

landmark studies that have contributed to our understanding of the genetic component 

of gene expression. 

The first series of large-scale studies aiming to uncover regulatory DNA 

variation focused on model organisms. A genetic component for naturally occurring 

variation in gene expression was documented in yeast (Brem, Yvert et al. 2002; 

Steinmetz, Sinha et al. 2002), maize (Schadt, Monks et al. 2003), fruit flies (Jin, Riley et al. 

2001; Wittkopp, Haerum et al. 2004), and mice (Sandberg, Yasuda et al. 2000; Cowles, 

Hirschhorn et al. 2002; Lo, Wang et al. 2003; Schadt, Monks et al. 2003). In humans, 

familial aggregation of expression profiles was demonstrated by Cheung et al. (2003) 

who showed that variability in transcript abundance was lower in more closely related 

individuals. Gene expression heritability estimates for the same individuals showed 

that approximately 25% of the genes studied had significant heritable variation (Schadt, 
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Monks et al. 2003). This implied a heritable component of gene expression variation 

among humans and laid the groundwork for subsequent studies in primates (Enard, 

Khaitovich et al. 2002) and humans (Cheung, Conlin et al. 2003; Monks, Leonardson et 

al. 2004; Morley, Molony et al. 2004; Pastinen, Sladek et al. 2004; Stranger, Forrest et al. 

2005; Dixon, Liang et al. 2007; Goring, Curran et al. 2007; Stranger, Forrest et al. 2007; 

Stranger, Nica et al. 2007; Dimas, Deutsch et al. 2009). 

To date, most studies interrogating the genetic basis of regulatory variation have 

explored the effects of single variants on gene expression. Experiments in yeast 

however have revealed that the inheritance of over half of all transcripts is influenced 

by interacting locus pairs (Brem, Storey et al. 2005). Interactions between genetic factors 

have also been shown to occur in humans, for example in studies where the functional 

impact of coding variants is modified by regulatory variants nearby (Dimas, Stranger et 

al. 2008; Wang, Cruchaga et al. 2009). However, systematic measures of the extent of 

genetic interactions are lacking (Flint and Mackay 2009). Furthermore, although 

numerous large-scale studies have identified loci with a role in expression regulation, in 

most cases the candidate regions defined are broad and identification of true functional 

variants is pending. Finally, the bulk majority of studies to date have explored gene 

expression in a single cell type, usually in Epstein-Barr virus (EBV)-transformed B-cells 

(lymphoblastoid cell lines or LCLs), as these can be easily obtained from B-cells in blood 

samples and maintained in the laboratory. The extent of cell type specificity of gene 

expression (described in section 1.2.2) underscores the need to explore expression 

systematically in other cell types and catalogue cell type-specific regulatory variation. 

With the increasing realisation of the role of regulatory variation in shaping phenotypes 

in health and disease, detection and precise identification of single and interacting 

variants in multiple populations and cell types is a priority. 
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1.6 DETECTING REGULATORY VARIATION  

Technological advances in the last decade, especially the development of microarray 

platforms, have made it possible to move from low and medium-throughput 

quantification of gene expression (e.g. reporter, or allele-specific expression assays 

(ASE)) to genome-wide quantification of mRNA levels. Transcript abundance for each 

of thousands of genes can be determined in a single experiment with mRNA intensity 

values reflecting mRNA levels. mRNA intensity exhibits continuous variation among 

individuals and mapping gene expression variation is a typical quantitative trait 

exercise (Stranger and Dermitzakis 2005; Dermitzakis and Stranger 2006). The rationale 

used to map quantitative trait loci (QTLs) for continuous phenotypes such as weight 

and height is also employed to detect expression QTLs (eQTLs) (Mackay, Stone et al. 

2009). In human populations two approaches have been employed for eQTL mapping: 

linkage and association mapping (Dermitzakis and Stranger 2006; Gilad, Rifkin et al. 

2008; Mackay, Stone et al. 2009).  

1.6.1 Linkage mapping 

Linkage mapping tracks the transmission of chromosomes through families using 

pedigrees and requires data on phenotypes and markers for each family member. The 

aim is to identify markers whose transmission patterns correlate with the phenotype, 

the implication being that these markers are linked to causal variants driving the 

phenotype (Gilad, Rifkin et al. 2008). The advantage of linkage mapping is that it 

requires a relatively low density of markers (<1,000 for microsatellites and slightly 

higher numbers for single nucleotide polymorphisms (SNPs)). However, it provides 

coarse-grained (low resolution) localisation, as it depends on the occurrence of 

recombination events within families for finer mapping (Gilad, Rifkin et al. 2008). Some 

of the first genome-wide studies on gene expression in humans employed a linkage 
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approach, using cell lines from individuals of Centre d'Étude du Polymorphisme 

Humain (CEPH) pedigrees (Monks, Leonardson et al. 2004; Morley, Molony et al. 2004). 

This approach is powerful when functional variants are rare and there is allelic 

heterogeneity (different mutations at the same locus that give rise to the same 

phenotype), as is the case for β-thalassaemia which can be caused by several different 

mutations in the β-globin gene (Dermitzakis and Stranger 2006). If the variants affecting 

gene activity are of smalle effect size (minor allele frequency (MAF) > 5%), linkage is 

relatively underpowered and association mapping performs better. 

1.6.2 Association mapping 

Association mapping identifies markers whose genotypes show a statistical association 

to the phenotype of interest (in this case mRNA abundance). A statistically significant 

association for a given marker implies that it is linked to a functional regulatory variant. 

In its simplest form, association mapping uses samples of unrelated individuals and 

dense genotyping data (e.g. 500,000 SNPs for a genome-wide study in humans). It is the 

most powerful method to date for the detection of common variants, provided that the 

causal sequences are in strong linkage disequilibrium (LD) with the genotyped SNPs 

(Dermitzakis and Stranger 2006). Additionally, with sufficiently dense genotyping, 

association mapping is more likely to detect variants with small or medium effect sizes 

(Gilad, Rifkin et al. 2008). Although this approach rarely detects true functional 

variants, the resolution provided is much higher compared to linkage, with functional 

variants mapping within hundreds of kb of associated markers depending on the extent 

of LD. One potential caveat of association mapping is the occurrence of false positives 

arising as a consequence of population structure, but this can be resolved using 

methods that correct for structure (Price, Patterson et al. 2006).  
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1.7 GENETIC VARIANTS TESTED IN ASSOCIATION STUDIES 

An estimated 99.9% of the 6 billion nucleotides making up the human genome is 

identical across individuals (Sachidanandam, Weissman et al. 2001). The remaining 

0.01% that varies between any two randomly chosen individuals consists of variation 

occurring on different scales and ranges from single base changes to alterations in copy 

number of larger segments. Genetic variants in the human genome include SNPs, 

insertion/deletion polymorphisms (indels), retroposon insertions, variation in the 

number of copies of a tandem repeat (mini and microsatellites), copy number variants 

(CNVs), inversions and variants that are a combination of some or all the above.  

In this thesis genetic variation in the form of SNPs was associated with transcript 

levels to detect eQTLs. SNPs are the simplest and most common type of genetic variant, 

constituting roughly 75% of the total variation observed in humans (Levy, Sutton et al. 

2007). They are the smallest unit of polymorphism and arise from the exchange of a 

single base in the DNA sequence (Hartl and Clark 2007). Traditionally, a DNA position 

is said to be polymorphic when alleles are found at a frequency between 1% and 99% in 

the population. The human genome is estimated to contain over ten million SNPs, 

seven million of which are designated as common (MAF ≥ 5% across the entire 

population) (Kruglyak and Nickerson 2001; Crawford, Akey et al. 2005). The 

International HapMap Consortium, launched in 2002 aimed to identify and catalogue 

these variants to quantify the extent of genetic similarities and differences between 

humans (International HapMap Consortium 2003). Currently, over four million SNPs in 

1,301 individuals from eleven geographically distinct populations have been assayed 

(see section 2.1.1). Depending on their position in the genome, SNPs can be non-coding 

or coding. For the 1.5% of the genome that encodes proteins, the redundancy of the 

genetic code means that in some cases specific amino acids can be encoded by multiple 

codons. Synonymous SNPs are those base substitutions that do not alter the amino acid 
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sequence, while coding or non-synonymous SNPs (nsSNPs) are those that lead to a 

change of a single amino acid.  

1.8 THESIS AIMS 

Studies addressing the genetic component of gene expression have uncovered an 

abundance of common genetic variation influencing gene expression and have defined 

a field of intense study over the past few years. It is now well-established that 

regulatory polymorphisms are widespread in the human genome, with cis and trans-

acting loci regulating transcript levels of genes. Most studies to date however have 

explored the effects of single genetic variants and have interrogated expression in a 

single cell type. Furthermore, although these studies have made a very important first 

step in detecting regions harbouring regulatory variants, few have identified precise 

functional variants. In this thesis I aim to further our understanding of regulatory 

variation by: a) exploring the effect of interactions between genetic variants on 

transcript levels (Chapter 3), b) dissecting the fine-scale architecture of the cis 

regulatory landscape (Chapter 4) and by c) exploring the extent of cell type specificity of 

regulatory variation (Chapter 5). Uncovering regulatory variation and understanding 

its function will help elucidate developmental programmes and patterns of cell type 

specificity and will also shed light on processes determining natural range and disease 

phenotypes.  
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2   MATERIALS AND METHODS 

In this chapter I will:  

 Describe the population samples analysed in this thesis.  

 Define the sets of SNPs and genes tested for association.  

 Introduce the statistical tests used for association of SNP genotype 

with mRNA levels, as well methods for significance correction. 

 Outline the particulars of the three studies making up this thesis:  

- Impact of eQTL-nsSNP interaction on gene expression in cis and 

trans (Chapter 3) 

- Fine-scale architecture of the cis regulatory landscape (Chapter 4)  

- Cell type specificity of eQTLs (Chapter 5) 

2.1 THE SAMPLES 

The population samples studied in this thesis belong to two resources that have been set 

up to explore human genetic variation: the HapMap Project and the GenCord Project. In 

the following sections I give a brief outline of these resources.  

2.1.1 The HapMap Project 

The International HapMap Project was launched in 2002 as a collaborative effort to 

identify and catalogue genetic similarities and differences in human populations 

(International HapMap Consortium 2003). The ultimate goal of HapMap was to provide 

a public resource for medical genetic research by developing a detailed haplotype map 

(HapMap) of the human genome that would describe common patterns of genetic 

variation. The core strategy of this project involved genotyping DNA from LCLs 
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generated from blood samples of individuals belonging to a diverse set of populations. 

The project is ongoing and is currently in its third phase. (International HapMap 

Consortium 2003; International HapMap Consortium 2005; International HapMap 

Consortium 2007).  

The aim of HapMap Phase 1 was to genotype at least one common SNP per five 

kb across the euchromatic portion of the genome of 269 individuals from four 

geographically distinct populations. The individuals genotyped were: 30 mother–

father–adult child trios of northern and western European ancestry living in Utah from 

the CEPH collection (abbreviated CEU), 45 unrelated Han Chinese individuals in 

Beijing, China (CHB), 44 unrelated Japanese individuals in Tokyo, Japan (JPT) and 30 

trios from the Yoruba in Ibadan, Nigeria (YRI). Approximately 1.3 million SNPs were 

genotyped per population and a detailed description of this resource was published in 

2005 (International HapMap Consortium 2005).  

In Phase 2, a further 2.1 million SNPs were genotyped in each of 270 individuals 

(Phase 1 individuals and an additional sample from the JPT population). The resulting 

HapMap had a SNP density of approximately one SNP per kb and was estimated to 

contain approximately 25–35% of all common SNPs (9-10 million SNPs with a MAF ≥ 

0.05) in the assembled human genome. A description of this resource was published in 

2007 (International HapMap Consortium 2007). 

Phase 3 of the HapMap was ongoing at the time of writing and involved 

additional individuals from the four initial populations, as well as seven additional 

populations. Over 4 million SNPs were genotyped for 541 individuals of the four initial 

populations (CEU, CHB, JPT, YRI) and approximately 1.5 million SNPs were genotyped 

in 760 individuals of seven new populations (90 ASW: African ancestry in Southwest 

USA; 100 CHD: Chinese in Metropolitan Denver, Colorado, USA; 100 GIH: Gujarati 

Indians in Houston, Texas, USA; 100 LWK: Luhya in Webuye, Kenya; 90 MEX: Mexican 

ancestry in Los Angeles, California, USA; 180 MKK: Maasai in Kinyawa, Kenya; 100 
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TSI: Toscans in Italy). At the time of writing, this study was in preparation for 

publication.  

Table 2 summarizes SNPs and individuals assayed in each of the three phases of 

the project. Data analysed in this thesis include all four HapMap Phase 2 populations 

(210 unrelated individuals from CEU, CHB, JPT and YRI) in the study described in 

Chapter 3. Additional samples for those populations as well as four of the seven new 

HapMap Phase 3 populations (792 unrelated individuals from CEU, CHB, GWK, JPT, 

LWK, MEX, MKK and YRI) were analysed in the study described in Chapter 4.  

 

 

 

Table 2. Summary of SNPs and individuals assayed in each of the three phases of HapMap. 

Population descriptors: CEU: Utah residents with Northern and Western European ancestry 

from the CEPH collection; CHB: Han Chinese in Beijing, China; JPT: Japanese in Tokyo, Japan; 

YRI: Yoruban in Ibadan, Nigeria; ASW: African ancestry in Southwest USA; CHD: Chinese in 

Metropolitan Denver, Colorado, USA; GIH: Gujarati Indians in Houston, Texas, USA; LWK: 

Luhya in Webuye, Kenya; MEX: Mexican ancestry in Los Angeles, California, USA; MKK: 

Maasai in Kinyawa, Kenya; TSI: Toscans in Italy.  

 

2.1.2 The GenCord Project 

The GenCord project is a collection of cell lines derived from umbilical cords of 85 

individuals of Western European origin, following appropriate consent and ethical 

approval (Dimas, Deutsch et al. 2009). The project was conceived as a resource for the 

identification of QTLs involved in the regulation of cellular phenotypes in primary 
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fibroblasts, LCLs and primary T-cells. Umbilical cord was chosen because it is readily 

available and allows the acquisition of multiple cell types for each individual. Sample 

collection was performed systematically on full term or near full term pregnancies to 

ensure homogeneity for sample age.   

2.1.3 Using HapMap and GenCord to investigate regulatory variation 

HapMap and GenCord were used to investigate the impact of genetic variation on 

expression levels within and across human populations, but also across cell types. 

Statistical methods were used to associate SNP genotypes with mRNA levels (see 

sections 2.4 and 2.5), and experimental methods were subsequently employed for the 

biological verification of a subset of predicted associations (see sections 2.6.5 and 2.8.3). 

For expression association studies using the HapMap populations, publicly 

available genotype data were combined with expression data generated by our group at 

the Wellcome Trust Sanger Institute (WTSI) for the same set of individuals. This 

analytical set up made it possible to explore how genetic variation shapes gene 

expression differences within and across populations, chiefly as a consequence of allele 

frequency differences. The HapMap Project was launched in 2002 and there have been a 

number of data release stages over the past few years. As a consequence, analyses 

performed in this thesis used two different releases of HapMap data: a) Phase 2 data 

were used to explore the impact of eQTL-nsSNP interactions on gene expression in cis 

and trans (Chapter 3) and b) Phase 3 data were used to investigate the fine-scale 

architecture of the cis regulatory landscape (Chapter 4). HapMap genotype data are 

publicly available at http://www.hapmap.org and expression data generated by our 

group for these populations are available at: ftp://ftp.sanger.ac.uk/pub/genevar/. 

The GenCord study design involves expression quantification in each of three 

cell types separately, and genotyping using DNA from a single cell type (LCLs). This 

http://www.hapmap.org/
ftp://ftp.sanger.ac.uk/pub/genevar/
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analytical set up made it possible to address how genetic variation shapes gene 

expression differences within a population and across cell types, as a consequence of 

the cell type-dependent action of genetic variation (Chapter 5). The chief advantage of 

GenCord is that is allows direct comparisons to be made across cell types, as samples 

were collected and processed in a systematic way. GenCord was also used to explore 

the fine-scale architecture of the cis regulatory landscape in a cell type-specific context 

(Chapter 5). Expression data are available at ftp://ftp.sanger.ac.uk/pub/genevar/ and in 

the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/ accession 

number GSE17080).  

The datasets used in each of the three studies are outlined in Table 3. In the 

following sections I describe how SNP genotype (section 2.2) and gene expression 

(section 2.3) information was obtained or generated, I present the general statistical 

methods used for detection of variants associated with gene expression (sections 2.4 and 

2.5) and outline the specific analyses carried out for each study.  

 

 
 
Table 3. Overview of datasets analysed in each of the three studies presented in this thesis. 

(Note that the eQTL fine-scale architecture study is outlined in Chapter 4 for HapMap, but 

results using the same strategy are also presented in Chapter 5 for GenCord). 

 

2.2 THE SNPS 

HapMap SNP genotypes were generated by the International HapMap Consortium and 

are publicly available at www.hapmap.org. GenCord SNP genotypes were generated 

HapMap Phase 2 HapMap Phase 3 GenCord

eQTL- nsSNP interaction           (Chapter 3) X

eQTLfine-scale architecture     (Chapter 4) X X

eQTLcell type specificity         (Chapter 5) X

ftp://ftp.sanger.ac.uk/pub/genevar/
http://www.ncbi.nlm.nih.gov/geo/
http://www.hapmap.org/
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by our collaborators in the Department of Genetic Medicine and Development, at the 

University of Geneva Medical School (UGMS). 

2.2.1 HapMap Phase 2 

Phase 2 of the HapMap involved genotyping of nearly four million SNPs in each of 270 

individuals from CEU, CHB, JPT and YRI populations. HapMap version 21 (NCBI Build 

35) SNPs were used to interrogate the interaction between functional variants, namely 

that between cis eQTLs (i.e. tags of regulatory variants) and nsSNPs (protein-coding 

SNPs). This study is described in Chapter 3. 

2.2.1.1 Cis eQTLs 

Cis eQTLs were identified in a genome-wide association study (GWAS) by Stranger et 

al (2007) as Phase 2 HapMap SNPs (mapping in a 2 Mb window centred on the 

expression probe midpoint) that showed a statistically significant association with 

mRNA levels at the 0.01 permutation threshold (see section 2.6.1).  

2.2.1.2 nsSNPs 

nsSNPs are protein-coding variants that result in a single amino acid substitution in the 

protein product. The strategy used to select nsSNPs for this study is summarized in 

Figure 4 and involved the following steps: rsIDs and coordinates for all known nsSNPs 

were downloaded from Biomart (http://www.biomart.org/biomart/martview), 

dbSNP125 (NCBI Build 36), and HapMart (version 21 NCBI Build 35) 

(http://hapmart.hapmap.org/BioMart/martview). The distribution of nsSNPs in genes 

was interrogated for three gene collections created using different annotation methods 

(Brent 2005; Flicek 2007): CCDS, Ensembl and RefSeq genes. CCDS genes are those 

genes for which structure has been agreed upon by NCBI, Ensembl, and UCSC. 

Ensembl genes are to a certain extent annotated automatically, whereas Refseq gene 

http://www.biomart.org/biomart/martview
http://hapmart.hapmap.org/BioMart/martview
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annotation is largely manual. The Refseq collection was chosen as it represents a set of 

genes with explicitly linked nucleotide and protein sequence and a large enough 

number of genes to work with. Refseq gene IDs and coordinates were downloaded from 

the UCSC genome browser (http://genome.ucsc.edu/) and genes mapping on 

chromosomes X and Y, as well as those without coordinate information were removed. 

nsSNPs of all frequencies were subsequently mapped on Refseq genes using nsSNP and 

gene coordinates. 

 

 

 

Figure 4. Strategy employed to select nsSNPs for the eQTL-nsSNP interaction study 

described in Chapter 3.  

 

2.2.2 HapMap Phase 3 

In Phase 3 of the HapMap, over 4 million SNPs were genotyped in the initial four 

populations and 1.5 million SNPs were genotyped in the seven additional populations. 

Download nsSNPs from:
Biomart
dbSNP

HapMart

Explore distribution of nsSNPs in 3 gene collections:
CCDS

Ensembl
Refseq

Download Refseq gene IDs and coordinates from UCSC browser

Map nsSNPs to Refseq genes using coordinate information

http://genome.ucsc.edu/
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Out of a total of 1,301 individuals genotyped, I used HapMap version 27 (NCBI Build 

36) SNPs from 792 individuals from the CEU, CHB, GWK, JPT, LWK, MEX, MKK, and 

YRI populations to investigate the fine-scale architecture of the regulatory regions 

around genes, in the study described in Chapter 4.  

2.2.3 GenCord 

Approximately half a million SNPs were genotyped in the 85 individuals of GenCord. 

DNA samples were extracted from cord tissue LCLs with the Puregene cell kit (Gentra-

Qiagen, Venlo, The Netherlands). Genotyping was performed using the illumina 550K 

SNP array (illumina, San Diego, California, USA) following the instructions of the 

manufacturers (Figure 5). This work was carried out by Samuel Deutsch at the UGMS. 

Principal component analysis (PCA) was performed on the genotype data to detect 

potential outliers. This analysis was carried out by Stephen Montgomery at the WTSI.  

2.3 THE GENES 

Transcript levels in HapMap LCLs and in the three cell types of GenCord were 

quantified using gene expression arrays at the WTSI. All data generated are publicly 

available at http://www.sanger.ac.uk/Software/Genevar. GenCord data are also 

available on the GEO (section 2.1.3).  

http://www.sanger.ac.uk/Software/Genevar
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Figure 5. Infinium SNP genotyping assay. The DNA sample used for this assay is isothermally 

amplified overnight (Steps 1 and 2). This amplification has no appreciable allelic partiality. 

Approximately 750 ng of DNA is used to assay 500,000 SNP loci and the amplified product is 

fragmented by a controlled enzymatic process (Step 3). After alcohol precipitation and 

resuspension of the DNA (Step 4), the BeadChip is prepared for hybridization in the capillary 

flow-through chamber (Step 5); samples are applied to BeadChips and incubated overnight. 

The amplified and fragmented DNA samples anneal to locus-specific 50-mers (covalently linked 

to one of over 500,000 bead-types) during the hybridization step (Step 6). One bead type 

corresponds to each allele per SNP locus. After hybridization, allelic specificity is conferred by 

enzymatic base extension. Products are subsequently fluorescently stained (Step 7). The 

intensities of the beads’ fluorescence are detected by the illumina BeadArray Reader (Step 8), 

and are in turn analysed using illumina’s software for automated genotype calling (Step 9). 

Figure and assay description from http://www.illumina.com/. 

 

http://www.illumina.com/
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2.3.1 HapMap Phase 2 

2.3.1.1 RNA preparation, gene expression quantification and normalization  

Total RNA was extracted from LCLs of the 210 unrelated individuals of the HapMap 

Phase 2 (Coriell, Camden, New Jersey, USA). For each RNA extraction, two one-quarter 

scale Message Amp II reactions (in vitro transcription reactions or IVTs) (Ambion, 

Austin, Texas, USA) were performed using 200 ng of total RNA, to produce cRNA. To 

assay transcript levels, 1.5 μg of the cRNA was hybridized to illumina's commercial 

whole genome expression array, Sentrix Human-6 v1 Expression BeadChip (Kuhn, 

Baker et al. 2004). These arrays utilize a bead pool containing ~48,000 unique bead types 

(one for each of 47,294 transcripts, plus controls), each with several hundred thousand 

gene-specific 50mer probes attached (Figure 6). Six arrays were run in parallel on a 

single BeadChip. Each bead type (probe) is present on a single array on average 30 

times. Each of the two IVT reactions from the 210 samples was hybridized to two arrays 

each, so that each cell line had four replicate hybridizations. cRNA was hybridized to 

arrays, labelled with Cy3-streptavidin (Amersham Biosciences, Little Chalfont, UK) and 

scanned with a Bead Station (illumina). This work was carried out by Catherine Ingle at 

the WTSI. 

With the illumina bead technology, a single hybridization of RNA from one cell 

line to an array produced approximately 30 intensity values for each of 47,294 bead 

types. These background-corrected values for a single bead type were summarized by 

illumina software and output to the user as a set of 47,294 intensity values for each 

individual hybridization. In this experiment, each cell line was hybridized to four 

arrays, resulting in four reported intensity values (as averages of the values from the 30 

beads per probe) for each of the 47,294 bead types. To combine information from 

replicate hybridizations, raw data were read using the Beadarray R package (Dunning, 

Smith et al. 2007) and normalized on a log2 scale using a quantile normalization method 
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(Bolstad, Irizarry et al. 2003) across replicates of a single individual, followed by a 

median normalization method across individuals of a single population. These 

normalized values (for each probe, across replicates for each individual) were used in 

subsequent analyses. Normalization was carried out by Mark Dunning and Simon 

Tavaré at the Cancer Research UK Cambridge Research Institute (CRI).  

 

 

Figure 6. Gene expression probe. Gene expression probes are attached to beads, which are then 

assembled into arrays. For simplicity, this figure shows only one oligomer attached to the bead; 

actual beads have hundreds of thousands of copies of the same sequence attached. Figure and 

description from http://www.illumina.com/. 

 

2.3.1.2 Selection of variable probes 

To ensure variability in the gene expression phenotype, the intersection of the top 

18,000 most variable probes in each of the four populations was selected from the 47,294 

probes, resulting in a set of 13,797 probes. An additional set of probes with large 

differences in rank variability between populations was also selected by ranking all 

transcripts by variability within each population and making all pairwise comparisons 

between populations to quantify difference in rank between population pairs. The top 

1% of transcripts with largest absolute value rank difference from each population pair 

comparison were selected. The union of these lists provided an additional 2,021 probes. 

Probes mapping to chromosomes X and Y, as well as those mapping to the 

mitochondrion genome were discarded. Probes with no match in the human genome 

http://www.illumina.com/
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Build 35 were also removed, as were 469 probes that contained SNPs in their sequence. 

This resulted in a subset of 14,456 probes (mapping to 13,643 unique autosomal genes) 

that were highly variable within and between populations and were used for 

association analysis (Chapter 3). Variable probe selection was carried out by Barbara 

Stranger and Manolis Dermitzakis at the WTSI. 

2.3.2 HapMap Phase 3 

2.3.2.1 RNA preparation, gene expression quantification and normalization  

Total RNA was extracted from LCLs of the 792 unrelated individuals of the HapMap 

Phase 3 (Coriell). Gene expression (mRNA levels) was quantified using illumina’s 

commercial whole genome expression array, Sentrix Human-6 Expression BeadChip 

version 2 (~48,000 transcripts interrogated; illumina) as described previously (in this 

case only two IVTs were performed). This work was carried out by Catherine Ingle, 

James Nisbett, and Magdalena Sekowska at the WTSI. 

Hybridization intensity values were normalized on a log2 scale using a quantile 

normalization method (Bolstad, Irizarry et al. 2003) across all replicates of a single 

individual followed by a median normalization method across individuals of a single 

population. GIH, LWK, MEX and MKK populations were normalized for admixture 

using a customized version of Eigenstrat which outputs principal component 

adjustments for expression data (Price, Patterson et al. 2006). Expression values were 

adjusted using ten primary axes of variation from intra-population PCA and these 

normalized expression values were used as input for the association analysis. 

Normalization and PCA correction were performed by Stephen Montgomery at the 

WTSI. 
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2.3.2.2 Probe selection 

illumina’s Sentrix Human-6 Expression BeadChip version 2 array covers over 24,000 

unique, curated genes from the Refseq collection, as well as genes for which annotation 

is less well-established. In this case, probes were not filtered for expression variability, 

but were restricted to those corresponding to Refseq genes. SSAHA (Sequence Search 

and Alignment by Hashing Algorithm) (Ning, Cox et al. 2001), an algorithm for very 

fast matching and alignment of DNA sequences, was used to map probes on the 

Ensembl genes using the Ensembl Application Programme Interface (API) 

(http://www.ensembl.org/info/data/api.html Ensembl 49 NCBI Build 36). It was found 

that 22,512 probes mapped to 19,862 Ensembl genes and depending on the number of 

transcripts, some genes were covered by multiple probes. Conversely, a subset of 

probes mapped to more than one Ensembl gene and were discarded, as were probes 

mapping on chromosomes X and Y. Following filtering, a non-redundant total of 21,800 

probes (corresponding to 18,226 Ensembl genes) was used for association analysis 

(Chapter 4). Mapping of probes on Ensembl genes using the Ensembl API was carried 

out with the help of Nathan Johnson at the European Bioinformatics Institute (EBI).  

2.3.3 GenCord  

2.3.3.1 GenCord sample collection 

Umbilical cords were collected from 85 newborns of Western European origin born at 

the maternity ward of the University of Geneva Hospital, for which pregnancies were 

full term or near full term (38-41 weeks). For each sample, informed consent was 

obtained after an interview of the mother with a trained nurse and the project was 

approved by the University of Geneva Hospital Ethics Committee. From each umbilical 

cord three cell types were derived: 1) primary fibroblasts, 2) LCLs and 3) 

phytohemagglutinin (PHA) stimulated primary T-cells. In addition, total buffy coat was 

http://www.ensembl.org/info/data/api.html
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frozen in RPMI medium (Invitrogen, Carlsbad, California, USA) 10% DMSO (Sigma, St. 

Louis, Missouri, USA), 20% FCS (Invitrogen) for future studies. This work was carried 

out by Samuel Deutsch at the UGMS. 

2.3.3.2 GenCord cell line preparation 

Cord blood was collected in 50 ml falcon tubes containing 10 ml of anti-coagulants 

(Sodium citrate and EDTA, Sigma) and kept at 4°C for less than 24 hours prior to 

treatment. For separation, cord blood was diluted two-fold in PBS (Invitrogen), layered 

on Ficoll-Paque (GE Healthcare Lifesciences, Chalfont St. Giles, UK) and centrifuged for 

30 minutes at 800g. The mononuclear cell layer was removed, washed twice in 40 ml of 

PBS and re-suspended in 1 ml of RPMI 20% FCS, 1% antibiotics (Amimed, Basel, 

Switzerland). 

For fibroblast preparation, cord tissue was finely cut under sterile conditions in 1 

ml DMEM 10% FCS, 1% antibiotics (Amimed), transferred to a T25 flask and cultured 

upside-down for 12 hours to allow cells to attach to the surface of the flask. Flasks were 

turned around and left for approximately one week until fibroblast clusters appeared. 

Fibroblasts were then expanded with standard procedures. For preparation of LCLs, 

300 μl of re-suspended cells and 100 μl of EBV were transferred to a 24-well plate well 

and cultured in an incubator at 37°C, 5 % CO2. Fresh medium was added and replaced 

every 2-3 days. Cells were kept in culture for no less than 21 days prior to freezing. For 

PHA stimulated T-cell preparation, re-suspended mononuclear cells were diluted to a 

concentration of 1 x 106 cells/ml in RPMI  (Invitrogen) with 5 μg/ml of PHA (Sigma), 

and cultured for five days with 2/3 medium replacement after 2.5 days. A subset of 

samples was characterized by flow cytometric analysis for expression of CD3, CD25 and 

CD69 (Becton Dickinson, Franklin Lakes, New Jersey, USA) revealing a homogenous 

activated T-cell population. 
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RNA from each cell type was prepared with RNeasy columns with on-column 

DNAse treatment (Qiagen, Venlo, The Netherlands), quantified with NanoDrop 

(Thermo Scientific, Waltham, Massachusetts, USA) and analyzed with a 2100 

Bioanalyzer (Agilent, Santa Clara, California, USA). This work was carried out by 

Samuel Deutsch at the UGMS. 

2.3.3.3 RNA preparation, gene expression quantification and normalization 

Total RNA was extracted from fibroblasts, LCLs, and T-cells of the 85 unrelated 

individuals of the GenCord as described above. Two one-quarter scale Message Amp II 

reactions (Ambion) were performed for each RNA extraction with 200 ng of total RNA. 

1.5 μg of cRNA was hybridized to illumina’s WG-6 v3 Expression BeadChip array to 

quantify transcript abundance as described previously. In total there were two technical 

replicates (labelling and hybridization) for each RNA sample. This work was carried 

out by Catherine Ingle, James Nisbett, and Magdalena Sekowska at the WTSI. Intensity 

values were log2 transformed and normalized independently for each cell type using 

quantile normalization for sample replicates, and median normalization across all 

individuals. Each cell type was renormalized using the mean of the medians of each cell 

type expression values. Normalization was carried out by Stephen Montgomery at the 

WTSI. 

2.3.3.4 Probe selection 

The illumina WG-6 v3 Expression BeadChip array covers over 27,000 unique coding 

transcripts belonging to the Refseq collection. For the majority of these transcripts 

annotation is well-established, with approximately 7,000 transcripts having provisional 

annotation. This array also covers non-coding transcripts, as well as experimentally 

confirmed mRNA sequences aligning to EST clusters. Only probes corresponding to 

transcripts with good or provisional annotation (Refseq genes) were selected for 
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association testing. A total of 36,156 probes with Refseq IDs were queried for their 

corresponding Ensembl gene IDs in Biomart (Ensembl 50, NCBI Build 36). Of these, 

23,805 probes had a corresponding Ensembl gene ID and after discarding probes 

mapping to chromosomes X and Y, as well as those that mapped to more than one 

Ensembl genes, 22,651 probes (corresponding to 17,945 RefSeq genes and 15,596 

Ensembl genes) were used for subsequent analysis (Chapter 5). 

2.4 ASSOCIATION TESTS 

Additive linear regression (LR) and Spearman rank correlation (SRC) were used to test 

for association in cis between SNP genotypes and expression levels of genes. For each 

gene, variants mapping in a 2 Mb window centred on the TSS were tested for 

association (cis eQTLs used in the eQTL-nsSNP study described in Chapter 3 were 

identified in a previous study (see 2.2.1.1) that defined cis eQTLs as variants mapping in 

a 2 Mb window centred on the probe midpoint). This 2 Mb window defines the 

genomic region tested for cis association with gene expression. Particular tests and 

analyses conducted for each of the three studies are discussed in the relevant sections of 

this chapter. 

2.4.1 Additive linear regression 

A main effects additive LR model was used to test for association between SNP 

genotype and probe expression levels. The additive effect of a SNP genotype was tested 

by coding the genotypes at each locus as 0, 1 and 2 corresponding to counts of 

alphabetically sorted alleles in each genotype (e.g. counting the number of G alleles for 

a A/G SNP: AA = 0, AG = 1, GG = 2). Normalized log2 expression was regressed on SNP 

genotypes for each gene, and the following additive model was fitted: the genotype Xi 
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of individual i at the given SNP may be classified as one of three states Xi = 0, 1 or 2. The 

linear regression fitted was:  

Yi = b0 + b1 Xi +εi 

 

Where Yi is the normalized log2 expression levels of the probe for individual i, i=1<n 

and εi are independent normally distributed random variables with mean 0 and 

constant variance (Stranger, Forrest et al. 2005). The nominal parametric p-value of the 

test of no association (i.e. b1 = 0), the slope, and r2 for each SNP-probe pair were reported 

(Figure 7). LR however is sensitive to outlier effects and for this reason association tests 

were also carried out using SRC. SRC performs at a level equivalent to LR, detecting 

77% - 86% of the associations uncovered by LR (Stranger, Nica et al. 2007). 

 

 

Figure 7. Statistical tests employed to associate SNP genotype with normalized log2 mRNA 

intensity levels. SNP genotypes were coded as 0, 1 or 2 (in this case corresponding to AA, AG 

and GG respectively). Linear regression (LR) was used to test the additive effects of SNP 

genotype on mRNA intensity (expression levels). The slope, the p-value and r2 of the test were 

reported. To avoid outlier effects that affect LR output, Spearman rank correlation (SRC), a non-

parametric test, was also used. The p-value and the correlation coefficient (rho) were reported.  
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2.4.2 Spearman rank correlation 

SRC was also used to test for association between SNP genotypes and probe expression 

levels. SRC is a non-parametric measure of correlation that assesses how well an 

arbitrary monotonic function describes the relationship between two rank-ordered 

variables, without making any other assumptions about the particular nature of the 

relationship between these variables. Variables are initially converted into ranks (in this 

case the lower expression values are assigned lower ranks) and a correlation analysis is 

performed. When two observations are equal (tied) the average rank is used. SRC yields 

a statement of the degree of interdependence of the scores of the two variables, the 

Spearman correlation coefficient or rho. Rho describes the strength and direction of the 

correlation. The nominal p-value for the test of no association and rho were reported.  

2.5 MULTIPLE TEST CORRECTION  

To assess significance of association between SNP genotype and probe expression 

levels, 10,000 permutations of each expression phenotype relative to the genotypes were 

performed for each gene (Churchill and Doerge 1994; Doerge and Churchill 1996; 

Stranger, Forrest et al. 2005; Stranger, Nica et al. 2007) (Figure 8). For each round of 

permutations, the minimal permuted p-value was reported and a distribution of 10,000 

minimum permuted p-values was generated. An association to gene expression was 

considered significant if the nominal p-value from the association test (observed p-

value) was lower than the 0.5, 0.01, 0.001 and 0.0001 tail of the distribution of the 

minimal permuted p-values, defining four permutation significance thresholds. For 

each gene, the most stringent p-value was retained. 
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Figure 8. Significance levels for each gene were determined through permutations.  10,000 

permutations of expression levels (Epx1, Exp2, Exp3<Expi) relative to genotypes (g11, g21, 

g31<gi1) were performed for each gene and for all individuals (samples) in the single 

population analysis. The minimal permuted p-value obtained for each round of permutations 

was used to generate a distribution of minimal permuted p-values for each gene. Four 

significance thresholds were defined at the 0.5, 0.01, 0.001 and 0.0001 tails of the distribution. 

Significant associations of SNP genotype to expression levels were those for which the 

association test p-value (observed p-value) was lower than the selected permutation 

significance threshold.  

 

2.6 EQTL-NSSNP INTERACTION STUDY (CHAPTER 3) 

2.6.1 The interaction model  

HapMap Phase 2 data were used to explore interactions between regulatory and 

protein-coding variants and their impact on gene expression in cis and trans. The 

regulatory variants tested for interaction were cis eQTLs (MAF ≥ 0.05) identified in a 

previous study (Stranger, Nica et al. 2007) located within a 2 Mb window centred on the 

probe midpoint. The protein-coding variants tested were nsSNPs mapping in Refseq 

genes. 

The model of interaction brings together quantitative and qualitative variation as 

follows: a gene for which a cis eQTL has been detected will be expressed at different 

quantities among individuals in the population (Pastinen and Hudson 2004; Stranger, 

Nica et al. 2007) (Figure 9 a). On the other hand, genes containing nsSNPs give rise to 
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protein products that differ in quality by a single amino acid (Figure 9 b). In the case 

where a gene with an identified cis eQTL also contains an nsSNP, the resulting protein 

products will differ not only in quantity, but also in quality (amino acid sequence) 

among individuals (Figure 9 c, also see Figure 14). The co-existence of these two variant 

types may have cis and trans effects on gene expression. In cis, the eQTL (or rather the 

regulatory element tagged by the eQTL) can modify (magnify or mask) the functional 

effect of the nsSNP. This is a cis modification effect and nsSNPs harboured in genes 

with varying expression levels are hereon termed DE (differentially expressed). In trans, 

the different protein ratios arising from modification in cis may affect their downstream 

targets, leaving an imprint on genome-wide expression levels. This impact in trans is a 

true epistatic effect and can be explored using the specific and testable biological model 

presented.  

The proposed model is centred on the concept of DE nsSNPs, and two strategies 

were employed to detect these variants. The first strategy involved scanning all genes 

with cis eQTLs for nsSNPs. The second strategy involved direct association testing of 

nsSNP genotype with expression levels of the gene it is harboured in. In this second 

case, the nsSNP can act as an eQTL for its own gene’s expression levels. To summarize, 

an nsSNP is DE if: 1) it maps in a gene for which at least one cis eQTL has been 

identified or 2) it shows a significant association with its own gene’s expression levels. 

The nsSNP shown in Figure 9 c is DE. 
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Figure 9. eQTL-nsSNP interaction. a) Genes with identified cis eQTLs have quantitative 

differences in their expression (high vs. low expression levels). b) Genes that possesses an 

nsSNP give rise to protein products that differ qualitatively by a single amino acid (white vs. 

black protein product). c) If a gene possesses both a cis eQTL and an nsSNP, the resulting 

protein products will differ in quantity and quality. This is an example of an interaction in cis, 

where the functional effect of the nsSNP is modified by the cis eQTL. Furthermore, if this gene 

has downstream targets, their expression may be influenced through a trans effect on gene 

expression. See also Figure 14 in Chapter 3.  

 

2.6.2 Single population nsSNP association test 

One way to determine whether an nsSNP is DE is to perform a direct association test of 

nsSNP genotype and expression levels of the gene harbouring it. LR was used to test for 

association in cis between: 1) nsSNP genotypes (for nsSNPs with MAF ≥ 0.05) for the 

unrelated individuals of each HapMap Phase 2 population (60 CEU, 45 CHB, 45 JPT, 

and 60 YRI) and 2) normalized log2 quantitative gene expression measurements for the 

same individuals. Association testing was performed for each population separately 

and significance thresholds for each gene were assigned through permutations of 

expression values relative to genotypes. An association with gene expression was 
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considered significant if the nominal p-value from LR was lower than the 0.01 tail of the 

distribution of minimal permuted p-values. Correction for false positives was carried 

out by calculating the ratio of expected false positives at a given threshold over the 

number of significant associations at the same threshold (this is an approximation of the 

false discovery rate (FDR)). 

2.6.3 Multiple population nsSNP association test 

To increase power of association detection I combined data (SNP genotypes and 

normalized expression values) for unrelated individuals of multiple populations and 

repeated association testing. Three different multiple population comparison panels 

were compiled: 1) CEU-CHB-JPT-YRI, 2) CEU-CHB-JPT and 3) CHB-JPT. Association 

tests were carried out for each population panel separately using LR. In this case, 

correction for significance was through conditional permutations (Figure 10) whereby 

the correlated structure of gene expression values within each population was retained 

by randomizing data within each population (Stranger, Nica et al. 2007). This approach 

accounts for population differentiation and prevents detection of spurious associations. 

For each of the 14,456 probes in each multiple population panel, expression values were 

permuted among individuals of a single population followed by regression analysis of 

the grouped multi-population expression data against the grouped multi-population 

permuted nsSNP genotypes. Four significance thresholds were selected (0.05, 0.01, 

0.001, 0.0001) and an association to gene expression was considered significant if the 

nominal p-value from the linear regression test was lower than the 0.01 tail of the 

distribution of minimal permuted p-values. Correction for false positives was carried 

out as described in section 2.6.2.  
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Figure 10. Conditional permutations were used to determine significance levels for each gene 

in the multiple population analysis. Ten thousand permutations of expression levels (Exp1, 

Exp2, Exp3<Expi) relative to genotypes (g11, g21, g31<gi1) were performed for each gene, in 

an approach where the correlated structure of expression values within each population was 

retained. This was achieved by randomizing expression data within each population. This 

approach accounts for population differentiation and prevents detection of spurious 

associations.  

 

2.6.4 eQTL-nsSNP linkage disequilibrium analysis 

Differential expression of nsSNPs is most likely driven by regulatory variants tagged by 

eQTLs that are in LD with the nsSNP. To address this, I explored the distribution of r2 (a 
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measure of statistical correlation between alleles at two loci) (Hartl and Clark 2007) for 

eQTL-nsSNP pairs in which the nsSNP: a) showed a significant association with its own 

gene’s expression levels and b) showed no such association. LD values were calculated 

by a pairwise estimation, for eQTLs and nsSNPs genotyped in the same individuals, 

and that mapped within a 100 kb window of each other (Ensembl 46). LD values were 

calculated by Daniel Rios at the EBI. The distributions of r2 estimates for eQTLs-nsSNP 

pairs with and without an associated nsSNP were compared using a Mann-Whitney 

(M-W) test. Significant results were those for which M-W p-value ≤ 0.05.   

2.6.5 Allele-specific expression assay 

2.6.5.1 DNA and RNA preparation for allele-specific expression assays 

The association tests employed make predictions about DE nsSNPs. ASE assays were 

used for the biological verification of a subset of these predictions (Figure 11). Genomic 

DNA (gDNA) and total RNA were extracted from LCLs of the unrelated CEU and YRI 

HapMap individuals (Coriell) using Qiagen’s AllPrep kit. RNA was treated with Turbo 

DNA-free (Ambion) to minimize gDNA contamination. The RNA was concentrated and 

further cleaned with RNeasy MinElute columns (Qiagen). Total RNA and gDNA were 

quantified using a Nanodrop Spectrophotometer (Thermo Scientific) and either Quant-

iT RNA or DNA reagents (Invitrogen). Double stranded (ds) cDNA was synthesised 

from 250 ng of cleaned RNA. The first strand was synthesised with Superscript III 

(Invitrogen) and random hexamers. The second strand was synthesised with DNA 

polymerase I (Invitrogen), ribonuclease H (Invitrogen) and dNTPs. The 96-well plate 

containing the ds cDNA samples was cleaned using Multiscreen PCR plate (Millipore). 

This work was carried out by Matthew Forrest at the WTSI. 
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Figure 11. Statistically predicted vs. biologically verified differentially expressed (DE) 

nsSNPs. Allele-specific expression (ASE) assays were used to verify differential expression of 

nsSNPs (cis eQTLs) predicted from statistical analyses. In this scatterplot the experimentally 

determined allelic effect (x axis) of a C/T nsSNP is compared to the genotypic effect predicted 

from the association test (y axis). 

 

2.6.5.2 illumina allele-specific expression array 

A custom made Oligo Pool All (OPA) array (illumina) based on the Golden Gate assay 

was used to assay ASE. Only exonic SNPs ≥ 45bp from both exon edges were chosen for 

submission to illumina for assay design, to ensure that the assay would work equally 

well for genomic and cDNA. SNPs that failed according to illumina’s design scores 

were discarded. Paired ds cDNA and gDNA were dried down in 96-well plates and re-

suspended in 5μl of HPLC purified water. Golden Gate assays were then run for all 

samples using the manufacturer’s standard protocol for gDNA (i.e. ds cDNA was 

treated exactly the same way as gDNA). Reactions were hybridised to 8×12 Sentrix 
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Array Matrix (SAM) Universal Probe Sets so that 96 arrays could be run in parallel. 

Each bead type (probe) is present on a single array on average 30 times. All reactions 

were run in duplicate, so that each LCL had two ds cDNA replicate and two gDNA 

replicate hybridizations. SAMs were scanned with a Bead Station (illumina). A total of 

1,536 assays were interrogated on the array, but only 141 were nsSNPs from this study 

and only 28 were selected based on data quality for further analysis. This work was 

carried out by Matthew Forrest at the WTSI. 

2.6.5.3 Allele-specific expression assay data pre-processing 

Data from each array were summarised by calculating the per bead type average of 4 

quantities after outlier removal: the log2(Cy3) and log2(Cy5) intensities, average log-

intensities (1/2log2(Cy5.Cy3)) and log-ratios (log2(Cy5/Cy3)). Outliers were beads with 

values more than three absolute deviations from the median. Arrays with low dynamic 

range (determined using an inter-quartile range cut-off of < 1 for either the log2(Cy3) or 

log2(Cy5) summary intensities) were discarded. The summarised data were normalized 

by median centring of log-ratios. Normalisation was carried out in R using the Beadarray 

package (Dunning, Smith et al. 2007) by Matthew Ritchie at the CRI.  Direction of 

expression (high/low) was assigned to alleles for nsSNPs fulfilling the threshold criteria 

from the association study (adjusted r2 ≥ 0.27; i.e. the nsSNP explained at least 27% of 

the variance in gene expression so the effect is expected to be large) and the ASE assay 

(average cDNA log-intensity ≥ 12 within a population).  

2.6.6 Amino acid substitution effect 

Given that nsSNPs are likely to be functional I explored three aspects of the resulting 

amino acid substitution: a) relative position of substitution on the peptide, as a percent 

of peptide total length. b) hydrophobicity change in peptide resulting from the amino 

acid substitution. For each pair of variant sequences the hydrophobicity at the position 



66 

 

of the variant amino acid was calculated using the Kyte-Doolittle algorithm (Kyte and 

Doolittle 1982) and a window size of seven amino acids (centred on the variant amino 

acid).  The difference between hydrophobicity scores was then taken for each of the 

variant pairs in the dataset. c) Pfam score change in peptide sequence resulting from the 

amino acid substitution (Finn, Tate et al. 2008). All sequences were searched against the 

profile-HMM library provided by the Pfam database (release 22.0) using hmmpfam 

from the HMMer software package (version 2.3.2, http://hmmer.janelia.org/) and a 

default cut off E-value of 10. Only the HMM_ls library was used so that domain 

assignments to a pair of variant sequences were comparable. The set of Pfam domain 

assignments were then filtered such that only the domains that overlapped with the 

SNP position and that at least one of the domain assignments from a pair of variant 

sequences scored above the Pfam defined gathering threshold, were considered in the 

subsequent analysis. The difference between the two E-values was taken for each of the 

variant pairs in the dataset.  Pfam scores were provided by Robert Finn from the Pfam 

team at the WTSI.  

2.6.7 Impact of eQTL-nsSNP interaction in trans 

The impact of interactions between eQTLs and nsSNPs on gene expression in trans was 

tested for the CEU population. In a previous study (Stranger, Forrest et al. 2005), trans 

effects were found to be weak in the YRI population and the number of individuals in 

the CHB and JPT Phase 2 populations limit the power for detection of trans effects. To 

test the trans effect of eQTL-nsSNP interactions I pooled the minor allele homozygote 

and the heterozygote into a single genotypic category and then coded genotypes as 0 

(major allele homozygote) or 1 (heterozygote and minor allele homozygote) for both 

eQTL and nsSNP. As a result, four possible eQTL-nsSNP genotypic combinations are 

possible: 0-0, 1-0, 0-1, 1-1 (Figure 12). Analysis of variance (ANOVA) was performed 

http://hmmer.janelia.org/
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using the R software package (R Development Core Team 2008) to test the effects of: the 

eQTL, the nsSNP, and the eQTL x nsSNP interaction term against gene expression 

phenotypes in trans. In each case the gene from which the eQTL-nsSNP pair originated 

was excluded from the association test. To ensure all genotypic combinations were 

present and to avoid outlier effects, tests were carried out for 22 SNP pairs with low LD 

(D’ ≤ 0.5) between eQTL and nsSNP and a MAF ≥ 0.1 for both variants. 

  

 

 
Figure 12. Genotypes for eQTL and nsSNP were combined and used to test for impact of the 

eQTL-nsSNP interaction on gene expression in trans. The minor allele homozygote and the 

heterozygote were collapsed into a single genotypic category (red circles represent genotypes 

that were pooled for each variant). This resulted in two genotypic categories coded as 0 (major 

allele homozygote) or 1 (heterozygote and minor allele homozygote) for both eQTL and nsSNP. 

As a result, when combining eQTL-nsSNP genotypes four combinations (shown in the right 

column) are possible: 0-0, 1-0, 0-1, 1-1.  

 

To assess significance of interaction p-values a single permuted dataset of 

expression values relative to combined genotypes was generated and the p-value 

distributions of interaction terms for observed and permuted data were compared. To 

further evaluate the robustness of observed interactions, I permuted eQTL genotypes 
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relative to nsSNP genotypes and gene expression phenotypes, and re-ran the ANOVA 

association test for the top ten most significant interactions.  

2.7 EQTL FINE-SCALE ARCHITECTURE STUDY (CHAPTER 4) 

2.7.1 Recombination hotspot interval mapping and LD filtering 

LD is a useful property of the genome as it enables genome-wide mapping of variation 

associated with a phenotype. At a smaller scale however LD impedes fine-mapping as 

multiple correlated variants can show a significant association with a trait. The aim of 

this study was to identify those cis eQTLs that tag the effects of independent regulatory 

elements and in this way detect independent cis regulatory signals for a gene. To do this 

I mapped eQTLs in recombination hotspots and recombination hotspot intervals using 

data on the recombination patterns in the genome (McVean, Myers et al. 2004; Myers, 

Bottolo et al. 2005; Winckler, Myers et al. 2005).  

A recombination hotspot interval was defined as the space between two 

recombination hotspots and represents a segment of DNA with an independent 

recombination history (McVean, Myers et al. 2004). Recombination hotspot intervals 

were constructed using hotspot coordinates estimated from HapMap Phase 2 data and 

coordinates were lifted over to Build 36 using the UCSC liftOver tool 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver). eQTLs were mapped in intervals and only 

the most significant eQTL per interval was considered for further analysis. Correlation 

between this subset of eQTLs is still possible if LD extends across intervals and to 

ensure that independent signals were identified, the least significant variant from eQTL 

pairs with D’ ≥ 0.5 for a given gene was removed. Independent eQTLs (or regulatory 

intervals) therefore define genomic units likely to carry independent functional 

regulatory elements. The strategy described is shown in Figure 13. 

 

http://genome.ucsc.edu/cgi-bin/hgLiftOver
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Figure 13. Detecting independent eQTLs (intervals). Recombination hotspot intervals were 

defined as the space between two consecutive recombination hotspots (McVean, Myers et al. 

2004) and represent an approximation of genomic units with an independent history. To 

identify intervals with an independent effect on gene expression in cis, eQTLs were mapped in 

recombination hotspot intervals and the most significant eQTL for a given interval (shown in 

red) was retained. Further control for correlation was performed by excluding the least 

significant eQTL from eQTL pairs with a D’ > 0.5 (e.g. SNP1-SNP4, with SNP4 being the most 

significant of the two). In this example SNP4, SNP6 and SNP7 are independent cis eQTLs 

defining independent intervals. A modified version of this strategy was used to test the effects 

of interactions between SNPs that have an impact on gene expression in cis: SNPs with a 

nominal (uncorrected) p-value < 0.001 were mapped in intervals and SNP pairs with a D’ > 0.5 

were excluded from association testing. In this example an interaction effect would be tested for 

the following pairs: SNP4-SNP6, SNP6-SNP7, and SNP4-SNP7 (see section 2.7.3). 

 

D’ was chosen over r2 to filter for LD as it is a metric of the degree of historical 

recombination that has occurred between two variants (Hartl and Clark 2007). r2 on the 

other hand is an indicator of statistical correlation and not of historical relationships. As 

a result, if two SNPs have different MAFs, but there has been no historical 

recombination between them in the samples studied, r2 can take low values, but D’ = 1. 

Under such a scenario, if one SNP displays a strong association with expression levels 

of a gene, it can be that the other SNP is also associated with expression levels of the 

same gene, even if r2 is low. This is possible as the two SNPs may be tagging the same 
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functional variant since there has been no historical recombination between them. 

Using a D’ threshold (which translates to an even lower r2) ensures that the two signals 

are historically independent. Upon recombination hotspot interval mapping and LD 

filtering, I determined the number of independent intervals detected for each gene at 

the 0.01 and 0.001 permutation thresholds. This analysis was carried out for HapMap 

Phase 3 (Chapter 4) and GenCord data (Chapter 5). For GenCord an overlap analysis 

was carried out to determine the extent to which independent eQTLs (intervals) are 

shared across the three cell types studied. 

2.7.2 Independent eQTL distance to transcription start site 

To describe the cis regulatory landscape around genes, p-values and effect sizes (rho) of 

the most significant eQTL per gene were plotted relative to the TSS. This was done for 

both HapMap Phase 3 and GenCord data. HapMap Phase 3 data were analysed by 

Barbara Stranger at the WTSI.   

2.7.3 eQTL-eQTL cis interaction  

To further characterise cis regulatory architecture, HapMap Phase 3 SNP pairs were 

tested for an interaction with an impact on gene expression using the CEU and YRI 

populations. The interaction model employed in this analysis was identical to that 

described in section 2.6.7, but instead of testing interactions between regulatory (eQTLs) 

and protein-coding (nsSNPs) variation, I explored interactions between SNPs likely to 

tag regulatory variants. Variants tested were not filtered for permutation threshold 

significance (and are not termed eQTLs), but were SNPs with an observed nominal p-

value < 0.001 from the SRC cis association test. These variants were chosen so that SNPs 

that do not necessarily have large marginal effects are included in the interaction test. 

(Ideally all SNPs for a given gene should be tested for an interaction to uncover variants 
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that influence gene expression through interactions. At the time of writing, this was 

being explored in collaboration with Doug Speed and Simon Tavaré at the CRI). SNPs 

were mapped in recombination hotspot intervals and the most significant SNP per 

interval was kept. SNP pairs were constructed for each gene in cis, and pairs with D’ ≥ 

0.5 were excluded. ANOVA was used to test the main effects of each SNP, as well as the 

SNP x SNP interaction term, on gene expression in cis. A single permutation of 

expression values relative to genotypes was performed to assess significance of the 

interaction p-values. The p-value distributions of the interaction term for observed and 

permuted data were compared.  

2.8 EQTL CELL TYPE SPECIFICITY STUDY (CHAPTER 5) 

2.8.1 Association analysis 

GenCord data were used to investigate the cell type specificity of cis eQTLs. A total of 

22,651 probes covering 17,945 autosomal RefSeq genes (15,596 Ensembl genes) were 

tested for cis association with SNP genotypes using SRC. Cis association tests 

encompassed SNPs mapping in a 2 Mb window centred on the TSS. Following quality 

control and filtering for MAF ≥ 5%, a total of 394,651 SNPs were included in the 

analysis. Significance thresholds for each gene were assigned after 10,000 permutations 

of expression values relative to genotypes. To explore sharing and cell type specificity 

of significant associations, I compared eQTLs and genes across cell types and 

determined those that passed significance thresholds in all three, in at least two and in 

only one cell type (overlap analysis).  
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2.8.2 Repeated-measures ANOVA to investigate eQTL cell type specificity 

I used repeated-measures ANOVA (RMA), programmed in R (R Development Core 

Team 2008), to investigate the robustness of sharing and cell type specificity of 

associations. I tested shared and cell type-specific SNP-probe pairs identified from the 

overlap analysis (at the 0.001 permutation threshold), in tests where the repeated 

measure was the cell type. The analysis was run for pairs of cell types and the 

significance of the SNP x cell type interaction term was assessed. The expectation is that 

the interaction term will be significant for those eQTLs that were identified as cell type-

specific. 

2.8.3 Allele-specific expression assay 

ASE assays were used to validate a subset of cell type-specific eQTLs. Thirty five 

transcript SNPs (seven in fibroblasts, 14 in LCLs, and 14 in T-cells) in genes with 

identified cell type-specific eQTLs were tested for ASE in each cell type. The expectation 

is that allelic imbalance will be observed for the cell type in which the eQTL was 

detected. 800 ng of total RNA, in a total volume of 20 μl from fibroblasts, LCLs, and T-

cells was converted to cDNA using hexaprimers (Superscript II, Invitrogen). This work 

was carried out by Christelle Borel at the UGMS. gDNA (~40 ng) from LCLs and cDNA 

(~30 ng ) from each cell type, as well as an RNA control (~30 ng ) from 293 T-cells were 

genotyped using Sequenom’s MassArray allele specific assay without competitor 

(iPLEX Gold assay, Sequenom, San Diego, California, USA). Assays for all SNPs were 

designed using the eXTEND suite and MassARRAY Assay Design software version 3.1 

(Sequenom). Amplification was performed in a total volume of 5µL containing the 

DNA, 100 nM of each PCR primer, 500 nM of each dNTP, 1.25 x PCR buffer (Qiagen), 

1.625 mM MgCl2 and 0.2 U HotStar Taq (Qiagen). Reactions were heated to 95°C for 15 

minutes followed by 45 cycles at 94°C for 20 s, 56°C for 30 s, 72°C for 60 s and a final 
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extension at 72°C for 3 minutes. Unincorporated dNTPs were SAP digested prior to 

iPLEX Gold allele specific extension with mass modified ddNTPs using an iPLEX Gold 

reagent kit (Sequenom). SAP digestion and extension were performed according to the 

manufacturer’s instructions with reaction extension primer concentrations adjusted to 

between 0.731-2.193 µM, dependent upon primer mass. Extension products were 

desalted and dispensed onto a SpectroCHIP using a MassARRAY Nanodispenser 

(Sequenom) prior to analysis with a MassARRAY Analyzer Compact mass spectrometer 

(Sequenom). Allele-specific peak heights from the mass spectra of gDNA and cDNA 

were analysed to detect transcript SNPs showing allelic imbalance. This work was 

carried out by Naomi Hammond at the WTSI. The ratio of the two alleles of transcript 

SNPs was analysed in RNA samples of individuals who were double heterozygotes for 

both the eQTL and the transcript SNP.  

2.8.4 Biological properties of cell type-specific associations  

Gene Ontology (GO) terms (Ashburner, Ball et al. 2000) were used to investigate the 

biological properties of cell type-specific gene associations (at the 0.001 permutation 

threshold). GO terms were assigned to Ensembl Genes (Ensembl 50) and were then 

mapped on to their GO Slim ontologies. GO Slim represents a cut-down version of GO 

and gives a broader overview of the ontology (Ashburner, Ball et al. 2000). Fisher’s 

exact tests were used to compare GO Slim terms corresponding to gene associations 

that were cell type-specific vs. associations that were shared in all three cell types. 

Significant associations were those for which Fisher’s exact p-value ≤ 0.05. 

2.8.5 Tissue entropy 

Gene expression entropy was used as a proxy to gene expression specificity (Jongeneel, 

Delorenzi et al. 2005; Schug, Schuller et al. 2005; Martinez and Reyes-Valdes 2008). The 
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expression of genes possessing an eQTL in a single cell type (0.001 permutation 

threshold) was investigated using the GNF/Novartis expression atlas, which contains 

expression data for 10,424 Ensembl genes from 38 tissues (Su, Wiltshire et al. 2004). The 

GNF/Novartis data were used to calculate gene expression entropy as described in 

Schug et al (2005). Briefly, for expression levels measured in N tissues, the relative 

expression of a gene g in a tissue t is defined as: 

 

𝑝𝑡|𝑔 = 𝑊𝑔,𝑡/ Σ1≤𝑡≤𝑁  𝑤𝑔,𝑡        

 

where 𝑤𝑔,𝑡  is the expression level of the gene in that tissue. The entropy of a gene’s 

expression across N tissues is defined as follows:  

𝐻𝑔 =  Σ1≤𝑡≤𝑁 − 𝑝𝑡|𝑔𝑙𝑜𝑔2(𝑝𝑡|𝑔)       

 

To assess cell type specificity of associations, I compared the entropy distributions 

for genes with associations that were cell type-specific vs. associations that were: a) 

three cell type-shared, b) at least two cell type-shared, c) two cell type union. Significant 

differences in entropy distributions were those for which M-W p-value ≤ 0.05. 
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3 MODIFIER EFFECTS BETWEEN REGULATORY AND PROTEIN-

CODING VARIANTS 

In this chapter I will:  

 Outline how interactions between genetic variants have an impact on 

phenotypes.  

 Explain why detecting interactions is challenging.  

 Put forth a biological framework that can be used to test for 

interactions between regulatory (eQTLs) and protein -coding variants 

(nsSNPs) with an impact on gene expression.  

 Demonstrate a modification effect in cis, arising from the eQTL-nsSNP 

interaction, that also has a trans effect on gene expression.  

 Discuss the biological implications of this interaction.  

3.1 CONTEXT-DEPENDENT EFFECTS ON PHENOTYPES: INTERACTIONS 

To date, most association studies attempt to link single genetic variants to a specific 

phenotype (Brem, Yvert et al. 2002; Morley, Molony et al. 2004; Stranger, Forrest et al. 

2005; Goring, Curran et al. 2007). Most of the systems that underlie cellular, 

developmental and physiological function however are composed of many elements 

that interact with one another, often in complex ways (Phillips 2008). As a result the 

extent to which a phenotype is shaped by genetic factors may not be a simple reflection 

of their independent effects, but is likely to arise in part from context-dependent effects, 

such as interactions between genetic factors, as well as interactions between genetic 

factors and the environment (Gibson 2008; Phillips 2008; Flint and Mackay 2009). The 

interaction between genetic variants that results in a phenotypic effect conditional on 

the combined presence of two or more variants is called epistasis (Brem, Storey et al. 
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2005; Nagel 2005). Epistasis may arise from a variety of underlying mechanisms. Over 

the years geneticists have used this term to describe subtly different genetic phenomena 

including the functional relationship between genes, the genetic ordering of regulatory 

pathways and the quantitative differences of allele-specific effects (Phillips 2008; 

Cordell 2009). Philips (2008) defines three forms of epistasis: functional epistasis (the 

molecular interactions that proteins and other genetic elements have with one another), 

compositional epistasis (the blocking of one allelic effect by an allele at another locus), 

and statistical epistasis (the average effect of substitution of alleles at combinations of 

loci, with respect to the average genetic background of the population). Hartl and Clark 

(2007) define epistasis as any situation in which the genetic effects of different loci that 

contribute to a phenotypic trait are not additive. In this thesis I refer to epistasis as a 

property of specific alleles at two loci whose interaction has an impact on gene 

expression, and will use the term interchangeably with the term interaction.  

3.2 PREVALENCE AND BIOLOGICAL SIGNIFICANCE OF INTERACTIONS 

The prevalence and biological significance of epistasis has always been an area of 

interest in the field of genetics, but its contribution to phenotypic variation has 

remained obscure, largely because genetic interactions have proven difficult to test 

(Musani, Shriner et al. 2007; Cordell 2009). This difficulty arises primarily because it is 

unclear which variant combinations should be tested and under which model of 

epistasis. To date, such an approach has been most feasible for specific genes or 

biological pathways that have been well-characterised, mostly in model organisms.  

One of the best studied examples of epistasis is coat colour in mammals. In mice, 

an adaptive transition from dark to light coat colour accompanied the movement of 

dark-coloured forest mice from the forest to the beach (Steiner, Weber et al. 2007; 

Phillips 2008). The genetic basis for this transition stems from an interaction between 
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structural changes to the agouti locus and regulatory changes to the Mc1r locus. Obesity 

is another phenotype in mice that is affected by epistatic interactions and an extended 

network of epistatic QTLs has been discovered on chromosomes 4, 17, and 19 that 

controls regulation of fat pad depots and body weight (Stylianou, Korstanje et al. 2006). 

A classic example of an interaction between regulatory and protein-coding 

variation is the Adh locus in Drosophila (Laurie, Bridgham et al. 1991; Stam and Laurie 

1996). A series of regulatory SNPs in complex LD and with an impact on protein 

concentration, modify the effects of a protein-coding variant affecting the catalytic 

efficiency of this enzyme. Catalytic efficiency and protein levels determine overall 

enzyme activity. This example illustrates that large effects attributed to a single locus 

may arise as a consequence of multiple associated interacting variants and is a case of a 

modification effect in cis where the protein-coding effect is magnified or masked 

through the action of regulatory variants. More recent studies in Drosophila reveal 

epistatic effects between genes affecting traits such as ovariole number (Orgogozo, 

Broman et al. 2006) and olfactory avoidance (Sambandan, Yamamoto et al. 2006).  

In cases where little is known about the genes sculpting a phenotype, addressing 

the possibility of epistasis becomes more challenging. A recent study interrogating 

cardiac dysfunction in Drosophila (Ocorr, Crawley et al. 2007) identified a major 

susceptibility locus for this trait, but highlighted the importance of examining the 

phenotype in different genetic backgrounds to detect variants whose effects are 

manifest through interactions with the prime susceptibility locus. The extent of epistasis 

in a more global way has been demonstrated in yeast where experiments on gene 

expression revealed that interacting locus pairs are involved in the inheritance of over 

half of all transcripts (Brem, Storey et al. 2005; Boone, Bussey et al. 2007). Furthermore, a 

large proportion of the eQTLs attributable to interaction effects were not detected by 

single locus tests. This suggests that analysis of interaction effects in other systems is 

likely to uncover additional associations. 
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In humans, most documented cases of epistasis have been detected in instances 

where there are biological clues as to which genes should be tested. Epistasis between 

two multiple sclerosis (MS) associated human leukocyte antigen (HLA) alleles was 

demonstrated by Gregerson et al. (2006) who showed that one allele modifies the T-cell 

response that is activated by a second allele, through activation-induced apoptosis 

contributing to a milder form of MS-like disease. Similarly, Oprea et al. (2008) 

demonstrated that a specific modifier effect is protective against spinal muscular 

atrophy (SMA). SMA arises from a homozygous deletion of the SMN1 gene, but some 

deletion homozygotes escape the disease phenotype due to the modulating effects of 

expression of PLS2.  

Risk for nicotine dependence and lung cancer was shown to be sculpted by 

interactions between functional variants in genes belonging to the neuronal nicotinic 

acetyl choline receptor (nAChR) family (Wang, Cruchaga et al. 2009). nAChR genes 

encode pentameric ligand-gated ion channels that mediate fast signal transmission at 

synapses and modulate the release of neurotransmitters. Nicotine is an exogenous 

agonist of these receptors, and variations in nAChR genes are strong candidate risk 

factors for nicotine dependence and lung cancer. The authors of this study showed that 

interactions between a coding variant, that changes amino acid sequence in the α5 

nicotine receptor subunit gene CHRNA5 (D398N), and non-coding variants that 

regulate the gene’s expression levels confer risk for nicotine dependence and lung 

cancer. They conclude by stating that by establishing this cis modification effect they 

have identified a potential drug target.  

With the explosion of successful GWAS over the past three years, the natural next 

step is genome-wide interaction testing (Cordell 2009). Detecting epistasis is crucial as it 

is likely to uncover new variants affecting phenotypes. Additionally, epistasis may 

mask the genetic impact of variants and impede replication of primary associations. 

Differential fixation of variants that modulate the primary disease variant can therefore 
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affect the degree of penetrance of disease alleles and the need to address this property 

of genes in a systematic, genome-wide approach is becoming increasingly pressing. The 

case of MS clearly illustrates this: as with most complex disorders, MS has a polygenic 

heritable component characterised by underlying complex genetic architecture 

(Oksenberg, Baranzini et al. 2008). Association studies to date have met with modest 

success in identifying MS-causing genes, and a large proportion of phenotypic variation 

remains unexplained. The expectation is that this residual variation arises at least in 

part, as a consequence of gene-gene interactions.  

In this study I explored the extent to which regulatory variants modify protein-

coding effects in cis and tested whether this modification effect has an impact on gene 

expression of other genes in the genome in a trans effect. This work has been described 

in (Dimas, Stranger et al. 2008). 

3.3 BIOLOGICAL FRAMEWORK TO DETECT INTERACTIONS 

Most strategies that address the effects of epistasis in humans involve millions of 

agnostic pairwise tests falling into one of two broad categories: exhaustive testing of 

interactions between all pairs of variants across the genome (Marchini, Donnelly et al. 

2005), or testing of interactions between all pairs of variants with an independent main 

effect on the phenotype (Marchini, Donnelly et al. 2005; Evans, Marchini et al. 2006; 

Dixon, Liang et al. 2007). It is not entirely clear whether improvements in statistical 

methods will be sufficient to address the problem of epistasis. Therefore the 

development of realistic biological models of epistatic interactions may reduce the 

statistical cost of dealing with many comparisons and facilitate the development of such 

methodologies.  

In this study I present a biological framework for global survey of interaction 

effects in humans, which avoids exhaustive testing of agnostic pairs and involves 
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prioritisation of variants to be tested. Two types of functional variants are common 

throughout the human genome and are present at appreciable frequencies in 

populations: regulatory variants with an impact on the expression patterns and levels of 

genes (Pastinen and Hudson 2004; Birney, Stamatoyannopoulos et al. 2007; Forton, 

Udalova et al. 2007; Spielman, Bastone et al. 2007; Stranger, Nica et al. 2007) and 

protein-coding variants affecting protein sequence (Rodriguez-Trelles, Tarrio et al. 2003; 

Birney, Stamatoyannopoulos et al. 2007). To date, the effects of these variants have been 

considered independently of each other. In this study I evaluated the joint effects of 

regulatory and protein-coding variants on genome-wide expression phenotypes in 

humans to highlight an underappreciated angle of functional variation.  

As outlined in section 2.6.1 the proposed model brings together quantitative and 

qualitative variation, by testing the cis and trans impact on gene expression observed 

when a gene with an identified regulatory variant (eQTL) also contains protein-coding 

variation (nsSNP). Under such a scenario, and assuming that mRNA levels are 

indicative of mature protein levels, the resulting protein products will differ in quantity 

(expression level) and quality (amino acid sequence) among individuals (Figure 9). 

Depending on the historical rate of recombination between eQTLs and nsSNPs, 

different allelic combinations (haplotypes) can arise on the two homologous 

chromosomes in a population (Figure 14). As a consequence, phasing (the arrangement 

of alleles at each variant position with respect to one another) can differ between 

individuals in the population. Such an interaction results in a modification 

(magnification or masking) of the functional impact of the protein-coding variant. If the 

modified gene product has downstream targets, then expression of these target genes 

may also be affected in a trans manner.   
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Figure 14. Illustration of a hypothetical epistatic interaction between a regulatory (eQTL) and 

a protein-coding variant (nsSNP). Two double heterozygote individuals may be genotypically 

identical, but the phasing of alleles can be different and may result in very distinct phenotypes 

between individuals. In a) the A allele of the eQTL drives high expression levels of the protein 

arising from the C allele of the nsSNP. In b) the G allele of the eQTL drives low expression 

levels of the protein arising from the C allele of the nsSNP. If the protein-coding variant is 

functionally important then this interaction in cis can give rise to different means in the 

distribution of a complex trait phenotype (e.g. genome-wide expression levels) as shown on the 

right (trans effect).  

 

3.4 MODIFICATION EFFECT IN CIS: DIFFERENTIALLY EXPRESSED NSSNPS 

Using this model as a main principle, I explored the degree to which nsSNPs can be 

modulated by cis eQTLs. eQTLs were identified in a previous study (Stranger, Nica et 

al. 2007) in LCLs of the unrelated individuals of the Phase 2 HapMap populations  (60 

CEU, 45 CHB, 45 JPT and 60 YRI) (Table 4). LCLs represent one particular cell type and 

even though there may be some effect arising from EBV transformation, it has been 

demonstrated that genetic effects on gene expression, such as the ones I describe below, 
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are readily identifiable, mappable, and replicate in independent population samples 

generated decades apart (Dimas, Deutsch et al. 2009).  

 

 

 
Table 4. eQTLs detected in the HapMap Phase 2 populations (0.01 permutation threshold). 

Adapted from (Stranger, Nica et al. 2007).  

 

Two strategies were applied to detect DE nsSNPs. The first strategy involved 

scanning genes with known cis eQTLs (Stranger, Nica et al. 2007), for nsSNPs. The aim 

was to identify nsSNPs that are predicted to be DE as a consequence of a nearby 

regulatory variant tagged by the eQTL. I identified 606, 634, 679 and 742 genes with at 

least one eQTL at the 0.01 permutation threshold (estimated FDR of 20%) (Table 4). Of 

these genes 159, 168, 180 and 202 (union of 484) were found to contain 286, 304, 311 and 

393 nsSNPs respectively (union of 909) (Table 5). I infer that these nsSNPs are DE as 

they reside in genes with experimentally-derived varying expression levels. This means 

that there are allelic effects on gene expression such that, depending on the genotypes 

of the eQTL and nsSNP and on the phasing of their alleles, one can make predictions 

about the relative abundance of the two alleles of a transcript in the cell. 
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Table 5. a) nsSNPs and b) genes interrogated for differential expression. (DE: differentially 

expressed) 

 

The second strategy for DE nsSNP discovery involved direct association testing 

(using LR) between nsSNP genotype and expression levels of the gene in which the 

nsSNP resides. This strategy aimed to identify DE nsSNPs that are in LD with a 

regulatory variant that drives expression levels. Depending on the strength of the 

regulatory effect, such variants may or may not have been detected in the initial scan for 

eQTLs (Stranger, Nica et al. 2007). Relative distances between eQTLs and nsSNPs can 

vary, but in the special case where this distance is short in genetic terms, the two 

variants may be in LD (McVean, Spencer et al. 2005). Under these circumstances it is 

expected that the nsSNP itself will demonstrate some degree of association with 

expression levels of the gene in which it resides. I tested for genotype-expression 

associations in each population separately and in three multiple population sample 

panels (see section 2.6.3). 
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For the single-populations analysis, with significance evaluated at the 0.01 

permutation threshold, 56 nsSNPs and 34 genes are expected to have at least one 

significant association by chance. I detected 242, 276, 267 and 255 nsSNPs (union of 703; 

estimated FDR of 21%) with significant for the CEU, CHB, JPT and YRI populations 

respectively (Table 6 a). These associated nsSNPs correspond to 196, 226, 210 and 211 

genes (union of 560; estimated FDR of 16%) (Table 6 b). For the multiple-population 

analysis I detected 345, 362 and 417 nsSNPs (estimated FDR of 15%) for the four, three 

and two population groups respectively (Table 6 a), corresponding to 284, 296 and 320 

significant genes (estimated FDR of 11%) (Table 6 b). Overall, the multiple-population 

analysis yielded a total of 587 nsSNPs with significant associations, corresponding to 

461 genes. Taken together, the association analyses indicate that 884 nsSNPs (688 genes) 

across the four populations are associated with expression levels of the genes they are 

in, suggesting that they are in LD with regulatory variants driving their expression. In 

this specific case of association, the nsSNP itself serves as a proxy for the regulatory 

variant and knowledge of associated nsSNP genotype for an individual provides a 

prediction of relative abundance of the two transcript alleles. 
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Table 6. a) nsSNP and b) gene cis associations detected in single and multiple populations. 

 

To summarize, two classes of DE nsSNPs were discovered: a) 909 nsSNPs 

mapping in genes with a previously identified eQTL (considering nsSNPs of all 

frequencies) and b) 884 nsSNPs showing a significant association with expression levels 

of the gene they are in (considering nsSNPs with MAF ≥ 0.05) (Figure 15). From a non-

redundant total of 8,233 nsSNPs tested in four populations, 1,502 of these (~18.2%) are 

predicted to be DE. It is a plausible biological hypothesis that mature protein levels 

mirror transcript levels on average and as a consequence, this high fraction of DE 

nsSNPs may have important implications for levels of protein diversity in the cell.  
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Figure 15. Strategies applied to discover differentially expressed (DE) nsSNPs. a) Two 

approaches were employed to discover DE nsSNPs: nsSNPs mapping in genes with a known 

eQTL (i) and nsSNPs that were associated with expression levels of the gene they map in (ii). In 

(ii) the presence of a cis-acting regulatory variant is implied. For some nsSNPs with a significant 

association, an identified cis eQTLs also exists (iii). In all other cases the nsSNPs interrogated 

were not inferred to be to be DE (iv). b) Of the 8,233 nsSNPs studied, 909 mapped in a gene with 

an identified eQTL (i), 884 were found to be associated with levels of expression of the gene 

they reside in (ii), 291 nsSNPs with an identified eQTL also showed a significant association 

with expression levels (iii) and 6,731 nsSNPs showed no evidence of differential expression (iv). 

Taken together over 18% of nsSNPs were found to be DE. 

 

3.4.1 Linkage disequilibrium between eQTLs and nsSNPs 

Of the 884 DE nsSNPs detected through association testing, only 291 also possess a 

previously identified eQTL. This suggests that eQTL detection in our previous study 

was conservative and that nsSNPs can act as tags of undiscovered regulatory variants. 

With this in mind, it is expected that LD between eQTL-nsSNP pairs in which the 

nsSNP had a significant association with gene expression, will be greater than LD 

between eQTL-nsSNP pairs in which the nsSNP was not associated. To explore this, I 
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used data from the single population analysis, and compared the distribution of r2 

values between the two eQTL-nsSNP pair types. As expected, much higher LD was 

found for eQTL-nsSNP pairs where the nsSNP showed a significant association (M-W 

p-value < 0.0001) (Figure 16). This confirms that in most cases, association of the nsSNP 

with its gene’s expression is due to a regulatory variant tagged by the eQTL.  

 

 

Figure 16. Linkage disequilibrium (LD) properties of eQTL-nsSNP pairs. The distribution of 

r2 (a measure of LD) was compared between eQTL-nsSNP pairs in which the nsSNP acts as an 

eQTL (i.e. showed a significant association with its gene’s expression levels) and SNP pairs in 

which the nsSNP was not associated. As expected, r2 values are much higher in the first case, 

where the nsSNP is thought to act as a tag of the functional regulatory variant nearby. 
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3.4.2 Experimental verification of differentially expressed nsSNPs 

Thus far I have described relative abundance estimates for transcripts of genes 

containing nsSNPs using genotypic associations. To verify the statistical predictions of 

nsSNP association tests, it was necessary to perform direct allele-specific quantification. 

A subset of nsSNPs were tested for ASE (Pastinen, Ge et al. 2006; Forton, Udalova et al. 

2007) in heterozygote CEU and YRI individuals. The initial experiment included a total 

of 141 nsSNPs predicted to be DE, but the assay performed was new and proved noisy. 

As a result it was possible to confirm and analyse signals for 28 nsSNPs, after filtering 

for association r2 > 0.27 and ASE mean RNA intensity > 12. For heterozygous individuals 

at each nsSNP, I assigned relative expression of the two alleles and subsequently 

compared the experimentally derived relative abundance (ASE results) with the 

predictions of relative abundance from the genotypic association test. Predicted and 

experimentally-quantified relative expression of nsSNP alleles were in agreement for 

89% (16 out of 18) and 90% (9 out of 10) of nsSNPs tested in the CEU (Figure 17 a) and 

the YRI populations (Figure 17 b) respectively. This is in agreement with the estimated 

FDR and suggests strongly that the relative abundance of alternative coding transcripts 

can be inferred reliably by genotypic associations. 
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Figure 17. Comparison of statistically predicted and experimentally verified direction of 

nsSNP allelic effects. The predictions of the nsSNP association test were in agreement with the 

experimentally verified direction of expression in a) 89% and b) 90% of the cases studied in the 

CEU and YRI populations respectively. Red arrows point to the cases where association 

predictions did not agree with allele-specific expression (ASE) results.  

 

3.4.3 Properties of differentially expressed nsSNPs 

To assess the potential biological impact of DE nsSNPs I compared three functional 

attributes of amino acid substitutions arising from DE nsSNPs and non-DE nsSNPs 

(testing nsSNPs with MAF ≥ 0.05, to assess common nsSNP consequences). I 

investigated: 1) the relative position of substitution on the peptide, as different effects 

may arise depending on whether the nsSNP is at the beginning or the end of the 

peptide (Figure 18 a), 2) the resulting change in peptide hydrophobicity which may 

alter the interactions of a protein (Kyte and Doolittle 1982) (Figure 18 b) and 3) the 

resulting change in Pfam score (a measure of amino acid profile in each position of a 

protein domain) (Finn, Tate et al. 2008), which assesses the integrity of protein domains 

that are evolutionary conserved and likely to harbour important functions (Figure 18 c). 

In all cases the properties of DE nsSNPs were not different from those of non-DE 

nsSNPs (M-W p-value ≥ 0.05). Though indirect and not comprehensive, this finding 
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suggests that DE nsSNPs may be a random subset of nsSNPs. If these variants have a 

functional impact, this will be modified (magnified or masked) by the regulatory 

variant tagged by the eQTL.  

 

 
Figure 18. Comparison of biological properties of differentially expressed (DE) vs. non-DE 

nsSNPs. Three functional attributes of the amino acid substitutions resulting from DE nsSNPs 

vs. non-DE nsSNPs were compared: a) relative position of substitution on the peptide, b) 

resulting change in peptide hydrophobicity and c) resulting change in Pfam score when 

searched against the Pfam profile Hidden Markov Model library. In all cases Mann-Whitney 

(M-W) tests did not reveal a significant difference between DE and non-DE nsSNPs (M-W p-

value ≥ 0.05) and DE nsSNPs appear to be a random subset of nsSNPs. Therefore, if a random 

nsSNP has a phenotypic effect, this is likely to be magnified or masked through differential 

expression driven by cis-acting regulatory variants. 
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To assess how many DE nsSNPs have a known function, I explored the Online 

Mendelian Inheritance in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/omim/) 

and found that 71 (out of 1,502) DE nsSNPs had an OMIM entry (OMIM nsSNPs, the 

genes they map in and the predicted health impact are shown in the Appendix). DE 

nsSNPs were found to map in genes with a role in cancer susceptibility (BRAC1 

(+113705), BARD1 (+113705)), asthma and obesity (ADRB2 (+109690)), Crohn disease 

(CD) (DLG5 (*604090)), myokymia (KCNA1 (*176260)), diabetes (OAS1 (*164350)), 

chronic lymphatic leukaemia (P2RX7 (*602566)) emphysema and liver disease (P 

I(+107400)), severe keratoderma (DSP (+125647)), and familial hypercholesterolemia 

(ABCA1 (+600046)). In some cases the functional role of the nsSNP is unclear and the 

noise in reported functional effects in OMIM is well-known and difficult to assess in a 

study such as the present. However there are examples where specific effects have been 

attributed to nsSNPs. For example, rs28931610 in DSP is predicted to change disulphide 

bonding patterns and alter the peptide tertiary structure, rs28933383 in KCNA1 causes a 

substitution in a highly conserved position of the potassium channel and is predicted to 

impair neuronal repolarization, rs28937574 in P2RX7 is a loss of function mutation 

associated with chronic lymphatic leukaemia, rs28931572 in PI entails a replacement of 

a polar for a non-polar amino acid and is predicted to disrupt tertiary structure of the 

protein, and rs2230806 in ABCA1 is associated with protection against coronary heart 

disease in familial hypercholesterolemia. The modulation of such strong effects by cis 

regulatory variation may increase the complexity and severity of the biological impact.  

3.5 EQTL-NSSNP EPISTATIC EFFECT IN TRANS 

Thus far I have presented evidence for a modification effect in cis. In cases where the 

gene containing the DE nsSNP has downstream targets, then it is likely that the 

expression of target genes is also affected. The aim of this analysis was to test for the 

http://www.ncbi.nlm.nih.gov/omim/
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genome-wide effects of this interaction directly, in a statistical framework. To do this I 

carried out ANOVA to test the main effects of eQTLs and nsSNPs as well as their 

interaction term (eQTL x nsSNP) on genome-wide gene expression. The rationale 

behind this approach is that if an eQTL-nsSNP interaction is biologically relevant, its 

effect may influence gene expression in trans. The power to detect an interaction is 

maximized when all combinations of genotypes are present, each at appreciable 

frequencies in the population. To increase power of interaction detection, rare 

homozygotes were pooled with heterozygotes into a single genotypic category, creating 

a 2x2 table of genotypes (section 2.6.7). This does not introduce bias in the test statistic 

as shown by permutations below. Analyses were performed for the CEU population as 

CHB and JPT population samples were small (45 individuals) and YRI have shown low 

levels of trans effects in previous studies (Stranger, Nica et al. 2007). I tested 22 eQTL-

nsSNP pairs with low LD (D’ ≤ 0.5) and a MAF ≥ 0.1 for both SNPs, against genome-

wide expression. At the 0.001 nominal p-value threshold, roughly 331 significant 

associations are expected (assuming a uniform distribution of p-values) for the 

interaction term. I detected 412, which corresponds to an estimated FDR of 80%. This is 

an overall weak signal, but the signals at the tail of the distribution appear to be real 

given the limited power of this analysis (Figure 19 a). 
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Figure 19. Impact of eQTL-nsSNP genetic interaction on trans gene expression. a) QQ plot of 

observed vs. expected –log10 p-values of the interaction term from analysis of variance 

(ANOVA) under the assumption of a uniform distribution of expected p-values. b) QQ plot of 

observed vs. permuted –log10 p-values of the interaction term from ANOVA. c) The interaction 

between rs13093220 (eQTL) and rs3009034 (nsSNP) on chromosome 3 is associated with 

changes in expression of gene NDN (probe ID GI_10800414-S) on chromosome 15 (interaction p-

value = 4.5*10-11). d) The interaction between rs6776417 (eQTL) rs17040196 (nsSNP) on 

chromosome 3 is associated with changes in expression of gene RLF (probe ID GI_6912631-S) on 

chromosome 1 (interaction p-value = 2.2*10-5). 

 

To test for potential biases in the statistic used, I carried out the same tests using 

permuted gene expression values (a single permutation was performed by maintaining 

the correlated structure of gene expression data, see section 2.6.7) relative to the eQTL-

nsSNP genotypes. I explored the p-value distribution of the eQTL-nsSNP interaction for 

observed and permuted data (Figure 19 b) and found an abundance of low p-values in 
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the observed data. There appears to be some degree of p-value inflation in the observed 

data relative to the permuted data which is most likely due to correlations in gene 

expression values. However this does not affect the enrichment of p-values seen at the 

tails of the observed distribution relative to distributions from expected and permuted 

values. The observed results therefore show enrichment relative to a uniform 

distribution of p-values (permutation was not performed to assess significance 

thresholds, but to assess enrichment of tests with low p-values in the observed data). To 

further evaluate the robustness of the interactions, I repeated the analysis for the top ten 

eQTL-nsSNP significant pairs against their corresponding trans-associated gene 

expression phenotype, after permuting eQTL genotypes relative to nsSNP genotypes 

and gene expression values. As expected, the significance of the interaction term 

vanishes in the permuted data. The conditional effects of alleles at the eQTL and nsSNP 

loci can therefore have a very different impact on the expression of other genes in the 

cell. This conditional effect on gene expression is illustrated in Figure 19 c and Figure 19 

d which show two examples of eQTL-nsSNP interactions (interaction term p-values = 

4.5x10-11 and 2.2x10-5 respectively). In Figure 19 c rs3009034 has an effect on gene 

expression of gene NDN only if the genotype of rs13093220 is homozygous for the 

common allele. The phenotypic effect of such interactions is even more prominent in 

Figure 19 d where opposite directions of the effect of rs1704196 are observed. Table 7 

shows summary statistics and specific information of SNPs and genes for the ten most 

significant interactions with a trans effect. 
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Table 7. eQTL-nsSNP pairs with the most significant interaction effects in trans. Summary 

statistics and information about mapping location as well as source and trans-affected genes are 

shown. (chr: chromosome, loc: location, MAF: minor allele frequency)  

 

3.6 CONCLUSIONS 

I have presented a biological framework to interrogate functional genetic variation by 

focusing on a specific case of epistasis between regulatory and protein-coding variants. 

I demonstrated that regulatory variants may have an impact on the protein diversity of 

cells by differentially modulating the expression of protein-coding variants. In cis, 

regulatory variants can amplify or mask the functional effects of protein-coding 

variants. If the coding variant has a role in disease, such an interaction is likely to result 

in a milder or more severe phenotype to the one expected if only the protein-coding 

variant were present. Cis interactions were also shown to affect the expression of other 

genes in the cell in a trans effect, revealed only if an interaction between variants is 

specifically tested for.  

The conditional and context-dependent effects of alleles of variants are likely to 

have important consequences for complex and quantitative phenotypic traits (Flint and 

Mackay 2009). In this study I put forth a biological framework for considering and 

conditioning existing disease associations on known regulatory and protein-coding 
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variants, in an approach that also provides a potential explanation for the differential 

penetrance of known disease variants. The abundance of cis regulatory and protein-

coding variants in human populations and the generic nature of this type of epistatic 

interaction (no assumptions made about specific biological pathways) makes it likely 

that such interactions are common genetic factors underlying complex traits and their 

consideration is likely to reveal important associations that have not been detected to 

date. Furthermore, this consideration is particularly important for studies that fail to 

replicate primary disease associations in newly tested populations, since some of the 

failures may be due to differential frequency of modifier alleles between the first and 

second population. Consideration of such interactions may assist in better 

interpretation of non-replicated signals.  
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4 FINE-SCALE ARCHITECTURE  OF THE CIS REGULATORY 

LANDSCAPE 

In this chapter I will:  

 Discuss that LD is a useful property of the genome for association 

studies at the large scale, but that it can impede the fine-mapping of 

functional variants.  

 Outline a number of approaches employed to enable localization and 

identification of functional variants.  

 Present a strategy used to scan all cis eQTLs detected for a given gene 

and to identify those that tag independent effects on gene expression. 

 Describe the genetic architecture of the cis regulatory landscape and 

show that multiple regulatory elements can interact to regulate 

expression in cis.  

4.1 FROM GENOME-WIDE ASSOCIATION HITS TO FUNCTIONAL VARIANTS 

The power of a SNP to show association with a phenotype is related to its correlation 

coefficient with the causal variant (Ioannidis, Thomas et al. 2009). This correlated 

structure of variants in the genome has made it possible to carry out GWAS and 

identify a plethora of associations between genetic variants and complex traits. 

However, the variants discovered are not necessarily the ones that give rise to 

phenotypes, but are more likely tags of functional drivers. Furthermore, when a locus is 

identified by SNP association, the causal mutation itself need not be a SNP (Altshuler, 

Daly et al. 2008). For example variants in the IRGM gene were found to be associated 

with CD, but subsequent analysis indicated that the causal mutation is most likely a 
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deletion upstream of the promoter affecting tissue-specific expression (McCarroll, Huett 

et al. 2008).  

Using GWAS-detected regions as a starting point, the field is currently focusing 

on strategies for the localization and identification of true functional variants. It is only 

when these variants are discovered that it will be possible to piece together the 

biological pathways and processes sculpting complex traits and disease risk. Fine-

mapping and identification of functional variants is not an easy task as the correlated 

structure between variants can impede fine-mapping, with patterns of LD determining 

the number of markers required to detect and fine-map an association (Mackay, Stone et 

al. 2009). If a group of markers is in high LD, it is only necessary to genotype one of 

them as a proxy for all others in the LD block. In pure breeds of dogs for example, 

where LD blocks are large, only a few markers are required to detect candidate regions. 

However it is not possible to localize functional variants precisely using this approach 

(Sutter and Ostrander 2004). In species such as Drosophila, LD declines rapidly over 

short physical distances and knowledge of all sequence variants is necessary for 

association mapping (Carbone, Jordan et al. 2006), but localization of variants with an 

impact on the phenotype is precise. Given the extent of LD in humans,  genetic variants 

are likely to have a number of close proxies (Slatkin 2008). A detailed survey of 5 Mb of 

the human genome (Encyclopedia of DNA Elements or ENCODE regions) genotyped 

and sequenced in HapMap individuals, revealed that over half of all common SNPs 

have at least 10 other SNPs in their proximity with an r2 > 0.8 (International HapMap 

Consortium 2005).  

Fine-mapping established associations involves selecting a set of non-redundant 

SNPs that are in perfect, or near perfect correlation (Ioannidis, Thomas et al. 2009). The 

rationale behind this approach is that one of the variants selected is the functional 

driver of the phenotype. Consequently, fine-mapping requires detailed knowledge of 

variation. Currently the most complete catalogue of human genetic variation is the 
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HapMap Phase 2, (four million SNPs genotyped for four geographically distinct 

populations), which covers roughly 30% of common variants. A much more detailed 

assay of variation will be provided by the ongoing 1000 Genomes Project which 

involves sequencing the genomes of 1,000 individuals (http://www.1000genomes.org). 

Deeper sequencing will subsequently reveal rarer variants (International HapMap 

Consortium 2005). 

GWAS interrogating regulatory variation are also faced with the same issues 

when it comes to localization of functional variants. Association studies of SNP 

genotypes with transcript levels reveal that for most genes multiple cis eQTLs exist 

(Stranger, Nica et al. 2007; Dimas, Stranger et al. 2008; Dimas, Deutsch et al. 2009). In 

such cases, it is likely that most variants mapping to the same genetic locus and are in 

high LD do not tag independent regulatory effects. On the contrary, SNPs with 

promising association signals are those that are not in LD and are expected to contribute 

independent effects to the phenotype of interest (Ioannidis, Thomas et al. 2009). Single 

loci however may harbour multiple independent functional variants, as is the case of 

chromosome 8q24 which contains seven independent risk alleles for prostate cancer 

(Haiman, Patterson et al. 2007). 

4.2 NARROWING DOWN THE REGION OF INTEREST 

Mapping eQTLs has two components: detection and localization (Mackay, Stone et al. 

2009). eQTL detection depends on effect sizes and allele frequencies and delimits a 

broad genomic region harbouring regulatory elements. Localization or fine-mapping of 

eQTLs depends on the recombination frequency between regulatory elements and 

markers. Many approaches have been employed to fine-map eQTLs mostly by 

narrowing down the region likely to harbour the regulatory variant. In general, the 

smaller the space outlined by significant associations, the narrower the region that has 

http://www.1000genomes.org/
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to be surveyed for variation, although this can be complicated by local patterns of LD, 

population history and non-genetic factors. Despite all this, one of the ways forward is 

to make use the properties of the genome (e.g. information about recombination hotspot 

intervals) and integrate data from various fields to limit the size of the genomic space to 

be scanned. Some approaches employed thus far are discussed below.  

One approach, employed by Veyrieras et al (2008) who studied HapMap Phase 2 

LCLs, involved taking the position of the most significant SNP as an estimate of the 

location of the functional site. The authors point out that this is only a rough proxy and 

that these SNPs are unlikely to be true functional variants since: a) HapMap Phase 2 

contains only about a third of common SNPs, b) some significant SNP associations may 

arise if the SNP is in LD with CNVs and c) non-functional SNPs in strong LD with the 

causal SNP may have lower p-values just by chance. A Bayesian hierarchical model 

incorporating information about the physical location of SNPs, as well as SNP 

functional annotation was used to create a high-resolution map of cis regulatory 

variation. Thirty three percent of most significant eQTLs were found to map within 10 

kb of the TSS, and immediately upstream of transcription end site (TES). The former are 

likely to be polymorphisms that affect the strength of TF binding sites and influence the 

rate of transcription. The latter may have an impact on microRNA binding and 

subsequent transcript degradation. eQTLs were also found to be more frequent in exons 

compared to introns, suggesting that these polymorphisms may affect transcript 

stability or rate of degradation.  

Another study interrogating cis regulatory variation employed allelic expression 

to measure the relative expression of alleles within a sample, assaying both primary 

(unspliced) transcripts and mRNA (Pastinen and Hudson 2004). This approach yields 

direct (vs. statistically inferred) relationships between SNPs and cis regulatory 

differences (Verlaan, Ge et al. 2009),  but does not detect differences in transcript levels 

driven by variants unlinked to the primary transcript. Allelic expression screening in 
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LCLs and primary osteoblasts revealed that even for genes that were expressed in both 

tissue types, identical haplotypes exerted different effects in ~ 50% of the cases. 

Therefore the same haplotype can display different regulatory effects depending on the 

tissue it is acting in. (Note that in this study each tissue type originated from one of two 

populations. Both populations however were of Northern European origin). 

A third study investigated the relationship between expression levels of 4,200 

genes and proportion of European ancestry in LCLs from African American individuals 

(Price, Patterson et al. 2008) who inherit variable proportions of African and European 

ancestries. It was shown that expression differences in individuals of different ancestry 

proportions reflect expression differences between African and European populations. 

Using information on an individual’s ancestry at the location of a gene whose 

expression was being analysed, ancestry effects were employed to quantify the relative 

contributions of cis and trans regulation of human gene expression. The authors 

estimated that 12 ± 3% of all heritable variation in human gene expression is due to cis 

variants. However, as they point out, distinction between cis and trans was somewhat 

imprecise due to the extended length (> 10Mb) of segments of continental ancestry in 

African Americans.  

The examples above illustrate that association analyses testing marker panels 

cannot differentiate causal SNPs from proxies. Identifying causal variants will be aided 

by obtaining a more complete catalogue of genetic variation (e.g. 1000 Genomes), but 

also by cataloguing variants with a functional role on a genome-wide scale. This is the 

aim of the ENCODE Project (Birney, Stamatoyannopoulos et al. 2007), whose ultimate 

goal is to find all functional elements in the genome across different cell types. In its 

pilot phase, a number of techniques were employed to analyse 1% (30Mb) of the human 

genome. 

With the same aim in view, two recent studies focused on identifying regulatory 

elements across the genome. In the first study Heintzman et al  (2009) used a chromatin 
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immunoprecipitation (ChIP)-based microarray method to identify promoters, enhancers 

and insulators in multiple cell types and investigate their role in cell type-specific gene 

expression. Over 55,000 potential transcriptional enhancers were identified, marked 

with highly cell type-specific histone modification patterns. The patterns detected 

correlated strongly to cell type-specific gene expression programmes on a global scale 

and were functionally active in a cell type-specific manner. In contrast, the chromatin 

state at promoters, as well as binding of CTCF (a major protein involved in insulator 

activity), were largely invariant across diverse cell types. The second study used in vivo 

mapping of p300 binding to identify regulatory sequences that control the spatial and 

temporal expression of genes (Visel, Blow et al. 2009). p300 is a near-ubiquitously 

expressed transcriptional co-activator and a component of enhancer-associated protein 

assemblies. ChIP of p300, followed by massively parallel sequencing led to mapping of 

several thousand p300 binding sites in mouse embryonic forebrain, midbrain and limb 

tissue. Eighty six of the identified sequences were tested in a transgenic mouse assay 

and enhancer activity was detected in nearly all cases. 

In this study I dissected the fine-scale architecture of the cis regulatory landscape 

using eight of the eleven HapMap Phase 3 populations. I designed and applied a 

strategy to filter all cis eQTLs detected for a given gene and identify those that tag 

independent regulatory elements. I also explored the extent to which pairs of 

interacting variants shape expression levels in cis to highlight the complexity and 

multidimensionality of gene regulation. At the time of writing this work was in 

preparation for publication.  

4.3 HAPMAP PHASE 3 CIS EQTLS 

With the availability of additional populations, as well as additional individuals per 

population, HapMap Phase 3 provides greater power for eQTL detection within and 
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across populations. SRC was used to test for association in cis between SNP genotypes 

(of approximately 1.2 million SNPs per population) and transcript levels of 18,226 

Ensembl genes, independently in each population and considering only unrelated 

individuals (Table 8). All SNPs mapping in a 2 Mb window, centred on the TSS of genes 

were tested and correction for significance was through permutations. Gene expression 

for GIH, LWK, MEX and MKK was PCA-corrected and analysed against non-PCA-

corrected genotypes (see section 2.3.2.1). This work was carried out in collaboration 

with Barbara Stranger and Stephen Montgomery at the WTSI.  

 

 
 

Table 8. HapMap Phase 3 SNPs, probes and total association tests performed in cis. 

 

At the 0.01 permutation threshold of significance, roughly 180 genes are expected 

to have one significant association by chance. We detected 657, 774, 698, 795, 773, 472, 

947 and 799 genes in CEU, CHB, GIH, JPT, LWK, MEX, MKK and YRI populations 

respectively (estimated FDR of 20-40%) (Table 9). From a non-redundant union of 3,130 

gene associations (18% of all genes tested) 1,074 (34%) were shared in at least two 

populations and 63 (2%) had a significant association in all eight populations.  
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Table 9. HapMap Phase 3 cis significant gene associations. 

 

To explore the location and strength of cis eQTLs for each of the eight 

populations, the distance of the most significant cis eQTL per gene was mapped relative 

to the TSS. In agreement with previous studies (Stranger, Nica et al. 2007; Veyrieras, 

Kudaravalli et al. 2008) a strong signal was found close to the TSS, with no discernable 

trend in a 5’ or 3’ direction (Figure 20). This symmetrical trend has also been 

documented in the analysis of the ENCODE Consortium (Birney, Stamatoyannopoulos 

et al. 2007) and is likely to reflect variation in core regulatory sequences such as 

promoter elements.  
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Figure 20. Distance (in bases) of the most significant cis eQTL per gene to the transcription 

start site (TSS). For HapMap Phase 3 populations (0.01 permutation threshold) the strength and 

abundance of cis eQTLs decrease with increasing distance from the TSS. 

 

4.4 INDEPENDENT REGULATORY INTERVALS 

Over half of the genes with a significant association at the 0.01 permutation threshold 

possess more than one SNP with a significant association in each of the eight 

populations (Figure 21 a and Figure 21 b). Multiple eQTLs identified for a given gene 

most probably tag the effects of the same regulatory element. Gene regulation however 

is dependent on the joint action of multiple regulatory elements (Figure 22) and the aim 

of this study was to identify cis eQTLs that tag independent regulatory effects 

(independent eQTLs or regulatory intervals).  



106 

 

 
 
Figure 21. Percent of genes with multiple cis eQTLs and independent intervals. a) shows the 

% of genes possessing multiple cis eQTLs prior to recombination hotspot interval mapping and 

LD filtering and b) shows the % of genes possessing multiple independent cis eQTLs (intervals) 

(0.01 permutation threshold).  

 

A detailed description of the strategy employed to do this has been given in 

section 2.7.1. Briefly, for a given gene eQTLs were mapped in recombination hotspot 

intervals, the most significant eQTL per interval was retained and remaining eQTLs 

were filtered further to exclude the least significant variant from variant pairs with a D’ 

> 0.5. This rigorous filtering strategy ensures that surviving eQTLs tag the effects of 
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independent regulatory elements. Furthermore, since filtering is strict the count of 

independent cis eQTLs most likely represents the lower bound of the true number of 

regulatory elements controlling the expression of genes. As expected, the number of cis 

eQTLs detected for each gene after filtering is much lower (Figure 21 c and Figure 21 d). 

 

 
 

Figure 22. Multiple independent regulatory elements control gene expression. a) Regulatory 

elements interact with each other to control levels of transcription. In this example independent 

regulatory elements (with variation in the population) are shown in blue, orange and green and 

map in different recombination hotspot intervals. The red bars represent SNPs tagging the 

effects of these elements. b) The action of multiple elements controls transcription initiation. 

Folding of DNA allows numerous activators bound to enhancer sequences to make contact with 

the basal transcription complex. From (Clark 2005). 
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At the 0.01 permutation threshold the number of genes possessing multiple 

independent intervals ranged from 5-10% across the eight populations (Table 10). 

Specifically, 50 genes with multiple eQTLs (8% of all genes tested), 46 (6%), 44 (6%), 55 

(7%), 36 (5%), 34 (7%), 97 (10%) and 52 (7%) were detected for the CEU, CHB, GIH, JPT, 

LWK, MEX, MKK and YRI populations respectively. Taken together, multiple 

independent regulatory intervals were detected for approximately seven percent of 

genes. This observation is in agreement with a mechanism for gene regulation involving 

the coordinated action of multiple elements (Figure 22). 

 

 
 

Table 10. HapMap Phase 3 independent eQTLs (intervals) at the 0.01 permutation threshold. 

 

To address the extent to which gene activity is controlled by common regulatory 

sequences across populations, I explored sharing of independent eQTLs (intervals). This 

was done for all regulatory intervals detected in each population and comparison was 

not restricted to intervals detected for a given gene (the latter analysis was ongoing at 

the time of writing). At the 0.01 permutation threshold and from a non-redundant 
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union 3,288 independent intervals, 2,281 (70%) were found in a single population, 404 

(12%) were shared in exactly two populations, 201 (6%), 145 (4%), 84 (3%), 65 (2%), 52 

(2%) and 56 (2%) were shared in exactly three, four, five, six, seven and all eight 

populations respectively. Taken together, roughly 31% of intervals were found in at 

least two populations (Table 11). The high proportion of intervals detected in only one 

population suggests that even for the same cell type, genes are regulated to some extent 

by different regulatory elements across populations. Conversely, sharing of intervals 

implies sharing of regulatory elements. Relative sharing in ≥ five populations increased 

with higher significance stringency. The lower degree of sharing at the 0.01 permutation 

threshold may arise as a consequence of winner’s curse (Goring, Terwilliger et al. 2001; 

Lohmueller, Pearce et al. 2003; Ioannidis 2008) which states that the effect sizes 

discovered when applying specific statistical significance thresholds are inflated 

compared to true effect size. Consequently the discovery sample usually achieves 

higher significance than replication samples. In this analysis the degree of sharing 

across populations may be underestimated if a gene with a significant association in one 

population barely fails significance correction in a second population. Sharing is likely 

to be further underestimated due to the fact that eQTL detection is affected by allele 

frequency differences across populations. Therefore a regulatory element may be active 

in multiple populations, but detected via an eQTL only in a fraction of these groups.  
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Table 11. Sharing of intervals for HapMap Phase 3 cis significant genes.  

 

4.5 EQTL-EQTL INTERACTION IN CIS 

As outlined above, the genetic architecture of cis regulatory landscapes is complex with 

multiple regulatory intervals controlling gene expression. To dissect cis regulatory 

architecture further, I explored the degree to which interactions between variants in cis 

affect expression levels. DNA sequences containing enhancer elements for example are 

known to loop over great distances (> 1 Mb) and make physical contact with regulatory 

elements close to the TSS, in an interaction that affects initiation and rate of 

transcription (Figure 22 b). To detect such interactions, I applied a similar strategy to 

that used in Chapter 3 to test for interactions between regulatory and protein-coding 

variants (also see section 2.6.7). This analysis was carried out for the CEU and YRI 

populations.  

SNPs with a nominal (uncorrected) p-value < 0.001 from the SRC association test 

were mapped in recombination hotspot intervals and the most significant SNP per 

interval was retained. SNP pairs with a D’ > 0.5 across intervals were excluded from the 

analysis. Filtering for permutation significance was not performed to include variants 

that do not necessarily have large marginal effects on the phenotype, but whose impact 
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on gene expression may be revealed through an interaction. I carried out ANOVA to 

test the independent effects of each SNP as well as the SNP x SNP interaction term on 

gene expression in cis. Assuming a uniform distribution of nominal p-values, at the 0.01 

nominal p-value threshold approximately 47 and 79 significant associations are 

expected by chance for the interaction term in the CEU and the YRI populations 

respectively. I detected 87 and 131 associations corresponding to an estimated FDR of 

54% and 60% respectively (Table 12). At the stricter 0.001 nominal p-value threshold, 

approximately 5 and 8 significant associations are expected by chance for the interaction 

term in the CEU and the YRI populations respectively. I detected ten and 22 

corresponding to an estimated FDR of 47% and 36% respectively (Table 12). Although 

this is not a very strong signal, given the strict filtering and relatively low power of this 

analysis, an enrichment of significant interaction terms is observed.  

 

 

Table 12. Expected and observed significant interaction terms for CEU and YRI.  

 

To explore this signal further, I conducted a single permutation of expression 

levels relative to genotypes. The p-value distributions of observed and permuted 

interaction terms were compared and an abundance of low p-values was found in the 

observed data for both populations (Figure 23). This suggests that gene expression in cis 

is sculpted to a certain extent by interacting regulatory elements.  
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Figure 23. QQ plots of observed vs. permuted cis interaction p-values for the CEU and YRI 

HapMap Phase 3 populations. The signal at the tail of the observed distributions suggests that 

interactions between variants in cis influence expression levels of genes.  

4.6 CONCLUSIONS 

The signals detected in GWAS stem from markers that are not likely to be the causal 

variants. Furthermore, these markers typically delineate large genomic spaces that 

harbour causal variants. Replication of signals in independent studies provides 

corroborating evidence of causality, but the problem of delimiting the space carrying 

the functional variants remains. In this chapter I have presented a strategy that makes 

use of the properties of the genome and can be employed to restrict the space likely to 

contain regulatory elements controlling gene expression in cis. Using eight of the 

HapMap Phase 3 populations I demonstrated that seven percent of genes (0.01 

permutation threshold) across all populations possess multiple independent regulatory 

intervals. The strategy applied involved strict filtering to remove highly correlated 

markers likely to tag the same regulatory element. As outlined in section 1.4.1, 

regulatory element length ranges from a few to a few hundred bp. Recombination 
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hotspot intervals on the other hand have a median length of 9,000 bp, ranging from a 

minimum of 998 bp to a maximum 31,495,264 bp. As a result, a single interval may 

contain multiple regulatory elements. The strategy employed in this study involved 

selection of the most significant eQTL per interval. Therefore, the number of truly 

independent eQTLs acting on genes in cis is likely to be higher and the method 

employed is most probably conservative.  

The complexity of the regulatory landscape is further demonstrated through 

evidence of interactions between genetic variants with a small marginal impact on gene 

expression in cis. Using the CEU and YRI populations I explored the extent to which 

SNPs mapping in different intervals jointly affect cis expression levels. Although 

relatively underpowered, also because the ability to detect an interaction decays 

substantially when proxies of the functional variants are used, this study presents 

evidence for a cis interaction between regulatory variants. This approach does not test 

markers without marginal effects and cannot reveal variants that manifest themselves 

only in the context of an interaction. Consequently, the extent to which expression is 

influenced by interactions between variants in cis is likely to be an underestimate. A 

potentially more informative approach is to test all SNP pairs in the vicinity of a gene. 

This is currently being explored in collaboration with Doug Speed and Simon Tavaré at 

the CRI. 

This study has highlighted the complex architecture of the cis regulatory landscape. 

GWAS of phenotypes in which expression levels are likely to play a crucial role should 

take this observation into consideration. Furthermore, integrating this information with 

studies on trans gene regulation will help piece together a more complete picture of 

gene expression control. 
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5 CELL TYPE SPECIFICITY OF CIS REGULATORY VARIATION 

In this chapter I will:  

 Underline that most studies investigating regulatory variation to date 

explore expression in a single cell type.  

 Stress the value of documenting cell type-specific regulatory variation. 

 Describe a resource and experimental strategy that enable detection of  

eQTLs across cell types.  

 Outline that the majority of eQTLs identified using this resource are 

cell type-specific. 

 Emphasize the value of large collections of LCLs.   

5.1 THE VALUE OF STUDYING DIFFERENT CELL TYPES 

Variation influencing gene expression can manifest itself as gene expression differences 

among populations, among individuals in a population, among tissues, and in response 

to environmental factors. As discussed in the previous chapters, the genetic basis of the 

first two types of gene expression variation has been investigated in a number of 

studies with the quantification of mRNA in one tissue and the identification of eQTLs in 

a single or multiple populations (Adams, Kerlavage et al. 1995; Reymond, Marigo et al. 

2002; Su, Cooke et al. 2002). The complex developmental program in higher eukaryotes 

however results in a vast set of highly specialized cell types, whose fate is determined 

to a large extent by the combination of expressed genes and their level of expression. 

During development, but also in differentiated cells, some genes exhibit ubiquitous 

patterns of expression while others display tissue-specific activity (Myers, Gibbs et al. 

2007; Emilsson, Thorleifsson et al. 2008; Schadt, Molony et al. 2008). The extent to which 
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genetic variation manifests itself as tissue-specific gene expression patterns remains 

unknown and eQTL cell type specificity remains underexplored. A handful of studies 

have identified eQTLs in certain human (Myers, Gibbs et al. 2007; Emilsson, 

Thorleifsson et al. 2008; Schadt, Molony et al. 2008) and mammalian (Cotsapas, 

Williams et al. 2006; Campbell, Kirby et al. 2008) tissues but a systematic study 

comparing eQTLs across a wide range of cell types, while controlling for confounding 

associations, such as population samples and differences in technology or statistical 

methodology, is lacking in humans. Studies in model organisms however are 

highlighting the value of interrogating regulatory variation systematically and in a 

tissue-specific context (Petretto, Mangion et al. 2006; Huang, Shifman et al. 2009). 

The importance of documenting cell type-specific regulatory variation is high 

given the role of gene expression patterns in determining cell type during development, 

in shaping higher level phenotypes and in determining disease risk. In cases such as 

asthma (Moffatt, Kabesch et al. 2007) and colorectal cancer (Valle, Serena-Acedo et al. 

2008) documenting genetic control of gene expression variation is likely to shed light on 

mechanisms of disease pathogenesis. Furthermore there is growing evidence that 

causative variants identified in GWAS are likely to behave in a cell type-specific manner 

(Wellcome Trust Case Control Consortium 2007). Cataloguing cell type-specific 

regulatory variation can therefore serve to connect biological pathways controlling 

cellular activities in health and disease (Emilsson, Thorleifsson et al. 2008; Schadt, 

Molony et al. 2008; Wu, Delano et al. 2008). 

The case of CD, an autoimmune inflammatory disease of the gastrointestinal 

tract, illustrates the critical role of eQTLs in elucidating disease pathogenesis. GWAS 

revealed a strong signal in a 1.25 Mb gene desert of chromosome 5p13.1 (Libioulle, 

Louis et al. 2007; Wellcome Trust Case Control Consortium 2007). Expression 

association studies quantifying transcript levels in LCLs (Libioulle, Louis et al. 2007), 

revealed that the same region showed a strong association with transcript levels of 
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PTGER4. Knockout mice for PTGER4 have increased susceptibility to colitis, rendering 

this gene a strong susceptibility candidate for CD (Servitja, Pignatelli et al. 2009).  

In cases such as the above, where disease and gene expression signals map to the 

same chromosomal location (Figure 24 a), integrating information from both sources 

may provide important clues about the genes and functional pathways involved in 

disease pathogenesis. CD is an immune system disease and studying expression in 

immune system-derived LCLs has proven informative in terms of pointing to candidate 

genes. In this respect LCLs are a relevant cell type to study for CD. In the case of other 

phenotypes however (e.g. diabetes) expression association signals in LCLs may not 

yield signals that track disease association (Figure 24 b). Interrogating expression in 

pancreatic-islet β-cells might provide more clues for the pathogenesis of diabetes (Nica 

and Dermitzakis 2008).  

 

Figure 24. Disease and expression signals from genome-wide association studies (GWAS). 

The x axis represents chromosomal location, the y axis shows the significance of association for 

SNPs along the chromosome. In a) expression and disease association signals track one another, 

implying that expression of the particular gene in the cell type studied may be involved in 

disease pathogenesis. This is the case for Crohn disease (CD) where a SNP on chromosome 5 

was associated with expression levels of PTGER4 in LCLs and also showed a significant 

association to disease. In b) expression and disease association signals do not track one another, 

implying that expression of the particular gene in the cell type studied is probably not relevant 

for the disease. Given the important role of gene expression in disease pathogenesis, it is 

necessary to investigate multiple cell types to determine whether there are cases in which 
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expression signals mirror those of disease. In this way it will be possible to identify loci with a 

functional role in disease pathogenesis. Figure adapted from (Nica and Dermitzakis 2008). 

 

It is not clear how straightforward it will be to determine which cell type or 

tissue is relevant for a particular disease or complex trait. As with candidate gene 

studies it may turn out that in some cases the relevant cell type is not the one that was 

identified as a candidate based on existing biological knowledge. Interrogating 

expression in blood-derived LCLs for example has proven useful for identifying genes 

implicated in the pathophysiology of autism (Nishimura, Martin et al. 2007). Gene 

expression profiles from males with autism and non-autistic controls clearly 

distinguished cases from controls. It is yet not clear how many cell types and tissues 

will be adequate to provide a catalogue of regulatory variation, but this approach 

contributes to efforts using functional genomic information to interpret the biological 

effects of disease or complex trait variants. To date, such efforts are hindered by the 

limited availability of the relevant cell type to perform the functional assays. 

Understanding the degree of tissue-specificity of regulatory variation will enable us to 

assess how much we are missing by interrogating only a limited number of tissues and 

will provide clues as to how many tissues will be required to capture the spectrum of 

functional consequences of disease-causing variants (McCarthy and Hirschhorn 2008; 

Nica and Dermitzakis 2008). 

In this study, I assessed cell type specificity of variants impacting gene expression 

by quantifying mRNA levels in three cell types from each of 85 individuals, and by 

identifying shared and cell type-specific eQTLs. I also explored the fine-scale 

architecture of cis regulatory landscapes conditioning on cell type, to determine the 

extent to which genes are regulated by common or cell type-specific regulatory 

elements. This work has been described in (Dimas, Deutsch et al. 2009).  
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5.2 DETECTING CIS EQTLS IN THREE CELL TYPES 

Eighty five individuals from the GenCord resource were studied to explore the cell 

type-specific distribution of cis regulatory variation. GenCord is a collection of cell lines 

derived from umbilical cords of individuals of Western European origin (see section 

2.3.3). Sample collection was performed systematically on full term or near full term 

pregnancies, to ensure homogeneity for sample age. mRNA levels were quantified in 

primary fibroblasts, LCLs, and primary T-cells for 48,804 probes using the illumina WG-

6 v3 Expression BeadChip array. Data from 22,651 probes, mapping to 17,945 autosomal 

RefSeq genes (15,596 Ensembl genes) were analysed. The same samples were genotyped 

on the illumina 550K SNP array. Following quality control (SNPs with missing data 

were removed) and minor allele frequency filtering (MAF ≥ 5%), 394,651 SNPs were 

used for association testing. PCA detected ten potential outlier individuals from the 

genotype data (Figure 25) who were subsequently removed from the analysis. eQTL 

discovery and all other properties of the results for 75 vs. 85 individuals were almost 

identical (Figure 26). 
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Figure 25. Principal components analysis (PCA) of the GenCord and HapMap Phase 2 

populations. GenCord individuals were clustered with the HapMap populations (CEU, CHB, 

JPT and YRI) to assess relative population stratification in the samples. Given the observed 

clustering along the first two principal components, ten outliers were removed from the 

analysis (GenCord-Excluded).   

 

I explored associations in cis, by testing SNPs mapping within a 2 Mb window 

centred on the TSS of genes. SRC was used to test for association between SNP 

genotype and mRNA levels, after intensity normalization and log2 transformation, 

performed separately for each cell type. A total of 6,083,130 tests were performed and 

significance thresholds for each gene were assigned through permutations. For 75 

individuals at the 0.01 permutation threshold I discovered 2,146, 2,155 and 2,046 genes 

with significant cis eQTLs in fibroblasts, LCLs and T-cells respectively, with an 
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estimated FDR of 7%. At the stricter 0.001 permutation threshold, I discovered 427, 442 

and 430 genes with significant cis associations in fibroblasts, LCLs and T-cells 

respectively, with an estimated FDR of 4% (Figure 26). The genomic distribution of 

detected associations at the 0.001 threshold in each cell type is shown in Figure 27. 

 

Figure 26. Significant gene and probe associations in GenCord cell types at the 0.01 and 0.001 

permutation thresholds. Numbers on top of the histogram bars represent counts of 

associations. a) and b) show gene and probe associations detected using 85 individuals and c) 

and d) show gene and probe associations detected using 75 individuals, after removal of 10 

outliers. Association detection was highly similar in both analyses, with comparable estimated 

false discovery rates (FDR = 7% for genes and 10% for probes for the 0.01 permutation threshold 

and 3% for genes and 3-4% for probes at the 0.001 permutation threshold for both the 85 and 75 

individuals analyses). 
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Figure 27. Genome-wide map of cis eQTLs in GenCord three cell types. cis eQTLs at the 0.001 

permutation threshold are shown as colour-coded lines on their corresponding chromosomal 

location. Internal black lines represent genes with eQTLs in all cell types.  

 

5.3 REPLICATION OF CIS EQTLS DETECTED IN LCLS 

There has been long debate about the stability of eQTLs detected in LCLs from different 

samples, experiments and technologies, as well as the use of large collections of these 

cell lines. In the present study I assessed how well previously described eQTLs from the 

CEU HapMap Phase 2 (International HapMap Consortium 2007; Stranger, Nica et al. 

2007) are replicated in GenCord LCLs. The expectation is that a large proportion of 
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eQTLs will be shared, as both populations are of European descent and share similar 

allele frequency spectra. Due to differences in probe sequence content between the 

illumina v1 array (used for HapMap Phase 2 CEU) and the illumina v3 array (used for 

GenCord) it was possible to compare a small subset of SNP-probe associations. 

Comparisons were made for cases where the SNP was present in both HapMap and 

GenCord and the probe had identical sequence between illumina v1 and v3 expression 

arrays. Strict filtering was performed to avoid confounding effects arising from: a) 

differences in probe efficiency, b) the possibility that probes covered alternative splicing 

products from the same gene and c) the occurrence of probes in the v1 array containing 

SNPs. Of the 5,898 SNP-probe pairs that survived the 0.001 permutation threshold in 

HapMap Phase 2 CEU, 137 SNP-probe pairs (44 probes, some associated with multiple 

SNPs) were also tested in GenCord LCLs. The distribution of nominal (uncorrected) p-

values from the association test for these SNP-probe pairs is greatly enriched for very 

low p-values, with 114 nominal p-values < 0.001 (83%) (Figure 28). Therefore, 

previously detected eQTLs were well-replicated, despite the long separation time 

between tests, demonstrating the stability of LCLs. These data highlight the value of 

large collections of LCLs from different cohorts for studies of gene expression and 

disease interpretation.  
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Figure 28. Replication of nominal (uncorrected) p-values in GenCord of SNP-probe 

associations initially identified as significant in HapMap Phase 2. I tested 137 identical SNP-

probe pairs (44 probes) in GenCord LCLs. Of these, 114 SNP-probe pairs (83%) have a nominal 

p-value < 0.001 in GenCord LCLs, suggesting good replication of eQTLs between experiments.   

 

5.4 SHARING AND CELL TYPE SPECIFICITY OF CIS EQTLS 

Having established the robustness of eQTLs through replication, I interrogated the cell 

type specificity of regulatory effects by exploring genes with cis eQTLs that were: a) 

shared in all three cell types, b) shared in two cell types and c) cell type-specific. At the 

0.001 permutation threshold, I identified a non-redundant set of 1,007 genes with cis 

eQTLs of which 86 (8.5%) were shared in all three cell types, 120 (12%) were shared in 

exactly two of the cell types and 801 (79.5%) were cell type- specific (Table 13 for genes, 

Table 14 for probes; results for the 0.01 permutation threshold are also shown). The 

proportion of cell type-specific eQTLs was similar to previous estimates of eQTL tissue 

specificity and alternative splicing reported in a study interrogating two tissue types, 

sampled however from different groups of individuals (Heinzen, Ge et al. 2008). 
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Table 13. Cell type-shared and specific gene associations. This table shows gene associations 

that were: i) shared in all three cell types, ii) shared in two cell types and iii) cell type-specific. 

 

 
 

Table 14. Cell type-shared and specific probe associations. This table shows probe associations 

that were: i) shared in all three cell types, ii) shared in two cell types and iii) cell type-specific. 
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The relative sharing of gene associations across cell types is shown in Figure 29 a 

and Figure 30 (probe associations shown in Figure 29 b). The degree of gene (and probe) 

sharing is an overestimate of overlapping genetic effects as expression of genes for 

which eQTLs were identified in all three or at least two cell types is not necessarily 

driven by the identical regulatory elements.  

Figure 29. Relative sharing of significant genes and probes in three cell types. Cell type-

shared and cell type-specific associations for a) genes and b) probes (0.001 permutation 

threshold). Each bar indicates the full fraction of genes or probes for which eQTLs were 

detected in each cell type. Light grey indicates the fraction of genes/probes with eQTLs 

overlapping in all three cell types, dark grey indicates the fraction of genes/probes with an 

overlap in at least one other cell type, and black indicates the fraction of genes/probes with cell 

type-specific eQTLs.  

 

As expected, a proportion of variation controls expression levels in a similar way 

across cell types and this most probably reflects regulation of processes common to all 

cells. At the 0.001 permutation threshold, of the genes with cis eQTLs common to two or 

more cell types, 124 (12.3%) were shared between fibroblasts and LCLs, 121 (12.0%) 
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were shared between fibroblasts and T-cells, and 133 (13.2%) were shared between 

LCLs and T- cells (Table 14). Increased eQTL sharing between LCLs and T-cells is most 

likely due to the related function and common developmental origin of these cells.  

 

 

Figure 30. Venn diagram of genes with cis eQTLs in three cell types. Cell type-specific counts, 

two-way and three-way sharing is shown. Figure by Manolis Dermitzakis. 

 

The most striking result from this analysis is the prominence of cell type 

specificity. 268 (26.6% of total), 271 (26.9%) and 262 (26.0%) of gene associations were 

found only in fibroblasts, LCLs and T-cells respectively (Table 13). It is plausible that 

cell type-specific eQTLs can arise if a gene is expressed in one cell type, but not in 

another. To test this I explored the medians and variances of gene expression in each 

cell type, and found that genes with cell type-specific signals had significantly higher 

expression variance in the cell type where the eQTL was detected (M-W p-value < 

0.0001 for all comparisons). Medians of gene expression values for the same genes were 

either marginally significantly or not significantly different, meaning that all genes 

included in this analysis were largely expressed in all cell types. Furthermore, it is 

estimated that all genes with cell type-specific cis eQTLs are expressed to some level in 
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all three cell types. This suggests that the majority of cell type specificity is not a result 

of the presence or absence of gene expression between cell types, but is due to 

differential expression resulting from cell type-specific use of regulatory elements.  

5.5 DISSECTING EQTL CELL TYPE SPECIFICITY 

To dissect the nature of the overlap of cis eQTLs across cell types, I compared the 

direction of the allelic effect (i.e. assignment of high/low expression to eQTL alleles) 

between pairs of cell types in cases where SNP-gene associations were significant for 

both cell types. The direction (sign of Spearman rho) was in complete agreement for all 

pairwise cell type comparisons at the 0.001 permutation threshold (Figure 31) (99% 

agreement for 0.01 permutation threshold). This observation implies that regulatory 

variants are active across cell types in the same manner.   

 

Figure 31. Comparison of the direction of the allelic effect of overlapping SNP-probe 

associations between pairs of cell types. The plots indicate the value of Spearman rho (effect 

size) for the same SNP-probe associations between cell types at the 0.001 permutation threshold. 

In all cases the direction of the allelic effect (indicated by the sign of rho) is the same.  
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To assess the strength of the cell type specificity observed, I performed RMA on 

cell types. Cell type specificity is expected to be reflected in the SNP x cell type 

interaction term, where any cell type-specific association is expected to have a 

significant interaction term. For cell type-specific eQTLs I found 61 % enrichment of low 

p-values in RMA (quantified by estimation of FDR (Storey and Tibshirani 2003) (Figure 

32). No such enrichment was observed for cell type-shared eQTLs. RMA however is 

relatively limited in this type of analysis, as the power to detect an interaction term is 

never maximized. This is because reversal of allelic effect between cell types is not 

observed.  

 

Figure 32. Repeated-measures ANOVA (RMA) to confirm eQTL cell type specificity. RMA 

association testing (using cell type as the repeated measure) of SNP-probe pairs significant in all 

three, exactly two and in only one cell type confirmed cell type specificity. Enriched low p-

values were observed for SNP-cell type interactions corresponding to those associations that 

were defined as cell type-specific from the association overlap analysis. 
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ASE assays were used to validate a subset of cell type-specific eQTLs discovered 

for genes that also possess transcript SNPs. The ratio of the two transcript alleles was 

measured in individuals who were double heterozygotes for both the eQTL and the 

transcript SNP. For 35 transcript SNPs (seven in genes with fibroblast eQTLs, 14 in LCL 

eQTL genes and 14 in T-cell eQTL genes) extensive allelic imbalance was observed for 

the cell type in which the eQTL was detected (Figure 33). This imbalance was not 

observed for ratios of the same eQTL-transcript SNP pairs in the two cell types where 

the eQTL was not detected (paired t-test p-value = 5.6 x 10-7). Taken together, these 

results confirm the signal of cell type specificity statistically and experimentally. 

Limited sharing of associations between cell types may arise as a consequence of 

winner’s curse (Goring, Terwilliger et al. 2001; Lohmueller, Pearce et al. 2003; Ioannidis 

2008). A cross-threshold assay of sharing revealed that overlapping associations among 

cell type pairs increased slightly at relaxed significance thresholds for one cell type 

(Figure 34). Even with relaxed thresholds however over half of associations detected 

remain cell type-specific.  

To further quantify the extent of winner’s curse I selected significant SNP-probe 

pairs from one cell type, and explored their nominal (uncorrected) p-value distribution 

in the other two cell types. As expected, these distributions were enriched for low p-

values, reflecting associations that are shared between cell types (Figure 35). When 

SNP-probe associations with significant associations in the secondary cell type were 

removed (i.e. shared associations at the same and at the lower significance threshold), 

the resulting nominal p-value distributions demonstrated only small enrichment for 

low p-values. 
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Figure 33. Allele-specific verification of eQTLs. a) Degree of allelic imbalance in double 

heterozygote individuals (for eQTL and transcript SNP) for 35 assayed transcript SNPs. The y 

axis shows the ratio of the two alleles in the cell type where the eQTL was initially discovered 

for each individual, and the x axis shows the mean of the ratio for the other two cell types for 

each individual. Data points are colour-coded to indicate cell type. The degree of allelic 

imbalance is more pronounced in the eQTL cell type vs. the non-eQTL cell types. b) Fold change 

difference in expression between the medians of the two homozygote classes of the population 

for the subset of 35 eQTLs that were confirmed by allele-specific expression (ASE). The plot 

shows fold change in the eQTLs cell type (y axis) and the non-eQTL cell types (x axis). As 

expected, the pattern is very similar to the one observed in a). c) The fold change estimated from 

the ratio of homozygotes (y axis) and allelic imbalance (x axis). The correlation is very strong 

and highly significant (Pearson’s correlation coefficient r = 0.685, p-value < 0.0001). d) Fold 

change between the medians of the two homozygote classes of the population for the eQTL cell 

type (y axis) and the non-eQTL cell types (x axis). As expected the fold change is substantially 

higher for the eQTL cell type with a mean fold change of 1.55 and a range of 1.07 to 2.65.   
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Figure 34. Cross-threshold probe association sharing (exploring the extent of winner’s curse). 

I explored whether association sharing in cell type pairs increases when the significance 

threshold is relaxed for one cell type. Probe association sharing was found to increase from 28-

35% to 40-50% when considering significant associations at the 0.001 permutation threshold in 

one cell type and the 0.01 permutation threshold in the replication cell type.  

 

I thus quantified the fraction of significant cis eQTLs from one cell type that is 

not nominally significant (p-value prior to correction > 0.05) in either of the other two 

cell types. Using this principle of replication, it is estimated that 54%, 50% and 54% of 

cis eQTLs in fibroblasts, LCLs and T-cells respectively are cell type-specific, amounting 

to 69% of all cis eQTLs at the 0.001 permutation threshold. Consequently the limited 

overlap of cis eQTLs between cell types is unlikely to result from winner’s curse and a 

substantial fraction of eQTLs is truly unique to each cell type.  
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Figure 35. SNP-probe pair nominal (uncorrected) p-value distributions for the two secondary 

cell types conditional on the reference cell type eQTL (0.001 permutation threshold). The 

panels on the horizontal axis correspond to secondary cell type p-values for: i) all SNP-probes, 

ii) excluding SNP-probes significant at the 0.001 permutation threshold and iii) excluding SNP-

probes significant at the 0.01 permutation threshold. 
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5.6 INDEPENDENT EQTLS 

Experimental data are accumulating in an effort to annotate the regulatory landscape 

around genes (Birney, Stamatoyannopoulos et al. 2007). In agreement with previous 

studies (Stranger, Nica et al. 2007; Veyrieras, Kudaravalli et al. 2008) I found that, on 

average, the strength and density of cis associations detected for a given gene decay 

symmetrically with increasing distance from the gene’s TSS (Figure 36). As discussed in 

Chapter 4, the correlated structure of variants within a genomic region due to LD 

enables association studies as it reduces the number of markers required for testing 

association with a phenotype, but can impede fine-mapping. The strategy described in 

2.7.1 was used to identify independent eQTLs. eQTLs were mapped in recombination 

hotspot intervals, the most significant eQTL per interval was retained and the least 

significant eQTL from eQTL pairs with D’ < 0.5 between intervals was excluded to 

derive independently-acting cis eQTLs. At the 0.001 permutation threshold and 

averaged across three cell types, 5.1% of genes with identifiable eQTLs possess more 

than one independent interval carrying a significant eQTL (Table 15). In LCLs this 

number is 4.5% which is comparable to 7.6% of genes with multiple independent eQTLs 

detected for the HapMap Phase 3 CEU population (Table 10). 
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Figure 36. Localization of cis eQTLs (0.001 permutation threshold). a) Distance (in bases) to 

transcription start site (TSS) of all independent cis eQTLs in each cell type. b) Shared cis eQTLs 

in all three cell types. c) Cell type-specific cis eQTLs. Shared cis eQTLs cluster around the TSS 

whereas cell type-specific cis eQTLs span a wider range of distances from the TSS. 

 

 

Table 15. Number of independent cis eQTLs (regulatory intervals) per gene. 
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This implies that for a fraction of genes and in all cell types considered, multiple 

cis regulatory variants act to determine expression levels. To further dissect the fine 

structure of regulatory variant sharing between genes, I repeated the overlap analysis 

but compared overlap of independent eQTLs (intervals rather than genes) across cell 

types. When the union of significant genes at the 0.001 permutation threshold was 

considered, only 6.9% of intervals were found to be shared across all three cell types. 

9.7% were shared in exactly two cell types and 83.4% were cell type- specific (Figure 37 

a and Table 16). The degree of interval sharing between cell types increases as genes 

that have shared expression associations in at least two (Figure 37 b and Table 17) and 

in all three cell types (Figure 37 c and Table 16) are considered. 

Figure 37. Fine-scale overlap of regulatory signals in three cell types (0.001 permutation 

threshold). Cell type-shared and specific independent intervals for a) the union of genes with a 

significant association, b) genes shared in at least two cell types and c) genes shared in all cell 

types.  
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In all cases however, there still remains a substantial fraction of cell type-specific 

independent eQTLs even for genes that had at least one cis eQTL in common in all three 

cell types. 

 
 
Table 16. Independent eQTL (interval) sharing for significant genes (0.001 permutation 

threshold). 

 

I further evaluated the distribution of independent eQTLs with respect to the TSS 

and their effect size, conditioning on sharing and specificity across cell types. Cell type-

shared eQTLs tend to be of higher significance and larger effect size (Spearman rho) 

and cluster tightly around the TSS (Figure 36 for significance and Figure 38 for effect 

size). On the contrary, cell type-specific eQTLs tend to be of lower effect size and are 

more widely distributed around the TSS (Figure 36). This is in agreement with recent 

studies (Heintzman, Hon et al. 2009; Visel, Blow et al. 2009) showing that enhancer 

elements, which are found at greater distances from the gene, are more tissue-specific 

than basic regulatory elements such as promoters which map close to the TSS. 

Furthermore, the count of independent eQTLs per gene was significantly correlated 

with the number of transcripts per gene, for genes with significant cis eQTLs (Pearson’s 

correlation coefficient = 0.049, p-value = 0.117 for the 0.001 permutation threshold, and 

Pearson’s correlation coefficient = 0.105, p-value < 0.0001 for the 0.01 permutation 

Independent eQTL sharing  (0.001 permutation threshold)

3 cell type union 
significant genes %

At least 2 cell type 
shared genes %

3 cell type 
shared genes %

Genes 1007 206 86

3 cell type shared 

independent eQTLs
Fibroblasts - LCLs - T cells 77 6.9 77 27.7 77 67.0

Exactly 2 cell type shared 

independent eQTLs

Fibroblasts - LCLs 34 3.1 34 12.2 3 2.6

Fibroblasts - T cells 29 2.6 29 10.4 4 3.5

LCLs - T cells 45 4.1 45 16.2 6 5.2

cell type specific 

independent eQTLs

Fibroblasts 307 27.6 26 9.4 6 5.2

LCLs 313 28.2 37 13.3 11 9.6

T cells 306 27.5 30 10.8 8 7.0

Total 1111 100.0 278 100.0 115 100.0



137 

 

threshold). This suggests that regulatory complexity is correlated with transcript 

complexity raising the possibility that some of the regulatory variant signals may 

mediate genotype-specific choices for alternative TSSs or alternative splicing.  

 

 

Figure 38. Effect size (Spearman rho) of independent cis eQTLs (0.001 permutation threshold) 

as a function of the distance (in bases) to a gene’s transcription start site (TSS). a) shows all 

independent cis eQTLs discovered in each cell type, b) and c) show three cell type-shared and 

two cell type-shared independent cis eQTLs respectively and d) shows independent cis eQTLs 

specific to one cell type only.  

 

The complexity of the regulatory landscape is illustrated in the case of TSPO, an 

outer mitochondrial membrane protein of peripheral tissues (Papadopoulos, Baraldi et 

al. 2006) with a role in cholesterol transport, immunomodulation and apoptosis 

(Casellas, Galiegue et al. 2002) (Figure 39). At the 0.01 permutation threshold six 
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independent intervals were identified for this gene: one shared in all three cell types, 

three fibroblast-specific and two LCL-specific intervals. Additionally, four alternate 

transcriptional splice variants, encoding different isoforms, have been characterized for 

this gene and TSPO receptors are found in many tissues of the human body.  

 

 

 

Figure 39. Complex genetic architecture around the TSPO gene. TSPO (blue oval) encodes for 

an outer mitochondrial membrane protein with a role in cholesterol transport, 

immunomodulation and apoptosis. Six independent intervals have been identified for this gene 

in three cell types: one shared in all three cell types, and 5 cell type-specific. Figure created 

using the Ensembl genome browser (http://www.ensembl.org).  

 

Regulatory complexity also takes the form of a single independent interval 

regulating the expression of multiple genes (interval pleiotropy). I explored the number 

of associated genes per independent interval and found that at the 0.001 permutation 

threshold over 6% of intervals are associated with the expression of more than one gene 

(this number increases to almost 19% at the 0.01 permutation threshold). An example of 

a single eQTL influencing eight genes is shown in Figure 40. In such cases it may be 

interesting to explore whether the genes influenced by a common regulatory interval 

are components of the same pathway or network. The multidimensionality caused by 

cell type specificity, regulatory region promiscuity and genetic variation highlight the 

challenges to be faced when a wider range of conditions and context-dependent effects 

(cell types, tissues, developmental stages) are considered.  

http://www.ensembl.org/
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Figure 40. A single independent eQTL in the brown interval (denoted at RI_10865) affects the 

expression of a total of 8 genes (0.01 permutation threshold). RI_10865 affects the expression of 

three LCL-specific, two T-cell specific and one fibroblast-specific genes, as well as a gene with a 

significant association shared in fibroblasts and LCLs and a gene with a significant association 

shared in fibroblasts and T-cells (find genes). Figure created using the Ensembl genome 

browser.  

5.7 BIOLOGICAL PROPERTIES OF SHARED AND CELL TYPE-SPECIFIC EQTLS 

Gene Ontology (GO) (Ashburner, Ball et al. 2000) terms were used to compare 

biological properties of cell type-specific and shared genes. For cell type-specific 

associations, I detected an over-representation of properties linked to signal transducer 

activity, cell communication, development, behaviour, cellular process, enzyme 

regulator activity, transcription regulator activity and response to stimulus, reflecting 

properties likely to sculpt cell type-specific profiles. For associations shared in all cell 

types I found an over-representation of catalytic activity and transport properties 

(Fisher’s exact test p-value < 0.05) (Table 17). 
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Table 17. GO Slim term comparison for cell type-specific vs. three cell type-shared genes 

(0.001 permutation threshold). Fisher’s exact test significant p-value < 0.05. Biological 

properties over-represented in cell type-specific genes are shown in red and include signal 

transducer activity, cell communication, development, behaviour, cellular process, enzyme 

regulator activity, transcription regulator activity, and response to stimulus. Biological 

properties under-represented in cell type-specific genes are shown in blue and include catalytic 

activity and transport.  

 

Entropy of expression for each gene was calculated as an indication of cell type 

specificity, with lower entropy values reflecting higher specificity. I used data from cell 

types (tissues) included the GNF/Novartis atlas of gene expression (Su, Wiltshire et al. 

2004) (Table 18) and compared entropy between genes with shared vs. cell type-specific 

cis eQTLs. Genes with fibroblast-specific eQTLs showed consistently and significantly 

lower entropy values (i.e. were more cell type-specific) compared to shared associations 

(M-W p-value = 0.0047). This signal was in the same direction, but less prominent, for 

the other two cell types. This may be due to the fact that fibroblasts are biologically 

more distant to LCLs or T-cells, or to potential tissue sampling biases in the 

GNF/Novartis collection.  
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Table 18. Tissues used for entropy calculation (GNF/Novartis atlas of gene expression).  

 

5.8 CONCLUSIONS 

This study provides a direct comparison of the impact of regulatory variants in a cell 

type-dependent context. Having controlled for all other confounders such as 

experimental design, sampling variance and differences in technology, I have 

demonstrated that variants affecting gene regulation largely act in a cell type-specific 

manner, and even cell types as closely related as LCLs and T-cells share only a minority 

of their cis eQTLs. Based on the three cell types tested, it is estimated that 69-80% of 

regulatory variants are cell type-specific. Regulatory variant complexity correlates with 

tissue description

adipocyte fat

adrenal cortex perimeter of the adrenal gland

adrenal gland endocrine glands on kidneys

amygdala groups of neurons located within medial temporal lobes of brain

appendix part of digestive system, blind-ended tube connected to cecum

bone marrow tissue in the hollow interior of bones, produces new blood cells

bronchial epithelial lung epithelium

caudate nucleus nucleus located in basal ganglia of brain, role in learning and memory

cerebellum peduncles region of brain, role in the integration of sensory perception

ciliary ganglion parasympathetic ganglion located in the posterior orbit

dorsal root ganglion nodule on dorsal root (afferent sensory root of spinal nerve)

heart heart

hypothalamus small nuclei in brain linking nervous to endocrine system, located above brain stem

kidney kidney

liver liver

lung lung

lymph node organ consisting of multiple cell types, part of the lymphatic system

ovary ovary

pancreas pancreas

pituitary pituitary

prostate prostate

salivary gland salivary gland

skeletal muscle skeletal muscle

skin skin

smooth muscle smooth muscle

spinal cord spinal cord

superior cervical ganglion largest of the cervical ganglia, supplies sympathetic innervation to the face

testis testis

thymus thymus

thyroid thyroid

tongue tongue

tonsil tonsil

trachea trachea

trigeminal ganglion sensory ganglion of the trigeminal nerve (5th cranial nerve)

uterus uterus

uterus corpus endometrium

whole blood whole blood

whole brain whole brain
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transcript complexity suggesting genotype-specific effects on alternative transcript 

choice. In addition, cell type-specific eQTLs are of smaller effect size and tend to localize 

at greater distances from the TSS recapitulating enhancer element distributions. 

Importantly, the signal of cell type specificity is primarily due to differential use of 

regulatory elements of genes that are expressed in almost all cell types. This analysis is 

also the first to demonstrate robust replication of eQTLs in LCLs between samples 

collected and transformed decades apart. This is of great importance for the field of 

human genetics since a large number of cohorts have collections of LCLs whose value 

has been debated and questioned repeatedly. I argue that LCLs are likely to represent a 

legitimate biological system that can be used for disease interpretation or other 

functional studies with all the limitations of cell line specificity. As more tissues are 

interrogated diminishing returns in discovery of eQTLs are expected, and it is possible 

that there is a minimum set of tissues that will be informative for the vast majority of 

regulatory variants. Nevertheless, this study highlights the need for deep and wide 

interrogation of regulatory variation in multiple cell types and tissues in order to 

elucidate their differential functional properties. The pattern of cell type specificity is 

not expected to be limited to regulatory variants, but is likely to apply to protein-coding 

and other putative functional variants (e.g. epigenetic modifications). 
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6 DISCUSSION 

6.1 GENETIC VARIATION IN GENE REGULATION 

Regulation of gene expression is one of the most important cellular functions. It defines 

and maintains cell types, shapes higher level phenotypes in health and disease, and it is 

likely that a large proportion of the genetic signal associated with phenotypic variation 

is harboured in regulatory sequences. At the cellular level, the effects of genetic variants 

can be easily interpretable, but at the whole organism level these signals may be more 

challenging to dissect due to the large number of direct and indirect interactions 

occurring between DNA and phenotype (Dermitzakis 2008). Using gene expression as 

an intermediate step to connect DNA variation and higher level phenotypes is an 

important way forward. In this thesis I have explored three aspects of the impact of 

genetic variation on gene expression: a) effect of interactions between genetic variants 

on gene expression in cis and trans, b) fine-scale architecture of the cis regulatory 

landscape, and c) cell type specificity of regulatory variation. The following sections 

summarise the findings of these three studies.  

6.1.1 Genetic interactions with an impact on gene expression 

Although epistasis is difficult to test for, its contribution to gene regulation is emerging. 

I have presented a framework to test for interactions between two common types of 

variants in the genome: regulatory variants (eQTLs) and protein-coding variants 

(nsSNPs). Two distinct concepts, the level of gene expression and allelic variation of 

protein sequence were jointly considered and were shown to be important for 

downstream regulation of genes. In cis the functional impact of protein-coding variants 

was shown to be modulated (magnified or masked) through the action of regulatory 

variants nearby. Depending on the phasing of eQTL and nsSNP alleles, cis modification 
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can result in the production of different ratios of distinct isoforms. If the modulated 

protein products have downstream targets, the interaction in cis may result in true 

epistasis by affecting expression levels of target genes in a trans manner. Using this 

framework of hypothesis-driven analysis of epistasis, I have demonstrated that genetic 

interactions between these, and possibly other types of functional variants, contributes 

to shaping phenotypic variation. Detecting epistasis is crucial as it uncovers new loci 

affecting phenotypes. Its effects can mask the genetic impact of variants and impede 

replication of associations. Differential fixation of variants modulating the primary 

disease effect can determine the degree of penetrance of disease alleles and 

concequently considering interactions is a necessary next step for GWAS.  

6.1.2 Fine-scale architecture of the cis regulatory landscape 

Studies interrogating regulatory variation identify genomic regions likely to harbour 

genetic elements that control gene expression. For over half of all genes in the genome, 

multiple SNPs with an expression association are identified, most of which tag the same 

regulatory element. Identifying eQTLs is an important step in understanding gene 

regulation, but it is necessary to move from identification of large segments of DNA to 

the fine-mapping of regulatory elements. I have presented a strategy that can be 

employed to narrow down regions of interest and to identify markers that tag 

regulatory elements with an independent effect on gene expression. After controlling 

for the correlated structure of variants, cis eQTLs tagging independent regulatory 

elements (regulatory intervals) were identified. Roughly seven percent of genes possess 

multiple independent regulatory intervals influencing cis expression levels and in 

agreement with recent studies, the strength and abundance of these were greater 

around the TSS. When exploring independent eQTLs across populations, 35% were 

shared in at least two of the eight populations studied, hinting at common regulatory 

control for a fraction of genes. Adding to the complexity of the cis regulatory landscape, 
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it was shown that interactions between genetic variants in cis also influence expression 

levels. This study is a first step toward the dissection of cis regulatory architecture on a 

genome-wide scale. This type of complexity should be anticipated and considered in 

future studies addressing gene regulation.   

6.1.3 Cell type specificity of regulatory variation 

The extent to which genetic variation manifests itself as tissue-specific expression 

patterns and the value of exploring eQTLs across a range of cell types are only starting 

to emerge. In this study I have highlighted the importance of investigating multiple cell 

types by exploring the specificity of cis eQTLs in three cell types (fibroblasts, LCLs and 

T-cells). Regulatory variation was shown to control gene activity predominantly 

depending on cell type, with 69-80% of regulatory variants operating in a cell type-

specific manner. It was found that even the same genes are largely controlled through 

the action of different regulatory elements depending on the cell type. Cataloguing cell 

type-specific regulatory variation will help connect biological pathways controlling 

cellular activities in health and disease (Emilsson, Thorleifsson et al. 2008; Schadt, 

Molony et al. 2008; Wu, Delano et al. 2008), although it is not yet clear how 

straightforward it will be to determine the relevant cell type for a particular disease, or 

how many cell types will be necessary to compile a comprehensive catalogue of 

regulatory variation.  

6.2 OVERLAP OF GENCORD EQTLS WITH DISEASE AND COMPLEX TRAIT SNPS 

Integrating the results of eQTL and genome-wide disease and trait association studies 

can provide important clues for mechanisms that give rise to phenotypes, can point to 

genes that have not been reported in primary disease association studies or can 

strengthen and complement the role of identified candidate genes. At the time of 

writing, scanning the Catalog of Genome-Wide Association Studies 
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(http://www.genome.gov/gwastudies) revealed a number of SNPs with a significant 

association to a disease or trait that were also GenCord eQTLs. In cases where a disease 

or complex trait SNP is also an eQTL, it is plausible that the GWAS phenotype arises to 

a certain extent as a consequence of regulatory effects. Here I discuss a number of 

examples of overlapping GWAS SNPs and eQTLs to demonstrate the usefulness of 

integrating information from these sources.  

6.2.1 Crohn disease 

A strong association to CD in European-derived populations was detected for rs744166 

(Barrett, Hansoul et al. 2008). This SNP maps in an intron of STAT3, a gene with a role 

in signalling pathways implicated in CD pathogenesis. The identical SNP showed a 

significant association (0.01 permutation threshold) with expression levels of genes 

STAT5A and STAT5B in fibroblasts and T-cells respectively (Figure 41). 

 

Figure 41. Overlap between disease-associated SNPs and eQTLs in the case of Crohn disease 

(CD). rs744166 is associated with CD and is an eQTL in fibroblasts and T-cells. STAT3 (black 

box) is the GWAS-reported gene, STAT5A and STAT5B are the expression-associated genes in 

fibroblasts (green box) and T-cells (blue box) respectively. All genes are components of the JAK-

STAT pathway which is likely to have a role in immune system-related diseases. Figure created 

using the Ensembl genome browser. 

 

http://www.genome.gov/gwastudies
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Both expression-associated genes, as well as the GWAS-reported gene belong to 

the STAT family of transcriptional activators. STAT3 has anti-apoptotic as well as 

proliferative effects and its constitutive activation is associated with various human 

cancers. It is required for self-renewal of embryonic stem cells (Takeda, Noguchi et al. 

1997), is essential for differentiation of TH17 helper T-cells (Yang, Panopoulos et al. 

2007) and has been implicated in a variety of autoimmune diseases including CD. 

STAT5A mediates the responses of cell ligands and growth hormones, has a role in 

tumourigenesis in myeloma and lymphoma and its mouse counterpart suggests an 

antiapoptotic function. STAT5B mediates signal transduction triggered by cell ligands 

and growth hormones and has a role in diverse biological processes including T-cell 

receptor signalling, apoptosis, adult mammary gland development and sexual 

dimorphism of liver gene expression. 

STAT3, STAT5A and STAT5B interact with a number of proteins, some unique to 

each STAT family member, but all interact with JAK1 (Figure 42), a component of the 

JAK-STAT signalling pathway. This pathway is involved in regulation of cellular 

responses to cytokines and growth factors through signal transduction to the nucleus, 

where activated STAT proteins modify gene expression. It plays a central role in 

principal cell fate decisions, in cell proliferation, differentiation and apoptosis and is 

particularly important in hematopoiesis. Dysregulation of JAK–STAT signalling is 

associated with immune disorders including CD (Shuai and Liu 2003). In their 2003 

review, Shuai and Lui stated (pg 908): “The aetiopathology of Crohn's disease is poorly 

understood. Mice with tissue-specific disruption of Stat3 during haematopoiesis show 

Crohn's disease-like pathogenesis. In addition, constitutively tyrosine phosphorylated 

STAT3 is found in intestinal T-cells from patients with Crohn's disease. These results 

indicate that the dysregulation of STAT3 signalling might be involved in the 

pathogenesis of Crohn's disease. However, the exact role of STAT3 in the pathogenesis 
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of Crohn's disease is not understood.” It may be the case that pathogenesis arises in part 

as a consequence of quantitative perturbations of different components of interacting 

proteins of the JAK-STAT pathway. Intriguingly, at the time of writing, preliminary 

evidence suggested that rs744166 also shows a strong association to MS (GWAS results 

from a European population, V.L. personal communication). Similarly to CD, MS is also 

an autoimmune disease, but in this case pathogenesis involves an immune response 

triggered by T-cells and directed at axon myelin.  

 

Figure 42. STAT3, STAT5A and STAT5B interacting proteins. All gene products interact with 

Janus kinase 1, a component of the JAK-STAT pathway. STAT3 and STAT5A interact with 

Epidermal growth factor receptor. STAT3 and STA5B interact with Glucocorticoid receptor. 

STAT5A and STAT5B interact with Janus kinase 2 and PTPN11. These interactions highlight the 

complexity underlying disease pathogenesis and suggest that clues from different types of 

studies can help piece together pathogenesis mechanisms. STAT3 was identified as a candidate 

gene from a disease GWAS. STAT5A and STAT5B were identified as genes with eQTLs.  
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6.2.2 Bipolar disorder 

An association to bipolar disorder was detected for rs4130590 (Ferreira, O'Donovan et 

al. 2008), but no gene has been reported for this variant. In LCLs rs4130590 is an eQTL 

(0.01 permutation threshold) associated with the expression of genes SLC2A8 (GLUT8) 

an insulin-regulated facilitative glucose transporter and ZNF79 a zinc finger protein 

(Figure 43). GLUT8 catalyzes transport of sugars or sugar derivatives through 

intracellular membranes. GLUT8 knockout mice showed strong evidence for 

hyperactivity and increased arousal. Additionally mild alterations were observed in 

brain (neuronal cell increased proliferation in the hippocampus, hyperactivity), heart 

(impaired transmission of electrical wave through the atrium), and sperm cells (reduced 

number of motile sperm cells) (Schmidt, Joost et al. 2009). It has been suggested that the 

behavioural alterations observed stem from dysfunctions in neuronal processes arising 

as a consequence of defects in glucose metabolism (Schmidt, Gawlik et al. 2008). A 

study of closely-related gene GLUT3 showed that its deficiency in mice led to abnormal 

spatial learning and working memory, abnormal cognitive flexibility with intact gross 

motor ability, electroencephalographic seizures and perturbed social behaviour. The 

authors state that this phenotypic expression is unique, as it combines neurobehavioral 

and epileptiform characteristics of autism spectrum disorders. Furthermore, they point 

out that metabolic adaptations were observed in GLUT3-deficient mice, including an 

increase in neuronal GLUT8 levels, microvascular/glial GLUT1, and monocarboxylate 

transporter isoform 2 concentrations. They suggest that this deficiency forms a possible 

novel genetic mechanism for developmental disorders, such as the neuropsychiatric 

autism spectrum disorders (Zhao, Fung et al. 2009).  
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Figure 43. Disease GWAS revealed association of rs4130590 with bipolar disorder, but no 

genes have been reported for this variant to date. a) In such cases integrating results from 

disease and expression association studies may prove very useful: rs4130590 is an eQTL (0.01 

permutation threshold) associated with expression of SLC2A8 (GLUT8) and ZNF79 genes in 

LCLs (red boxes). Figure created using the Ensembl genome browser. Using this as a starting 

point, a possible next step is to explore gene interactions (in this case using GENETWORK 

(http://www.genenetwork.nl/) (Franke, van Bakel et al. 2006) ) to uncover further candidate 

genes interacting with b) SLC2A8 and c) ZNF79. 

 

6.2.3 Weight and body mass index 

Another example of GWAS SNP-eQTL overlap is rs7481311, a GWAS-reported variant 

associated with weight and body mass index (BMI) (Thorleifsson, Walters et al. 2009). 

The GWAS-reported gene is BDNF, a member of the nerve growth factor family, 

http://www.genenetwork.nl/
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induced by cortical neurons and necessary for survival of striatal neurons in the brain. 

Its expression is reduced in Alzheimer and Huntington disease patients and it may also 

play a role in regulation of stress response and in the biology of mood disorders 

(Zuccato and Cattaneo 2009). In LCLs, rs7481311 is an eQTL (0.01 permutation 

threshold) associated with the expression of gene LIN7C, a homologue of C.elegans lin-7 

PDZ domain protein (Figure 44). PDZ domains are common structural domains of 80-90 

amino-acids, which help anchor transmembrane proteins to the cytoskeleton and hold 

together signalling complexes. Further investigation of the role of LIN7C may prove 

informative for the traits in question. 

 

 

Figure 44. rs7481311 is a GWAS SNP associated with weight and body mass index, and an 

eQTL (0.01 permutation threshold) associated with the expression of the LIN7C gene in LCLs. 

The GWAS-reported gene is BDNF (black box), a member of the nerve growth factor family, 

whose expression is reduced in Alzheimer and Huntington disease patients. LIN7C (red box) is 

a PDZ domain containing gene and shows an expression association with rs7481311. Figure 

created using the Ensembl genome browser. 

 

6.2.4 HDL cholesterol and triglycerides 

GWAS have identified rs1800775 as a variant associated with HDL cholesterol 

(Kathiresan, Melander et al. 2008) and triglycerides (Saxena, Voight et al. 2007). The 

GWAS-reported gene, CETP, has a role in the transfer of cholesteryl esters between 

lipoproteins. The identical SNP is an eQTL in fibroblasts (0.01 permutation threshold) 

associated with expression levels of PLLP, a gene encoding a tetraspan plasma 
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membrane proteolipid (plasmolipin) which is thought to participate in ion transport 

and addition of plasmolipin to lipid bilayers (Figure 45). 

 

 

 

Figure 45. rs1800775 is associated with HDL cholesterol and triglycerides and is an eQTL 

(0.01 permutation threshold) in fibroblasts. The GWAS-reported gene CETP (black box) has a 

role in the transfer of cholesteryl esters between lipoproteins. PLLP (green box), the expression-

associated gene, has a role in ion transport and addition of plasmolipin to lipid bilayers. Figure 

created using the Ensembl genome browser.  

 

6.2.5 The value of integrating disease and expression association data 

The examples outlined above illustrate how integrating information from disease and 

expression GWAS can serve as a first step in complementing disease and trait 

association studies with functional information. At the time of writing, an instance of 

eQTL and unpublished GWAS SNP overlap was identified and has enabled 

identification of a candidate gene in a study interrogating migraine headaches. 

rs1835740 is the top well-replicating SNP in four European cohorts (V.A. personal 

communication). This variant is also an eQTL associated with expression levels of the 
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MTDH gene in LCLs (0.001 permutation threshold). MTDH1 downregulates the 

excitatory amino acid transporter EAAT2 (GLT1) (Lee, Jeon et al. 2009), which is 

responsible for clearing excess glutamate from synapses. Given this overlap, exploring 

the function of this gene has become a priority for this study. 

To date, GWAS rely chiefly on proximity criteria and prior biological knowledge 

to identify possible candidate genes. Combining prior knowledge with clues from gene 

expression studies is likely to reveal additional components of complex biological 

pathways and adds a quantitative dimension to biological pathways. Assimilating 

growing evidence on cis and trans gene regulation with clues from disease GWAS will 

therefore put us in a much better position to understand the mechanisms governing 

pathogenesis and will enable better prognosis and treatment. 

6.3 FUTURE DIRECTIONS 

Although this thesis has dealt with cis gene regulation, trans effects are thought to make 

an important contribution to control of gene expression. It is likely that such effects 

have been largely underestimated mostly because studies to date have been 

underpowered. Ongoing analyses of HapMap Phase 3 and GenCord data carried out in 

our group have shown substantial trans regulatory effects, with a fraction of trans 

eQTLs being shared across populations, but also across cell types.  

In this thesis I have highlighted the biological significance of interrogating gene 

expression in multiple cell types. Similarly, it is also expected that studying expression 

during different developmental stages, but also following a range of environmental 

stimuli, will also yield important information about gene regulation. Quantifying the 

contribution of environmental factors is crucial and it is very likely that joint estimation 

of genetic and environmental factors will put genetic contributions in context and help 

dissect the genetic component of gene expression. In his 2008 review, Gibson (2008, pg 
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575) states that “environmental components are prevalent and ignoring them misses 

more than half the point if the objective is to understand the origin of variation for 

complex traits”. The environment plays a major role in determining plasticity of 

genomic responses and addressing gene-environment interactions will not only 

contribute to elucidating phenotypic variation, but will also help unravel mechanisms 

of genetic adaptation and evolution.  

Cis regulatory sequences are considered an important component of the genetic 

basis for adaptation (Wray 2007) and evolutionary biologists have argued that a number 

of phenotypic traits (morphological, physiological and behavioural) are more likely to 

result from these differences rather than from differences in coding regions. In many 

instances, natural selection has been shown to operate more efficiently on cis regulatory 

variants (Wray 2007) and for example mutations in cis regulatory regions of PDYN, a 

gene whose decreased expression in humans is associated with schizophrenia and 

bipolar disorder, show signatures of positive selection (Rockman, Hahn et al. 2005).  

A better grasp of gene regulation pathways is also likely to shed light on the 

pleiotropic action of genes (i.e. a single gene affecting multiple phenotypes). There is 

growing evidence that pleiotropy is common and occurs between traits that have never 

been considered as functionally related (Flint and Mackay 2009). Elucidating common 

regulatory pathways is likely to help us understand pleiotropic effects that influence 

phenotypes in different directions and as a consequence do not result in significant 

correlations between the traits. Furthermore, considering the joint effects of pleiotropy 

and epistasis is important, as pleiotropic effects can themselves be genetically variable 

when differences in epistatic interactions occur between loci with an impact on multiple 

traits (Mackay, Stone et al. 2009). Similarly, elucidating regulatory pathways is expected 

to be informative for understanding the structure of biological pathways and networks. 
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Ultimately, integrating all this information will help us understand how genetic 

variation impacts on developmental processes and shapes natural range phenotypic 

variation, as well as disease.  
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APPENDIX 

Gene Gene role Health impact  OMIM 
ID 

DE nsSNPs Variant role  

ABCA1 cholesterol 
efflux pump in 
cellular lipid 
removal 
pathway 

cholesterol transport, 
familial 
hypercholesterolemia 

600046 rs2230806 Protection against 
coronary heart 
disease in familial 
hypercholesterolemia 

  rs28933692 High density 
lipoprotein 
cholesterol deficiency 
(nsSNP role unclear) 

  rs28937313 Tangier disease 
(nsSNP role unclear) 

  rs28937314 Tangier disease 
(nsSNP role unclear) 

ADAR RNA modifying 
activity 

pigmentation 601059 rs28936680 Dyschromatosis 
symmetrica 
hereditaria (nsSNP 
role unclear) 

  rs28936681 Dyschromatosis 
symmetrica 
hereditaria (nsSNP 
role unclear) 

ADRB2 beta adrenergic 
receptor 

asthma, obesity, 
vasoconstriction, 
heart failure 

109690 rs1042713 Susceptibility to 
nocturnal asthma 
(nsSNP role unclear) 

  rs1042714 Significant 
association with 
obesity susceptibility 

  rs1800888 Profound reduction in 
sensitivity to 
vasodilation, 
vasoconstrictor 
sensitivity  increased 

AKAP10 A-kinase 
anchoring 

longevity 604694 rs203462 Singificant difference 
in frequency between 
young and old 
individuals, 
associated with a 
negative impact in 
health and therefore 
longevity 

ALG12 asparigine 
glycosylation 

glycosylation 
disorder 

607144 rs28942090 Hypoglycosylation of 
serum transferrin  
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APRT purine 
nucleotide 
salvage 
pathway 

APRT deficiency 102600 rs28999113 APRT abnormal 
kinetics and low 
activity (nsSNP role 
unclear) 

ARSA lysosomal 
enzyme 

lysosomal storage 
disease affecting 
growth and 
development of 
myelin 

607574 rs2071421 Enzyme activity or 
stability not affected 

  rs28940893 Juvenile 
metachromatic 
leukodystrophy 
(nsSNP role unclear) 

  rs28940894 Adult metachromatic 
leukodystrophy 
(nsSNP role unclear) 

  rs28940895 Adult metachromatic 
leukodystrophy 
(nsSNP role unclear) 

BARD1 BRCA1 
interaction 

breast cancer 
susceptibility 

601593 rs28997576 Breast cancer-
predisposing allele. 
nsSNP occurs in 
region controlling 
growth suppression 
and apoptosis 

BBS2   Bardet-Biedl 
Syndrome 2  

606151 rs4784677 nsSNP role unclear 

BCS1L mitochondrial 
respiratory 
chain assembly 

Gracile syndrome, 
iron metabolism 

603647 rs28937590 nsSNP role unclear 

BRCA1 tumour 
suppressor 

breast/ovarian 
cancer 

113705 rs1800709 Common mutation 
with moderate 
phenotype  

  rs28897672 nsSNP role unclear 

  rs4986852 nsSNP role unclear 

BRCA2 tumour 
suppressor 

breast cancer 600185 rs144848 nsSNP role unclear 

C10ORF2 mitochondrial 
protein 

Ophthalmoplegia 606075 rs28937887 nsSNP role unclear 

CDKN1A/p21 cell cycle 
control 

Tumour develpoment 116899 rs1801270 nsSNP role unclear 

CLN5 lysosomal 
protein 
(putative) 

neuronal ceroid 
lipofuscinosis  

608102 rs28940280 nsSNP role unclear 

CTH cysteine 
metabolism 

elevated 
homocysteine 

607657 rs1021737 Significantly higher 
concentrations of 
plasma total 
homocysteine in 
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isoleucine 
homozygotes 

CTSC lysosomal 
protease 

periodontitis 602365 rs28937571 nsSNP role unclear 

CYP1B1 mixed-function 
monooxygenase 
(putative)  

primary congenital 
glaucoma 

601771 rs28936700 nsSNP role unclear 

  rs9282671 nsSNP role unclear 

  rs28936701 nsSNP role unclear 

DLG5 epithelial cell 
structure and 
signalling 

Crohn disease 604090 rs1248696 Susceptibility to 
Crohn disease (nsSNP 
role unclear) 

DPYD uracil and 
thymidine 
catabolism 

DPYD deficiency 274270 rs1801265 nsSNP role unclear 

  rs1801267 nsSNP role unclear 

DSP epithelial cell 
intercellular 
junctions 

Skin fragility - wooly 
hair syndrome 

125647 rs28931610 Severe keratoderma. 
Substitution of a 
cysteine is predicted 
to affect 
intrachain/interchain 
disulfide bonding, 
thus changing the 
tertiary structure. 

ECGF1 angiogenesis 
and endothelial 
cell growth 
stimulation 

mitochondrial 
neurogastrointestinal 
encephalomyopathy 
syndrome 

131222 rs28931613 Substitution of a 
positively charged by 
an uncharged amino 
acid may account for 
loss of enzyme 
activity 

EPHX2 detoxication familial 
hypercholesterolemia 

132811 rs751141 Modifies familial 
hypercholesterolemia 
phenotype in 
individuals with 
defective low density 
lipoprotein receptor 
(LDLR)   

GAA glycogen 
degredation 

  606800 rs1800309 nsSNP role unclear 

GGCX modification of 
vitamin K-
dependent 
proteins 

vitamin K-dependent 
coagulation defect 

137167 rs28928872 Homozygote state led 
to deficiency of all 
vitamin K-dependent 
coagulation factors  
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GHRL growth 
hormone 
regulation 

obesity 605353 rs4684677 Obesity susceptibility, 
nonconservative 
amino acid change  
significantly higher in 
obese children. 
(nsSNP role unclear) 

  rs696217 Obesity age of onset 
(nsSNP role unclear) 

HBG2 fetal 
hemoglobin 

Hb Waynesboro, Hb 
Sacromonte, Hb 
Calabria 

142250 rs1061234 nsSNP role unclear 

  rs28933078 nsSNP role unclear 

  rs28933080 nsSNP role unclear 

HRAS oncogene thyroid carcinoma 190020 rs28933406 nsSNP role unclear 

KCNA1 potassium 
channel 

myokymia, ataxia, 
epilepsy 

176260 rs28933381 nsSNP role unclear 

  rs28933382 nsSNP role unclear 

  rs28933383 Substitution ocurrs in 
highly conserved 
position of potassium 
channel and is 
predicted to impair 
neuronal 
repolarization. 

LEPR adipose tissue 
mass regulation 

glucose response 601007 rs1137100 Impaired glucose 
response (nsSNP role 
unclear) 

  rs1137101 Differences in body 
mass index, fat mass, 
and serum leptin 
levels (nsSNP role 
unclear) 

  rs8179183 Association with 
impaired glucose 
tolerance (nsSNP role 
unclear) 

NPC1 similarity to 
morphogen 
receptor 
"patched" 

Niemann-Pick disease 
type C1  

607623 rs28940897 nsSNP role unclear 

  rs28942105 nsSNP role unclear 

  rs28942106 nsSNP role unclear 

  rs28942108 nsSNP role unclear 
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NR2E3 retinal nuclear 
receptor 

enhanced S-cone 
syndrome. 

604485 rs28937873 nsSNP role unclear 

OAS1 resistance to 
viral infection 
(possible role in 
cell growth, 
differentiation 
and apoptosis) 

diabetes  164350 rs3741981 Association with type 
1 diabetes 

P2RX7 cell surface ATP 
receptor 

chronic lymphatic 
leukemia 

602566 rs28937574 Susceptibility to 
chronic lymphatic 
leukemia. Loss of 
function mutation 

  rs3751143 Susceptibility to 
chronic lymphatic 
leukemia. Loss of 
function mutation 

PI protease 
inhibitor 

emphysema, liver 
disease 

107400 rs11558261  Increased risk of 
emphysema and liver 
disease (nsSNP role 
unclear) 

  rs1802959  Increased risk of 
emphysema and liver 
disease (nsSNP role 
unclear) 

  rs28929471  Rare normal allele 
(nsSNP role unclear) 

  rs28929473 High risk of 
emphysema (nsSNP 
role unclear) 

  rs28929474 Deficient PI (nsSNP 
role unclear) 

  rs28931568 Causes Alpha-1 
antitrypsin deficiency 
and emphysema 

  rs28931569  Reduced catalytic 
activity, instability, 
low plasma 
concentration. 
Homozygotes have a 
high risk of 
emphysema 

  rs28931570 Mildly increased risk 
of emphysema 
(nsSNP role unclear) 
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  rs28931572 Increased risk of 
emphysema and liver 
disease. Substitution 
of polar for nonpolar 
amino acid predicted 
to distrupt tertiary 
structure 

  rs709932 nsSNP role unclear 
SCO2 cytochrome c 

oxidase 
synthesis 

infantile 
cardioencephalo-
myopathy 

604272 rs28937598 cytochrome c oxidase 
deficiency (nsSNP 
role unclear) 

  rs28937868 cytochrome c oxidase 
deficiency (nsSNP 
role unclear) 


