Sanger Institute, Genome Research Limited

People

Miska, Eric
Eric Miska
Group Leader

Eric is the Herchel Smith Professor of Molecular Genetics and a Senior Group Leader at the Gurdon Institute at the University of Cambridge. Since 2015 he is Associate Faculty at the Wellcome Trust Sanger Institute.

Key Projects, Collaborations, Tools & Data

 

Research Programmes

Partners and Funders

Internal Partners

Publications

  • Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake.

    Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y et al.

    Science (New York, N.Y.) 2015;350;6267;1493-8

  • Antiviral RNA Interference against Orsay Virus Is neither Systemic nor Transgenerational in Caenorhabditis elegans.

    Ashe A, Sarkies P, Le Pen J, Tanguy M and Miska EA

    Journal of virology 2015;89;23;12035-46

  • Tertiary siRNAs mediate paramutation in C. elegans.

    Sapetschnig A, Sarkies P, Lehrbach NJ and Miska EA

    PLoS genetics 2015;11;3;e1005078

  • Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages.

    Sarkies P, Selkirk ME, Jones JT, Blok V, Boothby T et al.

    PLoS biology 2015;13;2;e1002061

  • The genomic substrate for adaptive radiation in African cichlid fish.

    Brawand D, Wagner CE, Li YI, Malinsky M, Keller I et al.

    Nature 2014;513;7518;375-81

  • PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans.

    Weick EM, Sarkies P, Silva N, Chen RA, Moss SM et al.

    Genes & development 2014;28;7;783-96

  • A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity.

    Ashe A, Bélicard T, Le Pen J, Sarkies P, Frézal L et al.

    eLife 2013;2;e00994

  • piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans.

    Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP et al.

    Cell 2012;150;1;88-99

  • Function, targets, and evolution of Caenorhabditis elegans piRNAs.

    Bagijn MP, Goldstein LD, Sapetschnig A, Weick EM, Bouasker S et al.

    Science (New York, N.Y.) 2012;337;6094;574-8

  • tRNA fragments: novel players in intergenerational inheritance.

    Gapp K and Miska EA

    Cell research 2016

  • Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake.

    Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y et al.

    Science (New York, N.Y.) 2015;350;6267;1493-8

  • Antiviral RNA Interference against Orsay Virus Is neither Systemic nor Transgenerational in Caenorhabditis elegans.

    Ashe A, Sarkies P, Le Pen J, Tanguy M and Miska EA

    Journal of virology 2015;89;23;12035-46

  • Formation and abundance of 5-hydroxymethylcytosine in RNA.

    Huber SM, van Delft P, Mendil L, Bachman M, Smollett K et al.

    Chembiochem : a European journal of chemical biology 2015;16;5;752-5

  • Tertiary siRNAs mediate paramutation in C. elegans.

    Sapetschnig A, Sarkies P, Lehrbach NJ and Miska EA

    PLoS genetics 2015;11;3;e1005078

  • Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages.

    Sarkies P, Selkirk ME, Jones JT, Blok V, Boothby T et al.

    PLoS biology 2015;13;2;e1002061

  • Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations.

    Sakaguchi A, Sarkies P, Simon M, Doebley AL, Goldstein LD et al.

    Proceedings of the National Academy of Sciences of the United States of America 2014;111;41;E4323-31

  • The genomic substrate for adaptive radiation in African cichlid fish.

    Brawand D, Wagner CE, Li YI, Malinsky M, Keller I et al.

    Nature 2014;513;7518;375-81

  • piRNAs: from biogenesis to function.

    Weick EM and Miska EA

    Development (Cambridge, England) 2014;141;18;3458-71

  • Small RNAs break out: the molecular cell biology of mobile small RNAs.

    Sarkies P and Miska EA

    Nature reviews. Molecular cell biology 2014;15;8;525-35

  • Getting a grip on piRNA cluster transcription.

    Sapetschnig A and Miska EA

    Cell 2014;157;6;1253-4

  • Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants.

    Simon M, Sarkies P, Ikegami K, Doebley AL, Goldstein LD et al.

    Cell reports 2014;7;3;762-73

  • PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans.

    Weick EM, Sarkies P, Silva N, Chen RA, Moss SM et al.

    Genes & development 2014;28;7;783-96

  • Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans.

    Peden AS, Mac P, Fei YJ, Castro C, Jiang G et al.

    Nature neuroscience 2013;16;12;1794-801

  • Antiviral RNA interference in animals: piecing together the evidence.

    Tanguy M and Miska EA

    Nature structural & molecular biology 2013;20;11;1239-41

  • A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity.

    Ashe A, Bélicard T, Le Pen J, Sarkies P, Frézal L et al.

    eLife 2013;2;e00994

  • MiR-210 is induced by Oct-2, regulates B cells, and inhibits autoantibody production.

    Mok Y, Schwierzeck V, Thomas DC, Vigorito E, Rayner TF et al.

    Journal of immunology (Baltimore, Md. : 1950) 2013;191;6;3037-48

  • Molecular biology. Is there social RNA?

    Sarkies P and Miska EA

    Science (New York, N.Y.) 2013;341;6145;467-8

  • Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.

    Sarkies P, Ashe A, Le Pen J, McKie MA and Miska EA

    Genome research 2013;23;8;1258-70

  • RNAi pathways in the recognition of foreign RNA: antiviral responses and host-parasite interactions in nematodes.

    Sarkies P and Miska EA

    Biochemical Society transactions 2013;41;4;876-80

  • A study of Caenorhabditis elegans DAF-2 mutants by metabolomics and differential correlation networks.

    Castro C, Krumsiek J, Lehrbach NJ, Murfitt SA, Miska EA and Griffin JL

    Molecular bioSystems 2013;9;7;1632-42

  • The shaping and functional consequences of the microRNA landscape in breast cancer.

    Dvinge H, Git A, Gräf S, Salmon-Divon M, Curtis C et al.

    Nature 2013;497;7449;378-82

  • Post-developmental microRNA expression is required for normal physiology, and regulates aging in parallel to insulin/IGF-1 signaling in C. elegans.

    Lehrbach NJ, Castro C, Murfitt KJ, Abreu-Goodger C, Griffin JL and Miska EA

    RNA (New York, N.Y.) 2012;18;12;2220-35

  • Function, targets, and evolution of Caenorhabditis elegans piRNAs.

    Bagijn MP, Goldstein LD, Sapetschnig A, Weick EM, Bouasker S et al.

    Science (New York, N.Y.) 2012;337;6094;574-8

  • piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans.

    Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP et al.

    Cell 2012;150;1;88-99

  • RIP-chip-SRM--a new combinatorial large-scale approach identifies a set of translationally regulated bantam/miR-58 targets in C. elegans.

    Jovanovic M, Reiter L, Clark A, Weiss M, Picotti P et al.

    Genome research 2012;22;7;1360-71

  • A LIN28-dependent structural change in pre-let-7g directly inhibits dicer processing.

    Lightfoot HL, Bugaut A, Armisen J, Lehrbach NJ, Miska EA and Balasubramanian S

    Biochemistry 2011;50;35;7514-21

  • Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses.

    Félix MA, Ashe A, Piffaretti J, Wu G, Nuez I et al.

    PLoS biology 2011;9;1;e1000586

  • A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans.

    Jovanovic M, Reiter L, Picotti P, Lange V, Bogan E et al.

    Nature methods 2010;7;10;837-42

  • Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells.

    Hanina SA, Mifsud W, Down TA, Hayashi K, O'Carroll D et al.

    PLoS genetics 2010;6;10;e1001163

  • The microRNAs of Caenorhabditis elegans.

    Kaufman EJ and Miska EA

    Seminars in cell & developmental biology 2010;21;7;728-37

  • The conserved miR-51 microRNA family is redundantly required for embryonic development and pharynx attachment in Caenorhabditis elegans.

    Shaw WR, Armisen J, Lehrbach NJ and Miska EA

    Genetics 2010;185;3;897-905

  • The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans.

    Clark AM, Goldstein LD, Tevlin M, Tavaré S, Shaham S and Miska EA

    Nucleic acids research 2010;38;11;3780-93

  • Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis.

    Armisen J, Gilchrist MJ, Wilczynska A, Standart N and Miska EA

    Genome research 2009;19;10;1766-75

  • LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans.

    Lehrbach NJ, Armisen J, Lightfoot HL, Murfitt KJ, Bugaut A et al.

    Nature structural & molecular biology 2009;16;10;1016-20

  • Two Piwi proteins, Xiwi and Xili, are expressed in the Xenopus female germline.

    Wilczynska A, Minshall N, Armisen J, Miska EA and Standart N

    RNA (New York, N.Y.) 2009;15;2;337-45

  • Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline.

    Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ et al.

    Molecular cell 2008;31;1;79-90

  • A comparative metabolomic study of NHR-49 in Caenorhabditis elegans and PPAR-alpha in the mouse.

    Atherton HJ, Jones OA, Malik S, Miska EA and Griffin JL

    FEBS letters 2008;582;12;1661-6

  • Functional genomic, computational and proteomic analysis of C. elegans microRNAs.

    Lehrbach NJ and Miska EA

    Briefings in functional genomics & proteomics 2008;7;3;228-35

  • MicroRNAs--keeping cells in formation.

    Miska EA

    Nature cell biology 2008;10;5;501-2

  • Members of the miRNA-200 family regulate olfactory neurogenesis.

    Choi PS, Zakhary L, Choi WY, Caron S, Alvarez-Saavedra E et al.

    Neuron 2008;57;1;41-55

  • microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells.

    Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z et al.

    Immunity 2007;27;6;847-59

  • Most Caenorhabditis elegans microRNAs are individually not essential for development or viability.

    Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB et al.

    PLoS genetics 2007;3;12;e215

  • A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway.

    O'Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U et al.

    Genes & development 2007;21;16;1999-2004

  • Requirement of bic/microRNA-155 for normal immune function.

    Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P et al.

    Science (New York, N.Y.) 2007;316;5824;608-11

  • miRNAs in cancer: approaches, aetiology, diagnostics and therapy.

    Blenkiron C and Miska EA

    Human molecular genetics 2007;16 Spec No 1;R106-13

  • RNA interference has second helpings.

    Miska EA and Ahringer J

    Nature biotechnology 2007;25;3;302-3

  • MicroRNA functions in animal development and human disease.

    Alvarez-Garcia I and Miska EA

    Development (Cambridge, England) 2005;132;21;4653-62

  • How microRNAs control cell division, differentiation and death.

    Miska EA

    Current opinion in genetics & development 2005;15;5;563-8

  • The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans.

    Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP et al.

    Developmental cell 2005;9;3;403-14

  • MicroRNA expression profiles classify human cancers.

    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J et al.

    Nature 2005;435;7043;834-8

  • Acetylation of beta-catenin by CREB-binding protein (CBP).

    Wolf D, Rodova M, Miska EA, Calvet JP and Kouzarides T

    The Journal of biological chemistry 2002;277;28;25562-7

  • Differential localization of HDAC4 orchestrates muscle differentiation.

    Miska EA, Langley E, Wolf D, Karlsson C, Pines J and Kouzarides T

    Nucleic acids research 2001;29;16;3439-47

  • Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.

    Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO et al.

    Nature 2001;410;6824;120-4

  • Regulation of gene expression by transcription factor acetylation.

    Bannister AJ and Miska EA

    Cellular and molecular life sciences : CMLS 2000;57;8-9;1184-92

  • Acetylation of importin-alpha nuclear import factors by CBP/p300.

    Bannister AJ, Miska EA, Görlich D and Kouzarides T

    Current biology : CB 2000;10;8;467-70

  • The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex.

    Grimes JA, Nielsen SJ, Battaglioli E, Miska EA, Speh JC et al.

    The Journal of biological chemistry 2000;275;13;9461-7

  • Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway.

    Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T and Lazar MA

    Genes & development 2000;14;1;45-54

  • HDAC4 deacetylase associates with and represses the MEF2 transcription factor.

    Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J and Kouzarides T

    The EMBO journal 1999;18;18;5099-107

  • MEF-2 function is modified by a novel co-repressor, MITR.

    Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S et al.

    The EMBO journal 1999;18;18;5085-98

  • The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth.

    Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL et al.

    The EMBO journal 1999;18;9;2449-58

  • Retinoblastoma protein recruits histone deacetylase to repress transcription.

    Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ and Kouzarides T

    Nature 1998;391;6667;597-601