Archive Page: Genetics of common neurological diseases

Professor Aarno Palotie is faculty member at the Broad Institute of MIT and Harvard and the Massachusetts General Hospital, Center for Human Genetic Research in Boston MA and is the Research Director of the Human Genomics Program at the Institute for Molecular Medicine, FIMM in Helsinki, Finland. From Autumn 2007 to Summer 2013, Professor Aarno led the Genomics of common neurological disorders group at the Wellcome Trust Sanger Institute which mainly investigated the genetic predisposition of traits affecting the Central Nervous System, particularly migraine, epilepsy, schizophrenia and autism.

The team searched for both common and low-frequency variations in the DNA sequence of people who have migraine, epilepsy and autism, and seeked to link these variants to susceptibility to these conditions. Many of the projects were based on studying a geographically isolated population - the Finnish founder population. Using large well-characterised sample sets from this group and others enabled the discovery of several new regions of DNA associated with disease. In collaboration with a number of international groups, the team used genome-wide association studies to identify the first robust variant associated with common forms of migraine. The wealth of multiple studies with large sample sets enabled the group to use different study designs for variant identification and verification and for the estimation of the size of the effect contributed by the variants.

[Genome Research Limited]

Background

The recent boom of genome-wide association studies (GWAS) has had a major impact on our current view of genetic susceptibility to common traits and complex disorders. Although many neurological disorders have a strong genetic component, relatively few associations have been found so far. Despite extensive research, the detailed molecular background of the genetic susceptibility to these traits remains relatively unclear.

The overall goal of our group is to improve our understanding of the genetic mechanisms underlying neurological and neurodevelopmental traits with a particular focus on migraine, epilepsy, schizophrenia and autism. These conditions have a considerable impact on public health:

  • migraine ranks among the 20 most disabling diseases and has been estimated as the most costly neurological disorder in Europe
  • 1 in 50 people in the UK will have some form of epilepsy at some time in their life
  • 1 in 100 people over the age of 18 will be affected by schizophrenia
  • 2-4 in 1000 children will be affected by autism

It is hoped that developing a deeper understanding of the genetic background of these conditions will lead to improved diagnosis and treatment.

Research

We recently published results from a genome-wide association study of migraine with aura, in collaboration with six major headache research centres in Europe and Australia. This study identified a susceptibility variant on chromosome 8q that is potentially linked to glutamate neurotransmitter regulation. We are now following up this initial result in different migraine subtypes, migraine sufferers from population cohorts and individuals suffering from chronic pain.

To identify potential high-penetrance variants predisposing to familial forms of migraine and epilepsy, we have begun whole-exome sequencing of 2000 familial cases. This multicentre collaboration should greatly improve our understanding of the genetic architecture underlying these nervous system disorders.

Unique populations have also shed light on possible cellular differences in autism. By combining data from genome-wide association studies and expression profiles of peripheral blood leukocytes from autism patients from an isolated region of Finland, we identified two biological pathways associated with autism: nervous system development and cell-to-cell signalling and interaction. Whole-exome sequencing of individuals from these families is now being carried out as part of the UK10K project.

Collaborations

  • UK10K: Aims to uncover the role of rare genetic variants in health and human by studying the genetic code of 10,000 people in fine detail. Our group is specifically involved in the neurodevelopmental arm of the project aiming to sequence the exomes of 3000 schizophrenia and autism samples.
  • 1000Genomes: A deep catalogue of human genetic variation.
  • ENGAGE: European Network of Genetic and Genomic Epidemiology. ENGAGE aims to translate the wealth of data emerging from large-scale research in genetic and genomic epidemiology from European (and other) population cohorts into information relevant to future clinical applications.
  • International Headache Genetics Consortium: The consortium combines groups interested in the genetic basis on headache disorders.
  • Finnish Intracranial Aneurysm (IA) Research Consortium: The consortium brings together groups interested in the pathophsiology of intracranial aneurysms.
  • Geuvadis: A European medical sequencing consortium funded by the European Commission under the 7th Framework programme, the GEUVADIS Project brings together 17 partners including academic institutes and private companies, from 7 different countries. The Consortium is committed to share data, experience and expertise in high throughput sequencing to better understand the meaning of our genome, both in health and disease.
  • Synsys: Synsys stands for 'Synaptic Systems'. The consortium assembles well-established international expertise spanning the academic and SME sectors to provide a technology workflow of experimental and computational scientists, to embark on the next step in synapse structure, function, modelling for future drug discovery enabling the combat of brain diseases.

Selected Publications

  • The GENCODE exome: sequencing the complete human exome.

    Coffey AJ, Kokocinski F, Calafato MS, Scott CE, Palta P, Drury E, Joyce CJ, Leproust EM, Harrow J, Hunt S, Lehesjoki AE, Turner DJ, Hubbard TJ and Palotie A

    European journal of human genetics : EJHG 2011;19;7;827-31

  • Genome-wide association study reveals three susceptibility loci for common migraine in the general population.

    Chasman DI, Schürks M, Anttila V, de Vries B, Schminke U, Launer LJ, Terwindt GM, van den Maagdenberg AM, Fendrich K, Völzke H, Ernst F, Griffiths LR, Buring JE, Kallela M, Freilinger T, Kubisch C, Ridker PM, Palotie A, Ferrari MD, Hoffmann W, Zee RY and Kurth T

    Nature genetics 2011;43;7;695-8

  • Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1.

    Anttila V, Stefansson H, Kallela M, Todt U, Terwindt GM, Calafato MS, Nyholt DR, Dimas AS, Freilinger T, Müller-Myhsok B, Artto V, Inouye M, Alakurtti K, Kaunisto MA, Hämäläinen E, de Vries B, Stam AH, Weller CM, Heinze A, Heinze-Kuhn K, Goebel I, Borck G, Göbel H, Steinberg S, Wolf C, Björnsson A, Gudmundsson G, Kirchmann M, Hauge A, Werge T, Schoenen J, Eriksson JG, Hagen K, Stovner L, Wichmann HE, Meitinger T, Alexander M, Moebus S, Schreiber S, Aulchenko YS, Breteler MM, Uitterlinden AG, Hofman A, van Duijn CM, Tikka-Kleemola P, Vepsäläinen S, Lucae S, Tozzi F, Muglia P, Barrett J, Kaprio J, Färkkilä M, Peltonen L, Stefansson K, Zwart JA, Ferrari MD, Olesen J, Daly M, Wessman M, van den Maagdenberg AM, Dichgans M, Kubisch C, Dermitzakis ET, Frants RR, Palotie A and International Headache Genetics Consortium

    Nature genetics 2010;42;10;869-73

  • Integrating common and rare genetic variation in diverse human populations.

    International HapMap 3 Consortium, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Peltonen L, Dermitzakis E, Bonnen PE, Altshuler DM, Gibbs RA, de Bakker PI, Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A, Parkin M, Whittaker P, Yu F, Chang K, Hawes A, Lewis LR, Ren Y, Wheeler D, Gibbs RA, Muzny DM, Barnes C, Darvishi K, Hurles M, Korn JM, Kristiansson K, Lee C, McCarrol SA, Nemesh J, Dermitzakis E, Keinan A, Montgomery SB, Pollack S, Price AL, Soranzo N, Bonnen PE, Gibbs RA, Gonzaga-Jauregui C, Keinan A, Price AL, Yu F, Anttila V, Brodeur W, Daly MJ, Leslie S, McVean G, Moutsianas L, Nguyen H, Schaffner SF, Zhang Q, Ghori MJ, McGinnis R, McLaren W, Pollack S, Price AL, Schaffner SF, Takeuchi F, Grossman SR, Shlyakhter I, Hostetter EB, Sabeti PC, Adebamowo CA, Foster MW, Gordon DR, Licinio J, Manca MC, Marshall PA, Matsuda I, Ngare D, Wang VO, Reddy D, Rotimi CN, Royal CD, Sharp RR, Zeng C, Brooks LD and McEwen JE

    Nature 2010;467;7311;52-8

  • An immune response network associated with blood lipid levels.

    Inouye M, Silander K, Hamalainen E, Salomaa V, Harald K, Jousilahti P, Männistö S, Eriksson JG, Saarela J, Ripatti S, Perola M, van Ommen GJ, Taskinen MR, Palotie A, Dermitzakis ET and Peltonen L

    PLoS genetics 2010;6;9;e1001113

  • Distinct variants at LIN28B influence growth in height from birth to adulthood.

    Widén E, Ripatti S, Cousminer DL, Surakka I, Lappalainen T, Järvelin MR, Eriksson JG, Raitakari O, Salomaa V, Sovio U, Hartikainen AL, Pouta A, McCarthy MI, Osmond C, Kajantie E, Lehtimäki T, Viikari J, Kähönen M, Tyler-Smith C, Freimer N, Hirschhorn JN, Peltonen L and Palotie A

    American journal of human genetics 2010;86;5;773-82

  • Target-enrichment strategies for next-generation sequencing.

    Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J and Turner DJ

    Nature methods 2010;7;2;111-8

  • Donor-recipient mismatch for common gene deletion polymorphisms in graft-versus-host disease.

    McCarroll SA, Bradner JE, Turpeinen H, Volin L, Martin PJ, Chilewski SD, Antin JH, Lee SJ, Ruutu T, Storer B, Warren EH, Zhang B, Zhao LP, Ginsburg D, Soiffer RJ, Partanen J, Hansen JA, Ritz J, Palotie A and Altshuler D

    Nature genetics 2009;41;12;1341-4

  • The genome-wide patterns of variation expose significant substructure in a founder population.

    Jakkula E, Rehnström K, Varilo T, Pietiläinen OP, Paunio T, Pedersen NL, deFaire U, Järvelin MR, Saharinen J, Freimer N, Ripatti S, Purcell S, Collins A, Daly MJ, Palotie A and Peltonen L

    American journal of human genetics 2008;83;6;787-94

  • Susceptibility loci for intracranial aneurysm in European and Japanese populations.

    Bilguvar K, Yasuno K, Niemelä M, Ruigrok YM, von Und Zu Fraunberg M, van Duijn CM, van den Berg LH, Mane S, Mason CE, Choi M, Gaál E, Bayri Y, Kolb L, Arlier Z, Ravuri S, Ronkainen A, Tajima A, Laakso A, Hata A, Kasuya H, Koivisto T, Rinne J, Ohman J, Breteler MM, Wijmenga C, State MW, Rinkel GJ, Hernesniemi J, Jääskeläinen JE, Palotie A, Inoue I, Lifton RP and Günel M

    Nature genetics 2008;40;12;1472-7

  • A high-density association screen of 155 ion transport genes for involvement with common migraine.

    Nyholt DR, LaForge KS, Kallela M, Alakurtti K, Anttila V, Färkkilä M, Hämaläinen E, Kaprio J, Kaunisto MA, Heath AC, Montgomery GW, Göbel H, Todt U, Ferrari MD, Launer LJ, Frants RR, Terwindt GM, de Vries B, Verschuren WM, Brand J, Freilinger T, Pfaffenrath V, Straube A, Ballinger DG, Zhan Y, Daly MJ, Cox DR, Dichgans M, van den Maagdenberg AM, Kubisch C, Martin NG, Wessman M, Peltonen L and Palotie A

    Human molecular genetics 2008;17;21;3318-31

  • Consistently replicating locus linked to migraine on 10q22-q23.

    Anttila V, Nyholt DR, Kallela M, Artto V, Vepsäläinen S, Jakkula E, Wennerström A, Tikka-Kleemola P, Kaunisto MA, Hämäläinen E, Widén E, Terwilliger J, Merikangas K, Montgomery GW, Martin NG, Daly M, Kaprio J, Peltonen L, Färkkilä M, Wessman M and Palotie A

    American journal of human genetics 2008;82;5;1051-63

Team

Team members

Verneri Anttila

- unknown

Verneri studied Medicine in the MD/PhD-program at the University of Helsinki, working for the Finnish Migraine Gene Project in turn at the Finnish Genome Center, the Research Program for Molecular Medicine at the University of Helsinki and the Institute for Molecular Medicine Finland (FIMM). He moved to the Sanger Institute in 2008 to finish his PhD on the genetics of migraine (supervised by prof. Aarno Palotie and adj. prof. Maija Wessman), and completed his PhD in 2010.

Research

Verneri moved to the Sanger Institute in the beginning of 2008, and currently works as a post-doctoral fellow in the Genetics of Common Neurological Diseases team. He co-chairs the International Migraine Genetics Meta-analysis Consortium (together with Dale Nyholt from Queensland Institute for Medical Research, Brisbane) and is involved in several genetics and science consortia, including the FP7 SynSys Consortium, the Hapmap Consortium, and the International Headache Genetics Consortium.

In addition to the work in migraine, Verneri works on projects addressing various other neurological diseases, as well as genotype imputation using 1000 Genomes data. He is still perpetually interested in science.

References

  • Genome-wide association study reveals three susceptibility loci for common migraine in the general population.

    Chasman DI, Schürks M, Anttila V, de Vries B, Schminke U, Launer LJ, Terwindt GM, van den Maagdenberg AM, Fendrich K, Völzke H, Ernst F, Griffiths LR, Buring JE, Kallela M, Freilinger T, Kubisch C, Ridker PM, Palotie A, Ferrari MD, Hoffmann W, Zee RY and Kurth T

    Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

    Migraine is a common, heterogeneous and heritable neurological disorder. Its pathophysiology is incompletely understood, and its genetic influences at the population level are unknown. In a population-based genome-wide analysis including 5,122 migraineurs and 18,108 non-migraineurs, rs2651899 (1p36.32, PRDM16), rs10166942 (2q37.1, TRPM8) and rs11172113 (12q13.3, LRP1) were among the top seven associations (P < 5 × 10(-6)) with migraine. These SNPs were significant in a meta-analysis among three replication cohorts and met genome-wide significance in a meta-analysis combining the discovery and replication cohorts (rs2651899, odds ratio (OR) = 1.11, P = 3.8 × 10(-9); rs10166942, OR = 0.85, P = 5.5 × 10(-12); and rs11172113, OR = 0.90, P = 4.3 × 10(-9)). The associations at rs2651899 and rs10166942 were specific for migraine compared with non-migraine headache. None of the three SNP associations was preferential for migraine with aura or without aura, nor were any associations specific for migraine features. TRPM8 has been the focus of neuropathic pain models, whereas LRP1 modulates neuronal glutamate signaling, plausibly linking both genes to migraine pathophysiology.

    Funded by: NCI NIH HHS: CA-47988, R01 CA047988, R01 CA047988-21; NHLBI NIH HHS: HL-043851, HL-080467, HL-099355, R01 HL043851, R01 HL043851-10, R01 HL080467, R01 HL080467-05, RC1 HL099355, RC1 HL099355-02; NINDS NIH HHS: NS-061836, R01 NS061836-03

    Nature genetics 2011;43;7;695-8

  • Founder population-specific HapMap panel increases power in GWA studies through improved imputation accuracy and CNV tagging.

    Surakka I, Kristiansson K, Anttila V, Inouye M, Barnes C, Moutsianas L, Salomaa V, Daly M, Palotie A, Peltonen L and Ripatti S

    Institute for Molecular Medicine Finland, FIMM, University of Helsinki, FI-00014 Helsinki, Finland.

    The combining of genome-wide association (GWA) data across populations represents a major challenge for massive global meta-analyses. Genotype imputation using densely genotyped reference samples facilitates the combination of data across different genotyping platforms. HapMap data is typically used as a reference for single nucleotide polymorphism (SNP) imputation and tagging copy number polymorphisms (CNPs). However, the advantage of having population-specific reference panels for founder populations has not been evaluated. We looked at the properties and impact of adding 81 individuals from a founder population to HapMap3 reference data on imputation quality, CNP tagging, and power to detect association in simulations and in an independent cohort of 2138 individuals. The gain in SNP imputation accuracy was highest among low-frequency markers (minor allele frequency [MAF] < 5%), for which adding the population-specific samples to the reference set increased the median R(2) between imputed and genotyped SNPs from 0.90 to 0.94. Accuracy also increased in regions with high recombination rates. Similarly, a reference set with population-specific extension facilitated the identification of better tag-SNPs for a subset of CNPs; for 4% of CNPs the R(2) between SNP genotypes and CNP intensity in the independent population cohort was at least twice as high as without the extension. We conclude that even a relatively small population-specific reference set yields considerable benefits in SNP imputation, CNP tagging accuracy, and the power to detect associations in founder populations and population isolates in particular.

    Funded by: Wellcome Trust: WT089061/Z/09/Z, WT089062/Z/09/Z

    Genome research 2010;20;10;1344-51

  • Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1.

    Anttila V, Stefansson H, Kallela M, Todt U, Terwindt GM, Calafato MS, Nyholt DR, Dimas AS, Freilinger T, Müller-Myhsok B, Artto V, Inouye M, Alakurtti K, Kaunisto MA, Hämäläinen E, de Vries B, Stam AH, Weller CM, Heinze A, Heinze-Kuhn K, Goebel I, Borck G, Göbel H, Steinberg S, Wolf C, Björnsson A, Gudmundsson G, Kirchmann M, Hauge A, Werge T, Schoenen J, Eriksson JG, Hagen K, Stovner L, Wichmann HE, Meitinger T, Alexander M, Moebus S, Schreiber S, Aulchenko YS, Breteler MM, Uitterlinden AG, Hofman A, van Duijn CM, Tikka-Kleemola P, Vepsäläinen S, Lucae S, Tozzi F, Muglia P, Barrett J, Kaprio J, Färkkilä M, Peltonen L, Stefansson K, Zwart JA, Ferrari MD, Olesen J, Daly M, Wessman M, van den Maagdenberg AM, Dichgans M, Kubisch C, Dermitzakis ET, Frants RR, Palotie A and International Headache Genetics Consortium

    Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK. verneri.anttila@sanger.ac.uk

    Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or molecular markers for migraine have been convincingly established. We identified the minor allele of rs1835740 on chromosome 8q22.1 to be associated with migraine (P = 5.38 × 10⁻⁹, odds ratio = 1.23, 95% CI 1.150-1.324) in a genome-wide association study of 2,731 migraine cases ascertained from three European headache clinics and 10,747 population-matched controls. The association was replicated in 3,202 cases and 40,062 controls for an overall meta-analysis P value of 1.69 × 10⁻¹¹ (odds ratio = 1.18, 95% CI 1.127-1.244). rs1835740 is located between MTDH (astrocyte elevated gene 1, also known as AEG-1) and PGCP (encoding plasma glutamate carboxypeptidase). In an expression quantitative trait study in lymphoblastoid cell lines, transcript levels of the MTDH were found to have a significant correlation to rs1835740 (P = 3.96 × 10⁻⁵, permuted threshold for genome-wide significance 7.7 × 10⁻⁵. To our knowledge, our data establish rs1835740 as the first genetic risk factor for migraine.

    Funded by: Wellcome Trust: 089062, WT089062

    Nature genetics 2010;42;10;869-73

  • Integrating common and rare genetic variation in diverse human populations.

    International HapMap 3 Consortium, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Peltonen L, Dermitzakis E, Bonnen PE, Altshuler DM, Gibbs RA, de Bakker PI, Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A, Parkin M, Whittaker P, Yu F, Chang K, Hawes A, Lewis LR, Ren Y, Wheeler D, Gibbs RA, Muzny DM, Barnes C, Darvishi K, Hurles M, Korn JM, Kristiansson K, Lee C, McCarrol SA, Nemesh J, Dermitzakis E, Keinan A, Montgomery SB, Pollack S, Price AL, Soranzo N, Bonnen PE, Gibbs RA, Gonzaga-Jauregui C, Keinan A, Price AL, Yu F, Anttila V, Brodeur W, Daly MJ, Leslie S, McVean G, Moutsianas L, Nguyen H, Schaffner SF, Zhang Q, Ghori MJ, McGinnis R, McLaren W, Pollack S, Price AL, Schaffner SF, Takeuchi F, Grossman SR, Shlyakhter I, Hostetter EB, Sabeti PC, Adebamowo CA, Foster MW, Gordon DR, Licinio J, Manca MC, Marshall PA, Matsuda I, Ngare D, Wang VO, Reddy D, Rotimi CN, Royal CD, Sharp RR, Zeng C, Brooks LD and McEwen JE

    Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02138, USA. altshuler@molbio.mgh.harvard.edu

    Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called 'HapMap 3', includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of <or=5%, and demonstrated the feasibility of imputing newly discovered CNPs and SNPs. This expanded public resource of genome variants in global populations supports deeper interrogation of genomic variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.

    Funded by: Medical Research Council: G0000934; NHGRI NIH HHS: U54 HG003273; Wellcome Trust: 068545, 068545/Z/02, 076113, 077011, 077014, 082371, 089061, 089062, 091746

    Nature 2010;467;7311;52-8

  • A visual migraine aura locus maps to 9q21-q22.

    Tikka-Kleemola P, Artto V, Vepsäläinen S, Sobel EM, Räty S, Kaunisto MA, Anttila V, Hämäläinen E, Sumelahti ML, Ilmavirta M, Färkkilä M, Kallela M, Palotie A and Wessman M

    Folkhälsan Research Center, Biomedicum Helsinki, PO Box 63, 00014 University of Helsinki, Finland. maija.wessman@helsinki.fi

    Objective: To identify susceptibility loci for visual migraine aura in migraine families primarily affected with scintillating scotoma type of aura.

    Methods: We included Finnish migraine families with at least 2 affected family members with scintillating scotoma as defined by the International Criteria for Headache Disorders-II. A total of 36 multigenerational families containing 351 individuals were included, 185 of whom have visual aura and 159 have scintillating scotoma. Parametric and nonparametric linkage analyses were performed with 378 microsatellite markers. The most promising linkage loci found were fine-mapped with additional microsatellite markers.

    Results: A novel locus on chromosome 9q22-q31 for migraine aura was identified (HLOD = 4.7 at 104 cM). Fine-mapping identified a shared haplotype segment of 12 cM (9.8 Mb) on 9q21-q22 among the aura affected. Four other loci showed linkage to aura: a locus on 12p13 showed significant evidence of linkage, and suggestive evidence of linkage was detected to loci on chromosomes 5q13, 6q25, and 13q14.

    Conclusions: A novel visual migraine aura locus has been mapped to chromosome 9q21-q22. Interestingly, this region has previously been linked to occipitotemporal lobe epilepsy with prominent visual symptoms. Our finding further supports a shared genetic background in migraine and epilepsy and suggests that susceptibility variant(s) to visual aura for both of these traits are located in the 9q21-q22 locus.

    Funded by: NIGMS NIH HHS: GM053275

    Neurology 2010;74;15;1171-7

  • European lactase persistence genotype shows evidence of association with increase in body mass index.

    Kettunen J, Silander K, Saarela O, Amin N, Müller M, Timpson N, Surakka I, Ripatti S, Laitinen J, Hartikainen AL, Pouta A, Lahermo P, Anttila V, Männistö S, Jula A, Virtamo J, Salomaa V, Lehtimäki T, Raitakari O, Gieger C, Wichmann EH, Van Duijn CM, Smith GD, McCarthy MI, Järvelin MR, Perola M and Peltonen L

    Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK. johannes@sanger.ac.uk

    The global prevalence of obesity has increased significantly in recent decades, mainly due to excess calorie intake and increasingly sedentary lifestyle. Here, we test the association between obesity measured by body mass index (BMI) and one of the best-known genetic variants showing strong selective pressure: the functional variant in the cis-regulatory element of the lactase gene. We tested this variant since it is presumed to provide nutritional advantage in specific physical and cultural environments. We genetically defined lactase persistence (LP) in 31 720 individuals from eight European population-based studies and one family study by genotyping or imputing the European LP variant (rs4988235). We performed a meta-analysis by pooling the beta-coefficient estimates of the relationship between rs4988235 and BMI from the nine studies and found that the carriers of the allele responsible for LP among Europeans showed higher BMI (P = 7.9 x 10(-5)). Since this locus has been shown to be prone to population stratification, we paid special attention to reveal any population substructure which might be responsible for the association signal. The best evidence of exclusion of stratification came from the Dutch family sample which is robust for stratification. In this study, we highlight issues in model selection in the genome-wide association studies and problems in imputation of these special genomic regions.

    Funded by: CCR NIH HHS: N01-RC-37004, N01-RC-45035; Medical Research Council: G0600705; NCI NIH HHS: N01-CN-45165; NHLBI NIH HHS: 1-R01-HL087679-01

    Human molecular genetics 2010;19;6;1129-36

  • Valsalva maneuver as migraine inducer: a case report of a woman with patent foramen ovale and an ischemic stroke.

    Artto V, Anttila V, Rantanen K, Kallela M and Färkkilä M

    Helsinki University Central Hospital, Department of Neurology, Helsinki, Finland.

    The association between patent foramen ovale, ischemic stroke, and migraine with aura is well known. It is, however, complicated and generates a considerable debate about the features and clinical consequences of the phenomenon. We report a case of a woman for whom patent foramen ovale has possibly acted as an inducer of both migraine attacks and ischemic stroke.

    Headache 2009;49;1;146-7

  • A high-density association screen of 155 ion transport genes for involvement with common migraine.

    Nyholt DR, LaForge KS, Kallela M, Alakurtti K, Anttila V, Färkkilä M, Hämaläinen E, Kaprio J, Kaunisto MA, Heath AC, Montgomery GW, Göbel H, Todt U, Ferrari MD, Launer LJ, Frants RR, Terwindt GM, de Vries B, Verschuren WM, Brand J, Freilinger T, Pfaffenrath V, Straube A, Ballinger DG, Zhan Y, Daly MJ, Cox DR, Dichgans M, van den Maagdenberg AM, Kubisch C, Martin NG, Wessman M, Peltonen L and Palotie A

    Genetic Epidemiology Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane4029, Queensland, Australia. dale.nyholt@qimr.edu.au

    The clinical overlap between monogenic Familial Hemiplegic Migraine (FHM) and common migraine subtypes, and the fact that all three FHM genes are involved in the transport of ions, suggest that ion transport genes may underlie susceptibility to common forms of migraine. To test this leading hypothesis, we examined common variation in 155 ion transport genes using 5257 single nucleotide polymorphisms (SNPs) in a Finnish sample of 841 unrelated migraine with aura cases and 884 unrelated non-migraine controls. The top signals were then tested for replication in four independent migraine case-control samples from the Netherlands, Germany and Australia, totalling 2835 unrelated migraine cases and 2740 unrelated controls. SNPs within 12 genes (KCNB2, KCNQ3, CLIC5, ATP2C2, CACNA1E, CACNB2, KCNE2, KCNK12, KCNK2, KCNS3, SCN5A and SCN9A) with promising nominal association (0.00041 < P < 0.005) in the Finnish sample were selected for replication. Although no variant remained significant after adjusting for multiple testing nor produced consistent evidence for association across all cohorts, a significant epistatic interaction between KCNB2 SNP rs1431656 (chromosome 8q13.3) and CACNB2 SNP rs7076100 (chromosome 10p12.33) (pointwise P = 0.00002; global P = 0.02) was observed in the Finnish case-control sample. We conclude that common variants of moderate effect size in ion transport genes do not play a major role in susceptibility to common migraine within these European populations, although there is some evidence for epistatic interaction between potassium and calcium channel genes, KCNB2 and CACNB2. Multiple rare variants or trans-regulatory elements of these genes are not ruled out.

    Funded by: NIAAA NIH HHS: AA007535, AA013320, AA013326, AA014041, AA07728, AA10249, AA11998; NINDS NIH HHS: R01 NS37675; Wellcome Trust: 089061, 089062

    Human molecular genetics 2008;17;21;3318-31

  • Consistently replicating locus linked to migraine on 10q22-q23.

    Anttila V, Nyholt DR, Kallela M, Artto V, Vepsäläinen S, Jakkula E, Wennerström A, Tikka-Kleemola P, Kaunisto MA, Hämäläinen E, Widén E, Terwilliger J, Merikangas K, Montgomery GW, Martin NG, Daly M, Kaprio J, Peltonen L, Färkkilä M, Wessman M and Palotie A

    Biomedicum Helsinki, Research Program in Molecular Medicine, University of Helsinki, 00290 Helsinki, Finland.

    Here, we present the results of two genome-wide scans in two diverse populations in which a consistent use of recently introduced migraine-phenotyping methods detects and replicates a locus on 10q22-q23, with an additional independent replication. No genetic variants have been convincingly established in migraine, and although several loci have been reported, none of them has been consistently replicated. We employed the three known migraine-phenotyping methods (clinical end diagnosis, latent-class analysis, and trait-component analysis) with robust multiple testing correction in a large sample set of 1675 individuals from 210 migraine families from Finland and Australia. Genome-wide multipoint linkage analysis that used the Kong and Cox exponential model in Finns detected a locus on 10q22-q23 with highly significant evidence of linkage (LOD 7.68 at 103 cM in female-specific analysis). The Australian sample showed a LOD score of 3.50 at the same locus (100 cM), as did the independent Finnish replication study (LOD score 2.41, at 102 cM). In addition, four previously reported loci on 8q21, 14q21, 18q12, and Xp21 were also replicated. A shared-segment analysis of 10q22-q23 linked Finnish families identified a 1.6-9.5 cM segment, centered on 101 cM, which shows in-family homology in 95% of affected Finns. This region was further studied with 1323 SNPs. Although no significant association was observed, four regions warranting follow-up studies were identified. These results support the use of symptomology-based phenotyping in migraine and suggest that the 10q22-q23 locus probably contains one or more migraine susceptibility variants.

    Funded by: NCRR NIH HHS: U54 RR020278; NIAAA NIH HHS: AA007535, AA013320, AA013326, AA014041, AA07728, AA10249, AA11998; NINDS NIH HHS: R01 NS37675

    American journal of human genetics 2008;82;5;1051-63

  • Trait components provide tools to dissect the genetic susceptibility of migraine.

    Anttila V, Kallela M, Oswell G, Kaunisto MA, Nyholt DR, Hamalainen E, Havanka H, Ilmavirta M, Terwilliger J, Sobel E, Peltonen L, Kaprio J, Farkkila M, Wessman M and Palotie A

    Finnish Genome Center, Helsinki, Finland.

    The commonly used "end diagnosis" phenotype that is adopted in linkage and association studies of complex traits is likely to represent an oversimplified model of the genetic background of a disease. This is also likely to be the case for common types of migraine, for which no convincingly associated genetic variants have been reported. In headache disorders, most genetic studies have used end diagnoses of the International Headache Society (IHS) classification as phenotypes. Here, we introduce an alternative strategy; we use trait components--individual clinical symptoms of migraine--to determine affection status in genomewide linkage analyses of migraine-affected families. We identified linkage between several traits and markers on chromosome 4q24 (highest LOD score under locus heterogeneity [HLOD] 4.52), a locus we previously reported to be linked to the end diagnosis migraine with aura. The pulsation trait identified a novel locus on 17p13 (HLOD 4.65). Additionally, a trait combination phenotype (IHS full criteria) revealed a locus on 18q12 (HLOD 3.29), and the age at onset trait revealed a locus on 4q28 (HLOD 2.99). Furthermore, suggestive or nearly suggestive evidence of linkage to four additional loci was observed with the traits phonophobia (10q22) and aggravation by physical exercise (12q21, 15q14, and Xp21), and, interestingly, these loci have been linked to migraine in previous studies. Our findings suggest that the use of symptom components of migraine instead of the end diagnosis provides a useful tool in stratifying the sample for genetic studies.

    American journal of human genetics 2006;79;1;85-99

Alison Coffey

- unknown

Education: 2000 - PhD from University of London 1987 - BA (Hons) in Biochemistry, University of Oxford.

Research Experience: 2008 - present: Senior Staff Scientist, Genetics of common neurological diseases team, WTSI 2004 -2008: Group Leader, Exon Resequencing and Disease Genetics group, WTSI. 2002 - 2004: Project Leader, DNA Collections group, WTSI. 2004 - 2002: Research Associate, X chromosome mapping group, WTSI. 1998 - 2000: Senior Research Assistant,X chromosome mapping group, WTSI. 1993 - 1998: Research Assistant,X chromosome mapping group, WTSI. 1987 - 1993: Research Assistant, Paediatric Research Unit, Guy's Hospital, London.

Research

My background and main interest is in genome analysis from the very early days of mapping and sequencing the human genome to finding genes involved in disease.

Increasingly there is an association with altered patterns of methylation and disease. I am currently investigating methods for the analysis of the methylome and actively looking at the effects of methylation on gene expression over a wide range of projects in human, mouse and other species. We are considering how to apply these methods most efficiently to the study of common neurological disorders.

References

  • Q8IYL2 is a candidate gene for the familial epilepsy syndrome of Partial Epilepsy with Pericentral Spikes (PEPS).

    Leschziner GD, Coffey AJ, Andrew T, Gregorio SP, Dias-Neto E, Calafato M, Bentley DR, Kinton L, Sander JW and Johnson MR

    Division of Neuroscience, Imperial College London, UK; Wellcome Trust Sanger Institute, Cambridge, UK. guylesch@gmail.com

    Purpose: Partial Epilepsy with Pericentral Spikes (PEPS) is a novel Mendelian idiopathic epilepsy with evidence of linkage to Chromosome 4p15. Our aim was to identify the causative mutation in this epilepsy syndrome.

    Methods: We re-annotated all 42 genes in the linked chromosomal region and sequenced all genes within the linked interval. All exons, intron-exon boundaries and untranslated regions were sequenced in the original pedigree, and novel changes segregating correctly were subjected to bioinformatic analysis. Quantitative polymerase chain reaction was performed to examine for potential copy number variation (CNV).

    Results: 29 previously undescribed variants correctly segregating with the linked haplotype were identified. Bioinformatic analysis demonstrated that six variants were non-synonymous coding sequence polymorphisms, one of which, in Q8IYL2 (Gly400Ala), was found in neither Caucasian (n=243) and ancestry-matched Brazilian (n=180) control samples, nor subjects from the 1000 Genome Project. No gene duplications or deletions were identified in the linked region.

    Discussion: We postulate that Q8IYL2 is a causative gene for PEPS, after exhaustive resequencing and bioinformatic analysis. The function of this gene is unknown, but it is expressed in brain tissue.

    Epilepsy research 2011;96;1-2;109-15

  • The GENCODE exome: sequencing the complete human exome.

    Coffey AJ, Kokocinski F, Calafato MS, Scott CE, Palta P, Drury E, Joyce CJ, Leproust EM, Harrow J, Hunt S, Lehesjoki AE, Turner DJ, Hubbard TJ and Palotie A

    Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.

    Sequencing the coding regions, the exome, of the human genome is one of the major current strategies to identify low frequency and rare variants associated with human disease traits. So far, the most widely used commercial exome capture reagents have mainly targeted the consensus coding sequence (CCDS) database. We report the design of an extended set of targets for capturing the complete human exome, based on annotation from the GENCODE consortium. The extended set covers an additional 5594 genes and 10.3 Mb compared with the current CCDS-based sets. The additional regions include potential disease genes previously inaccessible to exome resequencing studies, such as 43 genes linked to ion channel activity and 70 genes linked to protein kinase activity. In total, the new GENCODE exome set developed here covers 47.9 Mb and performed well in sequence capture experiments. In the sample set used in this study, we identified over 5000 SNP variants more in the GENCODE exome target (24%) than in the CCDS-based exome sequencing.

    Funded by: NHGRI NIH HHS: 5U54HG004555; Wellcome Trust: 077198, WT062023, WT077198, WT089062

    European journal of human genetics : EJHG 2011;19;7;827-31

  • Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder.

    Frank RA, McRae AF, Pocklington AJ, van de Lagemaat LN, Navarro P, Croning MD, Komiyama NH, Bradley SJ, Challiss RA, Armstrong JD, Finn RD, Malloy MP, MacLean AW, Harris SE, Starr JM, Bhaskar SS, Howard EK, Hunt SE, Coffey AJ, Ranganath V, Deloukas P, Rogers J, Muir WJ, Deary IJ, Blackwood DH, Visscher PM and Grant SG

    Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, United Kingdom.

    Current models of schizophrenia and bipolar disorder implicate multiple genes, however their biological relationships remain elusive. To test the genetic role of glutamate receptors and their interacting scaffold proteins, the exons of ten glutamatergic 'hub' genes in 1304 individuals were re-sequenced in case and control samples. No significant difference in the overall number of non-synonymous single nucleotide polymorphisms (nsSNPs) was observed between cases and controls. However, cluster analysis of nsSNPs identified two exons encoding the cysteine-rich domain and first transmembrane helix of GRM1 as a risk locus with five mutations highly enriched within these domains. A new splice variant lacking the transmembrane GPCR domain of GRM1 was discovered in the human brain and the GRM1 mutation cluster could perturb the regulation of this variant. The predicted effect on individuals harbouring multiple mutations distributed in their ten hub genes was also examined. Diseased individuals possessed an increased load of deleteriousness from multiple concurrent rare and common coding variants. Together, these data suggest a disease model in which the interplay of compound genetic coding variants, distributed among glutamate receptors and their interacting proteins, contribute to the pathogenesis of schizophrenia and bipolar disorders.

    Funded by: Chief Scientist Office: CZB/4/505, ETM/55; Medical Research Council: MC_U127592696; Wellcome Trust

    PloS one 2011;6;4;e19011

  • A map of human genome variation from population-scale sequencing.

    1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME and McVean GA

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

    Funded by: British Heart Foundation: RG/09/012/28096; Howard Hughes Medical Institute; Medical Research Council: G0801823, G0801823(89305); NCRR NIH HHS: S10RR025056; NHGRI NIH HHS: 01HG3229, N01HG62088, P01 HG004120, P01HG4120, P41HG2371, P41HG4221, P41HG4222, P50HG2357, R01 HG003229, R01 HG003229-05, R01 HG004719-01, R01 HG004719-02, R01 HG004719-02S1, R01 HG004719-03, R01 HG004719-04, R01HG2651, R01HG3698, R01HG4333, R01HG4719, R01HG4960, RC2 HG005552-01, RC2 HG005552-02, RC2HG5552, U01HG5208, U01HG5209, U01HG5210, U01HG5211, U01HG5214, U41HG4568, U54 HG003273, U54HG2750, U54HG2757, U54HG3067, U54HG3079, U54HG3273; NIGMS NIH HHS: R01GM59290, R01GM72861, T32 GM007753; NIMH NIH HHS: 01MH84698; Wellcome Trust: 075491, 077009, 077014, 077192, 081407, 085532, 086084, 089061, 089062, 089088, WT075491/Z/04, WT077009, WT081407/Z/06/Z, WT085532AIA, WT086084/Z/08/Z, WT089088/Z/09/Z

    Nature 2010;467;7319;1061-73

  • Target-enrichment strategies for next-generation sequencing.

    Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J and Turner DJ

    The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.

    We have not yet reached a point at which routine sequencing of large numbers of whole eukaryotic genomes is feasible, and so it is often necessary to select genomic regions of interest and to enrich these regions before sequencing. There are several enrichment approaches, each with unique advantages and disadvantages. Here we describe our experiences with the leading target-enrichment technologies, the optimizations that we have performed and typical results that can be obtained using each. We also provide detailed protocols for each technology so that end users can find the best compromise between sensitivity, specificity and uniformity for their particular project.

    Funded by: NHGRI NIH HHS: 5R21HG004749, R21 HG004749; NHLBI NIH HHS: 5R01HL094976, R01 HL094976; NIGMS NIH HHS: T32 GM007266; Wellcome Trust: WT079643

    Nature methods 2010;7;2;111-8

  • Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin.

    Boles MK, Wilkinson BM, Wilming LG, Liu B, Probst FJ, Harrow J, Grafham D, Hentges KE, Woodward LP, Maxwell A, Mitchell K, Risley MD, Johnson R, Hirschi K, Lupski JR, Funato Y, Miki H, Marin-Garcia P, Matthews L, Coffey AJ, Parker A, Hubbard TJ, Rogers J, Bradley A, Adams DJ and Justice MJ

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

    An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU) mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn), inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing.

    Funded by: Cancer Research UK; NCI NIH HHS: R01 CA115503; NHGRI NIH HHS: U54 HG004555-04; Wellcome Trust: 062023, 077198, 76943

    PLoS genetics 2009;5;12;e1000759

  • A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways.

    Jones CI, Bray S, Garner SF, Stephens J, de Bono B, Angenent WG, Bentley D, Burns P, Coffey A, Deloukas P, Earthrowl M, Farndale RW, Hoylaerts MF, Koch K, Rankin A, Rice CM, Rogers J, Samani NJ, Steward M, Walker A, Watkins NA, Akkerman JW, Dudbridge F, Goodall AH, Ouwehand WH and Bloodomics Consortium

    Department of Cardiovascular Science, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, United Kingdom.

    Platelet response to activation varies widely between individuals but shows interindividual consistency and strong heritability. The genetic basis of this variation has not been properly explored. We therefore systematically measured the effect on function of sequence variation in 97 candidate genes in the collagen and adenosine-diphosphate (ADP) signaling pathways. Resequencing of the genes in 48 European DNA samples nearly doubled the number of known single nucleotide polymorphisms (SNPs) and informed the selection of 1327 SNPs for genotyping in 500 healthy Northern European subjects with known platelet responses to collagen-related peptide (CRP-XL) and ADP. This identified 17 novel associations with platelet function (P < .005) accounting for approximately 46% of the variation in response. Further investigations with platelets of known genotype explored the mechanisms behind some of the associations. SNPs in PEAR1 associated with increased platelet response to CRP-XL and increased PEAR1 protein expression after platelet degranulation. The minor allele of a 3' untranslated region (UTR) SNP (rs2769668) in VAV3 was associated with higher protein expression (P = .03) and increased P-selectin exposure after ADP activation (P = .004). Furthermore the minor allele of the intronic SNP rs17786144 in ITPR1 modified Ca(2+) levels after activation with ADP (P < .004). These data provide novel insights into key hubs within platelet signaling networks.

    Funded by: British Heart Foundation: RG/09/003/27122

    Blood 2009;114;7;1405-16

  • The DNA sequence of the human X chromosome.

    Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP, Frankish A, Lovell FL, Howe KL, Ashurst JL, Fulton RS, Sudbrak R, Wen G, Jones MC, Hurles ME, Andrews TD, Scott CE, Searle S, Ramser J, Whittaker A, Deadman R, Carter NP, Hunt SE, Chen R, Cree A, Gunaratne P, Havlak P, Hodgson A, Metzker ML, Richards S, Scott G, Steffen D, Sodergren E, Wheeler DA, Worley KC, Ainscough R, Ambrose KD, Ansari-Lari MA, Aradhya S, Ashwell RI, Babbage AK, Bagguley CL, Ballabio A, Banerjee R, Barker GE, Barlow KF, Barrett IP, Bates KN, Beare DM, Beasley H, Beasley O, Beck A, Bethel G, Blechschmidt K, Brady N, Bray-Allen S, Bridgeman AM, Brown AJ, Brown MJ, Bonnin D, Bruford EA, Buhay C, Burch P, Burford D, Burgess J, Burrill W, Burton J, Bye JM, Carder C, Carrel L, Chako J, Chapman JC, Chavez D, Chen E, Chen G, Chen Y, Chen Z, Chinault C, Ciccodicola A, Clark SY, Clarke G, Clee CM, Clegg S, Clerc-Blankenburg K, Clifford K, Cobley V, Cole CG, Conquer JS, Corby N, Connor RE, David R, Davies J, Davis C, Davis J, Delgado O, Deshazo D, Dhami P, Ding Y, Dinh H, Dodsworth S, Draper H, Dugan-Rocha S, Dunham A, Dunn M, Durbin KJ, Dutta I, Eades T, Ellwood M, Emery-Cohen A, Errington H, Evans KL, Faulkner L, Francis F, Frankland J, Fraser AE, Galgoczy P, Gilbert J, Gill R, Glöckner G, Gregory SG, Gribble S, Griffiths C, Grocock R, Gu Y, Gwilliam R, Hamilton C, Hart EA, Hawes A, Heath PD, Heitmann K, Hennig S, Hernandez J, Hinzmann B, Ho S, Hoffs M, Howden PJ, Huckle EJ, Hume J, Hunt PJ, Hunt AR, Isherwood J, Jacob L, Johnson D, Jones S, de Jong PJ, Joseph SS, Keenan S, Kelly S, Kershaw JK, Khan Z, Kioschis P, Klages S, Knights AJ, Kosiura A, Kovar-Smith C, Laird GK, Langford C, Lawlor S, Leversha M, Lewis L, Liu W, Lloyd C, Lloyd DM, Loulseged H, Loveland JE, Lovell JD, Lozado R, Lu J, Lyne R, Ma J, Maheshwari M, Matthews LH, McDowall J, McLaren S, McMurray A, Meidl P, Meitinger T, Milne S, Miner G, Mistry SL, Morgan M, Morris S, Müller I, Mullikin JC, Nguyen N, Nordsiek G, Nyakatura G, O'Dell CN, Okwuonu G, Palmer S, Pandian R, Parker D, Parrish J, Pasternak S, Patel D, Pearce AV, Pearson DM, Pelan SE, Perez L, Porter KM, Ramsey Y, Reichwald K, Rhodes S, Ridler KA, Schlessinger D, Schueler MG, Sehra HK, Shaw-Smith C, Shen H, Sheridan EM, Shownkeen R, Skuce CD, Smith ML, Sotheran EC, Steingruber HE, Steward CA, Storey R, Swann RM, Swarbreck D, Tabor PE, Taudien S, Taylor T, Teague B, Thomas K, Thorpe A, Timms K, Tracey A, Trevanion S, Tromans AC, d'Urso M, Verduzco D, Villasana D, Waldron L, Wall M, Wang Q, Warren J, Warry GL, Wei X, West A, Whitehead SL, Whiteley MN, Wilkinson JE, Willey DL, Williams G, Williams L, Williamson A, Williamson H, Wilming L, Woodmansey RL, Wray PW, Yen J, Zhang J, Zhou J, Zoghbi H, Zorilla S, Buck D, Reinhardt R, Poustka A, Rosenthal A, Lehrach H, Meindl A, Minx PJ, Hillier LW, Willard HF, Wilson RK, Waterston RH, Rice CM, Vaudin M, Coulson A, Nelson DL, Weinstock G, Sulston JE, Durbin R, Hubbard T, Gibbs RA, Beck S, Rogers J and Bentley DR

    The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. mtr@sanger.ac.uk

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.

    Nature 2005;434;7031;325-37

  • The physical maps for sequencing human chromosomes 1, 6, 9, 10, 13, 20 and X.

    Bentley DR, Deloukas P, Dunham A, French L, Gregory SG, Humphray SJ, Mungall AJ, Ross MT, Carter NP, Dunham I, Scott CE, Ashcroft KJ, Atkinson AL, Aubin K, Beare DM, Bethel G, Brady N, Brook JC, Burford DC, Burrill WD, Burrows C, Butler AP, Carder C, Catanese JJ, Clee CM, Clegg SM, Cobley V, Coffey AJ, Cole CG, Collins JE, Conquer JS, Cooper RA, Culley KM, Dawson E, Dearden FL, Durbin RM, de Jong PJ, Dhami PD, Earthrowl ME, Edwards CA, Evans RS, Gillson CJ, Ghori J, Green L, Gwilliam R, Halls KS, Hammond S, Harper GL, Heathcott RW, Holden JL, Holloway E, Hopkins BL, Howard PJ, Howell GR, Huckle EJ, Hughes J, Hunt PJ, Hunt SE, Izmajlowicz M, Jones CA, Joseph SS, Laird G, Langford CF, Lehvaslaiho MH, Leversha MA, McCann OT, McDonald LM, McDowall J, Maslen GL, Mistry D, Moschonas NK, Neocleous V, Pearson DM, Phillips KJ, Porter KM, Prathalingam SR, Ramsey YH, Ranby SA, Rice CM, Rogers J, Rogers LJ, Sarafidou T, Scott DJ, Sharp GJ, Shaw-Smith CJ, Smink LJ, Soderlund C, Sotheran EC, Steingruber HE, Sulston JE, Taylor A, Taylor RG, Thorpe AA, Tinsley E, Warry GL, Whittaker A, Whittaker P, Williams SH, Wilmer TE, Wooster R and Wright CL

    The Sanger Centre, Hinxton, Cambridge, UK. drb@sanger.ac.uk

    We constructed maps for eight chromosomes (1, 6, 9, 10, 13, 20, X and (previously) 22), representing one-third of the genome, by building landmark maps, isolating bacterial clones and assembling contigs. By this approach, we could establish the long-range organization of the maps early in the project, and all contig extension, gap closure and problem-solving was simplified by containment within local regions. The maps currently represent more than 94% of the euchromatic (gene-containing) regions of these chromosomes in 176 contigs, and contain 96% of the chromosome-specific markers in the human gene map. By measuring the remaining gaps, we can assess chromosome length and coverage in sequenced clones.

    Nature 2001;409;6822;942-3

  • Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene.

    Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, Cahn AP, Durham J, Heath P, Wray P, Pavitt R, Wilkinson J, Leversha M, Huckle E, Shaw-Smith CJ, Dunham A, Rhodes S, Schuster V, Porta G, Yin L, Serafini P, Sylla B, Zollo M, Franco B, Bolino A, Seri M, Lanyi A, Davis JR, Webster D, Harris A, Lenoir G, de St Basile G, Jones A, Behloradsky BH, Achatz H, Murken J, Fassler R, Sumegi J, Romeo G, Vaudin M, Ross MT, Meindl A and Bentley DR

    The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK. ajc@sanger.ac.uk

    X-linked lymphoproliferative syndrome (XLP or Duncan disease) is characterized by extreme sensitivity to Epstein-Barr virus (EBV), resulting in a complex phenotype manifested by severe or fatal infectious mononucleosis, acquired hypogammaglobulinemia and malignant lymphoma. We have identified a gene, SH2D1A, that is mutated in XLP patients and encodes a novel protein composed of a single SH2 domain. SH2D1A is expressed in many tissues involved in the immune system. The identification of SH2D1A will allow the determination of its mechanism of action as a possible regulator of the EBV-induced immune response.

    Funded by: NIAID NIH HHS: 1 R01 AI33532-OIA3; Telethon: E.0440, TGM06S01; Wellcome Trust

    Nature genetics 1998;20;2;129-35

Padhraig Gormley

- unknown

Padhraig obtained his PhD in Computational Systems Biology from Queen's University Belfast in 2010. The main focus of his thesis was on developing methods of variable selection and regularisation for performing system identification on ill-conditioned problems such as those found in typical biological datasets. Previously he completed a BSc in Computer Science and Physics in 2003 (also at Queen's University Belfast) and then obtained an MSc in Intelligent Systems from the University of Ulster in 2005. He has also worked as a research assistant in the Intelligent Systems Research Centre at the University of Ulster in 2006.

Research

Padhraig's main research at Sanger involves the development and application of computational methods to identify genetic variants associated with migraine and other neurological disorders. In particular, he is currently working on a meta-analysis of genome-wide association studies as part of the International Migraine Genetics Meta-analysis Consortium and is also investigating the role of highly deleterious de novo mutations in Schizophrenia using whole-exome sequencing of child-parent trios. Other research interests include; genotype imputation methods, predictive modelling from metabolic data, polygenic prediction methods, penalised regression/regularisation and model selection.

References

  • Modelling molecular interaction pathways using a two-stage identification algorithm.

    Gormley P, Li K and Irwin GW

    School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, BT9 5AH, UK, pgormley02@qub.ac.uk.

    In systems biology, molecular interactions are typically modelled using white-box methods, usually based on mass action kinetics. Unfortunately, problems with dimensionality can arise when the number of molecular species in the system is very large, which makes the system modelling and behavior simulation extremely difficult or computationally too expensive. As an alternative, this paper investigates the identification of two molecular interaction pathways using a black-box approach. This type of method creates a simple linear-in-the-parameters model using regression of data, where the output of the model at any time is a function of previous system states of interest. One of the main objectives in building black-box models is to produce an optimal sparse nonlinear one to effectively represent the system behavior. In this paper, it is achieved by applying an efficient iterative approach, where the terms in the regression model are selected and refined using a forward and backward subset selection algorithm. The method is applied to model identification for the MAPK signal transduction pathway and the Brusselator using noisy data of different sizes. Simulation results confirm the efficacy of the black-box modelling method which offers an alternative to the computationally expensive conventional approach.

    Systems and synthetic biology 2007;1;3;145-60

Priit Palta

- unknown

I started my BSc studies in University of Tartu, Estonia. My major was molecular biology and on my third year I joined the Department of Bioinformatics, where I started working on different aspects of microarray probe design and data analysis. During my MSc years I specialised in bioinformatics and concentrated my studies on statistics and human genetics. My research was focused on microarray data analysis, thermodynamics-based oligonucleotide design and by that time I started working on human copy-number variants. During my PhD studies I studied various aspects of CNVs in case of genetic disorders and in 'healthy' individuals.

Research

I'm generally interested in human genetics and genomics: in different types of genetic and epigenetic variations, variation in association with diseases, disorders and 'common' benign variability.

At the moment I'm focused on studying the human DNA methylome, we are comparing several available methods to study methylation (patterns) in different human cell types.

References

  • The GENCODE exome: sequencing the complete human exome.

    Coffey AJ, Kokocinski F, Calafato MS, Scott CE, Palta P, Drury E, Joyce CJ, Leproust EM, Harrow J, Hunt S, Lehesjoki AE, Turner DJ, Hubbard TJ and Palotie A

    Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.

    Sequencing the coding regions, the exome, of the human genome is one of the major current strategies to identify low frequency and rare variants associated with human disease traits. So far, the most widely used commercial exome capture reagents have mainly targeted the consensus coding sequence (CCDS) database. We report the design of an extended set of targets for capturing the complete human exome, based on annotation from the GENCODE consortium. The extended set covers an additional 5594 genes and 10.3 Mb compared with the current CCDS-based sets. The additional regions include potential disease genes previously inaccessible to exome resequencing studies, such as 43 genes linked to ion channel activity and 70 genes linked to protein kinase activity. In total, the new GENCODE exome set developed here covers 47.9 Mb and performed well in sequence capture experiments. In the sample set used in this study, we identified over 5000 SNP variants more in the GENCODE exome target (24%) than in the CCDS-based exome sequencing.

    Funded by: NHGRI NIH HHS: 5U54HG004555; Wellcome Trust: 077198, WT062023, WT077198, WT089062

    European journal of human genetics : EJHG 2011;19;7;827-31

Bendik Winsvold

- Fellow

Bendik graduated as MD from Royal College of Surgeons in Ireland in 2006, and started specialist training in clinical neurology at Oslo University Hospital, Norway. In 2009 he joined the Neurogenetic Unit at Oslo University Hospital, and has since been involved in research with focus on genetic and epidemiological aspects of migraine. He came to the Sanger Institute in 2011.

Research

As part of the International Migraine Genetics Meta-analysis Consortium, and the International Hedache Genetics Consortium, Bendik is involved in genome-wide association studies of the common forms migraine. He also works with the analysis of sequence data, with the aim of identifying causes for more rare and severe forms of migraine. A special interest is genetic mechanisms underlying the comorbidity between migraine and other conditions, including stroke and cardiovascular disease.

* quick link - http://q.sanger.ac.uk/genneuro