Tracking MRSA in real time

Study highlights benefits of rapid whole-genome sequencing

Tracking MRSA in real time

In a new study released today in New England Journal of Medicine, researchers demonstrate that whole-genome sequencing can provide clinically relevant data on bacterial transmission within a timescale that can influence infection control and patient management.

Scientists from the Wellcome Trust Sanger Institute, University of Cambridge, and Illumina collaborated to use whole-genome sequencing to identify which isolates of methicillin-resistant Staphylococcus aureus (MRSA) were part of a hospital outbreak.

Current laboratory techniques often cannot distinguish between MRSA isolates. This study indicates that whole-genome sequencing can provide precise information in a fast turnaround time, and could make a clear distinction between MRSA isolates in a way that was not previously possible.

MRSA infection is a major public health problem. For example, in the United States, an estimated 89,785 invasive MRSA infections associated with 15,249 deaths occurred in 2008. Even when the disease is treated, MRSA infections double the average length of hospital stay and increase healthcare costs. Fast and accurate detection of bacterial transmission is crucial to better control of healthcare-associated infection.

"An important limitation of current infection control methodology is that the available bacterial typing methods cannot distinguish between different strains of MRSA. The purpose of our study was to see if whole-genome sequencing of MRSA could be used to distinguish between related strains at a genome level, and if this would inform and guide outbreak investigations."

Professor Sharon Peacock, lead author from the University of Cambridge and clinical specialist at the Health Protection Agency

The team focused on an outbreak in a neonatal intensive care unit that had already ended. They took the samples and sequenced them as if they had been working in real time. They found they could distinguish between strains that were part of the outbreak and strains that were not, and showed that they could have identified the outbreak earlier than current clinical testing, potentially shortening the outbreak.

"This study demonstrates how advances in whole-genome sequencing can provide essential information to help combat hospital outbreaks in clinically relevant turnaround times. As sequencing has become increasingly accurate and comprehensive, it can be used to answer a wide range of questions. Not only could we distinguish different MRSA strains in the hospital, we were also able to rapidly characterise antibiotic resistance and toxin genes present in the clinical isolates."

Dr Geoffrey Smith, co-lead author and Senior Director of Research at Illumina

The team constructed a list of all the MRSA genes that cause antibiotic resistance. Rapidly identifying drug resistance in MRSA strains will guide healthcare professionals to give each infected patient the most appropriate treatment possible. This also provides a powerful tool for the discovery of new drug resistance mechanisms.

MRSA produces numerous unique toxins that can inflict severe clinical syndromes, including septic shock, pneumonia, and complicated skin and soft tissue infections. The team created a list of toxin genes to rapidly identify those present in the MRSA strains, which currently can only be identified with multiple assays in reference laboratories.

"Distinguishing between strains is important for infection control management. Quick action is essential to control a suspected outbreak, but it is of equal importance to identify unrelated strains to prevent unnecessary ward closures and other disruptive control measures. Healthcare needs better, more efficient ways of identifying an outbreak and then processing the data."

"Current clinical methods to make links between related strains compare the pattern of bacterial susceptibility to a profile of antibiotics. We found this method to be inaccurate. We showed that two MRSA strains, which seemed by current methods to be identical, were genetically very different."

Dr Julian Parkhill, lead author from the Wellcome Trust Sanger Institute

The use of whole-genome sequencing will ultimately become part of routine health care. This study indicates that whole-genome sequencing in real time will be valuable in controlling MRSA and other outbreaks in a hospital setting.

"The next stage is to develop interactive tools that provide automated interpretation of genome sequence and provide clinically meaningful information to healthcare workers, a necessary advance before this can be rolled out into clinical practice."

Professor Sharon Peacock, University of Cambridge and clinical specialist at the Health Protection Agency

Notes to Editors
Publications
  • Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak.

    Köser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM et al.

    The New England journal of medicine 2012;366;24;2267-75

Funding

This research was funded by UKCRC Translational Infection Research (TIR) Initiative, the UK Medical Research Council, the Biotechnology and Biological Sciences Research Council, the National Institute for Health Research on behalf of the Department of Health, the Chief Scientist Office of the Scottish Government Health Directorate, the Health Protection Agency, the NIHR Cambridge Biomedical Research Centre, the Department of Health, the Wellcome Trust and Illumina, Inc.

Participating Centres
  • University of Cambridge
  • Wellcome Trust Sanger Institute
  • Health Protection Agency
  • Cambridge University Hospitals NHS Foundation Trust
  • Illumina, Inc.
  • Biocontrol Ltd
  • National University Health System, Singapore
Selected Websites
Contact the Press Office

Dr Samantha Wynne, Media Officer

Tel +44 (0)1223 492 368

Emily Mobley, Media Officer

Tel +44 (0)1223 496 851

Wellcome Trust Sanger Institute,
Hinxton,
Cambridgeshire,
CB10 1SA,
UK

Mobile +44 (0) 7900 607793

Recent News

Risk of cholera epidemics estimated with new rule book

Researchers from across the world have studied cholera outbreaks in Africa, Latin America and the Caribbean from the last 60 years

25 new genomes to celebrate 25 years of the Sanger Institute

Blackberry to robin, bush cricket to brown trout - the 25 species all reside in the UK

Professor Sharon Peacock to be awarded the 2018 Microbiology Society Unilever Colworth Prize

This Prize is awarded for significant contributions in the field of microbiology